Science.gov

Sample records for enhanced electrochemical activity

  1. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  2. Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells

    DTIC Science & Technology

    2009-03-07

    ISOLATION AND ANALYSIS OF NOVEL ELECTROCHEMICALLY ACTIVE BACTERIA FOR ENHANCED POWER GENERATION IN MICROBIAL FUEL CELLS B.E. Logan, J.M. Regan...new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture... isolated Ochrobactrum anthropi YZ-1, which had the remarkable characteristic that it was unable to respire using hydrous Fe(lll) oxide but produced

  3. Cellulosic carbon fibers with branching carbon nanotubes for enhanced electrochemical activities for bioprocessing applications.

    PubMed

    Zhao, Xueyan; Lu, Xin; Tze, William Tai Yin; Kim, Jungbae; Wang, Ping

    2013-09-25

    Renewable biobased carbon fibers are promising materials for large-scale electrochemical applications including chemical processing, energy storage, and biofuel cells. Their performance is, however, often limited by low activity. Herein we report that branching carbon nanotubes can enhance the activity of carbonized cellulosic fibers, such that the oxidation potential of NAD(H) was reduced to 0.55 V from 0.9 V when applied for bioprocessing. Coordinating with enzyme catalysts, such hierarchical carbon materials effectively facilitated the biotransformation of glycerol, with the total turnover number of NAD(H) over 3500 within 5 h of reaction.

  4. Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Nie, Yu; Yang, Hongxun; Sun, Shengnan; Chen, Yingying; Yang, Tongyi; Lin, Shengling

    2016-05-01

    SrWO4 is a promising candidate as not only photocatalyst for the removal of organic pollutants from water, but also electrode material for energy storage devices. However, the drawbacks of its poor adsorptive performance, low electrical conductivity, and high recombination rate of photogenerated electron-hole pair impede its practical applications. In this work, we have developed a new graphene/SrWO4 nanocomposite synthesized via a facile chemical precipitation method. Characterizations show that SrWO4 nanoparticles with 80 nm or so deposited on the surface of graphene nanosheets. Graphene nanosheets in the graphene-SrWO4 hybrid could increase adsorptive property, improve the electrical conductivity of hybrid, and reduce the recombination of electron-hole pairs. As a kind of photocatalyst or electrode material for supercapacitor, the binary graphene-SrWO4 hybrid presents enhanced photocatalytic activity and electrochemical property compared to pure SrWO4.

  5. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Chen, Bo-Chuen

    2011-01-01

    In this work, SiO 2 nanoparticles-modified surface-enhanced Raman scattering (SERS)-active silver substrates were prepared by electrochemical oxidation-reduction cycles (ORC) methods in 0.1 N HCl aqueous solutions containing 1 mM SiO 2 nanoparticles to improve their thermal stabilities and anti-aging abilities in SERS performances. Then these SERS-active substrates were further modified with different contents of SiO 2 nanoparticles to improve their corresponding SERS performances. Experimental results indicate that the operation temperature can be significantly raised from 125 to 175 °C based on this modified SERS-active Ag substrate. Also, the aging in SERS intensity is also depressed on this modified Ag substrate due to the contribution of SiO 2 nanoparticles. Moreover, the SERS enhancement capability on this modified Ag substrate is gradually raised from 25 °C to a maximum at 55 °C and monotonically decreased from 55 to 60 °C. This is a 10 °C delay as compared with the similar phenomenon observed on the unmodified Ag substrate.

  6. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    PubMed

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode.

  7. Enhanced Electrochemical Lithium Storage Activity of LiCrO2 by Size Effect

    SciTech Connect

    Feng, G.; Li, L; Liu, J; Liu, N; Li, H; Yang, X; Huang, X; Chen, L; Nam, K; Yoon, W

    2009-01-01

    Cr8O21 was chemically lithiated using a lithium-biphenyl-dimethoxyethane solution. Lithiated Cr8O21 shows a structure in which as-formed LiCrO2 units are sandwiched between Cr2O3 superlattice layers. Chemically lithiated Cr8O21 shows a delithiation capacity of 200 mAh g-1. It means that LiCrO2 units in lithiated Cr8O21 are electrochemically active. This finding is opposite to previous reports that LiCrO2 materials have very poor Li-storage capacities. Our new result implies that LiCrO2 with extremely small domain size could show enhanced reactivity. This proposal is proved unambiguously by the fact that LiCrO2 powder materials with smaller grain size (<20 nm) show much higher capacities than LiCrO2 materials with larger grain size (>50 nm). In addition, it is found that the cation mixing is more significantly in LiCrO2 materials with smaller grain size, which seems a key factor for the storage and transport of lithium in layered Cr-based materials. The cation mixing may also explain the result that the lattice parameters of LiCrO2 do not change significantly upon lithium extraction and insertion, investigated by in situ and ex situ XRD techniques.

  8. Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions.

    PubMed

    Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E

    2014-12-01

    An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G. sulfurreducens PCA and Geobacter metallireducens GS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290 ± 29 A m−3 in a high-concentration phosphate buffer solution (PBS-H, 200 mM). This current density was significantly higher than that produced by the mixed culture (189 ± 44 A m−3) or the type strains (< 70 A m−3). In a highly saline water (SW; 50 mM PBS and 650 mM NaCl), current by SD-1 (158 ± 4 A m−3) was reduced by 28% compared with 50 mM PBS (220 ± 4 A m−3), but it was still higher than that of the mixed culture (147 ± 19 A m−3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  9. Surface-enhanced Raman scattering-active Au/TiO{sub 2} films prepared by electrochemical and photochemical methods

    SciTech Connect

    Yang, Kuang-Hsuan; Chang, Chia-Ming

    2013-02-15

    Graphical abstract: In the presence of TiO{sub 2} NPs before the ORCs the optimal wavelength of UV light resulting in the strongest SERS effect being 310 nm. Display Omitted Highlights: ► SERS-active Au/TiO{sub 2} prepared by electrochemical and photochemical methods. ► UV light of 310 nm is suitable for obtaining Au/TiO{sub 2} with strong SERS effect. ► Presence of TiO{sub 2} before ORCs is responsible for obtaining SERS-active Au/TiO{sub 2}. -- Abstract: In this work, we report a new strategy for the preparation of surface-enhanced Raman scattering (SERS)-active Au/TiO{sub 2}(P25) nanocomposites (NCs), using electrochemical and photochemical methods. First, Au substrates were subjected to electrochemical oxidation–reduction cycles (ORCs) in a deoxygenated aqueous solution containing 0.1 M HCl and 1 mM TiO{sub 2}. After the ORC treatment AuCl{sub 4}{sup −}-adsorbed TiO{sub 2} complexes were produced in the solution. These complex-containing substrates were then irradiated with UV light at 310 nm to synthesize Au/TiO{sub 2} NCs with strong SERS activities for probe molecules of rhodamine 6G (R6G) and conductive polymers of polypyrrole (PPy). Experimental results indicated that the wavelength of UV light and the presence of TiO{sub 2} before and after the ORC procedure during the preparation process both affected the resulting SERS activities.

  10. Electrochemical fabrication of platinum nanoflakes on fulleropyrrolidine nanosheets and their enhanced electrocatalytic activity and stability for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Ma, Li-Xia

    2015-07-01

    Pyridine-functionalized fulleropyrrolidine nanosheets are prepared by a fast reprecipitation method under ultrasonication, and used as a novel nanostructured support materials to fabricate Pt catalyst nanoflakes by a simple electrodeposition approach. The as-prepared novel Pt-fullerene hybrid catalyst (Pt/PyC60) exhibits much enhanced electrocatalytic activity and stability for methanol oxidation reaction compared to the unsupported Pt nanoflakes and commercial Pt/C. The introduction of nanostructured fulleropyrrolidine as new support materials not only increases the electrochemically active surface area of catalyst, but also significantly improves the long-term stability. This will contribute to developing functionalized fullerenes as new nanostructured support materials for advanced electrocatalysts in fuel cells.

  11. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.

    PubMed

    Lee, Sanghan; Nam, Gyutae; Sun, Jie; Lee, Jang-Soo; Lee, Hyun-Wook; Chen, Wei; Cho, Jaephil; Cui, Yi

    2016-07-18

    Chemically prepared λ-MnO2 has not been intensively studied as a material for metal-air batteries, fuel cells, or supercapacitors because of their relatively poor electrochemical properties compared to α- and δ-MnO2 . Herein, through the electrochemical removal of lithium from LiMn2 O4 , highly crystalline λ-MnO2 was prepared as an efficient electrocatalyst for the oxygen reduction reaction (ORR). The ORR activity of the material was further improved by introducing oxygen vacancies (OVs) that could be achieved by increasing the calcination temperature during LiMn2 O4 synthesis; a concentration of oxygen vacancies in LiMn2 O4 could be characterized by its voltage profile as the cathode in a lithiun-metal half-cell. λ-MnO2-z prepared with the highest OV exhibited the highest diffusion-limited ORR current (5.5 mA cm(-2) ) among a series of λ-MnO2-z electrocatalysts. Furthermore, the number of transferred electrons (n) involved in the ORR was >3.8, indicating a dominant quasi-4-electron pathway. Interestingly, the catalytic performances of the samples were not a function of their surface areas, and instead depended on the concentration of OVs, indicating enhancement in the intrinsic catalytic activity of λ-MnO2 by the generation of OVs. This study demonstrates that differences in the electrochemical behavior of λ-MnO2 depend on the preparation method and provides a mechanism for a unique catalytic behavior of cubic λ-MnO2 .

