Sun, Zhizeng; Mehta, Shrenik C; Adamski, Carolyn J; Gibbs, Richard A; Palzkill, Timothy
2016-09-12
CphA is a Zn(2+)-dependent metallo-β-lactamase that efficiently hydrolyzes only carbapenem antibiotics. To understand the sequence requirements for CphA function, single codon random mutant libraries were constructed for residues in and near the active site and mutants were selected for E. coli growth on increasing concentrations of imipenem, a carbapenem antibiotic. At high concentrations of imipenem that select for phenotypically wild-type mutants, the active-site residues exhibit stringent sequence requirements in that nearly all residues in positions that contact zinc, the substrate, or the catalytic water do not tolerate amino acid substitutions. In addition, at high imipenem concentrations a number of residues that do not directly contact zinc or substrate are also essential and do not tolerate substitutions. Biochemical analysis confirmed that amino acid substitutions at essential positions decreased the stability or catalytic activity of the CphA enzyme. Therefore, the CphA active - site is fragile to substitutions, suggesting active-site residues are optimized for imipenem hydrolysis. These results also suggest that resistance to inhibitors targeted to the CphA active site would be slow to develop because of the strong sequence constraints on function.
Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M
2017-06-01
Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.
McGeary, Ross P; Tan, Daniel T C; Selleck, Christopher; Monteiro Pedroso, Marcelo; Sidjabat, Hanna E; Schenk, Gerhard
2017-09-08
A SAR study on derivatives of 2-amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile 5a revealed that the 3-carbonitrile group, vicinal 4,5-diphenyl and N-benzyl side chains of the pyrrole are important for the inhibitory potencies of these compounds against members representing the three main subclasses of metallo-β-lactamases (MBLs), i.e. IMP-1 (representing the B1 subgroup), CphA (B2) and AIM-1 (B3). Coupling of 5a with a series of acyl chlorides and anhydrides led to the discovery of two N-acylamide derivatives, 10 and 11, as the two most potent IMP-1 inhibitors in this series. However, these compounds are less effective towards CphA and AIM-1. The N-benzoyl derivative of 5a retained potent in vitro activity against each of MBLs tested (with inhibition constants in the low μM range). Importantly, this compound also significantly enhanced the sensitivity of IMP-1, CphA- or AIM-1-producing cell cultures towards meropenem. This compound presents a promising starting point for the development of a universal MBL inhibitor, targeting members of each of the major subgroups of this family of enzymes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Competitive Inhibitors of the CphA Metallo-β-Lactamase from Aeromonas hydrophila▿
Horsfall, L. E.; Garau, G.; Liénard, B. M. R.; Dideberg, O.; Schofield, C. J.; Frère, J. M.; Galleni, M.
2007-01-01
Various inhibitors of metallo-β-lactamases have been reported; however, none are effective for all subgroups. Those that have been found to inhibit the enzymes of subclass B2 (catalytically active with one zinc) either contain a thiol (and show less inhibition towards this subgroup than towards the dizinc members of B1 and B3) or are inactivators behaving as substrates for the dizinc family members. The present work reveals that certain pyridine carboxylates are competitive inhibitors of CphA, a subclass B2 enzyme. X-ray crystallographic analyses demonstrate that pyridine-2,4-dicarboxylic acid chelates the zinc ion in a bidentate manner within the active site. Salts of these compounds are already available and undergoing biomedical testing for various nonrelated purposes. Pyridine carboxylates appear to be useful templates for the development of more-complex, selective, nontoxic inhibitors of subclass B2 metallo-β-lactamases. PMID:17307979
Liu, Hualan; Ray, W Keith; Helm, Richard F; Popham, David L; Melville, Stephen B
2016-06-15
Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in the disease. How C. perfringens controls the germination process is still not completely understood. We characterized the proteome of the membranes from dormant and germinated spores and discovered that large-scale changes occur after germination is initiated. One of the proteins that was detected after germination was the enzyme cyanophycinase, which degrades the storage compound cyanophycin, which is found in cyanobacteria and other prokaryotes. A cyanophycin synthetase mutant was constructed and found to make spores with altered morphology but normal heat resistance, suggesting that cyanophycin plays a different role in C. perfringens than it does in cyanobacteria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Budzinski, Jason W.; Pluye, Pierre; Grad, Roland M.; Repchinsky, Carol; Jovaisas, Barbara; Johnson-Lafleur, Janique
2012-01-01
Objective. To assess the use of an electronic knowledge resource to document continuing education activities and reveal educational needs of practicing pharmacists. Methods. Over a 38-week period, 67 e-mails were sent to 6,500 Canadian Pharmacists Association (CPhA) members. Each e-mail contained a link to an e-Therapeutics+ Highlight, a factual excerpt of selected content from an online drug and therapeutic knowledge resource. Participants were then prompted to complete a pop-up questionnaire. Results. Members completed 4,140 questionnaires. Participants attributed the information they learned in the Highlights to practice improvements (50.4%), learning (57.0%), and motivation to learn more (57.4%). Conclusions. Reading Highlight excerpts and completing Web-based questionnaires is an effective method of continuing education that could be easily documented and tracked, making it an effective tool for use with e-portfolios. PMID:22761523
Budzinski, Jason W; Farrell, Barbara; Pluye, Pierre; Grad, Roland M; Repchinsky, Carol; Jovaisas, Barbara; Johnson-Lafleur, Janique
2012-06-18
To assess the use of an electronic knowledge resource to document continuing education activities and reveal educational needs of practicing pharmacists. Over a 38-week period, 67 e-mails were sent to 6,500 Canadian Pharmacists Association (CPhA) members. Each e-mail contained a link to an e-Therapeutics+ Highlight, a factual excerpt of selected content from an online drug and therapeutic knowledge resource. Participants were then prompted to complete a pop-up questionnaire. Members completed 4,140 questionnaires. Participants attributed the information they learned in the Highlights to practice improvements (50.4%), learning (57.0%), and motivation to learn more (57.4%). Reading Highlight excerpts and completing Web-based questionnaires is an effective method of continuing education that could be easily documented and tracked, making it an effective tool for use with e-portfolios.
Mishra, Lipi; Banerjee, Ananya T; MacLennan, Mary E; Gorczynski, Paul F; Zinszer, Kate A
2011-01-01
Students vocalized their concern with public health training programs in Canada at the 2010 CPHA Centennial Conference. Given these concerns, we reviewed the objectives and curricula of public health graduate (master's) programs in Canada. Our objective was to understand to what extent public and population health graduate programs in Canada support interdisciplinary, multidisciplinary and knowledge translation and exchange (KTE) training. This was achieved through a review of all public and population health master's programs in Canada identified from the public health graduate programs listed on the Public Health Agency of Canada website (n = 33) plus an additional four programs that were not originally captured on the list. Of the 37 programs reviewed, 28 (76%) stated that interdisciplinary, multidisciplinary or cross-disciplinary training opportunities are of value to their program, with 12 programs (32%) providing multidisciplinary or interdisciplinary training opportunities in their curriculum. Only 14 (38%) of the 37 programs provided value statements of KTE activities in their program goals or course objectives, with 10 (27%) programs offering KTE training in their curriculum. This review provides a glimpse into how public health programs in Canada value and support interdisciplinary and multidisciplinary collaboration as well as KTE activities.
Canadian community pharmacists' use of digital health technologies in practice.
Leung, Valerie; Tharmalingam, Sukirtha; Cooper, Janet; Charlebois, Maureen
2016-01-01
In 2010, a pan-Canadian study on the current state and benefits of provincial drug information systems (DIS) found that substantial benefits were being realized and that pharmacists perceived DIS to be a valuable tool in the evolving models of pharmacy practice. To understand changes in digital health and the impact on practice since that time, a survey of community pharmacists in Canada was conducted. In 2014, Canada Health Infoway (Infoway) and the Canadian Pharmacists Association (CPhA) invited community pharmacists to participate in a Web-based survey to understand their use and perceived benefits of digital health in practice. The survey was open from April 15 to May 12, 2014. Of the 447 survey responses, almost all used some form of digital health in practice. Those with access to DIS and provincial laboratory information systems (LIS) reported increased productivity and better quality of care. Those without access to these systems would overwhelmingly like access. There have been significant advances in digital health and community pharmacy practice over the past several years. In addition to digital health benefits in the areas of productivity and quality of care, pharmacists are also experiencing substantial benefits in areas related to recently expanded scope of practice activities such as ordering lab tests. Community pharmacists frequently use digital health in practice and recognize the benefits of these technologies. Digital health is, and will continue to be, a key enabler for practice transformation and improved quality of care. Can Pharm J (Ott) 2016;149:xx-xx.
On the active site of mononuclear B1 metallo β-lactamases: a computational study
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; Magistrato, Alessandra; Dal Peraro, Matteo; Vila, Alejandro J.; Carloni, Paolo; Pierattelli, Roberta
2012-04-01
Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called `3H' and `DCH' sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum-classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the ɛɛδ and δɛδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.
Global Tobacco Surveillance System (GTSS): purpose, production, and potential.
2005-01-01
The World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and Canadian Public Health Association (CPHA) developed the Global Tobacco Surveillance System (GTSS) to assist all 192 WHO Member States in collecting data on youth and adult tobacco use. The flexible GTSS system includes common data items but allows countries to include important unique information at their discretion. It uses a common survey methodology, similar field procedures for data collection, and similar data management and processing techniques. The GTSS includes collection of data through three surveys: the Global Youth Tobacco Survey (GYTS) for youth, and the Global School Personnel Survey (GSPS) and the Global Health Professional Survey (GHPS) for adults. GTSS data potentially can be applied in four ways. First, countries and research partners can disseminate data through publications, presentations, and an active GTSS web site. Second, countries can use GTSS data to inform politicians about the tobacco problem in their country, leading to new policy decisions to prevent and control tobacco use. Third, GTSS can provide countries with valuable feedback to evaluate and improve Country National Action Plans or develop new plans. Fourth, in response to the WHO FCTC call for countries to use consistent methods and procedures in their surveillance efforts, GTSS offers such consistency in sampling procedures, core questionnaire items, training infield procedures, and analysis of data across all survey sites. The GTSS represents the most comprehensive tobacco surveillance system ever developed and implemented. As an example, this paper describes development of the GYTS and discusses potential uses of the data. Sample data were drawn from 38 sites in 24 countries in the African Region, 82 sites in 35 countries in the Americas Region, 20 sites in 17 countries and the Gaza Strip/West Bank region in the Eastern Mediterranean Region, 25 sites in 22 countries in the European Region, 34 sites in six countries in the Southeast Asia Region, and 25 sites in 14 countries in the Western Pacific Region.
Horn, Patricia; Schlichting, André; Baum, Christel; Hammesfahr, Ute; Thiele-Bruhn, Sören; Leinweber, Peter; Broer, Inge
2017-02-10
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram + : gram - bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour. Copyright © 2016 Elsevier B.V. All rights reserved.
Antibiotic Resistance Gene Detection in the Microbiome Context.
Do, Thi Thuy; Tamames, Javier; Stedtfeld, Robert D; Guo, Xueping; Murphy, Sinead; Tiedje, James M; Walsh, Fiona
2018-06-01
Within the past decade, microbiologists have moved from detecting single antibiotic resistance genes (ARGs) to detecting all known resistance genes within a sample due to advances in next generation sequencing. This has provided a wealth of data on the variation and relative abundances of ARGs present in a total bacterial population. However, to use these data in terms of therapy or risk to patients, they must be analyzed in the context of the background microbiome. Using a quantitative PCR ARG chip and 16S rRNA amplicon sequencing, we have sought to identify the ARGs and bacteria present in a fecal sample of a healthy adult using genomic tools. Of the 42 ARGs detected, 12 fitted into the ResCon1 category of ARGs: cfxA, cphA, bacA, sul3, aadE, bla TEM , aphA1, aphA3, aph(2')-Id, aacA/aphd, catA1, and vanC. Therefore, we describe these 12 genes as the core resistome of this person's fecal microbiome and the remaining 30 ARGs as descriptors of the microbial population within the fecal microbiome. The dominant phyla and genera agree with those previously detected in the greatest abundances in fecal samples of healthy humans. The majority of the ARGs detected were associated with the presence of specific bacterial taxa, which were confirmed using microbiome analysis. We acknowledge the limitations of the data in the context of the limited sample set. However, the principle of combining qPCR and microbiome analysis was shown to be helpful to identify the association of the ARGs with specific taxa.
Tobacco as platform for a commercial production of cyanophycin.
Nausch, Henrik; Hausmann, Tina; Ponndorf, Daniel; Hühns, Maja; Hoedtke, Sandra; Wolf, Petra; Zeyner, Annette; Broer, Inge
2016-12-25
Cyanophycin (CP) is a proteinogenic polymer that can be substituted for petroleum in the production of plastic compounds and can also serve as a source of valuable dietary supplements. However, because there is no economically feasible system for large-scale industrial production, its application is limited. In order to develop a low-input system, CP-synthesis was established in the two commercial Nicotiana tabacum (N. tabacum) cultivars 'Badischer Geudertheimer' (BG) and 'Virginia Golta' (VG), by introducing the cyanophycin-synthetase gene from Thermosynecchococcus elongatus BP-1 (CphA Te ) either via crossbreeding with transgenic N. tabacum cv. Petit Havana SR1 (PH) T2 individual 51-3-2 or by agrobacterium-mediated transformation. Both in F1 hybrids (max. 9.4% CP/DW) and T0 transformants (max. 8.8% CP/DW), a substantial increase in CP content was achieved in leaf tissue, compared to a maximum of 1.7% CP/DW in PH T0 transformants of Hühns et al. (2008). In BG CP, yields were homogenous and there was no substantial difference in the variation of the CP content between primary transformants (T0), clones of T0 individuals, T1 siblings and F1 siblings of hybrids. Therefore, BG meets the requirements for establishing a master seed bank for continuous and reliable CP-production. In addition, it was shown that the polymer is not only stable in planta but also during silage, which simplifies storage of the harvest prior to isolation of CP. Copyright © 2016 Elsevier B.V. All rights reserved.
Horn, Patricia; Schlichting, André; Baum, Christel; Hammesfahr, Ute; Thiele-Bruhn, Sören; Leinweber, Peter; Broer, Inge
2017-09-10
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram + : gram - bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour. Copyright © 2016 Elsevier B.V. All rights reserved.
Diniz, Simone Cardoso; Voss, Ingo; Steinbüchel, Alexander
2006-03-05
Elementary mode analysis was applied to simulate conditions for cyanophycin (CGP) biosynthesis and to optimize its production in bacteria. The conclusions from these simulations were confirmed by experiments with recombinant strains of the wild types and polyhydroxyalkanoate (PHA)-negative mutants of Ralstonia eutropha and Pseudomonas putida expressing CGP synthetase genes (cphA) of Synechocystis sp. strain PCC6308 or Anabaena sp. strain PCC7120. In particular, the effects of suitable precursor substrates and of oxygen supply as well as of the capability to accumulate PHA in addition to CGP biosynthesis were investigated. Since CGP consists of the amino acids aspartate and arginine, the tricarboxylic acid cycle (TCC), which provides intermediates for biosynthesis of these amino acids, seems to be important. Excretion of intermediates of the TCC upon cultivation at restricted oxygen supply and conversion of fumarate mainly to malate and to only little succinate in the absence of oxygen indicated that TCC intermediates for arginine and aspartate biosynthesis were provided by the oxidative or reductive parts of the TCC, respectively. The following important conclusions were made from the experiments and the simulations: (i) external arginine additionally supplied to the medium, (ii) oxygen limitation, and (iii) absence of PHA accumulation exerted positive effects on CGP accumulation. These conclusions were utilized to obtain CGP contents in the cells of as high as 17.9% (w x w(-1)) during cultivation of the investigated bacteria at the 30-L scale using mineral salts medium. Such high CGP contents were previously not obtained with these bacteria at a 30-L scale, even if complex media were used.
Method for enhancing amidohydrolase activity of fatty acid amide hydrolase
John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter
2016-10-25
A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.
Method for enhancing amidohydrolase activity of fatty acid amide hydrolase
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, George; Nagarajan, Subbiah; Chapman, Kent
A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.
Enhanced activation of the left hemisphere promotes normative decision making.
Corser, Ryan; Jasper, John D
2014-01-01
Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.
Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome
Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.
2017-01-01
In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291
TALE-mediated modulation of transcriptional enhancers in vivo.
Crocker, Justin; Stern, David L
2013-08-01
We tested whether transcription activator-like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.
Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A
2016-01-01
V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage and stage specific manner. Unexpectedly we find that both active and inactive AgR enhancers co-operate to disseminate their effects in a localized and long-range manner. Here we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. We further establish that in T cells long-range contact and co-operation between the inactive Igk enhancer, MiEκ and the active Tcrb enhancer, Eβ, alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage and stage specific control. PMID:27239026
Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H
1994-11-15
Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.
Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A
2016-06-07
V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Nishimura, Naoko; Kamimura, Yoshifumi; Ishida, Yoshiko; Takemoto, Tatsuya; Kondoh, Hisato; Uchikawa, Masanori
2012-11-22
Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.
Functional analysis of limb enhancers in the developing fin
Booker, Betty M.; Murphy, Karl K.
2013-01-01
Despite diverging ~365 million years ago, tetrapod limbs and pectoral fins express similar genes that could be regulated by shared regulatory elements. In this study, we set out to analyze the ability of enhancers to maintain tissue specificity in these two divergent structures. We tested 22 human sequences that were previously reported as mouse limb enhancers for their enhancer activity in zebrafish (Danio rerio). Using a zebrafish enhancer assay, we found that 10/22 (45 %) were positive for pectoral fin activity. Analysis of the various criteria that correlated with positive fin activity found that both spatial limb activity and evolutionary conservation are not good predictors of fin enhancer activity. These results suggest that zebrafish enhancer assays may be limited in detecting human limb enhancers, and this limitation does not improve by the use of limb spatial expression or evolutionary conservation. PMID:24068387
Transcription through enhancers suppresses their activity in Drosophila
2013-01-01
Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291
Repression by Jun of the Polyoma-virus enhancer overrides activation in a cell specific manner.
Schneikert, J; Imler, J L; Wasylyk, B
1991-01-01
The activities of promoters and enhancers are generated by the combinatorial effects of the factors which interact with them. The Polyoma virus (Py) enhancer contains sequences that are positively regulated by the proto-oncogene Jun. Surprisingly, Jun has an additional and overriding repressing effect on enhancer activity, which is cell specific. Thus overall enhancer activity cannot be simply deduced from the properties of individual elements. We present evidence that repression is indirect. Images PMID:1850124
An atlas of active enhancers across human cell types and tissues
NASA Astrophysics Data System (ADS)
Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin
2014-03-01
Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
Bridgewater, Laura C.; Walker, Marlan D.; Miller, Gwen C.; Ellison, Trevor A.; Holsinger, L. Daniel; Potter, Jennifer L.; Jackson, Todd L.; Chen, Reuben K.; Winkel, Vicki L.; Zhang, Zhaoping; McKinney, Sandra; de Crombrugghe, Benoit
2003-01-01
Expression of the type XI collagen gene Col11a2 is directed to cartilage by at least three chondrocyte-specific enhancer elements, two in the 5′ region and one in the first intron of the gene. The three enhancers each contain two heptameric sites with homology to the Sox protein-binding consensus sequence. The two sites are separated by 3 or 4 bp and arranged in opposite orientation to each other. Targeted mutational analyses of these three enhancers showed that in the intronic enhancer, as in the other two enhancers, both Sox sites in a pair are essential for enhancer activity. The transcription factor Sox9 binds as a dimer at the paired sites, and the introduction of insertion mutations between the sites demonstrated that physical interactions between the adjacently bound proteins are essential for enhancer activity. Additional mutational analyses demonstrated that although Sox9 binding at the paired Sox sites is necessary for enhancer activity, it alone is not sufficient. Adjacent DNA sequences in each enhancer are also required, and mutation of those sequences can eliminate enhancer activity without preventing Sox9 binding. The data suggest a new model in which adjacently bound proteins affect the DNA bend angle produced by Sox9, which in turn determines whether an active transcriptional enhancer complex is assembled. PMID:12595563
Liu, Haichuan; Usmani, Shariq M.; Neidleman, Jason; Müller, Janis A.; Avila-Herrera, Aram; Gawanbacht, Ali; Zirafi, Onofrio; Chu, Simon; Dong, Ming; Kumar, Senthil T.; Smith, James F.; Pollard, Katherine S.; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan; Witkowska, H. Ewa; Greene, Warner C.
2014-01-01
ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen naturally undergoes physiological changes over time, whereby it converts from a gel-like consistency to a more liquid form. This process, termed liquefaction, is characterized at the molecular level by site-specific and progressive cleavage of SEMs, the major components of the coagulum, by seminal proteases. We demonstrate that the HIV-enhancing activity of semen gradually decreases over the course of extended liquefaction and identify a naturally occurring semenogelin-derived fragment, SEM1(86-107), whose levels correlate with virus-enhancing activity over the course of liquefaction. SEM1(86-107) amyloids are naturally present in semen, and synthetic SEM1(86-107) fibrils bind virions and are sufficient to enhance HIV infection. Therefore, by characterizing dynamic changes in the HIV-enhancing activity of semen during extended liquefaction, we identified SEM1(86-107) to be a key virus-enhancing component of human semen. PMID:24741080
Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement.
Adamsky, Adar; Kol, Adi; Kreisel, Tirzah; Doron, Adi; Ozeri-Engelhard, Nofar; Melcer, Talia; Refaeli, Ron; Horn, Henrike; Regev, Limor; Groysman, Maya; London, Michael; Goshen, Inbal
2018-05-18
Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
STATs shape the active enhancer landscape of T cell populations.
Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-Wei; Sartorelli, Vittorio; Kanno, Yuka; O'Shea, John J
2012-11-21
Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. Although enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4(+) T cells as a model of differentiation, mapping the activity of cell-type-specific enhancer elements in T helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the activation of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Okuda, A; Imagawa, M; Sakai, M; Muramatsu, M
1990-01-01
We have recently identified an enhancer, termed GPEI, in the 5'-flanking region of the rat glutathione transferase P gene, that is composed of two imperfect TPA (phorbol 12-O-tetradecanoate 13-acetate) responsive elements (TREs). Unlike other TRE-containing enhancers, GPEI exhibits a strong transcriptional enhancing activity in F9 embryonic stem cells. Mutational analyses have revealed that the high activity of GPEI is mediated by two imperfect TREs. Each TRE-like sequence has no activity by itself but acts synergistically to form a strong enhancer which is active even in the very low level of AP-1 activity in F9 cells. Furthermore, we show that synthetic DNAs containing two perfect TREs in certain arrangements have strong transcriptional enhancing activities in F9 cells and the activity is greatly influenced by the relative orientation and the distance of two TREs. Images Fig. 1. Fig. 2. Fig. 3. PMID:2323334
Discovery of stimulation-responsive immune enhancers with CRISPR activation
Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander
2017-01-01
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172
Discovery of stimulation-responsive immune enhancers with CRISPR activation.
Simeonov, Dimitre R; Gowen, Benjamin G; Boontanrart, Mandy; Roth, Theodore L; Gagnon, John D; Mumbach, Maxwell R; Satpathy, Ansuman T; Lee, Youjin; Bray, Nicolas L; Chan, Alice Y; Lituiev, Dmytro S; Nguyen, Michelle L; Gate, Rachel E; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M; Mitros, Therese; Ray, Graham J; Curie, Gemma L; Naddaf, Nicki; Chu, Julia S; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R; Schumann, Kathrin; Daly, Mark J; Farh, Kyle K; Ansel, K Mark; Ye, Chun J; Greenleaf, William J; Anderson, Mark S; Bluestone, Jeffrey A; Chang, Howard Y; Corn, Jacob E; Marson, Alexander
2017-09-07
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (T H 17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.
Discovery of stimulation-responsive immune enhancers with CRISPR activation
NASA Astrophysics Data System (ADS)
Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander
2017-09-01
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.
TRAIL Enhances Shikonin Induced Apoptosis through ROS/JNK Signaling in Cholangiocarcinoma Cells.
Zhou, Guangyao; Yang, Zuqin; Wang, Xiaodong; Tao, Ran; Zhou, Yuanping
2017-01-01
Cholangiocarcinoma (CCA), arising from varying locations within the biliary tree, is the second most common primary liver malignancy worldwide. Shikonin, an active compound extracted from the Chinese herb Zicao, holds anti-bacterial, anti-inflammatory, and anti-tumor activities. However, the effect of shikonin on human cholangiocarcinoma and detailed mechanisms of TRAIL enhancement remains to be elucidated. The purpose of the study was to investigate the protective functions of TRAIL enhancement for shikonin induced apoptosis in cholangiocarcinoma cells. We use MTT assay, apoptosis assay, caspase activity assay, flow cytometry assay, real time PCR and Western blot to observe the effects of TRAIL on shikonin induced cholangiocarcinoma cells apoptosis and its mechanism. Shikonin inhibited cell viability and induced apoptosis of CCA cells, effects enhanced by TRAIL treatment via activation of caspase-3, -8, -9. Furhermore, TRAIL enhanced anti-proliferation of shikonin and shikonin induced apoptosis through induction of ROS mediated JNK activation, while AKT activation had an effect on shikonin anti-proliferation activity, but not in the TRAIL enhanced counterparts. Finally, shikonin upregulated DR5 expression, an effect essential for TRAIL-enhanced activities of shikonin in RBE cells. Our results revealed that shikonin could inhibit cells viability and induce apoptosis of CCA cells, effects enhanced by TRAIL treatment via ROS mediated JNK signalling pathways, involving up-regulation of DR5 expression. Our results provide further insight into the mechanism underlying the anti-tumor effects of shikonin by TRAIL enhanced in CCA and a new therapeutic strategy to CCA treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
Mapping the Shh long-range regulatory domain
Anderson, Eve; Devenney, Paul S.; Hill, Robert E.; Lettice, Laura A.
2014-01-01
Coordinated gene expression controlled by long-distance enhancers is orchestrated by DNA regulatory sequences involving transcription factors and layers of control mechanisms. The Shh gene and well-established regulators are an example of genomic composition in which enhancers reside in a large desert extending into neighbouring genes to control the spatiotemporal pattern of expression. Exploiting the local hopping activity of the Sleeping Beauty transposon, the lacZ reporter gene was dispersed throughout the Shh region to systematically map the genomic features responsible for expression activity. We found that enhancer activities are retained inside a genomic region that corresponds to the topological associated domain (TAD) defined by Hi-C. This domain of approximately 900 kb is in an open conformation over its length and is generally susceptible to all Shh enhancers. Similar to the distal enhancers, an enhancer residing within the Shh second intron activates the reporter gene located at distances of hundreds of kilobases away, suggesting that both proximal and distal enhancers have the capacity to survey the Shh topological domain to recognise potential promoters. The widely expressed Rnf32 gene lying within the Shh domain evades enhancer activities by a process that may be common among other housekeeping genes that reside in large regulatory domains. Finally, the boundaries of the Shh TAD do not represent the absolute expression limits of enhancer activity, as expression activity is lost stepwise at a number of genomic positions at the verges of these domains. PMID:25252942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δmore » enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.« less
Bernstein, Robert Root; Dillon, Patrick F
2014-01-01
Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918
Ben-Mabrouk, Faiza; Tryba, Andrew Kieran
2011-01-01
Neuromodulators, such as Substance P (SubP) play an important role in modulating many rhythmic activities driven by central pattern generators (e.g., locomotion, respiration). However, the mechanism by which SubP enhances breathing regularity has not been determined. Here, we used mouse brainstem slices containing the pre-Bötzinger Complex (Pre-BötC) to demonstrate, for the first time, that SubP activates transient receptor protein canonical (TRPC) channels to enhance respiratory rhythm regularity. Moreover, SubP enhancement of network regularity is accomplished via selective enhancement of ICAN-dependent intrinsic bursting properties. In contrast to INaP-dependant pacemakers, ICAN-dependant pacemaker bursting activity is TRPC dependent. Western Blots reveal TRPC3 and TRPC7 channels are expressed in rhythmically active ventral respiratory group (VRG) island preparations. Taken together, these data suggest that SubP-mediated activation of TRPC3/7 channels underlies rhythmic ICAN-dependent pacemaker activity and enhances the regularity of respiratory rhythm activity. PMID:20345918
Ben-Mabrouk, Faiza; Tryba, Andrew K
2010-04-01
Neuromodulators, such as substance P (SubP), play an important role in modulating many rhythmic activities driven by central pattern generators (e.g. locomotion, respiration). However, the mechanism by which SubP enhances breathing regularity has not been determined. Here, we used mouse brainstem slices containing the pre-Bötzinger complex to demonstrate, for the first time, that SubP activates transient receptor protein canonical (TRPC) channels to enhance respiratory rhythm regularity. Moreover, SubP enhancement of network regularity is accomplished via selective enhancement of ICAN (inward non-specific cation current)-dependent intrinsic bursting properties. In contrast to INaP (persistent sodium current)-dependent pacemakers, ICAN-dependent pacemaker bursting activity is TRPC-dependent. Western Blots reveal TRPC3 and TRPC7 channels are expressed in rhythmically active ventral respiratory group island preparations. Taken together, these data suggest that SubP-mediated activation of TRPC3/7 channels underlies rhythmic ICAN-dependent pacemaker activity and enhances the regularity of respiratory rhythm activity.
González, Alberto; Moenne, Fabiola; Gómez, Melissa; Sáez, Claudio A; Contreras, Rodrigo A; Moenne, Alejandra
2014-01-01
In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.
Development of a heat-processing method for koji to enhance its antioxidant activity.
Okutsu, Kayu; Yoshizaki, Yumiko; Takamine, Kazunori; Tamaki, Hisanori; Ito, Kiyoshi; Sameshima, Yoshihiro
2012-03-01
We developed a heat-processing method to enhance the antioxidant activity of koji. The superoxide anion scavenging activity (SOSA) and oxygen radical absorbance capacity (ORAC) of heat-processed koji (HP-koji) at 55 °C for 7 days were 4.9 times and 4.2 times, respectively, those of unheated koji. These results showed that heat processing effectively enhances the antioxidant activity of koji. Analysis of the antioxidant activities of koji subjected to a range of temperatures (45-75 °C) revealed that the SOSA is enhanced by heating at higher temperatures, which might be catalyzed by Maillard reaction, whereas the ORAC was enhanced by heating at lower temperatures, which might be catalyzed by an enzymatic reaction. Assuming these enhancements in antioxidant activities are contributed by both Maillard and enzyme reactions, we hypothesized that the antioxidant activity of HP-koji could be more effectively amplified by heating at a higher temperature after the progression of the enzymatic reaction at a moderate temperature. Therefore, we evaluated the effect of heating of koji in a stepwise manner, first at 55 °C for 2 days and then at 75 °C for 5days. The antioxidant activities of stepwise-heated HP-koji were higher than those of koji heated at either 55 °C or 75 °C. The SOSA and ORAC of stepwise-heated HP-koji were 94 times and 6 times, respectively, those of unheated koji. This result suggests that enzymatic reaction followed by Maillard reaction can effectively enhance the antioxidant activity of HP-koji. Thus, we developed a novel heat-processing method to enhance the antioxidant activity of koji. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kurokawa, Daisuke; Sakurai, Yusuke; Inoue, Ai; Nakayama, Rika; Takasaki, Nobuyoshi; Suda, Yoko; Miyake, Tsutomu; Amemiya, Chris T.; Aizawa, Shinichi
2006-01-01
Otx2 is a paired type homeobox gene that plays essential roles in each step and site of head development in vertebrates. In the mouse, Otx2 expression in the anterior neuroectoderm is regulated primarily by two distinct enhancers: anterior neuroectoderm (AN) and forebrain/midbrain (FM) enhancers at 92 kb and 75 kb 5′of the Otx2 locus, respectively. The AN enhancer has activity in the entire anterior neuroectoderm at headfold and early somite stages, whereas the FM enhancer is subsequently active in the future caudal forebrain and midbrain ectoderm. In tetrapods, both AN and FM enhancers are conserved, whereas the AN region is missing in teleosts, despite overt Otx2 expression in the anterior neuroectoderm. Here, we show that zebrafish and fugu FM regions drive expression not only in the forebrain and midbrain but also in the anterior neuroectoderm at headfold stage. The analysis of coelacanth and skate genomic Otx2 orthologues suggests that the utilization of the two enhancers, AN and FM, is an ancestral condition. In contrast, the AN enhancer has been specifically lost in the teleost lineage with a compensatory establishment of AN activity within the FM enhancer. Furthermore, the AN activity in the fish FM enhancer was established by recruiting upstream factors different from those that direct the tetrapod AN enhancer, yet zebrafish FM enhancer is active in both mouse and zebrafish anterior neuroectoderm at the headfold stage. PMID:17159156
THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID
Donaldson, Virginia H.; Ratnoff, Oscar D.
1962-01-01
The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen. PMID:13887179
Zucker, M; Seligsohn, U; Yeheskel, A; Mor-Cohen, R
2016-11-01
Essentials Reduction of three disulfide bonds in factor (F) XI enhances chromogenic substrate cleavage. We measured FXI activity upon reduction and identified a bond involved in the enhanced activity. Reduction of FXI augments FIX cleavage, probably by faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is responsible for FXI enhanced activation upon its reduction. Background Reduction of factor (F) XI by protein disulfide isomerase (PDI) has been shown to enhance the ability of FXI to cleave its chromogenic substrate. Three disulfide bonds in FXI (Cys118-Cys147, Cys362-Cys482, and Cys321-Cys321) are involved in this augmented activation. Objectives To characterize the mechanisms by which PDI enhances FXI activity. Methods FXI activity was measured following PDI reduction. Thiols that were exposed in FXI after PDI reduction were labeled with 3-(N-maleimidopropionyl)-biocytin (MPB) and detected with avidin. The rate of conversion of FXI to activated FXI (FXIa) following thrombin activation was assessed with western blotting. FXI molecules harboring mutations that disrupt the three disulfide bonds (C147S, C321S, and C482S) were expressed in cells. The antigenicity of secreted FXI was measured with ELISA, and its activity was assessed by the use of a chromogenic substrate. The effect of disulfide bond reduction was analyzed by the use of molecular dynamics. Results Reduction of FXI by PDI enhanced cleavage of both its chromogenic substrate, S2366, and its physiologic substrate, FIX, and resulted in opening of the Cys362-Cys482 bond. The rate of conversion of FXI to FXIa was increased following its reduction by PDI. C482S-FXI showed enhanced activity as compared with both wild-type FXI and C321S-FXI. MD showed that disruption of the Cys362-Cys482 bond leads to a broader thrombin-binding site in FXI. Conclusions Reduction of FXI by PDI enhances its ability to cleave FIX, probably by causing faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is involved in enhancing FXI activation following its reduction, possibly by increasing thrombin accessibility to FXI. © 2016 International Society on Thrombosis and Haemostasis.
