Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
Enhancing critical current density of cuprate superconductors
Chaudhari, Praveen
2015-06-16
The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.
NASA Astrophysics Data System (ADS)
Cordaro, S. W.; Bott-Suzuki, S. C.
2017-12-01
We present an experimental analysis of the symmetry of current density in a coaxial geometry, diagnosed using a magnetic field probe array and calculations of the Fowler-Nordheim enhancement factor. Data were collected on the coaxial gap breakdown device (240 A, 25 kV, 150 ns, ˜0.1 Hz), and data from experiments using 2 different gap sizes and different penetration depths are compared over runs comprising 50 shots for each case. The magnetic field probe array quantifies the distribution of current density at three axial locations, on either sides of a vacuum breakdown, and tracks the evolution with time and space. The results show asymmetries in current density, which can be influenced by changes in the gap size and the penetration depth (of the center electrode into the outer electrode). For smaller gap sizes (400 μm), symmetric current profiles were not observed, and the change in the penetration depth changes both the symmetric behavior of the current density and the enhancement factor. For larger gaps (900 μm), current densities were typically more uniform and less influenced by the penetration depth, which is reflected in the enhancement factor values. It is possible that the change in inductance caused by the localization of current densities plays a role in the observed behavior.
Visible-blind ultraviolet photodetectors on porous silicon carbide substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my
2013-06-01
Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less
Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source
NASA Astrophysics Data System (ADS)
Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN
2018-06-01
Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.
2015-09-01
Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less
Feng, Huajun; Tang, Chenyi; Wang, Qing; Liang, Yuxiang; Shen, Dongsheng; Guo, Kun; He, Qiaoqiao; Jayaprada, Thilini; Zhou, Yuyang; Chen, Ting; Ying, Xianbin; Wang, Meizhen
2018-04-01
This study reports a high-performance 3D stainless-steel photoanode (3D SS photoanode) for bioelectrochemical systems (BESs). The 3D SS photoanode consists of 3D carbon-coated SS felt bioactive side and a flat α-Fe 2 O 3 -coated SS plate photoactive side. Without light illumination, the electrode reached a current density of 26.2 ± 1.9 A m -2 , which was already one of the highest current densities reported thus far. Under illumination, the current density of the electrode was further increased to 46.5 ± 2.9 A m -2 . The mechanism of the photo-enhanced current production can be attributed to the reduced charge-transfer resistance between electrode surface and the biofilm with illumination. It was also found that long-term light illumination can enhance the biofilm formation on the 3D SS photoanode. These findings demonstrate that using the synergistic effect of photocatalysis and microbial electrocatalysis is an efficient way to boost the current production of the existing high-performance 3D anodes for BESs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho
2014-01-01
A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.
Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors
NASA Astrophysics Data System (ADS)
Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati
2016-08-01
In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.
Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors.
Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati
2016-08-24
In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab
2012-02-15
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S
2012-02-01
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.
Burg, G William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H; Register, Leonard F; Tutuc, Emanuel
2018-04-27
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
NASA Astrophysics Data System (ADS)
Burg, G. William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H.; Register, Leonard F.; Tutuc, Emanuel
2018-04-01
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe2 barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells
NASA Astrophysics Data System (ADS)
Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po
2012-07-01
The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.
Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing
2017-02-01
A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors
Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati
2016-01-01
In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g−1 at a current density of 2 A g−1, which is higher than the capacitance of bare G (145 F g−1) and bare Ni (3 F g−1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g−1 at a current density of 5 A g−1 and a capacitance of 144 F g−1 at a current density of 10 A g−1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor. PMID:27553290
Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson
2015-01-01
We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444
NASA Astrophysics Data System (ADS)
Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin
2018-07-01
We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.
Band-to-Band Tunneling-Dominated Thermo-Enhanced Field Electron Emission from p-Si/ZnO Nanoemitters.
Huang, Zhizhen; Huang, Yifeng; Xu, Ningsheng; Chen, Jun; She, Juncong; Deng, Shaozhi
2018-06-13
Thermo-enhancement is an effective way to achieve high performance field electron emitters, and enables the individually tuning on the emission current by temperature and the electron energy by voltage. The field emission current from metal or n-doped semiconductor emitter at a relatively lower temperature (i.e., < 1000 K) is less temperature sensitive due to the weak dependence of free electron density on temperature, while that from p-doped semiconductor emitter is restricted by its limited free electron density. Here, we developed full array of uniform individual p-Si/ZnO nanoemitters and demonstrated the strong thermo-enhanced field emission. The mechanism of forming uniform nanoemitters with well Si/ZnO mechanical joint in the nanotemplates was elucidated. No current saturation was observed in the thermo-enhanced field emission measurements. The emission current density showed about ten-time enhancement (from 1.31 to 12.11 mA/cm 2 at 60.6 MV/m) by increasing the temperature from 323 to 623 K. The distinctive performance did not agree with the interband excitation mechanism but well-fit to the band-to-band tunneling model. The strong thermo-enhancement was proposed to be benefit from the increase of band-to-band tunneling probability at the surface portion of the p-Si/ZnO nanojunction. This work provides promising cathode for portable X-ray tubes/panel, ionization vacuum gauges and low energy electron beam lithography, in where electron-dose control at a fixed energy is needed.
MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density
NASA Astrophysics Data System (ADS)
Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.
2018-07-01
The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.
Enhancing superconducting critical current by randomness
Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; ...
2016-01-11
The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Here, we demonstrate that a random pinscape, an overlooked pinning system in nanopatterned superconductors, can lead to a substantially larger critical current enhancement at high magnetic fields than an ordered array of vortex pin sites. We reveal that the better performance of a random pinscape is due to the variation of the local density of its pinning sites, which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, wheremore » the distribution of the local density of pinning sites is further enlarged. Our findings highlight the potential of random pinscapes in enhancing the superconducting critical currents of applied superconductors in which random pin sites of nanoscale defects emerging in the materials synthesis process or through ex-situ irradiation are the only practical choice for large-scale production. Our results may also stimulate research on effects of a random pinscape in other complementary systems such as colloidal crystals, Bose-Einstein condensates, and Luttinger liquids.« less
High performance direct methanol fuel cell with thin electrolyte membrane
NASA Astrophysics Data System (ADS)
Wan, Nianfang
2017-06-01
A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.
Enhanced field emission from hexagonal rhodium nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.
2008-06-23
Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.
2017-12-01
It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.
Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj
2017-12-01
The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2018-02-01
This study investigates various types of neutral density features developed in the cusp region during magnetically active and quiet times. Multi-instrument Challenging Minisatellite Payload data provide neutral density, electron temperature, neutral wind speed, and small-scale field-aligned current (SS-FAC) values. Gravity Recovery and Climate Experiment neutral density data are also employed. During active times, cusp densities or density spikes appeared with their underlying flow channels (FCs) and enhanced SS-FACs implying upwelling, fueled by Joule heating, within/above FCs. Both the moderate nightside cusp enhancements under disturbed conditions and the minor dayside cusp enhancements under quiet conditions developed without any underlying FC and enhanced SS-FACs implying the role of particle precipitation in their development. Observations demonstrate the relations of FCs, density spikes, and upwelling-related divergent flows and their connections to the underlying (1) dayside magnetopause reconnection depositing magnetospheric energy into the high-latitude region and (2) Joule heating-driven disturbance dynamo effects. Results provide observational evidence that the moderate nightside cusp enhancements and the minor dayside cusp enhancements detected developed due to direct heating by weak particle precipitation. Chemical compositions related to the dayside density spike and low cusp densities are modeled by Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended 2000. Modeled composition outputs for the dayside density spike's plasma environment depict some characteristic upwelling signatures. Oppositely, in the case of low dayside cusp densities, composition outputs show opposite characteristics due to the absence of upwelling.
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Lühr, Hermann
2014-05-01
We present climatology of the relationship of cusp-related density enhancement with the neutral zonal wind velocity, large-scale field-aligned current (FAC), small-scale FAC, and electron temperature using the superposed epoch analysis (SEA) method. The dependence of these variables on the interplanetary magnetic field (IMF) By component orientation and solar cycle are of particular interest. In addition, the obtained results of relative density enhancement (ρrel), zonal wind, electron temperature and FAC are subdivided into three local seasons of 130 days each: local winter (1 January ±65 days), combined equinoxes (1 April ±32 days and 1 October ±32 days), and local summer (1 July ±65 days). Our investigation is based on CHAMP satellite observations and NASA/GSFC's OMNI online data set for solar maximum (Mar/2002-2007) and minimum (Mar/2004-2009) conditions in the Northern Hemisphere. The SEA technique uses the time and location of the thermospheric mass density anomaly peaks as reference parameters. The relative amplitude of cusp-related density enhancement does on average not depend on the IMF By orientation, solar cycle phase, and local season. Also, it is apparent that the IMF By amplitude does not have a big influence on the relative amplitude of the density anomaly. Conversely, there exists a good correlation between ρrel and the negative amplitude of IMF Bz prevailing about half an hour earlier. In the cusp region, both large-scale FAC distribution and thermospheric zonal wind velocity exhibit a clear dependence on the IMF By orientation. In the case of positive (negative) IMF By there is a systematic imbalance between downward (upward) and upward (downward) FACs peaks equatorward and poleward of the reference point, respectively. The zonal wind velocity is directed towards west i.e. towards dawn in a geomagnetic latitude-magnetic local time (MLat-MLT) frame. This is true for all local seasons and solar conditions. The thermospheric density enhancements appear half way between Region 1 (R1) and Region 0 (R0) field-aligned currents, in closer proximity to the upward FAC region. In our case R0 currents are systematically weaker than R1 ones. Also, around the cusp region we find no sign of Region 2 field-aligned currents. We can conclude that there is a close spatial relationship between FACs and cusp-related density enhancements, but we cannot offer any simple functional relation between field-aligned current strength and density anomaly amplitude. There seem to be other quantities (e.g. precipitating electrons) controlling this relation. All the conclusions drawn above are true for the Northern Hemisphere. There may be differences in the Southern Hemisphere.
Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.
Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi
2017-12-01
To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.
Current structure and flow pattern on the electron separatrix in reconnection region
NASA Astrophysics Data System (ADS)
Guo, Ruilong; Pu, Zuyin; Wei, Yong
2017-12-01
Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.
Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates
NASA Astrophysics Data System (ADS)
Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.
2000-12-01
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.
Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca
2015-01-01
Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.
Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.
Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P
2000-12-15
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.
2014-01-01
A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.
Photospheric electric current and transition region brightness within an active region
NASA Technical Reports Server (NTRS)
Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.
1984-01-01
Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.
Phase slip process and charge density wave dynamics in a one dimensional conductor
NASA Astrophysics Data System (ADS)
Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.
In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.
Guo, Kun; Donose, Bogdan C; Soeriyadi, Alexander H; Prévoteau, Antonin; Patil, Sunil A; Freguia, Stefano; Gooding, J Justin; Rabaey, Korneel
2014-06-17
Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs.
Electric currents and coronal heating in NOAA active region 6952
NASA Technical Reports Server (NTRS)
Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.
1994-01-01
We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.
NASA Astrophysics Data System (ADS)
Han, Yang; Hu, Nantao; Liu, Shuai; Hou, Zhongyu; Liu, Jiaqiang; Hua, Xiaolin; Yang, Zhi; Wei, Liangming; Wang, Lin; Wei, Hao
2017-08-01
Nanocoatings of covalent organic frameworks (COFs) on nickel nanowires (NiNWs) have been designed and successfully fabricated for the first time, which showed greatly enhanced electrochemical performances for supercapacitors. The specific capacitance of electrodes based on as-fabricated COFs nanocoatings reached up to 314 F g-1 at 50 A g-1, which retained 74% of the specific capacitance under the current density of 2 A g-1. The ultrahigh current density makes the charge-discharge process extremely rapid. The outstanding electrochemical performances of COFs nanocoating on NiNWs make it an ideal candidate for supercapacitors. And the nanocoating-design can also give a guidance for application of COFs in high-performance energy storages.
Enhancing superconducting critical current by randomness
NASA Astrophysics Data System (ADS)
Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Shen, B.; Pearson, J. E.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.
2016-01-01
The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nanopatterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local density of pinning sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.
Simulations of phase space distributions of storm time proton ring current
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael
1994-01-01
We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.
NASA Astrophysics Data System (ADS)
Krelaus, J.; Heinemann, K.; Ullmann, B.; Freyhardt, H. C.
1995-02-01
Bulk YBa 2Cu 4O 8 (Y-124) is prepared from YBa 2Cu 3O 7-σ (Y-123) and CuO by a powder-metallurgical method. The superconducting features of the Y-124, in particular critical current densities and activation energies, are measured resistively using a four-probe technique and magnetically using a Faraday magnetometer. In a second step the Y-124 is decomposed at high temperatures. The intragranular critical current density is measured at different annealing times, tA, in order to determine and discuss the characteristics of the jc( tA) curves.
Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.
Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo
2017-12-20
In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.
Superior Field Emission Properties of Layered WS2-RGO Nanocomposites
Rout, Chandra Sekhar; Joshi, Padmashree D.; Kashid, Ranjit V.; Joag, Dilip S.; More, Mahendra A.; Simbeck, Adam J.; Washington, Morris; Nayak, Saroj K.; Late, Dattatray J.
2013-01-01
We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. PMID:24257504
DE 1 observations of type 1 counterstreaming electrons and field-aligned currents
NASA Technical Reports Server (NTRS)
Lin, C. S.; Burch, J. L.; Barfield, J. N.; Sugiura, M.; Nielsen, E.
1984-01-01
Dynamics Explorer 1 satellite observations of plasma and magnetic fields during type one counterstreaming electron events are presented. Counterstreaming electrons are observed at high altitudes in the region of field-aligned current. The total current density computed from the plasma data in the 18-10,000 eV energy range is generally about 1-2 micro-A/sq m. For the downward current, low-energy electrons contribute more than 40 percent of the total plasma current density integrated above 18 eV. For the upward current, such electrons contribute less than 50 percent of that current density. Electron beams in the field-aligned direction are occasionally detected. The pitch angle distributions of counterstreaming electrons are generally enhanced at both small and large pitch angles. STARE simultaneous observations for one DE 1 pass indicated that the field-aligned current was closed through Pedersen currents in the ionosphere. The directions of the ionospheric current systems are consistent with the DE 1 observations at high altitudes.
Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika
Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less
Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells
Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; ...
2016-04-08
Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less
Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition
NASA Astrophysics Data System (ADS)
Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.
2013-03-01
The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. P.; Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024; Zhang, Z. C.
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, takingmore » into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.« less
Electric field distribution and current emission in a miniaturized geometrical diode
NASA Astrophysics Data System (ADS)
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
Early Evolution of Comet 67P Studied with the RPC-LAP onboard Rosetta
NASA Astrophysics Data System (ADS)
Miloch, W. J.; Yang, L.; Paulsson, J. J.; Wedlund, C. S.; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A.
2016-12-01
In-situ measurements within the Rosetta mission allow for studies of the cometary environment at different stages of cometary evolution. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current, which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated, high-density plasma region. This high-density region is observed at the northern hemisphere of the comet during early activity. The transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition. We show that the early cometary plasma can be seen as composed of two distinct regions: an outer region characterised by solar wind plasma and small quantities of pickup ions, and an inner region with enhanced plasma densities.
NASA Astrophysics Data System (ADS)
Butler, Erick B.; Hung, Yung-Tse; Mulamba, Oliver
2017-09-01
This study assessed the efficiency of electrocoagulation (ECF) coupled with an addition of chemical coagulant to decolorize textile dye. Tests were conducted using Box Behnken methodology to vary six parameters: dye type, weight, coagulant type, dose, initial pH and current density. The combination of electrocoagulation and chemical coagulation was able to decolorize dye up to 99.42 % in 30 min of treatment time which is remarkably shorter in comparison with using conventional chemical coagulation. High color removal was found to be contingent upon the dye type and current density, along with the interactions between the current density and the coagulant dose. The addition of chemical coagulants did enhanced treatment efficiency.
Scott R. Abella
2009-01-01
Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2017-04-01
We focus on the well-known northern daytime neutral density spikes detected by CHAMP on 25 September 2000 and related coupled magnetospheric-ionospheric-thermospheric processes. We investigate the underlying magnetic events and resultant thermospheric variations plus the state of the ionospheric polar region by employing multi-instrument CHAMP and DMSP data. Results show the unfolding of a weak (SYM-HMin ≈ -27 nT; 0345 UT) magnetic storm during which these northern density spikes occurred. Some smaller southern daytime density spikes were also detected prior to this storm on the previous day. All these density spikes were detected in or near polar convection flow channels (FCs). Each FC was characterized by strong antisunward zonal ion drifts that excited the zonal and meridional neutral winds leaving the signature of FC in the CHAMP neutral wind measurements and thus providing direct observational evidence of FC underlying the density spike. Additional to the small-scale field-aligned current (SS-FAC) filaments, the sudden intensifications of ionospheric closure current in the FC fueled the thermosphere and contributed to the development of upwelling and density spike. Some smaller density increases occurred due to the weak intensification of ionospheric closure currents. Equatorward (poleward) directed meridional neutral winds strengthened (weakened) the density spike by moving the neutral density up and along (down and against) the upwelling fueled by the ionospheric closure current and SS-FAC filaments.
Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode
Rodenas, Pau; Zhu, Fangqi; Sleutels, Tom; Saakes, Michel; Buisman, Cees
2017-01-01
Abstract Background Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m‐2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m‐2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). Results With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m‐2 at an anode potential of –0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L‐1, current density increased to 10.7 A m‐2 at an anode potential of –0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L‐1) current density increased further to 17.1 A m‐2. Conclusion Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200586
On the enhancement of energy storage density in Bi0.9Ho0.1FeO3 ceramics
NASA Astrophysics Data System (ADS)
Ethilton, S. John; Rajesh, R.; Ramachandran, K.; Giridharan, N. V.
2018-04-01
Polycrystalline Bi1-xHoxFeO3 (x = 0, 0.05, 0.1) samples are prepared by conventional solid state route. The XRD pattern shows R3c phase. The maximum electrical polarizations in the above three materials are found to be 0.067μC / cm2, 0.329μC / cm2 and 0.565μC / cm2 respectively. Here the holmium is chosen for the reason that the leakage current can be reduced very much thereby the multiferroic property can be enhanced. Based on this experience it is decided to study the energy storage density in these ceramic materials with Ho as dopant. It is found that there is a good enhancement from 12% to 30% efficiency on energy storage density.
Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery
NASA Astrophysics Data System (ADS)
Hua, Kang; Li, Xiujuan; Fang, Dong; Yi, Jianhong; Bao, Rui; Luo, Zhiping
2018-07-01
Lithium vanadate nanowires have been electrodeposited onto a titanium (Ti) foil by a direct current electrodeposition without template. The morphology, crystal structure, and the effects of deposition voltage, temperature and time on the prepared samples were tested and presented. The as-prepared lithium vanadate nanowires/Ti composite can be used as electrode for lithium-ion battery. Electrochemical measurements showed that the electrode displayed a specific discharge capacitance as high as 235.1 mAh g-1 after 100 cycles at a current density of 30 mA g-1. This research provides a new pathway to explore high tap density vanadates nanowires on metals with enhanced electrochemical performance.
How does relativity affect magnetically induced currents?
Berger, R J F; Repisky, M; Komorovsky, S
2015-09-21
Magnetically induced probability currents in molecules are studied in relativistic theory. Spin-orbit coupling (SOC) enhances the curvature and gives rise to a previously unobserved current cusp in AuH or small bulge-like distortions in HgH2 at the proton positions. The origin of this curvature is magnetically induced spin-density arising from SOC in the relativistic description.
NASA Astrophysics Data System (ADS)
Yu, Jingting; Zhu, Wenqing; Shi, Guanjie; Zhai, Guangsheng; Qian, Bingjie; Li, Jun
2017-02-01
White organic light-emitting devices (WOLEDs) with enhanced current efficiency and negligible color shifting equipped with an internal color conversion layer (CCL) were fabricated. They were attained by embedding a single layer of silver nanoclusters (SNCs) between the CCL and light-emitting layer (EML). The simultaneous enhancement of the photoluminescence (PL) of the CCL and electroluminescence (EL) of the EML were realized by controlling the thickness and size of the SNCs to match the localized surface plasmon resonance spectrum with the PL spectrum of the CCL and the EL spectrum of the EML. The WOLED with optimal SNCs demonstrated a 25.81% enhancement in current efficiency at 60 mA cm-2 and good color stability over the entire range of current density.
NASA Technical Reports Server (NTRS)
Klenzing, Jeffrey H.; Rowland, Douglas E.
2012-01-01
A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.
Steady state and transient simulation of anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon
2018-01-01
We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.
NASA Technical Reports Server (NTRS)
Klenzing, J.; Rowland, D.
2012-01-01
A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.
Impact of the Hall effect on high-energy-density plasma jets.
Gourdain, P-A; Seyler, C E
2013-01-04
Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Péclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it.
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Nogueira, P. A. B.; Souza, J. R.; Batista, I. S.; Dutra, S. L. G.; Sobral, J. H. A.
2017-03-01
Large enhancement in the equatorial electrojet (EEJ) current can occur due to sudden increase in the E layer density arising from solar flare associated ionizing radiations, as also from background electric fields modified by magnetospheric disturbances when present before or during a solar flare. We investigate the EEJ responses at widely separated longitudes during two X-class flares that occurred at different activity phases surrounding the magnetic super storm sequences of 28-29 October 2003. During the 28 October flare we observed intense reverse electrojet under strong westward electric field in the sunrise sector over Jicamarca. Sources of westward disturbance electric fields driving large EEJ current are identified for the first time. Model calculations on the E layer density, with and without flare, and comparison of the results between Jicamarca and Sao Luis suggested enhanced westward electric field due to the flare occurring close to sunrise (over Jicamarca). During the flare on 29 October, which occurred during a rapid AE recovery, a strong overshielding electric field of westward polarity over Jicamarca delayed an expected EEJ eastward growth due to flare-induced ionization enhancement in the afternoon. This EEJ response yielded a measure of the overshielding decay time determined by the storm time Region 2 field-aligned current. This paper will present a detailed analysis of the EEJ responses during the two flares, including a quantitative evaluation of the flare-induced electron density enhancements and identification of electric field sources that played dominant roles in the large westward EEJ at the sunrise sector over Jicamarca.
NASA Astrophysics Data System (ADS)
Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling
2017-06-01
The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.
Electrochemical treatment of cork boiling wastewater with a boron-doped diamond anode.
Fernandes, Annabel; Santos, Diana; Pacheco, Maria José; Ciríaco, Lurdes; Simões, Rogério; Gomes, Arlindo C; Lopes, Ana
2015-01-01
Anodic oxidation at a boron-doped diamond anode of cork boiling wastewater was successfully used for mineralization and biodegradability enhancement required for effluent discharge or subsequent biological treatment, respectively. The influence of the applied current density (30-70 mA/cm2) and the background electrolyte concentration (0-1.5 g/L Na2SO4) on the performance of the electrochemical oxidation was investigated. The supporting electrolyte was required to achieve conductivities that enabled anodic oxidation at the highest current intensities applied. The results indicated that pollutant removal increased with the applied current density, and after 8 h, reductions greater than 90% were achieved for COD, dissolved organic carbon, total phenols and colour. The biodegradability enhancement was from 0.13 to 0.59 and from 0.23 to 0.72 for the BOD/COD ratios with BOD of 5 and 20 days' incubation period, respectively. The tests without added electrolyte were performed at lower applied electrical charges (15 mA/cm2 or 30 V) with good organic load removal (up to 80%). For an applied current density of 30 mA/cm2, there was a minimum of electric conductivity of 1.9 mS/cm (corresponding to 0.75 g/L of Na2SO4), which minimized the specific energy consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat
Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less
Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat; ...
2016-08-10
Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less
NASA Astrophysics Data System (ADS)
He, Min; Peng, Licong; Zhu, Zhaozhao; Li, Gang; Cai, Jianwang; Li, Jianqi; Wei, Hongxiang; Gu, Lin; Wang, Shouguo; Zhao, Tongyun; Shen, Baogen; Zhang, Ying
2017-11-01
Taking advantage of the electron-current ability to generate, stabilize, and manipulate skyrmions prompts the application of skyrmion multilayers in room-temperature spintronic devices. In this study, the robust high-density skyrmions are electromagnetically generated from Pt/Co/Ta multilayers using Lorentz transmission electron microscopy. The skyrmion density is tunable and can be significantly enhanced. Remarkably, these generated skyrmions after optimized manipulation sustain at zero field with both the in-plane current and perpendicular magnetic field being switched off. The skyrmion generation and manipulation method demonstrated in this study opens up an alternative way to engineer skyrmion-based devices. The results also provide key data for further theoretical study to discover the nature of the interaction between the electric current and different spin configurations.
Al embedded MgO barrier MTJ: A first principle study for application in fast and compact STT-MRAMs
NASA Astrophysics Data System (ADS)
Yadav, Manoj Kumar; Gupta, Santosh Kumar; Rai, Sanjeev; Pandey, Avinash C.
2017-03-01
The first principle comparative study of a novel single Al sheet embedded MgO and pure MgO barrier having Fe electrodes magnetic tunnel junction has been presented. Al embedded MgO is reported to provide enhanced spin polarised tunnelling current due to increase of spin-polarized density of states at Fermi energy in the barrier region. This novel MTJ provides a current density and resistance area (RA) product of 94.497 ×107 A / cm2 and 0.105 Ω - μm2 respectively. With such a low RA product; it allows higher deriving current due to which switching time of magnetization reversal reduces without inducing barrier related breakdowns in non-volatile magnetic random access memories. The low RA product and high current density of the proposed MTJ may have possible applications in integration with existing MOS circuits.
In-depth porosity control of mesoporous silicon layers by an anodization current adjustment
NASA Astrophysics Data System (ADS)
Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.
2017-12-01
The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.
NASA Astrophysics Data System (ADS)
Hu, Mengli; Yang, Zhixiong; Zhou, Wenzhe; Li, Aolin; Pan, Jiangling; Ouyang, Fangping
2018-04-01
By using density functional theory (DFT) and nonequilibrium Green's function (NEGF), field effect transistor (FET) based on zigzag shaped phosphorene nanoribbons (ZPNR) are investigated. The FETs are constructed with bare-edged ZPNRs as electrodes and H, Cl or OH adsorbed ZPNRs as channel. It is found FETs with the three kinds of channel show similar transport properties. The FET is p-type with a maximum current on/off ratio of 104 and a minimum off-current of 1 nA. The working mode of FETs is dependent on the parity of channel length. It can be either enhancement mode or depletion mode and the off-state current shows an even-odd oscillation. The current oscillations are interpreted with density of states (DOS) analysis and methods of evolution operator and tight-binding Hamiltonian. Operating mechanism of the designed FETs is also presented with projected local density of states and band diagrams.