  12. New electrochemical procedure for obtaining surface enhanced Raman scattering active polythiophene films on platinum

    NASA Astrophysics Data System (ADS)

    Bazzaoui, E. A.; Aeiyach, S.; Aubard, J.; Felidj, N.; Lévi, G.; Sakmeche, N.; Lacaze, P. C.

    1998-06-01

    A new electrochemical procedure for obtaining Surface Enhanced Raman Scattering (SERS) spectra of silver islands polybithiophene composite films is described. During the electropolymerization process which consists to use silver dodecylsulfate micellar aqueous solution mixed with bithiophene and LiClO4, silver cations are reduced, thus giving metallic silver particles embedded within the polybithiophene (PbT) film. Both doped and undoped PbT species display SERS spectra with exaltation factors varying between 40 and 200 with respect to the film prepared in sodium dodecylsulfate. Vibrational characterization of both doped and undoped species show that the amount of the polymer structural defects are more important in the oxidized species than in the reduced ones. This general method allows to synthesize various polymeric films displaying SERS effect and appears very promising for the structural study of these materials. Nous décrivons un procédé original pour synthétiser par voie électrochimique des films formés d'un composite de polybithiophène et d'îlots d'argent qui présentent des Spectres de Diffusion Raman Exaltée de Surface (DRES). Au cours de l'électropolymérisation d'une solution aqueuse micellaire de bithiophène en présence de dodécylsulfate d'argent (AgDS) et de LiClO4, les ions argent présents dans la solution se complexent avec le soufre du bithiophène et pénètrent dans le film polymère où ils sont réduits sous forme d'argent métallique. Les spectres Raman des deux formes réduite et oxydée du film ainsi obtenu présentent un effet DRES important avec un facteur d'exaltation variant entre 40 et 200 par rapport au même film électrosynthétisé en présence de dodécylsulfate de sodium (SDS). L'analyse vibrationnelle des deux formes redox montre que le taux de défauts est plus important dans la forme oxydée que dans la forme réduite. Cette méthode de polymérisation très générale, qui permet d'obtenir des polymères

  13. Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity.

    PubMed

    Ali, Imran; Park, Kyungmin; Kim, Seu-Run; Kim, Jong-Oh

    2017-02-11

    The electrochemical anodization method was used to dope graphite oxide (GO) onto TiO2 nanotubes (TNTs). This study focused on enhancement of the photocatalytic activity of TNTs in the visible light region. In this study, we have checked the effect of different GO concentrations and effect of GO doping time on photocatalytic efficiency of composite. The photocatalytic activity of the GO-TNT composite was tested by degradation of an organic compound. The organic compound was most severely degraded (95%) when the GO-TNT catalyst was doped at an anodization of 60 V for 13 min and GO concentration of 0.25 g L(-1). This degradation was 5.6 times higher than that of bare TiO2. The as-prepared catalyst was characterized using FE-SEM, XRD, AES, PL, UV-Vis DRS, and Raman analysis. Recycling of the GO-TNT composite was also performed in order to examine the stability of the visible light catalyst. We observed that the doping of GO on the TNT surface can enhance the photocatalytic efficiency under visible light. Graphene acts as an electron transport; therefore, GO-TNTs were favorable for the separation of e(-) and h(+) charges. This promoted the formation of OH radicals, h(+), and superoxides, all of which degrade organics.

  14. Enhanced performance of Zn(II)-doped lead-acid batteries with electrochemical active carbon in negative mass

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang

    2016-10-01

    The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.

  15. Octahedral core–shell cuprous oxide/carbon with enhanced electrochemical activity and stability as anode for lithium ion batteries

    SciTech Connect

    Xiang, Jiayuan; Chen, Zhewei; Wang, Jianming

    2015-10-15

    Highlights: • Core–shell octahedral Cu{sub 2}O/C is prepared by a one-step method. • Carbon shell is amorphous and uniformly decorated at the Cu{sub 2}O octahedral core. • Core–shell Cu{sub 2}O/C exhibits markedly enhanced capability and reversibility. • Carbon shell provides fast ion/electron transfer channel. • Core–shell structure is stable during cycling. - Abstract: Core–shell Cu{sub 2}O/C octahedrons are synthesized by a simple hydrothermal method with the help of carbonization of glucose, which reduces Cu(II) to Cu(I) at low temperature and further forms carbon shell coating at high temperature. SEM and TEM images indicate that the carbon shell is amorphous with thickness of ∼20 nm wrapping the Cu{sub 2}O octahedral core perfectly. As anode of lithium ion batteries, the core–shell Cu{sub 2}O/C composite exhibits high and stable columbic efficiency (98%) as well as a reversible capacity of 400 mAh g{sup −1} after 80 cycles. The improved electrochemical performance is attributed to the novel core–shell structure, in which the carbon shell reduces the electrode polarization and promotes the charge transfer at active material/electrolyte interface, and also acts as a stabilizer to keep the octahedral structure integrity during discharge–charge processes.

  16. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities.

    PubMed

    Chen, Ping; Xiao, Tian-Yuan; Li, Hui-Hui; Yang, Jing-Jing; Wang, Zheng; Yao, Hong-Bin; Yu, Shu-Hong

    2012-01-24

    Nitrogen-doped graphene (GN) has great potential applications in many fields because doping with nitrogen can alter the electrical properties of graphene. It is still a challenge to develop a convenient method for synthesis of GN sheets. In this paper, we first report the synthesis of a nitrogen-doped graphene/ZnSe nanocomposite (GN-ZnSe) by a one-pot hydrothermal process at low temperature using graphene oxide nanosheets and [ZnSe](DETA)(0.5) nanobelts as precursors. ZnSe nanorods composed of ZnSe nanoparticles were found to deposit on the surface of the GN sheets. The results demonstrated that [ZnSe](DETA)(0.5) nanobelts were used not only as the source of ZnSe nanoparticles but also as the nitrogen source. Interestingly, it was found that the as-prepared nanocomposites exhibit remarkably enhanced electrochemical performance for oxygen reduction reaction and photocatalytic activities for the bleaching of methyl orange dye under visible-light irradiation. This facile and catalyst-free approach for depositing ZnSe nanoparticles onto the graphene sheets may provide an alternative way for preparation of other nanocomposites based on GN sheets under mild conditions, which show their potential applications in wastewater treatment, fuel cells, energy storage, nanodevices, and so on.

  17. Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hang; Yang, Jia-Ying; Wu, Xiong-Wei; Chen, Xiao-Qing; Yu, Jin-Gang; Wu, Yu-Ping

    2017-02-01

    In this work, a novel activated carbon containing graphene composite was developed using a fast, simple, and green ultrasonic-assisted method. Graphene is more likely a framework which provides support for activated carbon (AC) particles to form hierarchical microstructure of carbon composite. Scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface area measurement, thermogravimetric analysis (TGA), Raman spectra analysis, XRD, and XPS were used to analyze the morphology and surface structure of the composite. The electrochemical properties of the supercapacitor electrode based on the as-prepared carbon composite were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge/discharge, and cycling performance measurements. It exhibited better electrochemical performance including higher specific capacitance (284 F g-1 at a current density of 0.5 A g-1), better rate behavior (70.7% retention), and more stable cycling performance (no capacitance fading even after 2000 cycles). It is easier for us to find that the composite produced by our method was superior to pristine AC in terms of electrochemical performance due to the unique conductive network between graphene and AC.

  18. Small Gold Nanoparticles Interfaced to Electrodes through Molecular Linkers: A Platform to Enhance Electron Transfer and Increase Electrochemically Active Surface Area.

    PubMed

    Young, Samantha L; Kellon, Jaclyn E; Hutchison, James E

    2016-10-17

    For the smallest nanostructures (<5 nm), small changes in structure can lead to significant changes in properties and reactivity. In the case of nanoparticle (NP)-functionalized electrodes, NP structure and composition, and the nature of the NP-electrode interface have a strong influence upon electrochemical properties that are critical in applications such as amperometric sensing, photocatalysis and electrocatalysis. Existing methods to fabricate NP-functionalized electrodes do not allow for precise control over all these variables, especially the NP-electrode interface, making it difficult to understand and predict how structural changes influence NP activity. We investigated the electrochemical properties of small (dcore < 2.5 nm) gold nanoparticles (AuNPs) on boron doped diamond electrodes using three different electrode fabrication techniques with varying degrees of nanoparticle-electrode interface definition. Two methods to attach AuNPs to the electrode through a covalently bound molecular linker were developed and compared to NP-functionalized electrodes fabricated using solution deposition methods (drop-casting and physiadsorption of a monolayer). In each case, a ferrocene redox probe was tethered to the AuNP surface to evaluate electron transfer through the AuNPs. The AuNPs that were molecularly interfaced with the electrode exhibited nearly ideal, reproducible electrochemical behavior with narrow redox peaks and small peak separations, whereas the solution deposited NPs had broader redox peaks with large peak separations. These data suggest that the molecular tether facilitates AuNP-mediated electron transfer. Interestingly, the molecularly tethered NPs also had significantly more electrochemically active surface area than the solution deposited NPs. The enhanced electrochemical behavior of the molecularly interfaced NPs demonstrates the significant influence of the interface on NP-mediated electron transfer and suggests that similar modified electrodes

  19. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    SciTech Connect

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  20. Electrochemical activation of carbon nanotube/polymer composites.