The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages
Daniel, Bence; Hah, Nasun; Horvath, Attila; Czimmerer, Zsolt; Poliska, Szilard; Gyuris, Tibor; Keirsse, Jiri; Gysemans, Conny; Van Ginderachter, Jo A.; Balint, Balint L.; Evans, Ronald M.; Barta, Endre; Nagy, Laszlo
2014-01-01
RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program. PMID:25030696
Hierarchy within the mammary STAT5-driven Wap super-enhancer
Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-01-01
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes. PMID:27376239
ERIC Educational Resources Information Center
Ennis, Catherine D.
2017-01-01
For many years, pedagogical scholars and physical education (PE) teachers have worked to enhance effective teaching and learning environments. Yet for some children, youth, and young adults, many of the benefits associated with a physically active lifestyle remain elusive. Enhancing programming and performance to meet physical activity goals may…
Tea enhances insulin activity.
Anderson, Richard A; Polansky, Marilyn M
2002-11-20
The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.
TRPV1 channels in cardiovascular system: A double edged sword?
Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh
2017-02-01
Apart from modulating nociception, there is vital role of TRPV 1 channels in modulating atherosclerosis, congestive heart failure, systemic hypertension, pulmonary hypertension, hemorrhagic shock and vascular remodeling. TRPV 1 channel activation has shielding effect against the development of atherosclerosis and systemic hypertension. TRPV 1 channel activation alleviates the formation of atherosclerotic lesions via increasing the expression of cholesterol efflux regulatory protein, UCP 2 and enhancing autophagy. Furthermore, activation of these channels enhances Na + excretion and NO release to reduce the blood pressure. TRPV 1 channel activation in the cardiac sensory neurons and subsequent CGRP release reduces ischemia-reperfusion injury. Activation of these channels during conditioning enhances CGRP and SP release from the sensory nerve fibers innervating the heart to induce cardioprotection. However, activation of these channels may elicit detrimental effects in pulmonary hypertension, hemorrhage and vascular remodeling. Activation of TRPV 1 channels enhances smooth muscle cell proliferation to promote pulmonary hypertension. Moreover, TRPV 1 channel inhibition reduces massive catecholamine release, improves survival during hemorrhage. Activation of these channels enhances vascular remodeling via enhancing NO release. Furthermore, dual role of TRPV 1 channels has been reported in the perpetuation of congestive heart failure. On one hand, TRPV 1 channel activation increases the expression of UCP2, PPAR- δ and mitochondrial sirtuin 3 to decrease oxidative stress and reduce heart injury. On the other hand, activation of these channels may enhance the expression of hypertrophic fibrotic proteins viz. GATA4, MMP to promote cardiac fibrosis. The present review discusses the dual role of activation of TRPV 1 channels in diseases associated with cardiovascular system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...
2015-04-23
Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less
Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A
2014-06-01
We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia.
Hierarchy within the mammary STAT5-driven Wap super-enhancer.
Shin, Ha Youn; Willi, Michaela; HyunYoo, Kyung; Zeng, Xianke; Wang, Chaochen; Metser, Gil; Hennighausen, Lothar
2016-08-01
Super-enhancers comprise dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate the role of super-enhancers in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-seq analysis for the master regulator STAT5A, the glucocorticoid receptor, H3K27ac and MED1 identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5-binding sites within its constituent enhancers. Individually, the most distal site displayed the greatest enhancer activity. However, combinatorial mutation analysis showed that the 1,000-fold induction in gene expression during pregnancy relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer. Altogether, these data suggest a temporal and functional enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insights into the regulation of cell-type-specific expression of hormone-sensing genes.
Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi
We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less
Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease
Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...
2014-08-19
We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less
Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex
Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.
2014-01-01
Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530
Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi
2018-01-01
The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575
Jacobs, Jelle; Atkins, Mardelle; Davie, Kristofer; Imrichova, Hana; Romanelli, Lucia; Christiaens, Valerie; Hulselmans, Gert; Potier, Delphine; Wouters, Jasper; Taskiran, Ibrahim I; Paciello, Giulia; González-Blas, Carmen B; Koldere, Duygu; Aibar, Sara; Halder, Georg; Aerts, Stein
2018-06-04
Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.
Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials
NASA Astrophysics Data System (ADS)
Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun
2016-06-01
Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.
Hains, Leah E.; Loram, Lisa C.; Weiseler, Julie L.; Frank, Matthew G.; Bloss, Erik B.; Sholar, Paige; Taylor, Frederick R; Harrison, Jacqueline A; Martin, Thomas J.; Eisenach, James C.; Maier, Steven F.; Watkins, Linda R.
2010-01-01
Activation of spinal microglia and consequent release of pro-inflammatory mediators facilitate pain. Under certain conditions, responses of activated microglia can become enhanced. Enhanced microglial production of pro-inflammatory products may result from priming (sensitization), similar to macrophage priming. We hypothesized that if spinal microglia were primed by an initial inflammatory challenge, subsequent challenges may create enhanced pain. Here, we used a "two-hit" paradigm using two successive challenges, which affect overlapping populations of spinal microglia, presented two weeks apart. Mechanical allodynia and/or activation of spinal glia were assessed. Initially, laparotomy preceded systemic lipopolysaccharide (LPS). Prior laparotomy caused prolonged microglial (not astrocyte) activation plus enhanced LPS-induced allodynia. In this “two-hit” paradigm, minocycline, a microglial activation inhibitor, significantly reduced later exaggerated pain induced by prior surgery when minocycline was administered intrathecally for 5 days starting either at the time of surgery or 5 days before LPS administration. To test generality of the priming effect, subcutaneous formalin preceded intrathecal HIV-1 gp120, which activates spinal microglia and causes robust allodynia. Prior formalin enhanced intrathecal gp120-induced allodynia, suggesting that microglial priming is not limited to laparotomy and again supporting a spinal site of action. Therefore, spinal microglial priming may increase vulnerability to pain enhancement. PMID:20434956
NASA Astrophysics Data System (ADS)
Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao
2016-02-01
Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.
Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao
2016-01-01
Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509
Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao
2016-02-10
Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.
Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh
2017-07-21
Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P < 0.05), and UGMax in all phases of PHE exercise (P < 0.05), LGMax in eccentric phases of all 3 exercises (P < 0.05), and BF in all phases of all 3 exercises except the eccentric phase of PHE exercise (P < 0.05). The %MVIC of UGMax was significantly higher than that of LGMax in all phases of clam and HABD exercises under both CO and NC conditions (P < 0.001) while the %MVIC of LGMax was significantly higher than UGMax in concentric phase of PHE exercise under NC condition (P = 0.003). Gender, physical activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for lower limb rehabilitation since the increased activation of target hip muscles may enhance the therapeutic effects of hip strengthening exercises.
Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG
Alvarez, Raymond A.; Maestre, Ana M.; Durham, Natasha D.; Barria, Maria Ines; Ishii-Watabe, Akiko; Tada, Minoru; Hotta, Mathew T.; Rodriguez-Caprio, Gabriela; Fierer, Daniel S.; Fernandez-Sesma, Ana; Simon, Viviana; Chen, Benjamin K.
2017-01-01
HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell–based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens. PMID:28239647
ERIC Educational Resources Information Center
Birgül, Arzu Ergisi; Zeteroglu, Elvan Sahin; Derman, Meral Taner
2017-01-01
The aim of this study is to examine the effect of the activities enhanced concerning time concept on time concept acquisition of children. The research is a quantitative study in experimental model with pretest-posttest control group aiming to examine the effect of the activities enhanced concerning time concept on time concept acquisition of…
ERIC Educational Resources Information Center
Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan
2011-01-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…
Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption
NASA Astrophysics Data System (ADS)
Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian
2018-06-01
TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.
Properties of a U1 RNA enhancer-like sequence.
Ciliberto, G; Palla, F; Tebb, G; Mattaj, I W; Philipson, L
1987-01-01
The properties of a X.laevis U1B snRNA gene enhancer have been studied by microinjection in Xenopus oocytes. The enhancer-like sequence, defined as a short DNA stretch that is able to activate transcription in an orientation independent manner, is interchangeable between different U snRNA genes. The enhancer sequence alone does not, however, efficiently activate transcription from an SV40 pol II promoter but regains its activity when combined with the U-gene specific proximal sequence element. DNase I protection experiments show that the X.laevis U1B enhancer can interact specifically with a nuclear factor present in mammalian cells. Images PMID:3031597
Siddiqui, Khawar Sohail
2017-05-01
The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.
Fauth; Schweizer; Buchala; Markstadter; Riederer; Kato; Kauss
1998-08-01
Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface and cut segments were conditioned to develop competence for H2O2 elicitation. Alkaline hydrolysates of cutin from cucumber, tomato, and apple elicited H2O2 in such conditioned segments. The most active constituent of cucumber cutin was identified as dodecan-1-ol, a novel cutin monomer capable of forming hydrophobic terminal chains. Additionally, the cutin hydrolysates enhanced the activity of a fungal H2O2 elicitor, similar to cucumber surface wax, which contained newly identified alkan-1,3-diols. The specificity of elicitor and enhancement activity was further elaborated using some pure model compounds. Certain saturated hydroxy fatty acids were potent H2O2 elicitors as well as enhancers. Some unsaturated epoxy and hydroxy fatty acids were also excellent H2O2 elicitors but inhibited the fungal elicitor activity. Short-chain alkanols exhibited good elicitor and enhancer activity, whereas longer-chain alkan-1-ols were barely active. The enhancement effect was also observed for H2O2 elicitation by ergosterol and chitosan. The physiological significance of these observations might be that once the cuticle is degraded by fungal cutinase, the cutin monomers may act as H2O2 elicitors. Corrosion of cutin may also bring surface wax constituents in contact with protoplasts and enhance elicitation.
Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B
2015-10-12
The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional assessment of human enhancer activities using whole-genome STARR-sequencing.
Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P
2017-11-20
Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome. In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.
Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao
2015-04-01
Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DeFranco, D; Yamamoto, K R
1986-01-01
The expression of genes fused downstream of the Moloney murine sarcoma virus (MoMSV) long terminal repeat is stimulated by glucocorticoids. We mapped the glucocorticoid response element that conferred this hormonal regulation and found that it is a hormone-dependent transcriptional enhancer, designated Sg; it resides within DNA fragments that also carry a previously described enhancer element (B. Levinson, G. Khoury, G. Vande Woude, and P. Gruss, Nature [London] 295:568-572, 1982), here termed Sa, whose activity is independent of the hormone. Nuclease footprinting revealed that purified glucocorticoid receptor bound at multiple discrete sites within and at the borders of the tandemly repeated sequence motif that defines Sa. The Sa and Sg activities stimulated the apparent efficiency of cognate or heterologous promoter utilization, individually providing modest enhancement and in concert yielding higher levels of activity. A deletion mutant lacking most of the tandem repeat but retaining a single receptor footprint sequence lost Sa activity but still conferred Sg activity. The two enhancer components could also be distinguished physiologically: both were operative within cultured rat fibroblasts, but only Sg activity was detectable in rat exocrine pancreas cells. Therefore, the sequence determinants of Sa and Sg activity may be interdigitated, and when both components are active, the receptor and a putative Sa factor can apparently bind and act simultaneously. We concluded that MoMSV enhancer activity is effected by at least two distinct binding factors, suggesting that combinatorial regulation of promoter function can be mediated even from a single genetic element. Images PMID:3023887
Li, Jing-hui; Łuczka, Jerzy
2010-10-01
Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.
Paul, Kaninika; Dutta, Sayantani; Bhattacharjee, Paramita
2017-09-01
Our previous investigation on high pressure supercritical carbon dioxide treatment of a bacterial α-amylase had revealed enhanced activity of the same. 1 H NMR analysis of the activity enhanced enzyme led the authors to hypothesize that the enhancement was possibly owing to alterations in the active site of the enzyme. In the present study, the changes in the active site of the treated enzyme was analysed by Fourier-transform Raman (FT-Raman) spectroscopy. The spectra obtained revealed shifting of bands in the active site of α-amylase indicating a nudging effect of the bonds in this region consequent to high pressure treatment. Also, shifts in bands in the OH stretching vibration of water were observed in the enzyme spectra. These variations in the spectra confirmed changes in the active site as well as in the water associated with the same that perhaps had a concerted effect on the increased activity of α-amylase. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guojun
Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulationmore » and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis induced by ST-4 via mitochondrial apoptotic pathway.« less
ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visel, Axel; Blow, Matthew J.; Li, Zirong
2009-02-01
A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. Wemore » tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.« less
Janesko, Benjamin G; Scuseria, Gustavo E
2006-09-28
We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.
New insights into the passive force enhancement in skeletal muscles.
Lee, Eun-Jeong; Joumaa, Venus; Herzog, Walter
2007-01-01
The steady-state isometric force following active stretching of a muscle is always greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This phenomenon has been termed "residual force enhancement" and it is associated with an active and a passive component. The origin of these components remains a matter of scientific debate. The purpose of this work was to test the hypothesis that the passive component of the residual force enhancement is caused by a passive structural element. In order to achieve this purpose, single fibers (n=6) from the lumbrical muscles of frog (Rana pipiens) were isolated and attached to a force transducer and a motor that could produce computer-controlled length changes. The passive force enhancement was assessed for three experimental conditions: in a normal Ringer's solution, and after the addition of 5 and 15mM 2,3-butanedione monoxime (BDM) which inhibits force production in a dose-dependent manner. If our hypothesis was correct, one would expect the passive force enhancement to be unaffected following BDM application. However, we found that increasing concentrations of BDM decreased the isometric forces, increased the normalized residual force enhancement, and most importantly for this study, increased the passive force enhancement. Furthermore, BDM decreased the rate of force relaxation after deactivation following active stretching of fibers, passive stretching in the Ringer's and BDM conditions produced the same passive force-sarcomere length relationship, and passive force enhancement required activation and force production. These results led to the conclusion that the passive force enhancement cannot be caused by a structural component exclusively as had been assumed up to date, but must be associated, directly or indirectly, with cross-bridge attachments upon activation and the associated active force.
A targeted IL-15 fusion protein with potent anti-tumor activity
Chen, Siqi; Huang, Qiang; Liu, Jiayu; Xing, Jieyu; Zhang, Ning; Liu, Yawei; Wang, Zhong; Li, Qing
2015-01-01
IL-15 has been actively investigated for its potential in tumor immunotherapy. To enhance the anti-tumor activity of IL-15, the novel PFC-1 construct was designed, which comprises the following 3 parts: (1) IL-15Rα fused with IL-15 to enhance IL-15 activity, (2) an Fc fragment to increase protein half-life, and (3) an integrin-targeting RGD peptide to enhance tumor targeting. PFC-1 showed tumor cell targeting without compromising IL-15 activity. PFC-1 also had potent anti-tumor activities in xenograft models, suggesting the potential application of this multi-functional fusion protein in tumor therapy. PMID:26176990
BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)
Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...
23 CFR 710.511 - Transportation enhancements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... transportation funds for transportation enhancement activities (TEA). Transportation enhancement activities which... this section. (b) Requirements. (1) Displacements for TEA are subject to the Uniform Act. (2) Acquisitions for TEA are subject to the Uniform Act except as provided in paragraphs (b)(3), (b)(4), and (b)(5...
Robinett, C C; O'Connor, A; Dunaway, M
1997-01-01
We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359
The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study
Flôres, Danilo E. F. L.; Bettilyon, Crystal N.; Jia, Lori; Yamazaki, Shin
2016-01-01
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling. PMID:27458354
The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study.
Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin
2016-01-01
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.
2013-01-01
Background The use of the organized sports sector as a setting for health-promotion is a relatively new strategy. In the past few years, different countries have been investing resources in the organized sports sector for promoting health-enhancing physical activity. In the Netherlands, National Sports Federations were funded to develop and implement “easily accessible” sporting programs, aimed at the least active population groups. Start to Run, a 6-week training program for novice runners, developed by the Dutch Athletics Organization, is one of these programs. In this study, the effects of Start to Run on health-enhancing physical activity were investigated. Methods Physical activity levels of Start to Run participants were assessed by means of the Short QUestionnaire to ASsess Health-enhancing physical activity (SQUASH) at baseline, immediately after completing the program and six months after baseline. A control group, matched for age and sex, was assessed at baseline and after six months. Compliance with the Dutch physical activity guidelines was the primary outcome measure. Secondary outcome measures were the total time spent in physical activity and the time spent in each physical activity intensity category and domain. Changes in physical activity within groups were tested with paired t-tests and McNemar tests. Changes between groups were examined with multiple linear and logistic regression analyses. Results In the Start to Run group, the percentage of people who met the Dutch Norm for Health-enhancing Physical Activity, Fit-norm and Combi-norm increased significantly, both in the short- and longer-term. In the control group, no significant changes in physical activity were observed. When comparing results between groups, significantly more Start to Run participants compared with control group participants were meeting the Fit-norm and Combi-norm after six months. The differences in physical activity between groups in favor of the Start to Run group could be explained by an increase in the time spent in vigorous-intensity activities and sports activities. Conclusions Start to Run positively influences levels of health-enhancing physical activity of participants, both in the short- and longer-term. Based on these results, the use of the organized sports sector as a setting to promote health-enhancing physical activity seems promising. PMID:23898920
Armbruster, Chelsie E; Smith, Sara N; Johnson, Alexandra O; DeOrnellas, Valerie; Eaton, Kathryn A; Yep, Alejandra; Mody, Lona; Wu, Weisheng; Mobley, Harry L T
2017-02-01
Urinary catheter use is prevalent in health care settings, and polymicrobial colonization by urease-positive organisms, such as Proteus mirabilis and Providencia stuartii, commonly occurs with long-term catheterization. We previously demonstrated that coinfection with P. mirabilis and P. stuartii increased overall urease activity in vitro and disease severity in a model of urinary tract infection (UTI). In this study, we expanded these findings to a murine model of catheter-associated UTI (CAUTI), delineated the contribution of enhanced urease activity to coinfection pathogenesis, and screened for enhanced urease activity with other common CAUTI pathogens. In the UTI model, mice coinfected with the two species exhibited higher urine pH values, urolithiasis, bacteremia, and more pronounced tissue damage and inflammation compared to the findings for mice infected with a single species, despite having a similar bacterial burden within the urinary tract. The presence of P. stuartii, regardless of urease production by this organism, was sufficient to enhance P. mirabilis urease activity and increase disease severity, and enhanced urease activity was the predominant factor driving tissue damage and the dissemination of both organisms to the bloodstream during coinfection. These findings were largely recapitulated in the CAUTI model. Other uropathogens also enhanced P. mirabilis urease activity in vitro, including recent clinical isolates of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa We therefore conclude that the underlying mechanism of enhanced urease activity may represent a widespread target for limiting the detrimental consequences of polymicrobial catheter colonization, particularly by P. mirabilis and other urease-positive bacteria. Copyright © 2017 American Society for Microbiology.
Smith, Sara N.; Johnson, Alexandra O.; DeOrnellas, Valerie; Eaton, Kathryn A.; Yep, Alejandra; Mody, Lona; Wu, Weisheng
2016-01-01
ABSTRACT Urinary catheter use is prevalent in health care settings, and polymicrobial colonization by urease-positive organisms, such as Proteus mirabilis and Providencia stuartii, commonly occurs with long-term catheterization. We previously demonstrated that coinfection with P. mirabilis and P. stuartii increased overall urease activity in vitro and disease severity in a model of urinary tract infection (UTI). In this study, we expanded these findings to a murine model of catheter-associated UTI (CAUTI), delineated the contribution of enhanced urease activity to coinfection pathogenesis, and screened for enhanced urease activity with other common CAUTI pathogens. In the UTI model, mice coinfected with the two species exhibited higher urine pH values, urolithiasis, bacteremia, and more pronounced tissue damage and inflammation compared to the findings for mice infected with a single species, despite having a similar bacterial burden within the urinary tract. The presence of P. stuartii, regardless of urease production by this organism, was sufficient to enhance P. mirabilis urease activity and increase disease severity, and enhanced urease activity was the predominant factor driving tissue damage and the dissemination of both organisms to the bloodstream during coinfection. These findings were largely recapitulated in the CAUTI model. Other uropathogens also enhanced P. mirabilis urease activity in vitro, including recent clinical isolates of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. We therefore conclude that the underlying mechanism of enhanced urease activity may represent a widespread target for limiting the detrimental consequences of polymicrobial catheter colonization, particularly by P. mirabilis and other urease-positive bacteria. PMID:27895127
Developing design-based STEM education learning activities to enhance students' creative thinking
NASA Astrophysics Data System (ADS)
Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai
2018-01-01
Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.
Kyrchanova, Olga; Maksimenko, Oksana; Stakhov, Viacheslav; Ivlieva, Tatyana; Parshikov, Alexander; Studitsky, Vasily M; Georgiev, Pavel
2013-01-01
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. In this study, we examined the role of chromatin loops formed by two unrelated insulators, gypsy and Fab-7, in their enhancer-blocking activity. To test for this activity, we selected the white reporter gene that is activated by the eye-specific enhancer. The results showed that one copy of the gypsy or Fab-7 insulator failed to block the eye enhancer in most of genomic sites, whereas a chromatin loop formed by two gypsy insulators flanking either the eye enhancer or the reporter completely blocked white stimulation by the enhancer. However, strong enhancer blocking was achieved due not only to chromatin loop formation but also to the direct interaction of the gypsy insulator with the eye enhancer, which was confirmed by the 3C assay. In particular, it was observed that Mod(mdg4)-67.2, a component of the gypsy insulator, interacted with the Zeste protein, which is critical for the eye enhancer-white promoter communication. These results suggest that efficient enhancer blocking depends on the combination of two factors: chromatin loop formation by paired insulators, which generates physical constraints for enhancer-promoter communication, and the direct interaction of proteins recruited to an insulator and to the enhancer-promoter pair.
75 FR 60467 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
...). Grant applications for the Active Aging, Supporting Individuals and Enhancing Community-Based Care... on: Active Aging, Supporting Individuals and Enhancing Community-Based Care through Health...
Revellame, Emmanuel D; Hernandez, Rafael; French, W Todd; Holmes, William E; Forks, Allison; Callahan, Robert
2013-11-01
Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications. Published by Elsevier Ltd.
Adjuvant effect of short chain triacylglycerol tributyrin on a mouse contact hypersensitivity model.
Sekiguchi, Kota; Ogawa, Erina; Kurohane, Kohta; Konishi, Hideyuki; Mochizuki, Narumi; Manabe, Kei; Imai, Yasuyuki
2018-03-01
Little attention has been paid to chemicals that can enhance hypersensitivity caused by other chemicals. We have demonstrated that phthalate esters with short chain alcohols enhance fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) in a mouse model. Furthermore, phthalate esters with such an enhancing effect were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels, which are expressed on a part of sensory neurons, using a TRPA1-expressing cell line. In this study, we examined these activities of esters comprising glycerol and a short chain fatty acid, i.e. dibutyrin and tributyrin. We carried out chemical synthesis of dibutyrin isomers. Each dibutyrin isomer weakly activated TRPA1 and slightly enhanced skin sensitization to FITC. Unexpectedly, TRPA1 activation and enhancement of FITC-CHS were much more evident in the presence of tributyrin. Mechanistically, tributyrin induced increased dendritic cell trafficking from the skin to draining lymph nodes. Tributyrin enhanced interferon-γ (IFN-γ) production by draining lymph nodes, while its effect on interleukin-4 (IL-4) production was relatively less prominent. These results suggested that tributyrin concomitantly caused TRPA1 activation and an adjuvant effect on FITC-CHS. Copyright © 2017 Elsevier B.V. All rights reserved.
AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils
Bae, Hong-Beom; Zmijewski, Jaroslaw W.; Deshane, Jessy S.; Tadie, Jean-Marc; Chaplin, David D.; Takashima, Seiji; Abraham, Edward
2011-01-01
Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46±7.8 or 85±26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21±1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.—Bae, H. -B., Zmijewski, J. W., Deshane, J. S., Tadie, J. -M., Chaplin, D. D., Takashima, S., Abraham, E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. PMID:21885655
77 FR 49453 - Endangered Species; Receipt of Applications for Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... (Pan troglodytes) biological samples from Congo for the purpose of enhancement to the survival of the..., for the purpose of enhancement of the survival of the species. This notification covers activities to... purpose of enhancement of the survival of the species. This notification covers activities to be conducted...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... general aviation (GA) aircraft operators who wish to fly into and/or out of Ronald Reagan Washington.... Information Collection Requirement Title: Enhanced Security Procedures at Ronald Reagan Washington National...] Extension of Agency Information Collection Activity Under OMB Review: Enhanced Security Procedures at Ronald...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... Collection Activity Under OMB Review: Highway Baseline Assessment for Security Enhancement (BASE) Program... Assessment for Security Enhancement (BASE) Program. Type of Request: New collection. OMB Control Number: Not yet assigned. Form(s): Highway Baseline Assessment for Security Enhancement (BASE). Affected Public...
Terror management and stereotyping: why do people stereotype when mortality is salient?
Renkema, Lennart J; Stapel, Diederik A; Maringer, Marcus; van Yperen, Nico W
2008-04-01
Three studies examine two routes by which mortality threats may lead to stereotyping. Mortality salience may activate both a comprehension goal and an enhancement goal. Enhancement goals are likely to be more active in situations where intergroup competition or conflict is salient. If this is not the case, then a comprehension goal will predominate. In line with a why-determines-how logic, when mortality salience activates a comprehension goal, both positive and negative stereotyping occur. In contrast, the activation of an enhancement goal only increases negative stereotyping.
Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.
Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena
2009-01-01
Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.
Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB
Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena
2009-01-01
Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313
Song, Yi; Qin, Rongxin; Pan, Xichun; Ouyang, Qin; Liu, Tianyu; Zhai, Zhaoxia; Chen, Yingchun; Li, Bin; Zhou, Hong
2016-11-18
Previously, artesunate (AS) and dihydroartemisinine 7 (DHA7) were found to have antibacterial enhancement activity against Escherichia coli via inhibition of the efflux pump AcrB. However, they were only effective against E. coli standard strains. This study aimed to develop effective antibacterial enhancers based on the previous work. Our results demonstrate that 86 new antibacterial enhancers were designed via 3D-SAR and molecular docking. Among them, DHA27 had the best antibacterial enhancement activity. It could potentiate the antibacterial effects of ampicillin against not only E. coli standard strain but also clinical strains, and of β-lactam antibiotics, not non-β-lactamantibiotics. DHA27 could increase the accumulation of daunomycin and nile red within E. coli ATCC 35218, but did not increase the bacterial membrane permeability. DHA27 reduced acrB 's mRNA expression of E. coli ATCC 35218 in a dose-dependent manner, and its antibacterial enhancement activity is related to the degree of acrB mRNA expression in E. coli clinical strains. The polypeptides from AcrB were obtained via molecular docking assay; the pre-incubated polypeptides could inhibit the activity of DHA27. Importantly, DHA27 had no cytotoxicity on cell proliferation. In conclusion, among newly designed antibacterial enhancers, DHA27 had favorable physical and pharmacological properties with no significant cytotoxicity at effective concentrations, and might serve as a potential efflux pump inhibitor in the future.
Horner, Kristen A; Noble, Erika S; Gilbert, Yamiece E
2010-06-01
Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. Copyright 2010 Elsevier Inc. All rights reserved.
Horner, Kristen A.; Noble, Erika S.; Gilbert, Yamiece E.
2010-01-01
Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 μg/μl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. PMID:20298714
We Can Still Be Friends: IFN-γ Breaks Up Macrophage Enhancers.
Novakovic, Boris; Wang, Cheng; Logie, Colin
2017-08-15
Interferon (IFN)-γ can prime macrophages for inflammatory responses by several mechanisms, including enhancer establishment and gene activation. In this issue of Immunity, Kang et al. (2017) provide insight into the mechanisms of IFN-γ-mediated gene repression as they show that IFN-γ promotes the disassembly of select active enhancers by interfering with enhancer-binding transcription factor MAF. Copyright © 2017 Elsevier Inc. All rights reserved.
Hashem, Abeer; Abd_Allah, E.F.; Alqarawi, A.A.; Egamberdieva, Dilfuza
2015-01-01
Cassia italica Mill is an important medicinal plant within the family Fabaceae. Pot experiment was conducted to evaluate cadmium stress induced changes in physiological and biochemical attributes in C. italica with and without arbuscular mycorrhizal fungi (AMF). Cadmium stressed plant showed reduced chlorophyll pigment and protein content while AMF inoculation enhanced the chlorophyll and protein content considerably. AMF also ameliorated the cadmium stress induced reduction in total chlorophyll and protein contents by 19.30% and 38.29%, respectively. Cadmium stress enhanced lipid peroxidation while AMF inoculation reduced lipid peroxidation considerably. Increase in proline and phenol content was observed due to cadmium stress and AMF inoculation caused a further increase in proline and phenol content ensuring better growth under stressed conditions. AMF alone also enhanced proline and phenol content. Activity of antioxidant enzymes enhanced under cadmium treatment and AMF inoculation further enhanced their activity thereby strengthening the antioxidant system. Enhanced activities of antioxidants and increased accumulation of osmolytes help plants to avoid damaging impact of oxidative damage. The research has shown that AMF inoculation mitigated the negative impact of stress by reducing the lipid peroxidation and enhancing the antioxidant activity. The present study strongly supports employing AMF as the biological mean for enhancing the cadmium stress tolerance of C. italica. PMID:26858537
Cracchiolo, Jennifer R.; Mori, Takashi; Nazian, Stanley J.; Tan, Jun; Potter, Huntington; Arendash, Gary W.
2007-01-01
Although social, physical, and cognitive activities have each been suggested to reduce the risk of Alzheimer’s Disease (AD), epidemiologic studies cannot determine which activity or combination of activities is most important. To address this question, mutant APP transgenic AD mice were reared long-term in one of four housing conditions (impoverished, social, social+physical, or complete enrichment) from 1½ through 9 months of age. Thus, a stepwise layering of social, physical, and enhanced cognitive activity was created. Behavioral evaluation in a full battery of sensorimotor, anxiety, and cognitive tasks was carried out during the final 5 weeks of housing. Only AD mice raised in complete enrichment (i.e., enhanced cognitive activity) showed: 1) protection against cognitive impairment, 2) decreased brain β-amyloid deposition, and 3) increased hippocampal synaptic immunoreactivity. The protection provided by enhanced cognitive activity spanned multiple cognitive domains (working memory, reference learning, and recognition/identification). Cognitive and neurohistologic benefits of complete enrichment occurred without any changes in blood cytokine or corticosterone levels, suggesting that enrichment-dependent mechanisms do not involve changes in the inflammatory response or stress levels, respectively. These results indicate that the enhanced cognitive activity of complete enrichment is required for cognitive and neurologic benefit to AD mice – physical and/or social activity are insufficient. Thus, our data suggest that humans who emphasize a high lifelong level of cognitive activity (over and above social and physical activities) will attain the maximal environmental protection against AD. PMID:17714960
Vier, Juliane; Gerhard, Monika; Wagner, Hermann; Häcker, Georg
2004-01-01
Signalling through the death receptor CD95 induces apoptosis by formation of a signalling complex at the cell membrane and subsequent caspase-8 and caspase-3-activation. Treatment of Jurkat T cells with protonophores across the mitochondrial membrane such as 2,4-dinitrophenol (DNP) enhances the death-inducing capacity of CD95. In this study, we show that this enhancement is due to the specific acceleration of caspase-8-processing and activation at the CD95-receptor. DNP-treatment did not affect NF-kappaB-induction by CD95. Immunoprecipitation experiments showed that the amounts of the adapter FADD/MORT1 and pro-caspase-8 at the CD95-receptor were not altered by DNP. Subcellular fractionation studies revealed that the amount of mature caspase-8 but not pro-caspase at the membrane was increased following CD95-stimulation in the presence of DNP. As a consequence of caspase-activation, c-FLIP-levels in the cytosol decreased. In Jurkat cells overexpressing c-FLIPS, DNP was still able to enhance caspase-activation. The enhancing capacity of DNP was seen in some cell lines (Jurkat, CEM and HeLa) but not in SKW6 cells and was also found in mitogen-stimulated human T cells. Furthermore, the enhancement extended to TRAIL-induced caspase-activation. Thus, a mechanism exists by which caspase-8-activation can be accelerated at death receptors and this mechanism can be triggered by targeting mitochondrial oxidative phosphorylation.
Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase
NASA Astrophysics Data System (ADS)
Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles
2014-07-01
We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.
Ghimire, Saurav; Kim, Man Su
2015-01-01
Dietary restriction (DR) is known to be one of the most effective interventions to increase stress resistance, yet the mechanisms remain elusive. One of the most obvious DR-induced changes in phenotype is an increase in locomotor activity. Although it is conceptually perceivable that nutritional scarcity should prompt enhanced foraging behavior to garner additional dietary resources, the significance of enhanced movement activity has not been associated with the DR-dependent increase of stress resistance. In this study, we confirmed that flies raised on DR exhibited enhanced locomotive activity and increased stress resistance. Excision of fly wings minimized the DR-induced increase in locomotive activity, which resulted in attenuation of the DR-dependent increase of stress resistance. The possibility that wing clipping counteracts the DR by coercing flies to have more intake was ruled out since it did not induce any weight gain. Rather it was found that elimination of reactive oxygen species (ROS) that is enhanced by DR-induced upregulation of expression of antioxidant genes was significantly reduced by wing clipping. Collectively, our data suggests that DR increased stress resistance by increasing the locomotor activity, which upregulated expression of protective genes including, but not limited to, ROS scavenger system.
Liu, Feng; Posakony, James W.
2012-01-01
In Drosophila melanogaster, cis-regulatory modules that are activated by the Notch cell–cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type–specific factors called “local activators.” The use of different “Su(H) plus local activator” motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer “architecture”—the number, order, spacing, and orientation of its component transcription factor binding motifs—in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the “non-SOP” cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor–factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities. PMID:22792075
ERIC Educational Resources Information Center
Gürleyik, Sinan; Akdemir, Elif
2018-01-01
Developing curriculum to enhance student learning is the primer purpose of all curricular activities. Availability of recent tools supporting to teach various skills including reading, listening, speaking and writing has opened a new avenue for curricular activities in technology-enhanced learning environments. Understanding the perceptions of…
Emotional Memories Are Not All Created Equal: Evidence for Selective Memory Enhancement
ERIC Educational Resources Information Center
Anderson, Adam K.; Grabski, Wojtek; Lacka, Dominika; Yamaguchi, Yuki
2006-01-01
Human brain imaging studies have shown that greater amygdala activation to emotional relative to neutral events leads to enhanced episodic memory. Other studies have shown that fearful faces also elicit greater amygdala activation relative to neutral faces. To the extent that amygdala recruitment is sufficient to enhance recollection, these…
PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib
Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Dent, Paul
2017-01-01
The combination of pemetrexed and sorafenib has significant clinical activity against a wide variety of tumor types in patients and the present studies were performed to determine whether sildenafil enhances the killing potential of [pemetrexed + sorafenib]. In multiple genetically diverse lung cancer cell lines, sildenafil enhanced the lethality of [pemetrexed + sorafenib]. The three-drug combination reduced the activities of AKT, mTOR and STAT transcription factors; increased the activities of eIF2α and ULK-1; lowered the expression of MCL-1, BCL-XL, thioredoxin and SOD2; and increased the expression of Beclin1. Enhanced cell killing by sildenafil was blocked by inhibition of death receptor signaling and autophagosome formation. Enforced activation of STAT3 and AKT or inhibition of JNK significantly reduced cell killing. The enhanced cell killing caused by sildenafil was more reliant on increased PKG signaling than on the generation of nitric oxide. In vivo sildenafil enhanced the anti-tumor properties of [pemetrexed + sorafenib]. Based on our data we argue that additional clinical studies combining pemetrexed, sorafenib and sildenafil are warranted. PMID:28088782
[Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].
Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun
2009-05-01
By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).
Bioengineered nisin derivatives with enhanced activity in complex matrices
Rouse, Susan; Field, Des; Daly, Karen M.; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2012-01-01
Summary Nisin A is the best known and most extensively characterized lantibiotic. As it is ribosomally synthesized, bioengineering‐based strategies can be used to generate variants. We have previously demonstrated that bioengineering of the hinge region of nisin A can result in the generation of variants with enhanced anti‐microbial activity against Gram‐positive pathogens. Here we created a larger bank of hinge variant producers and screened for producers that exhibit enhanced bioactivity as assessed by agar‐based assays against a selection of target strains. Further analysis of 12 ‘lead’ variants reveals that in many cases enhanced bioactivity is not attributable to enhanced specific activity but is instead as a consequence of an enhanced ability to diffuse through complex polymers. In the case of two variants, which contain the residues SVA and NAK, respectively, within the hinge region, we demonstrate that this enhanced trait enables the peptides to dramatically outperform nisin A with respect to controlling Listeria monocytogenes in commercially produced chocolate milk that contains carrageenan as a stabilizer. PMID:22260415
Mediator Undergoes a Compositional Change during Transcriptional Activation.
Petrenko, Natalia; Jin, Yi; Wong, Koon Ho; Struhl, Kevin
2016-11-03
Mediator is a transcriptional co-activator recruited to enhancers by DNA-binding activators, and it also interacts with RNA polymerase (Pol) II as part of the preinitiation complex (PIC). We demonstrate that a single Mediator complex associates with the enhancer and core promoter in vivo, indicating that it can physically bridge these transcriptional elements. However, the Mediator kinase module associates strongly with the enhancer, but not with the core promoter, and it dissociates from the enhancer upon depletion of the TFIIH kinase. Severing the kinase module from Mediator by removing the connecting subunit Med13 does not affect Mediator association at the core promoter but increases occupancy at enhancers. Thus, Mediator undergoes a compositional change in which the kinase module, recruited via Mediator to the enhancer, dissociates from Mediator to permit association with Pol II and the PIC. As such, Mediator acts as a dynamic bridge between the enhancer and core promoter. Copyright © 2016 Elsevier Inc. All rights reserved.
Brg1 modulates enhancer activation in mesoderm lineage commitment
Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...
2015-03-26
The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less
Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.
2014-01-01
SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123
Suda, Yoko; Kokura, Kenji; Kimura, Jun; Kajikawa, Eriko; Inoue, Fumitaka; Aizawa, Shinichi
2010-09-01
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Pre-storm NmF2 enhancements at middle latitudes: delusion or reality?
NASA Astrophysics Data System (ADS)
Mikhailov, A. V.; Perrone, L.
2009-03-01
A critical analysis of recent publications devoted to the NmF2 pre-storm enhancements is performed. There are no convincing arguments that the observed cases of NmF2 enhancements at middle and sub-auroral latitudes bear a relation to the following magnetic storms. In all cases considered the NmF2 pre-storm enhancements were due to previous geomagnetic storms, moderate auroral activity or they presented the class of positive quiet time events (Q-disturbances). Therefore, it is possible to conclude that there is no such an effect as the pre-storm NmF2 enhancement as a phenomenon inalienably related to the following magnetic storm. The observed nighttime NmF2 enhancements at sub-auroral latitudes may result from plasma transfer from the plasma ring area by meridional thermospheric wind. Enhanced plasmaspheric fluxes into the nighttime F2-region resulted from westward substorm-associated electric fields is another possible source of nighttime NmF2 enhancements. Daytime positive Q-disturbances occurring under very low geomagnetic activity level may be related to the dayside cusp activity.
Zink, Stephen I; Ohki, Stephen K; Stein, Barry; Zambuto, Domenic A; Rosenberg, Ronald J; Choi, Jenny J; Tubbs, Daniel S
2008-10-01
The purpose of our study was to compare contrast-enhanced MDCT and (99m)Tc-labeled RBC scanning for the evaluation of active lower gastrointestinal bleeding. Over 17 months, 55 patients (32 men, 23 women; age range, 21-92 years) were evaluated prospectively with contrast-enhanced MDCT using 100 mL of iopromide 300 mg I/mL. Technetium-99m-labeled RBC scans were obtained on 41 of 55 patients and select patients underwent angiography for attempted embolization. Each imaging technique was reviewed in a blinded fashion for sensitivity for detection of active bleeding as well as the active lower gastrointestinal bleeding location. Findings were positive on both examinations in eight patients and negative on both examinations in 20 patients. Findings were positive on contrast-enhanced MDCT and negative on (99m)Tc-labeled RBC in two patients; findings were negative on contrast-enhanced MDCT and positive on (99m)Tc-labeled RBC in 11 patients. Statistics showed significant disagreement, with simple agreement = 68.3%, kappa = 0.341, and p = 0.014. Sixteen of 60 (26.7%) contrast-enhanced MDCT scans were positive prospectively, with all accurately localizing the site of bleeding and identification of the underlying lesion in eight of 16 (50%). Nineteen of 41 (46.3%) (99m)Tc-labeled RBC scans were positive. Eighteen of 41 matched patients went on to angiography. In four of these 18 (22.2%) patients, the site of bleeding was confirmed by angiography, but in 14 of 18 (77.8%), the findings were negative. Contrast-enhanced MDCT and (99m)Tc-labeled RBC scanning show significant disagreement for evaluation of active lower gastrointestinal bleeding. Contrast-enhanced MDCT appears effective for detection and localization in cases of active lower gastrointestinal bleeding in which hemorrhage is active at the time of CT.
NASA Astrophysics Data System (ADS)
Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy
2016-07-01
The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).
76 FR 50751 - Endangered Species Recovery Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... tetrataenia) in conjunction with survey, research, and habitat enhancement activities throughout the range of... surveys and behavioral research activities in Sonoma County, California, for the purpose of enhancing the... survey and research activities throughout the range of each species in California for the purpose of...
Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.
Nguyen, Le Xuan Truong; Mitchell, Beverly S
2013-12-17
Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.
Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2014-01-01
In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B radiation.
Enhanced Multistatic Active Sonar via Innovative Signal Processing
2015-09-30
3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal...active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design...beamformer variants is examined. 15. SUBJECT TERMS Pulsed active sonar (PAS), continuous active sonar (CAS), strong delay and Doppler-spread direct blast
Processing of pitch and location in human auditory cortex during visual and auditory tasks.
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.
Processing of pitch and location in human auditory cortex during visual and auditory tasks
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand. PMID:26594185
Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi
2016-05-11
Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.
Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence
ERIC Educational Resources Information Center
Auerbach, Anna Jo; Schussler, Elisabeth E.
2016-01-01
Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…
Widespread Enhancer Activity from Core Promoters.
Medina-Rivera, Alejandra; Santiago-Algarra, David; Puthier, Denis; Spicuglia, Salvatore
2018-06-01
Gene expression in higher eukaryotes is precisely regulated in time and space through the interplay between promoters and gene-distal regulatory regions, known as enhancers. The original definition of enhancers implies the ability to activate gene expression remotely, while promoters entail the capability to locally induce gene expression. Despite the conventional distinction between them, promoters and enhancers share many genomic and epigenomic features. One intriguing finding in the gene regulation field comes from the observation that many core promoter regions display enhancer activity. Recent high-throughput reporter assays along with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-related approaches have indicated that this phenomenon is common and might have a strong impact on our global understanding of genome organisation and gene expression regulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina
2009-01-15
BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.
ChIP-seq Identification of Weakly Conserved Heart Enhancers
Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.
2011-01-01
Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type. PMID:20729851
Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.
2015-01-01
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510
Sawabe, Yukinori; Shimamoto, Chikao; Sakai, Akiko; Kuwabara, Hiroko; Saad, Adel H; Nakano, Takashi; Takitani, Kimitaka; Tamai, Hiroshi; Mori, Hiroshi; Marunaka, Yoshinori; Nakahari, Takashi
2010-08-01
Indomethacin (IDM, 10 microm), not aspirin (ASA; 10 microm), enhanced the Ca(2+)-regulated exocytosis stimulated by 1 microm acetylcholine (ACh) in guinea-pig antral mucous cells. Indomethacin inhibits prostaglandin G/H (PGG/H) and 15R-hydroperoxy-eicosatetraenoic acid (15R-HPETE) production from arachidonic acid (AA), while ASA inhibits PGG/H production but accelerates 15R-HPETE production. This suggests that IDM accumulates AA. Arachidonic acid (2 microm) enhanced Ca(2+)-regulated exocytosis in antral mucous cells to a similar extent to IDM. Moreover, a stable analogue of AA, arachidonyltrifluoromethyl ketone (AACOCF(3)), also enhanced Ca(2+)-regulated exocytosis, indicating that AA, not products from AA, enhances Ca(2+)-regulated exocytosis. We hypothesized that AA activates peroxisome proliferation activation receptor alpha (PPARalpha), because AA is a natural ligand for PPARalpha. A PPARalpha agonist (WY14643; 1 microm) enhanced Ca(2+)-regulated exocytosis, and a PPARalpha blocker (MK886; 50 microm) abolished the enhancement of Ca(2+)-regulated exocytosis induced by AA, IDM, AACOCF(3) and WY14643. Western blotting and immunohistochemical examinations demonstrated that PPARalpha exists in antral mucous cells. Moreover, MK886 decreased the frequency of Ca(2+)-regulated exocytosis activated by 1 microm ACh or 2 microm thapsigargin alone by 25-30%. Thus, ACh stimulates AA accumulation via an [Ca(2+)](i) increase, which activates PPARalpha, leading to enhancement of Ca(2+)-regulated exocytosis in antral mucous cells. A novel autocrine mechanism mediated via PPARalpha enhances Ca(2+)-regulated exocytosis in guinea-pig antral mucous cells.
Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram
2012-07-15
Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.
Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging
Chen, Guanqun; Zou, Ningmu; Chen, Bo; ...
2017-11-01
Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guanqun; Zou, Ningmu; Chen, Bo
Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less
Ionospheric effects of the extreme solar activity of February 1986
NASA Technical Reports Server (NTRS)
Boska, J.; Pancheva, D.
1989-01-01
During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.
Upregulation of CREB-mediated transcription enhances both short- and long-term memory.
Suzuki, Akinobu; Fukushima, Hotaka; Mukawa, Takuya; Toyoda, Hiroki; Wu, Long-Jun; Zhao, Ming-Gao; Xu, Hui; Shang, Yuze; Endoh, Kengo; Iwamoto, Taku; Mamiya, Nori; Okano, Emiko; Hasegawa, Shunsuke; Mercaldo, Valentina; Zhang, Yue; Maeda, Ryouta; Ohta, Miho; Josselyn, Sheena A; Zhuo, Min; Kida, Satoshi
2011-06-15
Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.
Environmental Education Activities to Enhance Decision-Making.
ERIC Educational Resources Information Center
Yambert, Paul A.; And Others
This document contains a set of 10 activities that teachers may use with students (ages 10 to adult) to enhance environmental knowledge and environmentally responsible behavior. Sample worksheets are included when applicable. The activities focus on: renewable and nonrenewable resources; recycling; population growth; wildlife; recycling in a…
77 FR 15310 - Environmental Impact and Related Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
... evidence and demonstrate experience with the activity when possible. ``(3) Limited activities designed to... landscaping or re-vegetation.'' This CE, which would focus on activities designed to lessen harm to or enhance... designed to lessen environmental harm and enhance and maintain the natural environment) is consistent with...
2016-07-15
Activity of Antidotal Oximes and to Enhance Undergraduate Research Training Across the Sciences The views, opinions and/or findings contained in this...to Examine CNS Activity of Antidotal Oximes and to Enhance Undergraduate Research Training Across the Sciences Report Title The project utilized...examining the ability of antidotal oximes to rescue organophosphate (OP)-induced CNS toxicity and training across the sciences and social sciences at
50 CFR 17.62 - Permits for scientific purposes or for the enhancement of propagation or survival.
Code of Federal Regulations, 2014 CFR
2014-10-01
... purposes or enhancing the propagation or survival of the species; and (B) The planned disposition of such... scientific purposes or enhancing the propagation or survival of the species; and (iv) If the activities would... the reproductive potential of the species where the taking will occur. (v) If the activities would...
Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi
2008-02-01
Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.
Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...
2015-07-02
Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less
Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1
Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan
2006-01-01
AIM: To study the expression of HBV enhancer II by transcription factor COUP-TF1. METHODS: In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. RESULTS: Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. CONCLUSION: Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes. PMID:17009409
Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1.
Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan
2006-10-07
To study the expression of HBV enhancer II by transcription factor COUP-TF1. In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes.
Gottwald, E; Gottwald, M; Dhein, S
1998-01-01
Objective—To examine how epicardial activation and repolarisation patterns change in the course of ischaemia, and how these changes are related to the underlying histological structures. Methods—Langendorff perfused isolated rabbit hearts were submitted to 30 minutes of left anterior descending coronary artery occlusion followed by 30 minutes of reperfusion. A 256 channel epicardial map was plotted during the various experimental phases. Activation time points were determined as t(dU/dtmin) and repolarisation time points as t(dU/dtmax). From these data the local activation-recovery interval (ARI), its dispersion (SD of ARI), and the geometry of the activation spread could be analysed. After the experiments the hearts were processed histologically and the mapping data were projected onto histological slides. Results—There was elevation of the ST segment within the occluded area, which recovered during reperfusion. Within this area, ARI was significantly shortened and its dispersion was maximally enhanced. The enhancement of dispersion was pronounced at sites of histological inhomogeneity like fat, connective tissue, or vessels. There was also a change in the preferential direction of activation spread within the occluded zone with a marked transverse propagation of the activation wavefront, whereas under normal conditions the activation followed the longitudinal fibre axis. In addition, the total activation time in the occluded area was significantly prolonged. Conclusions—Ischaemia alters the local activation pattern with enhanced dispersion, especially at sites of histological irregularity, transverse shift of the activation waves, and a general slowing of conduction, which may explain the increased susceptibility to arrhythmia in hearts with enhanced histological irregularities—for example, an infarct or in multi-infarcted hearts, or after myocarditis. Keywords: dispersion; epicardial activation-recovery interval; ischaemia PMID:9659194
Chen, Wei; Rakhi, R B; Alshareef, H N
2013-05-21
We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50,000 cycles).
Sugino, N; Kawahara, M; Tatsumi, G; Kanai, A; Matsui, H; Yamamoto, R; Nagai, Y; Fujii, S; Shimazu, Y; Hishizawa, M; Inaba, T; Andoh, A; Suzuki, T; Takaori-Kondo, A
2017-11-01
Lysine-specific demethylase 1 (LSD1) regulates gene expression by affecting histone modifications and is a promising target for acute myeloid leukemia (AML) with specific genetic abnormalities. Novel LSD1 inhibitors, NCD25 and NCD38, inhibited growth of MLL-AF9 leukemia as well as erythroleukemia, megakaryoblastic leukemia and myelodysplastic syndromes (MDSs) overt leukemia cells in the concentration range that normal hematopoiesis was spared. NCD25 and NCD38 invoked the myeloid development programs, hindered the MDS and AML oncogenic programs, and commonly upregulated 62 genes in several leukemia cells. NCD38 elevated H3K27ac level on enhancers of these LSD1 signature genes and newly activated ~500 super-enhancers. Upregulated genes with super-enhancer activation in erythroleukemia cells were enriched in leukocyte differentiation. Eleven genes including GFI1 and ERG, but not CEBPA, were identified as the LSD1 signature with super-enhancer activation. Super-enhancers of these genes were activated prior to induction of the transcripts and myeloid differentiation. Depletion of GFI1 attenuated myeloid differentiation by NCD38. Finally, a single administration of NCD38 causes the in vivo eradication of primary MDS-related leukemia cells with a complex karyotype. Together, NCD38 derepresses super-enhancers of hematopoietic regulators that are silenced abnormally by LSD1, attenuates leukemogenic programs and consequently exerts anti-leukemic effect against MDS-related leukemia with adverse outcome.
Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows
NASA Astrophysics Data System (ADS)
Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.
2017-12-01
Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?
Stakhov, Viacheslav; Ivlieva, Tatyana; Parshikov, Alexander; Studitsky, Vasily M.; Georgiev, Pavel
2013-01-01
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. In this study, we examined the role of chromatin loops formed by two unrelated insulators, gypsy and Fab-7, in their enhancer-blocking activity. To test for this activity, we selected the white reporter gene that is activated by the eye-specific enhancer. The results showed that one copy of the gypsy or Fab-7 insulator failed to block the eye enhancer in most of genomic sites, whereas a chromatin loop formed by two gypsy insulators flanking either the eye enhancer or the reporter completely blocked white stimulation by the enhancer. However, strong enhancer blocking was achieved due not only to chromatin loop formation but also to the direct interaction of the gypsy insulator with the eye enhancer, which was confirmed by the 3C assay. In particular, it was observed that Mod(mdg4)-67.2, a component of the gypsy insulator, interacted with the Zeste protein, which is critical for the eye enhancer–white promoter communication. These results suggest that efficient enhancer blocking depends on the combination of two factors: chromatin loop formation by paired insulators, which generates physical constraints for enhancer–promoter communication, and the direct interaction of proteins recruited to an insulator and to the enhancer–promoter pair. PMID:23861668
Johnson, Matthew R; Johnson, Marcia K
2009-12-01
Recent research has demonstrated top-down attentional modulation of activity in extrastriate category-selective visual areas while stimuli are in view (perceptual attention) and after they are removed from view (reflective attention). Perceptual attention is capable of both enhancing and suppressing activity in category-selective areas relative to a passive viewing baseline. In this study, we demonstrate that a brief, simple act of reflective attention ("refreshing") is also capable of both enhancing and suppressing activity in some scene-selective areas (the parahippocampal place area [PPA]) but not others (refreshing resulted in enhancement but not in suppression in the middle occipital gyrus [MOG]). This suggests that different category-selective extrastriate areas preferring the same class of stimuli may contribute differentially to reflective processing of one's internal representations of such stimuli.
Transposon integration enhances expression of stress response genes.
Feng, Gang; Leem, Young-Eun; Levin, Henry L
2013-01-01
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.
Transposon integration enhances expression of stress response genes
Feng, Gang; Leem, Young-Eun; Levin, Henry L.
2013-01-01
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295
Park, Jin; Kim, Seung H; Cho, Daeho; Kim, Tae S
2005-01-01
Phyto-oestrogens are polyphenolic non-steroidal plant compounds with oestrogen-like biological activity. Phyto-oestrogens have many biological effects including oestrogen agonist/antagonist properties. However, the effect of phyto-oestrogens on allergic responses remains unclear. In this study we investigated whether formononetin, a phyto-oestrogen, and its metabolites, daidzein and equol, affect production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune response, in primary CD4+ T cells and EL4 T lymphoma cells. Formononetin, daidzein and equol significantly enhanced IL-4 production from both CD4+ T cells and EL4 cells in a dose-dependent manner. Formononetin, daidzein and equol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 gene promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of P4 site carrying nuclear factor of activated T cells (NF-AT) and activator protein-1 (AP-1) binding sites. In addition, formononetin, daidzein and equol increased AP-1 DNA binding activities while did not affect NF-AT DNA binding activities. The enhancing effects on IL-4 production and AP-1 DNA binding activities were abrogated by specific inhibitors for phosphatidylinositol-3-kinase (PI3K), protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), indicating that formononetin, daidzein and equol might enhance IL-4 production by increased activation of AP-1 through the PI3-K/PKC/p38 MAPK signalling pathway. These results suggest that phyto-oestrogens and some of their metabolites may increase allergic responses via the enhancement of IL-4 production in T cells. PMID:16108819
Madsen, Karen Berenth; Egund, Niels; Jurik, Anne Grethe
2010-02-01
We investigated the potential concordance of 2 different magnetic resonance (MR) sequences - short-tau inversion recovery (STIR) and fat-saturated T1-weighted spin-echo after application of gadolinium (Gd) contrast medium to detect active bone marrow abnormalities at the sacroiliac joints (SIJ) in patients with spondyloarthritis (SpA). Blinded and using the Danish scoring method, we evaluated transaxial MR images of the 2 sequences in 40 patients with SpA with disease duration of 3-14 years. Both the cartilaginous and ligamentous portions of the SIJ were analyzed. There was a significant positive correlation between the activity scores obtained by STIR and Gd-enhanced sequences (p < 0.0001). Agreement in the detection of bone marrow abnormalities occurred in 60 of the 80 joints, 35 with and 25 without signs of active disease. Discordance with STIR-positive marrow activity scores occurred in only 11 joints; Gd-enhanced positive scores in 9 joints. The STIR sequence detected remnants of marrow activity in the periphery of chronic fatty replacement not seen or partly obscured on the Gd sequence. Small subchondral enhancing lesions may not be scored on the STIR sequence, mostly because of reduced image resolution. Active bone marrow abnormalities were detected nearly equally well with STIR and Gd-enhanced fat-suppressed T1 sequences in patients with SpA, with STIR being most sensitive to visualize active abnormalities in the periphery of chronic changes.
Smith, Aileen M.; Sanchez, Maria-Jose; Follows, George A.; Kinston, Sarah; Donaldson, Ian J.; Green, Anthony R.; Göttgens, Berthold
2008-01-01
Altered cis-regulation is thought to underpin much of metazoan evolution, yet the underlying mechanisms remain largely obscure. The stem cell leukemia TAL1 (also known as SCL) transcription factor is essential for the normal development of blood stem cells and we have previously shown that the Tal1 +19 enhancer directs expression to hematopoietic stem cells, hematopoietic progenitors, and to endothelium. Here we demonstrate that an adjacent region 1 kb upstream (+18 element) is in an open chromatin configuration and carries active histone marks but does not function as an enhancer in transgenic mice. Instead, it boosts activity of the +19 enhancer both in stable transfection assays and during differentiation of embryonic stem (ES) cells carrying single-copy reporter constructs targeted to the Hprt locus. The +18 element contains a mammalian interspersed repeat (MIR) which is essential for the +18 function and which was transposed to the Tal1 locus ∼160 million years ago at the time of the mammalian/marsupial branchpoint. Our data demonstrate a previously unrecognized mechanism whereby enhancer activity is modulated by a transposon exerting a “booster” function which would go undetected by conventional transgenic approaches. PMID:18687876
Enhancing CO2 Electroreduction with the Metal-Oxide Interface.
Gao, Dunfeng; Zhang, Yi; Zhou, Zhiwen; Cai, Fan; Zhao, Xinfei; Huang, Wugen; Li, Yangsheng; Zhu, Junfa; Liu, Ping; Yang, Fan; Wang, Guoxiong; Bao, Xinhe
2017-04-26
The electrochemical CO 2 reduction reaction (CO 2 RR) typically uses transition metals as the catalysts. To improve the efficiency, tremendous efforts have been dedicated to tuning the morphology, size, and structure of metal catalysts and employing electrolytes that enhance the adsorption of CO 2 . We report here a strategy to enhance CO 2 RR by constructing the metal-oxide interface. We demonstrate that Au-CeO x shows much higher activity and Faradaic efficiency than Au or CeO x alone for CO 2 RR. In situ scanning tunneling microscopy and synchrotron-radiation photoemission spectroscopy show that the Au-CeO x interface is dominant in enhancing CO 2 adsorption and activation, which can be further promoted by the presence of hydroxyl groups. Density functional theory calculations indicate that the Au-CeO x interface is the active site for CO 2 activation and the reduction to CO, where the synergy between Au and CeO x promotes the stability of key carboxyl intermediate (*COOH) and thus facilitates CO 2 RR. Similar interface-enhanced CO 2 RR is further observed on Ag-CeO x , demonstrating the generality of the strategy for enhancing CO 2 RR.
Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K
1979-01-01
T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.
Enhancing CO 2 electroreduction with the metal–oxide interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Dunfeng; Zhang, Yi; Zhou, Zhiwen
2017-04-09
Here, the electrochemical CO 2 reduction reaction (CO 2RR) typically uses transition metals as the catalysts. To improve the efficiency, tremendous efforts have been dedicated to tuning the morphology, size, and structure of metal catalysts and employing electrolytes that enhance the adsorption of CO 2. We report here a strategy to enhance CO 2RR by constructing the metal–oxide interface. We demonstrate that Au–CeO x shows much higher activity and Faradaic efficiency than Au or CeO x alone for CO 2RR. In situ scanning tunneling microscopy and synchrotron-radiation photoemission spectroscopy show that the Au–CeO x interface is dominant in enhancing COmore » 2 adsorption and activation, which can be further promoted by the presence of hydroxyl groups. Density functional theory calculations indicate that the Au–CeO x interface is the active site for CO 2 activation and the reduction to CO, where the synergy between Au and CeO x promotes the stability of key carboxyl intermediate (*COOH) and thus facilitates CO 2RR. Similar interface-enhanced CO 2RR is further observed on Ag–CeO x, demonstrating the generality of the strategy for enhancing CO 2RR.« less
2014-01-01
Background Endoplasmic reticulum stress, caused by the presence of misfolded proteins, activates the stress sensor inositol-requiring enzyme 1α (IRE1α). The resulting increase in IRE1α RNase activity causes sequence-specific cleavage of X-box binding protein 1 (XBP1) mRNA, resulting in upregulation of the unfolded protein response and cellular adaptation to stress. The precise mechanism of human IRE1α activation is currently unclear. The role of IRE1α kinase activity is disputed, as results from the generation of various kinase-inactivating mutations in either yeast or human cells are discordant. Kinase activity can also be made redundant by small molecules which bind the ATP binding site. We set out to uncover a role for IRE1α kinase activity using wild-type cytosolic protein constructs. Results We show that concentration-dependent oligomerisation is sufficient to cause IRE1α cytosolic domain RNase activity in vitro. We demonstrate a role for the kinase activity by showing that autophosphorylation enhances RNase activity. Inclusion of the IRE1α linker domain in protein constructs allows hyperphosphorylation and further enhancement of RNase activity, highlighting the importance of kinase activity. We show that IRE1α phosphorylation status correlates with an increased propensity to form oligomeric complexes and that forced dimerisation causes great enhancement in RNase activity. In addition we demonstrate that even when IRE1α is forced to dimerise, by a GST-tag, phospho-enhancement of activity is still observed. Conclusions Taken together these experiments support the hypothesis that phosphorylation is important in modulating IRE1α RNase activity which is achieved by increasing the propensity of IRE1α to dimerise. This work supports the development of IRE1α kinase inhibitors for use in the treatment of secretory cancers. PMID:24524643
ERIC Educational Resources Information Center
Dirks-Naylor, Amie J.
2016-01-01
An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation,…
Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2012-01-01
Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510
St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto
2009-01-01
Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.
Xu, Feng; Sweeney, Matthew; Quinlan, Jason
2016-08-02
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.
Xu, Feng; Sweeney, Matthew; Quinlan, Jason
2015-06-16
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.
Sweeney, Matthew; Xu, Feng; Quinlan, Jason
2016-07-19
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.
Quinlan, Jason; Xu, Feng; Sweeney, Matthew
2016-03-01
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, Jason; Xu, Feng; Sweeney, Matthew
2016-10-04
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, Jason; Xu, Feng; Sweeney, Matthew
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and an organic compound. The present invention also relates to methods of using the compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, Jason; Xu, Feng; Sweeney, Matthew
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.
Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas
NASA Astrophysics Data System (ADS)
Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya
2015-09-01
Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.
Do enhanced states exist? Boosting cognitive capacities through an action video-game.
Kozhevnikov, Maria; Li, Yahui; Wong, Sabrina; Obana, Takashi; Amihai, Ido
2018-04-01
This research reports the existence of enhanced cognitive states in which dramatic temporary improvements in temporal and spatial aspects of attention were exhibited by participants who played (but not by those who merely observed) action video-games meeting certain criteria. Specifically, Experiments 1 and 2 demonstrate that the attentional improvements were exhibited only by participants whose skills matched the difficulty level of the video game. Experiment 2 showed that arousal (as reflected by the reduction in parasympathetic activity and increase in sympathetic activity) is a critical physiological condition for enhanced cognitive states and corresponding attentional enhancements. Experiment 3 showed that the cognitive enhancements were transient, and were no longer observed after 30 min of rest following video-gaming. Moreover, the results suggest that the enhancements were specific to tasks requiring visual-spatial focused attention, but not distribution of spatial attention as has been reported to improve significantly and durably as a result of long-term video-game playing. Overall, the results suggest that the observed enhancements cannot be simply due to the activity of video-gaming per se, but might rather represent an enhanced cognitive state resulting from specific conditions (heightened arousal in combination with active engagement and optimal challenge), resonant with what has been described in previous phenomenological literature as "flow" (Csikszentmihalyi, 1975) or "peak experiences" (Maslov, 1962). The findings provide empirical evidence for the existence of the enhanced cognitive states and suggest possibilities for consciously accessing latent resources of our brain to temporarily boost our cognitive capacities upon demand. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Xin; Xie, Jianhua; Jia, Shuo; Huang, Lixin; Wang, Zhijun; Li, Chang; Xie, Mingyong
2017-05-01
Polysaccharides (CP) extracted from the leaves of Cyclocarya paliurus (C. paliurus) have been shown to possess a variety of biological activities. In present study, CP was successfully modified to obtain its acetylated derivative Ac-CP. Its potential immunomodulatory activities on RAW264.7 macrophages were investigated. Results showed that the acetylated polysaccharide Ac-CP could significantly stimulate macrophage proliferation, its actions were significantly stronger than that of the corresponding unmodified polysaccharide, CP. Meanwhile, the NO production activities of macrophages were not significantly enhanced by Ac-CP compared to CP group. In addition, both the phagocytic activity and levels of cytokines TNF-a, IL-1β and IL-6 were enhanced in the RAW264.7 macrophages by stimulation of Ac-CP. These results indicated that the acetylated derivative Ac-CP could enhance the activation of peritoneal macrophages, and acetylation modification can enhance the immunomodulation function of CP, indicating the potential application of acetylated polysaccharide as an immunotherapeutic adjuvant. Copyright © 2017 Elsevier B.V. All rights reserved.
The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb
Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.
2013-01-01
SUMMARY The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find that 13% of promoters and 11% of enhancers have gained activity on the human lineage since the human-rhesus divergence. These gains largely arose by modification of ancestral regulatory activities in the limb or potential co-option from other tissues and are likely to have heterogeneous genetic causes. Most enhancers that exhibit gain of activity in humans originated in mammals. Gains at promoters and enhancers in the human limb are associated with increased gene expression, suggesting they include molecular drivers of human morphological evolution. PMID:23827682
Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
Chen, Chen; Kang, Yijin; Huo, Ziyang; ...
2014-02-27
Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less
The discovery and mechanism of sweet taste enhancers.
Li, Xiaodong; Servant, Guy; Tachdjian, Catherine
2011-08-01
Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.
ERIC Educational Resources Information Center
Agyei, Douglas D.; Voogt, Joke
2014-01-01
This study examined 100 beginning teachers' transfer of learning when utilising Information Communication Technology-enhanced activity-based learning activities. The beginning teachers had participated in a professional development program that was characterised by "learning technology by collaborative design" in their final year of…
ERIC Educational Resources Information Center
Butler, Andrew J.; James, Thomas W.; James, Karin Harman
2011-01-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…
Earth-Heart Astronomy: Astronomy-Related Activities to Enhance Education for Sustainable Development
ERIC Educational Resources Information Center
Townsend, Christopher
2010-01-01
This article outlines a range of engaging outdoor daytime activities to enhance astronomical understanding and our place in the universe. They are practical activities with "soul" which engender environmental and social responsibility on a local (yet planetary) scale. They link astronomical and global considerations with a notion of…
Light-enhanced acid catalysis over a metal-organic framework.
Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long
2018-03-06
A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.
Kim, Young-Kee; Bae, Jin-Hye; Oh, Byung-Keun; Lee, Won Hong; Choi, Jeong-Woo
2002-04-01
Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.
Stronger activation of SREBP-1a by nucleus-localized HBx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qi; Qiao, Ling; Yang, Jian
2015-05-08
We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of themore » nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.« less
Elwell, Jennifer A; Lovato, TyAnna L; Adams, Melanie M; Baca, Erica M; Lee, Thai; Cripps, Richard M
2015-04-15
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. Copyright © 2015 Elsevier Inc. All rights reserved.
Fan, Chenyao; Chen, Chao; Wang, Jia; Fu, Xinxin; Ren, Zhimin; Qian, Guodong; Wang, Zhiyu
2015-01-01
The amorphous TiO2 derived from hydroxylation has become an effective approach for the enhancement of photocatalytic activity of TiO2 since a kind of special black TiO2 was prepared by engineering disordered layers on TiO2 nanocrystals via hydrogenation. In this contribution, we prepared totally amorphous TiO2 with various degrees of blackness by introducing hydroxyls via ultrasonic irradiation, through which can we remarkably enhance the photocatalytic activity of TiO2 with improved light harvesting and narrowed band gap. PMID:26133789
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.; Hayes, Dugan; Kempa, Thomas J.; von Cube, Felix; Bell, David C.; Chen, Lin X.; Nocera, Daniel G.
2017-01-01
Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid. PMID:28137835
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.
2017-01-30
Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.
Fan, Lu; Zhao, Zaorui; Orr, Patrick T.; Chambers, Cassie H.; Lewis, Michael C.; Frick, Karyn M.