Vivek Narayanan, N; Ganesan, Mahesh
2009-01-15
The present work deals with removal of hexavalent chromium from synthetic effluents in a batch stirred electrocoagulation cell with iron-aluminium electrode pair coupled with adsorption using granular activated carbon (GAC). Several working parameters such as pH, current density, adsorbent concentration and operating time were studied in an attempt to achieve higher removal capacity. Results obtained with synthetic wastewater revealed that most effective removal capacities of chromium (VI) could be achieved when the initial pH was near 8. The removal of chromium (VI) during electrocoagulation, is due to the combined effect of chemical precipitation, coprecipitation, sweep coagulation and adsorption. In addition, increasing current density in a range of 6.7-26.7mA/cm2 and operating time from 20 to 100min enhanced the treatment rate to reduce metal ion concentration below admissible legal levels. The addition of GAC as adsorbent resulted in remarkable increase in the removal rate of chromium at lower current densities and operating time, than the conventional electrocoagulation process. The method was found to be highly efficient and relatively fast compared to existing conventional techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a
2009-12-15
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabaeian, Mohammad, E-mail: sabaiean@scu.ac.ir; Heydari, Mehdi; Ajamgard, Narges
The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly,more » the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.« less
NASA Astrophysics Data System (ADS)
Chen, Zerui; Zhang, Yu; Wang, Xiaoling; Sun, Wenping; Dou, Shixue; Huang, Xin; Shi, Bi
2017-09-01
Electrochemical-grinding induced pulverization is the origin of capacity fading in NiFe2O4. Increasing current density normally accelerates the pulverization that deteriorates lithium storage properties of NiFe2O4. Here we show that the high current induced fast-pulverization can serve as an efficient activation strategy for quick and simultaneous enhancement on cycling stability and rate capability of NiFe2O4 nanoparticles (NPs) that are densely packed on the hierarchically structured carbon nanofiber strand. At a high current density, the pulverization of NiFe2O4 NPs can be accomplished in a few cycles exposing more active surface. During the fast-pulverization, the hierarchically structured carbon nanofiber strand maintains conductive contact for the densely packed NiFe2O4 NPs regardless of charge or discharge, which also effectively suppresses the repetitive breaks and growths of solid-electrolyte-interphase (SEI) via multiple-level structural adaption that favourites the quick formation of a thin and dense SEI, thus providing strong interparticle connectivity with enhancement on cycling stability and rate capability (e.g. doubled capacity). Our findings demonstrate the potential importance of high current induced fast-pulverization as an efficient activation strategy for achieving durable electrode materials suffering from electrochemical-grinding effects.
High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction.
Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H
2016-11-09
Conversion of CO 2 to CO powered by renewable electricity not only reduces CO 2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO 2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO 2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO 2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO 2 to CO reduction, with a geometric current density of 38 mA/cm 2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.
Propagation of electron beams in space
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Okuda, H.
1988-01-01
Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.
Laser-driven relativistic electron dynamics in a cylindrical plasma channel
NASA Astrophysics Data System (ADS)
Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui
2018-03-01
The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).
Microstructural control and superconducting properties of YBCO melt textured single crystals
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai
The high temperature superconductor has great potential for practical applications such as superconducting energy storage systems. Since the levitation force, required specifically for these applications, largely depends on the critical current density and loop size of the superconducting current, large-sized single crystals with high critical current density are desired. To achieve the goal in fabricating YBa2Cu3O 7-delta (Y123) samples suitable for the applications, detailed and systematic studies are required to gain further understanding of the crystal growth and flux pinning mechanisms. This research is aimed at constituting a contribution to the knowledge base for the Y123 high temperature superconductor field by extending the study of processing conditions involved in controlling the microstructure of the Y123 superconductors for the enhancement of crystal growth and superconductor properties. Relations among processing parameters, microstructure, crystal growth, and critical current density of Y123 superconductors have been established. The experimental results reveal that low heating rate and short holding time can lead to refinement of Y2BaCuO5 (Y211) particles, which is strongly favorable to enhancement of the crystal growth and electrical properties of the Y123 superconductors. It was observed that relatively large Y123 crystals (17-22 mm in size) can be obtained with fine needle-shaped Y211 particles, processed with low heating rate and short holding time at the maximum temperatures. Additionally, the research also formulated a technique to fabricate Y123 superconductors with improved electrical properties required for the practical applications. By incorporating additives such as BaCeO3, BaSnO 3, Pt and Nd2O3 into Y123 superconductors, refinement of Y211 particles occurs. In addition, secondary phase particles with sizes in sub-micrometer and nanometer range can be formed in the Y123 superconductors. The interfaces between the Y123 matrix and these Y211 or secondary phase particles are believed to act as flux pinning sites and to enhance the critical current density (Jc) in the superconductor. The results showed that formation of secondary phase inclusions in Y123 by doping with BaCeO3, BaSnO 3, Pt or Nd2O3 result in enhancement of J c due to the effective flux pinning.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng
2016-08-01
This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.
Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M
2015-01-01
Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Field aligned current study during the solar declining- extreme minimum of 23 solar cycle
NASA Astrophysics Data System (ADS)
Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam
Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvamanickam, V; Chen, Y; Shi, T
The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process,enhanced critical current densities have been achieved with high levels of Zr addition,including 3.83 MA cm(-2) in 15 at.% Zr- added 1.1 mu m thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/ 12more » mm have been reached in (Gd,Y) BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape,corresponding to a pinning force value of 268 GN m(-3). The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second- phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.« less
Towards graphane field emitters
Ding, Shuyi; Li, Chi; Zhou, Yanhuai; Collins, Clare M.; Kang, Moon H.; Parmee, Richard J.; Zhang, Xiaobing; Milne, William I.; Wang, Baoping
2015-01-01
We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm–1), with an increased maximum current density from 0.21 mA cm–2 (pristine) to 8.27 mA cm–2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function. PMID:28066543
Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Lühr, Hermann
2017-04-01
In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when the SEA is centered on electron temperature peaks. As expected, the background electron temperature increases towards summer and shows no dependence on the IMF By orientation. In contrast to the previous sorting the mass density enhancement shows a dependence on the IMF By sign and increases towards local summer in case of IMF By<0. As before LSFAC peak values are increasing towards local summer, but there is no clear latitudinal profile of upward and downward FACs. We think that intense precipitation of soft electrons (<100 eV) cause the electron temperature enhancement in the cusp region. But there is no direct dependence on the FAC intensity. But for neutral density enhancement and vertical plasma flow the combination of Joule heating and soft electron precipitation, causing electron temperature and conductivity enhancements, are required.
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Tunnel magnetoresistance of ferrocene molecules
NASA Astrophysics Data System (ADS)
Matsuura, Yukihito
2018-01-01
The spin transport in ferrocene molecules has been examined by using the nonequilibrium Green's function formalism with density functional theory. The ferrocene molecules were sandwiched between the two nickel electrodes in a parallel magnetic configuration, which enhanced the current in comparison with that in an antiparallel spin state and resulting in tunnel magnetoresistance (TMR). The current, having an opposite spin state to that of the ferromagnetic electrode, was the main channel for electron transport. In addition, it became clear that ferrocenylene molecules, having a fulvalene structure with an extended π-conjugation, enhanced the TMR effect.
Enhancing light absorption within the carrier transport length in quantum junction solar cells.
Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene
2015-09-10
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31 mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.
Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiang; Jin, Wencan; Yang, Hao
Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less
Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission
Meng, Xiang; Jin, Wencan; Yang, Hao; ...
2017-06-30
Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less
NASA Astrophysics Data System (ADS)
Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran
2018-04-01
A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.
Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee
2015-11-07
We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.
New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications
NASA Astrophysics Data System (ADS)
Razavi, S. M.; Tahmasb Pour, S.; Najari, P.
2018-06-01
New AlGaN/GaN high electron mobility transistors (HEMTs) that their barrier layers under the gate are divided into two regions horizontally are presented in this work. Upper region is Si3N4 (SI-HEMT) or un-doped AlGaN (UN-HEMT) and lower region is AlGaN with heavier doping compared to barrier layer. Upper region in SI-HEMT and UN-HEMT reduces peak electric field in the channel and then improves breakdown voltage considerably. Lower region increases electron density in the two dimensional electron gas (2-DEG) and enhances drain current significantly. For instance, saturated drain current in SI-HEMT is about 100% larger than that in the conventional one. Moreover, the maximum breakdown voltage in the proposed structures is 65 V. This value is about 30% larger than that in the conventional transistor (50 V). Also, suggested structure reduces short channel effect such as DIBL. The maximum gm is obtained in UN-HEMT and conventional devices. Proposed structures improve breakdown voltage and saturated drain current and then enhance maximum output power density. Maximum output power density in the new structures is about 150% higher than that in the conventional.
Emission current from a single micropoint of explosive emission cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less
Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei
2000-03-01
The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.
Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties
NASA Astrophysics Data System (ADS)
Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang
2018-03-01
Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.
NASA Astrophysics Data System (ADS)
Ishikawa, Masashi; Tasaka, Yuko; Yoshimoto, Nobuko; Morita, Masayuki
Precycling of lithium (Li) metal on a nickel substrate at a low-temperature (-20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) enhanced Li cycleability in the subsequent cycles at a room temperature (25°C). In LiPF 6-PC/DMC, not only the low-temperature precycling in the initial 10 cycles was effective in the improvement of Li cycle life but also the first low-temperature Li deposition followed by room temperature cycling enhanced the Li cycle life. Such a precycling effect was observed with various current densities at the initial Li deposition and the subsequent cycling. When the current density of the cycling was high, improved cycling efficiency was observed and the efficiency of the Li electrode undergoing the precycling was close to that at a constant temperature of -20°C.
Enhancing Piezoelectric Performance of CaBi2Nb2O9 Ceramics Through Microstructure Control
NASA Astrophysics Data System (ADS)
Chen, Huanbei; Zhai, Jiwei
2012-08-01
Calcium bismuth niobate (CaBi2Nb2O9, CBN) is a high-Curie-temperature ( T C) piezoelectric material with relatively poor piezoelectric performance. Attempts were made to enhance the piezoelectric and direct-current (DC) resistive properties of CBN ceramics by increasing their density and controlling their microstructural texture, which were achieved by combining the templated grain growth and hot pressing methods. The modified CBN ceramics with 97.5% relative density and 90.5% Lotgering factor had much higher piezoelectric constant ( d 33 = 20 pC/N) than those prepared by the normal sintering process ( d 33 = 6 pC/N). High-temperature alternating-current (AC) impedance spectroscopy of the CBN ceramics was measured by using an impedance/gain-phase analyzer. Their electrical resistivity was approximately 6.5 × 104 Ω cm at 600°C. Therefore, CBN ceramics can be used for high-temperature piezoelectric applications.
NASA Astrophysics Data System (ADS)
Pyon, Sunseng; Suwa, Takahiro; Tamegai, Tsuyoshi; Takano, Katsutoshi; Kajitani, Hideki; Koizumi, Norikiyo; Awaji, Satoshi; Zhou, Nan; Shi, Zhixiang
2018-05-01
We fabricated (Ba,K)Fe2As2 superconducting wires and tapes using the powder-in-tube method and hot isostatic pressing (HIP). HIP wires and tapes showed a high value of transport critical current density (J c) exceeding 100 kAcm‑2 at T = 4.2 K and the self-field. Transport J c in the HIP wire reached 38 kAcm‑2 in a high magnetic field of 100 kOe. This value is almost twice larger than the previous highest value of J c among round wires using iron-based superconductors. Enhancement of J c in the wires and tapes was caused by improvement of the drawing process, which caused degradation of the core, formation of microcracks, weak links between grains, and random orientation of grains. Details of the effect of the improved fabrication processes on the J c are discussed.
Parameter analysis on the ultrasonic TSV-filling process and electrochemical characters
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Ren, Xinyu; Wang, Yan; Zeng, Peng; Zhou, Zhaohua; Xiao, Hongbin; Zhu, Wenhui
2017-10-01
As one of the key technologies in 3D packaging, through silicon via (TSV) interconnection technology has become a focus recently. In this paper, an electrodeposition method for TSV filling with the assistance of ultrasound and additives are introduced. Two important parameters i.e. current density and ultrasonic power are studied for TSV filling process and electrochemical properties. It is found that ultrasound can improve the quality of TSV-filling and change the TSV-filling mode. The experimental results also indicate that the filling rate enhances more significantly with decreasing current density under ultrasonic conditions than under silent conditions. In addition, according to the voltammetry curve, the increase of ultrasonic power can significantly increase the current density of cupric reduction, and decrease the thickness of diffusion layer. So that the reduction speed of copper ions is accelerated, resulting in a higher TSV-filling rate.
Porous graphene current collectors filled with silicon as high-performance lithium battery anode
NASA Astrophysics Data System (ADS)
Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela
2018-01-01
Despite the massive success for high energy density, the charge-discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm-2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm-2 for 500 nm planar thickness.
The Interplanetary and Magnetospheric Causes of Extreme DB/dt at Equatorial Locations
NASA Technical Reports Server (NTRS)
Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.
2016-01-01
The 1 min resolution solar wind and geomagnetic data obtained from seven equatorial low-latitude stations during four extreme geomagnetic activities are used to investigate the extreme dB/dt perturbations. Simulations of the magnetospheric-ionospheric environment were also performed for varying amplitudes of the solar proton density. Simulations were carried out using the Space Weather Modeling Framework BATS-R-US + RCM model. Both the observations and simulations demonstrated that the appearance time of the extreme dB/dt perturbations at equatorial stations during disturbed conditions is instantaneous and equitable to those experienced at auroral regions yielding time lags of the order of a few seconds. We find that the rapid dB/dt enhancements are caused by the electric field of magnetospheric current origin, which is being enhanced by solar wind density and ram pressure variations and boosted by the equatorial electro jet. Our results indicate that the solar wind proton density variations could be used as a predictor of extreme dB/dt enhancement at equatorial latitudes.
The interplanetary and magnetospheric causes of extreme dB/dt at equatorial locations
NASA Astrophysics Data System (ADS)
Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.
2016-11-01
The 1 min resolution solar wind and geomagnetic data obtained from seven equatorial/low-latitude stations during four extreme geomagnetic activities are used to investigate the extreme dB/dt perturbations. Simulations of the magnetospheric-ionospheric environment were also performed for varying amplitudes of the solar proton density. Simulations were carried out using the Space Weather Modeling Framework/BATS-R-US + RCM model. Both the observations and simulations demonstrated that the appearance time of the extreme dB/dt perturbations at equatorial stations during disturbed conditions is instantaneous and equitable to those experienced at auroral regions yielding time lags of the order of a few seconds. We find that the rapid dB/dt enhancements are caused by the electric field of magnetospheric current origin, which is being enhanced by solar wind density and ram pressure variations and boosted by the equatorial electrojet. Our results indicate that the solar wind proton density variations could be used as a predictor of extreme dB/dt enhancement at equatorial latitudes.
Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO.
Geng, Zhigang; Kong, Xiangdong; Chen, Weiwei; Su, Hongyang; Liu, Yan; Cai, Fan; Wang, Guoxiong; Zeng, Jie
2018-05-22
As electron transfer to CO 2 is generally considered to be the critical step during the activation of CO 2 , it is important to develop approaches to engineer the electronic properties of catalysts to improve their performance in CO 2 electrochemical reduction. Herein, we developed an efficient strategy to facilitate CO 2 activation by introducing oxygen vacancies into electrocatalysts with electronic-rich surface. ZnO nanosheets rich in oxygen vacancies exhibited a current density of -16.1 mA cm -2 with a Faradaic efficiency of 83 % for CO production. Based on density functional theory (DFT) calculations, the introduction of oxygen vacancies increased the charge density of ZnO around the valence band maximum, resulting in the enhanced activation of CO 2 . Mechanistic studies further revealed that the enhancement of CO production by introducing oxygen vacancies into ZnO nanosheets originated from the increased binding strength of CO 2 and the eased CO 2 activation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. H.; Tai, L. C.; Liu, Y. L.
Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-knownmore » two-dimensional electrostatic Child-Langmuir law even at the classical regime.« less
NASA Astrophysics Data System (ADS)
Safir, Abdelilah; Mudd, David; Yazdanpanah, Mehdi; Dobrokhotov, Vladimir; Sumanasekera, Gamini; Cohn, Robert
2008-03-01
In this work, we report a recent experimental study of high emission current densities exceeding 10mA/cm^2 and breakdown electric field lower than 5Volts/μm from novel cold cathodes such as conical shaped carbon nanopipettes (CNP). CNP were grown by CVD on Pt wire and have apex as sharp as 10nm with length between 3-6μm. The emission experiments were conducted under vacuum in a scanning electron microscope for individual CNP and in a dedicated chamber for bulk samples. CNP's conical bases and low density contribute significantly to the reduction of the screening effect and to the field emission enhancement. The experimental value for the field enhancement factor, γ, was about 867. Comparing emission results taken from CNP and aligned multiwall carbon nanotubes (MWNT) show that the ratio between γCNP and γMWNT is ˜1.6 which contributes to the reduction of screening effect. The emission from multilayers of graphene was also studied. High emission current (20μA) demonstrates promising emission properties of graphene.
Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.
Miller, Bo E; Takashima, Yuzuru
2016-12-26
Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.
Radar and photometric measurements of an intense type A red aurora
NASA Technical Reports Server (NTRS)
Robinson, R. M.; Mende, S. B.; Vondrak, R. R.; Kozyra, J. U.; Nagy, A. F.
1985-01-01
On the evening of March 5, 1981, an intense, type A red aurora appeared over southern Alaska. Radar and photometric measurements were made of the aurora from the Chatanika radar site. The line of sight intensity of the 630.0-nm emissions exceeded 150 kR and was accompanied by enhanced emissions at 486.1 and 427.8 nm. The Chatanika radar measured electron densities of 10 to the 6th per cu cm and electron temperatures of 6000 K at an altitude of 400 km and an invariant latitude of 59 deg in association with the aurora. Comparison of optical and radar measurements indicated that the 630.0-nm emissions were produced to a large degree by thermal excitation of O(1D) in the region of high electron temperatures and densities. Model calculations indicate that the observed density and temperature enhancements and the related optical emissions were the results of a relatively short duration (5-10 min) pulse of precipitating, low-energy (about 30 eV) electrons. Whereas conventional stable auroral red arcs are associated with a gradual decrease in ring current energy density during the recovery phase of a magnetic storm, the type A red aurora may be produced by impulsive ring current energy loss during the main phase.
Interaction of high voltage surfaces with the space plasma. [solar arrays
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Tests were conducted using plasma densities of approximately 10 to the 5th power - 10 to the 6th power/cu cm. Insulating materials tested were polyimide (Dapton), mica and glass. Surface-area effects were found to be substantially reduced from those previously reported at lower plasma densities. The difference in typical plasma density was felt to be the major cause of this change, although a saturation effect may also be involved. At the 10 to the 5th power/cu cm plasma density range, surface effects on collection current appear limited to roughly 1 cm from the hole. A factor of several reduction of collected current was obtained with both surface scribing and a 2 x 2 cm conducting mesh. It appears possible that the effects of surface treatment might be more significant at lower plasma densities. Effects of repeated tests were also noted, with current collection decreasing with successive tests. Depending on the materials involved, the effect appeared due to either the smoothing of the inside of the insulator hole or the sputtering of insulator on the exposed conductor. A general conclusion was made from a variety of observations, that the generation of vapor is a major factor in the enhancement of collected current.
Power enhancement of piezoelectric transformers by adding heat transfer equipment.
Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung
2012-10-01
It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less
NASA Astrophysics Data System (ADS)
Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.
2015-07-01
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
A study of weak anisotropy in electron pressure in the tail current sheet
NASA Technical Reports Server (NTRS)
Lee, D.-Y.; Voigt, G.-H.
1995-01-01
We adopt a magnetotail model with stretched field lines where ion motions are generally nonadiabatic and where it is assumed that the pressure anisotropy resides only in the electron pressure tensor. We show that the magnetic field lines with p(perpendicular) greater than p(parallel) are less stretched than the corresponding field lines in the isotropic model. For p(parallel) greater than p(perpendicular), the magnetic field lines become more and more stretched as the anisotropy approaches the marginal firehose limit, p(parallel) = p(perpendicular) + B(exp 2)/mu(sub 0). We also show that the tail current density is highly enhanced at the firehose limit, a situation that might be subject to a microscopic instability. However, we emphasize that the enhancement in the current density is notable only near the center of the tail current sheet (z = 0). Thus it remains unclear whether any microscopic instability can significantly alter the global magnetic field configuration of the tail. By comparing the radius of the field-line curvature at z = 0 with the particle's gyroradius, we suspect that even the conventional adiabatic description of electrons may become questionable very close to the marginal firehose limit.
Cavity enhanced eigenmode multiplexing for volume holographic data storage
NASA Astrophysics Data System (ADS)
Miller, Bo E.; Takashima, Yuzuru
2017-08-01
Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing
2017-08-14
Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.
High temperature superconductor materials and applications
NASA Technical Reports Server (NTRS)
Doane, George B., III.; Banks, Curtis; Golben, John
1990-01-01
Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.
Wang, Yongcheng; Tang, Jing; Zhou, Tong; Da, Peimei; Li, Jun; Kong, Biao; Yang, Zhongqin; Zheng, Gengfeng
2014-12-10
A facile, solution method for reversible tuning of oxygen vacancies inside TiO2 nanowires, in which the reducing treatment of TiO2 by NaBH4 leads to 2.4-fold increase of photocurrent density, compared to pristine TiO2 nanowires, is reported. Subsequent oxidizing treatment using KMnO4 or annealing in air can reset the photocurrent density to the original values. The incident photo-to-current conversion efficiency measurement exhibits that the reduced TiO2 nanowires present both enhanced photoactivity in both UV and visible regions. Density functional theory calculations reveal that the oxygen vacancies in the reduced TiO2 cause defect states in the band structure and result in enhanced carrier density and conductivity. In addition, the enhanced solar energy-driven photoelectrochemical conversion allows real-time, sensitive chemical probing of living cells that are directly grown on the TiO2 nanowire photoanodes. As proofs-of-concept, after functionalized with horseradish peroxidase (HRP) on the surface, the reduced TiO2 NWs demonstrate sensitive, real-time monitoring of the H2O2 levels in several distinctive living cell lines, with the lowest detectable H2O2 concentration of 7.7 nM. This reversible tuning of oxygen vacancies suggests a facile means for transition metal oxides, with enhanced photoconversion activity and electrochemical sensitivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Aziz, Nur Suhaili Abd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf
2014-02-01
We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.
Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.
Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei
2016-09-28
The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.
Critical current density and mechanism of vortex pinning in K xFe 2-ySe₂ doped with S
Lei, Hechang; Petrovic, C.
2011-08-15
We report the critical current density J c in K xFe 2-ySe 2-zS z crystals. The J c can be enhanced significantly with optimal S doping (z=0.99). For K 0.70(7)Fe 1.55(7)Se 1.01(2)S 0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits
NASA Astrophysics Data System (ADS)
Lim, Yu Dian; Grapov, Dmitry; Hu, Liangxing; Kong, Qinyu; Tay, Beng Kang; Labunov, Vladimir; Miao, Jianmin; Coquet, Philippe; Aditya, Sheel
2018-02-01
It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Liuan; Zhang, Tong; Liu, Xinke; Ao, Jin-Ping
2018-01-01
In this study, we evaluated the pH sensitivity enhancement of AlGaN/GaN ion-sensitive field-effect transistor (ISFET) coated by Al2O3 film on the sensing area utilizing atomic layer deposition (ALD). The presence of the Al2O3 film leads to an obvious reduction of surface state density as well as leakage current in the solution, which is beneficial for improving the stability of the ISFET. Furthermore, the sensitivity of the ISFET was improved to 57.8 mV/pH, which is very close to the Nernstian limit at room temperature. The pH sensitivity enhancement can be explained by the higher density of sensing site as well as better surface hydrophilicity.
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.
Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M
2006-04-15
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.
Vortices in high-performance high-temperature superconductors
Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; ...
2016-09-21
The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. In this paper, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Finally, we discuss an emerging new paradigm of criticalmore » current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg–Landau approach to simulating vortex dynamics.« less
Ulyanova, Yevgenia; Babanova, Sofia; Pinchon, Erica; Matanovic, Ivana; Singhal, Sameer; Atanassov, Plamen
2014-07-14
The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement of the electrode performance. For Lac cathodes tested in solution it was established that PBSE-Lac and PBSE-Syr-Lac modified cathodes demonstrated approximately 6 and 9 times increase in current density, respectively, compared to physically adsorbed and randomly oriented Lac cathodes. Further testing in solution utilizing BOx showed an even higher increase in achievable current densities, thus BOx was chosen for additional testing in air-breathing mode. In subsequent air-breathing experiments the incorporation of PBSE and Syr with BOx resulted in current densities of 0.65 ± 0.1 mA cm(-2); 2.5 times higher when compared to an unmodified BOx cathode. A fully tethered/oriented BOx cathode was combined with a NAD-dependent Glucose Dehydrogenase anode for the fabrication of a complete enzymatic membraneless fuel cell. A maximum power of 1.03 ± 0.06 mW cm(-2) was recorded for the complete fuel cell. The observed significant enhancement in the performance of "oriented" cathodes was a result of proper enzyme orientation, leading to facilitated enzyme/electrode interface interactions.
NASA Astrophysics Data System (ADS)
Edmondson, J. K.; Lynch, B. J.
2017-11-01
We analyze a series of three-dimensional magnetohydrodynamic numerical simulations of magnetic reconnection in a model solar corona to study the effect of the guide-field component on quasi-steady-state interchange reconnection in a pseudostreamer arcade configuration. This work extends the analysis of Edmondson et al. by quantifying the mass density enhancement coherency scale in the current sheet associated with magnetic island formation during the nonlinear phase of plasmoid-unstable reconnection. We compare the results of four simulations of a zero, weak, moderate, and a strong guide field, {B}{GF}/{B}0=\\{0.0,0.1,0.5,1.0\\}, to quantify the plasmoid density enhancement’s longitudinal and transverse coherency scales as a function of the guide-field strength. We derive these coherency scales from autocorrelation and wavelet analyses, and demonstrate how these scales may be used to interpret the density enhancement fluctuation’s Fourier power spectra in terms of a structure formation range, an energy continuation range, and an inertial range—each population with a distinct spectral slope. We discuss the simulation results in the context of solar and heliospheric observations of pseudostreamer solar wind outflow and possible signatures of reconnection-generated structure.
Wang, Yue; Duan, J-H; Hingtgen, C M; Nicol, G D
2010-04-01
Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates conversion of active Ras-GTP to inactive Ras-GDP. Sensory neurons with reduced levels of neurofibromin likely have augmented Ras-GTP activity. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/⁻) exhibited greater excitability compared with wild-type mice. To determine the mechanism giving rise to the augmented excitability, differences in specific membrane currents were examined. Consistent with the enhanced excitability of Nf1+/⁻ neurons, peak current densities of both tetrodotoxin-resistant sodium current (TTX-R I(Na)) and TTX-sensitive (TTX-S) I(Na) were significantly larger in Nf1+/⁻ than in wild-type neurons. Although the voltages for half-maximal activation (V(0.5)) were not different, there was a significant depolarizing shift in the V(0.5) for steady-state inactivation of both TTX-R and TTX-S I(Na) in Nf1+/⁻ neurons. In addition, levels of persistent I(Na) were significantly larger in Nf1+/⁻ neurons. Neither delayed rectifier nor A-type potassium currents were altered in Nf1+/⁻ neurons. These results demonstrate that enhanced production of action potentials in Nf1+/⁻ neurons results, in part, from larger current densities and a depolarized voltage dependence of steady-state inactivation for I(Na) that potentially leads to a greater availability of sodium channels at voltages near the firing threshold for the action potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn
2015-05-07
BiFeO{sub 3} multiferroic ceramics were modified by introducing (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} to form solid solutions. The single phase structure was easy to be obtained in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x = 0.2, 0.25, 0.3, and 0.4) solid solutions. Rietveld refinement of X-ray diffraction data revealed a transition from rhombohedral R3c (x = 0.2, 0.25, and 0.3) to orthorhombic Pnma (x = 0.4). Current density-field (J-E) characteristics indicated that the leakage current density was reduced by three orders of magnitude in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics. Both the ferroelectricity and magnetic properties were significantly enhanced in the presentmore » solid solutions. P-E hysteresis loop measurements with dynamic leakage current compensation methods showed the significantly enhanced ferroelectric properties for x = 0.25 and 0.3 and the paraelectric behavior for x = 0.4. The best ferromagnetic characteristics were achieved in the composition of x = 0.25, where the saturated M-H loop was determined with M{sub r} = 34.8 emu/mol. The improvement of ferroelectricity was mainly due to the suppressed leakage current, and the enhanced magnetism originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}, which destroyed its previous spiral structure to allow the appearance of a macroscopic magnetization.« less
Method of producing improved microstructure and properties for ceramic superconductors
Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.