    PubMed

    Sánchez, Samuel; Fàbregas, Esteve; Pumera, Martin

    2009-01-07

    Electrochemical activation of carbon nanotube/polysulfone composite electrodes for enhanced heterogeneous electron transfer is studied. The physicochemical insight into the electrochemical activation of carbon nanotube/polymer composites was provided by transmission electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Dopamine, ascorbic acid, NADH, and ferricyanide are used as a model redox system for evaluating the performance of activated carbon nanotube/polymer composite electrodes. We demonstrate that polymer wrapping of carbon nanotubes is subject to defects and to partial removal during activation. Such tunable activation of electrodes would enable on-demand activation of electrodes for satisfying the needs of sensing or energy storage devices.

  1. Electrochemical post-treatment of infinite coordination polymers: an effective route to preparation of Pd nanoparticles supported onto carbon nanotubes with enhanced electrocatalytic activity toward ethanol oxidation.

    PubMed

    Ren, Lin; Yang, Lifen; Yu, Ping; Wang, Yuexiang; Mao, Lanqun

    2013-11-13

    This study describes an effective method to prepare highly dispersed palladium nanoparticles supported onto single-walled carbon nanotubes (SWNTs) with high electrocatalytic activity toward the oxidation of ethanol. This method is essentially based on electrochemical post-treatment of Pd-based infinite coordination polymer (ICP). The Pd-based ICP is synthesized through the coordination reaction between Zn(2+) and metallo-Schiff base (MSB) to form Zn-MSB-Zn (ZMZ) ICP that precipitates from ethyl ether. The as-formed Zn-MSB-Zn ICP is then subjected to an ion-exchange reaction with Pd(2+) to obtain the Zn-MSB-Pd (ZMP) ICP. To prepare Pd/SWNT nanocomposite, the ZMP ICP is mixed into the SWNT dispersion in N-dimethylformamide (DMF) to form a homogeneous dispersion that is then drop-coated onto a glassy carbon (GC) electrode. Electrochemical post-treatment of ZMP ICP to form Pd/SWNT nanocomposite is thus performed by polarizing the coated electrode at -0.2 V for 600 s in 0.5 M H2SO4. The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the resulting Pd nanoparticles are highly dispersed onto SWNTs and the particles size are small and narrowly distributed (2.12 ± 0.32 nm). X-ray photoelectron spectroscopy (XPS) analysis shows that, after the electrochemical post-treatment, no detectable ZMP ICP precursors are left on the surface of SWNTs. The electrocatalytic activity of the as-formed Pd/SWNT nanocomposite toward ethanol oxidation is investigated by cyclic voltammetry and chronoamperometry. The results show that the Pd/SWNT nanocomposite prepared here shows a more negative potential and higher mass catalytic activity, as well as higher stability for the oxidation of ethanol than the commercial Pd/C catalyst. This work demonstrates a novel approach to the formation of ultrasmall and highly dispersed Pd/SWNT nanocomposite with enhanced electrocatalytic activity toward ethanol oxidation.

  2. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1987-04-20

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

  3. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, William B.; Graham, Robert A.; Morosin, Bruno

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  4. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  5. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water.

    PubMed

    Cai, Chun; Zhang, Hui; Zhong, Xin; Hou, Liwei

    2014-12-01

    Mesoporous silica SBA-15 supported iron and cobalt catalysts (Fe-Co/SBA-15) were prepared and used in the electrochemical (EC) enhanced heterogeneous activation of peroxydisulfate (PDS, S2O8(2-)) process for the removal of Orange II. The effects of some important reaction parameters such as initial pH, current density, PDS concentration and dosage of Fe-Co/SBA-15 catalysts were investigated. The results showed that the decolorization efficiency was not significantly affected by the initial pH value, and it did increase with the higher PDS concentration, current density and Fe-Co/SBA-15 dosage. Both the sulfate radical (SO4(·-)) and the hydroxyl radical (OH) are considered as the primary reactive oxidants for the Orange II decolorization. The Fe-Co/SBA-15 catalyst maintained its high activity during repeated batch experiments. The intermediate products were identified by GC-MS analysis and a plausible degradation pathway is proposed accordingly. The removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 52.1% and 31.9%, respectively after 60 min of reaction time but reached 82.9% and 51.5%, respectively when the reaction time was extended to 24 h. Toxicity tests with activated sludge indicated that the toxicity of the solution increased during the first 30 min and then decreased as the oxidation proceeded.

  6. Electrochemically fabricated gold dendrites with high-index facets for use as surface-enhanced Raman-scattering-active substrates

    NASA Astrophysics Data System (ADS)

    Cho, Feng-Hsuan; Lin, Ying-Chen; Lai, Ying-Huang

    2017-04-01

    In this study, cysteine-directed crystalline gold dendrites (Au-Ds) were fabricated on glassy carbon electrodes, which exhibit preferential crystal growth along the <111> direction; Au-Ds exhibited a hierarchical architecture comprising trunks, branches, and nanorod-like leaves in a threefold symmetry, resulting in a high density of sharp tips and edges for hot spots of surface-enhanced Raman scattering (SERS); by this method, analytes present even in a dilute solution were detected. The lowest detection limit for 4-mercaptobenzoic acid (4-MBA) in this study was observed at a concentration of 10 nM, corresponding to a SERS analytic enhancement factor of greater than 8 × 106; this enhancement was determined by monitoring the concentration-dependent SERS spectra of the chemisorbed species as a function of the available crystal surface of Au-Ds. The potential-controlled partial reductive desorption of 4-MBA adsorbed on the Au-Ds surface enabled the selective desorption of some reporter molecules, thereby generating a high exposed crystal surface area of Au-Ds. Notably, the exposed Au(110) and high-index facets of the synthesized Au-Ds in this study have demonstrated potential as excellent SERS substrates as these Au-Ds exhibited strong Raman enhancements over large areas. The major contributors to the observed SERS intensities were found to be 4-MBA adsorbed on the Au(110) and high-index facets of the Au-D/GC substrate (accounting for around 70% of the intensities). The significant decline of SERS intensities of the 4-MBA molecules desorbed from the (110) and high-index facets was attributed to the enhancement of the local electromagnetic field caused by the tips and edges of the Au-D structure.

  7. Maltodextrin enhances biofilm elimination by electrochemical scaffold

    PubMed Central

    Sultana, Sujala T.; Call, Douglas R.; Beyenal, Haluk

    2016-01-01

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at −600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density. PMID:27782161

  8. Maltodextrin enhances biofilm elimination by electrochemical scaffold.

    PubMed

    Sultana, Sujala T; Call, Douglas R; Beyenal, Haluk

    2016-10-26

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at -600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density.

  9. Electrochemical tip-enhanced Raman spectroscopy (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zeng, Zhicong; Huang, Shengchao; Huang, Tengxiang; Li, Maohua; Ren, Bin

    2015-08-01

    Tip-enhanced Raman spectroscopy (TERS) can not only provide very high sensitivity but also high spatial resolution, and has found applications in various fields, including surface science, materials, and biology. Most of previous TERS studies were performed in air or in the ultrahigh vacuum. If TERS study can be performed in the electrochemical environment, the electronic properties of the surface can be well controlled so that the interaction of the molecules with the substrate and the configuration of the molecules on the surface can also be well controlled. However, the EC-TERS is not just a simple combination of electrochemistry with TERS, or the combination of EC-STM with Raman. It is a merge of STM, electrochemistry and Raman spectroscopy, and the mutual interference among these techniques makes the EC-TERS particularly challenge: the light distortion in EC system, the sensitivity, the tip coating to work under EC-STM and retain the TERS activity and cleanliness. We designed a special spectroelectrochemical cell to eliminate the distortion of the liquid layer to the optical path and obtain TER spectra of reasonably good signal to noise ratio for surface adsorbed molecules under electrochemical potential control. For example, potential dependent TERS signal have been obtained for adsorbed aromatic thiol molecule, and much obvious signal change compared with SERS has been found, manifesting the importance of EC-TERS to reveal the interfacial structure of an electrochemical system. We further extended EC-TERS to electrochemical redox system, and clear dependence of the species during redox reaction can be identified.

  10. Direct electrochemical determination of Candida albicans activity.

    PubMed

    Hassan, Rabeay Y A; Bilitewski, Ursula

    2013-11-15

    Despite advances made in the field, rapid detection methods for the human pathogen Candida albicans are still missing. In this regard, bio-electrochemical systems including electrochemical sensors and biosensors satisfy the increasing demand for rapid, reliable, and direct microbial analyses. In this study, the bioelectrochemical characteristics of C. albicans were investigated for use in an analytical system that determines the viability of the organisms. The electrochemical responses of viable and non-viable cells of C. albicans and Saccharomyces cerevisiae were monitored. Cyclic voltammograms (CV) showed an irreversible oxidation peak at about 750 mV that accounts for viable cells. The peak current increased at viable cell numbers ranging from 3 × 10(5) to 1.6 × 10(7)cells/ml, indicating that the amount of viable cells can be accurately quantified. To elucidate the underlying electron transfer processes, the influence of electron transfer chain (ETC) - inhibitors on the electrochemical behavior of the two organisms were investigated. Inhibition of the function of classical respiratory chain (CRC) led to a decrease in the electrochemical response, whereas the oxidation current increased when the alternative oxidase (AOX) pathway was blocked by salicylhydroxamic acid (SHA). Blocking the AOX pathway improved the electrochemical performance, suggesting an involvement in the CRC, with cytochrome c oxidase (COX) as a relevant protein complex. Mutants, in which components of COX were deleted, showed a lower electro-activity than the wild-type strain. Particularly, deletion of subunit COX5a almost completely abolished the electrochemical signal. We believe that this work can be utilized for the development of early detection assays and opens the door for new technological developments in the field of C. albicans.