2010-01-01
We previously demonstrated that dorsal hippocampal extracellular signal-regulated kinase (ERK) activation is necessary for 17β-estradiol (E2) to enhance novel object recognition in young ovariectomized mice (Fernandez et al., 2008). Here, we asked whether E2 has similar memory-enhancing effects in middle-aged and aged ovariectomized mice, and whether these effects depend on ERK and phosphatidylinositol 3-kinase (PI3K)/Akt activation. We first demonstrated that intracerebroventricular (ICV) E2 or intrahippocampal (IH) E2 infusion immediately after object recognition training enhanced memory consolidation in middle-aged, but not aged, females. The E2-induced enhancement in middle-aged females was blocked by IH inhibition of ERK or PI3K activation. IH or ICV E2 infusion in middle-aged females increased phosphorylation of p42 ERK in the dorsal hippocampus 15, but not 5, min after infusion, an effect that was blocked by IH inhibition of ERK or PI3K activation. Dorsal hippocampal PI3K and Akt phosphorylation was increased 5 min after IH or ICV E2 infusion in middle-aged, but not aged, females. ICV E2 infusion also increased PI3K phosphorylation after 15 min, and this effect was blocked by IH PI3K, but not ERK, inhibition. These data demonstrate for the first time that activation of dorsal hippocampal PI3K/Akt and ERK signaling pathways is necessary for E2 to enhance object recognition memory in middle-aged females. They also reveal that similar dorsal hippocampal signaling pathways mediate E2-induced object recognition memory enhancement in young and middle-aged females, and that the inability of E2 to activate these pathways may underlie its failure to enhance object recognition in aged females. PMID:20335475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta
Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activatedmore » GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.« less
Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V
Schmees, C.; Villaseñor, R.; Zheng, W.; Ma, H.; Zerial, M.; Heldin, C.-H.; Hellberg, C.
2012-01-01
Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis. PMID:22573884
Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.
2009-01-01
Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595
Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan
2011-04-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatfield, J.M.; Armstrong, D.J.
1987-07-01
The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N/sup 6/-(..delta../sup 2/-isopentenyl)-adenine-2,8-/sup 3/H (i/sup 6/ Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, asmore » judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N/sup 6/-side chain of i/sup 6/ Ade.« less
B29 Gene Silencing in Pituitary Cells is Regulated by Its 3′ Enhancer
Malone, Cindy S.; Kuraishy, Ali I.; Fike, Francesca M.; Loya, Ruchika G.; Mikkili, Minil R.; Teitell, Michael A.; Wall, Randolph
2007-01-01
Summary B cell-specific B29 (Igβ, CD79b) genes in rat, mouse, and human are situated between the 5′ growth hormone (GH) locus control region (LCR) and the 3′ GH gene cluster. The entire GH genomic region is DNase1 hypersensitive in GH-expressing pituitary cells, which predicts an “open” chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3′ enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3′ enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3′ enhancer in in vitro EMSA and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3′ enhancer acting as a powerful silencer in a context and tissue-specific manner. PMID:16920149
NASA Astrophysics Data System (ADS)
Chen, Wei; Rakhi, R. B.; Alshareef, H. N.
2013-05-01
We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a
2015-01-01
Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881
Quinlan, Jason; Xu, Feng; Sweeney, Matthew
2016-05-31
The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.
Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong
2016-10-01
Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].
Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise.
Dohm, G Lynis
2002-08-01
The amount of GLUT-4 protein is a primary factor in determining the maximal rate of glucose transport into skeletal muscle. Therefore, it is important that we understand how exercise regulates GLUT-4 expression so that therapeutic strategies can be designed to increase muscle glucose disposal as a treatment for diabetes. Muscle contraction increases the rates of GLUT-4 transcription and translation. Transcriptional control likely requires at least two DNA binding proteins, myocyte enhancer factor-2 and GLUT-4 enhancer factor, which bind to the promoter. Increased GLUT-4 expression may be mediated by the enzyme AMP-activated kinase, which is activated during exercise and has been demonstrated to increase GLUT-4 transcription. Further research needs to be done to investigate whether AMP-activated kinase activates myocyte enhancer factor-2 and GLUT-4 enhancer factor to increase transcription of the GLUT-4 gene.
ERIC Educational Resources Information Center
Ozmen, Haluk; Demircioglu, Gokhan; Burhan, Yasemin; Naseriazar, Akbar; Demircioglu, Hulya
2012-01-01
The aim of this study is to examine the effectiveness of an intervention based on a series of laboratory activities enhanced with concept cartoons. The purpose of the intervention was to enhance students' understanding of acid-base chemistry for eight grade students' from two classes in a Turkish primary school. A pretest-posttest non-equivalent…
Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie
2017-05-01
To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. To reduce the side effects and enhance the anti-tumor activities of anticancer drugs, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro and in vivo, HSA-MSe@DOX possessed tumor-targeting abilities and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lee, Mee H; Chung, Su W; Kang, Bok Y; Park, Jin; Lee, Choon H; Hwang, Seung Y; Kim, Tae S
2003-01-01
Bisphenol A (BPA) and p-nonylphenol (NP) are representative endocrine disruptors (EDs) that may have adverse effects on human health. The influence of these compounds on allergic immune responses remains unclear. In this study, we have examined the effects of BPA and NP on production of interleukin-4 (IL-4), a pro-inflammatory cytokine closely associated with allergic immune responses. Both BPA and NP significantly enhanced IL-4 production in keyhole limpet haemocyanin (KLH)-primed CD4+ T cells in a concentration-dependent manner. Treatment with BPA or NP in vivo resulted in significant increase of IL-4 production in CD4+ T cells and of antigen-specific immunoglobulin E (IgE) levels in the sera of KLH-primed mice. Furthermore, BPA and NP enhanced the activation of IL-4 gene promoter in EL4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the enhancing effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor (NF)-AT. Activation of T lymphocytes by phorbol 12-myristate 13-acetate/ionomycin resulted in markedly enhanced binding activities to the NF-AT site, which significantly increased upon addition of BPA or NP, as demonstrated by the electrophoretic mobility shift assay, indicating that the transcription factor NF-AT was involved in the enhancing effect of BPA and NP on IL-4 production. The enhancement of IL-4 production by BPA or NP was significantly reduced by nitrendipine, a blocker of Ca2+ influx, and by FK506, a calcineurin inhibitor. FK506 inhibited the NF-AT–DNA binding activity and IL-4 gene promoter activity enhanced by BPA or NP. These results represent the first report describing possible enhancement of allergic response by EDs through increasing IL-4 production in CD4+ T cells and antigen-specific IgE levels in the sera via the stimulation of Ca2+/calcineurin-dependent NF-AT activation. PMID:12709020
Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J
2013-12-01
In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin.
Chaya, D; Hayamizu, T; Bustin, M; Zaret, K S
2001-11-30
Nucleosome-like particles and acetylated histones occur near active promoters and enhancers, and certain transcription factors can recognize their target sites on the surface of a nucleosome in vitro; yet it has been unclear whether transcription factors can occupy target sites on nucleosomes in native chromatin. We developed a method for sequential chromatin immunoprecipitation of distinct nuclear proteins that are simultaneously cross-linked to nucleosome-sized genomic DNA segments. We find that core histone H2A co-occupies, along with the FoxA (hepatocyte nuclear factor-3) transcription factor, DNA for the albumin transcriptional enhancer in native liver chromatin, where the enhancer is active. Because histone H2A on nuclear DNA is only known to exist in nucleosomes, we conclude that transcription factors can form a stable complex on nucleosomes at an active enhancer element in vivo.
Improving visual perception through neurofeedback
Scharnowski, Frank; Hutton, Chloe; Josephs, Oliver; Weiskopf, Nikolaus; Rees, Geraint
2012-01-01
Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control, and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity, and thus provide ‘brain training’ to deliver particular perceptual enhancements. PMID:23223302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn
2015-05-01
Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less
Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil
2009-01-01
Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB1-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for α-type peroxisome proliferator-activated nuclear receptors, PPAR-α) when and where they are naturally released in the brain. Using a passive-avoidance task in rats, we found that memory acquisition was enhanced by the FAAH inhibitor URB597 or by the PPAR-α agonist WY14643, and these enhancements were blocked by the PPAR-α antagonist MK886. These findings demonstrate novel mechanisms for memory enhancement by activation of PPAR-α, either directly by administering a PPAR-α agonist or indirectly by administering a FAAH inhibitor. PMID:19403796
75 FR 16719 - Agricultural Water Enhancement Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program... Energy Act of 2008 (2008 Act) established the Agricultural Water Enhancement Program (AWEP) by amending... to implement agricultural water enhancement activities on agricultural land for the purposes of...
Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate
NASA Astrophysics Data System (ADS)
Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang
2017-03-01
Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.
Xia, Siqing; Zhou, Yun; Eustance, Everett; Zhang, Zhiqiang
2017-10-18
Cocoamidopropyl betaine (CAPB), which is a biodegradable ampholytic surfactant, has recently been found to dramatically enhance the aerobic digestion of waste activated sludge (WAS) in short-time aerobic digestion (STAD) systems. Therefore, it is important to understand the mechanisms in which CAPB enhances WAS aerobic digestion performance. Results showed that CAPB could dramatically enhance the solubilization of soluble proteins (PN), polysaccharides (PS), nucleic acids (NA) and humic-like substances (HS) in the STAD system within the initial 2 h. Then PN, PS and NA gradually decreased, while HS showed only minor decease. In addition, CAPB increased the proportion of low MW fractions (<20 kDa) from 4.22% to 39.4%, which are more biodegradable. Specific oxygen uptake rates and dehydrogenase enzyme activity results indicated that CAPB markedly improved the aerobic microorganism activities. Microbial community analyses and principle coordinate analyses (PCoA) revealed that CAPB increased the proportion of some functional microorganisms, including Proteobacteria, Planctomycetales, Acinetobacter, Pseudomonas and Aeromonas. The changes driven by CAPB could explain the enhanced performance of the STAD system for WAS aerobic treatment.
Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.
Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H
2001-12-21
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Dual function of active constituents from bark of Ficus racemosa L in wound healing.
Bopage, Nisansala Swarnamali; Kamal Bandara Gunaherath, G M; Jayawardena, Kithsiri Hector; Wijeyaratne, Sushila Chandrani; Abeysekera, Ajita Mahendra; Somaratne, Seneviratne
2018-01-25
Different parts including the latex of Ficus racemosa L. has been used as a medicine for wound healing in the Ayurveda and in the indigenous system of medicine in Sri Lanka. This plant has been evaluated for its wound healing potential using animal models. The aim of this study was to obtain an insight into the wound healing process and identify the potential wound healing active substance/s present in F. racemosa L. bark using scratch wound assay (SWA) as the in-vitro assay method. Stem bark extracts of F. racemosa were evaluated using scratch wound assay (SWA) on Baby Hamster Kidney (BHK 21) and Madin-Darby Canine Kidney (MDCK) cell lines and Kirby Bauer disc diffusion assay on common bacteria and fungi for cell migration enhancing ability and antimicrobial activity respectively. Dichloromethane and hexanes extracts which showed cell migration enhancement activity on SWA were subjected to bioactivity directed fractionation using column chromatography followed by preparative thin layer chromatography to identify the compounds responsible for the cell migration enhancement activity. Dichloromethane and hexanes extracts showed cell migration enhancement activity on both cell lines, while EtOAc and MeOH extracts showed antibacterial activity against Staphylococcus and Bacillus species and antifungal activity against Saccharomyces spp. and Candida albicans. Lupeol (1) and β-sitosterol (2) were isolated as the potential wound healing active compounds which exhibited significant cell migration enhancement activity on BHK 21 and MDCK cell lines (> 80%) in par with the positive control, asiaticoside at a concentration of 25 μM. The optimum concentration of each compound required for the maximum wound healing has been determined as 30 μM and 35 μM for 1 and 2 respectively on both cell lines. It is also established that lupeol acetate (3) isolated from the hexanes extract act as a pro-drug by undergoing hydrolysis into lupeol in the vicinity of cells. Different chemical constituents present in stem bark of Ficus racemosa L show enhancement of cell migration (which corresponds to the cell proliferation) as well as antimicrobial activity. This dual action of F. racemosa stem bark provides scientific support for its traditional use in wound healing.
Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.
Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A
1997-01-01
The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Biyu; Zhang, Shengsen; Yang, Siyuan
2014-08-15
The prepared g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited the enhanced photocatalytic activity under visible-light irradiation due to the stronger ability in separation of electron–hole pairs, which was proven by the transient photocurrent measurement. - Highlights: • The coupled Cu{sub 2}O with g-C{sub 3}N{sub 4} of narrow-band-gap semiconductor has been designed. • g-C{sub 3}N{sub 4}/Cu{sub 2}O is prepared via an alcohol-aqueous based on chemical precipitation method. • g-C{sub 3}N{sub 4}/Cu{sub 2}O exhibits the enhanced photocatalytic activity under visible-light. • The enhanced photocatalytic activity is proven by the transient photocurrent test. • A mechanism for the visible-light-driven photocatalysis of g-C{sub 3}N{sub 4}/Cu{submore » 2}O is revealed. - Abstract: To overcome the drawback of low photocatalytic efficiency brought by electron–hole pairs recombination and narrow photo-response range, a novel g-C{sub 3}N{sub 4}/Cu{sub 2}O composite photocatalyst was designed and prepared successfully. Compared with bare Cu{sub 2}O and g-C{sub 3}N{sub 4}, the g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited significantly enhanced photocatalytic activity for acid orange-II (AO-II) degradation under visible light irradiation. Based on energy band positions, the mechanism of enhanced visible-light photocatalytic activity was proposed.« less
Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W
2016-01-01
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Liu, M; Cai, Q X; Liu, H Z; Zhang, B H; Yan, J P; Yuan, Z M
2002-01-01
To investigate the distribution of chitinase in Bacillus thuringiensis strains, and the enhancing effects of the chitinase-producing B. thuringiensis strains on insecticidal toxicity of active B. thuringiensis strain against Spodoptera exigua larvae. The chitinolytic activities of B.thuringiensis strains representing the 70 serotypes were investigated by the whitish opaque halo and the colorimetric method. Thirty-eight strains produced different levels of chitinase at pH 7.0, and so did 17 strains at pH 10.0. The strain T04A001 exhibited the highest production, reaching a specific activity of 355 U ml(-1) in liquid medium. SDS-PAGE and Western blotting showed that the chitinase produced by some B. thuringiensis strains had a molecular weight of about 61 kDa. The bioassay results indicated that the chitinase-producing B. thuringiensis strains could enhance the insecticidal activity of B. thuringiensis strain DL5789 against S. exigua larvae, with an enhancing ratio of 2.35-fold. This study demonstrated that chitinase was widely produced in B. thuringiensis strains and some of the strains could enhance the toxicity of active B. thuringiensis strain. This is the first investigation devoted exclusively to analyse the distribution of chitinase in B. thuringiensis. It infers that the chitinase produced by B. thuringiensis might play a role in the activity of the biopesticide.
Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions
Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon
2014-09-30
The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.
Osteopontin Signals through Calcium and Nuclear Factor of Activated T Cells (NFAT) in Osteoclasts
Tanabe, Natsuko; Wheal, Benjamin D.; Kwon, Jiyun; Chen, Hong H.; Shugg, Ryan P. P.; Sims, Stephen M.; Goldberg, Harvey A.; Dixon, S. Jeffrey
2011-01-01
Osteopontin (OPN), an integrin-binding extracellular matrix glycoprotein, enhances osteoclast activity; however, its mechanisms of action are elusive. The Ca2+-dependent transcription factor NFATc1 is essential for osteoclast differentiation. We assessed the effects of OPN on NFATc1, which translocates to nuclei upon activation. Osteoclasts from neonatal rabbits and rats were plated on coverslips, uncoated or coated with OPN or bovine albumin. OPN enhanced the proportion of osteoclasts exhibiting nuclear NFATc1. An RGD-containing, integrin-blocking peptide prevented the translocation of NFATc1 induced by OPN. Moreover, mutant OPN lacking RGD failed to induce translocation of NFATc1. Thus, activation of NFATc1 is dependent on integrin binding through RGD. Using fluorescence imaging, OPN was found to increase the proportion of osteoclasts exhibiting transient elevations in cytosolic Ca2+ (oscillations). OPN also enhanced osteoclast survival. The intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) suppressed Ca2+ oscillations and inhibited increases in NFATc1 translocation and survival induced by OPN. Furthermore, a specific, cell-permeable peptide inhibitor of NFAT activation blocked the effects of OPN on NFATc1 translocation and osteoclast survival. This is the first demonstration that OPN activates NFATc1 and enhances osteoclast survival through a Ca2+-NFAT-dependent pathway. Increased NFATc1 activity and enhanced osteoclast survival may account for the stimulatory effects of OPN on osteoclast function in vivo. PMID:21940634
Enhancement of amphotericin B activity against Candida albicans by superoxide radical.
Okamoto, Yuichi; Aoki, Shigeji; Mataga, Izumi
2004-07-01
This study aimed to examine the involvement of oxidative damage in amphotericin B (AmB) activity against Candida albicans using the superoxide (O2-) generator paraquat (PQ). The effects of PQ on AmB activities against growth, viability, membrane permeability and respiration were examined in a wild-type parent strain (K) and a respiration-deficient mutant (KRD-19) since PQ-induced superoxide generation depends on respiration. In the parent strain, the minimal inhibitory concentration (MIC) of AmB, 0.25 microg/ml, tested with a liquid culture was lowered to 0.025 microg/ml by 1 mM PQ. Such a PQ-induced decrease in the MIC value of AmB was minimal in the mutant. Similar PQ-induced enhancement of AmB activity toward the parent strain was also observed with growth on an agar medium. In viability tests, when candidal cells were exposed to AmB (0.1 microg/ml) for I h, the lethality of AmB was enhanced by 1 mM PQ only in the parent strain. Exogenous superoxide dismutase and catalase failed to diminish the enhancing effect of PQ on the growth inhibitory activity of AmB in the parent strain, suggesting an interaction between superoxide and AmB in candidal cells. The enhancement of AmB activity by PQ, observed preferentially in the wild-type strain, can be explained by extensive superoxide generation depending on respiration. These results suggest that oxidative damage induced by superoxide is involved in AmB activity against C. albicans.
Lusky, M; Berg, L; Weiher, H; Botchan, M
1983-01-01
Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425
Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi
2002-01-01
We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007
Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi
2002-11-01
We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.
Lee, Yeonhee; Lee, Taik-Soo
2005-01-01
Lactic-acid-producing bacteria (LABs) are known to have immunomodulating activity. In the current study, various LABs were tested for their immunity-enhancing activity, especially the phagocytic activity of leukocytes. Viable but not heat-killed cells of Weissella kimchii strain PL9001, Lactobacillus fermentum strain PL9005, and L. plantarum strain PL9011 significantly increased the ex vivo phagocytic capacity of mouse peritoneal leukocytes to ingest fluorescein isothiocyanate (FITC)-labeled Escherichia coli in a strain-dependent manner. Results of this and previous studies suggest these LABs as candidates for new probiotics. This is the first report of the enhancement of peritoneal leukocyte activity of these species.
Using an Internet Activity to Enhance Students' Awareness of Age Bias in Social Perceptions
ERIC Educational Resources Information Center
VonDras, Dean D.; Lor-Vang, Mai Nou
2004-01-01
Seeking to extend curricula in a Psychology of Aging course, an online Internet test that assesses user's implicit attitudes was used as part of a learning activity to enhance students' awareness of age-bias in social perceptions. A pretest-posttest methodology examined the efficacy of this learning activity in three separate investigations.…
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping
2015-06-09
Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Holloway, Andrew C; Mueller-Harvey, Irene; Gould, Simon W J; Fielder, Mark D; Naughton, Declan P; Kelly, Alison F
2012-12-01
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H(2)O(2)via the action of added metal(II) ions. H(2)O(2) generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin-iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
Surfactants from the gas phase may promote cloud droplet formation.
Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye
2013-02-19
Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.
Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J
2016-01-01
Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers.
Austin, S; Dixon, R
1992-01-01
The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752
Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N; Chen, Guanying
2014-01-03
The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF₄:Yb 3+ 30%/Tm 3+ 0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYbF₄/NaYF₄ design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYF₄ active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+ /Tm 3+ -codoped NaYF₄ nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.
Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2014-07-01
Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.
STATs Shape the Active Enhancer Landscape of T Cell Populations
Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.
2012-01-01
SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119
GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement
Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei
2011-01-01
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433
Williams, Ruth M; Senanayake, Upeka; Artibani, Mara; Taylor, Gunes; Wells, Daniel; Ahmed, Ahmed Ashour; Sauka-Spengler, Tatjana
2018-02-23
CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo . © 2018. Published by The Company of Biologists Ltd.
Teachers' learning on the workshop of STS approach as a way of enhancing inventive thinking skills
NASA Astrophysics Data System (ADS)
Ngaewkoodrua, Nophakun; Yuenyong, Chokchai
2018-01-01
To improve science teachers to develop the STS lesson plans for enhancing the students' inventive thinking skills, the workshop of improving science teachers to develop the STS lesson plans for enhancing the Inventive thinking skills were organized. The paper aimed to clarify what teachers learn from the workshop. The goal of the activity of the workshop aimed to: 1) improve participants a better understanding of the relationship between the Inquiry based learning with STS approach, 2) understand the meaning and importance of the STS approach and identify the various stages of Yuenyong (2006) STS learning process, 3) discuss what they learned from the examples of Yuenyong (2006) lesson plan, 4) develop some activities for each stage of Yuenyong (2006) STS approach, and 5) ideas of providing STS approach activities for enhancing inventive thinking skills. Participants included 3 science teachers who work in Khon Kaen, Thailand. Methodology regarded interpretive paradigm. Teachers' learning about pedagogy of enhancing the students' inventive thinking skills will be interpreted through participant observation, teachers' tasks, and interview. The finding revealed that all participants could demonstrate their ideas how to generate the STS lesson plans as a way of enhancing inventive thinking skills. Teachers could mention some element of inventive thinking skills which could be generated on their STS learning activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onuma, Hirohisa; Inukai, Kouichi, E-mail: kinukai@ks.kyorin-u.ac.jp; Kitahara, Atsuko
Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenousmore » PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.« less
NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis.
Rodrigues, Paulo; Patel, Saroor A; Harewood, Louise; Olan, Ioana; Vojtasova, Erika; Syafruddin, Saiful E; Zaini, M Nazhif; Richardson, Emma K; Burge, Johanna; Warren, Anne Y; Stewart, Grant D; Saeb-Parsy, Kourosh; Samarajiwa, Shamith A; Vanharanta, Sakari
2018-06-06
Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states. SIGNIFICANCE: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 1-16. ©2018 AACR. ©2018 American Association for Cancer Research.
Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, Matt; Wogulis, Mark
The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang
2016-05-17
The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Kim, Yeha; Lim, Soyeon; Ha, Taejeong; Song, You-Hyang; Sohn, Young-In; Park, Dae-Jin; Paik, Sun-Sook; Kim-Kaneyama, Joo-ri; Song, Mi-Ryoung; Leung, Amanda; Levine, Edward M; Kim, In-Beom; Goo, Yong Sook; Lee, Seung-Hee; Kang, Kyung Hwa; Kim, Jin Woo
2017-01-01
The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI: http://dx.doi.org/10.7554/eLife.21303.001 PMID:28139974
Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew
2011-12-01
All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.
Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza
2011-01-01
Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500
Niu, Fujun; He, Junxia; Zhang, Gaosen; Liu, Xiaomei; Liu, Wei; Dong, Maoxing; Wu, Fasi; Liu, Yongjun; Ma, Xiaojun; An, Lizhe; Feng, Huyuan
2014-12-01
The effects of enhanced UV-B radiation on abundance, community composition and the total microbial activity of soil bacteria in alpine meadow ecosystem of Qinghai-Tibet Plateau were investigated. Traditional counting and 16S rRNA gene sequencing were used to investigate the culturable bacteria and their composition in soil, meanwhile the total microbial activity was measured by microcalorimetry. The population of soil culturable bacteria was slightly reduced with the enhanced UV-B radiation in both of the two depths, 2.46 × 10(6) CFU/g in upper layer (0-10 cm), 1.44 × 10(6) CFU/g in under layer (10-20 cm), comparing with the control (2.94 × 10(6) CFU/g in upper layer, 1.65 × 10(6) CFU/g in under layer), although the difference was not statistically significant (P > 0.05). However, the bacteria diversity decreased obviously due to enhanced UV-B, the number of species for upper layer was decreased from 20 to 13, and from 16 to 13 for the lower layer. The distribution of species was also quite different between the two layers. Another obvious decrease induced by enhanced UV-B radiation was in the total soil microbial activities, which was represented by the microbial growth rate constant (k) in this study. The results indicated that the culturable bacteria community composition and the total activity of soil microbes have been considerably changed by the enhanced UV-B radiation.
Brahmakshatriya, Vinayak; Kuang, Yi; Devarajan, Priyadharshini; Xia, Jingya; Zhang, Wenliang; Vong, Allen Minh; Swain, Susan L
2017-04-01
Naive CD4 T cell responses, especially their ability to help B cell responses, become compromised with aging. We find that using APC pretreated ex vivo with TLR agonists, polyinosinic-polycytidylic acid and CpG, to prime naive CD4 T cells in vivo, restores their ability to expand and become germinal center T follicular helpers and enhances B cell IgG Ab production. Enhanced helper responses are dependent on IL-6 production by the activated APC. Aged naive CD4 T cells respond suboptimally to IL-6 compared with young cells, such that higher doses are required to induce comparable signaling. Preactivating APC overcomes this deficiency. Responses of young CD4 T cells are also enhanced by preactivating APC with similar effects but with only partial IL-6 dependency. Strikingly, introducing just the activated APC into aged mice significantly enhances otherwise compromised Ab production to inactivated influenza vaccine. These findings reveal a central role for the production of IL-6 by APC during initial cognate interactions in the generation of effective CD4 T cell help, which becomes greater with age. Without APC activation, aging CD4 T cell responses shift toward IL-6-independent Th1 and CD4 cytotoxic Th cell responses. Thus, strategies that specifically activate and provide Ag to APC could potentially enhance Ab-mediated protection in vaccine responses. Copyright © 2017 by The American Association of Immunologists, Inc.
Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi
2015-01-01
Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787
[Effects of functional interactions between nonhomologous insulators Wari and Su(Hw)].
Erokhin, M M; Georgiev, P G; Chetverina, D A
2010-01-01
Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.
Core-Shell Photonic Nanoparticles for Enhanced Solar-to-Fuel Photocatalytic Conversion
2017-10-11
photocatalytic activity of semiconducting materials. They synthesized and functionalized titanium dioxide nanoparticles with a partial shell of gold...Their research also characterized the photocatalytic activity . The second area was the tuning the dielectric environment of the nanoparticles with think...successful investigation of bimetallic nanoshells that enhance the photocatalytic activity of semiconducting materials. Our earlier work focused on the
ERIC Educational Resources Information Center
US Department of Health and Human Services, 2005
2005-01-01
We Can! (Ways to Enhance Children's Activity & Nutrition) is a new public education outreach program designed to help children 8-13 years old stay at a healthy weight through improving food choices, increasing physical activity, and reducing screen time. The program is a collaboration of four Institutes of the National Institutes of Health (NIH):…
ERIC Educational Resources Information Center
Fox, Kenneth R.; Cooper, Ashley; McKenna, Jim
2004-01-01
The purpose of this article is to summarize the developing role and the challenges facing the British primary and secondary education sector in the promotion of children's health-enhancing physical activity. This is in the context of a public agenda on physical activity for health that grew steadily in stature throughout the 1990s and has…
Tosh, Dilip K; Janowsky, Aaron; Eshleman, Amy J; Warnick, Eugene; Gao, Zhan-Guo; Chen, Zhoumou; Gizewski, Elizabeth; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A
2017-04-13
We have repurposed (N)-methanocarba adenosine derivatives (A 3 adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N 6 -alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC 50 ∼ 35 nM) and at the norepinephrine transporter (NET). 9 and 10 were selective for DAT compared to A 3 AR in the mouse but not in humans. At DAT, the binding of two structurally dissimilar radioligands was enhanced; NET binding of only one radioligand was enhanced; SERT radioligand binding was minimally affected. 10 was more potent than cocaine at inhibiting DA uptake (IC 50 = 107 nM). Ribose analogues were weaker in DAT interaction than the corresponding bicyclics. Thus, we enhanced the neurotransmitter transporter activity of rigid nucleosides while reducing A 3 AR affinity.
Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; ...
2016-03-08
The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities comparedmore » to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.« less
Gajbhiye, Monali; Kesharwani, Jayendra; Ingle, Avinash; Gade, Aniket; Rai, Mahendra
2009-12-01
Silver nanoparticles (Ag-NPs) are known to have inhibitory and bactericidal effects. Resistance of fungal infections has emerged in recent years and is a major health problem. Here, we report the extracellular biosynthesis of Ag-NPs using a common fungus, Alternaria alternata. Also in this study, these nanoparticles were evaluated for their part in increasing the antifungal activity of fluconazole against Phoma glomerata, Phoma herbarum, Fusarium semitectum, Trichoderma sp., and Candida albicans. The antifungal activity of fluconazole was enhanced against the test fungi in the presence of Ag-NPs. Fluconazole in combination with Ag-NPs showed the maximum inhibition against C. albicans, which was confirmed from the increase in fold area of inhibition, followed by P. glomerata and Trichoderma sp., which showed less increase in the fold area, whereas no significant enhancement of activity was found against P. herbarum and F. semitectum. The antifungal activity of fluconazole was enhanced in presence of silver nanoparticles against the test fungi. Fluconazole in combination with Ag-NPs showed the maximum inhibition against C. albicans, followed by P. glomerata and Trichoderma sp. No significant enhancement of activity was found against P. herbarum and F. semitectum.
Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T
2016-04-01
Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.
Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won
2016-01-01
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. PMID:27690089
Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won
2016-09-27
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract.
Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Wales, Thomas E.; Engen, John R.; Smithgall, Thomas E.
2013-01-01
Multidomain kinases such as c-Src and c-Abl are regulated by complex allosteric interactions involving their noncatalytic SH3 and SH2 domains. Here we show that enhancing natural allosteric control of kinase activity by SH3/linker engagement has long-range suppressive effects on the kinase activity of the c-Abl core. Surprisingly, enhanced SH3/linker interaction also dramatically sensitized the Bcr-Abl tyrosine kinase associated with chronic myelogenous leukemia to small molecule inhibitors that target either the active site or the myristic acid binding pocket in the kinase domain C-lobe. Dynamics analyses using hydrogen exchange mass spectrometry revealed a remarkable allosteric network linking the SH3 domain, the myristic acid binding pocket, and the active site of the c-Abl core, providing a structural basis for the biological observations. These results suggest a rational strategy for enhanced drug targeting of Bcr-Abl and other multidomain kinase systems that use multiple small molecules to exploit natural mechanisms of kinase control. PMID:23303187
Struffi, Paolo; Corado, Maria; Kaplan, Leah; Yu, Danyang; Rushlow, Christine; Small, Stephen
2011-01-01
Despite years of study, the precise mechanisms that control position-specific gene expression during development are not understood. Here, we analyze an enhancer element from the even skipped (eve) gene, which activates and positions two stripes of expression (stripes 3 and 7) in blastoderm stage Drosophila embryos. Previous genetic studies showed that the JAK-STAT pathway is required for full activation of the enhancer, whereas the gap genes hunchback (hb) and knirps (kni) are required for placement of the boundaries of both stripes. We show that the maternal zinc-finger protein Zelda (Zld) is absolutely required for activation, and present evidence that Zld binds to multiple non-canonical sites. We also use a combination of in vitro binding experiments and bioinformatics analysis to redefine the Kni-binding motif, and mutational analysis and in vivo tests to show that Kni and Hb are dedicated repressors that function by direct DNA binding. These experiments significantly extend our understanding of how the eve enhancer integrates positive and negative transcriptional activities to generate sharp boundaries in the early embryo. PMID:21865322
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnorr, Kirk; Kramer, Randall
2017-08-08
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Lan; Liu, Ye; Duan, Junxin
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Lopez de Leon, Alfredo [Davis, CA; Ding, Hanshu [Davis, CA; Brown, Kimberly [Elk Grove, CA
2011-10-25
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping
2016-06-14
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
USDA-ARS?s Scientific Manuscript database
Potentiation of the conventional fungicide, strobilurin, was achieved by octylgallate-mediated chemosensitization. Octylgallate exhibited considerably higher antifungal activity compared to veratraldehyde. Octylgallate in concert with the fungicide, strobilurin (kresoxim methyl), greatly enhanced se...
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping
2016-11-22
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Tang, Lan [Beijing, CN; Liu, Ye [Beijing, CN; Duan, Junxin [Beijing, CN; Zhang, Yu [Beijing, CN; Jorgensen, Christian Isak [Bagsvaerd, DK; Kramer, Randall [Lincoln, CA
2012-04-03
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Duan, Junxin [Beijing, CN; Liu, Ye [Beijing, CN; Tang, Lan [Beijing, CN; Wu, Wenping [Beijing, CN; Quinlan, Jason [Albany, CA; Kramer, Randall [Lincoln, CA
2012-03-27
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall
2016-11-29
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall
2014-09-16
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall
2014-10-21
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Schnorr, Kirk; Kramer, Randall
2016-04-05
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Maiyuran, Suchindra; Kramer, Randall; Harris, Paul
2013-10-29
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall
2013-04-16
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall
2013-06-18
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Schnorr, Kirk; Kramer, Randall
2016-08-09
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Bell, Jamie A.; Saikus, Christina E.; Ratnayaka, Kanishka; Barbash, Israel M.; Faranesh, Anthony Z.; Franson, Dominique N.; Sonmez, Merdim; Slack, Michael C.; Lederman, Robert J.; Kocaturk, Ozgur
2012-01-01
Purpose To develop an active delivery system that enhances visualization of nitinol cardiac occluder devices during deployment under real-time MRI. Materials and Methods We constructed an active delivery cable incorporating a loopless antenna and a custom titanium microscrew to secure the occluder devices. The delivery cable was tuned and matched to 50Ω at 64 MHz with the occluder device attached. We used real-time balanced SSFP in a wide-bore 1.5T scanner. Device-related images were reconstructed separately and combined with surface-coil images. The delivery cable was tested in vitro in a phantom and in vivo in swine using a variety of nitinol cardiac occluder devices. Results In vitro, the active delivery cable provided little signal when the occluder device was detached and maximal signal with the device attached. In vivo, signal from the active delivery cable enabled clear visualization of occluder device during positioning and deployment. Device release resulted in decreased signal from the active cable. Post-mortem examination confirmed proper device placement. Conclusions The active delivery cable enhanced the MRI depiction of nitinol cardiac occluder devices during positioning and deployment, both in conventional and novel applications. We expect enhanced visibility to contribute to effectiveness and safety of new and emerging MRI-guided treatments. PMID:22707441
Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.
Somturk, Burcu; Yilmaz, Ismail; Altinkaynak, Cevahir; Karatepe, Aslıhan; Özdemir, Nalan; Ocsoy, Ismail
2016-05-01
Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu(2+)) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02mgmL(-1) urease in 10mM PBS (pH 7.4) at +4°C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4°C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4°C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.
Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio
2017-05-15
Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate (C18), a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Su, Yu; Wang, Weidong; Wu, Di; Huang, Wei; Wang, Mengzi; Zhu, Guibing
2018-05-15
An integrated approach to document high ammonium oxidation rate in Guanjinggang constructed wetland (GJG-CW) was performed and the results showed that the substantial ammonium oxidation rate could be obtained by enhancing Ammonia Oxidizing Bacteria (AOB) activity rather than Ammonia Oxidizing Archaea (AOA) activity. In the plant-bed/ditch system, ditch center and plant-bed fringe were two active zones for NH 4 + -N removal with ammonium oxidation rate peaking at 2.98±0.04 and 2.15±0.02mgNkg -1 d -1 , respectively. The enhanced AOB activity were achieved by increasing water level fluctuations, extending hydraulic retention time (HRT) and stimulating substrate availability, which subsequently enhanced NH 4 + -N removal by 34.06% in GJG-CW. However, the high AOB activity was not correlated with high AOB abundance, but was instead mostly determined by specific AOB taxa, particularly Nitrosomonas, which dominated in the active AOB. The increased cell-specific AOA activity and high AOA diversity were also achieved using those engineering measures. Although the AOA activity decreased overall with extended HRT and increased NH 4 + -N contents in GJG-CW, AOA still played a major role on ammonium oxidation in plant-bed soil. The study illustrated that artificially enhancing AOB activity and certain species in anthropogenically polluted water ecosystems would be an effective strategy to improve NH 4 + -N removal. Copyright © 2017 Elsevier B.V. All rights reserved.
A guide to transportation enhancements
DOT National Transportation Integrated Search
2004-12-01
The Federal Transportation Enhancement Program offers extensive opportunities to take unique and creative actions to integrate transportation into our communities and the natural environment. Transportation enhancement activities can be stand-alone p...
Enhancement of photocatalytic activity of combustion-synthesized CeO2/C3N4 nanoparticles
NASA Astrophysics Data System (ADS)
Li, Dong-Feng; Yang, Ke; Wang, Xiao-qin; Ma, Ya-Li; Huang, Gui-Fang; Huang, Wei-Qing
2015-09-01
Nanocrystalline CeO2/C3N4 was synthesized via a one-step solution combustion method using urea as fuel for the first time. The effects of the molar ratio of urea to cerium chloride on the photocatalytic activity of the synthesized samples were investigated. The synthesized nanocrystalline CeO2/C3N4 shows small size and large surface exposure area. Photocatalytic degradation of methylene blue demonstrates that the synthesized nanocrystalline CeO2/C3N4 possesses enhanced photocatalytic activity. It is proposed that the enhanced photocatalytic activity might be related to the favorable morphology and structure, and the effective charge separation between C3N4 and CeO2 in the photocatalytic process.
Nakanishi, Akiko; Sasaki, Takeshi; Yan, Kuo; Tarabykin, Victor; Vigier, Lisa; Sumiyama, Kenta; Hirakawa, Mika; Nishihara, Hidenori; Pierani, Alessandra; Okada, Norihiro
2011-01-01
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure. PMID:22174821
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina
2012-11-01
Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here wemore » examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ye-Ji; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul; Lee, Seung-Hae
2012-08-15
Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0more » increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.« less
Kuwahara, Y; Kondoh, J; Tatara, K; Azuma, E; Nakajima, T; Hashimoto, M; Komachi, Y
2001-03-01
Airway allergic diseases, such as bronchial asthma and allergic rhinitis, have increased, especially in urban areas. These diseases are characterized by airway inflammation with enhanced eosinophil activity, and the risk of disease development has been shown to increase with the prevalence of atopy. Questionnaires were administered to 426 healthy adult women aged 30-74 years, living in an urban area of Osaka, Japan, to survey individual living environments and airway allergic symptoms such as cough, sputum, and wheezing. Moreover, serum house-dust-mite (Dermatophagoides pteronyssinus, [Der p])-specific immunoglobulin E (IgE) and serum eosinophil cationic protein (ECP) were examined by radioimmunoassay, and the atopic status (atopic sensitization) and enhanced eosinophil activity were assessed as Der p-specific IgE RAST scores of 2-6 and ECP levels of more than 10 ng/ml, respectively. Intensive use of electric air conditioners in hot weather (odds ratio: 2.07 [95% CI: 1.11-3.87]) and mold proliferation in the kitchen (2.77 [1.34-5.73]) significantly increased the risk of atopic sensitization. Poor home ventilation and family smoking appeared to be positively but not significantly associated with atopic sensitization. Personal smoking and intensive use of the air conditioner appeared to be positively related to enhanced eosinophil activity. Atopic status showed significant involvement in the development of wheezing, and the development of cough was significantly associated with enhanced eosinophil activity. The results suggest that some urban styles of living are involved in atopic sensitization and enhanced eosinophil activity in the Japanese urban population, probably due to living conditions, such as indoor dampness and poor home ventilation, caused by tight insulation, which increase exposure to indoor air pollutants, such as respirable mite allergens and tobacco smoke.
Associations between health-enhancing physical activity and country of birth among women.
Södergren, Marita; Sundquist, Kristina; Johansson, Sven-Erik; Sundquist, Jan; Hagströmer, Maria
2010-09-01
The purpose of this study was to examine the association between total self-reported health-enhancing physical activity and country of birth among women living in Sweden. Women (age 18 to 65 years) born in Sweden, Finland, Chile, and Iraq were recruited for this cross-sectional study. Data were collected by means of a postal questionnaire including the International Physical Activity Questionnaire (IPAQ-long version). Self-reported physical activity data were converted to MET-minutes per week and analyzed as continuous or categorical scores. A total of 2649 women were included in the analyses. The association between physical activity and country of birth was explored using ordinal logistic regression assuming proportional odds. The total physical activity differed significantly between the countries of birth (P < .001). Women from Finland had significant higher odds and women from Iraq had significantly lower odds for reporting higher levels of physical activity, compared with Swedish-born women. The direction of the associations between self-reported total health-enhancing physical activity varied by country of birth, which underlines the need to examine physical activity in each minority group separately.
Barr-Anderson, Daheia J; Laska, Melissa N; Veblen-Mortenson, Sara; Farbakhsh, Kian; Dudovitz, Bonnie; Story, Mary
2012-05-01
The aim of this study was to promote physical activity in 6th graders by developing and testing the feasibility of an enhanced Presidential Active Lifestyle Award (PALA) program comprised of a peer leadership component and innovative exercise resource toolkit including DVDs. A racially/ethnically diverse sample of students received the standard PALA program (2 control schools, n = 61) or enhanced PALA+Peers program (2 intervention schools, n = 87) during 2006-2007 academic year. Compared with the control condition, the intervention was successful in increasing moderate physical activity in all students (P = .02) and moderate and hard physical activity among girls (P = .03 and P = .04, respectively). Teachers and students reported a high level of satisfaction and receptivity with the intervention. All teachers thought the DVDs were well-received, and 87% of students reported that they would recommend the enhanced program to peers. Coupling peer leadership and DVDs that promote physical activity may be an effective way to increase youth physical activity.
Dutta, Nalok; Mukhopadhyay, Arka; Dasgupta, Anjan Kr.; Chakrabarti, Krishanu
2013-01-01
In this paper we show that hydroxyapatite nanoparticles (NP) can not only act as a chaperon (by imparting thermostability) but can serve as a synthetic enhancer of activity of an isolated extracellular pectate lyase (APL) with low native state activity. The purified enzyme (an attenuated strain of Macrophomina phaseolina) showed feeble activity at 50°C and pH 5.6. However, on addition of 10.5 µg/ml of hydroxyapatite nanoparticles (NP), APL activity increased 27.7 fold with a 51 fold increase in half-life at a temperature of 90°C as compared to untreated APL. The chaperon like activity of NP was evident from entropy–enthalpy compensation profile of APL. The upper critical temperature for such compensation was elevated from 50°C to 90°C in presence of NP. This dual role of NP in enhancing activity and conferring thermostability to a functionally impaired enzyme is reported for the first time. PMID:23691068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Jen-Chung; Department of Nursing, Yuanpei University, HsinChu, Taiwan; Graduate Institute of Technology Law, National Chiao Tung University, Taiwan
2011-09-15
Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC)more » cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: > Curcumin downregulates MKK-ERK-mediated Rad51 expression. > Curcumin enhances mitomycin C-induced cytotoxicity. > Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. > Rad51 inhibition enhances the chemosensitization of mitomycin C by curcumin.« less
Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma.
Lv, F; Tang, J; Luo, Y; Li, Z; Meng, X; Zhu, Z; Li, T
2011-10-01
The aim of this study was to evaluate contrast-enhanced ultrasound (CEUS) imaging of active bleeding from hepatic and splenic trauma. Three hundred and ninety-two patients with liver or/and spleen trauma (179 liver and 217 spleen injuries), who underwent CEUS examinations following contrast-enhanced computed tomography (CT), were enrolled in this retrospective study over a period of >4 years. CEUS detected contrast medium extravasation or pooling in 16% (63/396) of liver or spleen lesions in 61 patients, which was confirmed by contrast-enhanced CT. Special attention was paid to observing the presence, location, and characteristics of the extravasated or pooled contrast medium. The CEUS detection rate for active bleeding was not different from that of contrast-enhanced CT (p=0.333). Information from surgery, minimally invasive treatment and conservative treatment was used as reference standard, and the sensitivities of the two techniques were not different (p=0.122). Of 63 lesions in 61 patients, CEUS showed that 74.6% (47/63) (21 liver lesions and 26 spleen lesions) presented contrast medium extravasation or pooling, both in the organ and out the capsule, in 14.3% (9/63) and only outside the capsule in 11.1% (7/63). CEUS imaging of active bleeding from hepatic and splenic trauma presented various characteristics, and the sizes and shapes of the active bleeding due to contrast medium extravasation or pooling were variable. CEUS can show the active bleeding associated with hepatic and splenic trauma with various imaging characteristics, thus making it possible to diagnose active bleeding using CEUS.
Cho, Jongmin; Gonzalez-Lepera, Carlos; Manohar, Nivedh; Kerr, Matthew; Krishnan, Sunil; Cho, Sang Hyun
2016-03-21
Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the currently investigated conditions that are considered clinically relevant, PIXE, PIGE, and activation products contribute minimally to GNP/GNR-mediated proton dose enhancement, whereas Auger/secondary electrons contribute significantly but only at short distances (<100 nm) from GNPs/GNRs.
Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu
2014-01-01
In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them. PMID:24567704
Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu
2014-01-01
In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.
Tamoxifen enhances therapeutic effects of gemcitabine on cholangiocarcinoma tumorigenesis.
Jing, Gu; Yuan, Kaiyu; Turk, Amy N; Jhala, Nirag C; Arnoletti, Juan P; Zhang, Kui; McDonald, Jay M; Chen, Yabing
2011-06-01
Cholangiocarcinoma is a highly malignant tumor with limited therapeutic options. We have previously reported that tamoxifen (TMX) induces apoptosis of cholangiocarcinoma cells and reduces cholangiocarcinoma tumorigenesis in mice. In the present studies, we determined the effect of combination therapy of TMX and gemcitabine (GMT), another chemotherapeutical reagent for many cancers, on cholangiocarcinoma tumorigenesis and investigated the responsible mechanisms. GMT inhibited cell growth and induced apoptosis of cholangiocarcinoma cells in a concentration-dependent manner. TMX enhanced GMT-induced apoptosis of cholangiocarcinoma cells. Consistently, GMT (15 mg/kg) inhibited cholangiocarcinoma tumorigenesis in nude mice by 50%. TMX (15 mg/kg) enhanced the inhibitory effect of GMT on tumorigenesis by 33%. The inhibition of tumor growth correlated with enhanced apoptosis in tumor tissues. To elucidate the mechanisms underlying the additive effects of TMX on GMT-induced apoptosis, we determined the activation of caspases in cholangiocarcinoma cells exposed to GMT, TMX, or both. Activation of caspases 9 and 3, as well as cytochrome c release to the cytosol, was demonstrated in cells exposed to both reagents. In contrast, TMX activated caspase 2, whereas GMT had no effect. Inhibition of caspase 2 activation decreased TMX-, but not GMT-, induced activation of caspase 3 and apoptosis of cholangiocarcinoma cells. Similarly, activation of caspase 2 was found in tumors from TMX-treated mice, but not GMT-treated mice. Therefore, the enhanced effect of TMX on GMT-induced cholangiocarcinoma cell death is partially mediated by activation of caspase 2. TMX and GMT both induce apoptosis and inhibit cholangiocarcinoma tumorigenesis, which may be attributed to the activation of distinct apoptosis signals by TMX and GMT. Our studies provide in vivo evidence and molecular insight to support the use of TMX and GMT in combination as an effective therapy for cholangiocarcinoma.
Rassier, Dilson E; Herzog, Walter; Wakeling, Jennifer; Syme, Douglas A
2003-09-01
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.
Robert-Moreno, Àlex; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Gómez-Skarmeta, José Luis; Alsina, Berta
2010-01-01
POU3F4 is a member of the POU-homedomain transcription factor family with a prominent role in inner ear development. Mutations in the human POU3F4 coding unit leads to X-linked deafness type 3 (DFN3), characterized by conductive hearing loss and progressive sensorineural deafness. Microdeletions found 1 Mb 5′ upstream of the coding region also displayed the same phenotype, suggesting that cis-regulatory elements might be present in that region. Indeed, we and others have recently identified several enhancers at the 1 Mb 5′ upstream interval of the pou3f4 locus. Here we characterize the spatio-temporal patterns of these regulatory elements in zebrafish transgenic lines. We show that the most distal enhancer (HCNR 81675) is activated earlier and drives GFP reporter expression initially to a broad ear domain to progressively restrict to the sensory patches. The proximal enhancer (HCNR 82478) is switched later during development and promotes expression, among in other tissues, in sensory patches from its onset. The third enhancer (HCNR 81728) is also active at later stages in the otic mesenchyme and in the otic epithelium. We also characterize the signaling pathways regulating these enhancers. While HCNR 81675 is regulated by very early signals of retinoic acid, HCNR 82478 is regulated by Fgf activity at a later stage and the HCNR 81728 enhancer is under the control of Hh signaling. Finally, we show that Sox2 and Pax2 transcription factors are bound to HCNR 81675 genomic region during otic development and specific mutations to these transcription factor binding sites abrogates HCNR 81675 enhancer activity. Altogether, our results suggest that pou3f4 expression in inner ear might be under the control of distinct regulatory elements that fine-tune the spatio-temporal activity of this gene and provides novel data on the signaling mechanisms controlling pou3f4 function. PMID:21209840
HOMEOSTATIC REGULATION OF KCC2 ACTIVITY BY THE ZINC RECEPTOR mZnR/GPR39 DURING SEIZURES
Gilad, David; Shorer, Sharon; Ketzef, Maya; Friedman, Alon; Sekler, Israel; Aizenman, Elias; Hershfinkel, Michal
2015-01-01
The aim of this study was to investigate the role of the synaptic metabotropic zinc receptor mZnR/GPR39 in physiological adaptation to epileptic seizures. We previously demonstrated that synaptic activation of mZnR/GPR39 enhances inhibitory drive in the hippocampus by upregulating neuronal K+/Cl− co-transporter 2 (KCC2) activity. Here, we first show that mZnR/GPR39 knockout (KO) adult mice have dramatically enhanced susceptibility to seizures triggered by a single intraperitoneal injection of kainic acid, when compared to wild type (WT) littermates. Kainate also substantially enhances seizure-associated gamma oscillatory activity in juvenile mZnR/GPR39 KO hippocampal slices, a phenomenon that can be reproduced in WT tissue by extracellular Zn2+ chelation. Importantly, kainate-induced synaptic Zn2+ release enhances surface expression and transport activity of KCC2 in WT, but not mZnR/GPR39 KO hippocampal neurons. Kainate-dependent upregulation of KCC2 requires mZnR/GPR39 activation of the Gαq/phospholipase C/extracellular regulated kinase (ERK1/2) signaling cascade. We suggest that mZnR/GPR39-dependent upregulation of KCC2 activity provides homeostatic adaptation to an excitotoxic stimulus by increasing inhibition. As such, mZnR/GPR39 may provide a novel pharmacological target for dampening epileptic seizure activity. PMID:25562657
2011-01-01
Background The prophenoloxidase-activating (PO activating) system plays an important role in the crustacean innate immunity, particularly in wound healing and pathogen defense. A key member of this system is prophenoloxidase-activating enzyme (PPAE), which is the direct activator of prophenoloxidase (proPO). Despite their importance in crustacean PO activating system, the studies on them remain limited. Results Here we report on a PPAE of white shrimp, Litopenaeus vannamei (lvPPAE1), which showed 94% similarity to PPAE1 of Penaeus monodon. We found that lvPPAE1 in fluid hemocytes was down regulated after challenge by Vibrio harveyi but was enhanced when shrimps were exposed to a bacteria-rich environment for long-term. In vivo gene silence of lvPPAE1 by RNAi can significantly reduce the phenoloxidase activity (PO) and increase the susceptibility of shrimps to V. harveyi. Although lvPPAE1 was down-regulated in fluid hemocytes by Vibrio challenge, its expression increased significantly in gill after bacteria injection, which is the primary bacteria-clearance tissue. Conclusion Suppressed expression in fluid hemocytes and enhanced expression in gill indicates selectively enhanced expression at the bacterial clearance site. This is a novel feature for PPAE expression. The results will contribute to our understanding of the PO activating system in crustaceans. PMID:22208405
Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same
Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo
2012-10-16
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
Dotson, William D.; Greenier, Jennifer; Ding, Hanshu
2007-09-18
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated nucleic acids encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acids as well as methods for producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same
Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall
2013-11-19
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same
Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo
2014-09-30
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same
Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo
2017-09-05
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same
Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo
2010-06-22
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same
Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo
2016-08-09
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same
Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall
2013-12-24
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-07
... DEPARTMENT OF JUSTICE [OMB Number 1103-NEW] Agency Information Collection Activities: Proposed New Collection; Comments Requested: Enhancing Community Policing Through Community Mediation Surveys ACTION: 60-Day notice. The Department of Justice (DOJ) Office of Community Oriented Policing Services (COPS) will...
Takahashi, Naoto; Sunohara, Yukari; Fujiwara, Masami; Matsumoto, Hiroshi
2017-04-01
In addition to their fungicidal activity, strobilurin-type fungicides are reported to show enhancing effects on crop growth and yield. Previous studies suggested that the fungicide has a mitigating effect on abiotic stresses. However, there are few reports about growth enhancement through abiotic stress alleviation by strobilurin-type fungicides, but the mechanism of action of the growth enhancement is still not clear. The present study revealed that orysastrobin enhanced rice seedling growth after root cutting injury and chilling stress. We also found that orysastrobin decreased the transpiration rate and increased ascorbate peroxidase and glutathione reductase activities. This stress alleviation was eliminated by the application of naproxen, a putative abscisic acid biosynthesis inhibitor. These results suggested that orysastrobin improved tolerance against transplanting injury and chilling stress in rice seedlings by inducing water-retaining activity through the suppression of transpiration, and also by inducing reactive oxygen scavenging activity thus inhibiting reactive oxygen species accumulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Silver nanowires as infrared-active materials for surface-enhanced Raman scattering.
Becucci, Maurizio; Bracciali, Monica; Ghini, Giacomo; Lofrumento, Cristiana; Pietraperzia, Giangaetano; Ricci, Marilena; Tognaccini, Lorenzo; Trigari, Silvana; Gellini, Cristina; Feis, Alessandro
2018-05-17
Surface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed. Nanowires appear interesting in this respect as they show a very broad localized surface plasmon resonance band, ranging from near UV to near infrared wavelengths. The SERS activity of silver nanowires has been tested at three wavelengths and a fair enhancement at 1064 and 514 nm has been observed, whereas a very weak enhancement was present when exciting close to the nanowire extinction maximum. These experimentally measured optical properties have been contrasted with finite element method simulations. Furthermore, laser-induced optoacoustic spectroscopy measurements have shown that the extinction at 1064 nm is completely due to scattering. This result has an important implication that no heating occurs when silver nanowires are utilized as SERS-active substrates, thereby preventing possible thermal damage.
Regulation of a mammalian gene bearing a CpG island promoter and a distal enhancer.
Berrozpe, Georgina; Bryant, Gene O; Warpinski, Katherine; Ptashne, Mark
2013-08-15
A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells) lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Xie, Sheng; Manuguri, Sesha; Proietti, Giampiero; Romson, Joakim; Fu, Ying; Inge, A. Ken; Wu, Bin; Zhang, Yang; Häll, Daniel; Ramström, Olof; Yan, Mingdi
2017-01-01
We report the modular formulation of ciprofloxacin-based pure theranostic nanodrugs that display enhanced antibacterial activities, as well as aggregation-induced emission (AIE) enhancement that was successfully used to image bacteria. The drug derivatives, consisting of ciprofloxacin, a perfluoroaryl ring, and a phenyl ring linked by an amidine bond, were efficiently synthesized by a straightforward protocol from a perfluoroaryl azide, ciprofloxacin, and an aldehyde in acetone at room temperature. These compounds are propeller-shaped, and upon precipitation into water, readily assembled into stable nanoaggregates that transformed ciprofloxacin derivatives into AIE-active luminogens. The nanoaggregates displayed increased luminescence and were successfully used to image bacteria. In addition, these nanodrugs showed enhanced antibacterial activities, lowering the minimum inhibitory concentration (MIC) by more than one order of magnitude against both sensitive and resistant Escherichia coli. The study represents a strategy in the design and development of pure theranostic nanodrugs for combating drug-resistant bacterial infections. PMID:28743748
Benson, Don M.; Yu, Jianhua; Becknell, Brian; Wei, Min; Freud, Aharon G.; Ferketich, Amy K.; Trotta, Rossana; Perrotti, Danilo; Briesewitz, Roger
2009-01-01
Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)–cell development. CD34+ hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34+ HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells. PMID:19060242
Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong
2016-08-01
Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Joshi, Juhie; Sharma, Sonika; Guruprasad, K N
2014-09-01
A field study was conducted to investigate the impact of the fungicide pyraclostrobin (F500 - Headline®; a.i. 20%) on the activity of nitrogenase in soybean (var. JS-335). Pyraclostrobin (F500) was applied on the leaves of soybean plants at 10 and 20 days after emergence (DAE) of seedlings at concentrations ranging from 0.05% to 1%. Leghemoglobin (Lb) content and nitrogenase activity in root nodules were analyzed at 45(th)day after emergence of seedlings indicated a remarkable increase in Lb content and enhanced activity of nitrogenase in the root nodules of pyraclostrobin treated plants. The fungicide also enhanced the number of nodules along with weight of nodules, root biomass and growth of shoot and leaves. Enhanced nitrogen fixation in the root nodules by pyraclostrobin improves the growth of the plant in soybean before flowering and pod formation which ultimately resulted in yield and yield attributes. These results suggest that pyraclostrobin (F500) can be successfully employed as a foliar spray under field conditions to enhance the growth, nitrogen assimilation and hence yield of soybean. Copyright © 2014 Elsevier Inc. All rights reserved.
Riese, Matthew J; Grewal, Jashanpreet; Das, Jayajit; Zou, Tao; Patil, Vineet; Chakraborty, Arup K; Koretzky, Gary A
2011-02-18
Modulation of T cell receptor signal transduction in CD8(+) T cells represents a novel strategy toward enhancing the immune response to tumor. Recently, levels of guanine exchange factors, RasGRP and SOS, within T cells have been shown to represent a key determinant in the regulation of the analog to the digital activation threshold of Ras. One important for regulating activation levels of RasGRP is diacylglycerol (DAG), and its levels are influenced by diacylglycerol kinase-ζ (DGKζ), which metabolizes DAG into phosphatidic acid, terminating DAG-mediated Ras signaling. We sought to determine whether DGKζ-deficient CD8(+) T cells demonstrated enhanced in vitro responses in a manner predicted by the current model of Ras activation and to evaluate whether targeting this threshold confers enhanced CD8(+) T cell responsiveness to tumor. We observed that DGKζ-deficient CD8(+) T cells conform to most predictions of the current model of how RasGRP levels influence Ras activation. But our results differ in that the EC(50) value of stimulation is not altered for any T cell receptor stimulus, a finding that suggests a further degree of complexity to how DGKζ deficiency affects signals important for Ras and ERK activation. Additionally, we found that DGKζ-deficient CD8(+) T cells demonstrate enhanced responsiveness in a subcutaneous lymphoma model, implicating the analog to a digital conversion threshold as a novel target for potential therapeutic manipulation.
Choi, Suhee; Ahn, Miri; Kim, Jongwon
2013-05-24
The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Courtney M.; Hu, Jianxin; Thomas, Reuben
2017-03-28
Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here in this paper, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by themore » SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo. Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.« less
Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji
2013-10-01
Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high concentration of glycine (300 μM), sunifiram treatments failed to potentiate LTP in the CA1 region. Taken together, sunifiram stimulates the glycine-binding site of NMDAR with concomitant PKCα activation through Src kinase. Enhancement of PKCα activity triggers to potentiate hippocampal LTP through CaMKII activation. Copyright © 2013 Wiley Periodicals, Inc.
Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti
2017-07-01
The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.
Theoret, James R; Li, Jihong; Navarro, Mauricio A; Garcia, Jorge P; Uzal, Francisco A; McClane, Bruce A
2018-01-01
Many Clostridium perfringens strains produce NanI as their major sialidase. Previous studies showed that NanI could potentiate C. perfringens epsilon toxin cytotoxicity by enhancing the binding of this toxin to host cells. The present study first determined that NanI exerts similar cytotoxicity-enhancing effects on C. perfringens enterotoxin and beta toxin, which are also important toxins for C. perfringens diseases (enteritis and enterotoxemia) originating in the gastrointestinal (GI) tract. Building upon previous work demonstrating that purified trypsin can activate NanI activity, this study next determined that purified chymotrypsin or mouse intestinal fluids can also activate NanI activity. Amino acid sequencing then showed that this effect involves the N-terminal processing of the NanI protein. Recombinant NanI (rNanI) species corresponding to major chymotrypsin- or small intestinal fluid-generated NanI fragments possessed more sialidase activity than did full-length rNanI, further supporting the proteolytic activation of NanI activity. rNanI species corresponding to proteolysis products also promoted the cytotoxic activity and binding of enterotoxin and beta toxin more strongly than did full-length rNanI. Since enterotoxin and beta toxin are produced in the intestines during human and animal disease, these findings suggest that intestinal proteases may enhance NanI activity, which in turn could further potentiate the activity of intestinally active toxins during disease. Coupling these new results with previous findings demonstrating that NanI is important for the adherence of C. perfringens to enterocyte-like cells, NanI sialidase is now emerging as a potential auxiliary virulence factor for C. perfringens enteritis and enterotoxemia. Copyright © 2017 American Society for Microbiology.
Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.P.
1982-01-01
The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytesmore » exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.« less
The role of negatively charged lipids in lysosomal phospholipase A2 function
Abe, Akira; Shayman, James A.
2009-01-01
Lysosomal phospholipase A2 (LPLA2) is characterized by increased activity toward zwitterionic phospholipid liposomes containing negatively charged lipids under acidic conditions. The effect of anionic lipids on LPLA2 activity was investigated. Mouse LPLA2 activity was assayed as C2-ceramide transacylation. Sulfatide incorporated into liposomes enhanced LPLA2 activity under acidic conditions and was weakened by NaCl or increased pH. Amiodarone, a cationic amphiphilic drug, reduced LPLA2 activity. LPLA2 exhibited esterase activity when p-nitro-phenylbutyrate (pNPB) was used as a substrate. Unlike the phospholipase A2 activity, the esterase activity was detected over wide pH range and not inhibited by NaCl or amiodarone. Presteady-state kinetics using pNPB were consistent with the formation of an acyl-enzyme intermediate. C2-ceramide was an acceptor for the acyl group of the acyl-enzyme but was not available as the acyl group acceptor when dispersed in liposomes containing amiodarone. Cosedimentation of LPLA2 with liposomes was enhanced in the presence of sulfatide and was reduced by raising NaCl, amiodarone, or pH in the reaction mixture. LPLA2 adsorption to negatively charged lipid membrane surfaces through an electrostatic attraction, therefore, enhances LPLA2 enzyme activity toward insoluble substrates. Thus, anionic lipids present within lipid membranes enhance the rate of phospholipid hydrolysis by LPLA2 at lipid-water interfaces.—Abe, A., and J. A. Shayman. The role of negatively charged lipids in lysosomal phospholipase A2 function. PMID:19321879
NASA Astrophysics Data System (ADS)
Londhe, Vaishali Y.; Deshmane, Aishwarya B.; Singh, Sarita R.; Kulkarni, Yogesh A.
2018-04-01
Lurasidone hydrochloride (LHD) is an atypical antipsychotic drug has poor aqueous solubility and low bioavailability (9-19%). This study describes effect of different methods of complex formation with β-cyclodextrin (BCD) on enhancement of dissolution and on antidepressant, antipsychotic effects of LHD. Other purpose of this study is to compare pharmacodynamic effects of complexes with that of self microemulsifying drug delivery system of LHD (SMEDDS). Inclusion complexes (IC) of LHD and BCD were prepared by physical mixing (PM), kneading (KN) and spray drying (SD) in a 1:1 M ratio. These complexes were characterized by different techniques. KN and SD showing enhancement in dissolution, were compared with SMEDDS using Forced swim test (FST) and Tail suspension test (TST) for antidepressant action and Paw test for antipsychotic activity. Characterization of complexes confirmed interaction between LHD and BCD. Enhancement in dissolution is seen in following order SD > KN > PM > LHD. In all three animal models, SD, KN and SMEDDS showed statistically significant effect (p < .05) than drug alone showing enhancement in bioavailability. Complexation of LHD with BCD enhances dissolution which reflected in improvement of antidepressant and antipsychotic activity of drug. Solubility enhancement methods like complexation and self microemulsion improves pharmacodynamic activities of drug. Improvement of pharmacodynamic effect is seen in order, SD ≥ SMEDDS ≥ KN > LHD.
Moore, Gregory L; Chen, Hsing; Karki, Sher
2010-01-01
Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complementenhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens. PMID:20150767
Oxygen transfer rate identifies priming compounds in parsley cells.
Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen
2015-11-25
In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin secretion as evaluated by fluorescence spectroscopy. RAMOS noninvasively determines the OTR as a measure of the metabolic activity of plant cells. Chemical enhancement of oxygen consumption by salicylic derivatives in parsley cell suspension cultures correlates with the induction of the primed state of enhanced defense that enhances the quantity of Pep13-induced furanocoumarin phytoalexins. Treatment with the priming-active compounds methyl jasmonate and pyraclostrobin also resulted in an enhanced respiration activity. Thus, RAMOS is a novel technology for identifying priming-inducing compounds for agriculture.
Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun
2014-10-20
In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.
Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2000-01-01
This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.
Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wogulis, Mark; Sweeney, Matthew; Heu, Tia
The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnorr, Kirk; Kramer, Randall
The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Attention improves encoding of task-relevant features in the human visual cortex
Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank
2011-01-01
When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942
Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats.
Tallarida, Christopher S; Tallarida, Ronald J; Rawls, Scott M
2015-04-01
The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine's addictive effects. We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. LVM (0-10 mg/kg) produced CPP at 1mg/kg (P<0.05) and locomotor activation at 5mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P>0.05). LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.
2012-01-01
Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Akio, E-mail: watanabea@jfrl.or.jp; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555; Kato, Tsuyoshi
Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence ofmore » insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.« less
Liu, Min; Liu, Weifang; Li, Haoyuan; Shu, Xiaoming; Tao, Xincao; Zhai, Zhenguo
2017-12-01
The primary aim of our case-control study was to observe delayed contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with Takayasu arteritis (TA) in comparison with magnetic resonance angiography (MRA). Twenty-seven patients including 15 with active TA and 12 with stable TA who underwent both aortic MRA and DCE-MRI were included. A total of 27 sex- and age-matched healthy volunteers were enrolled as the control group. MRA were obtained with T1WI-volume-interpolated breath-hold examination sequence or fast low-angle shot (FLASH) sequence. DCE-MRI was acquired with a free-breathing three-dimensional inversion recovery Turbo fast low-angle shot (3D IR Turbo FLASH). Neither stenosis nor delayed enhancement of arterial wall was shown in the control group. In patients with stable TA, arterial stenosis was observed on MRA. On DCE-MR, delayed enhancement of arterial walls could be observed in the active TA group but not in the stable TA group or the control group. Stenotic arteries on MRA were comparable in the active TA and stable TA (χ = 2.70, P = .259); however, delayed enhancement of arterial walls in the active-TA group were more than those in the stable group (χ = 27.00, P < .001). Our results suggest that DCE-MRI with the free-breathing 3D IR Turbo FLASH sequence could assess TA and delayed enhancement on DCE-MRI is one characteristics of the active TA. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Yoshida, Wataru; Tomikawa, Junko; Inaki, Makoto; Kimura, Hiroshi; Onodera, Masafumi; Hata, Kenichiro; Nakabayashi, Kazuhiko
2015-01-01
Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle. PMID:26110280
Attention improves encoding of task-relevant features in the human visual cortex.
Jehee, Janneke F M; Brady, Devin K; Tong, Frank
2011-06-01
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
Teague, Heather; Harris, Mitchel; Fenton, Jenifer; Lallemand, Perrine; Shewchuk, Brian M.; Shaikh, Saame Raza
2014-01-01
EPA and DHA are not biologically equivalent; however, their individual activity on B cells is unknown. We previously reported fish oil enhanced murine B-cell activity in obesity. To distinguish between the effects of EPA and DHA, we studied the ethyl esters of EPA and DHA on murine B-cell function as a function of time. We first demonstrate that EPA and DHA maintained the obese phenotype, with no improvements in fat mass, adipose inflammatory cytokines, fasting insulin, or glucose clearance. We then tested the hypothesis that EPA and DHA would increase the frequency of splenic B cells. EPA and DHA differentially enhanced the frequency and/or percentage of select B-cell subsets, correlating with increased natural serum IgM and cecal IgA. We next determined the activities of EPA and DHA on ex vivo production of cytokines upon lipopolysaccharide stimulation of B cells. EPA and DHA, in a time-dependent manner, enhanced B-cell cytokines with DHA notably increasing IL-10. At the molecular level, EPA and DHA differentially enhanced the formation of ordered microdomains but had no effect on Toll-like receptor 4 mobility. Overall, the results establish differential effects of EPA and DHA in a time-dependent manner on B-cell activity in obesity, which has implications for future clinical studies. PMID:24837990
Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun
2018-06-19
Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, X F; Zhang, S L; Zhu, L Y; Xie, S Y; Dong, Z; Wang, Y; Zhou, W Z
2012-01-01
This study aimed to enhance the antibacterial activity of tilmicosin by solid lipid nanoparticles (SLN). Tilmicosin-loaded hydrogenated castor oil (HCO)-SLN was prepared using a hot homogenisation and ultrasonication method. The physicochemical characteristics of SLN were investigated by scanning electron microscopy (SEM) and photon correlation spectroscopy (PCS). The antibacterial activity of tilmicosin-SLN against Staphylococcus aureus was evaluated by growth inhibition and colony-counting method. A therapeutic study of tilmicosin-SLN was conducted by subcutaneous injection in a mouse mastitis model infected with S. aureus by teat canal infusion. Therapeutic efficacy was assessed by physical appearance of the mammary gland and measurement of colony-forming units (CFU) per gland. The results showed that the diameter, polydispersivity index, zeta potential, encapsulation efficiency and loading capacity of the nanoparticles were 343±26 nm, 0.33±0.08, -7.9±0.4 mV, 60.4±3.3% and 11.2±0.47%, respectively. Tilmicosin-SLN showed a sustained-release effect and sustained and enhanced antibacterial activity in vitro. SLN significantly enhanced the therapeutic efficacy of tilmicosin determined by lower CFU counts and a decreased degree of inflammation. These results demonstrated that the HCO-SLN is an effective carrier to enhance the antibacterial activity of tilmicosin. Copyright © 2010. Published by Elsevier Ltd.
Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele
2018-05-22
It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.
Lo, W Y; Ting, L P
1994-01-01
Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237
MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.
Dhar, Shilpa S; Zhao, Dongyu; Lin, Tao; Gu, Bingnan; Pal, Khusboo; Wu, Sarah J; Alam, Hunain; Lv, Jie; Yun, Kyuson; Gopalakrishnan, Vidya; Flores, Elsa R; Northcott, Paul A; Rajaram, Veena; Li, Wei; Shilatifard, Ali; Sillitoe, Roy V; Chen, Kaifu; Lee, Min Gyu
2018-06-07
Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes. Copyright © 2018 Elsevier Inc. All rights reserved.
Therapeutic Strategies Against Cyclin E1 Amplified Ovarian Cancers
2017-10-01
interaction will lead to enhancement of RB/E2F interaction and suppression of E2F- dependent oncogenic activity resulting in activity against CCNE1-amplified...relevant for CCNE1-amplified ovarian tumors which are dependent on hyperactive HR and are sensitive to suppression of BRCA1. 15. SUBJECT TERMS Ovarian...enhancement of RB/E2F interaction and suppression of E2F- dependent oncogenic activity resulting in activity against CCNE1-amplified cells. In the third
Experimental study on rat NK cell activity improvement by laser acupoint irradiation
NASA Astrophysics Data System (ADS)
Yang, Dongxiao; Chen, Xiufeng; Ruan, Buqing; Yang, Feng
1998-08-01
To study the improvement of the natural killer (NK) cell activity by semiconductor laser acupoint irradiation, rats were used in this experiment and were injected immunosuppressant in their abdomen. The immunoassay was made after the surface irradiation and inner irradiation at Baihui point by semiconductor laser. The NK cell activity is an important index of immunologic function. The results showed that the NK cell activity after laser acupoint irradiation was enhanced. This enhancement is relatively important in the clinical therapy of tumor.
Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying
2014-01-01
The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles. PMID:28348285
Jones, Dorothy; Deibel, R. H.; Niven, C. F.
1964-01-01
Jones, Dorothy (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Catalase activity of two Streptococcus faecalis strains and its enhancement by aerobiosis and added cations. J. Bacteriol. 88:602–610. 1964.—The nature of catalase activity noted in two unusual Streptococcus faecalis strains was determined. Enzyme activity was lost slowly when cultures were maintained by daily transfer in test tubes of broth media. Loss of activity could be prevented by aerobic culture. Supplementation of the growth medium with ferric, manganese, and zinc ions, as well as aerobiosis, enhanced catalase activity. However, addition of these cations to cell suspensions or to cell-free extracts did not increase catalase activity. Although oxygen was observed to be one of the reaction end products, the catalase activity was not inhibited by cyanide or azide, and the iron-porphyrin coenzyme of classical catalase was not detected. The enzyme was purified 185-fold by precipitation with ammonium sulfate, followed by chromotography on a diethylaminoethyl cellulose column. PMID:14208495
Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity.
Choi, Jin Myung; Kim, Hyun Jung; Lee, Kwang Youl; Choi, Hyun Jin; Lee, Ik-Soo; Kang, Bok Yun
2009-01-01
Xanthohumol (XN) is a major chalcone found in hop, which is used to add bitterness and flavor to beer. In this study, we investigated the effects of XN on the production of interlukin-2 (IL-2), a potent T cell growth factor. Treatment with XN significantly increased IL-2 production in mouse EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) in a dose-dependent manner. To further characterize its regulatory mechanism of XN on increased IL-2 production, the effects of XN on IL-2 promoter activity and the activity of several transcription factors modulating IL-2 expression were analyzed. XN enhanced activity of the IL-2 promoter, which contains distal and proximal regulatory elements in PMA/Io-activated EL-4 T cells. Furthermore, the activity of NF-AT and AP-1 was enhanced but NF-kappaB activity was not influenced by XN in PMA/Io-activated EL-4 T cells. These results suggest that XN increased IL-2 production at the transcriptional levels via the up-regulation of NF-AT and AP-1 in PMA/Io-activated EL-4 T cells.
AMPK and PPARδ agonists are exercise mimetics
Narkar, Vihang A.; Downes, Michael; Yu, Ruth T.; Embler, Emi; Wang, Yong-Xu; Banayo, Ester; Mihaylova, Maria M.; Nelson, Michael C.; Zou, Yuhua; Juguilon, Henry; Kang, Heonjoong; Shaw, Reuben; Evans, Ronald M.
2008-01-01
SUMMARY The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARβ/δ agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1α, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARδ pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise. PMID:18674809
Daffner, Kirk R; Zhuravleva, Tatyana Y; Sun, Xue; Tarbi, Elise C; Haring, Anna E; Rentz, Dorene M; Holcomb, Phillip J
2012-02-01
Numerous studies have demonstrated that selective attention to color is associated with a larger neural response under attend than ignore conditions, but have not addressed whether this difference reflects enhanced activity under attend or suppressed activity under ignore. In this study, a color-neutral condition was included, which presented stimuli physically identical to those under attend and ignore conditions, but in which color was not task relevant. Attention to color did not modulate the early sensory-evoked P1 and N1 components. Traditional ERP markers of early selection (the anterior Selection Positivity and posterior Selection Negativity) did not differ between the attend and neutral conditions, arguing against a mechanism of enhanced activity. However, there were markedly reduced responses under the ignore relative to the neutral condition, consistent with the view that early selection mechanisms reflect suppression of neural activity under the ignore condition. Copyright © 2011 Elsevier B.V. All rights reserved.
Mast cells enhance T cell activation: Importance of mast cell-derived TNF
NASA Astrophysics Data System (ADS)
Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.
2005-05-01
Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response
Brabletz, T; Pietrowski, I; Serfling, E
1991-01-01
Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism. Images PMID:1707162
Brabletz, T; Pietrowski, I; Serfling, E
1991-01-11
Like Cyclosporin A (CsA), the macrolide FK 506 is a potent immunosuppressive that inhibits early steps of T cell activation, including the synthesis of Interleukin 2 (II-2) and numerous other lymphokines. The block of II-2 synthesis occurs at the transcriptional level. At concentrations that block T cell activation, FK 506 and CsA inhibit the proto-enhancer activity of Purine boxes of the II-2 promoter and the generation of lymphocyte-specific factors binding to the Purine boxes. Under the same conditions, the DNA binding of other II-2 enhancer factors remains unaffected by both compounds. These results support the view that FK 506 and CsA, which both inhibit the activity of peptidylprolyl cis/trans isomerases, suppress T cell activation by a similar, if not identical mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Irmaileh, B.E.; Jordan, L.S.; Kumamoto, J.
1979-01-01
The effect of glyphosate (N-(phosphonomethyl)glycine) on carbon dioxide. (CO/sub 2/) levels, ethylene production, and cellulase activity was investigated. Production of ethylene increased within 12 h and CO/sub 2/ increased within 24 h when 12-day-old bean plants (Phaseolus vulgaris L. Red Kidney) were treated with 20 mM isopropylamine salt of glyphosate. The CO/sub 2/ cycled for 3 days and then increased around treated plants. Specific activity of cellulase was increased in debladed bean seedlings that had been retreated with 20 mM isopropylamine salt of glyphosate. Cellulase enhancement was detected 2 days after the pretreated plants were debladed. Glyphosate-enhanced ethylene production maymore » have increased the cellulase activity. 24 references, 3 figures.« less
Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo
2012-03-01
It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.
Ren, Zhe; Qin, Tao; Qiu, Fuan; Song, Yulong; Lin, Dandan; Ma, Yufang; Li, Jian; Huang, Yifan
2017-12-01
Hericium erinaceus polysaccharide (HEP) has been shown to possess a variety of biological activities. In present study, HEP was successfully modified to obtain its hydroxyethylated derivative hHEP. Its potential immunomodulatory activities on RAW264.7 macrophages were investigated. Results showed that the hHEP were significantly stronger than that of the corresponding unmodified polysaccharide, HEP. Meanwhile, the NO, IL-6 and TNF-α production activities of macrophages were enhanced in the RAW264.7 macrophages by stimulation of hHEP. In addition, the hHEP increase significantly higher iNOS expression than HEP. These results indicated that the hydroxyethylated derivative hHEP could enhance the activation of peritoneal macrophages, and hydroxyethylation modification can enhance the immunomodulation function of HEP. Copyright © 2017 Elsevier B.V. All rights reserved.
Deal or No Deal: Using Games to Improve Student Learning, Retention and Decision-Making
ERIC Educational Resources Information Center
Chow, Alan F.; Woodford, Kelly C.; Maes, Jeanne
2011-01-01
Student understanding and retention can be enhanced and improved by providing alternative learning activities and environments. Education theory recognizes the value of incorporating alternative activities (games, exercises and simulations) to stimulate student interest in the educational environment, enhance transfer of knowledge and improve…
Effects of Wounding on Cytokinin Activity in Cucumber Cotyledons
Crane, Karen E.; Ross, Cleon W.
1986-01-01
Three known physiological responses to exogenous cytokinins were measured in wounded and nonwounded cotyledons from cucumber (Cucumis sativus L. cv Marketer) seedlings grown in darkness. Enhanced cell division, chlorophyll formation, and cotyledon expansion were detected in wounded cotyledons. The data suggest that wounding enhances endogenous cytokinin activity. PMID:16665151
The Role of TREM2 in Traumatic Brain Injury Induced Tauopathy
2015-09-01
shown that TBI causes enhanced MAPT phosphorylation and aggregation with heightened macrophage activation in hTau mice at 3 DPI suggesting that...previously shown that TBI causes enhanced MAPT phosphorylation and aggregation with heightened macrophage activation in hTau mice at 3 DPI suggesting that
While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the...
Children's Friendships and Learning in School: Cognitive Enhancement through Social Interaction?
ERIC Educational Resources Information Center
Kutnick, Peter; Kington, Alison
2005-01-01
Background: Recent literature has identified that children's performance on cognitive (or problem-solving) tasks can be enhanced when undertaken as a joint activity among pairs of pupils. Performance on this "social" activity will require quality relationships between pupils, leading some researchers to argue that friendships are characterized by…
Effects of wounding on cytokinin activity in cucumber cotyledons.
Crane, K E; Ross, C W
1986-12-01
Three known physiological responses to exogenous cytokinins were measured in wounded and nonwounded cotyledons from cucumber (Cucumis sativus L. cv Marketer) seedlings grown in darkness. Enhanced cell division, chlorophyll formation, and cotyledon expansion were detected in wounded cotyledons. The data suggest that wounding enhances endogenous cytokinin activity.
Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.
Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi
2014-10-25
Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.
Enhancing Students' Learning: Instant Feedback Cards
ERIC Educational Resources Information Center
Mohrweis, Lawrence C.; Shinham, Kathe M.
2015-01-01
This study illustrates an active learning approach using instant feedback cards in the first course in accounting. The objectives of this study are to (1) describe instant feedback cards and (2) show how this tool, when used in an active learning environment, can enhance learning. We examined whether students exposed to immediate feedback…
ERIC Educational Resources Information Center
Simpkins, Mary Ann; McNeill, Shane; Dieckman, Dale; Sissom, Mark; LoBianco, Judy; Lund, Jackie; Barney, David C.; Manson, Mara; Silva, Betsy
2009-01-01
NASPE's Teacher Toolbox is an instructional resource site which provides educators with a wide variety of teaching tools that focus on physical activity. This service is provided by NASPE to support instructional activities as well as promote quality programs. New monthly issues support NASPE's mission to enhance knowledge, improve professional…
Somkuwar, Sucharita S.; Fannon, McKenzie J.; Ghofranian, Atoosa; Quigley, Jacqueline A.; Dutta, Rahul R.; Galinato, Melissa H.; Mandyam, Chitra D.
2016-01-01
The therapeutic effects of wheel running (WR) during abstinence on reinstatement of ethanol seeking behaviors in rats that self-administered ethanol only (ethanol drinking, ED) or ED with concurrent chronic intermittent ethanol vapor experience (CIE-ED) were investigated. Neuronal activation as well as oligodendroglial and neuroinflammatory factors were measured in the medial prefrontal cortex (mPFC) tissue to determine cellular correlates associated with enhanced ethanol seeking. CIE-ED rats demonstrated escalated and unregulated intake of ethanol and maintained higher drinking than ED rats during abstinence. CIE-ED rats were more resistant to extinction from ethanol self-administration, however, demonstrated similar ethanol seeking triggered by ethanol contextual cues compared to ED rats. Enhanced seeking was associated with reduced neuronal activation, and increased number of myelinating oligodendrocyte progenitors and PECAM-1 expression in the mPFC, indicating enhanced oligodendroglial and neuroinflammatory response during abstinence. WR during abstinence enhanced self-administration in ED rats, indicating a deprivation effect. WR reduced reinstatement of ethanol seeking in CIE-ED and ED rats, indicating protection against relapse. The reduced ethanol seeking was associated with enhanced neuronal activation, reduced number of myelinating oligodendrocyte progenitors, and reduced PECAM-1 expression. The current findings demonstrate a protective role of WR during abstinence in reducing ethanol seeking triggered by ethanol contextual cues and establish a role for oligodendroglia-neuroinflammatory response in ethanol seeking. Taken together, enhanced oligodendroglia-neuroinflammatory response during abstinence may contribute to brain trauma in chronic alcohol drinking subjects and be a risk factor for enhanced propensity for alcohol relapse. PMID:27542327
Li, Tong; Wang, Yak-Nam; Khokhlova, Tatiana D.; D’Andrea, Samantha; Starr, Frank; Chen, Hong; McCune, Jeannine S.; Risler, Linda J.; Mashadi-Hossein, Afshin; Hwang, Joo Ha
2015-01-01
Pancreatic cancer is characterized by extensive stromal desmoplasia which decreases blood perfusion and impedes chemotherapy delivery. Breaking the stromal barrier could both increase perfusion and permeabilize the tumor, enhancing chemotherapy penetration. Mechanical disruption of the stroma can be achieved using ultrasound-induced bubble activity – cavitation. Cavitation is also known to result in microstreaming and could have the added benefit of actively enhancing diffusion into the tumors. Here, we report the ability to enhance chemotherapeutic drug doxorubicin (Dox) penetration using ultrasound-induced cavitation in a genetically engineered mouse model (KPC mouse) of pancreatic ductal adenocarcinoma. To induce localized inertial cavitation in pancreatic tumors, pulsed high intensity focused ultrasound (pHIFU) was used either during or before doxorubicin administration to elucidate the mechanisms of enhanced drug delivery (active versus passive drug diffusion). For both types, the pHIFU exposures which were associated with high cavitation activity resulted in disruption of the highly fibrotic stromal matrix and enhanced the normalized Dox concentration by up to 4.5 fold compared to controls. Furthermore, normalized Dox concentration was associated with the cavitation metrics (p < 0.01), indicating that high and sustained cavitation results in increased chemotherapy penetration. No significant difference between the outcomes of the two types, i.e., Dox infusion during or after pHIFU treatment, was observed, suggesting that passive diffusion into previously permeabilized tissue is the major mechanism for the increase in drug concentration. Together, the data indicate that pHIFU treatment of pancreatic tumors when resulting in high and sustained cavitation can efficiently enhance chemotherapy delivery to pancreatic tumors. PMID:26216548
Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe
2007-10-01
To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.
Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing
2015-01-01
Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629
Innate Immune Mechanisms in Transplant Allograft Vasculopathy
Jane-wit, D; Fang, C; Goldstein, DR
2016-01-01
Purpose of Review Allograft vasculopathy (AV) is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury (IRI) and donor specific antibody (DSA)-induced complement activation confer heightened risk for AV via numerous innate immune mechanisms including MyD88, HMGB1, and complement induced non-canonical NF-kB signaling. Recent Findings The role of MyD88, a signal adaptor downstream of the toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced AV. Importantly, triggering receptor on myeloid receptor 1(Trem1), a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of AV in mice. HMGB1, a nuclear protein that activates TLRs, also enhanced the development of AV. Complement activation elicits assembly of membrane attack complexes (MAC) on endothelial cells which activate non-canonical NF-kB signaling, a novel complement effector pathway that induces pro-inflammatory genes and potentiates endothelial cell mediated alloimmune T cell activation, processes which enhance AV. Summary Innate immune mediators including HMGB1, MyD88, and non-canonical NFκB signaling via complement activation contribute to AV. These pathways represent potential therapeutic targets to reduce AV after solid organ transplantation. PMID:27077602
NASA Astrophysics Data System (ADS)
Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing
2015-10-01
Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.
Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing
2015-10-27
Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.
Chu, Z L; Pio, F; Xie, Z; Welsh, K; Krajewska, M; Krajewski, S; Godzik, A; Reed, J C
2001-03-23
Apaf1/CED4 family members play central roles in apoptosis regulation as activators of caspase family cell death proteases. These proteins contain a nucleotide-binding (NB) self-oligomerization domain and a caspase recruitment domain (CARD). A novel human protein was identified, NAC, that contains an NB domain and CARD. The CARD of NAC interacts selectively with the CARD domain of Apaf1, a caspase-activating protein that couples mitochondria-released cytochrome c (cyt-c) to activation of cytosolic caspases. Cyt-c-mediated activation of caspases in cytosolic extracts and in cells is enhanced by overexpressing NAC and inhibited by reducing NAC using antisense/DNAzymes. Furthermore, association of NAC with Apaf1 is cyt c-inducible, resulting in a mega-complex (>1 MDa) containing both NAC and Apaf1 and correlating with enhanced recruitment and proteolytic processing of pro-caspase-9. NAC also collaborates with Apaf1 in inducing caspase activation and apoptosis in intact cells, whereas fragments of NAC representing only the CARD or NB domain suppress Apaf1-dependent apoptosis induction. NAC expression in vivo is associated with terminal differentiation of short lived cells in epithelia and some other tissues. The ability of NAC to enhance Apaf1-apoptosome function reveals a novel paradigm for apoptosis regulation.
Zahoor, Muhammad; Jan, Muhammad Rasul; Naz, Sumaira
2016-11-01
Glucose-6-phosphatase is a key enzyme of glucose metabolic pathways. Deficiency of this enzyme leads to glycogen storage disease. This enzyme also plays a negative role in diabetes mellitus disorder in which the catalytic activity of this enzyme increases. Thus there is need for activators to enhance the activity of glucose-6-phosphatase in glycogen storage disease of type 1b while in diabetes mellitus repressors are needed to reduce its activity. Crude extracts of apricot, fig, mulberry and apple fruits were investigated for their repressive/enhancive effects on glucose-6-phosphatase in vivo. Albino mice were used as experimental animal. All the selected extracts showed depressive effects on glucose-6-phosphatase, which shows that all these extracts can be used as antidiabetic supplement of food. The inhibitory pattern was competitive one, which was evident from the effect of increasing dose from 1g/Kg body weight to 3g/Kg body weight for all the selected fruit extracts. However fig and apple fruit extracts showed high repressive effects for high doses as compared to apricot and mulberry fruit extracts. None of these selected fruit extracts showed enhancive effect on glucose-6-phosphatase activity. All these fruits or their extracts can be used as antidiabetic dietary supplement for diabetes mellitus.
Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity
NASA Astrophysics Data System (ADS)
Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji
2016-10-01
A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.
Vellani, Vittorio; Mapplebeck, Sarah; Moriondo, Andrea; Davis, John B; McNaughton, Peter A
2001-01-01
The effects of activation of protein kinase C (PKC) on membrane currents gated by capsaicin, protons, heat and anandamide were investigated in primary sensory neurones from neonatal rat dorsal root ganglia (DRG) and in HEK293 cells (human embryonic kidney cell line) transiently or stably expressing the human vanilloid receptor hVR1. Maximal activation of PKC by a brief application of phorbol 12-myristate 13-acetate (PMA) increased the mean membrane current activated by a low concentration of capsaicin by 1.65-fold in DRG neurones and 2.18-fold in stably transfected HEK293 cells. Bradykinin, which activates PKC, also enhanced the response to capsaicin in DRG neurones. The specific PKC inhibitor RO31-8220 prevented the enhancement caused by PMA. Activation of PKC did not enhance the membrane current at high concentrations of capsaicin, showing that PKC activation increases the probability of channel opening rather than unmasking channels. Application of PMA alone activated an inward current in HEK293 cells transiently transfected with VR1. The current was suppressed by the VR1 antagonist capsazepine. PMA did not, however, activate a current in the large majority of DRG neurones nor in HEK293 cells stably transfected with VR1. Removing external Ca2+ enhanced the response to a low concentration of capsaicin 2.40-fold in DRG neurones and 3.42-fold in HEK293 cells. Activation of PKC in zero Ca2+ produced no further enhancement of the response to capsaicin in either DRG neurones or HEK293 cells stably transfected with VR1. The effects of PKC activation on the membrane current gated by heat, anandamide and low pH were qualitatively similar to those on the capsaicin-gated current. The absence of a current activated by PMA in most DRG neurones or in stably transfected HEK293 cells suggests that activation of PKC does not directly open VR1 channels, but instead increases the probability that they will be activated by capsaicin, heat, low pH or anandamide. Removal of calcium also potentiates activation, and PKC activation then has no further effect. The results are consistent with a model in which phosphorylation of VR1 by PKC increases the probability of channel gating by agonists, and in which dephosphorylation occurs by a calcium-dependent process. PMID:11483711
Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji
2016-04-01
Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Function and regulation of AUTS2, a gene implicated in autism and human evolution.
Oksenberg, Nir; Stevison, Laurie; Wall, Jeffrey D; Ahituv, Nadav
2013-01-01
Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.
Nelson, Britta S; Black, Katelyn L; Daniel, Jill M
2016-01-01
Systemic estradiol treatment enhances hippocampus-dependent memory in ovariectomized rats. Although these enhancements are traditionally thought to be due to circulating estradiol, recent data suggest these changes are brought on by hippocampus-derived estradiol, the synthesis of which depends on gonadotropin-releasing hormone (GnRH) activity. The goal of the current work is to test the hypothesis that peripheral estradiol affects hippocampus-dependent memory through brain-derived estradiol regulated via hippocampal GnRH receptor activity. In the first experiment, intracerebroventricular infusion of letrozole, which prevents the synthesis of estradiol, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory in a radial-maze task. In the second experiment, hippocampal infusion of antide, a long-lasting GnRH receptor antagonist, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory. In the third experiment, hippocampal infusion of GnRH enhanced hippocampus-dependent memory, the effects of which were blocked by letrozole infusion. Results indicate that peripheral estradiol-induced enhancement of cognition is mediated by brain-derived estradiol via hippocampal GnRH receptor activity.
2015-01-01
To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269
Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines
Hayashi, Hideki; Kubo, Yoshinao; Izumida, Mai; Takahashi, Etsuhisa; Kido, Hiroshi; Sato, Ko; Yamaya, Mutsuo; Nishimura, Hidekazu; Nakayama, Kou; Matsuyama, Toshifumi
2018-01-01
Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines. PMID:29629340
Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.
Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E
2010-07-02
Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.
Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells
Chahal, Manpreet S.; Brauner, Daniel J.; Meier, Kathryn E.
2010-01-01
Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells. PMID:27713341
DHEA Enhances Emotion Regulation Neurocircuits and Modulates Memory for Emotional Stimuli
Sripada, Rebecca K; Marx, Christine E; King, Anthony P; Rajaram, Nirmala; Garfinkel, Sarah N; Abelson, James L; Liberzon, Israel
2013-01-01
Dehydroepiandrosterone (DHEA) is a neurosteroid with anxiolytic, antidepressant, and antiglucocorticoid properties. It is endogenously released in response to stress, and may reduce negative affect when administered exogenously. Although there have been multiple reports of DHEA's antidepressant and anxiolytic effects, no research to date has examined the neural pathways involved. In particular, brain imaging has not been used to link neurosteroid effects to emotion neurocircuitry. To investigate the brain basis of DHEA's impact on emotion modulation, patients were administered 400 mg of DHEA (N=14) or placebo (N=15) and underwent 3T fMRI while performing the shifted-attention emotion appraisal task (SEAT), a test of emotional processing and regulation. Compared with placebo, DHEA reduced activity in the amygdala and hippocampus, enhanced connectivity between the amygdala and hippocampus, and enhanced activity in the rACC. These activation changes were associated with reduced negative affect. DHEA reduced memory accuracy for emotional stimuli, and also reduced activity in regions associated with conjunctive memory encoding. These results demonstrate that DHEA reduces activity in regions associated with generation of negative emotion and enhances activity in regions linked to regulatory processes. Considering that activity in these regions is altered in mood and anxiety disorders, our results provide initial neuroimaging evidence that DHEA may be useful as a pharmacological intervention for these conditions and invite further investigation into the brain basis of neurosteroid emotion regulatory effects. PMID:23552182
Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F
2014-04-02
To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).
Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces
Stoltzfus, Jon R.; Libarkin, Julie
2016-01-01
SCALE-UP–type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well documented, both in traditional lecture halls and SCALE-UP–type classrooms. However, few studies have carefully analyzed student outcomes when comparable active learning–based instruction takes place in a traditional lecture hall and a SCALE-UP–type classroom. Using a quasi-experimental design, we compared student perceptions and performance between sections of a nonmajors biology course, one taught in a traditional lecture hall and one taught in a SCALE-UP–type classroom. Instruction in both sections followed a flipped model that relied heavily on cooperative learning and was as identical as possible given the infrastructure differences between classrooms. Results showed that students in both sections thought that SCALE-UP infrastructure would enhance performance. However, measures of actual student performance showed no difference between the two sections. We conclude that, while SCALE-UP–type classrooms may facilitate implementation of active learning, it is the active learning and not the SCALE-UP infrastructure that enhances student performance. As a consequence, we suggest that institutions can modify existing classrooms to enhance student engagement without incorporating expensive technology. PMID:27909018
The combination of vemurafenib and procaspase-3 activation is synergistic in mutant BRAF melanomas
Peh, Jessie; Fan, Timothy M.; Wycislo, Kathryn L.; Roth, Howard S.; Hergenrother, Paul J.
2016-01-01
The development of vemurafenib resistance limits the long-term efficacy of this drug for treatment of metastatic melanomas with the V600EBRAF mutation. Inhibition of downstream MAPK signaling with vemurafenib induces apoptotic cell death mediated by caspase-3, suggesting that addition of a procaspase-3 activator could enhance anticancer effects. Here we show that the combination of PAC-1, a procaspase-activating compound, and vemurafenib is highly synergistic in enhancing caspase-3 activity and apoptotic cell death in melanoma cell lines harboring the V600EBRAF mutation. In vivo, the combination displays a favorable safety profile in mice, and exerts significant antitumor effects. We further demonstrate that addition of PAC-1 to the clinically useful combination of vemurafenib and a MEK inhibitor, trametinib, starkly enhances the caspase-3 activity and proapoptotic effect of the combination. Moreover, addition of low concentration PAC-1 also delays the regrowth of cells following treatment with vemurafenib. Finally, PAC-1 remains potent against vemurafenib-resistant A375VR cells in cell culture and synergizes with vemurafenib to exert antitumor effects on A375VR cell growth in vivo. Collectively, our data suggest that inhibition of MAPK signaling combined with concurrent procaspase-3 activation is an effective strategy to enhance the antitumor activity of vemurafenib and mitigate the development of resistance. PMID:27297867
Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation.
Jordan, Rebecca; Fukunaga, Izumi; Kollo, Mihaly; Schaefer, Andreas T
2018-06-27
The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George
2017-05-27
Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation.
2003-01-01
coupled receptor signal transduction proposes that agonist-induced conformational changes in the receptor result in an enhanced release of GDP...Regulators of G protein Signalling (RGS) proteins influence G protein-coupled receptor signal transduction by enhancing the intrinsic GTPase activity...of G proteins. The RGS- enhanced GTPase activity of G proteins may be responsible for the desensitization of certain G protein-coupled receptors
MacDonald, Ryan B; Debiais-Thibaud, Mélanie; Martin, Kyle; Poitras, Luc; Tay, Boon-Hui; Venkatesh, Byrappa; Ekker, Marc
2010-05-26
The phylogenetic position of the elephant shark (Callorhinchus milii ) is particularly relevant to study the evolution of genes and gene regulation in vertebrates. Here we examine the evolution of Dlx homeobox gene regulation during vertebrate embryonic development with a particular focus on the forebrain. We first identified the elephant shark sequence orthologous to the URE2 cis -regulatory element of the mouse Dlx1/Dlx2 locus (herein named CmURE2). We then conducted a comparative study of the sequence and enhancer activity of CmURE2 with that of orthologous regulatory sequences from zebrafish and mouse. The CmURE2 sequence shows a high percentage of identity with its mouse and zebrafish counterparts but is overall more similar to mouse URE2 (MmURE2) than to zebrafish URE2 (DrURE2). In transgenic zebrafish and mouse embryos, CmURE2 displayed enhancer activity in the forebrain that overlapped with that of DrURE2 and MmURE2. However, we detected notable differences in the activity of the three sequences in the diencephalon. Outside of the forebrain, CmURE2 shows enhancer activity in areas such as the pharyngeal arches and dorsal root ganglia where its' counterparts are also active. Our transgenic assays show that part of the URE2 enhancer activity is conserved throughout jawed vertebrates but also that new characteristics have evolved in the different groups. Our study demonstrates that the elephant shark is a useful outgroup to study the evolution of regulatory mechanisms in vertebrates and to address how changes in the sequence of cis -regulatory elements translate into changes in their regulatory activity.
Xu, Jialin; Donepudi, Ajay C; Moscovitz, Jamie E; Slitt, Angela L
2013-01-01
The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD), regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting). Male C57BL/6 (WT) and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase) and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36) and Fatty acid transport protein (FATP) 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar) α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK) phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.
Xu, Jialin; Donepudi, Ajay C.; Moscovitz, Jamie E.; Slitt, Angela L.
2013-01-01
Aims The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD), regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting). Methods and Results Male C57BL/6 (WT) and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase) and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36) and Fatty acid transport protein (FATP) 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar) α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK) phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters — CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. Conclusion Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation. PMID:24224011
Cook, David C; Nelson, Eve-Lynn; Ast, Cori; Lillis, Teresa
2013-05-01
A growing number of academic health centers (AHCs) are considering approaches to expand collaboration with their communities in order to address complex and multisystem health concerns. In 2010, internal leaders at the University of Kansas Medical Center undertook a strategic planning process to enhance both community engagement activities and the scholarship resulting from these engagement activities. The authors describe the strategic planning process, recommendations, and actions associated with elevating community engagement within the AHC's mission and priorities. The strategic planning process included conducting an inventory of community engagement activities within the AHC; analyzing strengths, weaknesses, opportunities, and threats for community engagement work; and identifying goals and strategies to improve future community engagement activities and scholarship. The resulting road map for enhancing community engagement at their institution through 2015 consists of four main strategies: emphasize scholarship in community engagement, revise organizational structures to better facilitate community engagement, prioritize current engagement activities to ensure appropriate use of resources, and enhance communication of engagement initiatives to further develop stakeholder relationships.The authors also discuss implementation of the plan to date and highlight lessons learned that may inform other AHCs as they enhance and expand similar endeavors.
NASA Astrophysics Data System (ADS)
Sun, Lingling; Wang, Guohong; Hao, Ruirui; Han, Deyan; Cao, Sheng
2015-12-01
The addition of graphene oxide (GO) in the semiconductors has been regarded as one of the effective methods to enhance their photocatalytic activity. In this study, Cu2O-reduced graphene oxide (Cu2O-rGO) composites with low loading (0-0.5 wt.%) of graphene oxide (GO) were produced by a one-step green solvothermal method in ethanol system by using Cu(NO3)2·3H2O and glutamic acid as copper precursor and reducing agent, respectively. During the solvothermal treatment, GO was reduced to rGO. The as-prepared Cu2O-reduced graphene oxide composite microspheres exhibited enhanced photocatalytic activity toward the degradation of RhB aqueous solution under visible light irradiation. At the optimal loading of graphene oxide (0.05 wt.%), Cu2O-rGO composites showed the highest photocatalytic activity, exceeding that of pure Cu2O and commercial Degussa P25 by a factor of 2.9 and 7.9, respectively. The enhanced photocatalytic activity may be ascribed to the strong coupling interaction between Cu2O particles and rGO nanosheets, which reduces the recombination of charge carriers.
Salt-induced enhancement of antifreeze protein activity: a salting-out effect.
Kristiansen, Erlend; Pedersen, Sindre Andre; Zachariassen, Karl Erik
2008-10-01
Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.
Daubas, Philippe; Buckingham, Margaret E
2013-04-15
The Myf5 gene plays an important role in myogenic determination during mouse embryo development. Multiple genomic regions of the Mrf4-Myf5 locus have been characterised as enhancer sequences responsible for the complex spatiotemporal expression of the Myf5 gene at the onset of myogenesis. These include an enhancer sequence, located at -111 kb upstream of the Myf5 transcription start site, which is responsible of Myf5 activation in ventral somitic domains (Ribas et al., 2011. Dev. Biol. 355, 372-380). We show that the -111 kb-Myf5 enhancer also directs transgene expression in some limb muscles, and is active at foetal as well as embryonic stages. We have carried out further characterisation of the regulation of this enhancer and show that the paired-box Pax3 transcription factor binds to it in vitro as in vivo, and that Pax binding sites are essential for its activity. This requirement is independent of the previously reported regulation by TEAD transcription factors. Six1/4 which, like Pax3, are important upstream regulators of myogenesis, also bind in vivo to sites in the -111 kb-Myf5 enhancer and modulate its activity. The -111 kb-Myf5 enhancer therefore shares common functional characteristics with another Myf5 regulatory sequence, the hypaxial and limb 145 bp-Myf5 enhancer, both being directly regulated in vivo by Pax3 and Six1/4 proteins. However, in the case of the -111 kb-Myf5 enhancer, Six has less effect and we conclude that Pax regulation plays a major role in controlling this aspect of the Myf5 gene expression at the onset of myogenesis in the embryo. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.