1996-01-01
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.
1996-06-11
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.
Modulated spin orbit torque in a Pt/Co/Pt/YIG multilayer by nonequilibrium proximity effect
NASA Astrophysics Data System (ADS)
Liu, Q. B.; Meng, K. K.; Cai, Y. Z.; Qian, X. H.; Wu, Y. C.; Zheng, S. Q.; Jiang, Y.
2018-01-01
We have compared the spin orbit torque (SOT) induced magnetization switching in Pt/Co/Pt/Y3Fe5O12 (YIG) and Pt/Co/Pt/SiO2 multilayers. The critical switching current in Pt/Co/Pt/YIG is almost half of that in Pt/Co/Pt/SiO2. Through harmonic measurements, we demonstrated the enhancement of the effective spin Hall angle in Pt/Co/Pt/YIG. The increased efficiency of SOT is ascribed to the nonequilibrium proximity effect at the Pt/YIG interface, which suppresses the spin current reflection and enhances the effective spin accumulation at the Co/Pt interface. Our method can effectively reduce the switching current density and provide another way to modulate SOT.
Niu, Shanshan; Wang, Zhiyu; Yu, Mingliang; Yu, Mengzhou; Xiu, Luyang; Wang, Song; Wu, Xianhong; Qiu, Jieshan
2018-04-24
Powerful yet thinner lithium-ion batteries (LIBs) are eagerly desired to meet the practical demands of electric vehicles and portable electronic devices. However, the use of soft carbon materials in current electrode design to improve the electrode conductivity and stability does not afford high volumetric capacity due to their low density and capacity for lithium storage. Herein, we report a strategy leveraging the MXene with superior conductivity and density to soft carbon as matrix and additive material for comprehensively enhancing the power capability, lifespan, and volumetric capacity of conversion-type anode. A kinetics favorable 2D nanohybrid with high conductivity, compact density, accumulated pseudocapacitance, and diffusion-controlled behavior is fabricated by coupling Ti 3 C 2 MXene with high-density molybdenum carbide for fast lithium storage over 300 cycles with high capacities. By replacing the carbonaceous conductive agent with Ti 3 C 2 MXene, the electrodes with better conductivity and dramatically reduced thickens could be further manufactured to achieve 37-40% improvement in capacity retention and ultra-long life of 5500 cycles with extremely slow capacity loss of 0.002% per cycle at high current rates. Ultrahigh volumetric capacity of 2460 mAh cm -3 could be attained by such MXene-based electrodes, highlighting the great promise of MXene in the development of high-performance LIBs.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.
2015-12-01
Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.
Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites
NASA Astrophysics Data System (ADS)
Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.
2018-05-01
A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.
Kim, Byoungsu; Takechi, Kensuke; Ma, Sichao; Verma, Sumit; Fu, Shiqi; Desai, Amit; Pawate, Ashtamurthy S; Mizuno, Fuminori; Kenis, Paul J A
2017-09-22
A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent progress in supercapacitors: from materials design to system construction.
Wang, Yonggang; Xia, Yongyao
2013-10-04
Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, Dan; Brambila, Rigo E.; Cengher, Mirela
The ECH Group at DIII-D has installed in-house engineered, FPGA-based, high voltage reference waveform generators on its gyrotron control systems to enhance the capabilities of the systems and replace obsolete equipment. The new hardware, named D-Wavegen, outputs 16-bit signals every microsecond and can respond to events and anomalies in real-time. These generators have been reliably pausing gyrotron rf output during periods of DIII-D plasma density that exceed the fault density trip level and restarting the rf output if the density falls below the trip level. While tightly monitoring gyrotron body current and internal pressure, D-Wavegen has also been reliably restarting,more » in a little over 10ms, gyrotrons that spontaneously ceased rf generation.« less
Ponce, Dan; Brambila, Rigo E.; Cengher, Mirela; ...
2017-10-19
The ECH Group at DIII-D has installed in-house engineered, FPGA-based, high voltage reference waveform generators on its gyrotron control systems to enhance the capabilities of the systems and replace obsolete equipment. The new hardware, named D-Wavegen, outputs 16-bit signals every microsecond and can respond to events and anomalies in real-time. These generators have been reliably pausing gyrotron rf output during periods of DIII-D plasma density that exceed the fault density trip level and restarting the rf output if the density falls below the trip level. While tightly monitoring gyrotron body current and internal pressure, D-Wavegen has also been reliably restarting,more » in a little over 10ms, gyrotrons that spontaneously ceased rf generation.« less
Yoon, Jun-Young; Jeong, Sunho; Lee, Sun Sook; Kim, Yun Ho; Ka, Jae-Won; Yi, Mi Hye; Jang, Kwang-Suk
2013-06-12
We studied a low-temperature-annealed sol-gel-derived alumina interlayer between the organic semiconductor and the organic gate insulator for high-performance organic thin-film transistors. The alumina interlayer was deposited on the polyimide gate insulator by a simple spin-coating and 200 °C-annealing process. The leakage current density decreased by the interlayer deposition: at 1 MV/cm, the leakage current densities of the polyimide and the alumina/polyimide gate insulators were 7.64 × 10(-7) and 3.01 × 10(-9) A/cm(2), respectively. For the first time, enhancement of the organic thin-film transistor performance by introduction of an inorganic interlayer between the organic semiconductor and the organic gate insulator was demonstrated: by introducing the interlayer, the field-effect mobility of the solution-processed organic thin-film transistor increased from 0.35 ± 0.15 to 1.35 ± 0.28 cm(2)/V·s. Our results suggest that inorganic interlayer deposition could be a simple and efficient surface treatment of organic gate insulators for enhancing the performance of solution-processed organic thin-film transistors.
Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou
2018-07-01
Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang
2017-01-01
Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. PMID:28272403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrario, Lorenzo, E-mail: lorenzo.ferrario@polimi.it; Little, Justin M., E-mail: jml@princeton.edu; Choueiri, Edgar Y., E-mail: choueiri@princeton.edu
The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application ofmore » the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.« less
NASA Astrophysics Data System (ADS)
Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.
1990-12-01
An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.
Increasing the Extracted Beam Current Density in Ion Thrusters
NASA Astrophysics Data System (ADS)
Arthur, Neil Anderson
Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam area to increase while maintaining a fixed span-to-gap. The central stalk also provides additional surface area for electron collection. Circumventing the anode area limitation, the annular ion engine can operate closer to the Child-Langmuir limit as compared to a conventional cylindrical ion thruster. Preliminary discharge characterization of a 65 cm annular ion engine shows >90% uniformity and validates the scalability of the technology. Operating beyond the Child-Langmuir limit would allow for even larger performance gains. This classic law does not consider the ion injection velocity into the grid sheath. The Child-Langmuir limit shifts towards higher current as the ion velocity increases. Ion drift velocity can be created by enhancing the axially-directed electric field. One method for creating this field is to modify the plasma potential distribution. This can be accomplished by biasing individual magnetic cusps, through isolated, conformal electrodes placed on each magnet ring. Experiments on a 15 cm ion thruster have shown that plasma potential in the bulk can be modified by as much as 5 V and establish ion drift towards the grid plane. Increases in ion current density at the grid by up to 20% are demonstrated. Performance implications are also considered, and increases in simulated beam current of 15% and decreases in discharge losses of 5% are observed. Electron density measurements within the magnetic cusps revealed, surprisingly, as cusp current draw increases, the leak width does not change. This suggests that instead of increasing the electron collection area, cusp bias enhances electron mobility along field lines.
The electrons and ion characteristics of Saturn's plasma disk inside the Enceladus orbit
NASA Astrophysics Data System (ADS)
Morooka, Michiko; Wahlund, Jan-Erik; Ye, Sheng-Yi; Kurth, William; Persoon, Ann; Holmberg, Mika
2017-04-01
Cassini observations revealed that Saturn's icy moon Enceladus and surrounding E ring are the significant plasma source of the magnetosphere. However, the observations sometimes show the electron density enhancement even inside the Enceladus orbiting distance, 4RS. Further plasma contribution from the inner rings, the G and the F rings and main A ring are the natural candidate as an additional plasma source. The Cassini/RPWS Langmuir Probe (LP) measurement provides the characteristics of the electrons and ions independently in a cold dense plasma. The observations near the center of the E ring showed that the ion density being larger than the electron density, indicating that there is additional particle as a negative charge carrier. Those are the small nm and μm sized dust grains that are negatively charged by the electron attachments. The faint F and G rings, located at R=2RS and 3RS, consist of small grains and similar electron/ion density discrepancies can be expected. We will show different types of the LP observations when Cassini traveled the equator region of the plasma disk down to 3RS. One with the electron density increasing inside 4RS, and another with the electron density decreasing inside 4RS. During the orbit 016 (2005 doy-284/285), the electron density continued to increase toward the planet. On the other hand, the ion currents, the LP measured currents from the negative bias voltage, turn to decreasing inside 4RS, implying the density decrease of the ions. By comparing the observed LP ion current characteristics and the modeled values using the obtained electron density, we found that the characteristic ion mass can be several times larger than the water ions (AMU=18) that we expected in this region. During the orbit 015 (2005 doy-266/267), on the other hand, the LP observed sharp electron density drop near 3RS. The dust signals from the RPWS antenna showed the density enhancement of the μm sized grains coincide the electron density drop and we have estimated that the characteristic ion mass can exceed AMU=100. Throughout the whole Cassini observation near the equator inside 4RS, we didn't find the case with the ion densities larger than the electron densities as were found near the E ring and the Enceladus plume. We suggest that Saturn's plasmadisk inside the Enceladus orbit is dynamic in ion characteristics where the water molecules coagulate and grow into a small icy dust grains. In the presentation we discuss the relationship between the electron/ion density and the density of the nm and μm sized grains.
NASA Astrophysics Data System (ADS)
Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi
2017-09-01
The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.
Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Young, Matthew Garett
The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.
Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...
2015-07-01
Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less
Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling
NASA Astrophysics Data System (ADS)
Je, Soong-Geun; Rojas-Sánchez, Juan-Carlos; Pham, Thai Ha; Vallobra, Pierre; Malinowski, Gregory; Lacour, Daniel; Fache, Thibaud; Cyrille, Marie-Claire; Kim, Dae-Yun; Choe, Sug-Bong; Belmeguenai, Mohamed; Hehn, Michel; Mangin, Stéphane; Gaudin, Gilles; Boulle, Olivier
2018-02-01
We investigate spin-orbit torque (SOT)-induced switching in rare-earth-transition metal ferrimagnetic alloys using W/CoTb bilayers. The switching current is found to vary continuously with the alloy concentration, and no reduction in the switching current is observed at the magnetic compensation point despite a very large SOT efficiency. A model based on coupled Landau-Lifschitz-Gilbert (LLG) equations shows that the switching current density scales with the effective perpendicular anisotropy which does not exhibit strong reduction at the magnetic compensation, explaining the behavior of the switching current density. This model also suggests that conventional SOT effective field measurements do not allow one to conclude whether the spins are transferred to one sublattice or just simply to the net magnetization. The effective spin Hall angle measurement shows an enhancement of the spin Hall angle with the Tb concentration which suggests an additional SOT contribution from the rare earth Tb atoms.
NASA Astrophysics Data System (ADS)
Chee, Sang-Soo; Lee, Jong-Hyun
2014-05-01
A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.
NASA Astrophysics Data System (ADS)
Yang, Lei; Paulsson, J. J. P.; Wedlund, C. Simon; Odelstad, E.; Edberg, N. J. T.; Koenders, C.; Eriksson, A. I.; Miloch, W. J.
2016-11-01
In 2014 September, as Rosetta transitioned to close bound orbits at 30 km from comet 67P/Churyumov-Gerasimenko, the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) data showed large systematic fluctuations in both the spacecraft potential and the collected currents. We analyse the potential bias sweeps from RPC-LAP, from which we extract three sets of parameters: (1) knee potential, that we relate to the spacecraft potential, (2) the ion attraction current, which is composed of the photoelectron emission current from the probe as well as contributions from local ions, secondary emission, and low-energy electrons, and (3) an electron current whose variation is, in turn, an estimate of the electron density variation. We study the evolution of these parameters between 4 and 3.2 au in heliocentric and cometocentric frames. We find on September 9 a transition into a high-density plasma region characterized by increased knee potential fluctuations and plasma currents to the probe. In conjunction with previous studies, the early cometary plasma can be seen as composed of two regions: an outer region characterized by solar wind plasma, and small quantities of pick-up ions, and an inner region with enhanced plasma densities. This conclusion is in agreement with other RPC instruments such as RPC-MAG, RPC-IES and RPC-ICA, and numerical simulations.
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro
2017-01-01
Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.
Flux pinning in nanoparticle doped MgB 2/Cu tapes
NASA Astrophysics Data System (ADS)
Babić, E.; Kušević, I.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2007-09-01
The irreversibility fields Birr and critical current densities Jc of undoped and Si and SiC nanoparticle doped (5, 10 and 20 wt%) MgB2 tapes were measured in the temperature (T) range 2-38 K and in magnetic fields B ⩽ 16 T. Whereas Birr of undoped tapes varies smoothly with T, those of doped tapes show a change in slope around a crossover field Bcr which increases with nanoparticle content and also depends on their type. This indicates matching effect in vortex pinning, probably associated with Mg2Si nanoprecipitates formed during heat treatment. Indeed, Birr of doped tapes was enhanced in respect to that of undoped one with the highest enhancement for Birr ≈ Bcr, but the enhancement remained high ≈1.4 even for Birr ≫ Bcr (low temperatures). The variations of Jc and the pinning force density Fp = JcB with B and T support the above findings.
NASA Astrophysics Data System (ADS)
Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi
2016-09-01
Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).
Garcia, A M; Frank, E H; Grimshaw, P E; Grodzinsky, A J
1996-09-15
We have studied the contributions of diffusion, fluid flow and electrical migration to molecular transport through adult articular cartilage explants using neutral and charged solutes that were either radiolabeled (3H2O, [35S]sulfate, [3H]thymidine, [3H]raffinose, and a synthetic matrix metalloproteinase inhibitor) or fluorescently tagged (NSPA and Lissamine-dextran). In order to induce fluid flow within the cartilage matrix without mechanical deformation, electric current densities were applied across cartilage disks. These currents produced electroosmotic fluid velocities of 1-2 microns/s, magnitudes that have been reported to exist during joint loading in vivo. This fluid convection enhanced neutral solute flux relative to passive diffusion alone by a factor that increased with the size of the solute. While the enhancement factor for 3H2O was 2.3-fold, that for [3H]raffinose (594 Da) and similar sized neutral solutes was 10-fold, suggesting that the effect of fluid flow is important even for small solutes. The largest enhancement (25-fold) was seen for the neutral 10-kDa Lissamine-dextran, confirming that fluid convection is most important for large solutes. We also studied the electrophoretic contribution to solute flux, which is relevant to the presence of intratissue streaming potentials induced during loading in vivo. Using the negatively charged [35S]sulfate ion with a range of current densities, as much as a 10-fold enhancement in flux was observed. Values for the intrinsic transport properties of the solutes (e.g., diffusivity, electrical mobility, hydrodynamic hindrance factor) can be obtained from the data.
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Zhang, Zhi; Ren, Yuqin; Ran, Wei; Chen, Xinqi; Wu, Jinsong; Gao, Faming
2015-07-01
In this work, a polyaniline coated hierarchical porous carbon (HPC) composite (PANI@HPC) is developed using a vapor deposition polymerization technique. The as synthesized composite is applied as the supercapacitor electrode material, and presents a high specific capacitance of 531 F g-1 at current density of 0.5 A g-1 and superior cycling stability of 96.1% (after 10,000 charge-discharge cycles at current density of 10 A g-1). This can be attributed to the maximized synergistic effect of PANI and HPC. Furthermore, an aqueous symmetric supercapacitor device based on PANI@HPC is fabricated, demonstrating a high specific energy of 17.3 Wh kg-1.
Nanoporous graphene obtained by hydrothermal process in H2O2 and its application for supercapacitors
NASA Astrophysics Data System (ADS)
Lv, Jinlong; Liang, Tongxiang
2016-08-01
Nanohole graphene oxide (NHGO) was obtained in a homogeneous aqueous mixture of graphene oxide (GO) and H2O2 at 120 °C. Supercapacitors were fabricated as the electrode material by using NHGO. A specific capacitance of 240.1 F g-1 was obtained at a current density of 1 A g-1 in 6 m KOH electrolyte and specific capacitance remained 193.6 F g-1 at the current density of 20 A g-1. This was attributed to reducing the inner space between the double-layers, enhanced ion diffusion and large specific surface area. Supercapacitor prepared with NHGO electrodes also exhibited an excellent cycle stability.
Giant increase in critical current density of K xFe 2-ySe₂ single crystals
Lei, Hechang; Petrovic, C.
2011-12-28
The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).
Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...
2016-05-26
Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less
Enhancement of the anti-damping spin torque efficacy of platinum by interface modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Minh-Hai; Pai, Chi-Feng; Nguyen, Kayla X.
2015-06-01
We report a strong enhancement of the efficacy of the spin Hall effect (SHE) of Pt for exerting anti-damping spin torque on an adjacent ferromagnetic layer by the insertion of ≈0.5 nm layer of Hf between a Pt film and a thin, ≤2 nm, Fe{sub 60}Co{sub 20}B{sub 20} ferromagnetic layer. This enhancement is quantified by measurement of the switching current density when the ferromagnetic layer is the free electrode in a magnetic tunnel junction. The results are explained as the suppression of spin pumping through a substantial decrease in the effective spin-mixing conductance of the interface, but without a concomitant reduction ofmore » the ferromagnet's absorption of the SHE generated spin current.« less
Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin
2017-09-26
The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.
NASA Astrophysics Data System (ADS)
Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert
2013-08-01
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
NASA Astrophysics Data System (ADS)
Lin, H. C.; Yang, T.; Sharifi, H.; Kim, S. K.; Xuan, Y.; Shen, T.; Mohammadi, S.; Ye, P. D.
2007-11-01
Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with ex situ atomic-layer-deposited Al2O3 as gate dielectrics are studied. Maximum drain currents of 211 and 263mA/mm are obtained for 1μm gate-length Al2O3 MOS-HEMTs with 3 and 6nm thick gate oxide, respectively. C-V characteristic shows negligible hysteresis and frequency dispersion. The gate leakage current density of the MOS-HEMTs is 3-5 orders of magnitude lower than the conventional HEMTs under similar bias conditions. The drain current on-off ratio of MOS-HEMTs is ˜3×103 with a subthreshold swing of 90mV/decade. A maximum cutoff frequency (fT) of 27.3GHz and maximum oscillation frequency (fmax) of 39.9GHz and an effective channel mobility of 4250cm2/Vs are measured for the 1μm gate-length Al2O3 MOS-HEMT with 6nm gate oxide. Hooge's constant measured by low frequency noise spectral density characterization is 3.7×10-5 for the same device.
Knowing the dense plasma focus - The coming of age (of the PF) with broad-ranging scaling laws
NASA Astrophysics Data System (ADS)
Saw, S. H.; Lee, S.
2017-03-01
The dense plasma focus is blessed not only with copious multi-radiations ranging from electron and ion beams, x-rays both soft and hard, fusion neutrons D-D and D-T but also with the property of enhanced compression from radiative collapse leading to HED (high energy density) states. The Lee code has been used in extensive systematic numerical experiments tied to reality through fitting with measured current waveforms and verified through comparison of measured and computed yields and measurements of multi-radiation. The studies have led to establishment of scaling laws with respect to storage energy, discharge current and pinch currents for fusion neutrons, characteristic soft x-rays, all-line radiation and ion beams. These are summarized here together with a first-time presentation of a scaling law of radiatively enhanced compression as a function of atomic number of operational gas. This paper emphasizes that such a broad range of scaling laws signals the coming of age of the DPF and presents a reference platform for planning the many potential applications such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes, imaging and energy and high energy density (HED).
Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers
NASA Astrophysics Data System (ADS)
Liu, Jun; Goswami, Ankur; Jiang, Keren; Khan, Faheem; Kim, Seokbeom; McGee, Ryan; Li, Zhi; Hu, Zhiyu; Lee, Jungchul; Thundat, Thomas
2018-02-01
The direct conversion of mechanical energy into electricity by nanomaterial-based devices offers potential for green energy harvesting1-3. A conventional triboelectric nanogenerator converts frictional energy into electricity by producing alternating current (a.c.) triboelectricity. However, this approach is limited by low current density and the need for rectification2. Here, we show that continuous direct-current (d.c.) with a maximum density of 106 A m-2 can be directly generated by a sliding Schottky nanocontact without the application of an external voltage. We demonstrate this by sliding a conductive-atomic force microscope tip on a thin film of molybdenum disulfide (MoS2). Finite element simulation reveals that the anomalously high current density can be attributed to the non-equilibrium carrier transport phenomenon enhanced by the strong local electrical field (105-106 V m-2) at the conductive nanoscale tip4. We hypothesize that the charge transport may be induced by electronic excitation under friction, and the nanoscale current-voltage spectra analysis indicates that the rectifying Schottky barrier at the tip-sample interface plays a critical role in efficient d.c. energy harvesting. This concept is scalable when combined with microfabricated or contact surface modified electrodes, which makes it promising for efficient d.c. triboelectricity generation.
NASA Astrophysics Data System (ADS)
Mohebpour, Mohammad Ali; Saffari, Mohaddeseh; Soleimani, Hamid Rahimpour; Tagani, Meysam Bagheri
2018-03-01
To be able to increase the efficiency of perovskite solar cells which is one of the most substantial challenges ahead in photovoltaic industry, the structural and optical properties of perovskite CH3NH3PbI3-xBrx for values x = 1-3 have been studied employing density functional theory (DFT). Using the optical constants extracted from DFT calculations, the amount of light reflectance and ideal current density of a simulated single-junction perovskite solar cell have been investigated. The results of DFT calculations indicate that adding halogen bromide to CH3NH3PbI3 compound causes the relocation of energy bands in band structure which its consequence is increasing the bandgap. In addition, the effect of increasing Br in this structure can be seen as a reduction in lattice constant, refractive index, extinction and absorption coefficient. As well, results of the simulation suggest a significant current density enhancement as much as 22% can be achieved by an optimized array of Platinum nanoparticles that is remarkable. This plan is able to be a prelude for accomplishment of solar cells with higher energy conversion efficiency.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin
2017-02-01
In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-01-01
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672
Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.
Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin
2017-02-20
Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO 3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.
NASA Astrophysics Data System (ADS)
Togano, Kazumasa; Gao, Zhaoshun; Matsumoto, Akiyoshi; Kumakura, Hiroaki
2013-11-01
We report that the transport critical current density Jc of ex situ powder-in-tube (PIT) processed (Ba, K)Fe2As2 (Ba-122) tapes can be significantly enhanced by applying uniaxial cold pressing at the final stage of deformation. The tapes were prepared by packing high quality precursor powder into a Ag tube, cycles of rolling and intermediate annealing, and pressing followed by the final heat treatment for sintering. The Jc values in applied magnetic fields were increased by almost one order of magnitude compared to the tapes processed without pressing, exceeding 104 A cm-2 at 4.2 K. We achieved the highest Jc (at 4.2 K and 10 T) of 2.1×104 A cm-2 among PIT-processed Fe-based wires and tapes reported so far. The Jc-H curves measured at higher temperatures maintain small field dependence up to around 20 K, suggesting that these tapes are promising for applications at higher temperatures as well as at liquid helium temperature. The microstructure investigations reveal that there are two possible causes of the large Jc enhancement by pressing: one is densification and the other is the change of crack structure. Optimization of processing parameters such as the reduction ratio of rolling and pressing is expected to yield further Jc enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chenhong; University of the Chinese Academy of Sciences, Beijing 100049; Liu, Zhen
2016-08-21
The energy storage performance and charge-discharge properties of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density p{sub max} was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm{sup 3}. Moreover, the pulse power properties did not show degradation until 1500 timesmore » of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.« less
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2017-06-01
The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.
Tunability enhanced electromagnetic wiggler
Schlueter, Ross D.; Deis, Gary A.
1992-01-01
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.
NASA Astrophysics Data System (ADS)
Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.
2018-04-01
Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.
Acoustic plane wave preferential orientation of metal oxide superconducting materials
Tolt, Thomas L.; Poeppel, Roger B.
1991-01-01
A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.
Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang
2017-03-29
Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.
The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations
NASA Astrophysics Data System (ADS)
Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.
2014-12-01
Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
NASA Astrophysics Data System (ADS)
Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui
2014-02-01
A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
NASA Astrophysics Data System (ADS)
Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.
2015-11-01
Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity gradient.
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
NASA Astrophysics Data System (ADS)
Lyu, Letian; Jaswal, Perveshwer; Xu, Guangyu
2018-03-01
Graphene field-effect transistors (GFET) hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR) and graphene sheets (GS) show comparable sensing signals to each other when gated at 1011 - 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.
Le, Khai Q; John, Sajeev
2014-01-13
We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.
Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng
2017-11-23
Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g -1 at current density of 0.5 A g -1 , and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg -1 at power density of 500.00 W kg -1 , and a maximum power density of 20.14 kW kg -1 at energy density of 46.8 Wh kg -1 . We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.
The impact of exospheric neutral dynamics on ring current decay
NASA Astrophysics Data System (ADS)
Ilie, R.; Liemohn, M. W.; Skoug, R. M.; Funsten, H. O.; Gruntman, M.; Bailey, J. J.; Toth, G.
2015-12-01
The geocorona plays an important role in the energy budget of the Earth's inner magnetosphere since charge exchange of energetic ions with exospheric neutrals makes the exosphere act as an energy sink for ring current particles. Long-term ring current decay following a magnetic storm is mainly due to these electron transfer reactions, leading to the formation energetic neutral atoms (ENAs) that leave the ring current system on ballistic trajectories. The number of ENAs emitted from a given region of space depends on several factors, such as the energy and species of the energetic ion population in that region and the density of the neutral gas with which the ions undergo charge exchange. However, the density and structure of the exosphere are strongly dependent on changes in atmospheric temperature and density as well as charge exchange with the ions of plasmaspheric origin, which depletes the geocorona (by having a neutral removed from the system). Moreover, the radiation pressure exerted by solar far-ultraviolet photons pushes the geocoronal hydrogen away from the Earth in an anti-sunward direction to form a tail of neutral hydrogen. TWINS ENA images provide a direct measurement of these ENA losses and therefore insight into the dynamics of the ring current decay through interactions with the geocorona. We assess the influence of geocoronal neutrals on ring current formation and decay by analysis of the predicted ENA emissions using 6 different geocoronal models and simulations from the HEIDI ring current model during storm time. Comparison with TWINS ENA images shows that the location of the peak ENA enhancements is highly dependent on the distribution of geocoronal hydrogen density. We show that the neutral dynamics has a strong influence on the time evolution of the ring current populations as well as on the formation of energetic neutral atoms.