  11. Characterization of the Electrochemical Interface by Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Roy, Dipankar

    The electronic and structural properties of an enhanced raman sensitive interface are investigated. As a model system, the Ag (polycrystalline) electrode/electrolyte interface is chosen. Electrochemical control of the interface is used to establish and influence the conditions for surface enhanced Raman scattering (SERS). The molecule and site specific electronic component of SERS is studied under experimental control. This resonance is responsible for enhancement beyond that caused by electromagnetic effects at the surface and is promoted by the presence of the so -called "SERS active sites" (surface defect sites of atomic scale roughness). The results suggest that, these sites are positively charged, resonant Raman active Ag clusters, most likely with the identity of Ag(,4)('+). A partial contribution to the observed electronic enhancement comes from the intrinsic resonance of the clusters. At a given SERS sensitive Ag electrode, this contribution is superimposed on that from the photon driven charge transfer excitation (CTE) resonance, provided the latter is operative in that particular case. In SERS of Cl('-) (a prototypical probe) on Ag, the internal resonance of Ag(,4)('+) appears to be the primary source of the electronic enhancement detected. By noting the known importance of Ag(,4)('+) in silver-halide photography, it is possible to explain the "photoactivation effect" in SERS in terms of the Ag(,4)('+) identity of SERS active sites. These observations indicate how, by SERS, it may be possible to bridge the gap between the catalytic and optical aspects of small metal clusters. The chemisorbed anions which coexist with the active sites at a SERS sensitive interface, are tested for their effects in SERS from Cl('-) and I('-) on Ag. Evidence is presented for mutual "depolarization" effect of the adsorbates. Under voltage control of these interfaces, this depolarization process dominates the Stark effect and bond perturbation. The results point out how the

  12. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  13. Electrochemically enhanced surface plasticity of steels

    NASA Astrophysics Data System (ADS)

    Gutman, E. M.; Unigovski, Ya.; Shneck, R.; Ye, F.; Liang, Y.

    2016-12-01

    There are serious problems with the formability of alloys which are relatively hard and brittle below ambient temperatures, e.g., in cold extrusion and drawing processes. It is known that electrochemical surface treatment can decrease residual stresses and hardness of the surface layer as a result of the chemomechanical effect (CME), and also improve the plastic deformation ability, e.g., deep drawing of high-strength alloys. Plastic deformation ability of materials can be characterized by hardness measurements. The present study shows some possibilities to improve the surface ductility of carbon steels and FeSi6.5 steel under anodic polarization depending on the current density, composition and pH of acids and chloride electrolytes. The relative Vickers hardness (RVH) amounting to a squared ratio of the penetration depth of a cone indenter in air as compared to that in a solution (hair/hsol)2 was found as a function of the current density and the electrolyte composition. A decrease in hardness of the surface layer as a result of anodic electrochemical polarization was found for different steels.

  14. A Redox-Active Binder for Electrochemical Capacitor Electrodes.

    PubMed

    Benoit, Corentin; Demeter, Dora; Bélanger, Daniel; Cougnon, Charles

    2016-04-18

    A promising strategy for increasing the performance of supercapacitors is proposed. Until now, a popular strategy for increasing the specific capacity of the electrode consists of grafting redox molecules onto a high surface area carbon structure to add a faradaic contribution to the charge storage. Unfortunately, the grafting of molecules to the carbon surface leads to a dramatic decrease of the electrochemical performances of the composite material. Herein, we used the organic binder as an active material in the charge/discharge process. Redox molecules were attached onto its polymeric skeleton to obtain a redox binder with the dual functionalities of both the binder and the active material. In this way, the electrochemical performance was improved without detrimentally affecting the properties of the porous carbon. Results showed that the use of a redox binder is promising for enhancing both energy and power densities.

  15. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  16. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media.

    PubMed

    Xu, Kun; Cheng, Han; Liu, Linqi; Lv, Haifeng; Wu, Xiaojun; Wu, Changzheng; Xie, Yi

    2017-01-11

    In this study, by using dicobalt phosphide nanoparticles as precatalysts, we demonstrated that electrochemical activation of metallic precatalysts in alkaline media (comparing with directly electrochemical activation in neutral media) could significantly promote the OER catalysis in neutral media, specifically realizing a 2-fold enhanced activity and meanwhile showing a greatly decreased overpotential of about 100 mV at 10 mA cm(-2). Compared directly with electrochemical activation in neutral media, the electrochemical activation in harsh alkaline media could easily break the strong Co-Co bond and promote active species generation on the surface of metallic Co2P, thus accounting for the enhancement of neutral OER activity, which is also evidenced by HRTEM and the electrochemical double-layer capacitance measurement. The activation of electrochemical oxidation of metallic precatalysts in alkaline media enhanced neutral OER catalysis could also be observed on CoP nanoparticles and Ni2P nanoparticles, suggesting this is a generic strategy. Our work highlights that the activation of electrochemical oxidation of metallic precatalysts in alkaline media would pave new avenues for the design of advanced neutral OER electrocatalysts.

  17. In Situ Synthesis of Carbon Nanotube Hybrids with Alternate MoC and MoS2 to Enhance the Electrochemical Activities of MoS2.

    PubMed

    Li, Xin; Zhang, Jinying; Wang, Rui; Huang, Hongyang; Xie, Chong; Li, Zhihui; Li, Jun; Niu, Chunming

    2015-08-12

    Molybdenum disulfides and carbides are effective catalysts for hydrogenation and hydridesulfurization, where MoS2 nanostructures are also highly promising materials for lithium ion batteries. High surface-to-volume ratio and strong interactions with conducting networks are crucial factors for their activities. A new hybrid structure of multiwalled carbon nanotube (MWCNT) with alternate MoC nanoparticles and MoS2 nanosheets (MoS2 + MoC-MWCNT) has been synthesized by controlled carburization of core-shell MoS2-MWCNT hybrid nanotubes and demonstrated by HRTEM, FFT, XRD, and Raman scattering. The MoS2 nanosheets (∼10 nm) remain tightly connected to MWCNT surfaces with {001} planes in parallel to MWCNT walls and the highly crystallized α-MoC particles (∼10 nm) are adhered to MWCNTs at angles of 60-80° between {111} planes and MWCNT walls. The electrochemical performances of the hybrid structures have been demonstrated as anodes for lithium ion batteries to be significantly increased by breaking MoS2 nanotubes into nanosheets (patches) on MWCNT surfaces, especially at high current rates. The specific capacities of MoS2 + MoC-MWCNT sample with ∼23% MoS2 have been demonstrated to be higher than those of MoS2-MWCNTs containing ∼70% MoS2.

  18. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  19. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    NASA Astrophysics Data System (ADS)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles –10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  20. AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions.

    PubMed

    Gao, Chao; Yu, Xin-Yao; Xu, Ren-Xia; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-09-26

    This work described the preparation, characterization, and electrochemical behavior toward heavy metal ions of the AlOOH-reduced graphene oxide nanocomposites. This new material was synthesized through a green one-pot hydrothermal method. The morphologic and structure of the nanocomposites were characterized using atomic force microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, Fourier transform-infrared spectroscopy, and transmission electron microscopy. Electrochemical properties were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The chemical and electrochemical parameters that have influence on deposition and stripping of metal ions, such as pH value, deposition potential, and deposition time, were also studied. Due to the strong affinity of AlOOH to heavy metal ions and the fast electron-transfer kinetics of graphene, the combination of solid-phase extraction and stripping voltammetric analysis allowed fast and sensitive determination of Cd(II) and Pb(II) in drinking water, making these new nanocomposites promising candidates for practical applications in the fields of detecting heavy metal ions. Most importantly, these new nanocomposites may possess many unknown properties waiting to be explored.

  1. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices.

  2. Electrochemical characterization of riboflavin-enhanced reduction of trinitrotoluene.

    PubMed

    Sumner, James J; Chu, Kevin

    2011-01-01

    There is great interest in understanding trinitrotoluene (TNT) and dinitrotoluene (DNT) contamination, detection and remediation in the environment due to TNT's negative health effects and security implications. Numerous publications have focused on detecting TNT in groundwater using multiple techniques, including electrochemistry. The main degradation pathway of nitrotoluenes in the environment is reduction, frequently with biological and/or photolytic assistance. Riboflavin has also been noted to aid in TNT remediation in soils and groundwater when exposed to light. This report indicates that adding riboflavin to a TNT or DNT solution enhances redox currents in electrochemical experiments. Here AC voltammetry was performed and peak currents compared with and without riboflavin present. Results indicated that TNT, DNT and riboflavin could be detected using AC voltammetry on modified gold electrodes and the addition of riboflavin affected redox peaks of TNT and DNT. Poised potential experiments indicated that it is possible to enhance reduction of TNT in the presence of riboflavin and light. These results were dramatic enough to explain long term enhancement of bioremediation in environments containing high levels of riboflavin and enhance the limit of detection in electrochemically-based nitrotoluene sensing.