1992-01-01
Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.
Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.
Malik, Jai; Karan, Maninder; Vasisht, Karan
2011-12-01
Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p < 0.001). E. alsinoides extract (EAE) and C. ternatea extract (CTE) showed maximum memory-enhancing and anxiolytic activity (p < 0.001) at 200 and 100?mg/kg, respectively. Amongst the three plants, EAE and CTE showed significant (p < 0.05), while CPE did not exhibit any antidepressant activity. All the three plants showed CNS-depressant action at higher dose levels. The above results showed all the three plants possess nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.
Enhancement of Penicillium echinulatum glycoside hydrolase enzyme complex.
dos Santos Costa, Patrícia; Büchli, Fernanda; Robl, Diogo; Delabona, Priscila da Silva; Rabelo, Sarita Candida; Pradella, José Geraldo da Cruz
2016-05-01
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.
A High-Resolution Enhancer Atlas of the Developing Telencephalon
Visel, Axel; Taher, Leila; Girgis, Hani; May, Dalit; Golonzhka, Olga; Hoch, Renee; McKinsey, Gabriel L.; Pattabiraman, Kartik; Silberberg, Shanni N.; Blow, Matthew J.; Hansen, David V.; Nord, Alex S.; Akiyama, Jennifer A.; Holt, Amy; Hosseini, Roya; Phouanenavong, Sengthavy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Kaplan, Tommy; Kriegstein, Arnold R.; Rubin, Edward M.; Ovcharenko, Ivan; Pennacchio, Len A.; Rubenstein, John L. R.
2013-01-01
Summary The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. While many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified over 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising over 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders. PMID:23375746
Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H
1988-01-01
cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787
Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida
2007-08-08
Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.
Wagner, Elissa A
2014-06-01
This article reports the outcomes of a kinesthetic learning strategy used during a cardiac lecture to engage students and to improve the use of classroom-acquired knowledge in today's challenging clinical settings. Nurse educators are constantly faced with finding new ways to engage students, stimulate critical thinking, and improve clinical application in a rapidly changing and complex health care system. Educators who deviate from the traditional pedagogy of didactic, content-driven teaching to a concept-based, student-centered approach using active and kinesthetic learning activities can enhance engagement and improve clinical problem solving, communication skills, and critical thinking to provide graduates with the tools necessary to be successful. The goals of this learning activity were to decrease the well-known classroom-clinical gap by enhancing engagement, providing deeper understanding of cardiac function and disorders, enhancing critical thinking, and improving clinical application. Copyright 2014, SLACK Incorporated.
Mavratzakis, Aimee; Herbert, Cornelia; Walla, Peter
2016-01-01
In the current study, electroencephalography (EEG) was recorded simultaneously with facial electromyography (fEMG) to determine whether emotional faces and emotional scenes are processed differently at the neural level. In addition, it was investigated whether these differences can be observed at the behavioural level via spontaneous facial muscle activity. Emotional content of the stimuli did not affect early P1 activity. Emotional faces elicited enhanced amplitudes of the face-sensitive N170 component, while its counterpart, the scene-related N100, was not sensitive to emotional content of scenes. At 220-280ms, the early posterior negativity (EPN) was enhanced only slightly for fearful as compared to neutral or happy faces. However, its amplitudes were significantly enhanced during processing of scenes with positive content, particularly over the right hemisphere. Scenes of positive content also elicited enhanced spontaneous zygomatic activity from 500-750ms onwards, while happy faces elicited no such changes. Contrastingly, both fearful faces and negative scenes elicited enhanced spontaneous corrugator activity at 500-750ms after stimulus onset. However, relative to baseline EMG changes occurred earlier for faces (250ms) than for scenes (500ms) whereas for scenes activity changes were more pronounced over the whole viewing period. Taking into account all effects, the data suggests that emotional facial expressions evoke faster attentional orienting, but weaker affective neural activity and emotional behavioural responses compared to emotional scenes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Stolpmann, K; Brinkmann, J; Salzmann, S; Genkinger, D; Fritsche, E; Hutzler, C; Wajant, H; Luch, A; Henkler, F
2012-01-01
In this study, we have analysed the apoptotic effects of the ubiquitous environmental toxin benzo[a]pyrene (BP) in HaCaT cells and human keratinocytes. Although prolonged exposure to BP was not cytotoxic on its own, a strong enhancement of CD95 (Fas)-mediated apoptosis was observed with BP at concentrations activating the aryl hydrocarbon receptor (AhR). Importantly, the ultimately mutagenic BP-metabolite, that is, (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE), failed to enhance CD95-mediated cell death, suggesting that the observed pro-apoptotic effect of BP is neither associated with DNA adducts nor DNA-damage related signalling. CD95-induced apoptosis was also enhanced by β-naphtoflavone, a well-known agonist of the AhR that does not induce DNA damage, thus suggesting a crucial role for AhR activation. Consistently, BP failed to sensitise for CD95L-induced apoptosis in AhR knockdown HaCaT cells. Furthermore, inhibition of CYP1A1 and/or 1B1 expression did not affect the pro-apoptotic crosstalk. Exposure to BP did not increase expression of CD95, but led to augmented activation of caspase-8. Enhancement of apoptosis was also observed with the TRAIL death receptors that activate caspase-8 and apoptosis by similar mechanisms as CD95. Together, these observations indicate an interference of AhR signalling with the activity of receptor-associated signalling intermediates that are shared by CD95 and TRAIL receptors. Our data thus suggest that AhR agonists can enhance cytokine-mediated adversity upon dermal exposure. PMID:22951985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, Shuya; Baba, Kiwako; Makio, Akiko
2016-05-13
Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our resultsmore » showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.« less
Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.
Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N
2015-03-04
The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.
Representational Account of Memory: Insights from Aging and Synesthesia.
Pfeifer, Gaby; Ward, Jamie; Chan, Dennis; Sigala, Natasha
2016-12-01
The representational account of memory envisages perception and memory to be on a continuum rather than in discretely divided brain systems [Bussey, T. J., & Saksida, L. M. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus, 17, 898-908, 2007]. We tested this account using a novel between-group design with young grapheme-color synesthetes, older adults, and young controls. We investigated how the disparate sensory-perceptual abilities between these groups translated into associative memory performance for visual stimuli that do not induce synesthesia. ROI analyses of the entire ventral visual stream showed that associative retrieval (a pair-associate retrieved in the absence of a visual stimulus) yielded enhanced activity in young and older adults' visual regions relative to synesthetes, whereas associative recognition (deciding whether a visual stimulus was the correct pair-associate) was characterized by enhanced activity in synesthetes' visual regions relative to older adults. Whole-brain analyses at associative retrieval revealed an effect of age in early visual cortex, with older adults showing enhanced activity relative to synesthetes and young adults. At associative recognition, the group effect was reversed: Synesthetes showed significantly enhanced activity relative to young and older adults in early visual regions. The inverted group effects observed between retrieval and recognition indicate that reduced sensitivity in visual cortex (as in aging) comes with increased activity during top-down retrieval and decreased activity during bottom-up recognition, whereas enhanced sensitivity (as in synesthesia) shows the opposite pattern. Our results provide novel evidence for the direct contribution of perceptual mechanisms to visual associative memory based on the examples of synesthesia and aging.
Rudolf, Emil; Rudolf, Kamil
2017-01-01
Zinc (Zn) is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry), as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry) along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed non-fuorescent substrate). Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells' mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis. © 2017 The Author(s). Published by S. Karger AG, Basel.
Ennis, Catherine D
2017-09-01
For many years, pedagogical scholars and physical education (PE) teachers have worked to enhance effective teaching and learning environments. Yet for some children, youth, and young adults, many of the benefits associated with a physically active lifestyle remain elusive. Enhancing programming and performance to meet physical activity goals may require moving programs beyond "effective." It will require teachers and program leaders to focus programmatic attention on strategies to actually increase students' out-of-class physical activity behavior. Transformative PE provides physical activity content within a nurturing and motivating environment that can change students' lives. It focuses on PE students' role in cognitive decision making, self-motivation, and their search for personal meaning that can add connection and relevance to physical activities. In this SHAPE America - Society of Health and Physical Educators Research Quarterly for Exercise and Sport Lecture, I have synthesized the research on these topics to emphasize useful findings applicable to teachers' everyday planning and teaching. Using sport, physical activity, dance, and adventure activities as the means to an end for personal and social growth, we can meet our commitment to effective standards-based education while preparing students for a lifetime of physical activity.
Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation.
Sunada, Hiroshi; Riaz, Hamza; de Freitas, Emily; Lukowiak, Kai; Swinton, Cayley; Swinton, Erin; Protheroe, Amy; Shymansky, Tamila; Komatsuzaki, Yoshimasa; Lukowiak, Ken
2016-05-01
Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation. © 2016. Published by The Company of Biologists Ltd.
Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.
Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo
2013-07-01
Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.
Simple amides of oleanolic acid as effective penetration enhancers.
Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz
2015-01-01
Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented.
Simple Amides of Oleanolic Acid as Effective Penetration Enhancers
Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz
2015-01-01
Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090
NASA Astrophysics Data System (ADS)
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
2013-01-01
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051
Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun
2013-12-26
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.
Guaifenesin enhances the analgesic potency of paracetamol in mice.
Dolezal, T; Krsiak, M
2002-12-01
Guaifenesin is used as an expectorant and it has been reported to possess muscle relaxant and sedative activity. Guaifenesin has been used as a component of composite OTC analgesics containing paracetamol for many years. The aim of our study was to ascertain effects of guaifenesin on paracetamol analgesic activity and locomotor performance. Antinociceptive efficacy was tested in mice using an acetic acid (0.7%) writhing test. Locomotor performance was tested in rota-rod test and activity cage. All drugs were given orally and tested in mice. In combination with a subeffective dose of guaifenesin (200 mg/kg), the ED(50) for paracetamol in the writhing test was significantly lower (82.2 mg/kg) than that of paracetamol administered alone (233.7 mg/kg). Guaifenesin alone did not show an analgesic effect. Guaifenesin did not produce statistically significant locomotor impairment in the rota-rod test at doses enhancing analgesic activity of paracetamol, although there was a trend for decreased locomotor activity in activity cage. The present results indicate that guaifenesin may enhance analgesic activity of paracetamol.
Effect of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase.
Chen, Dawei; Zhang, Houjin; Xu, Jing; Yan, Yunjun
2013-07-10
In this work, we have investigated the influences of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase (PCL), including its esterification and transesterification activities, structural changes and stability. Results demonstrated that exposure time to subcritical CO2 treatment had a negative effect on PCL transesterification activity whereas exposure time to supercritical CO2 treatment had a positive effect. But generally, most compressed treatments significantly enhanced PCL esterification activity. Conformational analysis by FT-IR and fluorescence emission spectra revealed that enhanced activities after supercritical CO2 treatment were correlated with the secondary and tertiary structural changes of PCL. Secondary structure changes also appeared to be responsible for enhancement of PCL activities by subcritical CO2 treatment. Compared to native PCL, treated PCL's esterification activity significantly decreased in hydrophilic organic media, while transesterification activity significantly increased in tert-amyl alcohol and acetone. After supercritical treatment, the thermal stability of PCL significantly decreased in esterification reactions, however, there was no significant difference in transesterification reactions. Copyright © 2013 Elsevier Inc. All rights reserved.
Dusp5 negatively regulates IL-33-mediated eosinophil survival and function
Holmes, Derek A; Yeh, Jung-Hua; Yan, Donghong; Xu, Min; Chan, Andrew C
2015-01-01
Mitogen-activated protein kinase (MAPK) activation controls diverse cellular functions including cellular survival, proliferation, and apoptosis. Tuning of MAPK activation is counter-regulated by a family of dual-specificity phosphatases (DUSPs). IL-33 is a recently described cytokine that initiates Th2 immune responses through binding to a heterodimeric IL-33Rα (ST2L)/IL-1α accessory protein (IL-1RAcP) receptor that coordinates activation of ERK and NF-κB pathways. We demonstrate here that DUSP5 is expressed in eosinophils, is upregulated following IL-33 stimulation and regulates IL-33 signaling. Dusp5−/− mice have prolonged eosinophil survival and enhanced eosinophil effector functions following infection with the helminth Nippostrongylus brasiliensis. IL-33-activated Dusp5−/− eosinophils exhibit increased cellular ERK1/2 activation and BCL-XL expression that results in enhanced eosinophil survival. In addition, Dusp5−/− eosinophils demonstrate enhanced IL-33-mediated activation and effector functions. Together, these data support a role for DUSP5 as a novel negative regulator of IL-33-dependent eosinophil function and survival. PMID:25398911
Lu, Lingling; Zhao, Shasha; Gao, Ge; Sun, Xiaohong; Zhao, Huanying; Yang, Hui
2016-12-01
Although mutations of DJ-1 have been linked to autosomal recessive Parkinsonism for years, its physiological function and the pathological mechanism of its mutants are not well understood. We report for the first time that exogenous application of DJ-1, but not its L166P mutant, enhances the nuclear translocation and the transcriptional activity of Nurr1, a transcription factor essential for dopaminergic neuron development and maturation, both in vitro and in vivo. Knockdown of DJ-1 attenuates Nurr1 activity. Further investigation showed that signaling of Raf/MEK/ERK MAPKs is involved in this regulatory process and that activation induced by exogenous DJ-1 is antagonized by U0126, an ERK pathway inhibitor, indicating that DJ-1 modulates Nurr1 activity via the Raf/MEK/ERK pathway. Our findings shed light on the novel function of DJ-1 to enhance Nurr1 activity and provide the first insight into the molecular mechanism by which DJ-1 enhances Nurr1 activity.
A school-based, peer leadership physical activity intervention for 6th graders
Barr-Anderson, Daheia J.; Laska, Melissa N.; Veblen-Mortenson, Sara; Dudovitz, Bonnie; Farbarksh, Kian; Story, Mary
2012-01-01
Background The aim of this study was to promote physical activity in 6th graders by developing and testing the feasibility of an enhanced Presidential Active Lifestyle Award (PALA) program comprised of a peer leadership component and innovative exercise resource toolkit including DVDs. Method A racially/ethnically diverse sample of students received the standard PALA program (2 control schools, n=61) or enhanced PALA+Peers program (2 intervention schools, n=87) during 2006–2007 academic year. Results Compared to the control condition, the intervention was successful in increasing moderate physical activity in all students (p=0.02) and moderate and hard physical activity among girls (p=0.03 and p=0.04, respectively). Teachers and students reported a high level of satisfaction and receptivity with the intervention. All teachers thought the DVDs were well-received, and 87% of students reported that they would recommend the enhanced program to peers. Conclusion Coupling peer leadership and DVDs that promote physical activity may be an effective way to increase youth physical activity. PMID:21945980
Knop, J
1980-12-01
Vibrio cholerae neuraminidase (VCN) enhances the immune response of lymphocytes in various systems, such as antigen- and mitogen-induced blastogenesis, mixed lymphocyte culture (MLC) and tumor-cell response. We used macrophage-depleted and reconstituted murine lymph-node T-cells to investigate the effect of VCN on macrophage-T-lymphocyte co-operation in Con-A-induced lymphocyte activation. In unfractionated lymph-node cells VCN enhanced the Con-A-induced lymphocyte activation as measured by 3H-thymidine (3H-dThd) incorporation. Removing macrophages from the cells resulted in a significantly diminished response. In addition the enhancing effect of VCN was greatly reduced. Reconstitution of the lymphocyte cultures with macrophages in increasing numbers and from various sources rstored the lymphocyte response and the enhancing effect of VCN. VCN proved to be most efficient in cultures reconstituted with normal peritoneal macrophages. Some effect was also observed using bone-marrow-derived (BM) macrophages. However, higher numbers of normal PE macrophages in the presence of VCN inhibited lymphocyte activation, and inhibition by thioglycollate-broth-induced macrophages was considerably increased by VCN. These results suggest that VCN acts by increasing the efficiency of macrophage-T lymphocyte interaction.
Drugs acting on amino acid neurotransmitters.
Meldrum, B S
1986-01-01
The most potent agents currently available for suppressing myoclonic activity in animals and humans act to enhance GABA-mediated inhibition and/or to diminish amino acid-induced excitation. Postsynaptic GABA-mediated inhibition plays an important role at the cortical level, diminishing the effect of augmented afferent activity and preventing pathologically enhanced output. Enhancement of GABAergic inhibition, principally at the cortical level but also at lower levels, by clonazepam and by valproate appears to be a predominant element in their antimyoclonic action. Studies in various animal models, including photically induced myoclonus in the baboon, P papio, indicate the value of other approaches to enhancing GABA-mediated inhibition. Among such approaches meriting evaluation in humans are inhibition of GABA-transaminase activity by gamma-vinyl GABA and action at some of the benzodiazepine receptors to enhance the action of GABA, as by the novel anticonvulsant beta-carbolines. Excitatory transmission mediated by dicarboxylic amino acids appears to play a role in myoclonus, especially at the spinal level, but also in the brainstem, cerebellum, basal ganglia, and cortex. Among various novel agents that act at the postsynaptic receptor site to antagonize such excitation, those specifically blocking excitation induced by aspartate and/or NMDA prevent myoclonic activity in a wide range of animal models. Further research is required before such agents can be evaluated in humans.
Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.
Liang, Dongchun; Woo, Jeong-Im; Shao, Hui; Born, Willi K; O'Brien, Rebecca L; Kaplan, Henry J; Sun, Deming
2018-01-01
Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.
Gan, Nanqin; Wu, Yu-Chieh; Brunet, Mathilde; Garrido, Carmen; Chung, Fung-Lung; Dai, Chengkai; Mi, Lixin
2010-11-12
It is conceivable that stimulating proteasome activity for rapid removal of misfolded and oxidized proteins is a promising strategy to prevent and alleviate aging-related diseases. Sulforaphane (SFN), an effective cancer preventive agent derived from cruciferous vegetables, has been shown to enhance proteasome activities in mammalian cells and to reduce the level of oxidized proteins and amyloid β-induced cytotoxicity. Here, we report that SFN activates heat shock transcription factor 1-mediated heat shock response. Specifically, SFN-induced expression of heat shock protein 27 (Hsp27) underlies SFN-stimulated proteasome activity. SFN-induced proteasome activity was significantly enhanced in Hsp27-overexpressing cells but absent in Hsp27-silenced cells. The role of Hsp27 in regulating proteasome activity was further confirmed in isogenic REG cells, in which SFN-induced proteasome activation was only observed in cells stably overexpressing Hsp27, but not in the Hsp27-free parental cells. Finally, we demonstrated that phosphorylation of Hsp27 is irrelevant to SFN-induced proteasome activation. This study provides a novel mechanism underlying SFN-induced proteasome activity. This is the first report to show that heat shock response by SFN, in addition to the antioxidant response mediated by the Keap1-Nrf2 pathway, may contribute to cytoprotection.
Pakarinen, Anni; Parisod, Heidi; Smed, Jouni; Salanterä, Sanna
2017-04-01
To describe and explore health game interventions that enhance the physical activity self-efficacy of children and to evaluate the effectiveness of these interventions. Physical inactivity among children has increased globally. Self-efficacy is one of the key determinants of physical activity engagement in children. There is a need to explore new and innovative interventions to enhance physical activity self-efficacy that are also acceptable for today's children. Quantitative systematic review. MEDLINE (Ovid), CINAHL, PsychInfo, EMBASE and the Cochrane Library between 1996-2016. A review was conducted in accordance with the Cochrane Collaboration guidelines. A systematic search was done in June 2016 by two independent reviewers according to the eligibility criteria as follows: controlled trial, comparison of digital game intervention with no game intervention control condition, participants younger than 18 years of age and reported statistical analyses of a physical activity self-efficacy outcome measure. Altogether, five studies met the eligibility criteria. Four game interventions, employing three active games and one educational game, had positive effects on children's physical activity self-efficacy. An intervention, employing a game-themed mobile application, showed no intervention effects. The variation between intervention characteristics was significant and the quality of the studies was found to be at a medium level. Although health game interventions seemingly enhance the physical activity self-efficacy of children and have potential as a means of increasing physical activity, more rigorous research is needed to clarify how effective such interventions are in the longer run to contribute to the development of game-based interventions. © 2016 John Wiley & Sons Ltd.
Li, Xinxin; Dong, Wenjuan; Nalin, Ansel P; Wang, Yufeng; Pan, Pan; Xu, Bo; Zhang, Yibo; Tun, Steven; Zhang, Jianying; Wang, Li-Shu; He, Xiaoming; Caligiuri, Michael A; Yu, Jianhua
2018-01-01
Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Bader, Kenneth B.; Huang, Shenwen; Peng, Tao; Huang, Shaoling; McPherson, David D.; Holland, Christy K.
2017-01-01
Echogenic liposomes loaded with the thrombolytic recombinant tissue-type plasminogen activator (rt-PA) are under development for the treatment of ischemic stroke. These agents are designed to co-encapsulate cavitation nuclei to promote bubble activity in response to ultrasound exposure, and to enable localized delivery of thrombolytic. Stable cavitation improves the efficacy of the thrombolytic through enhanced fluid mixing. Echogenic liposomes that encapsulate air-filled microbubbles nucleate scant stable cavitation activity in response to 120 kHz intermittent ultrasound exposure, and have demonstrated thrombolytic efficacy equivalent to rt-PA alone. It was hypothesized that encapsulating octafluoropropane (OFP) gas within rt-PA-loaded liposomes instead of air will enhance ultrasound-mediated stable cavitation activity and increase thrombolytic efficacy compared to previous studies. The thrombolytic efficacy and cavitation activity nucleated from liposomes that encapsulate OFP microbubbles and rt-PA (OFP t-ELIP) was evaluated in vitro. Human whole blood clots were exposed to human fresh-frozen plasma alone, rt-PA (0, 0.32, 1.58, and 3.15 µg ml-1), or OFP t-ELIP at equivalent enzymatic activity, with and without exposure to intermittent ultrasound. Further, numerical simulations were performed to gain insight into the mechanisms of cavitation nucleation. Sustained ultraharmonic activity was nucleated from OFP t-ELIP when exposed to ultrasound. Furthermore, the thrombolytic efficacy was enhanced compared to rt-PA alone at concentrations of 1.58 µg ml-1 and 3.15 µg ml-1 (p < 0.05). These results indicate that OFP t-ELIP can nucleate sustained stable cavitation activity and enhance the efficacy of thrombolysis.
Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong
2012-05-21
High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo
2016-01-01
Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment. PMID:26672764
Enhanced Night Visibility Series, Volume XVI : Phase III, Characterization of Experimental Objects
DOT National Transportation Integrated Search
2005-12-01
The Enhanced Night Visibility (ENV) project is a series of experiments undertaken to investigate different visual enhancement systems (VES) for the nighttime driving task. The purpose of this characterization activity is to establish the photometric ...
Yamanaka, Atsushi; Konishi, Eiji
2017-09-25
Dengue is the most important arboviral disease worldwide. We previously reported that most inhabitants of dengue-endemic countries who are naturally immune to the disease have infection-enhancing antibodies whose in vitro activity does not decrease in the presence of complement (complement-independent enhancing antibodies, or CiEAb). Here, we compared levels of CiEAb and complement-dependent neutralizing antibodies (CdNAb) in dengue-immune humans. A typical antibody dose-response pattern obtained in our assay system to measure the balance between neutralizing and enhancing antibodies showed both neutralizing and enhancing activities depending on serum dilution factor. The addition of complement to the assay system increased the activity of neutralizing antibodies at lower dilutions, indicating the presence of CdNAb. In contrast, similar dose-response curves were obtained with and without complement at higher dilutions, indicating higher levels of CiEAb than CdNAb. For experimental support for the higher CiEAb levels, a cocktail of mouse monoclonal antibodies against dengue virus type 1 was prepared. The antibody dose-response curves obtained in this assay, with or without complement, were similar to those obtained with human serum samples when a high proportion of D1-V-3H12 (an antibody exhibiting only enhancing activity and thus a model for CiEAb) was used in the cocktail. This study revealed higher-level induction of CiEAb than CdNAb in humans naturally infected with dengue viruses.
Appukuttan, Binoy; McFarland, Trevor J.; Stempel, Andrew; Kassem, Jean B.; Hartzell, Matthew; Zhang, Yi; Bond, Derek; West, Kelsey; Wilson, Reid; Stout, Andrew; Pan, Yuzhen; Ilias, Hoda; Robertson, Kathryn; Klein, Michael L.; Wilson, David; Smith, Justine R.; Stout, J. Timothy
2012-01-01
Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases. PMID:22761647
Hunsucker, Sally A; Magarotto, Valeria; Kuhn, Deborah J; Kornblau, Steven M; Wang, Michael; Weber, Donna M; Thomas, Sheeba K; Shah, Jatin J; Voorhees, Peter M; Xie, Hong; Cornfeld, Mark; Nemeth, Jeffrey A; Orlowski, Robert Z
2011-03-01
Signalling through the interleukin (IL)-6 pathway induces proliferation and drug resistance of multiple myeloma cells. We therefore sought to determine whether the IL-6-neutralizing monoclonal antibody siltuximab, formerly CNTO 328, could enhance the activity of melphalan, and to examine some of the mechanisms underlying this interaction. Siltuximab increased the cytotoxicity of melphalan in KAS-6/1, INA-6, ANBL-6, and RPMI 8226 human myeloma cell lines (HMCLs) in an additive-to-synergistic manner, and sensitized resistant RPMI 8226.LR5 cells to melphalan. These anti-proliferative effects were accompanied by enhanced activation of drug-specific apoptosis in HMCLs grown in suspension, and in HMCLs co-cultured with a human-derived stromal cell line. Siltuximab with melphalan enhanced activation of caspase-8, caspase-9, and the downstream effector caspase-3 compared with either of the single agents. This increased induction of cell death occurred in association with enhanced Bak activation. Neutralization of IL-6 also suppressed signalling through the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased phosphorylation of Akt, p70 S6 kinase and 4E-BP1. Importantly, the siltuximab/melphalan regimen demonstrated enhanced anti-proliferative effects against primary plasma cells derived from patients with myeloma, monoclonal gammopathy of undetermined significance, and amyloidosis. These studies provide a rationale for translation of siltuximab into the clinic in combination with melphalan-based therapies. © 2011 Blackwell Publishing Ltd.
Asset Mapping: A Tool to Enhance Your CSPAP Efforts
ERIC Educational Resources Information Center
Allar, Ishonté; Bulger, Sean
2018-01-01
Comprehensive school physical activity programs (CSPAPs) are one way to help students achieve most, if not all, of the recommended 60 minutes of daily moderate-to-vigorous physical activity (MVPA). Early in the process, one can use asset mapping to help enhance CSPAP efforts. Asset maps provide a valuable opportunity to identify potential partners…
Does an Activity-Based Learning Strategy Improve Preschool Children's Memory for Narrative Passages?
ERIC Educational Resources Information Center
Biazak, Janna E.; Marley, Scott C.; Levin, Joel R.
2010-01-01
Contemporary embodiment theory's indexical hypothesis predicts that engaging in text-relevant activity while listening to a story will: (1) enhance memory for enacted story content; and, (2) result in relatively greater memory enhancement for enacted atypical events than for typical ones ([Glenberg and Robertson, 1999] and [Glenberg and Robertson,…
Delaware County Community College Business and International Education Program.
ERIC Educational Resources Information Center
Delaware County Community Coll., Media, PA.
In 1987, Delaware County Community College (DCCC) initiated the Delaware Valley Trade Enhancement Project, comprising a number of activities to promote the involvement of local firms in international trade. One of the first activities of the Delaware Valley Trade Enhancement project was a survey of over 6,000 small and medium-sized businesses in…
ERIC Educational Resources Information Center
Banerjee, Pallavi Amitava
2017-01-01
Science, technology, engineering, and mathematics (STEM) skills are very valuable for economic growth. However, the number of young people pursuing STEM learning trajectories in the United Kingdom was lower than the predicted demand during the last decade. Several STEM enrichment and enhancement activities were thus funded by the government,…
The Effectiveness of Cooperative Learning Activities in Enhancing EFL Learners' Fluency
ERIC Educational Resources Information Center
Alrayah, Hassan
2018-01-01
This research-paper aims at examining the effectiveness of cooperative learning activities in enhancing EFL learners' fluency. The researcher has used the descriptive approach, recorded interviews for testing fluency as tools of data collection and the software program SPSS as a tool for the statistical treatment of data. Research sample consists…
The Effect of Climbing Wall Use on the Grip Strength of Fourth-Grade Students
ERIC Educational Resources Information Center
Lirgg, Cathy D.; Dibrezzo, Ro; Gray, Michelle; Esslinger, Travis
2011-01-01
Physical educators are challenged to provide quality experiences that are fun for their students, enhance fitness levels, and build confidence. These challenges are amplified with the current decrease in activity levels of American youth. A possible solution to enhancing physical activity engagement in children is to incorporate climbing walls…
Women's Health-Enhancing Physical Activity and Eudaimonic Well Being
ERIC Educational Resources Information Center
Ferguson, Leah J.; Kowalski, Kent C.; Mack, Diane E.; Wilson, Philip M.; Crocker, Peter R. E.
2012-01-01
In this study, we explored the role of health-enhancing physical activity (HEPA; Miilunpalo, 2001) in women's eudaimonic well being (i.e., psychological flourishing at one's maximal potential; Ryff, 1989). We used a quantitative approach (N = 349) to explore the relationship between HEPA and eudaimonic well being. While HEPA was not related to…
ERIC Educational Resources Information Center
St-Amand, Jerome; Girard, Stéphanie; Hiroux, Marie-Hélène; Smith, Jonathan
2017-01-01
This article outlines a strategy that we, as high school teachers, used in the academic year 2012-2013 to improve a student's school engagement. Extracurricular activities such as sports have proven useful (among other strategies) to counter school disengagement, specifically in enhancing positive social relations among the teachers and students…
ERIC Educational Resources Information Center
Tseng, Ming-Hseng; Wu, Hui-Ching
2018-01-01
Continuous elderly learning activities not only empower elderly populations' knowledge about health but also enhance these populations' social connections and social abilities, which can enhance their overall quality of life. Geographic accessibility is a determinant factor for elderly participation in social activities. In this study, we proposed…
Erickson, Kirk I.; Prakash, Ruchika Shaurya; Kim, Jennifer S.; Sutton, Bradley P.; Colcombe, Stanley J.; Kramer, Arthur F.
2010-01-01
Models of selective attention predict that focused attention to spatially contiguous stimuli may result in enhanced activity in areas of cortex specialized for processing task-relevant and task-irrelevant information. We examined this hypothesis by localizing color-sensitive areas (CSA) and word and letter sensitive areas of cortex and then examining modulation of these regions during performance of a modified version of the Stroop task in which target and distractors are spatially coincident. We report that only the incongruent condition with the highest cognitive demand showed increased activity in CSA relative to other conditions, indicating an attentional enhancement in target processing areas. We also found an enhancement of activity in one region sensitive to word/letter processing during the most cognitively demanding incongruent condition indicating greater processing of the distractor dimension. Correlations with performance revealed that top-down modulation during the task was critical for effective filtering of irrelevant information in conflict conditions. These results support predictions made by models of selective attention and suggest an important mechanism of top-down attentional control in spatially contiguous stimuli. PMID:18804123
Gao, Zhenzhen; Chen, Jin; Qiu, Shulei; Li, Youying; Wang, Deyun; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Li, Hongquan; Hu, Yuanliang
2016-01-20
Garlic polysaccharide (GPS) was modified in selenylation respectively by nitric acid-sodium selenite (NA-SS), glacial acetic acid-selenous acid (GA-SA), glacial acetic acid-sodium selenite (GA-SS) and selenium oxychloride (SOC) methods each under nine modification conditions of L9(3(4)) orthogonal design and each to obtain nine selenizing GPSs (sGPSs). Their structures were identified, yields and selenium contents were determined, selenium yields were calculated, and the immune-enhancing activities of four sGPSs with higher selenium yields were compared taking unmodified GPS as control. The results showed that among four methods the selenylation efficiency of NA-SS method were the highest, the activity of sGPS5 was the strongest and significantly stronger than that of unmodified GPS. This indicates that selenylation modification can significantly enhance the immune-enhancing activity of GPS, NA-SS method is the best method and the optimal conditions are 0.8:1 weight ratio of sodium selenite to GPS, reaction temperature of 70 °C and reaction time of 10h. Copyright © 2015 Elsevier Ltd. All rights reserved.
Potential of Glycosidase from Non-Saccharomyces Isolates for Enhancement of Wine Aroma.
Hu, Kai; Qin, Yi; Tao, Yong-Sheng; Zhu, Xiao-Lin; Peng, Chuan-Tao; Ullah, Niamat
2016-04-01
The aim of this work was to rapidly screen indigenous yeasts with high levels of β-glucosidase activity and assess the potential of glycosidase extracts for aroma enhancement in winemaking. A semiquantitative colorimetric assay was applied using 96-well plates to screen yeasts from 3 different regions of China. Isolates with high β-glucosidase activity were confirmed by the commonly used pNP assay. Among 493 non-Saccharomyces isolates belonging to 8 generas, 3 isolates were selected for their high levels of β-glucosidase activity and were identified as Hanseniaspora uvarum, Pichia membranifaciens, and Rhodotorula mucilaginosa by sequence analysis of the 26S rDNA D1/D2 domain. β-Glucosidase in the glycosidase extract from H. uvarum strain showed the highest activity in winemaking conditions among the selected isolates. For aroma enhancement in winemaking, the glycosidase extract from H. uvarum strain exhibited catalytic specificity for aromatic glycosides of C13 -norisoprenoids and some terpenes, enhancing fresh floral, sweet, berry, and nutty aroma characteristics in wine. © 2016 Institute of Food Technologists®
Rominger, Christian; Papousek, Ilona; Fink, Andreas; Weiss, Elisabeth M
2014-01-01
Creativity is an important trait necessary to achieve innovations in science, economy, arts and daily life. Therefore, the enhancement of creative performance is a significant field of investigation. A recent experiment showed enhanced verbal creativity after unilateral left-hand contractions, which was attributed to elevated activation of the right hemisphere. The present study aimed to extend these findings to the domain of figural creativity. Furthermore, as creativity and positive schizotypy may share some neurobiological underpinnings associated with the right hemisphere, we studied the potential moderating effect of positive schizotypy on the effects of the experimental modification of relative hemispheric activation on creativity. In a gender-balanced sample (20 men and 20 women), squeezing a hand gripper with the left hand enhanced figural creativity on the Torrance Test of Creative Thinking compared to squeezing the gripper with the right hand. However, this was only true when positive schizotypy was low. The moderating effect of schizotypy may be produced by relatively greater activity of certain parts of the right hemisphere being a shared neuronal correlate of creativity and positive schizotypy.
Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Takeshi; Abe, Daigo; Sekiya, Keizo
2007-06-01
Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less
Cui, Cao; Tou, Meijie; Li, Mohua; Luo, Zhenguo; Xiao, Lingbo; Bai, Song; Li, Zhengquan
2017-02-20
Combination of upconversion nanocrystals (UCNs) with CeO 2 is a decent choice to construct NIR-activated photocatalysts for utilizing the NIR light in the solar spectrum. Herein we present a facile approach to deposit a CeO 2 layer with controllable thickness on the plate-shaped NaYF 4 :Yb,Tm UCNs. The developed core-shell nanocomposites display obvious photocatalytic activity under the NIR light and exhibit enhanced activity under the full solar spectrum. For enhancing the separation of photogenerated electrons and holes on the CeO 2 surface, we sequentially coat a ZnO shell on the nanocomposites so as to form a heterojunction structure for achieving a better activity. The developed hybrid photocatalysts have been characterized with TEM, SEM, PL, etc., and the working mechanism of such UCN-semiconductor heterojunction photocatalysts has been proposed.
Benitez, Lisianne; Correa, AnaPaula; Daroit, Daniel; Brandelli, Adriano
2011-03-01
Increased antimicrobial activity was observed when Bacillus amyloliquefaciens LBM 5006 strain was cultivated in the presence of thermally inactivated cells of Escherichia coli, but not with Staphylococcus aureus, Listeria monocytogenes, or Bacillus cereus. E. coli also enhanced the antimicrobial activity when it was added to the medium in the form of living cells or as cell debris after cellular fractionation. No inducing activity was observed with addition of cell-free supernatant of E. coli cultures, suggesting that inducing factor is associated to the cells. Polyacrylamide gel electrophoresis revealed that additional peptide bands are secreted when B. amyloliquefaciens was cultivated in the presence of cell debris of E. coli. These results suggest that the presence of intact or inactivated E. coli enhanced the synthesis of antimicrobial peptides by B. amyloliquefaciens LBM 5006.
Protein phosphatase 2A in stretch-induced endothelial cell proliferation
NASA Technical Reports Server (NTRS)
Murata, K.; Mills, I.; Sumpio, B. E.
1996-01-01
We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.
Bicarbonate enhances the in vitro antibiotic activity of kanamycin in Escherichia coli.
Gutiérrez-Huante, M; Martínez, H; Bustamante, V H; Puente, J L; Sánchez, J
2015-05-01
Growth of enteropathogenic Escherichia coli E2348/69 was inhibited by bicarbonate in a dose-dependent manner, showing approximately 5% growth reduction at 5 mmol l(-1) while kanamycin at 3·12 μg ml(-1) inhibited growth by 15%, yet when kanamycin and bicarbonate were combined at these concentrations, inhibition increased to 80%. Unexpectedly, at bicarbonate concentrations >20 mmol l(-1) enhancement of the antibiotic activity virtually disappeared, i.e. there was a paradoxical Eagle-like effect. How bicarbonate acts is unclear, but neutral or alkaline pH also enhanced the activity of kanamycin. However, several differences indicated a separate effect of bicarbonate. First, bicarbonate inhibited growth more than the corresponding increments in pH. Second, at low concentration, the antibiotic enhancing effect of bicarbonate was stronger than the effect of pH alone. Third, 5 mmol l(-1) bicarbonate significantly enhanced the activity of kanamycin while the corresponding pH had no effect. Fourth, the Eagle-like effect was exclusive of bicarbonate because changes in pH did not induce an analogous behaviour. Notwithstanding the mechanism, the enhancing effect of bicarbonate was indubitable. Consequently, it seems worthwhile to explore further its potential to improve the efficacy of aminoglycosides and maybe even other antibiotics. Bicarbonate at a low concentration enhanced the in vitro antibiotic activity of kanamycin and gentamicin. Even though the action mechanism of bicarbonate is hitherto unknown, it seems worthwhile to explore further its capacity to improve the efficacy of aminoglycosides. Clearly, the well-known harmful side-effects of aminoglycosides are a concern. However, it has recently been shown in a fish model that bicarbonate may protect ciliary cells against the damage caused by aminoglycosides. So, it seems possible that bicarbonate could help reduce aminoglycoside dosage at the same time that it might help lessen the damage to auditory ciliary cells in humans. © 2015 The Society for Applied Microbiology.
Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T
2016-06-01
Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts. © 2015 Wiley Periodicals, Inc.
Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B
2018-02-07
We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.
50 CFR 401.4 - Activities prohibited.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEVELOPMENT AND ENHANCEMENT § 401.4 Activities prohibited. Law enforcement, public relations, harvesting, marketing and processing activities, construction of fisherman use facilities, and activities concerned with...
Harris, Robin E; Setiawan, Linda; Saul, Josh; Hariharan, Iswar K
2016-01-01
Many organisms lose the capacity to regenerate damaged tissues as they mature. Damaged Drosophila imaginal discs regenerate efficiently early in the third larval instar (L3) but progressively lose this ability. This correlates with reduced damage-responsive expression of multiple genes, including the WNT genes wingless (wg) and Wnt6. We demonstrate that damage-responsive expression of both genes requires a bipartite enhancer whose activity declines during L3. Within this enhancer, a damage-responsive module stays active throughout L3, while an adjacent silencing element nucleates increasing levels of epigenetic silencing restricted to this enhancer. Cas9-mediated deletion of the silencing element alleviates WNT repression, but is, in itself, insufficient to promote regeneration. However, directing Myc expression to the blastema overcomes repression of multiple genes, including wg, and restores cellular responses necessary for regeneration. Localized epigenetic silencing of damage-responsive enhancers can therefore restrict regenerative capacity in maturing organisms without compromising gene functions regulated by developmental signals. DOI: http://dx.doi.org/10.7554/eLife.11588.001 PMID:26840050
Ability of higenamine and related compounds to enhance glucose uptake in L6 cells.
Kato, Eisuke; Kimura, Shunsuke; Kawabata, Jun
2017-12-15
β2-Adrenergic receptor (β2AR) agonists are employed as bronchodilators to treat pulmonary disorders, but are attracting attention for their modulation of glucose handling and energy expenditure. Higenamine is a tetrahydroisoquinoline present in several plant species and has β2AR agonist activity, but the involvement of each functional groups in β2AR agonist activity and its effectiveness compared with endogenous catecholamines (dopamine, epinephrine, and norepinephrine) has rarely been studied. Glucose uptake of muscle cells are known to be induced through β2AR activation. Here, the ability to enhance glucose uptake of higenamine was compared with that of several methylated derivatives of higenamine or endogenous catecholamines. We found that: (i) the functional groups of higenamine except for the 4'-hydroxy group are required to enhance glucose uptake; (ii) higenamine shows a comparable ability to enhance glucose uptake with that of epinephrine and norepinephrine; (iii) the S-isomer shows a greater ability to enhance glucose uptake compared with that of the R-isomer. Copyright © 2017 Elsevier Ltd. All rights reserved.
McCoy, G D
1980-03-01
The aniline hydroxylase activity of microsomes isolated from hamster liver can be differentiated kinetically into high affinity (low K(m), form I) and low affinity (high K(m), form II) forms. Microsomes isolated from uninduced animals contain slightly more form I activity. The activity of the low affinity form (form II) is preferentially enhanced by Aroclor or 3-methylcholanthrene treatment, while phenobarbital treatment increases the activity of both forms. Chronic ethanol consumption results in enhancement of only the high affinity form (form I).
Enhancement of vision by monocular deprivation in adult mice.
Prusky, Glen T; Alam, Nazia M; Douglas, Robert M
2006-11-08
Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.
Islam, Md Ekramul; Kikuta, Hiroshi; Inoue, Fumitaka; Kanai, Maiko; Kawakami, Atsushi; Parvin, Mst Shahnaj; Takeda, Hiroyuki; Yamasu, Kyo
2006-12-01
In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the regions flanking the gene.
Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development.
Maconochie, M K; Nonchev, S; Manzanares, M; Marshall, H; Krumlauf, R
2001-05-15
During hindbrain development, segmental regulation of the paralogous Hoxa2 and Hoxb2 genes in rhombomeres (r) 3 and 5 involves Krox20-dependent enhancers that have been conserved during the duplication of the vertebrate Hox clusters from a common ancestor. Examining these evolutionarily related control regions could provide important insight into the degree to which the basic Krox20-dependent mechanisms, cis-regulatory components, and their organization have been conserved. Toward this goal we have performed a detailed functional analysis of a mouse Hoxa2 enhancer capable of directing reporter expression in r3 and r5. The combined activities of five separate cis-regions, in addition to the conserved Krox20 binding sites, are involved in mediating enhancer function. A CTTT (BoxA) motif adjacent to the Krox20 binding sites is important for r3/r5 activity. The BoxA motif is similar to one (Box1) found in the Hoxb2 enhancer and indicates that the close proximity of these Box motifs to Krox20 sites is a common feature of Krox20 targets in vivo. Two other rhombomeric elements (RE1 and RE3) are essential for r3/r5 activity and share common TCT motifs, indicating that they interact with a similar cofactor(s). TCT motifs are also found in the Hoxb2 enhancer, suggesting that they may be another common feature of Krox20-dependent control regions. The two remaining Hoxa2 cis-elements, RE2 and RE4, are not conserved in the Hoxb2 enhancer and define differences in some of components that can contribute to the Krox20-dependent activities of these enhancers. Furthermore, analysis of regulatory activities of these enhancers in a Krox20 mutant background has uncovered differences in their degree of dependence upon Krox20 for segmental expression. Together, this work has revealed a surprising degree of complexity in the number of cis-elements and regulatory components that contribute to segmental expression mediated by Krox20 and sheds light on the diversity and evolution of Krox20 target sites and Hox regulatory elements in vertebrates. Copyright 2001 Academic Press.
Ganapathy, Suthakar; Chen, Qinghe; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.
2010-01-01
Background Resveratrol (3, 4′, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. Methodology/Principal Findings Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. Conclusions/Significance These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer. PMID:21209944
Zheng, Xingqun; Peng, Lishan; Yang, Na; Yang, Yanjun; Li, Jing; Wang, Jianchuan
2018-01-01
The transition-metal compounds (MX) have gained wide attention as hydrogen evolution reaction (HER) electrocatalysts; however, the interaction between the non-metallic atom (X) and the metal atom (M) in MX, and the role of X in the enhanced catalytic activity of MX, are still ambiguous. In this work, we constructed a simple model [X/Ni(100)] to decipher the contribution of X towards enhancing the catalytic activity of NiX, which allows us to accurately predict the trend in HER catalytic activity of NiX based on the easily accessible physico-chemical characteristics of X. Theoretical calculations showed that the electronegativity (χX) and the principle quantum number (nX) of X are two important descriptors for evaluating and predicting the HER catalytic activity of NiX catalysts effectively. X atoms in the VIA group can enhance the HER activity of X/Ni(100) more significantly than those in the second period due to the large χX or nX. At a relatively low X coverage, the S/Ni(100) possesses the best HER activity among all of the discussed X/Ni(100) models, and the optimum surface S : Ni atomic ratio is about 22–33%. Further experiments demonstrated that the Ni–Ni3S2 catalyst with a surface S : Ni atomic ratio of 28.9% exhibits the best catalytic activity and lowest charge transfer resistance. The trend in catalytic activity of NiX with differing X offers a new possible strategy to exploit MX materials and design new active catalysts rationally. PMID:29675227
Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila
2017-10-01
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
Tatematsu, Kenjiro; Koide, Akihiro; Morimura, Keiichirou; Fukushima, Shoji; Mori, Yukio
2013-03-01
Alcohol consumption is frequently associated with various cancers and the enhancement of the metabolic activation of carcinogens has been proposed as a mechanism underlying this relationship. The ethanol-induced enhancement of N-nitrosodiethylamine (DEN)-mediated carcinogenesis can be attributed to an increase in hepatic activity. However, the mechanism of elevation of N-nitrosomethylbenzylamine (NMBA)-induced tumorigenesis remains unclear. To elucidate the mechanism underlying the role of ethanol in the enhancement of NMBA-induced oesophageal carcinogenesis, we evaluated the hepatic and extrahepatic levels of the cytochrome P450 (CYP) and mutagenic activation of environmental carcinogens by immunoblot analyses and Ames preincubation test, respectively, in F344 rats treated with ethanol. Five weeks of treatment with 10% ethanol added to the drinking water or two intragastric treatments with 50% ethanol, both resulted in elevated levels of CYP2E1 (1.5- to 2.3-fold) and mutagenic activities of DEN, N-nitrosodimethylamine and N-nitrosopyrrolidine in the presence of rat liver S9 (1.5- to 2.4-fold). This was not the case with CYP1A1/2, CYP2A1/2, CYP2B1/2 or CYP3A2, nor with the activities of 2-amino-3-methylimidazo[4,5-f]quinoline, 3-amino-1-methyl-5H-pyrido[4,3-b]indole, aflatoxin B(1) or other N-nitroso compounds (NOCs), including NMBA. Ethanol-induced elevations of CYP2A and CYP2E1 were observed in the oesophagus (up to 1.7- and 2.3-fold) and kidney (up to 1.5- and 1.8-fold), but not in the lung or colon. In oesophagus and kidney, the mutagenic activities of NMBA and four NOCs were markedly increased (1.3- to 2.4-fold) in treated rats. The application of several CYP inhibitors revealed that CYP2A were likely to contribute to the enhancing effect of ethanol on NMBA activation in the rat oesophagus and kidney, but that CYP2E1 failed to do so. These results showed that the enhancing effect of ethanol on NMBA-induced oesophageal carcinogenesis could be attributed to an increase in the metabolic activation of NMBA by oesophageal CYP2A during the initiation phase, and that this occurred independently of CYP2E1.
Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun
2014-01-01
Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.
Kang, J J; Yokoi, T J; Holland, M J
1995-12-01
The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the 35S-rRNA precursor about 20-fold in vivo (Mestel,, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J. (1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protien. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively, Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a "multiplicative" fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.
Zhang, Xiao-lei; Sullivan, John A; Moskal, Joseph R; Stanton, Patric K
2008-12-01
N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.
Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian
2017-07-01
Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.
Augmentation of immune cell activity against tumor cells by Rauwolfia radix.
Jin, Guang-Bi; Hong, Tie; Inoue, Satoshi; Urano, Tomohiko; Cho, Shigefumi; Otsu, Koji; Kitahara, Maya; Ouchi, Yasuyoshi; Cyong, Jong-Chol
2002-08-01
In this study, we investigated the effect of Rauwolfia radix on heat shock protein (HSP) 70 expression and cytotoxicity against tumor cells in activated human T cells. When activated T cells were cultured with Rauwolfia radix for 18 h, HSP70 expression after heat shock was remarkably increased, and cytotoxicity against T98G tumor cells was augmented. Moreover, Rauwolfia radix also enhanced the cytotoxicity of heat shocked activated T cells against Molt-4 and T98G tumor cells. Secretions of interferon-gamma (IFN-gamma) and tumor necrosis alpha (TNF-alpha), due to Concanavalin A (Con A) stimulation, were increased by Rauwolfia radix in activated T cells. To investigate the antitumor effect in vivo, EL-4 tumor-bearing mice were administered with Rauwolfia radix in drinking water. The survival period of the Rauwolfia radix treatment group was significantly prolonged compared with that of the control group. Reserpine, the major active ingredient of Rauwolfia radix, also enhanced the cytotoxicity of activated T cells against Molt-4 and T98G tumor cells, and prolonged the survival period of EL-4 tumor-bearing mice. Taken together, our results suggest that Rauwolfia radix can enhance the activity of immune cells against tumor cells.
Performance enhancement in a semi-autonomous confined microsociety
NASA Technical Reports Server (NTRS)
Brady, J. V.; Bernstein, D. J.; Foltin, R. W.; Nellis, M. J.
1988-01-01
Research in a continuously programmed human experimental laboratory has been directed toward identifying, defining, and expanding generalized knowledge concerning motivational factors within the structure of human behavioral repertoires that maintain and enhance performance. Participants (in groups of three) engaged in a series of repetitive work activities (e.g., word sorting and rug-hooking) for extended periods each day, while living continuously in a residential laboratory. Other parts of the day were spent either interacting socially with other participants or engaging in individual recreational activities. The percentage of time devoted to the various work tasks provided the basis for selecting one activity that occurred with high frequency and one with low frequency. Performance of the low-frequency activity was then required in order to gain access to the high-frequency activity. Under such contingencies, time devoted to the original low-frequency activity increased greatly, and the participants consistently did more than the required amount of the low-frequency work than was necessary to restore access to the restricted work activity. The theoretical significance of these findings resides in the clear demonstration that a time-based model of value applies as well to the enhancement of work-like performance as it does to voluntarily selected or preferred recreational activities.
Actigraphy and motion analysis: new tools for psychiatry.
Teicher, M H
1995-01-01
Altered locomotor activity is a cardinal sign of several psychiatric disorders. With advances in technology, activity can now be measured precisely. Contemporary studies quantifying activity in psychiatric patients are reviewed. Studies were located by a Medline search (1965 to present; English language only) cross-referencing motor activity and major psychiatric disorders. The review focused on mood disorders and attention-deficit hyperactivity disorder (ADHD). Activity levels are elevated in mania, agitated depression, and ADHD and attenuated in bipolar depression and seasonal depression. The percentage of low-level daytime activity is directly related to severity of depression, and change in this parameter accurately mirrors recovery. Demanding cognitive tasks elicit fidgeting in children with ADHD, and precise measures of activity and attention may provide a sensitive and specific marker for this disorder. Circadian rhythm analysis enhances the sophistication of activity measures. Affective disorders in children and adolescents are characterized by an attenuated circadian rhythm and an enhanced 12-hour harmonic rhythm (diurnal variation). Circadian analysis may help to distinguish between the activity patterns of mania (dysregulated) and ADHD (intact or enhanced). Persistence of hyperactivity or circadian dysregulation in bipolar patients treated with lithium appears to predict rapid relapse once medication is discontinued. Activity monitoring is a valuable research tool, with the potential to aid clinicians in diagnosis and in prediction of treatment response.
Huang, Tianyin; Zhang, Ke; Qian, Yajie; Fang, Cong; Chen, Jiabin
2018-02-20
Activated carbon fiber (ACF) has become an emerging activator for peroxydisulfate (PDS) to generate sulfate radical (SO 4 •- ). However, the relative low activation efficiency and poor contaminant mineralization limited its widespread application. Herein, ultrasound (US) was introduced to the ACF activated PDS system, and the synergistic effect of US and ACF in PDS activation and the enhancement of contaminant mineralization were investigated. The synergistic effect of US and ACF was observed in the PDS activation to decolorize orange G (OG). The decolorization efficiency increased with increasing ACF loading and US power, and PDS/OG ratio from 1 to 40. The activation energy was determined to be 24.065 kJ/mol. The radical-induced decolorization of OG took place on the surface of ACF, and both SO 4 •- and hydroxyl radical ( • OH) contributed to OG decolorization. The azo bond and naphthalene ring on OG were destructed to other aromatic intermediates and finally mineralized to CO 2 and H 2 O. The introduction of US in the ACF/PDS system significantly enhanced the mineralization of OG. The combination of US and PDS was highly efficient to activate PDS to decolorize azo dyes. Moreover, the introduction of US remarkably improved the contaminant mineralization.
De Franco, Antonio; Di Veronica, Alessandra; Armuzzi, Alessandro; Roberto, Italia; Marzo, Manuela; De Pascalis, Barbara; De Vitis, Italo; Papa, Alfredo; Bock, Enrico; Danza, Francesco M; Bonomo, Lorenzo; Guidi, Luisa
2012-02-01
To quantitatively assess microvascular activation in the thickened ileal walls of patients with Crohn disease (CD) by using contrast-enhanced ultrasonography (US) and evaluate its correlation with widely used indexes of CD activity. This prospective study was approved by the ethics committee, and written informed consent was obtained from all patients. The authors examined 54 consecutively enrolled patients (mean age, 35.29 years; age range, 18-69 years; 39 men, 15 women) with endoscopically confirmed CD of the terminal ileum. Ileal wall segments thicker than 3 mm were examined with low-mechanical-index contrast-enhanced US and a second-generation US contrast agent. The authors analyzed software-plotted time-enhancement intensity curves to determine the maximum peak intensity (MPI) and wash-in slope coefficient (β) and evaluated their correlation with (a) the composite index of CD activity (CICDA), (b) the CD activity index (CDAI), and (c) the simplified endoscopic score for CD (SES-CD, evaluated in 37 patients) for the terminal ileum. Statistical analysis was performed with the Mann-Whitney test, Spearman rank test, and receiver operating characteristic (ROC) analysis. MPI and β coefficients were significantly increased in the 36 patients with a CICDA indicative of active disease (P<.0001 for both), the 33 patients with a CDAI of at least 150 (P<.032 and P<.0074, respectively), and the 26 patients with an SES-CD of at least 1 (P<.0001 and P<.002, respectively). ROC analysis revealed accurate identification (compared with CICDA) of active CD with an MPI threshold of 24 video intensity (VI) (sensitivity, 97%; specificity, 83%) and a β coefficient of 4.5 VI/sec (sensitivity, 86%; specificity, 83%). Contrast-enhanced US of the ileal wall is a promising method for objective, reproducible assessment of disease activity in patients with ileal CD. © RSNA, 2011
Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...
2014-05-05
Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less
Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.
Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P
2015-05-21
The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.
Larson, Janet L; Covey, Margaret K; Kapella, Mary C; Alex, Charles G; McAuley, Edward
2014-01-01
People with chronic obstructive pulmonary disease lead sedentary lives and could benefit from increasing their physical activity. The purpose of this study was to determine if an exercise-specific self-efficacy enhancing intervention could increase physical activity and functional performance when delivered in the context of 4 months of upper body resistance training with a 12-month follow-up. IN THIS RANDOMIZED CONTROLLED TRIAL, SUBJECTS WERE ASSIGNED TO: exercise-specific self-efficacy enhancing intervention with upper body resistance training (SE-UBR), health education with upper body resistance training (ED-UBR), or health education with gentle chair exercises (ED-Chair). Physical activity was measured with an accelerometer and functional performance was measured with the Functional Performance Inventory. Forty-nine people with moderate to severe chronic obstructive pulmonary disease completed 4 months of training and provided valid accelerometry data, and 34 also provided accelerometry data at 12 months of follow-up. The self-efficacy enhancing intervention emphasized meeting physical activity guidelines and increasing moderate-to-vigorous physical activity. Differences were observed in light physical activity (LPA) after 4 months of training, time by group interaction effect (P=0.045). The SE-UBR group increased time spent in LPA by +20.68±29.30 minutes/day and the other groups decreased time spent in LPA by -22.43±47.88 minutes/day and -25.73±51.76 minutes/day. Changes in LPA were not sustained at 12-month follow-up. There were no significant changes in moderate-to-vigorous physical activity, sedentary time, or functional performance. Subjects spent most of their waking hours sedentary: 72%±9% for SE-UBR, 68%±10% for ED-UBR, and 74%±9% for ED-Chair. The self-efficacy enhancing intervention produced a modest short-term increase in LPA. Further work is needed to increase the magnitude and duration of effect, possibly by targeting LPA.
Fowles, Jonathon R; Shields, Chris; d'Entremont, Lisette; McQuaid, Stephanie; Barron, Brittany; Dunbar, Peggy
2014-12-01
The purpose of this study was to determine the effectiveness of enhancing support for physical activity counselling and exercise participation at diabetes centres in Nova Scotia on physical activity and exercise behaviours and clinical outcomes in patients with type 2 diabetes mellitus. In all, 180 patients at 8 diabetes centres participated in this observational study. A range of enhanced supports for exercise were offered at these centres. A kinesiologist was added to the diabetes care team to primarily provide extra physical activity counselling and exercise classes. Patient physical activity and exercise levels, efficacy perceptions and mean glycated hemoglobin (A1C) were evaluated at baseline and 6 months. We compared changes in these variables for patients who participated in the enhanced supports versus patients who did not. Participants who attended exercise classes (n=46), increased moderate physical activity by 27% and doubled resistance exercise participation (1.0±1.8 to 2.0±2.1 days per week) whereas those who did not attend exercise classes (n=49) reduced moderate physical activity by 26% and did not change resistance exercise participation (interactions, p=0.04 and p=0.07, respectively). Patients who received resistance band instruction (n=15) from a kinesiologist had reductions in A1C (from 7.5±1.4 to 7.1±1.2; p=0.04), whereas other subgroups did not have significant changes in A1C. Offering enhanced support for exercise at diabetes centres produced improvements in physical activity and exercise in type 2 diabetes patients. Resistance band instruction from a kinesiologist combined with participating in a walking and resistance training program improved glycemic control, which underscores the importance of including exercise professionals in diabetes management. Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
Ra, Hyun-Jeong; Harju-Baker, Susanna; Zhang, Fuming; Linhardt, Robert J.; Wilson, Carole L.; Parks, William C.
2009-01-01
Matrix metalloproteinases are maintained in an inactive state by a bond between the thiol of a conserved cysteine in the prodomain and a zinc atom in the catalytic domain. Once this bond is disrupted, MMPs become active proteinases and can act on a variety of extracellular protein substrates. In vivo, matrilysin (MMP7) activates pro-α-defensins (procryptdins), but in vitro, processing of these peptides is slow, with about 50% conversion in 8–12 h. Similarly, autolytic activation of promatrilysin in vitro can take up to 12–24 h for 50% conversion. These inefficient reactions suggest that natural cofactors enhance the activation and activity of matrilysin. We determined that highly sulfated glycosaminoglycans (GAG), such as heparin, chondroitin-4,6-sulfate (CS-E), and dermatan sulfate, markedly enhanced (>50-fold) the intermolecular autolytic activation of promatrilysin and the activity of fully active matrilysin to cleave specific physiologic substrates. In contrast, heparan sulfate and less sulfated forms of chondroitin sulfate did not augment matrilysin activation or activity. Chondroitin-2,6-sulfate (CS-D) also did not enhance matrilysin activity, suggesting that the presentation of sulfates is more important than the overall degree of sulfation. Surface plasmon resonance demonstrated that promatrilysin bound heparin (KD, 400 nm) and CS-E (KD, 630 nm). Active matrilysin bound heparin (KD, 150 nm) but less so to CS-E (KD, 60 μm). Neither form bound heparan sulfate. These observations demonstrate that sulfated GAGs regulate matrilysin activation and its activity against specific substrates. PMID:19654318
Martini, Elisabetta; Salvicchi, Alberto; Ghelardini, Carla; Manetti, Dina; Dei, Silvia; Guandalini, Luca; Martelli, Cecilia; Melchiorre, Michele; Cellai, Cristina; Scapecchi, Serena; Teodori, Elisabetta; Romanelli, Maria Novella
2009-11-01
A series of amides and sulfonamides, structurally related to DM235 (sunifiram) and MN19 (sapunifiram), derived by ring expansion or contraction, or by inversion of the exocyclic amide function, have been synthesized and tested for cognition-enhancing activity in the mouse passive-avoidance test. Some of the compounds display good antiamnesic and procognitive activity, with higher potency than piracetam, and with a potency similar to the parent compounds.
Enhanced enzyme kinetic stability by increasing rigidity within the active site.
Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan
2014-03-14
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.
Sugatani, T; Alvarez, U M; Hruska, K A
2003-09-01
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis. Copyright 2003 Wiley-Liss, Inc.
Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei
2015-12-01
Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.
Carter, Bing Z.; Mak, Duncan H.; Schober, Wendy D.; Koller, Erich; Pinilla, Clemencia; Vassilev, Lyubomir T.; Reed, John C.
2010-01-01
Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a–induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic. PMID:19897582
Neural correlates of the encoding of multimodal contextual features
Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.
2012-01-01
Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test requirement was to discriminate studied from unstudied pictures and, for each picture judged old, to retrieve its study location and the gender of the voice that spoke its name. Study trials associated with accurate rather than inaccurate location memory demonstrated enhanced activity in the fusiform and parahippocampal cortex and the hippocampus and reduced activity (a negative subsequent memory effect) in the medial occipital cortex. Successful encoding of voice information was associated with enhanced study activity in the right middle superior temporal sulcus and activity reduction in the right superior frontal cortex. These findings support the proposal that encoding of a contextual feature is associated with enhanced activity in regions engaged during its online processing. In addition, they indicate that negative subsequent memory effects can also demonstrate feature-selectivity. Relative to other classes of study trials, trials for which both contextual features were later retrieved demonstrated enhanced activity in the lateral occipital complex and reduced activity in the temporo-parietal junction. These findings suggest that multifeatural encoding was facilitated when the study item was processed efficiently and study processing was not interrupted by redirection of attention toward extraneous events. PMID:23166292
Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V; Manjunath, Kirangadur; Viswanatha, Gollapalle L; Ashok, Godavarthi
2016-01-01
The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro.
Li, Qun; Wang, Xianfu; Tang, Kai; Wang, Mengfan; Wang, Chao; Yan, Chenglin
2017-12-26
Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu 7 S 4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu 7 S 4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu 7 S 4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm -2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu 7 S 4 . This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.
Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming
2013-04-01
Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.
The Combination of Vemurafenib and Procaspase-3 Activation Is Synergistic in Mutant BRAF Melanomas.
Peh, Jessie; Fan, Timothy M; Wycislo, Kathryn L; Roth, Howard S; Hergenrother, Paul J
2016-08-01
The development of vemurafenib resistance limits the long-term efficacy of this drug for treatment of metastatic melanomas with the (V600E)BRAF mutation. Inhibition of downstream MAPK signaling with vemurafenib induces apoptotic cell death mediated by caspase-3, suggesting that addition of a procaspase-3 activator could enhance anticancer effects. Here, we show that the combination of PAC-1, a procaspase-activating compound, and vemurafenib is highly synergistic in enhancing caspase-3 activity and apoptotic cell death in melanoma cell lines harboring the (V600E)BRAF mutation. In vivo, the combination displays a favorable safety profile in mice and exerts significant antitumor effects. We further demonstrate that addition of PAC-1 to the clinically useful combination of vemurafenib and a MEK inhibitor, trametinib, starkly enhances the caspase-3 activity and proapoptotic effect of the combination. Moreover, addition of low concentration PAC-1 also delays the regrowth of cells following treatment with vemurafenib. Finally, PAC-1 remains potent against vemurafenib-resistant A375VR cells in cell culture and synergizes with vemurafenib to exert antitumor effects on A375VR cell growth in vivo Collectively, our data suggest that inhibition of MAPK signaling combined with concurrent procaspase-3 activation is an effective strategy to enhance the antitumor activity of vemurafenib and mitigate the development of resistance. Mol Cancer Ther; 15(8); 1859-69. ©2016 AACR. ©2016 American Association for Cancer Research.
Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.
Rao, M V; Paliyath, G; Ormrod, D P
1996-01-01
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977
A rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-TiO2.
Bharad, Pradnya A; Sivaranjani, Kumarsrinivasan; Gopinath, Chinnakonda S
2015-07-07
A rational approach was employed to enhance the solar water splitting (SWS) efficiency by systematically combining various important factors that helps to increase the photocatalytic activity. The rational approach includes four important parameters, namely, charge generation through simulated sunlight absorption, charge separation and diffusion, charge utilization through redox reaction, and the electronic integration of all of the above three factors. The complexity of the TiO2 based catalyst and its SWS activity was increased systematically by adding reduced graphene oxide (RGO) or N-doped RGO and/or nanogold. Au-N-RGO-TiO2 shows the maximum apparent quantum yield (AQY) of 2.46% with a H2 yield (525 μmol g(-1) h(-1)) from aqueous methanol, and overall water splitting activity (22 μmol g(-1) h(-1); AQY = 0.1%) without any sacrificial agent under one sun conditions. This exercise helps to understand the factors which help to enhance the SWS activity. Activity enhancement was observed when there is synergy among the components, especially the simulated sunlight absorption (or one sun conditions), charge separation/conduction and charge utilization. Electronic integration among the components provides the synergy for efficient solar light harvesting. In our opinion, the above synergy helps to increase the overall utilization of charge carriers towards the higher activity.
Gao, Xuefei; Tsang, Jason C.H.; Gaba, Fortis; Wu, Donghai; Lu, Liming; Liu, Pentao
2014-01-01
The transcription activator–like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas9) utlilize distinct molecular mechanisms in targeting site recognition. The two proteins can be modified to carry additional functional domains to regulate expression of genomic loci in mammalian cells. In this study, we have compared the two systems in activation and suppression of the Oct4 and Nanog loci by targeting their enhancers. Although both are able to efficiently activate the luciferase reporters, the CRISPR/dCas9 system is much less potent in activating the endogenous loci and in the application of reprogramming somatic cells to iPS cells. Nevertheless, repression by CRISPR/dCas9 is comparable to or even better than TALE repressors. We demonstrated that dCas9 protein binding results in significant physical interference to binding of native transcription factors at enhancer, less efficient active histone markers induction or recruitment of activating complexes in gene activation. This study thus highlighted the merits and drawbacks of transcription regulation by each system. A combined approach of TALEs and CRISPR/dCas9 should provide an optimized solution to regulate genomic loci and to study genetic elements such as enhancers in biological processes including somatic cell reprogramming and guided differentiation. PMID:25223790
Qin, Yanli; Zhou, Xueshi; Jia, Haodi; Chen, Chaoyang; Zhao, Weifeng; Zhang, Jiming; Tong, Shuping
2016-01-01
Hepatitis B virus (HBV) genotype C causes prolonged chronic infection and increased risk for liver cancer than genotype B. Our previous work revealed lower replication capacity of wild-type genotype C2 than B2 isolates. HBV DNA replication is driven by pregenomic RNA, which is controlled by core promoter (CP) and further augmented by enhancer I (ENI) and enhancer II (ENII). DNA fragments covering these regulatory elements were amplified from B2 and C2 isolates to generate luciferase reporter constructs. As ENII is fully embedded in CP, we inserted HBV DNA fragments in the sense orientation to determine their combined activities, and in the antisense orientation to measure enhancer activities alone. Genotype B2 isolates displayed higher ENI+ENII+CP, ENII+CP, and ENII activities, but not ENI or ENI+ENII activity, than C2 isolates. The higher ENII+CP activity was partly attributable to 4 positions displaying genotype-specific variability. Exchanging CP region was sufficient to revert the replication phenotypes of several B2 and C2 clones tested. These results suggest that a weaker ENII and/or CP at least partly accounts for the lower replication capacities of wild-type C2 isolates, which could drive the subsequent acquisition of CP mutations. Such mutations increase genome replication and are implicated in liver cancer development. PMID:27461034