Energy content of stormtime ring current from phase space mapping simulations
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.
1993-01-01
We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ
Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio ismore » suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.« less
ELF exposure from mobile and cordless phones for the epidemiological MOBI-Kids study.
Calderón, Carolina; Ichikawa, Hiroki; Taki, Masao; Wake, Kanako; Addison, Darren; Mee, Terry; Maslanyj, Myron; Kromhout, Hans; Lee, Ae-Kyoung; Sim, Malcolm R; Wiart, Joe; Cardis, Elisabeth
2017-04-01
This paper describes measurements and computational modelling carried out in the MOBI-Kids case-control study to assess the extremely low frequency (ELF) exposure of the brain from use of mobile and cordless phones. Four different communication systems were investigated: Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi Voice over Internet Protocol (VoIP). The magnetic fields produced by the phones during transmission were measured under controlled laboratory conditions, and an equivalent loop was fitted to the data to produce three-dimensional extrapolations of the field. Computational modelling was then used to calculate the induced current density and electric field strength in the brain resulting from exposure to these magnetic fields. Human voxel phantoms of four different ages were used: 8, 11, 14 and adult. The results indicate that the current densities induced in the brain during DECT calls are likely to be an order of magnitude lower than those generated during GSM calls but over twice that during UMTS calls. The average current density during Wi-Fi VoIP calls was found to be lower than for UMTS by 30%, but the variability across the samples investigated was high. Spectral contributions were important to consider in relation to current density, particularly for DECT phones. This study suggests that the spatial distribution of the ELF induced current densities in brain tissues is determined by the physical characteristics of the phone (in particular battery position) while the amplitude is mainly dependent on communication system, thus providing a feasible basis for assessing ELF exposure in the epidemiological study. The number of phantoms was not large enough to provide definitive evidence of an increase of induced current density with age, but the data that are available suggest that, if present, the effect is likely to be very small. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mondal, Anjon Kumar; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Wang, Guoxiu
2013-11-01
Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X-ray diffraction, field-emission SEM, and TEM. When applied as electrode materials for lithium-ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g(-1) at a current density of 500 mA g(-1), an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g(-1) at a current density of 20 A g(-1) in supercapacitors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelínek, P.; Karlický, M.; Murawski, K., E-mail: pjelinek@prf.jcu.cz
2015-10-20
An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with amore » plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.« less
Coupling of magnetopause-boundary layer to the polar ionosphere
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.
1993-01-01
The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.
Boiling and quenching heat transfer advancement by nanoscale surface modification.
Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N
2017-07-21
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes.
Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo
2014-03-25
Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 10(4) A/cm(2) in 10 T and 4.3 × 10(4) A/cm(2) in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.
Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes
Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo
2014-01-01
Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications. PMID:24663054
Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.
Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung
2010-08-15
Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.
NASA Astrophysics Data System (ADS)
Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan
2018-05-01
In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.
Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai
2017-03-01
Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along withmore » very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.« less
Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes
NASA Astrophysics Data System (ADS)
Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo
2014-03-01
Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.
Superconducting properties of nano-sized SiO2 added YBCO thick film on Ag substrate
NASA Astrophysics Data System (ADS)
Almessiere, Munirah Abdullah; Al-Otaibi, Amal lafy; Azzouz, Faten Ben
2017-10-01
The microstructure and the flux pinning capability of SiO2-added YBa2Cu3Oy thick films on Ag substrates were investigated. A series of YBa2Cu3Oy thick films with small amounts (0-0.5 wt%) of nano-sized SiO2 particles (12 nm) was prepared. The thicknesses of the prepared thick films was approximately 100 µm. Phase analysis by x-ray diffraction and microstructure examination by scanning electron microscopy were performed and the critical current density dependence on the applied magnetic field Jc(H) and electrical resistivity ρ(T) were investigated. The magnetic field and temperature dependence of the critical current density (Jc) was calculated from magnetization measurements using Bean's critical state model. The results showed that the addition of a small amount (≤0.02 wt%) of SiO2 was effective in enhancing the critical current densities in the applied magnetic field. The sample with 0.01 wt% of added SiO2 exhibited a superconducting characteristics under an applied magnetic field for a temperature ranging from 10 to 77 K.
Chen, Yungting; Shih, Hanyu; Wang, Chunhsiung; Hsieh, Chunyi; Chen, Chihwei; Chen, Yangfang; Lin, Taiyuan
2011-05-09
Based on hybrid inorganic/organic n-ZnO nanorods/p-GaN thin film/poly(3-hexylthiophene)(P3HT) dual heterojunctions, the light emitting diode (LED) emits ultraviolet (UV) radiation (370 nm - 400 nm) and the whole visible light (400 nm -700 nm) at the low injection current density. Meanwhile, under the high injection current density, the UV radiation overwhelmingly dominates the room-temperature electroluminescence spectra, exponentially increases with the injection current density and possesses a narrow full width at half maximum less than 16 nm. Comparing electroluminescence with photoluminescence spectra, an enormously enhanced transition probability of the UV luminescence in the electroluminescence spectra was found. The P3HT layer plays an essential role in helping the UV emission from p-GaN material because of its hole-conductive characteristic as well as the band alignment with respect to p-GaN. With our new finding, the result shown here may pave a new route for the development of high brightness LEDs derived from hybrid inorganic/organic heterojuctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, B. Race; Winglee, Robert; Prager, James
2011-05-15
The high power helicon (HPH) is capable of producing a high density plasma (10{sup 17}-10{sup 18} m{sup -3}) and directed ion energies greater than 20 eV that continue to increase tens of centimeters downstream of the thruster. In order to understand the coupling mechanism between the helicon antenna and the plasma outside the immediate source region, measurements were made in the plasma plume downstream from the thruster of the propagating wave magnetic field and the perturbation of the axial bulk field using a type 'R' helicon antenna. This magnetic field perturbation ({Delta}B) peaks at more than 15 G in strengthmore » downstream of the plasma source, and is 3-5 times larger than those previously reported from HPH. Taking the curl of this measured magnetic perturbation and assuming azimuthal symmetry suggests that this magnetic field is generated by a (predominantly) azimuthal current ring with a current density on the order of tens of kA m{sup -2}. At this current density the diamagnetic field is intense enough to cancel out the B{sub 0} axial magnetic field near the source region. The presence of the diamagnetic current is important as it demonstrates modification of the vacuum fields well beyond the source region and signifies the presence of a high density, collimated plasma stream. This diamagnetic current also modifies the propagation of the helicon wave, which facilitates a better understanding of coupling between the helicon wave and the resultant plasma acceleration.« less
Comparison of the Specificity of MREIT and Dynamic Contrast-Enhanced MRI in Breast Cancer
2007-05-01
ghosts ’ of objects in other slices may even appear in the reconstructed slice depending on how the conductivity and resulting 3D current density is...background and results are compared to the ideal reconstruction. (Some figures in this article are in colour only in the electronic version) 1. Introduction...eliminate any contribution from the currents flowing in those wires. Wires were mounted on acrylic support beams to establish rigidity. For all cases
Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...
2016-07-08
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Tunability enhanced electromagnetic wiggler
Schlueter, R.D.; Deis, G.A.
1992-03-24
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.
Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid
NASA Astrophysics Data System (ADS)
Jothiramalingam Sankaran, Kamatchi; Yeh, Chien-Jui; Drijkoningen, Sien; Pobedinskas, Paulius; Van Bael, Marlies K.; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken
2017-02-01
Few-layer graphene (FLG) was catalytically formed on vertically aligned diamond nanorods (DNRs) by a high temperature annealing process. The presence of 4-5 layers of FLG on DNRs was confirmed by transmission electron microscopic studies. It enhances the field electron emission (FEE) behavior of the DNRs. The FLG-DNRs show excellent FEE characteristics with a low turn-on field of 4.21 V μm-1 and a large field enhancement factor of 3480. Moreover, using FLG-DNRs as cathode markedly enhances the plasma illumination behavior of a microplasma device, viz not only the plasma current density is increased, but also the robustness of the devices is improved.
NASA Astrophysics Data System (ADS)
Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou
2017-11-01
Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.
Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang
2018-02-01
Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Murugapandiyan, P.; Ravimaran, S.; William, J.
2017-08-01
The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance {g}{{m}} of 1050 mS/mm, current gain cut-off frequency {f}{{t}} of 350 GHz and power gain cut-off frequency {f}\\max of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density ({n}{{s}}) and breakdown voltage are 1580 cm2/(V \\cdot s), 1.9× {10}13 {{cm}}-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.
Evolution of mechanical properties of ultrafine grained 1050 alloy annealing with electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yiheng; He, Lizi, E-mail: helizi@epm.neu.edu.cn; Zhang, Lin
2016-03-15
The tensile properties and microstructures of 1050 aluminum alloy prepared by equal channel angular pressing at cryogenic temperature (cryoECAP) after electric current annealing at 90–210 °C for 3 h were investigated by tensile test, electron back scattering diffraction (EBSD) and transmission electron microscopy (TEM). An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C, due to a significant decrease in the density of mobile dislocations after annealing, and thus a higher yield stress is required to nucleate alternative dislocation sources during tensile test. The electric current can enhance the motion of dislocations, lead to a lower dislocation density at 90–150 °C,more » and thus shift the peak annealing temperature from 150 °C to 120 °C. Moreover, the electric current can promote the migration of grain boundaries at 150–210 °C, result in a larger grain size at 150 °C and 210 °C, and thus causes a lower yield stress. The sample annealed with electric current has a lower uniform elongation at 90–120 °C, and the deviation in the uniform elongation between samples annealed without and with electric current becomes smaller at 150–210 °C. - Highlights: • An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C. • The d. c. current can enhance the motion of dislocations at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. • The d. c. current can promote the grain growth at 150–210 °C, and thus cause a lower yield stress. • The DC annealed sample has a lower uniform elongation at 90–120 °C.« less
NASA Astrophysics Data System (ADS)
Zhu, W.; Cave, J.
2006-03-01
The enhancement of flux line pinning in magnesium boride wires is a critical issue for their future applications in devices and machines. It is well known that small size dopants can significantly influence the current densities of these materials. Here, the influence of nanometric (<30nm) silicon nitride on physical properties and current density is presented. The iron-sheathed powder in tube wires were prepared using pure magnesium and boron powders with silicon nitride additions. The wires were rolled flat and treated at up to 900 degrees C in flowing argon. SEM and XRD were used to identify phases and microstructures. Magnetization critical currents, up to several 100 of thousands A/cm2, at various temperatures and fields (5K - 20K and up to 3 tesla) show that there are competing mechanisms from chemical and flux pinning effects.
Application of the monolithic solid oxide fuel cell to space power systems
NASA Astrophysics Data System (ADS)
Myles, Kevin M.; Bhattacharyya, Samit K.
1991-01-01
The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.
NASA Astrophysics Data System (ADS)
Zou, Y.; Nishimura, Y.; Lyons, L. R.; Shiokawa, K.; Burchill, J. K.; Knudsen, D. J.; Buchert, S. C.; Chen, S.; Nicolls, M. J.; Ruohoniemi, J. M.; McWilliams, K. A.; Nishitani, N.
2016-12-01
Although airglow patches are traditionally regarded as high-density plasma unrelated to local field-aligned currents (FACs) and precipitation, past observations were limited to storm-time conditions. Recent non-storm time observations show patches to be associated with azimuthally narrow ionospheric fast flow channels that substantially contribute to plasma transportation across the polar cap and connect dayside and nightside explosive disturbances. We examine whether non-storm time patches are related also to localized polar cap FACs and precipitation using Swarm- and FAST-imager-radar conjunctions. In Swarm data, we commonly (66%) identify substantial magnetic perturbations indicating FAC enhancements around patches. These FACs have substantial densities (0.1-0.2 μA/m-2) and can be approximated as infinite current sheets (typically 75 km wide) orientated roughly parallel to patches. They usually exhibit a Region-1 sense, i.e. a downward FAC lying eastward of an upward FAC, and can close through Pedersen currents in the ionosphere, implying that the locally enhanced dawn-dusk electric field across the patch is imposed by processes in the magnetosphere. In FAST data, we identify localized precipitation that is enhanced within patches in comparison to weak polar rain outside patches. The precipitation consists of structured or diffuse soft electron fluxes. While the latter resembles polar rain only with higher fluxes, the former consists of discrete fluxes enhanced by 1-2 orders of magnitude from several to several hundred eV. Although the precipitation is not a major contributor to patch ionization, it implies that newly reconnected flux tubes that retain electrons of magnetosheath origin can rapidly traverse the polar cap from the dayside. Therefore non-storm time patches should be regarded as part of a localized magnetosphere-ionosphere coupling system along open magnetic field lines, and their transpolar evolution as a reflection of reconnected flux tubes traveling from the dayside to nightside magnetosphere.
NASA Astrophysics Data System (ADS)
Loukil, N.; Feki, M.
2017-07-01
Zn-Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn-Mn co-deposition. The electrochemical results show that with increasing Mn2+ ions concentration in the electrolytic bath, Mn2+ reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn-Mn deposits. A dimensionless graph model was used to analyze the effect of Mn2+ ions concentration on Zn-Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn2+ concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn2+ ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn-Mn coatings. It was found that the Mn content increases with increasing the applied current density jimp and Mn2+ ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn-Mn coatings. The phase structure and surface morphology of Zn-Mn deposits are characterized by means of X-ray diffraction analysis and Scanning Electron Microscopy (SEM), respectively. The Zn-Mn deposited at low current density is tri-phasic and consisting of η-Zn, ζ-MnZn13 and hexagonal close packed ε-Zn-Mn. An increase in current density leads to a transition from crystalline to amorphous structure, arising from the hydroxide inclusions in the Zn-Mn coating at high current density.
NASA Astrophysics Data System (ADS)
Asano, Tetsuya
Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ˜ 77 K will enable RC-QDIP with detectivites > 1011 cmHz1/2/W that become competitive with other photodetector technologies in the mid IR (3 -- 5 mum) and long wavelength IR (8 -- 12 mum) ranges with the added advantage of materials stability and normal incidence sensitivity. Extended defect-free and size-uniform MQD structures of shallow InAs on GaAs (001) SAQDs capped with In0.15Ga0.85As strain relief layers and separated by GaAs spacer layer were grown up to 20 periods employing a judicious combination of MBE and migration enhanced epitaxy (MEE) techniques and examined by detailed transmission electron microscopy studies to reveal the absence of detectable extended defects (dislocation density < ˜ 107 /cm2). Photoluminescence studies revealed high optical quality. As our focus was on mid-infrared detectors, the MQD structures were grown in n (GaAs) -- i (MQD) -- n (GaAs) structures providing electron occupancy in at least the quantum confined ground energy states of the SAQDs and thus photodetection based upon transitions to electron excited states. Bias and temperature-dependent dark and photocurrent measurements were carried out for a variety of doping profiles and the electron density spatial distribution was determined from the resulting band bending profiles. It is revealed that almost no free electrons are present in the middle SAQD layers in the 10-period and 20-period n--i--n QDIP structures, indicating the existence of a high density (˜1015/cm3) of negative charges which can be attributed to electrons trapped in deep levels. To examine the nature of these deep traps, samples suitable for deep level transient spectroscopy measurement were synthesized and examined. These studies, carried out for the first time for SAQDs, revealed that the deep traps are dominantly present in the GaAs overgrowth layers grown at 500°C by MBE. For structures involving GaAs overgrowths using MEE at temperatures as low as 350°C, the deep trap density in the GaAs overgrowth layer was found to be significantly reduced by factor of ˜ 20. Thus, employing MEE growth for GaAs spacer layers in n--i(20-period MQD)-- n QDIP structures, electrons could be provided to all the SAQDs owing to the significantly reduced deep trap density. Finally, for enhancement of the incident photon absorption, we designed and fabricated asymmetric Fabry-Perot resonant cavity-enhanced QDIPs. For effective enhancement, SAQDs with a narrow photoresponse in the 3 -- 5 mum infrared regime were realized utilizing [(AlAs)1(GaAs)4]4 short-period superlattices as the confining barrier layers. Incorporating such SAQDs in RC-QDIPs, we successfully demonstrated ˜ 10 times enhancement of the QDIP detectivity. As stated above, this makes RC-QDIPs containing QDIPs with the currently demonstrated detectivities of ˜ 1010 cmHz 1/2/W at ˜ 77 K competitive with other IR photodetector technologies.
Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells.
Rodrigues, Andréia Laura; Brescia, Marcella; Koschinski, Andreas; Moreira, Thaís Helena; Cameron, Ryan T; Baillie, George; Beirão, Paulo S L; Zaccolo, Manuela; Cruz, Jader S
2018-01-01
Ca 2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca 2+ currents and proliferation in pituitary tumor GH3 cells. Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca 2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca 2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca 2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca 2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca 2+ current density and this phenomenon impacts proliferation rate in GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Spin Funneling for Enhanced Spin Injection into Ferromagnets
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-01-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496
Spin Funneling for Enhanced Spin Injection into Ferromagnets
NASA Astrophysics Data System (ADS)
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-07-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.
Fine-Filament MgB2 Superconductor Wire
NASA Technical Reports Server (NTRS)
Cantu, Sherrie
2015-01-01
Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.
The Unknown Hydrogen Exosphere: Space Weather Implications
NASA Astrophysics Data System (ADS)
Krall, J.; Glocer, A.; Fok, M.-C.; Nossal, S. M.; Huba, J. D.
2018-03-01
Recent studies suggest that the hydrogen (H) density in the exosphere and geocorona might differ from previously assumed values by factors as large as 2. We use the SAMI3 (Sami3 is Also a Model of the Ionosphere) and Comprehensive Inner Magnetosphere-Ionosphere models to evaluate scenarios where the hydrogen density is reduced or enhanced, by a factor of 2, relative to values given by commonly used empirical models. We show that the rate of plasmasphere refilling following a geomagnetic storm varies nearly linearly with the hydrogen density. We also show that the ring current associated with a geomagnetic storm decays more rapidly when H is increased. With respect to these two space weather effects, increased exosphere hydrogen density is associated with reduced threats to space assets during and following a geomagnetic storm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dustin; Zhao, Fangchao; Tong, Kwing
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Density functional theory for field emission from carbon nano-structures.
Li, Zhibing
2015-12-01
Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela
2013-07-10
The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.
NASA Astrophysics Data System (ADS)
Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken
2016-07-01
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings
NASA Technical Reports Server (NTRS)
Tobin, Eric J.; Hafley, R. (Technical Monitor)
2002-01-01
The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.
Abdullayeva, Nazrin; Sankir, Mehmet
2017-01-01
By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future. PMID:28772946
Simulation of the westward traveling surge and Pi 2 pulsations during substorms
NASA Technical Reports Server (NTRS)
Kan, J. R.; Sun, W.
1985-01-01
The westward traveling surge and the Pi2 pulsations are simulated as a consequence of an enhanced magnetospheric convection in a model of magnetosphere coupling. The coupling is characterized by the bouncing of Alfven waves launched by the enhanced convection. The reflection of Alfven waves from the ionosphere is treated in which the height-integrated conductivity is allowed to be highly nonuniform and fully anisotropic. The reflection of Alfven waves from the magnetosphere is characterized by the coefficient Rm, depending on whether the field lines are open or closed. The conductivity in the model is self-consistently enhanced with increasing upward field-aligned current density. The results of the simulation, including the convection pattern, the electrojets, the field-aligned current, the conductivity enhancement, the oscillation of the westward electrojet, and the average speed of the westward surge are in reasonable agreement with the features of the westward traveling surge and the Pi 2 pulsations observed during substorms.
Extreme IR absorption in group IV-SiGeSn core-shell nanowires
NASA Astrophysics Data System (ADS)
Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama
2018-06-01
Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.
Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch
NASA Astrophysics Data System (ADS)
Engelbrecht, Joseph T.; Ouart, Nicholas D.; Qi, Niansheng; de Grouchy, Philip W.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Banasek, Jacob T.; Potter, William M.; Rocco, Sophia V.; Hammer, David A.; Kusse, Bruce R.; Giuliani, John L.
2018-02-01
We present experiments performed on the 1 MA COBRA generator using a low density, annular, gas-puff z-pinch implosion as an opening switch to rapidly transfer a current pulse into a single metal wire on axis. This gas-puff on axial wire configuration was studied for its promise as an opening switch and as a means of enhancing the x-ray output of the wire. We demonstrate that current can be switched from the gas-puff plasma into the wire, and that the timing of the switch can be controlled by the gas-puff plenum backing pressure. X-ray detector measurements indicate that for low plenum pressure Kr or Xe shots with a copper wire, this configuration can offer a significant enhancement in the peak intensity and temporal distribution of radiation in the 1-10 keV range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldmann, D. M.; Holesinger, T. G.; Feenstra, Roeland
2007-01-01
It has been well established that the critical current density J{sub c} across grain boundaries (GBs) in high-temperature superconductors decreases exponentially with misorientation angle {theta} beyond {approx}2-3 degrees. This rapid decrease is due to a suppression of the superconducting order parameter at the grain boundary, giving rise to weakly pinned Abrikosov-Josephson (AJ) vortices. Here we show that if the GB plane meanders, this exponential dependence no longer holds, permitting greatly enhanced J{sub c} values: up to six times at 0 T and four times at 1 T at {theta}{approx}4-6 degrees. This enhancement is due to an increase in the current-carryingmore » cross section of the GBs and the appearance of short AJ vortex segments in the GB plane, confined by the interaction with strongly pinned Abrikosov (A) vortices in the grains.« less
Enhanced pinning in superconducting thin films with graded pinning landscapes
NASA Astrophysics Data System (ADS)
Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.
2013-05-01
A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].
Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju
2010-05-21
We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
NASA Astrophysics Data System (ADS)
Khatoon, N.; Yasin, H. M.; Younus, M.; Ahmed, W.; Rehman, N. U.; Zakaullah, M.; Iqbal, M. Zafar
2018-01-01
Fabrication of non-functionalized gold nanoparticles is interesting owing to their potential applications in sensing and biomedicine. We report on the synthesis of surfactant-free gold nanoparticles (AuNPs) by Plasma-Liquid Interaction (PLI) technique, using micro-atmospheric pressure D.C. plasma. The effects of discharge parameters, such as discharge current, precursor concentration and gas flow rates on the structure and morphology of AuNPs have been investigated. Optical Emission Spectroscopy (OES) was employed to estimate the UV radiation intensity and OH radical density. Scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) optical spectroscopy were employed to study the morphology and structure of AuNPs. The normalized intensities of UV radiation and OH radical density found to increase with increase in discharge current. We observed that the particle size can be tuned by controlling any of the following parameters: intensity of the UV radiation, OH radical density, and concentration of the Au precursor. Interestingly, we found that addition of 1% Ar in the feedstock gas results in formation of relatively uniform size distribution of nanoparticles. The surfactant-free AuNPs, due to their bare-surface, exhibit excellent surface-enhanced Raman scattering (SERS) properties. The SERS study of Rhodamine 6G using AuNPs as substrates, shows significant Raman enhancement and fluorescence quenching, which makes our technique a potentially powerful route to detection of trace amounts of dangerous explosives and other materials.
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa; Scofield, James
2013-09-01
Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at <20 kHz pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and <3 W input power at a 12 kHz turnover frequency. A further increase in the repetition frequency results in increased discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.
Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng
2017-01-01
Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. PMID:29168756
Zhao, H.; Li, X.; Baker, D. N.; ...
2015-08-25
Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute moremore » significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O +. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Li, X.; Baker, D. N.
Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute moremore » significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O +. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.« less
Lee, Wonkyun; Suzuki, Shinya; Miyayama, Masaru
2014-07-30
Poly(anthraquinonyl sulfide) (PAQS)/graphene sheets (GSs) composite was synthesized through in situ polymerization to evaluate its performance as an electrode material for electrochemical capacitors. PAQS was successfully synthesized in the presence of GSs with uniform distribution. PAQS/GSs showed a pair of reversible redox peaks at around 0 V ( vs. Ag/AgCl). The specific capacitance of PAQS/GSs was 349 F·g -1 (86 mAh·g -1 ) at a current density of 500 mA·g -1 , and a capacitance of 305 F·g -1 was maintained even at a high current density of 5000 mA·g -1 . The in situ polymerization of PAQS with GSs facilitated their interaction and enabled faster charge transfer and redox reaction, resulting in enhanced electrode properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yao; Liang, Meng; Fu, Jiajia
2015-03-15
In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL atmore » the current density of 100 A/cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui
2017-02-01
We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.
Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors
NASA Astrophysics Data System (ADS)
Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun
2016-08-01
d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.
Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors
NASA Astrophysics Data System (ADS)
Domingo-García, M.; Fernández, J. A.; Almazán-Almazán, M. C.; López-Garzón, F. J.; Stoeckli, F.; Centeno, T. A.
A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g -1 in 2 M H 2SO 4 aqueous electrolyte and 98 F g -1 in the aprotic medium 1 M (C 2H 5) 4NBF 4/acetonitrile. Additionally, high performance has also been achieved at high current densities, which confirms the potential of this type of materials for electrical energy storage. A new method based on the basic solvolysis of PET-waste and the subsequent carbonization seems to be an interesting alternative to obtain porous carbons with enhanced properties for supercapacitors.
Grier, Andrew; Dean, Paul; Valavanis, Alexander; Keeley, James; Kundu, Iman; Cooper, Jonathan D; Agnew, Gary; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Rakić, Aleksandar D; Li, Lianhe H; Harrison, Paul; Linfield, Edmund H; Ikonić, Zoran; Davies, A Giles; Indjin, Dragan
2016-09-19
We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.
NASA Astrophysics Data System (ADS)
Thomas, Syju; Varghese, Neson; Rahul, S.; Devadas, K. M.; Vinod, K.; Syamaprasad, U.
2012-12-01
The effect of bending strain on current carrying capacity of MgB2 multifilamentary wires was studied with 4, 8 and 16 multifilamentary wires. The critical current density (JC) of straight wires and bent wires with 5, 10, and 15 cm diameter was measured. Both annealed & bent and bent & annealed wires were used for measurement. The JC of annealed & bent wires were found to decrease with decrease in bent diameter and the rate of degradation of JC decreased with increasing number of filaments, while bent & annealed wires almost retained its JC at all diameters studied.
The inverse skin effect in the Z-pinch and plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usenko, P. L., E-mail: otd4@expd.vniief.ru; Gaganov, V. V.
The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.
Tire-derived carbon composite anodes for sodium-ion batteries
Li, Yunchao; Paranthaman, M. Parans; Akato, Kokouvi; ...
2016-04-04
We report that hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). The tire-derived carbons obtained by pyrolyzing the acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g -1, respectively, after 100 cycles at a current density of 20 mA g -1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. Themore » low-voltage plateau is beneficial to enhance the energy density of the full cell. However, this plateau suffers rapid capacity fade at higher current densities. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.« less
Investigation of field emission properties of laser irradiated tungsten
NASA Astrophysics Data System (ADS)
Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Rafique, Muhammad Shahid; Hayat, Asma; Mahmood, Khaliq
2018-02-01
Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm2. Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I- V characteristics and plotting corresponding electric field ( E) versus emission current density ( J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/µm, 1300 to 3490 and 107 to 350 µA/cm2, respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences.
Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming
2017-11-15
Uniform Pt 1 Ru 0.5 Sn 0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt 1 Ru 0.5 Sn 0.5 -RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.
Ion Traps at the Sun: Implications for Elemental Fractionation
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay
2018-04-01
Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.