  3. Electrochemical Characterization of Riboflavin-Enhanced Reduction of Trinitrotoluene

    PubMed Central

    Sumner, James J.; Chu, Kevin

    2011-01-01

    There is great interest in understanding trinitrotoluene (TNT) and dinitrotoluene (DNT) contamination, detection and remediation in the environment due to TNT’s negative health effects and security implications. Numerous publications have focused on detecting TNT in groundwater using multiple techniques, including electrochemistry. The main degradation pathway of nitrotoluenes in the environment is reduction, frequently with biological and/or photolytic assistance. Riboflavin has also been noted to aid in TNT remediation in soils and groundwater when exposed to light. This report indicates that adding riboflavin to a TNT or DNT solution enhances redox currents in electrochemical experiments. Here AC voltammetry was performed and peak currents compared with and without riboflavin present. Results indicated that TNT, DNT and riboflavin could be detected using AC voltammetry on modified gold electrodes and the addition of riboflavin affected redox peaks of TNT and DNT. Poised potential experiments indicated that it is possible to enhance reduction of TNT in the presence of riboflavin and light. These results were dramatic enough to explain long term enhancement of bioremediation in environments containing high levels of riboflavin and enhance the limit of detection in electrochemically-based nitrotoluene sensing. PMID:22346674

  4. Electrochemical tip-enhanced Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Martín Sabanés, Natalia; Domke, Katrin F.

    2016-09-01

    Tip-enhanced Raman spectroscopy (TERS) in air and ultra-high vacuum (UHV) has been refined over the years through the study of various adsorbates in different experimental configurations. Developing the technique toward more realistic working conditions would render possible the investigation of more complex solid/liquid systems like bio-membranes or energy conversion and storage devices, providing a powerful tool to characterize nanoscale electrochemical processes occurring at the interface with high sensitivity and resolution. However, the extension to solid/liquid interfaces and electrochemical conditions still remains a challenge and few reports have been published. We have built an electrochemical TERS setup with side-illumination geometry that adapts easily to different experimental conditions such as opacity, shape and dimensions of the sample. The instrument features a specially designed solid/liquid sample holder that is implemented in a standard commercial STM. The experimental scheme can, in principle, be adapted to upgrade classic air TERS setups for work in liquids. Here, we show potential-dependent EC-TER spectra of a monolayer of adenine adsorbed on Au(111). The intensity of the ring-breathing mode at 735 cm-1 decreases with increasing sample potential and is recovered again upon potential reversal. The intensity variation is attributed to orientational changes of adenine upon (dis)charging of the Au substrate.

  5. Enhanced Electrode Activity of Ni/(CeO2)1-x(TiO2)x Anode in Electrochemical Oxidation of Methane

    NASA Astrophysics Data System (ADS)

    Kanjanaboonmalert, Tanawat; Tzu, Teoh Wah; Sato, Kazunori

    2011-03-01

    The electrode activity of a newly developed Ni/(CeO2)1-x(TiO2)x cermet anode has been investigated at intermediate temperatures. (CeO2)1-x(TiO2)x mixed oxide powders were synthesized by the sol-gel method. A single cell, Ni/(CeO2)1-x(TiO2)x|Sm0.2Ce0.8O3|Sm0.5Sr0.5CoO3, was fabricated using a samarium-doped ceria disk. The effect of incorporating TiO2 into the CeO2 matrix was studied with the goal of improving the anode micro structure. The modified micro structure of the new Ni/(CeO2)0.8(TiO2)0.2 cermet anode, which consists of fine Ni particles distributed on (CeO2)0.8(TiO2)0.2 mixed oxide particles, enhances the electrode activity in methane oxidation.

  6. Enhancing Cycling Stability of Aqueous Polyaniline Electrochemical Capacitors.

    PubMed

    Santino, Luciano M; Lu, Yang; Acharya, Shinjita; Bloom, Liana; Cotton, Daniel; Wayne, Aly; D'Arcy, Julio M

    2016-11-02

    Electrochemical capacitors fabricated with polyaniline nanofibers are cycled 150 000 times with 98% capacitance retention. These devices maintain an energy density of 11.41 Wh/kg at a power density of 4000 W/kg, 64 times greater than that of an identically fabricated device based on activated carbon (0.177 Wh/kg at 4600 W/kg). For applications requiring a higher specific energy, 33.39 Wh/kg at a specific power of 600 W/kg is obtained by widening the voltage window; this device retains 93% capacitance after 10 000 cycles. We achieve a high cycling stability through careful device engineering paired with a renewed focus on the electrochemical processes occurring at the positive and negative electrodes during cycling.

  7. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  8. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    ERIC Educational Resources Information Center

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  9. A study of the electrochemical activity of coals

    SciTech Connect

    Garilov, Yu.V.; Alesandrov, I.V.; Kamneva, A.I.; Kossov, I.I.

    1983-01-01

    The applicability of electrochemical methods of investigation for the evaluation of the real chemical activity of solid combustible minerals in the process of autoxidation has been shown. Information is given on redox equivalents of caustobioliths.

  10. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  11. Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries.

    PubMed

    Peng, Hong-Jie; Zhang, Ge; Chen, Xiang; Zhang, Ze-Wen; Xu, Wen-Tao; Huang, Jia-Qi; Zhang, Qiang

    2016-10-10

    Lithium-sulfur (Li-S) batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantage in energy density. The main challenge in developing highly efficient and long-life Li-S batteries is simultaneously suppressing the shuttle effect and improving the redox kinetics. Polar host materials have desirable chemisorptive properties to localize the mobile polysulfide intermediates; however, the role of their electrical conductivity in the redox kinetics of subsequent electrochemical reactions is not fully understood. Conductive polar titanium carbides (TiC) are shown to increase the intrinsic activity towards liquid-liquid polysulfide interconversion and liquid-solid precipitation of lithium sulfides more than non-polar carbon and semiconducting titanium dioxides. The enhanced electrochemical kinetics on a polar conductor guided the design of novel hybrid host materials of TiC nanoparticles grown within a porous graphene framework (TiC@G). With a high sulfur loading of 3.5 mg cm(-2) , the TiC@G/sulfur composite cathode exhibited a substantially enhanced electrochemical performance.

  12. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy

    DTIC Science & Technology

    2015-11-18

    Probing Redox Reactions at the Nanoscale with Electrochemical Tip- Enhanced Raman Spectroscopy Dmitry Kurouski,† Michael Mattei,† and Richard P. Van...Information ABSTRACT: A fundamental understanding of electrochem - ical processes at the nanoscale is crucial to solving problems in research areas as...TERS) uniquely offers subnanometer spatial resolution and single-molecule sensitivity, making it the ideal tool for studying nanoscale electrochemical

  13. Fluctuation enhanced electrochemical reaction rates at the nanoscale

    PubMed Central

    García-Morales, Vladimir; Krischer, Katharina

    2010-01-01

    The electrode potential constitutes a dynamical variable whenever an electrode is resistively coupled to the electric circuit. We show that at the nanoscale, the discreteness and stochasticity of an electron transfer event causes fluctuations of the electrode potential that render all elementary electrochemical reactions to be faster on a nanoelectrode than predicted by the macroscopic (Butler–Volmer) electrochemical kinetics. This phenomenon is substantiated by means of a generalized (electro)chemical master equation. PMID:20176966

  14. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine.

    PubMed

    Li, Meixia; Zhu, Jun E; Zhang, Lili; Chen, Xu; Zhang, Huimin; Zhang, Fazhi; Xu, Sailong; Evans, David G

    2011-10-05

    Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach.

  15. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples.

  16. Electrochemically active biofilms: facts and fiction. A review.

    PubMed

    Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2012-01-01

    This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.

  17. Electrochemically active biofilms: facts and fiction. A review

    PubMed Central

    Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2014-01-01

    This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464

  18. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Jianfei; Zhao, Shunan; Chen, Wei; Zhou, Ying; Yang, Xiaoling; Zhu, Yihua; Li, Chunzhong

    2016-03-01

    This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications.This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications. Electronic supplementary information (ESI) available: Experimental details, additional figures and table. See DOI: 10.1039/c5nr06512g

  19. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    PubMed Central

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  20. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    NASA Astrophysics Data System (ADS)

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-10-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min‑1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm‑2 and a high limiting current density of 2.83 A cm‑2 at 650 °C. It performs steadily for 96 h at 0.4 A cm‑2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode.

  1. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  2. Electro-Chemically Enhanced Mechanical Polishing of Nickel Mandrels

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2006-01-01

    Grinding and mechanical polishing techniques used for x-ray optics mandrel figuring lead to mid-frequency surface ripple. These small figure variations have to be addressed in order to improve the performance of the resulting x-ray mirrors. If the electrochemical etching is combined with mechanical polishing, the figuring and the surface finishing cm be done simultaneously and be used to correct the mid-frequency surface ripple. It is shown that the electrochemical mechanical polishing method allows selective removal of nickel alloy without mandrel surface microroughness degradation.