NASA Astrophysics Data System (ADS)
Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.
2018-05-01
To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.
Cr-Si Schottky nano-diodes utilizing anodic aluminum oxide templates.
Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Chung, Ilsub
2014-04-01
We have fabricated Cr nanodot Schottky diodes utilizing AAO templates formed on n-Si substrates. The diameters of the diodes were 75.0, 57.6, and 35.8 nm. Cr nanodot Schottky diodes with smaller diameters yield higher current densities than those with larger diameters due to an enhanced tunnel current contribution, which is attributed to a reduction in the barrier thickness. The diameters of Cr nanodots smaller than the Debye length (156 nm) play an important role in the reduction of barrier thickness. Also, we have fabricated Cr-Si nanorod Schottky diodes with three different lengths (130, 220, and 330 nm) by dry etching of n-Si substrate. Cr-Si nanorod Schottky diodes with longer nanorods yield higher reverse current than those with shorter nanorods due to the enhanced electric field, which is attributed to a high aspect ratio of Si nanorod.
NASA Astrophysics Data System (ADS)
Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua
2016-02-01
A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.
Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing
2018-08-01
On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Determinants of pika population density vs. occupancy in the Southern Rocky Mountains.
Erb, Liesl P; Ray, Chris; Guralnick, Robert
2014-04-01
Species distributions are responding rapidly to global change. While correlative studies of local extinction have been vital to understanding the ecological impacts of global change, more mechanistic lines of inquiry are needed for enhanced forecasting. The current study assesses whether the predictors of local extinction also explain population density for a species apparently impacted by climate change. We tested a suite of climatic and habitat metrics as predictors of American pika (Ochotona princeps) relative population density in the Southern Rocky Mountains, USA. Population density was indexed as the density of pika latrine sites. Negative binomial regression and AICc showed that the best predictors of pika latrine density were patch area followed by two measures of vegetation quality: the diversity and relative cover of forbs. In contrast with previous studies of habitat occupancy in the Southern Rockies, climatic factors were not among the top predictors of latrine density. Populations may be buffered from decline and ultimately from extirpation at sites with high-quality vegetation. Conversely, populations at highest risk for declining density and extirpation are likely to be those in sites with poor-quality vegetation.
NASA Astrophysics Data System (ADS)
Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.
2018-05-01
Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.
Jhong, Huei-Ru Molly; Tornow, Claire E; Smid, Bretislav; Gewirth, Andrew A; Lyth, Stephen M; Kenis, Paul J A
2017-03-22
We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO 2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H 2 (approximately 98 % CO and 2 % H 2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm -2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO 2 reduction as an approach to reduce atmospheric CO 2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manenti, Diego R; Módenes, Aparecido N; Soares, Petrick A; Boaventura, Rui A R; Palácio, Soraya M; Borba, Fernando H; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Vilar, Vítor J P
2015-01-01
In this work, the application of an iron electrode-based electrocoagulation (EC) process on the treatment of a real textile wastewater (RTW) was investigated. In order to perform an efficient integration of the EC process with a biological oxidation one, an enhancement in the biodegradability and low toxicity of final compounds was sought. Optimal values of EC reactor operation parameters (pH, current density and electrolysis time) were achieved by applying a full factorial 3(3) experimental design. Biodegradability and toxicity assays were performed on treated RTW samples obtained at the optimal values of: pH of the solution (7.0), current density (142.9 A m(-2)) and different electrolysis times. As response variables for the biodegradability and toxicity assessment, the Zahn-Wellens test (Dt), the ratio values of dissolved organic carbon (DOC) relative to low-molecular-weight carboxylates anions (LMCA) and lethal concentration 50 (LC50) were used. According to the Dt, the DOC/LMCA ratio and LC50, an electrolysis time of 15 min along with the optimal values of pH and current density were suggested as suitable for a next stage of treatment based on a biological oxidation process.
Exercise and osteoporosis: Methodological and practical considerations
NASA Technical Reports Server (NTRS)
Block, Jon E.; Friedlander, Anne L.; Steiger, Peter; Genant, Harry K.
1994-01-01
Physical activity may have important implications for enhancing bone density prior to the initiation of space flight, for preserving bone density during zero gravity, and for rehabilitating the skeleton upon return to Earth. Nevertheless, the beneficial effects of exercise upon the skeleton have not been proven by controlled trials and no consensus exists regarding the type, duration, and intensity of exercise necessary to make significant alterations to the skeleton. The following sections review our current understanding of exercise and osteoporosis, examine some of the methodological shortcomings of these investigations, and make research recommendations for future clinical trials.
Modeling of O+ ions in the plasmasphere
NASA Astrophysics Data System (ADS)
Guiter, S. M.; Moore, T. E.; Khazanov, G. V.
1995-11-01
Heavy ion (O+, O++, and N+) density enhancements in the outer plasmasphere have been observed using the retarding ion mass spectrometer instrument on the DE 1 satellite. These are seen at L shells from 2 to 5, with most occurrences in the L=3 to 4 region; the maximum L shell at which these enhancements occur varies inversely with Dst. It is also known that enhancements of O+ and O++ overlie ionospheric electron temperature peaks. It is thought that these enhancements are related to heating of plasmaspheric particles through interactions with ring current ions. This was investigated using a time-dependent one-stream hydrodynamic model for plasmaspheric flows, in which the model flux tube is connected to the ionosphere. The model simultaneously solves the coupled continuity, momentum, and energy equations of a two-ion (H+ and O+) quasi-neutral, currentless plasma. This model is fully interhemispheric and diffusive equilibrium is not assumed; it includes a corotating tilted dipole magnetic field and neutral winds. First, diurnally reproducible results were found assuming only photoelectron heating of thermal electrons. For this case the modeled equatorial O+ density was below 1 cm-3 throughout the day. The O+ results also show significant diurnal variability, with standing shocks developing when production stops and O+ flows downward under the influence of gravity. Numerical tests were done with different levels of electron heating in the plasmasphere; these show that the equatorial O+ density is highly dependent on the assumed electron heating rates. Over the range of integrated plasmaspheric electron heating (along the flux tube) from 8.7 to 280×109 eV/s, the equatorial O+ density goes like the heating raised to the power 2.3.
Inertial Currents in Isotropic Plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1993-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
CORSICA modelling of ITER hybrid operation scenarios
NASA Astrophysics Data System (ADS)
Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.
2016-12-01
The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.
Mass transport enhancement in redox flow batteries with corrugated fluidic networks
NASA Astrophysics Data System (ADS)
Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos
2017-08-01
We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
Observations of subauroral ionospheric dynamics during SED plume passage at Millstone Hill
NASA Astrophysics Data System (ADS)
Zhang, S.; Erickson, P. J.; Coster, A. J.
2017-12-01
Storm enhanced density (SED) is a characteristic ionospheric storm time structure, with a significant plasma density enhancement in a narrow zone. SED structures often (but not always) span the continental US with a base in the US northeast at the afternoon and dusk sector, extending westward or northwest into the high latitude dayside cusp region. It is a typical and repeatable space weather phenomenon occurring during the main phase of magnetic storms with intensity ranging from active to disturbed levels. Observations of stormtime ionospheric density enhancement at subauroral latitudes have a long history, and were termed the 'dusk effect' until relatively recently, when dense networks of GNSS receivers have allowed us to view this structure with much finer spatial and temporal resolution. The formation of a SED plume is a topic under intensive community investigation, but in general it is believed that stormtime ionospheric dynamics and processes within the coupling magnetosphere-ionosphere-thermosphere system are responsible. For instance, poleward and sunward plasma drifts at the edge of the expanded dusk sector high-latitude convection can be important. Subauroral polarization stream (SAPS) are often observed at the poleward edge of the SED plume where ionospheric conductivity is low. SAPS is a huge westward ion flow that can convect ionospheric plasma from the afternoon or evening sector where solar photoionization production is waning, creating low density or density troughs. Stormtime penetration electric fields also exist, creating enhanced low and mid latitude upward ion drifts that move ionospheric plasma upward from the low altitude region where they are produced. This provides another important ionization source to contribute to maintaining the SED plume. This paper will provide analysis of the relative strength of these factors by using joint datasets of current geospace storm events obtained with the Millstone Hill incoherent scatter radar, GNSS TEC maps, and DMSP in situ measurements.
Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying
2015-01-01
Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1st step) and solvothermal (2nd step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g−1 at the current densities of 100 and 1000 mA g−1, respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g−1 at a high current density of 1000 mA g−1 after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance. PMID:25776280
Barium-Dispenser Thermionic Cathode
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Green, M.; Feinleib, M.
1989-01-01
Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.
Superconducting Generators for Airborne Applications and YBCO-Coated Conductors (Preprint)
2008-10-01
Maiorov, M. E. Hawley , M. P. Maley, D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3...ed., New York: Taylor and Francis, 2001. [17] S. P. Ashworth, M. Maley, M. Suenaga, S. R. Foltyn, and J. O. Willis , J. Appl. Phys., vol. 88, p
Incorporating YBCO Coated Conductors in High-speed Superconducting Generators
2008-07-01
Maiorov, M. E. Hawley , M. P. Maley, D. E. Peterson, ―Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3...2nd ed., New York: Taylor and Francis, 2001. [23] S. P. Ashworth, M. Maley, M. Suenaga, S. R. Foltyn, and J. O. Willis , J. Appl. Phys., vol. 88
Guan, Qun; Cheng, Jianli; Wang, Bin; Ni, Wei; Gu, Guifang; Li, Xiaodong; Huang, Ling; Yang, Guangcheng; Nie, Fude
2014-05-28
We synthesized the needle-like cobalt oxide/graphene composites with different mass ratios, which are composed of cobalt oxide (Co3O4 or CoO) needle homogeneously anchored on graphene nanosheets as the template, by a facile hydrothermal method. Without the graphene as the template, the cobalt precursor tends to group into urchin-like spheres formed by many fine needles. When used as electrode materials of aqueous supercapacitor, the composites of the needle-like Co3O4/graphene (the mass ratio of graphene oxide(GO) and Co(NO3)2·6H2O is 1:5) exhibit a high specific capacitance of 157.7 F g(-1) at a current density of 0.1 A g(-1) in 2 mol L(-1) KOH aqueous solution as well as good rate capability. Meanwhile, the capacitance retention keeps about 70% of the initial value after 4000 cycles at a current density of 0.2 A g(-1). The enhancement of excellent electrochemical performances may be attributed to the synergistic effect of graphene and cobalt oxide components in the unique multiscale structure of the composites.
Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu
2018-05-30
An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.
Conical structures for highly efficient solar cell applications
NASA Astrophysics Data System (ADS)
Korany, Fatma M. H.; Hameed, Mohamed Farhat O.; Hussein, Mohamed; Mubarak, Roaa; Eladawy, Mohamed I.; Obayya, Salah Sabry A.
2018-01-01
Improving solar cell efficiency is a critical research topic. Nowadays, light trapping techniques are a promising way to enhance solar cell performance. A modified nanocone nanowire (NW) is proposed and analyzed for solar cell applications. The suggested NW consists of conical and truncated conical units. The geometrical parameters are studied using a three-dimensional (3-D) finite difference time-domain (FDTD) method to achieve broadband absorption through the reported design and maximize its ultimate efficiency. The analyzed parameters are absorption spectra, ultimate efficiency, and short circuit current density. The numerical results prove that the proposed structure is superior compared with cone, truncated cone, and cylindrical NWs. The reported design achieves an ultimate efficiency of 44.21% with substrate and back reflector. Further, short circuit current density of 36.17 mA / cm2 is achieved by the suggested NW. The electrical performance analysis of the proposed structure including doping concentration, junction thickness, and Shockley-Read-Hall recombination is also investigated. The electrical simulations show that a power conversion efficiency of 17.21% can be achieved using the proposed NW. The modified nanocone has advantages of broadband absorption enhancement, low cost, and fabrication feasibility.
NASA Astrophysics Data System (ADS)
Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin
2018-07-01
We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.
NASA Astrophysics Data System (ADS)
Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu
2012-01-01
Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications. Electronic supplementary information (ESI) available: Supplementary TEM, EELS, EDS, Electro-chemical measurement data can be found. See DOI: 10.1039/c1nr11374g
Study of the enhancement-mode AlGaN/GaN high electron mobility transistor with split floating gates
NASA Astrophysics Data System (ADS)
Wang, Hui; Wang, Ning; Jiang, Ling-Li; Zhao, Hai-Yue; Lin, Xin-Peng; Yu, Hong-Yu
2017-11-01
In this work, the charge storage based split floating gates (FGs) enhancement mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs) are studied. The simulation results reveal that under certain density of two dimensional electron gas, the variation tendency of the threshold voltage (Vth) with the variation of the blocking dielectric thickness depends on the FG charge density. It is found that when the length sum and isolating spacing sum of the FGs both remain unchanged, the Vth shall decrease with the increasing FGs number but maintaining the device as E-mode. It is also reported that for the FGs HEMT, the failure of a FG will lead to the decrease of Vth as well as the increase of drain current, and the failure probability can be improved significantly with the increase of FGs number.
High efficiency and non-Richardson thermionics in three dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Huang, Sunchao; Sanderson, Matthew; Zhang, Yan; Zhang, Chao
2017-10-01
Three dimensional (3D) topological materials have a linear energy dispersion and exhibit many electronic properties superior to conventional materials such as fast response times, high mobility, and chiral transport. In this work, we demonstrate that 3D Dirac materials also have advantages over conventional semiconductors and graphene in thermionic applications. The low emission current suffered in graphene due to the vanishing density of states is enhanced by an increased group velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons in 3D Dirac materials is twice of that in conventional materials with a parabolic electron energy dispersion. As a result, 3D Dirac materials have the best thermal efficiency or coefficient of performance when compared to conventional semiconductors and graphene. The generalized Richardson-Dushman law in 3D Dirac materials is derived. The law exhibits the interplay of the reduced density of states and enhanced emission velocity.
NASA Astrophysics Data System (ADS)
Ge, Hai-Liang; Xu, Chen; Xu, Kun; Xun, Meng; Wang, Jun; Liu, Jie
2015-03-01
The two-dimensional (2D) triangle lattice air hole photonic crystal (PC) GaN-based light-emitting diodes (LED) with double-layer graphene transparent electrodes (DGTE) have been produced. The current spreading effect of the double-layer graphene (GR) on the surface of the PC structure of the LED has been researched. Specially, we found that the part of the graphene suspending over the air hole of the PC structure was of much higher conductivity, which reduced the average sheet resistance of the graphene transparent conducting electrode and improved the current spreading of the PC LED. Therefore, the work voltage of the DGTE-PC LED was obviously decreased, and the output power was greatly enhanced. The COMSOL software was used to simulate the current density distribution of the samples. The results show that the etching of PC structure results in the degradation of the current spreading and that the graphene transparent conducting electrode can offer an uniform current spreading in the DGTE-PC LED. PACS: 85.60.Jb; 68.65.Pq; 42.70.Qs
Electronic and transport properties of a molecular junction with asymmetric contacts.
Tsai, M-H; Lu, T-H
2010-02-10
Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.
Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice
Way, Michael O.; Pearson, Rebecca A.; Stout, Michael J.
2017-01-01
Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety. PMID:28805707
NASA Astrophysics Data System (ADS)
Hong, Wei; Wang, Jinqing; Gong, Peiwei; Sun, Jinfeng; Niu, Lengyuan; Yang, Zhigang; Wang, Zhaofeng; Yang, Shengrong
2014-12-01
Electrodes with rationally designed hybrid nanostructures can offer many opportunities for the enhanced performance in electrochemical energy storage. In this work, the uniform 2D Co3O4-based building blocks have been prepared through a facile chemical etching assistant approach and a following treatment of thermal annealing. The obtained nanosheets array has been directly employed as 2D backbone for the subsequent construction of hybrid nanostructure of Co3O4@NiMoO4 by a simple hydrothermal synthesis. As a binder-free electrode, the constructed 3D hybrid nanostructures exhibit a high specific capacitance of 1526 F g-1 at a current density of 3 mA cm-2 and a capacitance retention of 72% with the increase of current density from 3 mA cm-2 to 30 mA cm-2. Moreover, an asymmetric supercapacitor based on this hybrid Co3O4@NiMoO4 and activated carbon can deliver a maximum energy density of 37.8 Wh kg-1 at a power density of 482 W kg-1. The outstanding electrochemical behaviors presented here suggest that this hybrid nanostructured material has potential applications in energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A
2011-01-01
Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium atmore » the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.« less
Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.
Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J
2017-08-13
Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.
THE EFFECTS OF CURRENT FLOW ON BIOELECTRIC POTENTIAL
Blinks, L. R.
1936-01-01
String galvanometer records show the effect of current flow upon the bioelectric potential of Nitella cells. Three classes of effects are distinguished. 1. Counter E.M.F'S, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv., or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv.) since larger outward currents produce the next characteristic effect. 2. Stimulation. This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 µa/cm.2 of cell surface. At this threshold a regular counter E.M.F. starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive P.D., in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell. During the most profound depression of P.D. in stimulation, current flow produces little or no counter E.M.F., the resistance of the cell being purely ohmic and very low. Then as the P.D. begins to recover, after a second or two, counter E.M.F. also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation; recovery is slightly slower in this case however. Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive P.D. (polarization). 3. Restorative Effects.—The flow of inward current during a negative variation somewhat speeds up recovery. This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery from a negative variation. Small currents in either direction now produce no counter E.M.F., so that the effective resistance of the cells is very low. With inward currents at a threshold density of some 10 to 20 µa/cm.2, however, there is a counter E.M.F. produced, which builds up in a sigmoid curve to some 100 to 200 mv. positive P.D. This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped. Further increases of current density produce this P.D. more rapidly, while decreased densities again cease to be effective below a certain threshold. The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter E.M.F.'S (polarizations) are due to the presence of an intact surface film or other structure offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"); movement of inorganic ions such as potassium; movement of organic ions, (such as Osterhout's substance R), or the radicals (such as fatty acid) of the surface film itself. Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity. PMID:19872991
NASA Astrophysics Data System (ADS)
Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.
2017-12-01
Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.
Lee, Wonkyun; Suzuki, Shinya; Miyayama, Masaru
2014-01-01
Poly(anthraquinonyl sulfide) (PAQS)/graphene sheets (GSs) composite was synthesized through in situ polymerization to evaluate its performance as an electrode material for electrochemical capacitors. PAQS was successfully synthesized in the presence of GSs with uniform distribution. PAQS/GSs showed a pair of reversible redox peaks at around 0 V (vs. Ag/AgCl). The specific capacitance of PAQS/GSs was 349 F·g−1 (86 mAh·g−1) at a current density of 500 mA·g−1, and a capacitance of 305 F·g−1 was maintained even at a high current density of 5000 mA·g−1. The in situ polymerization of PAQS with GSs facilitated their interaction and enabled faster charge transfer and redox reaction, resulting in enhanced electrode properties. PMID:28344238
Structural and electronic properties of chiral single-wall copper nanotubes
NASA Astrophysics Data System (ADS)
Duan, YingNi; Zhang, JianMin; Xu, KeWei
2014-04-01
The structural, energetic and electronic properties of chiral ( n, m) (3⩽ n⩽6, n/2⩽ m⩽ n) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.
NASA Astrophysics Data System (ADS)
Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.
2018-05-01
In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.
Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )
Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...
2016-09-07
Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less
Park, Sangjun; Gupta, Amar Prasad; Yeo, Seung Jun; Jung, Jaeik; Paik, Sang Hyun; Mativenga, Mallory; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2018-05-29
In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE) characteristics with respective turn on (1 μA/cm²) and threshold (1 mA/cm²) field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm² was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm² for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.
Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.
Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu
2009-01-01
Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harack, B.; Leary, A.; Coish, W. A.
2013-12-04
We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less
Tang, Xiaohui; Lui, Yu Hui; Merhi, Abdul Rahman; Chen, Bolin; Ding, Shaowei; Zhang, Bowei; Hu, Shan
2017-12-27
To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br - and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br - /Br 3 - reaction. The observed Br - /Br 3 - redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.
Doubling of the Critical Current Density of 2G-YBCO Coated Conductors through proton irradiation
NASA Astrophysics Data System (ADS)
Welp, Ulrich; Jia, Ying; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Kayani, Asfghar
2013-03-01
We report on magnetization and transport measurements of the critical current density of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons to a fluence of 1.5x1016 p/cm2. We find that at temperatures below 50 K, proton irradiation increases Jc by a factor of 2 in low fields and increases up to 2.5 in fields of 7 T. At 77 K, proton irradiation is less effective in enhancing the critical current. Doubling of Jc in fields of several Tesla and at temperatures below 50 K will be highly beneficial for applications of coated conductors in rotating machinery, generators and magnet coils. - Work supported by the US DoE-BES funded Energy Frontier Research Center (YJ), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (UW, WKK), under Contract No. DE-AC02-06CH11357.
Two-dimensional quasi-neutral description of particles and fields above discrete auroral arcs
NASA Technical Reports Server (NTRS)
Newman, A. L.; Chiu, Y. T.; Cornwall, J. M.
1986-01-01
Models are presented for particle distributions, electric fields and currents in an adiabatic treatment of auroral electrostatic potential distributions in order to describe the quiet-time evening auroral arcs featuring both upward and return currents. The models are consistent with current continuity and charge balance requirements for particle populations controlled by adiabatic invariants and quasi-neutrality in the magnetosphere. The effective energy of the cool electron population is demonstrated to have a significant effect on the latitudinal breadth of the auroral electrostatic potential structure and the extent of the penetration of the accelerating potential into the ionosphere. Another finding is that the energy of any parallel potential drop in the lowest few thousand kilometers of the field line is of the same order of magnitude as the thermal energy of the cool electrons. Additional predictions include density cavities along field lines that support large potential drops, and density enhancements along field lines at the edge of an inverted V with a small potential drop.
Kempa, Thomas J; Cahoon, James F; Kim, Sun-Kyung; Day, Robert W; Bell, David C; Park, Hong-Gyu; Lieber, Charles M
2012-01-31
Silicon nanowires (NWs) could enable low-cost and efficient photovoltaics, though their performance has been limited by nonideal electrical characteristics and an inability to tune absorption properties. We overcome these limitations through controlled synthesis of a series of polymorphic core/multishell NWs with highly crystalline, hexagonally-faceted shells, and well-defined coaxial (p/n) and p/intrinsic/n (p/i/n) diode junctions. Designed 200-300 nm diameter p/i/n NW diodes exhibit ultralow leakage currents of approximately 1 fA, and open-circuit voltages and fill-factors up to 0.5 V and 73%, respectively, under one-sun illumination. Single-NW wavelength-dependent photocurrent measurements reveal size-tunable optical resonances, external quantum efficiencies greater than unity, and current densities double those for silicon films of comparable thickness. In addition, finite-difference-time-domain simulations for the measured NW structures agree quantitatively with the photocurrent measurements, and demonstrate that the optical resonances are due to Fabry-Perot and whispering-gallery cavity modes supported in the high-quality faceted nanostructures. Synthetically optimized NW devices achieve current densities of 17 mA/cm(2) and power-conversion efficiencies of 6%. Horizontal integration of multiple NWs demonstrates linear scaling of the absolute photocurrent with number of NWs, as well as retention of the high open-circuit voltages and short-circuit current densities measured for single NW devices. Notably, assembly of 2 NW elements into vertical stacks yields short-circuit current densities of 25 mA/cm(2) with a backside reflector, and simulations further show that such stacking represents an attractive approach for further enhancing performance with projected efficiencies of > 15% for 1.2 μm thick 5 NW stacks.
Colloidal quantum dot solar cells exploiting hierarchical structuring.
Labelle, André J; Thon, Susanna M; Masala, Silvia; Adachi, Michael M; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H; Fratalocchi, Andrea; Sargent, Edward H
2015-02-11
Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.
The effects of spacecraft charging and outgassing on the LADEE ion measurements
NASA Astrophysics Data System (ADS)
Xie, Lianghai; Zhang, Xiaoping; Zheng, Yongchun; Guo, Dawei
2017-05-01
Abnormal ion signals can be usually seen in the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, including a suddenly enhanced current observed by the Lunar Dust Experiment (LDEX) near the sunlight-shadow boundary and an unexpected water ion measured by the neutral mass spectrometer (NMS), with their magnitudes insensitive to the convection electric field of solar wind but dependent on the SW density and the elapsed time of LADEE mission. By analyzing both the LDEX measurements and the NMS measurements, we find that the current enhancement can be caused by a negatively charged spacecraft in the shadow region while the significant water ions should be some artificial ions from spacecraft outgassing. The artificial water ions show a peak near 8:00 LT that may be related to a sunlight-controlled surface outgassing. In addition, the H2O flux can be enhanced near the end of the mission when the spacecraft has a lower altitude. It is found that the H2O enhancement is actually caused by an exosphere-contributed return flux, rather than a real water exosphere.
Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires
NASA Astrophysics Data System (ADS)
Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans
2011-09-01
Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with pinning centers, which may be engineered, for example, through modulations in the nanowire geometry (such as notches or extrusions) or in the magnetic properties of the material. In this paper we study the motion and depinning of transverse domain walls through pinning centers in ferromagnetic cylindrical nanowires. We use (i) magnetic fields and (ii) spin-polarized currents to drive the domain walls along the wire. The pinning centers are modelled as a section of the nanowire which exhibits a uniaxial crystal anisotropy where the anisotropy easy axis and the wire axis enclose a variable angle θP. Using (i) magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the pinning center differ by 30%. On the contrary, using (ii) spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density (observed for θP=0∘, i.e., anisotropy axis pointing parallel to the wire axis) and the maximum value (for θP=90∘, i.e., anisotropy axis perpendicular to the wire axis). We study the depinning current density as a function of the height of the energy barrier of the pinning center using numerical and analytical methods. We find that for an industry standard energy barrier of 40kBT, a depinning current of about 5μA (corresponding to a current density of 6×1010A/m2 in a nanowire of 10nm diameter) is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design, the spin torque transfer term is acting exactly against the damping in the micromagnetic system, and thus the low current density is sufficient to accumulate enough energy quickly. These key insights may be crucial in furthering the development of novel memory technologies, such as the racetrack memory, that can be controlled through low current densities.
Betancourt, Michael; Upton, Leanna M; Angrisano, Fiona; Morin, Merribeth J
2018-01-01
Anti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7–94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1–87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts. PMID:29914622
Thermoelectronic transport through spin-crossover single molecule Fe[(H2Bpz2)2bipy
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, L.; Yao, K. L.
2018-04-01
By means of density functional theory combined with the method of Keldysh nonequilibrium Green’s function, the thermal transport properties of high- and low-spin states of mononuclear FeII molecules with spin-crossover characteristics are studied. It is found that the high-spin molecular junction has a larger current than the low-spin one, producing thermally-induced switching effect. Furthermore, for high spin state molecule, the spin-up thermo-current is strongly blocked, thus achieving a pure thermo spin current. The enhanced Seebeck coefficient and the figure of merit value of high-spin state indicate that it is an ideal candidate for thermoelectric applications.
Low-energy BF2, BCl2, and BBr2 implants for ultrashallow P+-N junctions
NASA Astrophysics Data System (ADS)
Nandan, S. R.; Agarwal, Vikas; Banerjee, Sanjay K.
1997-08-01
We have examined low energy BCl2 and BBr2 implants as a means of fabricating ultra-shallow P+-N junctions. Five keV and 9 keV BCl2 implants and 18 keV BBr2 implants have been compared to 5 keV BF2 implants to study the benefits of using these species. BCl2 and BBr2, being heavier species, have a lower projected range and produce more damage. The greater damage restricts channeling, resulting in shallower as-implanted profiles. The increased damage amorphizes the substrate at low implant doses which results in reduced transient enhanced diffusion (TED) during the post-implant anneal. Post-anneal SIMS profiles indicate a junction depth reduction of over 10 nm (at 5 X 1017 cm-3 background doping) for 5 keV BCl2 implants as compared to 5 keV BF2 implants. Annealed junctions as shallow as 10 nm have been obtained from the 18 keV BBr2 implants. The increased damage degrades the electrical properties of these junctions by enhancing the leakage current densities. BCl2 implanted junctions have leakage current densities of approximately 1 (mu) A/cm2 as compared to 10 nA/cm2 for the BF2 implants. BBr2 implants have a lower leakage density of approximately 50 nA/cm2. Low energy BBr2 implants offer an exciting alternative for fabricating low leakage, ultra-shallow P+-N junctions.
Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina
2017-07-01
Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3 h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly
NASA Astrophysics Data System (ADS)
Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.
2015-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program
Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.
Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T
2016-02-01
The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Early evolution of comet 67P studied with the RPC-LAP onboard Rosetta
NASA Astrophysics Data System (ADS)
Miloch, Wojciech; Edberg, Niklas J. T.; Eriksson, Anders I.; Yang, Lei; Paulsson, Joakim J. P.; Wedlund, Cyril Simon; Odelstad, Elias
2016-07-01
The Rosetta mission provides the in-situ measurements of a comet that are closest to a comet's aphelion ever made. The Rosetta Plasma Consortium (RPC) is a set of five instruments on board the spacecraft that specialise in the measurements of the plasma environment of comet 67P. One of the instruments is RPC-LAP, which consists of two Langmuir Probes and can measure the density, temperature, and flow speed of the plasma in the vicinity of the comet. At the early stage of the Rosetta mission, when the spacecraft is far from the nucleus of comet 67P, the ion part of the current-voltage characteristics of RPC-LAP1 is dominated by the photoemission current which surpasses the currents from the dilute solar wind plasma. As Rosetta starts orbiting around the nucleus in September 2014, LAP1 picks up signatures of local plasma density enhancements corresponding to variations of water-group ions observed in the vicinity of the comet. With the help of current-voltage characteristics and the spacecraft potential, we identify and characterise in space and time the entering of this coma-dominated plasma. In particular we determine the transition for entering the ion dominated region characterised by the 6-hour variations in the local plasma density due to the comet rotation. This transition manifests as a steep gradient in the density with respect to the distance to the comet nucleus. We discuss these RPC-LAP results together with the corresponding measurements by other instruments to provide a comprehensive picture of the transition.
Physical parameters in long-decay coronal enhancements. [from Skylab X ray observations
NASA Technical Reports Server (NTRS)
Maccombie, W. J.; Rust, D. M.
1979-01-01
Four well-observed long-decay X-ray enhancements (LDEs) are examined which were associated with filament eruptions, white-light transients, and loop prominence systems. In each case the physical parameters of the X-ray-emitting plasma are determined, including the spatial distribution and temporal evolution of temperature and density. The results and recent analyses of other aspects of the four LDEs are compared with current models of loop prominence systems. It is concluded that only a magnetic-reconnection model, such as that proposed by Kopp and Pneuman (1976) is consistent with the observations.
Progress of recent experimental research on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Zhuang, G.; Gentle, K. W.; Chen, Z. Y.; Chen, Z. P.; Yang, Z. J.; Zheng, Wei; Hu, Q. M.; Chen, J.; Rao, B.; Zhong, W. L.; Zhao, K. J.; Gao, L.; Cheng, Z. F.; Zhang, X. Q.; Wang, L.; Jiang, Z. H.; Xu, T.; Zhang, M.; Wang, Z. J.; Ding, Y. H.; Yu, K. X.; Hu, X. W.; Pan, Y.; Huang, H.; the J-TEXT Team
2017-10-01
The progress of experimental research over the last two years on the J-TEXT tokamak is reviewed and reported in this paper, including: investigations of resonant magnetic perturbations (RMPs) on the J-TEXT operation region show that moderate amplitude of applied RMPs either increases the density limit from less than 0.7n G to 0.85n G (n G is the Greenwald density, {{n}\\text{G}}={{I}\\text{p}}/π {{a}2} ) or lowers edge safety factor q a from 2.15 to nearly 2.0; observations of influence of RMPs with a large m/n = 3/1 dominant component (where m and n are the toroidal and poloidal mode numbers respectively) on electron density indicate electron density first increases (decreases) inside (around/outside) of the 3/1 rational surface, and it is increased globally later together with enhanced edge recycling; investigations of the effect of RMPs on the behavior of runaway electrons/current show that application of RMPs with m/n = 2/1 dominant component during disruptions can reduce runaway production. Furthermore, its application before the disruption can reduce both the amplitude and the length of runaway current; experimental results in the high-density disruption plasmas confirm that local current shrinkage during a multifaceted asymmetric radiation from the edge can directly terminate the discharge; measurements by a multi-channel Doppler reflectometer show that the quasi-coherent modes in the electron diamagnetic direction occur in the J-TEXT ohmic confinement regime in a large plasma region (r/a ~ 0.3-0.8) with frequency of 30-140 kHz.
NASA Astrophysics Data System (ADS)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena
2016-03-01
Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania K
Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bz
Present Status and Future Prospects in Bulk Processing of HIGH-Tc Superconductors
NASA Astrophysics Data System (ADS)
Jin, S.; Chu, C. W.
The following sections are included: * INTRODUCTION * HIGH SUPERCONDUCTING TRANSITION TEMPERATURE * HIGH CRITICAL CURRENT DENSITY * Grain Boundary Weak Links * Nature of Weak Links * Possible Processing Approaches for Weak Link Problem * Processing Techniques for Texture Formation * Flux Creep in HTSC * Desirable Pinning Defects * Processing for Flux Pinning Enhancement * PROSPECTS FOR BULK APPLICATIONS * Magnetic Field Gener * Energy Storage * Magnetic Shielding * Other Applications * CONCLUDING REMARKS * ACKNOWLEDGMENT * REFERENCES
Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C
2014-12-01
Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
Enhanced functional expression of transient outward current in hypertrophied feline myocytes.
Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L
1993-08-01
Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).
Kishimoto, Fuminao; Matsuhisa, Masayuki; Kawamura, Shinichiro; Fujii, Satoshi; Tsubaki, Shuntaro; Maitani, Masato M.; Suzuki, Eiichi; Wada, Yuji
2016-01-01
Various microwave effects on chemical reactions have been observed, reported and compared to those carried out under conventional heating. These effects are classified into thermal effects, which arise from the temperature rise caused by microwaves, and non-thermal effects, which are attributed to interactions between substances and the oscillating electromagnetic fields of microwaves. However, there have been no direct or intrinsic demonstrations of the non-thermal effects based on physical insights. Here we demonstrate the microwave enhancement of oxidation current of water to generate dioxygen with using an α-Fe2O3 electrode induced by pulsed microwave irradiation under constantly applied potential. The rectangular waves of current density under pulsed microwave irradiation were observed, in other words the oxidation current of water was increased instantaneously at the moment of the introduction of microwaves, and stayed stably at the plateau under continuous microwave irradiation. The microwave enhancement was observed only for the α-Fe2O3 electrode with the specific surface electronic structure evaluated by electrochemical impedance spectroscopy. This discovery provides a firm evidence of the microwave special non-thermal effect on the electron transfer reactions caused by interaction of oscillating microwaves and irradiated samples. PMID:27739529
Kambiz, S; Brakkee, E M; Duraku, L S; Hovius, S E R; Ruigrok, T J H; Walbeehm, E T
2015-05-01
Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain. Copyright © 2015 Elsevier Inc. All rights reserved.
High Density Thermal Energy Storage with Supercritical Fluids
NASA Technical Reports Server (NTRS)
Ganapathi, Gani B.; Wirz, Richard
2012-01-01
A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.
Zhang, Jiao; Li, Chuanqi; Peng, Zhikun; Liu, Yushan; Zhang, Jianmin; Liu, Zhongyi; Li, Dan
2017-07-07
Sodium ion batteries have drawn extensive attentions for large-scale energy storage to replace lithium ion batteries primarily due to the natural abundance of sodium resource and low cost, but their energy density and electrochemical performance are hindered by the sluggish diffusion kinetics of sodium ion. Herein, free-standing nitrogen-doped graphene aerogel has been fabricated via hydrothermal reaction as the potential anode material for sodium ion batteries. The three dimensional porous network structure of the graphene aerogel provides sufficient interstitial space for sodium ion accommodation, allowing fast and reversible ion intercalation/de-intercalation. The nitrogen doping could introduce defects on the graphene sheets, making the feasible transport of large-sized sodium ion. Benefiting from the effective structure and nitrogen doping, the obtained material demonstrates high reversible capacities, good cycling performance (287.9 mA h g -1 after 200 cycles at a current density of 100 mA g -1 ), especially superior rate capability (151.9 mA h g -1 at a high current density of 5 A g -1 ).
Lanzarini-Lopes, Mariana; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul
2017-12-01
Electrochemical oxidation (EO) is an advanced oxidation process for water treatment to mineralize organic contaminants. While proven to degrade a range of emerging pollutants in water, less attention has been given to quantify the effect of operational variables such applied current density and pollutant concentration on efficiency and energy requirements. Particular figures of merit were mineralization current efficiency (MCE) and electrical energy per order (E EO ). Linear increases of applied current exponentially decreased the MCE due to the enhancement of undesired parasitic reactions that consumed generated hydroxyl radical. E EO values ranged from 39.3 to 331.8 kW h m -3 order -1 . Increasing the applied current also enhanced the E EO due to the transition from kinetics limited by current to kinetics limited by mass transfer. Further increases in current did not influence the removal rate, but it raised the E EO requirement. The E EO requirement diminished when decreasing initial pollutant loading with the increase of the apparent kinetic rate because of the relative availability of oxidant per pollutant molecule in solution at a defined current. Oxidation by-products released were identified, and a plausible degradative pathway has been suggested. Copyright © 2017. Published by Elsevier Ltd.
Dietary energy density: Applying behavioural science to weight management.
Rolls, B J
2017-09-01
Studies conducted by behavioural scientists show that energy density (kcal/g) provides effective guidance for healthy food choices to control intake and promote satiety. Energy density depends upon a number of dietary components, especially water (0 kcal/g) and fat (9 kcal/g). Increasing the proportion of water or water-rich ingredients, such as vegetables or fruit, lowers a food's energy density. A number of studies show that when the energy density of the diet is reduced, both adults and children spontaneously decrease their ad libitum energy intake. Other studies show that consuming a large volume of a low-energy-dense food such as soup, salad, or fruit as a first course preload can enhance satiety and reduce overall energy intake at a meal. Current evidence suggests that energy density influences intake through a complex interplay of cognitive, sensory, gastrointestinal, hormonal and neural influences. Other studies that focus on practical applications show how the strategic incorporation of foods lower in energy density into the diet allows people to eat satisfying portions while improving dietary patterns. This review discusses studies that have led to greater understanding of the importance of energy density for food intake regulation and weight management.
Modestov, M.; Kolemen, E.; Fisher, A. E.; ...
2017-11-06
The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces onmore » flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.« less
NASA Astrophysics Data System (ADS)
Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.
2018-01-01
The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.
Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems
NASA Astrophysics Data System (ADS)
Sun, Ning
Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface. When the inhomogeneity is small, dendrites form mainly under high current densities, in which the mass transfer is dominated by electromigration; when the inhomogeneity is very large, dendrites may form under both high and low current densities, which is dominated by electromigration in high current density and by surface reactivity in low current density. We show that the critical current density for dendrite formation is sensitive to surface inhomogeneous reactivity and the onset time of dendrite formation is sensitive to the initial roughness of electrode. A new analysis method is introduced, which can predict the formation of dendrites in batteries at a very early stage even before large dendrites form. Charge/discharge cyclic properties of the system are also studied, which shows that electrode roughness will increase during cycles and the break-off of dendritic structures is inevitable once big dendrites form; however, it is possible to minimize the amount of break-off materials by optimizing the rate of discharge. (3) The LBM is also used to simulate intercalation reactions in a Li-Ion battery with graphite as anode and pure Li metal as counter electrode. Both galvanostatic and potentiostatic conditions were studied. The relation between operation parameters (current and potential) and electrode parameters (porosity, thickness and diffusivity) and plating times were discussed. Different equilibrium potentials forms (empirical fitting, fitting of SONY 18650 cell, and staged profiles) were also compared. By modifying the morphology of electrode with a density gradient, it was shown that much better electrode performance can be obtained, which can be helpful for the designing and manufacturing of better batteries. (4) The transdermal drug delivery system is also simulated by using LBM. Two kinds of transdermal structures are discussed: "brick and mortar" structure and a simple homogenized structure. It is demonstrated that the homogenized system is able to obtain similar steady state flux as the "brick and mortar" structure; however, in the early transient region, their flux value can be different. The influence of different system parameters (amount of drug in patch, patch thickness, partition coefficient at patch/ Stratum Corneum (SC) interface, and the diffusion coefficient of drug in each component) is discussed in details. It turns out that in this system, the rate-determine step for mass transfer should be the partition between patch and SC layers and the diffusion in the SC layer. The influence of enhancer is also tested. It is shown that by adding enhancers, the drug flux can be significantly increased. However, the peak time of drug does not necessarily match the peak flux time of enhancer. The peak time of drug could be adjusted (pushed earlier or dragged later) by using different kinds of enhancers, which has higher/smaller diffusivity than drug in the SC layer.
Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2014-12-23
Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.
Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d
NASA Astrophysics Data System (ADS)
Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.
2018-06-01
YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Dufek, Josef; Lube, Gert
2018-01-01
Pyroclastic density currents (PDCs) are a significant volcanic hazard. However, their dominant transport mechanisms remain poorly understood, in part because of the large variability of PDC types and deposits. Here we combine field data with experimental and numerical simulations to illuminate the twofold fate of particles settling from an ash cloud to form the dense PDC basal flow. At solid fractions >1 vol %, heterogeneous drag leads to formation of mesoscale particle clusters that favor rapid particle settling and result in a mobile dense layer with significant bed weight support. Conversely, at lower concentrations the absence of particle clusters typically leads to formation of poorly mobile dense beds that deposit massive layers. Based on this transport dichotomy, we present a numerical dense-dilute parameter that allows a PDC's dominant transport mechanism to be determined directly from the deposit geometry and grainsize characteristics.
Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M
2012-11-01
Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.
NASA Astrophysics Data System (ADS)
Xie, Jianjun; Liu, Li; Xia, Jing; Zhang, Yue; Li, Min; Ouyang, Yan; Nie, Su; Wang, Xianyou
2018-03-01
Hierarchical Sb2S3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb2S3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. Even at a high current density of 5000 mA g-1, a discharge capacity of 541 mAh g-1 is achieved. Sb2S3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space, which can buffer the volume expansion. [Figure not available: see fulltext.
Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong
2013-08-14
Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.
NASA Astrophysics Data System (ADS)
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura, Yukihito, E-mail: matsuura@chem.nara-k.ac.jp
The tunneling magnetoresistance (TMR) of a silicon chain sandwiched between nickel electrodes was examined by using first-principles density functional theory. The relative orientation of the magnetization in a parallel-alignment (PA) configuration of two nickel electrodes enhanced the current with a bias less than 0.4 V compared with that in an antiparallel-alignment configuration. Consequently, the silicon chain-nickel electrodes yielded good TMR characteristics. In addition, there was polarized spin current in the PA configuration. The spin polarization of sulfur atoms functioning as a linking bridge between the chain and nickel electrode played an important role in the magnetic effects of the electric current.more » Moreover, the hybridization of the sulfur 3p orbital and σ-conjugated silicon 3p orbital contributed to increasing the total current.« less
Enhancement of electrical properties in polycrystalline BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori
2006-11-01
Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.
NASA Astrophysics Data System (ADS)
Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.
2017-06-01
The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.
NASA Astrophysics Data System (ADS)
Wang, Wenjuan; Hao, Qingli; Lei, Wu; Xia, Xifeng; Wang, Xin
2014-12-01
The electrochemical property of graphene can be significantly enhanced due to the incorporating of heteroatoms into graphene. In this article, the ternary nitrogen-doped graphene/nickel ferrite/polyaniline (NGNP) nanocomposite is synthesized by a facile two-step approach and its electrochemical properties as electrodes for supercapacitors are studied by various electrochemical measurements. The specific capacitance of NGNP is 645.0 F g-1 at 1 mV s-1 and 667.0 F g-1 at 0.1 A g-1 in a three- and two-electrode system, respectively, much higher than other binary electrodes. In a two-electrode symmetric system, the energy density of the NGNP electrode is 92.7 W h kg-1 at a power density of 110.8 W kg-1, moreover, that of the supercapacitor based on NGNP can also reach 23.2 W h kg-1 at a power density of 27.7 W kg-1. In addition, the capacitance loses only 5% after repeating test for 5000 cycles, and about 10% after 10,000 cycles at a high current density 5 A g-1. The results demonstrate the novel ternary NGNP electrode produced by the current economical method will gain promising applications in supercapacitors and other devices by virtue of its outstanding characteristics (high specific capacitance, high power and energy density, excellent cycle life).
Numerical simulation of current-free double layers created in a helicon plasma device
NASA Astrophysics Data System (ADS)
Rao, Sathyanarayan; Singh, Nagendra
2012-09-01
Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.
NASA Astrophysics Data System (ADS)
Zhou, Hong; Maize, Kerry; Qiu, Gang; Shakouri, Ali; Ye, Peide D.
2017-08-01
We have demonstrated that depletion/enhancement-mode β-Ga2O3 on insulator field-effect transistors can achieve a record high drain current density of 1.5/1.0 A/mm by utilizing a highly doped β-Ga2O3 nano-membrane as the channel. β-Ga2O3 on insulator field-effect transistor (GOOI FET) shows a high on/off ratio of 1010 and low subthreshold slope of 150 mV/dec even with 300 nm thick SiO2. The enhancement-mode GOOI FET is achieved through surface depletion. An ultra-fast, high resolution thermo-reflectance imaging technique is applied to study the self-heating effect by directly measuring the local surface temperature. High drain current, low Rc, and wide bandgap make the β-Ga2O3 on insulator field-effect transistor a promising candidate for future power electronics applications.
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-16
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
NASA Astrophysics Data System (ADS)
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-01
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning
NASA Astrophysics Data System (ADS)
Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet
2017-11-01
The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.
Wang, Jing; Zhang, Wei-Dong; Lin, Mu-Sen; Zhai, Qing-Bo; Yu, Feng
2010-08-25
The aim of the present study is to investigate the alterations of cardiac hemodynamics, sodium current (I(Na)) and L-type calcium current (I(Ca-L)) in the cardiomyopathic model of rats. The model of cardiomyopathy was established by intraperitoneal injection of L-thyroxine (0.5 mg/kg) for 10 d. The hemodynamics was measured with biological experimental system, and then I(Na) and I(Ca-L) were recorded by using whole cell patch clamp technique. The results showed that left ventricular systolic pressure (LVSP), left ventricular developed pressure (LVDP), +/-dp/dt(max) in cardiomyopathic group were significantly lower than those in the control group, while left ventricular end-diastolic pressure (LVEDP) in cardiomyopathic group was higher than that in the control group. Intraperitoneal injection of L-thyroxine significantly increased the current density of I(Na) [(-26.2+/-3.2) pA/pF vs (-21.1+/-6.3) pA/pF, P<0.01], shifted steady-state activation and inactivation curves negatively, and markedly prolonged the time constant of recovery from inactivation. On the other hand, the injection of L-thyroxine significantly increased the current density of I(Ca-L) [(-7.9+/-0.8) pA/pF vs (-5.4+/-0.6) pA/pF, P<0.01)], shifted steady-state activation and inactivation curves negatively, and obviously shortened the time constant of recovery from inactivation. In conclusion, the cardiac performance of cardiomyopathic rats is similar to that of rats with heart failure, in which the current density of I(Na) and especially the I(Ca-L) are enhanced, suggesting that calcium channel blockade and a decrease in Na(+) permeability of membrane may play an important role in the treatment of cardiomyopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young
2016-02-15
Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozai, M.; Munakata, K.; Kato, C.
2016-07-10
We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in themore » western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.« less
Ma, Yang; Wang, Na; Chen, Jiang; Chen, Changsong; San, Haisheng; Chen, Jige; Cheng, Zhengdong
2018-06-19
Utilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to low energy conversion efficiency. Here, we report a betavoltaic cell fabricated using TiO 2 nanotube arrays (TNTAs) electrochemically reduced in ethylene glycol electrolyte (EGECR-TNTAs) for the enhancement of the betavoltaic effect. The electrochemical reduction of TNTAs using high cathodic bias in organic electrolytes is indeed a facile and effective strategy to induce in situ self-doping of oxygen vacancy (OV) and Ti 3+ defects. The black EGECR-TNTAs are highly stable with a significantly narrower band gap and higher electrical conductivity as well as UV-vis-NIR light absorption. A 20 mCi of 63 Ni betavoltaic cell based on the reduced TNTAs exhibits a maximum ECE of 3.79% with open-circuit voltage of 1.04 V, short-circuit current density of 117.5 nA cm -2 , and a maximum power density of 39.2 nW cm -2 . The betavoltaic enhancement can be attributed to the enhanced charge carrier transport and separation as well as multiple exciton generation of electron-hole pairs due the generation of OV and Ti 3+ interstitial bands below the conductive band of TiO 2.
Non-inductive current generation in fusion plasmas with turbulence
NASA Astrophysics Data System (ADS)
Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.
2017-10-01
It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Gedanken densities and exact constraints in density functional theory.
Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
Method of manufacture of single phase ceramic superconductors
Singh, J.P.; Poeppel, R.B.; Goretta, K.C.; Chen, N.
1995-03-28
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of about 4 {mu}m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity. 25 figures.
Method of manufacture of single phase ceramic superconductors
Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan
1995-01-01
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.
Process Research of Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1984-01-01
An investigation was begun into the usefulness of molecular hydrogen annealing on polycrystalline solar cells. No improvement was realized even after twenty hours of hydrogenation. Thus, samples were chosen on the basis of: (1) low open circuit voltage; (2) low shunt conductance; and (3) high light generated current. These cells were hydrogenated in molecular hydrogen at 300 C. The differences between the before and after hydrogenation values are so slight as to be negligible. These cells have light generated current densities that indicate long minority carrier diffusion lengths. The open circuit voltage appears to be degraded, and quasi-neutral recombination current enhanced. Therefore, molecular hydrogen is not usful for passivating electrically active defects.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
Hypo-gravity and immune system effects
NASA Technical Reports Server (NTRS)
Carter, Paul D.; Barnes, Frank
1990-01-01
Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.
Vertically porous nickel thin film supported Mn3O4 for enhanced energy storage performance.
Li, Xiao-Jun; Song, Zhi-Wei; Zhao, Yong; Wang, Yue; Zhao, Xiu-Chen; Liang, Minghui; Chu, Wei-Guo; Jiang, Peng; Liu, Ying
2016-12-01
Three-dimensionally porous metal materials are often used as the current collectors and support for the active materials of supercapacitors. However, the applications of vertically porous metal materials in supercapacitors are rarely reported, and the effect of vertically porous metal materials on the energy storage performance of supported metal oxides is not explored. To this end, the Mn3O4-vertically porous nickel (VPN) electrodes are fabricated via a template-free method. The Mn3O4-VPN electrode shows much higher volumetric specific capacitances than that of flat nickel film supported Mn3O4 with the same loading under the same measurement conditions. The volumetric specific capacitance of the vertically porous nickel supported Mn3O4 electrode can reach 533Fcm(-3) at the scan rate of 2mVs(-1). The fabricated flexible all-solid microsupercapacitor based on the interdigital Mn3O4-VPN electrode has a volumetric specific capacitance of 110Fcm(-3) at the current density of 20μAcm(-2). The capacitance retention rate of this microsupercapacitor reaches 95% after 5000 cycles under the current density of 20μAcm(-2). The vertical pores in the nickel electrode not only fit the micro/nanofabrication process of the Mn3O4-VPN electrode, but also play an important role in enhancing the capacitive performances of supported Mn3O4 particles. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennig, J., E-mail: jonas.hennig@ovgu.de; Dadgar, A.; Witte, H.
2015-07-15
We report on GaN based field-effect transistor (FET) structures exhibiting sheet carrier densities of n = 2.9 10{sup 13} cm{sup −2} for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally x{sub In} = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices.more » Benchmarking the In{sub x}Ga{sub 1−x}N/GaN/AlN/Al{sub 0.87}In{sub 0.13}N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of I{sub SD} = 1300 mA/mm (560 mA/mm). In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.« less
Park, Ji Hun; Hudaya, Chairul; Kim, A-Young; Rhee, Do Kyung; Yeo, Seon Ju; Choi, Wonchang; Yoo, Pil J; Lee, Joong Kee
2014-03-18
Structurally regulated and hybridized Al-C nanoclusters are prepared from C60 and Al precursors by thermal evaporation-combined plasma-enhanced chemical vapour deposition. The resulting Al-C hybrid nanoclustered anodes for Li-ion batteries exhibit a high reversible capacity of >900 mA h g(-1) at an optimized current density of 6 A g(-1) for over 100 cycles.
Soloveichik, Grigorii L
2014-01-01
The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.
Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Caspary, Kyle Jonathan
Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.
NASA Astrophysics Data System (ADS)
Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo
2016-12-01
Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.
2007-06-01
Phys. Lett., vol. 87, p. 162505, 2005. [2] J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley ...B. Maiorov, L. Civale, Y. Lin, M. E. Hawley , M. P. Maley, and D. E. Peterson, “Systematic enhancement of in-field critical current density with rare...16, p. 162 507–1, 2005. [15] H. Safar, J. Y. Coulter, M. P. Maley, S. R. Foltyn, P. N. Arendt, X. D. Wu, and J. O. Willis , “Anisotropy and Lorentz
Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C
2018-03-19
To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.
Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst
NASA Astrophysics Data System (ADS)
Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.
2017-08-01
A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...
2018-03-19
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao
2018-03-01
The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu
2013-02-01
We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
Field Line Mapping of the Polar Cap Neutral Density Anomaly
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.
2016-12-01
Polar cap neutral density anomaly (PCNDA) events of localized density enhancement with a half size around 700-1000 km had been frequently detected by CHAMP satellite at around 400 km during major magnetic storms with Dst < -100 nT. Density enhancement is probably produced via Joule heating of the thermosphere when a significant amount of energy is deposited in the polar cap. We have identified 12 PCNDA events measured by CHAMP during two major magnetic storms including one initiated by a large solar wind pressure pulse. Their density anomaly locations are found to scatter randomly within the polar circle of 80o magnetic latitude in the geomagnetic coordinate. However after transformed to the Geocentric Solar Wind (GSW) coordinates, their locations become aligned in the direction of solar wind velocity. To better understand the polar cap energy deposition we trace magnetic field lines to the magnetosphere up to 30 earth radii from the ionosphere at 400 km using the data-based Tsyganenko T95 and TS05 magnetic field models. Field line tracing is performed in the GSW coordinate along the CHAMP orbit as well as for the whole polar cap. Each traced magnetic field line is classified into one of the three categories, (1) magnetosphere closed field line (MC) crossing the equatorial plane within 30 earth radii, (2) open field line connected to the magnetopause (MP), or (3) open field line connected to the magnetotail lobe (MT). For nine PCNDA events among the 10 events that we are able to conduct tracing, field lines originated from the density anomaly regions are classified as MT. Only one outlier event in association with a very large IMF BZ is classified as MP. Furthermore the separation angle between the density anomaly peak and the MP-MT field line separation point at 400 km on the X- and Z-axes meridian plane varies from -4o to 16o. Based on these results we speculate that convective electric fields and field aligned currents in the ionosphere might be enhanced near the MP-MT separation point during magnetic storms, resulting in intense localized Joule heating of the thermosphere.