  3. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  4. Electrochemical regeneration of phenol-saturated activated carbon - proposal of a reactor.

    PubMed

    Zanella, Odivan; Bilibio, Denise; Priamo, Wagner Luiz; Tessaro, Isabel Cristina; Féris, Liliana Amaral

    2017-03-01

    An electrochemical process was used to investigate the activated carbon regeneration efficiency (RE) saturated with aromatics. For this purpose, an electrochemical reactor was developed and the operational conditions of this equipment were investigated, which is applied in activated carbon regeneration process. The influence of regeneration parameters such as processing time, the current used, the polarity and the processing fluid (electrolyte) were studied. The performance of electrochemical regeneration was evaluated by adsorption tests, using phenol as adsorbate. The increase in current applied and the process time was found to enhance the RE. Another aspect that indicated a better reactor performance was the type of electrolyte used, showing best results for NaCl. The polarity showed the highest influence on the process, when the cathodic regeneration was more efficient. The electrochemical regeneration process developed in this study presented regeneration capacities greater than 100% when the best process conditions were used, showing that this form of regeneration for activated carbon saturated with aromatics is very promising.

  5. Electrochemical characterization of human skin by impedance spectroscopy: the effect of penetration enhancers.

    PubMed

    Kontturi, K; Murtomäki, L; Hirvonen, J; Paronen, P; Urtti, A

    1993-03-01

    The electrochemical properties of human cadaver skin were studied in a diffusion cell with impedance spectroscopy as a function of time in the absence and presence of penetration enhancers dodecyl N,N-dimethylamino acetate and Azone. An improved electrochemical model of skin is presented, and combining the novel model with modern fractal mathematics, the effect of enhancers on the surface of skin is demonstrated. The enhancers appeared to open new penetration routes and increase the ohmic resistance, capacitive properties, and fractal dimension of skin, which means a rougher or more heterogeneous surface.

  6. Chemical Potentials and Activities: An Electrochemical Introduction.

    ERIC Educational Resources Information Center

    Wetzel, T. L.; And Others

    1986-01-01

    Describes a laboratory experiment which explores the effects of adding inert salts to electrolytic cells and demonstrates the difference between concentration and chemical activity. Examines chemical potentials as the driving force of reactions. Provides five examples of cell potential and concentration change. (JM)

  7. Enhancing the electrochemical Cr(VI) reduction in aqueous solution.

    PubMed

    Barrera-Díaz, Carlos; Lugo-Lugo, Violeta; Roa-Morales, Gabriela; Natividad, R; Martínez-Delgadillo, S A

    2011-01-30

    In this study we present the cathodic Cr(VI) reduction using electrodissolution of iron anode. In batch experiments we tested four different cathodic materials; the best conditions were found when copper was used. It is observed that when more current is applied into the electrochemical cell faster reduction rates are achieved. Continuous experiments also reveal that Cr(VI) reduction could be done in a very efficient way. To confirm the experimental data, cyclic voltammetry was used and it was found that the cathodic Cr(VI) reduction is taking place.

  8. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting

    SciTech Connect

    Mo, Jingke; Kang, Zhenye; Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Johney B.; Mench, Matthew M.; Zhang, Feng-Yuan

    2016-11-18

    Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent to good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibit more than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. In conclusion, this discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices.

  9. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting

    DOE PAGES

    Mo, Jingke; Kang, Zhenye; Retterer, Scott T.; ...

    2016-11-18

    Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent tomore » good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibit more than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. In conclusion, this discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices.« less

  10. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting

    PubMed Central

    Mo, Jingke; Kang, Zhenye; Retterer, Scott T.; Cullen, David A.; Toops, Todd J.; Green, Johney B.; Mench, Matthew M.; Zhang, Feng-Yuan

    2016-01-01

    Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent to good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibit more than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. This discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices. PMID:28138516

  11. DNA Diagnostics: Nanotechnology-enhanced Electrochemical Detection of Nucleic Acids

    PubMed Central

    Wei, Fang; Lillehoj, Peter B.; Ho, Chih-Ming

    2010-01-01

    The detection of mismatched base pairs in DNA plays a crucial role in the diagnosis of genetic-related diseases and conditions, especially for early stage treatment. Among the various biosensors that have been employed for DNA detection, electrochemical sensors show great promise since they are capable of precise DNA recognition and efficient signal transduction. Advancements in micro- and nanotechnologies, specifically fabrication techniques and new nanomaterials, have enabled for the development of highly sensitive, highly specific sensors making them attractive for the detection of small sequence variations. Furthermore, the integration of sensors with sample preparation and fluidic processes enables for rapid, multiplexed DNA detection for point-of-care (POC) clinical diagnostics. PMID:20075759

  12. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration.

  13. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes.

  14. Microbial solar cells: applying photosynthetic and electrochemically active organisms.

    PubMed

    Strik, David P B T B; Timmers, Ruud A; Helder, Marjolein; Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Buisman, Cees J N

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof.

  15. Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Pan, Lujun; Asif, Muhammad; Mahmood, Zafar; Khan, M. A.; Fu, Xin

    2016-05-01

    The graphene-Ag2O/polyaniline (GAP) composite has been synthesized by in-situ polymerization. It has been observed that Ag2O nanoparticles exist on the porous spongy background of PANI (polyaniline). The optimized composition of the synthesized composite exhibits an extraordinary specific capacitance of 1572 Fg-1 at 0.05 Ag-1 current density and good cyclic stability of 85% over 3000 charge-discharge cycles. The extraordinary electrochemical performance indicates the positive synergistic effect of PANI, graphene and Ag2O. The Ag2O nanoparticles might be responsible for improved electrical conductivity, and graphene might contribute in enhancing the electrochemical stability of the PANI electrode.

  16. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests.

    PubMed

    Fattakhova Rohlfing, Dina; Rathouský, Jirí; Rohlfing, Yven; Bartels, Oliver; Wark, Michael

    2005-11-22

    Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.

  17. Enhanced solar photocurrent of LaTaON2 photoanodes via electrochemical treatment

    NASA Astrophysics Data System (ADS)

    Huang, Huiting; Li, Zhaosheng

    2017-03-01

    Having a theoretical 18.5% solar-to-hydrogen efficiency, LaTaON2 has emerged as a promising photoanode material. However, its performance is crucially limited by low photocurrent in the past reports. To improve its solar photocurrent, a negative electrochemical treatment was applied for the LaTaON2 photoanode. The sample powder was successfully synthesized by a flux assisted-nitridation with precursor derived from solid state sintering. And the LaTaON2 photoanodes were fabricated by electrophoretic deposition with a post-necking procedure. The solar photocurrent of as-fabricated LaTaON2 photoanode has increased to 1.2 mA cm-2 at 1.6 VRHE after the negative electrochemical treatment in the dark. The photoanodes with and without the electrochemical treatment were investigated by scanning electron microscopy (SEM), Mott–Schottky test, transient photocurrent and open-circuit photovoltage. The results showed that the enhancement maybe ascribed to the soared carrier density and elimination of surface recombination centre. Therefore it is proposed that the electrochemical treatment eliminates the surface recombination centre of the oxynitrides leading to increased solar photocurrent. It was also found that the SrTaO2N photoanode had increased photocurrent after the electrochemical treatment. This study provides a facile and general way to improve the solar water-splitting current of photoanodes.

  18. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection.

    PubMed

    Bailey, Matthew R; Pentecost, Amber M; Selimovic, Asmira; Martin, R Scott; Schultz, Zachary D

    2015-04-21

    The combination of hydrodynamic focusing with embedded capillaries in a microfluidic device is shown to enable both surface enhanced Raman scattering (SERS) and electrochemical characterization of analytes at nanomolar concentrations in flow. The approach utilizes a versatile polystyrene device that contains an encapsulated microelectrode and fluidic tubing, which is shown to enable straightforward hydrodynamic focusing onto the electrode surface to improve detection. A polydimethyslsiloxane (PDMS) microchannel positioned over both the embedded tubing and SERS active electrode (aligned ∼200 μm from each other) generates a sheath flow that confines the analyte molecules eluting from the embedded tubing over the SERS electrode, increasing the interaction between the Riboflavin (vitamin B2) and the SERS active electrode. The microfluidic device was characterized using finite element simulations, amperometry, and Raman experiments. This device shows a SERS and amperometric detection limit near 1 and 100 nM, respectively. This combination of SERS and amperometry in a single device provides an improved method to identify and quantify electroactive analytes over either technique independently.

  19. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M.; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm-2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg-1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  20. Short thio-multi-walled carbon nanotubes and Au nanoparticles enhanced electrochemical DNA biosensor for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhang, Jimei; Dai, Zhao; Zheng, Guo

    2010-07-01

    A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a thio group (MWNTs-SH) and gold nanoparticles (GNPs) for covalent DNA immobilization and enhanced hybridization detection is described. The key step for developing this novel DNA biosensor is to cut the pristine MWNT into short and generate lots of active sites simultaneously. With this approach, the target DNA could be quantified in a linear range from 8.5×10-10 to 1.5×10-5 mol/L, with a detection limit of 1.67×10-11 mol/L by 3σ.

  1. Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.