The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes
NASA Astrophysics Data System (ADS)
Mentel, Juergen
2018-01-01
A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.
Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field
NASA Astrophysics Data System (ADS)
Yokoyama, Tatsuhiro; Stolle, Claudia
2017-03-01
Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.
Luo, Pan; Zhang, Huijuan; Liu, Li; Zhang, Yan; Deng, Ju; Xu, Chaohe; Hu, Ning; Wang, Yu
2017-01-25
Water splitting is one of the ideal technologies to meet the ever increasing demands of energy. Many materials have aroused great attention in this field. The family of nickel-based sulfides is one of the examples that possesses interesting properties in water-splitting fields. In this paper, a controllable and simple strategy to synthesize nickel sulfides was proposed. First, we fabricated NiS 2 hollow microspheres via a hydrothermal process. After a precise heat control in a specific atmosphere, NiS porous hollow microspheres were prepared. NiS 2 was applied in hydrogen evolution reaction (HER) and shows a marvelous performance both in acid medium (an overpotential of 174 mV to achieve a current density of 10 mA/cm 2 and the Tafel slope is only 63 mV/dec) and in alkaline medium (an overpotential of 148 mV to afford a current density of 10 mA/cm 2 and the Tafel slope is 79 mV/dec). NiS was used in oxygen evolution reaction (OER) showing a low overpotential of 320 mV to deliver a current density of 10 mA/cm 2 , which is meritorious. These results enlighten us to make an efficient water-splitting system, including NiS 2 as HER catalyst in a cathode and NiS as OER catalyst in an anode. The system shows high activity and good stabilization. Specifically, it displays a stable current density of 10 mA/cm 2 with the applying voltage of 1.58 V, which is a considerable electrolyzer for water splitting.
Urtiaga, Ane; Soriano, Alvaro; Carrillo-Abad, Jordi
2018-06-01
The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5-600 A m -2 ) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J = 50 A m -2 ), using NaCl, Na 2 SO 4 and NaClO 4 , the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO 4 - was not observed. When using Na 2 SO 4 electrolyte, increasing the applied current density to 350-600 A m -2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO 2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sclerostin Antibody Treatment Enhances Rotator Cuff Tendon-to-Bone Healing in an Animal Model.
Shah, Shivam A; Kormpakis, Ioannis; Havlioglu, Necat; Ominsky, Michael S; Galatz, Leesa M; Thomopoulos, Stavros
2017-05-17
Rotator cuff tears are a common source of pain and disability, and poor healing after repair leads to high retear rates. Bone loss in the humeral head before and after repair has been associated with poor healing. The purpose of the current study was to mitigate bone loss near the repaired cuff and improve healing outcomes. Sclerostin antibody (Scl-Ab) treatment, previously shown to increase bone formation and strength in the setting of osteoporosis, was used in the current study to address bone loss and enhance rotator cuff healing in an animal model. Scl-Ab was administered subcutaneously at the time of rotator cuff repair and every 2 weeks until the animals were sacrificed. The effect of Scl-Ab treatment was evaluated after 2, 4, and 8 weeks of healing, using bone morphometric analysis, biomechanical evaluation, histological analysis, and gene expression outcomes. Injury and repair led to a reduction in bone mineral density after 2 and 4 weeks of healing in the control and Scl-Ab treatment groups. After 8 weeks of healing, animals receiving Scl-Ab treatment had 30% greater bone mineral density than the controls. A decrease in biomechanical properties was observed in both groups after 4 weeks of healing compared with healthy tendon-to-bone attachments. After 8 weeks of healing, Scl-Ab-treated animals had improved strength (38%) and stiffness (43%) compared with control animals. Histological assessment showed that Scl-Ab promoted better integration of tendon and bone by 8 weeks of healing. Scl-Ab had significant effects on gene expression in bone, indicative of enhanced bone formation, and no effect on the expression of genes in tendon. This study provides evidence that Scl-Ab treatment improves tendon-to-bone healing at the rotator cuff by increasing attachment-site bone mineral density, leading to improved biomechanical properties. Scl-Ab treatment may improve outcomes after rotator cuff repair.
NASA Astrophysics Data System (ADS)
Lippman, Thomas; Brockie, Richard; Coker, Jon; Contreras, John; Galbraith, Rick; Garzon, Samir; Hanson, Weldon; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Duquette, Paul; Petrizzi, Joe
2015-05-01
Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.
Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo
2015-06-03
Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.
Turbulent mixing and fluid transport within Florida Bay seagrass meadows
NASA Astrophysics Data System (ADS)
Hansen, Jennifer C. R.; Reidenbach, Matthew A.
2017-10-01
Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.
Two color laser driven THz generation in clustered plasma
NASA Astrophysics Data System (ADS)
Malik, Rakhee; Uma, R.; Kumar, Pawan
2017-07-01
A scheme of terahertz (THz) generation, using nonlinear mixing of two color laser (fundamental ω1 and slightly frequency shifted second harmonic ω2 ) in clustered plasma, is investigated. The lasers exert ponderomotive force on cluster electrons and drive density perturbations at 2 ω1 and ω2-ω1 . The density perturbations beat with the oscillatory velocities to produce nonlinear current at ω2-2 ω1 , generating THz radiation. The radiation is enhanced due to cluster plasmon resonance and by phase matching introduced through a density ripple. The generation involves third order nonlinearity and does not require a magnetic field or inhomogeneity to sustain it. We report THz power conversion efficiency ˜ 10-4 at 1 μm and 0.5 μm wavelengths with intensity ˜ 3 ×1014W/cm 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassen, Aaron G.; White, Emma M. H.; Tang, Wei
We present economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm 3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoidingmore » directional solidification that provides alignment in alnico 9. Lastly, successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.« less
NASA Technical Reports Server (NTRS)
Richards, P. G.; Buonsanto, M. J.; Reinisch, B. W.; Holt, J.; Fennelly, J. A.; Scali, J. L.; Comfort, R. H.; Germany, G. A.; Spann, J.; Brittnacher, M.
1999-01-01
Measurements from a network of digisondes and an incoherent scatter radar In Eastern North American For January 6-12, 1997 have been compared with the Field Line Interhemispheric Plasma (FLIP) model which now includes the effects of electric field convective. With the exception of Bermuda, the model reproduces the daytime electron density very well most of the time. As is typical behavior for winter solar minimum on magnetically undisturbed nights, the measurements at Millstone Hill show high electron temperatures before midnight followed by a rapid decay, which is accompanied by a pronounced density enhancement in the early morning hours. The FLIP model reproduces the nighttime density enhancement well, provided the model is constrained to follow the topside electron temperature and the flux tube is full. Similar density enhancements are seen at Goose Bay, Wallops Island and Bermuda. However, the peak height variation and auroral images indicate the density enhancements at Goose Bay are most likely due to particle precipitation. Contrary to previously published work we find that the nighttime density variation at Millstone Hill is driven by the temperature behavior and not the other way around. Thus, in both the data and model, the overall nighttime density is lowered and the enhancement does not occur if the temperature remains high all night. Our calculations show that convections of plasma from higher magnetic latitudes does not cause the observed density maximum but it may enhance the density maximum if over-full flux tubes are convected over the station. On the other had, convection of flux tubes with high temperatures and depleted densities may prevent the density maximum from occurring. Despite the success in modeling the nighttime density enhancements, there remain two unresolved problems. First, the measured density decays much faster than the modeled density near sunset at Millstone Hill and Goose Bay though not at lower latitude stations. Second, we cannot fully explain the large temperatures before midnight nor the sudden decay near midnight.
Bifulco, Paolo; Massa, Rita; Cesarelli, Mario; Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; McEwan, Alistair L
2013-08-12
Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem.
The leap-frog effect of ring currents in benzene.
Ligabue, Andrea; Soncini, Alessandro; Lazzeretti, Paolo
2002-03-06
Symmetry arguments show that the ring-current model proposed by Pauling, Lonsdale, and London to explain the enhanced diamagnetism of benzene is flawed by an intrinsic drawback. The minimal basis set of six atomic 2p orbitals taken into account to develop such a model is inherently insufficient to predict a paramagnetic contribution to the perpendicular component of magnetic susceptibility in planar ring systems such as benzene. Analogous considerations can be made for the hypothetical H(6) cyclic molecule. A model allowing for extended basis sets is necessary to rationalize the magnetism of aromatics. According to high-quality coupled Hartree-Fock calculations, the trajectories of the current density vector field induced by a magnetic field perpendicular to the skeletal plane of benzene in the pi electrons are noticeably different from those typical of a Larmor diamagnetic circulation, in that (i) significant deformation of the orbits from circular to hexagonal symmetry occurs, which is responsible for a paramagnetic contribution of pi electrons to the out-of-plane component of susceptibility, and (ii) a sizable component of the pi current density vector parallel to the inducing field is predicted. This causes a waving motion of pi electrons; streamlines are characterized by a "leap-frog effect".
Anode current density distribution in a cusped field thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao
2015-12-15
The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.
2012-01-01
Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm−1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/μm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/μm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology. PMID:23009733
NASA Astrophysics Data System (ADS)
Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li
2018-04-01
Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.
NASA Astrophysics Data System (ADS)
Liu, Yue; Booth, Jean-Paul; Chabert, Pascal
2018-02-01
A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant.
Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.
Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan
2013-05-20
X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.
NASA Astrophysics Data System (ADS)
Tang, Xiaohui; Lui, Yu Hui; Chen, Bolin; Hu, Shan
2017-06-01
A hybrid electrochemical capacitor (EC) with enhanced energy density is realized by integrating functionalized carbon nanotube (FCNT) electrodes with redox-active electrolyte that has a neutral pH value (1 M Na2SO4 and 0.5 M KBr mixed aqueous solution). The negative electrode shows an electric double layer capacitor-type behavior. On the positive electrode, highly reversible Br-/Br3- redox reactions take place, presenting a battery-type behavior, which contributes to increase the capacitance of the hybrid cell. The voltage window of the whole cell is extended up to 1.5 V because of the high over-potentials of oxygen and hydrogen evolution reactions in the neutral electrolyte. Compared with raw CNT, the FCNT has better wettability in the aqueous electrolyte and contributes to increase the electric double layer capacitance of the cell. As a result, the maximum energy density of 28.3 Wh kg-1 is obtained from the hybrid EC at 0.5 A g-1 without sacrificing its power density, which is around 4 times larger than that of the electrical double layer capacitor constructed by FCNT electrodes and 1 M Na2SO4 electrolyte. Moreover, the discharge capacity retained 86.3% of its initial performance after 10000 cycles of galvanostatic charge and discharge test (10 A/g), suggesting its long life cycle even at high current loading.
NASA Astrophysics Data System (ADS)
Gong, Z.; Liu, N. Y.; Tao, Y. B.; Massoubre, D.; Xie, E. Y.; Hu, X. D.; Chen, Z. Z.; Zhang, G. Y.; Pan, Y. B.; Hao, M. S.; Watson, I. M.; Gu, E.; Dawson, M. D.
2012-01-01
Micro-pixelated InGaN LED arrays operating at 560 and 600 nm, respectively, are demonstrated for what the authors believe to be the first time. Such devices offer applications in areas including bioinstrumentation, visible light communications and optoelectronic tweezers. The devices reported are based on new epitaxial structures, retaining conventional (0 0 0 1) orientation, but incorporating electron reservoir layers which enhance the efficiency of radiative combination in the active regions. A measured output optical power density up to 8 W cm-2 (4.4 W cm-2) has been achieved from a representative pixel of the yellow-green (amber) LED array, substantially higher than that from conventional broad-area reference LEDs fabricated from the same wafer material. Furthermore, these micro-LEDs can sustain a high current density, up to 4.5 kA cm-2, before thermal rollover. A significant blueshift of the emission wavelength with increasing injection current is observed, however. This blueshift saturates at 45 nm (50 nm) for the yellow-green (amber) LED array, and numerical simulations have been used to gain insight into the responsible mechanisms in this microstructured format of device. In the relatively low-current-density regime (<3.5 kA cm-2) the blueshift is attributable to both the screening of the piezoelectric field by the injected carriers and the band-filling effect, whereas in the high-current regime, it is mainly due to band-filling. Further development of the epitaxial wafer material is expected to improve the current-dependent spectral stability.
Enhancing power density of biophotovoltaics by decoupling storage and power delivery
NASA Astrophysics Data System (ADS)
Saar, Kadi L.; Bombelli, Paolo; Lea-Smith, David J.; Call, Toby; Aro, Eva-Mari; Müller, Thomas; Howe, Christopher J.; Knowles, Tuomas P. J.
2018-01-01
Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m-2, a value five times that for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flow-based design that allowed independent optimization of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturization of active elements and flow control for decoupled operation and independent optimization of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation.
Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D
2016-12-01
To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices. Copyright © 2016 Elsevier Inc. All rights reserved.
Lin, Dong; Saei, Mojib; Suslov, Sergey; Jin, Shengyu; Cheng, Gary J.
2015-01-01
CNTs reinforced metal composites has great potential due to their superior properties, such as light weight, high strength, low thermal expansion and high thermal conductivity. The current strengthening mechanisms of CNT/metal composite mainly rely on CNTs’ interaction with dislocations and CNT’s intrinsic high strength. Here we demonstrated that laser shock loading the CNT/metal composite results in high density nanotwins, stacking fault, dislocation around the CNT/metal interface. The composites exhibit enhanced strength with excellent stability. The results are interpreted by both molecular dynamics simulation and experiments. It is found the shock wave interaction with CNTs induces a stress field, much higher than the applied shock pressure, surrounding the CNT/metal interface. As a result, nanotwins were nucleated under a shock pressure much lower than the critical values to generate twins in metals. This hybrid unique nanostructure not only enhances the strength, but also stabilize the strength, as the nanotwin boundaries around the CNTs help pin the dislocation movement. PMID:26493533
Contact enhancement of locomotion in spreading cell colonies
NASA Astrophysics Data System (ADS)
D'Alessandro, Joseph; Solon, Alexandre P.; Hayakawa, Yoshinori; Anjard, Christophe; Detcheverry, François; Rieu, Jean-Paul; Rivière, Charlotte
2017-10-01
The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell-cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.
Enhanced and continuous electrostatic carrier doping on the SrTiO3 surface
Eyvazov, A. B.; Inoue, I. H.; Stoliar, P.; Rozenberg, M. J.; Panagopoulos, C.
2013-01-01
Paraelectrical tuning of a charge carrier density as high as 1013 cm−2 in the presence of a high electronic carrier mobility on the delicate surfaces of correlated oxides, is a key to the technological breakthrough of a field effect transistor (FET) utilising the metal-nonmetal transition. Here we introduce the Parylene-C/Ta2O5 hybrid gate insulator and fabricate FET devices on single-crystalline SrTiO3, which has been regarded as a bedrock material for oxide electronics. The gate insulator accumulates up to ~1013cm−2 carriers, while the field-effect mobility is kept at 10 cm2/Vs even at room temperature. Further to the exceptional performance of our devices, the enhanced compatibility of high carrier density and high mobility revealed the mechanism for the long standing puzzle of the distribution of electrostatically doped carriers on the surface of SrTiO3. Namely, the formation and continuous evolution of field domains and current filaments.
NASA Astrophysics Data System (ADS)
Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao
2017-02-01
A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.
Ordered CdTe/CdS Arrays for High-Performance Solar Cells
NASA Astrophysics Data System (ADS)
Zubía, David; López, Cesar; Rodríguez, Mario; Escobedo, Arev; Oyer, Sandra; Romo, Luis; Rogers, Scott; Quiñónez, Stella; McClure, John
2007-12-01
The deposition of uniform arrays of CdTe/CdS heterostructures suitable for solar cells via close-spaced sublimation is presented. The approach used to create the arrays consists of two basic steps: the deposition of a patterned growth mask on CdS, and the selective-area deposition of CdTe. CdTe grains grow selectively on the CdS but not on the SiO2 due to the differential surface mobility between the two surfaces. Furthermore, the CdTe mesas mimic the size and shape of the window opening in the SiO2. Measurements of the current density in the CdTe were high at 28 mA/cm2. To our knowledge, this is the highest reported current density for these devices. This implies that either the quantum efficiency is very high or the electrons generated throughout the CdTe are being concentrated by the patterned structure analogous to solar concentration. The enhancement in crystal uniformity and the relatively unexplored current concentration phenomenon could lead to significant performance improvements.
Reversed Hall effect and plasma conductivity in the presence of charged impurities
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2018-01-01
The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Jia; Qu, Youpeng; Zhang, Jian; Zhong, Yingjuan; Feng, Yujie
2017-09-01
The biofilm on the anode of a microbial fuel cell (MFC) is a vital component in system, and its formation and characteristic determines the performance of the system. In this study, a bacteria/Multi-Walled Carbon Nanotube (MWCNT) hybrid biofilm is fabricated by effectively inserting the MWCNTs into the anode biofilm via an adsorption-filtration method. This hybrid biofilm has been demonstrated to be an efficient structure for improving an anode biofilm performance. Electrochemical impedance spectroscopy (EIS) results show that the hybrid biofilm takes advantage of the conductivity and structure of MWCNT to enhance the electron transfer and substrate diffusion of the biofilm. With this hybrid biofilm, the current density, power density and coulombic efficiency are increased by 46.2%, 58.8% and 84.6%, respectively, relative to naturally grown biofilm. Furthermore, the start-up time is reduced by 53.8% compared with naturally grown biofilm. The perturbation test demonstrates that this type of hybrid biofilm exhibits strong adsorption ability and enhances the biofilm's resistance to a sudden change of substrate concentration. The superior performance of the hybrid biofilm with MWCNT ;nanowire; matrix compared with naturally grown biofilm demonstrates its great potential for boosting the performance of MFCs.
Pressure induced superconductivity in very lightly doped LaFeAsO0.975F0.025
NASA Astrophysics Data System (ADS)
Miyoshi, K.; Otsuka, K.; Shiota, A.; Shimojo, Y.; Motoyama, G.; Fujiwara, K.; Kitagawa, H.; Nishigori, S.
2018-05-01
We have investigated whether or not superconductivity is induced by the application of pressure in very lightly F-doped LaFeAsO1-xFx , which shows spin density wave (SDW) state at ambient pressure, through the measurements of DC magnetization and electrical resistivity under pressure using pulse current sintered (PCS) high density polycrystalline specimens. It has been confirmed that the specimens with x = 0.025 shows superconductivity with Tcdia ∼ 15 K under pressure above ∼ 1.3 GPa. The pressure induced superconductivity can be explained by the lattice compression along c-axis, which enhances the electron doping from LaO layers to FeAs layers.
Conductance signatures of electron confinement induced by strained nanobubbles in graphene
NASA Astrophysics Data System (ADS)
Bahamon, Dario A.; Qi, Zenan; Park, Harold S.; Pereira, Vitor M.; Campbell, David K.
2015-09-01
We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy electrons can be confined in the vicinity of or within the nanobubbles by the delicate interplay among the pseudomagnetic field pattern created by the shape of the bubble, mode mixing, and substrate interaction. The coupling between confined evanescent states and propagating modes can be enhanced under different clamping conditions, which translates into Fano resonances in the conductance traces.
NASA Astrophysics Data System (ADS)
Jalali, Tahmineh
2018-05-01
In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.
Broadband enhancement of dielectric light trapping nanostructure used in ultra-thin solar cells
NASA Astrophysics Data System (ADS)
Yang, Dong; Xu, Zhaopeng; Bian, Fei; Wang, Haiyan; Wang, Jiazhuang; Sun, Lu
2018-03-01
A dielectric fishnet nanostructure is designed to increase the light trapping capability of ultra-thin solar cells. The complex performance of ultra-thin cells such as the optical response and electrical response are fully quantified in simulation through a complete optoelectronic investigation. The results show that the optimized light trapping nanostructure can enhances the electromagnetic resonance in active layer then lead to extraordinary enhancement of both absorption and light-conversion capabilities in the solar cell. The short-circuit current density increases by 49.46% from 9.40 mA/cm2 to 14.05 mA/cm2 and light-conversion efficiency increases by 51.84% from 9.51% to 14.44% compared to the benchmark, a solar cell with an ITO-GaAs-Ag structure.
Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I
2004-12-01
One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Li, X.; Baker, D. N.
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.
Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J
2012-04-01
Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.
Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.
Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H
2017-04-12
Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.
Anisotropic high-harmonic generation in bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Reis, David A.; Ghimire, Shambhu
2016-11-21
The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less
Asymmetric Supercapacitor Electrodes and Devices.
Choudhary, Nitin; Li, Chao; Moore, Julian; Nagaiah, Narasimha; Zhai, Lei; Jung, Yeonwoong; Thomas, Jayan
2017-06-01
The world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance. Asymmetric supercapacitors (ASCs) assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density. Recent progress made in the field of ASCs is critically reviewed, with the main focus on an extensive survey of the materials developed for ASC electrodes, as well as covering the progress made in the fabrication of ASC devices over the last few decades. Current challenges and a future outlook of the field of ASCs are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic electrical double layer transistors gated with ionic liquids
NASA Astrophysics Data System (ADS)
Xie, Wei; Frisbie, C. Daniel
2011-03-01
Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.
Ecton processes in the generation of pulsed runaway electron beams in a gas discharge
NASA Astrophysics Data System (ADS)
Mesyats, G. A.
2017-09-01
As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.
NASA Astrophysics Data System (ADS)
Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad
2017-02-01
A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.
NASA Astrophysics Data System (ADS)
Ali, Danish; Yu, Bin; Duan, Xiaochao; Yu, Hao; Zhu, Meifang
2017-02-01
In the modern era, the invention of new energy sources is important in order to make advances possible in electronic media. A triboelectric nanogenerator (TENG) is considered to be strong design that converts mechanical power into electrical power, using organic (polymer) or inorganic (lead, ceramic etc) materials to initiate the triboelectrification process, followed by charge separation. In this study, a lead-free BaTiO3/PDMS-Al-based TENG was fabricated by mixing tetragonal ferroelectric BaTiO3 nanocrystals in a PDMS matrix to make a composite for a working electrode film. It is worth noting that a new post- poling process has been introduced to align the dipole structures in the BaTiO3 nanocrystals, and to attain a high electron density on the surface of the working electrode film. The output was recorded up to 375 V and 6 μA of close circuit voltage and short circuit current, respectively, at a current density of 0.3 μA cm-2 and an effective power equal to 2.25 mW at a load resistance of 100 MΩ, and is four times higher than a PDMS-Al-based TENG. This study also reveals the hidden locks that will enable other inorganic materials with a dipole structure to enhance their output using the post-poling technique. The TENG has a vast field of applications due to its stability, the flexibility of its thin films and its biocompatibility. It is also an aid for exploring new TENG devices with enhanced output performance.
2014-01-01
Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123
Direct URCA process in neutron stars
NASA Technical Reports Server (NTRS)
Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel
1991-01-01
It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.
Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang
2016-11-09
Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl 3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO 3 ), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m 2 g -1 was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg -1 in 1.0 M KOH at a scan rate of 5 mV s -1 . Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg -1 using Nafion binder is obtained under a current density of 1 Ag -1 by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.
High thermal stability of abrupt SiO2/GaN interface with low interface state density
NASA Astrophysics Data System (ADS)
Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-04-01
The effects of postdeposition annealing (PDA) on the interface properties of a SiO2/GaN structure formed by remote oxygen plasma-enhanced chemical vapor deposition (RP-CVD) were systematically investigated. X-ray photoelectron spectroscopy clarified that PDA in the temperature range from 600 to 800 °C has almost no effects on the chemical bonding features at the SiO2/GaN interface, and that positive charges exist at the interface, the density of which can be reduced by PDA at 800 °C. The capacitance-voltage (C-V) and current density-SiO2 electric field characteristics of the GaN MOS capacitors also confirmed the reduction in interface state density (D it) and the improvement in the breakdown property of the SiO2 film after PDA at 800 °C. Consequently, a high thermal stability of the SiO2/GaN structure with a low fixed charge density and a low D it formed by RP-CVD was demonstrated. This is quite informative for realizing highly robust GaN power devices.
Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei
2017-10-19
An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.
Mahmoud, Mohamed; Parameswaran, Prathap; Torres, César I; Rittmann, Bruce E
2014-01-01
Pre-fermentation of poorly biodegradable landfill leachate (BOD5/COD ratio of 0.32) was evaluated for enhanced current density (j), Coulombic efficiency (CE), Coulombic recovery (CR), and removal of organics (BOD5 and COD) in a microbial electrolysis cell (MEC). During fermentation, the complex organic matter in the leachate was transformed to simple volatile fatty acids, particularly succinate and acetate in batch tests, but mostly acetate in semi-continuous fermentation. Carbohydrate had the highest degree of fermentation, followed by protein and lipids. j, CE, CR, and BOD5 removal were much greater for an MEC fed with fermented leachate (23 A/m(3) or 16 mA/m(2), 68%, 17.3%, and 83%, respectively) compared to raw leachate (2.5 A/m(3) or 1.7 mA/m(2), 56%, 2.1%, and 5.6%, respectively). All differences support the value of pre-fermentation before an MEC for stabilization of BOD5 and enhanced electron recovery as current when treating a recalcitrant wastewater like landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of segmented electrode length on the performances of Hall thruster
NASA Astrophysics Data System (ADS)
Duan, Ping; Chen, Long; Liu, Guangrui; Bian, Xingyu; Yin, Yan
2016-09-01
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of ionization rate in discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.
RF Photoelectric injectors using needle cathodes
NASA Astrophysics Data System (ADS)
Lewellen, J. W.; Brau, C. A.
2003-07-01
Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.
Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.
Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir
2016-03-01
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi
2017-08-09
Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO 3 nanowires (NWs) encapsulated by TiO 2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO 3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO 2 encapsulated BaTiO 3 NWs. For instance, an ultrahigh energy density of 9.53 J cm -3 at 440 MV m -1 could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm -3 at 360 MV m -1 ). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO 2 @BaTiO 3 -1 NWs at 440 MV m -1 seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO 2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.
Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...
2016-03-04
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
NASA Astrophysics Data System (ADS)
Lu, Xianfeng
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape.
Riedinger, Verena; Mitesser, Oliver; Hovestadt, Thomas; Steffan-Dewenter, Ingolf; Holzschuh, Andrea
2015-05-01
Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.
Zheng, Shuanghao; Li, Zhilin; Wu, Zhong-Shuai; Dong, Yanfeng; Zhou, Feng; Wang, Sen; Fu, Qiang; Sun, Chenglin; Guo, Liwei; Bao, Xinhe
2017-04-25
Interfacial integration of a shape-engineered electrode with a strongly bonded current collector is the key for minimizing both ionic and electronic resistance and then developing high-power supercapacitors. Herein, we demonstrated the construction of high-power micro-supercapacitors (VG-MSCs) based on high-density unidirectional arrays of vertically aligned graphene (VG) nanosheets, derived from a thermally decomposed SiC substrate. The as-grown VG arrays showed a standing basal plane orientation grown on a (0001̅) SiC substrate, tailored thickness (3.5-28 μm), high-density structurally ordering alignment of graphene consisting of 1-5 layers, vertically oriented edges, open intersheet channels, high electrical conductivity (192 S cm -1 ), and strong bonding of the VG edges to the SiC substrate. As a result, the demonstrated VG-MSCs displayed a high areal capacitance of ∼7.3 mF cm -2 and a fast frequency response with a short time constant of 9 ms. Furthermore, VG-MSCs in both an aqueous polymer gel electrolyte and nonaqueous ionic liquid of 1-ethyl-3-methylimidazolium tetrafluoroborate operated well at high scan rates of up to 200 V s -1 . More importantly, VG-MSCs offered a high power density of ∼15 W cm -3 in gel electrolyte and ∼61 W cm -3 in ionic liquid. Therefore, this strategy of producing high-density unidirectional VG nanosheets directly bonded on a SiC current collector demonstrated the feasibility of manufacturing high-power compact supercapacitors.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2018-05-01
The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.
NASA Astrophysics Data System (ADS)
Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.
2016-09-01
The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.
NASA Astrophysics Data System (ADS)
Ritter, Patricia; Luehr, Hermann
The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere during magnetospheric substorms. This paper presents substorm related observations of the magnetic field on ground and by the CHAMP satellite, their implications for the substorm current reconfiguration scenario, and thermospheric air density signatures after substorm onsets. Based on a large number of events, the average high and low latitude magnetic field signatures after substorm onsets reveal that the magnetic field observations cannot be described adequately by a simple current wedge model. A satisfactory agreement between model results and observations at satellite altitude and on ground can be achieved only if the current reconfiguration scenario combines the following four elements: (1) a gradual decrease of the tail lobe field; (2) a re-routing of a part of the cross-tail current through the ionosphere; (3) eastward ionospheric currents at low and mid latitudes driven by Region-2 field-aligned currents (FACs); and (4) a partial ring current connected to these Region-2 FACs. With the onset of energy input into the ionosphere we observe that the thermospheric density is enhanced first at high latitudes on the night side. The disturbance then travels at an average speed of 650 m/s to lower latitudes, and reaches the equator after 3-4 hours. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward.
Cold cathode emission studies on topographically modified few layer and single layer MoS2 films
NASA Astrophysics Data System (ADS)
Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.
2016-01-01
Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.
NASA Astrophysics Data System (ADS)
Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei
2014-11-01
Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.
Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay
2009-06-15
In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre
2007-01-01
Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.
Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly
NASA Astrophysics Data System (ADS)
Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.
2016-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics via advection, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grant: NNX16AH46G issues through the Heliophysics Supporting Research Program. This research was also supported by The Aerospace Corporation's Technical Investment program
Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition
Xiao, Ling; Koopmann, Tamara T.; Ördög, Balázs; Postema, Pieter G.; Verkerk, Arie O.; Iyer, Vivek; Sampson, Kevin J.; Boink, Gerard J.J.; Mamarbachi, Maya A.; Varro, Andras; Jordaens, Luc; Res, Jan; Kass, Robert S.; Wilde, Arthur A.; Bezzina, C.R.; Nattel, Stanley
2015-01-01
Rationale A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (Ito) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF Ito and that its overexpression might specifically alter PF Ito properties and repolarization. Objective To assess the potential role of DPP6 in PF Ito. Methods and Results Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle Ito had similar density, but PF Ito differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, Ito density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K+-channel interacting β-subunit K+-channel interacting protein type-2, essential for normal expression of Ito in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small Ito; Ito amplitude was greatly enhanced by coexpression with K+-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K+-channel interacting protein type-2 failed to alter Ito compared with Kv4.3/K+-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF Ito composition) greatly enhanced Ito compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that Ito enhancement can greatly accelerate PF repolarization. Conclusions These results point to a previously unknown central role of DPP6 in PF Ito, with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation. PMID:23532596
NASA Astrophysics Data System (ADS)
Baniecki, J. D.; Ishii, M.; Aso, H.; Kurihara, K.; Ricinschi, Dan
2013-01-01
The electronic structure and transport properties of donor doped SrTiO3 are studied using density functional theory with spin-orbit coupling and conductivity, Hall, and Seebeck effect measurements over a wide temperature range (100 K to 600 K). Split-off energies ΔSO are tunable through the dopant SO interaction strength and concentration varying from 28.1 meV for pure STO to 70.93 meV for SrTi0.5Nb0.5O3. At lower carrier concentrations and temperatures, SO coupling has a marked effect on both the filling dependence of the density-of-states mass as well as the temperature dependence of the Seebeck coefficient, with quantitative theoretical predictions based on DFT calculations that include the SO interaction in closer agreement to the experimental data. Moreover, the results suggest that the predictive power of the current theory is not unlimited, with less accuracy for the calculated S predicting the magnitude of the experimental S data at lower dopant concentrations than for degenerately doped systems. A concentration dependent mass enhancement of ˜2-5, relative to the density-of-states mass in the local density approximation, possibly due to the influence of electronic screening of the electron-phonon interaction, would bring the theoretical S in accord with the experimental S data. This additional carrier-dependent enhancement mechanism for S may give an additional degree of freedom in terms of designing new higher efficiency thermoelectric energy materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdivia, M. P.; Stutman, D.; Finkenthal, M.
2014-07-15
The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities.more » We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.« less
Valdivia, M P; Stutman, D; Finkenthal, M
2014-07-01
The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.
Influence of the layer parameters on the performance of the CdTe solar cells
NASA Astrophysics Data System (ADS)
Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir
2018-03-01
Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.
NASA Astrophysics Data System (ADS)
Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.
2017-09-01
Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.
Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2017-12-01
A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.
NASA Astrophysics Data System (ADS)
Viswanthan, Aranganathan; Shetty, Adka Nityananda
2018-04-01
The reduced graphene oxide/polyaniline/Ni(OH)2 (GP-Ni(OH)2) and reduced graphene oxide/polyaniline/Ni (GP-Ni) nanocomposites were synthesized by facile in situ single step chemical method. The constituents were confirmed by powder-XRD, and the electrochemical characterizations were carried out using cyclic voltammetry(CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS). The electrochemical contribution of Ni(OH)2 and Ni to their supercapacitance along with reduced graphene oxide and polyaniline was compared. The GP-Ni nanocomposite exhibited a specific capacitance of 266.66 F g-1, energy density of 53.33 W h kg-1 and power density of 1385 W kg-1 at a current density of 0.25 A g-1 and the results were enhanced to 21% and more promising than that of nanocomposite GP-Ni(OH)2.
Progress in thin-film silicon solar cells based on photonic-crystal structures
NASA Astrophysics Data System (ADS)
Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu
2018-06-01
We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan
2015-08-24
A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.
NASA Technical Reports Server (NTRS)
Vlasse, Marcus
1992-01-01
The development of pure phase 123 and Bi-based 2223 superconductors has been optimized. The pre-heat processing appears to be a very important parameter in achieving optimal physical properties. The synthesis of pure phases in the Bi-based system involves effects due to oxygen partial pressure, time, and temperature. Orientation/melt-sintering effects include the extreme c-axis orientation of Yttrium 123 and Bismuth 2223, 2212, and 2201 phases. This orientation is conductive to increasing critical currents. A procedure was established to substitute Sr for Ba in Y-123 single crystals.
Integral electrical characteristics and local plasma parameters of a RF ion thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.
2016-02-15
Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less
Rectification of Ion Current in Nanopipettes by External Substrates
Shi, Wenqing; Baker, Lane A.
2014-01-01
We describe ion distribution and the current-voltage (i-V) response of nanopipettes at different probe-to-substrate distances (Dps) as simulated by finite-element methods. Results suggest electrostatic interactions between a charged substrate and the nanopipette dominate electrophoretic ion transport through the nanopipette when Dps is within one order of magnitude of the Debye length (~10 nm for a 1 mM solution as employed in the simulation). Ion current rectification (ICR) and permselectivity associated with a neutral or charged nanopipette can be reversibly enhanced or reduced dependent on Dps, charge polarity and charge density (σ) of the substrate. Regulation of nanopipette current is a consequence of the enrichment or depletion of ions within the nanopipette interior which influences conductivity of the nanopipette. When the external substrate is less negatively charged than the nanopipette, the substrate first reduces, and then enhances the ICR as Dps decreases. Surprisingly, both experimental and simulated data show that a neutral substrate was also able to reduce and reverse the ICR of a slightly negatively charged nanopipette. Simulated results ascribe such effects to the elimination of ion depletion within the nanopipette at positive potentials. PMID:24200344
Rectification of ion current in nanopipettes by external substrates.
Sa, Niya; Lan, Wen-Jie; Shi, Wenqing; Baker, Lane A
2013-12-23
We describe ion distribution and the current-voltage (i-V) response of nanopipettes at different probe-to-substrate distances (Dps) as simulated by finite-element methods. Results suggest electrostatic interactions between a charged substrate and the nanopipette dominate electrophoretic ion transport through the nanopipette when Dps is within 1 order of magnitude of the Debye length (∼10 nm for a 1 mM solution as employed in the simulation). Ion current rectification (ICR) and permselectivity associated with a neutral or charged nanopipette can be reversibly enhanced or reduced dependent on Dps, charge polarity, and charge density (σ) of the substrate. Regulation of nanopipette current is a consequence of the enrichment or depletion of ions within the nanopipette interior, which influences conductivity of the nanopipette. When the external substrate is less negatively charged than the nanopipette, the substrate first reduces, and then enhances the ICR as Dps decreases. Surprisingly, both experimental and simulated data show that a neutral substrate was also able to reduce and reverse the ICR of a slightly negatively charged nanopipette. Simulated results ascribe such effects to the elimination of ion depletion within the nanopipette at positive potentials.
Zhao, H.; Li, X.; Baker, D. N.; ...
2016-04-16
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurwitz, M; Margalit, D; Williams, C
Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantommore » was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.« less
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels
Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei
2015-01-01
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753
Liu, Qi; Yang, Bin; Liu, Jingyuan; Yuan, Yi; Zhang, Hongsen; Liu, Lianhe; Wang, Jun; Li, Rumin
2016-08-10
Electrode materials derived from transition metal oxides have a serious problem of low electron transfer rate, which restricts their practical application. However, chemically doped graphene transforms the chemical bonding configuration to enhance electron transfer rate and, therefore, facilitates the successful fabrication of Co2Ni3ZnO8 nanowire arrays. In addition, the Co2Ni3ZnO8 electrode materials, considered as Ni and Zn ions doped into Co3O4, have a high electron transfer rate and electrochemical response capability, because the doping increases the degree of crystal defect and reaction of Co/Ni ions with the electrolyte. Hence, the Co2Ni3ZnO8 electrode exhibits a high rate property and excellent electrochemical cycle stability, as determined by electrochemical analysis of the relationship between specific capacitance, IR drop, Coulomb efficiency, and different current densities. From the results of a three-electrode system of electrochemical measurement, the Co2Ni3ZnO8 electrode demonstrates a specific capacitance of 1115 F g(-1) and retains 89.9% capacitance after 2000 cycles at a current density of 4 A g(-1). The energy density of the asymmetric supercapacitor (AC//Co2Ni3ZnO8) is 54.04 W h kg(-1) at the power density of 3200 W kg(-1).
Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas
2015-07-08
Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.
A route for a strong increase of critical current in nanostrained iron-based superconductors
Ozaki, Toshinori; Li, Qiang; Wu, Lijun; ...
2016-10-06
The critical temperature T c and the critical current density J c determine the limits to large-scale superconductor applications. Superconductivity emerges at T c. The practical current-carrying capability, measured by J c, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce T c. Simultaneous increase of T c and J c in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both T c and J c together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe 0.5Te 0.5 films. Tc ismore » enhanced due to the nanoscale compressive strain and proximity effect, whereas J c is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of J c enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.« less
WSR-88D observations of volcanic ash
Wood, J.; Scott, C.; Schneider, D.
2007-01-01
Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.
NASA Astrophysics Data System (ADS)
Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.
2017-02-01
A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.
Development of a new generation of high-temperature composite materials
NASA Technical Reports Server (NTRS)
Brindley, Pamela K.
1987-01-01
There are ever-increasing demands to develop low-density materials that maintain high strength and stiffness properties at elevated temperatures. Such materials are essential if the requirements for advanced aircraft, space power generation, and space station plans are to be realized. Metal matrix composites and intermetallic matrix composites are currently being investigated at NASA Lewis for such applications because they offer potential increases in strength, stiffness, and use temperature at a lower density than the most advanced single-crystal superalloys presently available. Today's discussion centers around the intermetallic matrix composites proposed by Lewis for meeting advanced aeropropulsion requirements. The fabrication process currently being used at Lewis to produce intermetallic matrix composites will be reviewed, and the properties of one such composite, SiC/Ti3Al+Nb, will be presented. In addition, the direction of future research will be outlined, including plans for enhanced fabrication of aluminide composites by the arc spray technique and fiber development by the floating-zone process.
Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors
NASA Astrophysics Data System (ADS)
Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin
2015-08-01
A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.
Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors.
Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin
2015-08-14
A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g(-1) at a high current density of 6 A g(-1), a good rate capability even at high current density (760 F g(-1) at 20 A g(-1)) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.
NASA Astrophysics Data System (ADS)
Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong
2017-07-01
Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.
Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven
2013-10-01
We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ning, Xuewen; Wang, Xixin; Yu, Xiaofei; Zhao, Jianling; Wang, Mingli; Li, Haoran; Yang, Yang
2016-01-01
Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm2 at a current density of 3 mA/cm2 when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm2, and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work. PMID:26940546
NASA Astrophysics Data System (ADS)
Li, Desheng; Wang, Dongya; Rui, Kun; Ma, Zhongyuan; Xie, Ling; Liu, Jinhua; Zhang, Yu; Chen, Runfeng; Yan, Yan; Lin, Huijuan; Xie, Xiaoji; Zhu, Jixin; Huang, Wei
2018-04-01
The emerging wearable and foldable electronic devices drive the development of flexible lithium ion batteries (LIBs). Carbon materials are considered as one of the most promising electrode materials for LIBs due to their light weight, low cost and good structural stability against repeated deformations. However, the specific capacity, rate capability and long-term cycling performance still need to be improved for their applications in next-generation LIBs. Herein, we report a facile approach for immobilizing phosphorus into a large-area carbon nanosheets/nanofibers interwoven free-standing paper for LIBs. As an anode material for LIBs, it shows high reversible capacity of 1100 mAh g-1 at a current density of 200 mA g-1, excellent rate capabilities (e.g., 200 mAh g-1 at 20,000 mA g-1). Even at a high current density of 1000 mA g-1, it still maintains a superior specific capacity of 607 mAh g-1 without obvious decay.
NASA Astrophysics Data System (ADS)
Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen
2014-01-01
Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.
NASA Astrophysics Data System (ADS)
Oota, A.; Matsui, H.; Funakura, M.; Iwaya, J.; Maeda, J.
1993-07-01
A process of combined rolling and uniaxial pressing with intermediate sintering steps for fabrication of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick films sandwiched between Ag substrates yields c-axis-oriented microstructures with a high critical current density (Jc) of 1.5 x 10 exp 4 A/sq cm (77 K, 0 T) and 9.0 x 10 exp 4 A/sq cm (23 K, 0 T). The measured Jc anisotropy at 77 K, as a function of the angle Theta between B and c axis, is pronounced. An increase in B sharpens a peak at Theta = 90 deg in the Jc vs Theta curve, together with enhancement of the anisotropy ratio. In high fields above 0.5 T, the half-height angular width of the peak approaches an average misalignment angle between the grains with increasing B.
Hu, Yan; Chua, Daniel H C
2016-06-15
Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.
Hu, Yan; Chua, Daniel H. C.
2016-01-01
Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Cheng; Si, Weidong; Li, Qiang
Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.
Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh
2016-01-25
Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh
2016-01-01
Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748
Zhang, Cheng; Si, Weidong; Li, Qiang
2016-11-14
Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J c, low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J c, particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J c in FeSe 0.5Te 0.5 films by low temperature oxygen annealing, reaching ~3 MA/cm 2. In-field performance is also dramatically enhanced.more » In conclusion, our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors.« less
NASA Astrophysics Data System (ADS)
Finkel, Peter
2008-03-01
We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.
2018-06-01
We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.
NASA Astrophysics Data System (ADS)
Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won
2017-01-01
Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.
Yu, Mei; Liu, Ruili; Liu, Jianhua; Li, Songmei; Ma, Yuxiao
2017-11-01
Polyhedral-like NiMn-layered double hydroxide/porous carbon (NiMn-LDH/PC-x) composites are successfully synthesized by hydrothermal method (x = 1, 2 means different mass percent of porous carbon (PC) in composites). The NiMn-LDH/PC-1 composites possess specific capacitance 1634 F g -1 at a current density of 1 A g -1 , and it is much better than that of pure LDH (1095 F g -1 at 1 A g -1 ). Besides, the sample can retain 84.58% of original capacitance after 3000 cycles at 15 A g -1 . An asymmetric supercapacitor with NiMn-LDH/PC-1 as anode and activated carbon as cathode is fabricated, and the supercapacitor can achieve an energy density of 18.60 Wh kg -1 at a power density of 225.03 W kg -1 . The enhanced electrochemical performance attributes to the high faradaic pseudocapacitance of NiMn-LDH, the introduction of PC, and the 3D porous structure of LDH/PC-1 composites. The introduction of PC hinders serious agglomeration of LDH and further accelerates ions transport. The encouraging results indicate that these materials are one of the most potential candidates for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
Plasmon-induced nonlinear response of silver atomic chains.
Yan, Lei; Guan, Mengxue; Meng, Sheng
2018-05-10
Nonlinear response of a linear silver atomic chain upon ultrafast laser excitation has been studied in real time using the time-dependent density functional theory. We observe the presence of nonlinear responses up to the fifth order in tunneling current, which is ascribed to the excitation of high-energy electrons generated by Landau damping of plasmons. The nonlinear effect is enhanced after adsorption of polar molecules such as water due to the enhanced damping rates during plasmon decay. Increasing the length of atomic chains also increases the nonlinear response, favoring higher-order plasmon excitation. These findings offer new insights towards a complete understanding and ultimate control of plasmon-induced nonlinear phenomena to atomic precision.
Enhanced pinning in mixed rare earth-123 films
Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2009-06-16
An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.
Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk
2016-06-01
A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.
An electric current associated with gravity sensing in maize roots
NASA Technical Reports Server (NTRS)
Bjorkman, T.; Leopold, A. C.
1987-01-01
The study of gravisensing would be greatly enhanced if physiological events associated with gravity sensing could be detected separately from subsequent growth processes. This report presents a means to discriminate sensing from the growth processes. By using a vibrating probe, we have found an electric current generated by the gravity sensing region of the root cap of maize (Zea mays cv Merit) in response to gravistimulation. On the upper surface of the root cap, the change from the endogenous current has a density of 0.55 microampere per square centimeter away from gravity. The onset of the current shift has a characteristic of lag of three to four minutes after gravistimulation, which corresponds to the presentation time for gravity sensing in this tissue. A description of the current provides some information about the sensing mechanism, as well as being a valuable means to detect gravity sensing independently of differential growth.
Park, A Reum; Son, Dae-Yong; Kim, Jung Sub; Lee, Jun Young; Park, Nam-Gyu; Park, Juhyun; Lee, Joong Kee; Yoo, Pil J
2015-08-26
Silicon (Si) has attracted tremendous attention as a high-capacity anode material for next generation Li-ion batteries (LIBs); unfortunately, it suffers from poor cyclic stability due to excessive volume expansion and reduced electrical conductivity after repeated cycles. To circumvent these issues, we propose that Si can be complexed with electrically conductive Ti2O3 to significantly enhance the reversible capacity and cyclic stability of Si-based anodes. We prepared a ternary nanocomposite of Si/Ti2O3/reduced graphene oxide (rGO) using mechanical blending and subsequent thermal reduction of the Si, TiO2 nanoparticles, and rGO nanosheets. As a result, the obtained ternary nanocomposite exhibited a specific capacity of 985 mAh/g and a Coulombic efficiency of 98.4% after 100 cycles at a current density of 100 mA/g. Furthermore, these ternary nanocomposite anodes exhibited outstanding rate capability characteristics, even with an increased current density of 10 A/g. This excellent electrochemical performance can be ascribed to the improved electron and ion transport provided by the Ti2O3 phase within the Si domains and the structurally reinforced conductive framework comprised of the rGO nanosheets. Therefore, it is expected that our approach can also be applied to other anode materials to enable large reversible capacity, excellent cyclic stability, and good rate capability for high-performance LIBs.
Haghbin, Amin; Liaghat, Gholamhossein; Arabi, Amir Masoud; Pol, Mohammad Hossein
2017-01-01
In this work, an electrophoretic deposition (EPD) technique has been used for deposition of carbon nanotubes (CNTs) on the surface of glass fiber textures (GTs) to increase the volume conductivity and the interlaminar shear strength (ILSS) of CNT/glass fiber-reinforced polymers (GFRPs) composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%. PMID:28937635
NASA Astrophysics Data System (ADS)
Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.
2014-06-01
We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.
Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment.
Song, Li-Jie; Zhu, Nan-Wen; Yuan, Hai-Ping; Hong, Ying; Ding, Jin
2010-08-01
Electrochemical technology with a pair of RuO(2)/Ti mesh plate electrode is first applied to pre-treat Waste Activated Sludge (WAS) prior to aerobic digestion in this study. The effects of various operating conditions were investigated including electrolysis time, electric power, current density, initial pH of sludge and sludge concentration. The study showed that the sludge reduction increased with the electrolysis time, electric power or current density, while decreased with the sludge concentration. Additionally, higher or lower pH than 7.0 was propitious to remove organic matters. The electrochemical pre-treatment removed volatile solids (VS) and volatile suspended solids (VSS) by 2.75% and 7.87%, respectively, with a WAS concentration of 12.9 g/L, electrolysis time of 30 min, electric power of 5 W and initial sludge pH of 10. In the subsequent aerobic digestion, the sludge reductions for VS and VSS after solids retention time (SRT) of 17.5 days were 34.25% and 39.59%, respectively. However, a SRT of 23.5 days was necessary to achieve equivalent reductions without electrochemical pre-treatment. Sludge analysis by Scanning Electron Microscope (SEM) images and infrared (IR) spectra indicated that electrochemical pre-treatment can rupture sludge cells, remove and solubilize intracellular substances, especially protein and polysaccharide, and consequently enhance the aerobic digestion. (c) 2010 Elsevier Ltd. All rights reserved.
Fuel cell tubes and method of making same
Borglum, Brian P.
1999-11-30
A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost. A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost.
Platinum-Coated Hollow Graphene Nanocages as Cathode Used in Lithium-Oxygen Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Feng; Xing, Yi; Zeng, Xiaoqiao
2016-08-31
One of the formidable challenges facing aprotic lithium-oxygen (Li-O-2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt-coated hollow graphene nano cages as cathode in Li-O-2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g(-1), even maintain below 3.5 V when the current density increased to 500 mA g(-1). The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri-phase regions as active sites for efficient oxygen reduction, but alsomore » offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic-level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene-metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt-decorated graphene nanocage cathode exhibits enhanced electrochemical performances.« less
Enhanced modified faraday cup for determination of power density distribution of electron beams
Elmer, John W.; Teruya, Alan T.
2001-01-01
An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.
Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application
NASA Astrophysics Data System (ADS)
Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong
2016-01-01
Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application.Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application. Electronic supplementary information (ESI) available: UV/Vis absorption spectra of GNP/ZnO-NT photoanodes with GNPs obtained with deposition for 30, 60, 300, and 600 s, showing the similar absorbance in the visible region for deposition time above 300 s (Fig. S1); current density vs. voltage profile of GNP/ZnO-NT based DSSC with agglomerated GNPs obtained by using a 10 mM AuCl3 electrolyte. (Fig. S2); and UV/Vis absorption spectra of pristine ZnO-NT and GNP/ZnO-NT samples (Fig. S3). See DOI: 10.1039/c5nr08029k
Numerical investigation of split flows by gravity currents into two-layered stratified water bodies
NASA Astrophysics Data System (ADS)
Cortés, A.; Wells, M. G.; Fringer, O. B.; Arthur, R. S.; Rueda, F. J.
2015-07-01
The behavior of a two-dimensional (2-D) gravity current impinging upon a density step in a two-layered stratified basin is analyzed using a high-resolution Reynolds-Averaged Navier-Stokes model. The gravity current splits at the density step, and the portion of the buoyancy flux becoming an interflow is largely controlled by the vertical distribution of velocity and density within the gravity current and the magnitude of the density step between the two ambient layers. This is in agreement with recent laboratory observations. The strongest changes in the ambient density profiles occur as a result of the impingement of supercritical currents with strong density contrasts, for which a large portion of the gravity current detaches from the bottom and becomes an interflow. We characterize the current partition process in the simulated experiments using the densimetric Froude number of the current (Fr) across the density step (upstream and downstream). When underflows are formed, more supercritical currents are observed downstream of the density step compared to upstream (Fru < Frd), and thus, stronger mixing of the current with the ambient water downstream. However, when split flows and interflows are formed, smaller Fr values are identified after the current crosses the density step (Fru > Frd), which indicates lower mixing between the current and ambient water after the impingement due to the significant stripping of interfacial material at the density step.
Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs
NASA Astrophysics Data System (ADS)
Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo
2018-03-01
The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.
The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current.
Thompson, Andrew F
2008-12-28
Although the Antarctic Circumpolar Current (ACC) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange, it remains one of the most poorly represented components of global climate models. Accurately describing the circulation of the ACC is made difficult owing to the prominent role that mesoscale eddies and jets, oceanic equivalents of atmospheric storms and storm tracks, have in setting the density structure and transport properties of the current. The successes and limitations of different representations of eddy processes in models of the ACC are considered, with particular attention given to how the circulation responds to changes in wind forcing. The dynamics of energetic eddies and topographically steered jets may both temper and enhance the sensitivity of different aspects of the ACC's circulation to changes in climate.
The generation of magnetic fields and electric currents in cometary plasma tails
NASA Technical Reports Server (NTRS)
Ip, W.-H.; Mendis, D. A.
1976-01-01
Due to the folding of the interplanetary magnetic field into the tail as a comet sweeps through the interplanetary medium, the magnetic field in the tail can be built up to the order of 100 gammas at a heliocentric distance of about 1 AU. This folding of magnetic flux tubes also results in a cross-tail electric current passing through a neutral sheet. When streams of enhanced plasma density merge with the main tail, cross-tail currents as large as 1 billion A may result. A condition could arise which causes a significant fraction of this current to be discharged through the inner coma, resulting in rapid ionization. The typical time scale for such outbursts of ionization is estimated to be of the order of 10,000 sec, which is in reasonable agreement with observation.
Thermoelectric transport in two-dimensional giant Rashba systems
NASA Astrophysics Data System (ADS)
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
High energy storage capacitor by embedding tunneling nano-structures
Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B
2014-11-04
In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).
Lu, Heng; Zhang, Xuejuan; Li, Cuihong; Wei, Hedi; Liu, Qian; Li, Weiwei; Bo, Zhishan
2015-07-01
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short-circuit current density and open-circuit voltage in comparison with the corresponding HD-PDFC-DTBT (HD)- and DT-PDPPTPT (DPP)-based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes.
Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon
2016-01-27
We propose PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PSS. This implies that PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance.
Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes
Liu, Wei; Li, Weiyang; Zhuo, Denys; ...
2017-02-08
Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO 2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities andmore » areal capacities.« less
Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Li, Weiyang; Zhuo, Denys
Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO 2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities andmore » areal capacities.« less