    PubMed

    Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen

    2014-12-02

    A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.

  2. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity.

    PubMed

    Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui

    2015-02-15

    A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2.

  3. Electrochemically active biofilm assisted synthesis of Ag@CeO₂ nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes.

    PubMed

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jin-Hyung; Ansari, M Omaish; Lee, Jintae; Cho, Moo Hwan

    2014-10-01

    Ag@CeO2 nanocomposites were synthesized by a biogenic and green approach using electrochemically active biofilms (EABs) as a reducing tool. The as-synthesized Ag@CeO2 nanocomposites were characterized and used in antimicrobial, visible light photocatalytic and photoelectrode studies. The Ag@CeO2 nanocomposites showed effective and efficient bactericidal activities and survival test against Escherichia coli O157:H7, and Pseudomonas aeruginosa. The as-synthesized Ag@CeO2 nanocomposites also exhibited enhanced visible light photocatalytic degradation of 4-nitrophenol and methylene blue than pure CeO2. A photocatalytic investigation showed that the Ag@CeO2 nanocomposites possessed excellent visible light photocatalytic activities compared to pure CeO2. Electrochemical impedance spectroscopy and photocurrent measurements showed that the as-synthesized Ag@CeO2 nanocomposites exhibited excellent and enhanced responses to visible light irradiation. These results suggest that the AgNPs anchored at CeO2 induced visible light photoactivity by decreasing the recombination of photogenerated electrons and holes, and extending the response of pure CeO2 to visible light. Overall, as-synthesized Ag@CeO2 nanocomposites are smart materials that can be used for a range of applications, such as antimicrobial activity, visible light photocatalysis and photoelectrode.

  4. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species.

  5. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    NASA Astrophysics Data System (ADS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-09-01

    A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors.

  6. Electrochemical Protease Biosensor Based on Enhanced AC Voltammetry Using Carbon Nanofiber Nanoelectrode Arrays

    PubMed Central

    Swisher, Luxi Z.; Syed, Lateef U.; Prior, Allan M.; Madiyar, Foram R.; Carlson, Kyle R.; Nguyen, Thu A.; Hua, Duy H.; Li, Jun

    2013-01-01

    We report an electrochemical method for measuring the activity of proteases using nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). The VACNFs of ~150 nm in diameter and 3 to 5 μm in length were grown on conductive substrates and encapsulated in SiO2 matrix. After polishing and plasma etching, controlled VACNF tips are exposed to form an embedded VACNF NEA. Two types of tetrapeptides specific to cancer-mediated proteases legumain and cathepsin B are covalently attached to the exposed VACNF tip, with a ferrocene (Fc) moiety linked at the distal end. The redox signal of Fc can be measured with AC voltammetry (ACV) at ~1 kHz frequency on VACNF NEAs, showing distinct properties from macroscopic glassy carbon electrodes due to VACNF’s unique interior structure. The enhanced ACV properties enable the kinetic measurements of proteolytic cleavage of the surface-attached tetrapeptides by proteases, further validated with a fluorescence assay. The data can be analyzed with a heterogeneous Michaelis-Menten model, giving “specificity constant” kcat/Km as (4.3 ± 0.8) × 104 M−1s−1 for cathepsin B and (1.13 ± 0.38) × 104 M−1s−1 for legumain. This method could be developed as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring. PMID:23814632

  7. Positively charged gold nanoparticles synthesized by electrochemically active biofilm--a biogenic approach.

    PubMed

    Khan, Mohammad Mansoob; Kalathil, S; Han, Thi Hiep; Lee, Jintae; Cho, Moo Hwan

    2013-09-01

    Positively charged gold nanoparticles [(+) AuNPs] of 5-20 nm were synthesized by using electrochemically active biofilm (EAB) formed on a stainless steel mesh, within 30 minutes, in aqueous solution containing HAuCl4 as a precursor and sodium acetate as an electron donor. Electrochemically active bacteria present on biofilm oxidize the sodium acetate by producing electrons. Simultaneously, stainless steel also provides electrons because of the Cl- ions penetration into the stainless steel. Combined effect of both the EAB and stainless steel mesh enhances the availability of electrons for the reduction of Au3+ in the solution, which makes this synthesis efficient and fast. Therefore, small size, positively charged (+32.72 mV), monodispersed, controlled, easy separation and extracellular synthesis of (+) AuNPs makes this protocol highly significant. As-synthesized AuNPs were characterized by UV-vis, DLS, XRD, TEM, HRTEM, EDX and SAED. (+) AuNPs shows remarkable enhancement in the rate of reduction of methyl orange by NaBH4 because of the electron relay effect.

  8. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate.

    PubMed

    Farhat, Ali; Keller, Jurg; Tait, Stephan; Radjenovic, Jelena

    2015-12-15

    Solutions of sulfate have often been used as background electrolytes in the electrochemical degradation of contaminants and have been generally considered inert even when high-oxidation-power anodes such as boron-doped diamond (BDD) were employed. This study examines the role of sulfate by comparing electro-oxidation rates for seven persistent organic contaminants at BDD anodes in sulfate and inert nitrate anolytes. Sulfate yielded electro-oxidation rates 10-15 times higher for all target contaminants compared to the rates of nitrate anolyte. This electrochemical activation of sulfate was also observed at concentrations as low as 1.6 mM, which is relevant for many wastewaters. Electrolysis of diatrizoate in the presence of specific radical quenchers (tert-butanol and methanol) had a similar effect on electro-oxidation rates, illustrating a possible role of the hydroxyl radical ((•)OH) in the anodic formation of sulfate radical (SO4(•-)) species. The addition of 0.55 mM persulfate increased the electro-oxidation rate of diatrizoate in nitrate from 0.94 to 9.97 h(-1), suggesting a nonradical activation of persulfate. Overall findings indicate the formation of strong sulfate-derived oxidant species at BDD anodes when polarized at high potentials. This may have positive implications in the electro-oxidation of wastewaters containing sulfate. For example, the energy required for the 10-fold removal of diatrizoate was decreased from 45.6 to 2.44 kWh m(-3) by switching from nitrate to sulfate anolyte.

  9. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell.

    PubMed

    Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming

    2013-12-01

    Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required.

  10. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment.

    PubMed

    Li, Guanglong; Cao, Huiliang; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Qiao, Yuqin; Liu, Xuanyong; Jiang, Xinquan

    2016-02-17

    Rapid osseointegration is recognized as a critical factor in determining the success rate of orthopedic and dental implants. Microarc oxidation (MAO) fabricated titanium oxide coatings with a porous topography have been proven to be a potent approach to enhance osteogenic capacity. Now we report two kinds of new hierarchical coatings with similar micromorphologies but different nanotopographies (i.e., MAO and MAO-AK coatings), and both coatings significantly promote cell attachment and osteogenic differentiation through mediating the integrin β1 signaling pathway. In this study, titanium with a unique hierarchical micro/nanomorphology surface was fabricated by a novel duplex coating process, that is, the first a titanium oxide layer was coated by MAO, and then the coating was electrochemically reduced in alkaline solution (MAO-AK). A series of in vitro stem cell differentiation and in vivo osseointegration experiments were carried out to evaluate the osteogenic capacity of the resulting coatings. In vitro, the initial adhesion of the canine bone marrow stem cells (BMSCs) seeded on the MAO and MAO-AK coatings was significantly enhanced, and cell proliferation was promoted. In addition, the expression levels of osteogenesis-related genes, osteorix, alkaline phosphates (ALP), osteopontin, and osteocalcin, in the canine BMSCs, were all up-regulated after incubation on these coatings, especially on the MAO-AK coating. Also, the in vitro ALP activity and mineralization capacity of canine BMSC cultured on the MAO-AK group was better than that on the MAO group. Furthermore, 6 weeks after insertion of the titanium implants into canine femurs, both the bone formation speed and the bone-implant contact ratio of the MAO-AK group were significantly higher than those of the MAO group. All these results suggest that this duplex coating process is promising for engineering titanium surfaces to promote osseointegration for dental and orthopedic applications.

  11. Electrochemical Evidence for Neuroglobin Activity on NO at Physiological Concentrations.

    PubMed

    Trashin, Stanislav; de Jong, Mats; Luyckx, Evi; Dewilde, Sylvia; De Wael, Karolien

    2016-09-02

    The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe(3+)) and ferrous (Fe(2+)) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example, in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.

  12. Effect of nano-scale characteristics of graphene on electrochemical performance of activated carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Jasni, M. R. M.; Deraman, M.; Suleman, M.; Hamdan, E.; Sazali, N. E. S.; Nor, N. S. M.; Shamsudin, S. A.

    2016-02-01

    Graphene with its typical nano-scale characteristic properties has been widely used as an additive in activated carbon electrodes in order to enhance the performance of the electrodes for their use in high performance supercapacitors. Activated carbon monoliths (ACMs) electrodes have been prepared by carbonization and activation of green monoliths (GMs) of pre-carbonized fibers of oil palm empty fruit bunches or self-adhesive carbon grains (SACGs) and SACGs added with 6 wt% of KOH-treated multi-layer graphene. ACMs electrodes have been assembled in symmetrical supercapacitor cells that employed aqueous KOH electrolyte (6 M). The cells have been tested with cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge discharge methods to investigate the effect of graphene addition on the specific capacitance (Csp), specific energy (E), specific power (P), equivalent series resistance (ESR) and response time (τo) of the supercapacitor cells. The results show that the addition of graphene in the GMs change the values of Csp, Emax, Pmax, ESR and τo from (61-96) F/g, 2 Wh/kg, 104 W/kg, 2.6 Ω and 38 s, to the respective values of (110-124) F/g, 3 Wh/kg, 156 W/kg, 3.4 Ω and 63 s. This study demonstrates that the graphene addition in the GMs has a significant effect on the electrochemical behavior of the electrodes.

  13. DNA Enzyme-Decorated DNA Nanoladders as Enhancer for Peptide Cleavage-Based Electrochemical Biosensor.

    PubMed

    Kou, Bei-Bei; Zhang, Li; Xie, Hua; Wang, Ding; Yuan, Ya-Li; Chai, Ya-Qin; Yuan, Ruo

    2016-09-07

    Herein, we developed a label-free electrochemical biosensor for sensitive detection of matrix metalloproteinase-7 (MMP-7) based on DNA enzyme-decorated DNA nanoladders as enhancer. A peptide and single-stranded DNA S1-modified platinum nanoparticles (P1-PtNPs-S1), which served as recognition nanoprobes, were first immobilized on electrode. When target MMP-7 specifically recognized and cleaved the peptide, the PtNPs-S1 bioconjugates were successfully released from electrode. The remaining S1 on electrode then hybridized with ssDNA1 (I1) and ssDNA2 (I2), which could synchronously trigger two hybridization chain reactions (HCRs), resulting in the in situ formation of DNA nanoladders. The desired DNA nanoladders not only were employed as ideal nanocarriers for enzyme loading, but also maintained its catalytic activity. With the help of hydrogen peroxide (H2O2), manganese porphyrin (MnPP) with peroxidase-like activity accelerated the 4-chloro-1-naphthol (4-CN) oxidation with generation of insoluble precipitation on electrode, causing a very low differential pulse voltammetry (DPV) signal for quantitative determination of MMP-7. Under optimal conditions, the developed biosensor exhibited a wide linear ranging from 0.2 pg/mL to 20 ng/mL, and the detection limit was 0.05 pg/mL. This work successfully realized the combination of DNA signal amplification technique with artificial mimetic enzyme-catalyzed precipitation reaction in peptide cleavage-based protein detection, offering a promising avenue for the detection of other proteases.

  14. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.

    PubMed

    Tsai, Hung-Wei; Thomas, Stuart R; Chen, Chia-Wei; Wang, Yi-Chung; Tsai, Hsu-Sheng; Yen, Yu-Ting; Hsu, Cheng-Hung; Tsai, Wen-Chi; Wang, Zhiming M; Chueh, Yu-Lun

    2016-03-01

    Defect control in Cu(In,Ga)Se2 (CIGS) materials, no matter what the defect type or density, is a significant issue, correlating directly to PV performance. These defects act as recombination centers and can be briefly categorized into interface recombination and Shockley-Read-Hall (SRH) recombination, both of which can lead to reduced PV performance. Here, we introduce an electrochemical passivation treatment for CIGS films that can lower the oxygen concentration at the CIGS surface as observed by X-ray photoelectron spectrometer analysis. Temperature-dependent J-V characteristics of CIGS solar cells reveal that interface recombination is suppressed and an improved rollover condition can be achieved following our electrochemical treatment. As a result, the surface defects are passivated, and the power conversion efficiency performance of the solar cell devices can be enhanced from 4.73 to 7.75%.

  15. [Nonequilibrium state of electrochemically activated water and its biological activity].

    PubMed

    Petrushanko, I Iu; Lobyshev, V I

    2001-01-01

    Changes in the physicochemical parameters (pH, redox potential and electroconductivity) of catholyte and anolyte produced by membrane electrolysis of distilled water and dilute (c < 10(-3) M) sodium chloride solutions were studied. The relaxation of these parameters after electrolysis and the influence of catholyte and anolyte on the growth of roots of Tradescantia viridis grafts, the development of duckweed, and the motive activity of infusoria Spirostomum ambiguum were investigated. It was found that the anolyte of distilled water stimulated development of these biological objects. The direction of shift of physicochemical parameters of catholyte and anolyte from equilibrium values and the type of their biological activity (stimulation or inhibition) depend on salt concentration in initial solution. Barbotage of initial distilled water with argon or nitrogen leads to a greater decrease in the redox potential of catholyte during electrolysis. The physicochemical parameters relax to equilibrium values, and the biological activity of catholite and anolyte decreases with time and practically disappears by the end of the day. It was found that the oxidation of reducing agent by atmospheric oxygen is not the sole cause of the relaxation of catalyte redox potential. The increase in the ionic strength of catholite and anolyte by the addition of concentrated sodium chloride after electrolysis decreases the rate of redox potential relaxation several times. The redox potential can be maintained for long periods by freezing.

  16. Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhu, Yeling; Shi, Kaiyuan; Zhitomirsky, Igor

    2014-12-01

    Polypyrrole (PPy) electrodes for electrochemical supercapacitors (ES) are prepared using amaranth as a new redox-active anionic dopant for chemical polymerization of PPy. The use of amaranth allows excellent electrochemical performance of electrodes with high mass loading and high PPy to current collector mass ratio. The specific capacitance of 4.2 F cm-2 is achieved at a scan rate of 2 mV s-1. The analysis of electrochemical testing results provides an insight into the influence of the chemical structure of amaranth on microstructure, electrochemical properties and cycling stability of PPy. New method is introduced for the fabrication of PPy coated multiwalled carbon nanotubes (MWCNT). The use of amaranth allows fine microstructure of PPy coatings formed on MWCNT, which are well dispersed in the presence of pyrocatechol violet dispersant. The use of PPy coated MWCNT allows significant improvement in capacitance retention at high charge-discharge rates, compared to pure PPy material, and good cycling stability of individual electrodes and ES cells. The ES cells, based on PPy show specific capacitance of 1.3-1.6 F cm-2 at discharge current densities of 1-33 mA cm-2.

  17. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.

    PubMed

    Song, Haoran; Yan, Linxia; Ma, Jun; Jiang, Jin; Cai, Guangqiang; Zhang, Wenjuan; Zhang, Zhongxiang; Zhang, Jiaming; Yang, Tao

    2017-03-21

    Electrochemical activation of peroxydisulfate (PDS) at Ti/Pt anode was systematically investigated for the first time in this work. The synergistic effect produced from the combination of electrolysis and the addition of PDS demonstrates that PDS can be activated at Ti/Pt anode. The selective oxidation towards carbamazepine (CBZ), sulfamethoxazole (SMX), propranolol (PPL), benzoic acid (BA) rather than atrazine (ATZ) and nitrobenzene (NB) was observed in electrochemical activation of PDS process. Moreover, addition of excess methanol or tert-butanol had negligible impact on CBZ (model compound) degradation, demonstrating that neither sulfate radical (SO4(-)) nor hydroxyl radical (HO) was produced in electrochemical activation of PDS process. Direct oxidation (PDS oxidation alone and electrolysis) and nonradical oxidation were responsible for the degradation of contaminants. The results of linear sweep voltammetry (LSV) and chronoamperometry suggest that electric discharge may integrate PDS molecule with anode surface into a unique transition state structure, which is responsible for the nonradical oxidation in electrochemical activation of PDS process. Adjustment of the solution pH from 1.0 to 7.0 had negligible effect on CBZ degradation. Increase of either PDS concentration or current density facilitated the degradation of CBZ. The presence of chloride ion (Cl(-)) significantly enhanced CBZ degradation, while addition of bicarbonate (HCO3(-)), phosphate (PO4(3-)) and humic acid (HA) all inhibited CBZ degradation with the order of HA > HCO3(-) > PO4(3-). The degradation products of CBZ and chlorinated products were also identified. Electrochemical activation of PDS at Ti/Pt anode may serve as a novel technology for selective oxidation of organic contaminants in water and soil.

  18. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.

    PubMed

    González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark

    2016-10-15

    Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin

  19. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.

    PubMed

    Schütz, Marta K; Moreira, Rebeca; Bildstein, Olivier; Lartigue, Jean-Eric; Schlegel, Michel L; Tribollet, Bernard; Vivier, Vincent; Libert, Marie

    2014-06-01

    The availability of respiratory substrates, such as H2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria. The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H2 oxidation.

  20. Enhanced electrochemical performance and manganese redox activity of LiFe0.4Mn0.6PO4 by iodine anion substitution as cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Sin, Byung Cheol; Singh, Laxman; An, JiEun; Lee, Hansol; Lee, Hyung-il; Lee, Youngil

    2016-05-01

    For the first time, an attempt has been made for the possible augmentation and exploration of iodine substitution into LiFe0.4Mn0.6PO4 (LFMP) material is assessed as a cathode material for lithium ion batteries. Iodine substituted LiFe0.4Mn0.6(PO4)1-xIx (LFMPI, x = 0, 0.01, 0.015, and 0.02) have been synthesized by a solid-state reaction without any external carbon source. X-ray diffraction shows that the LFMP and LFMPI cathode materials have formed the same single crystalline phase; the values of lattice parameters and unit cell volume have been insignificantly changed by I- anion substitution. Uniformly distributed grains of the LFMPI samples with grain sizes in the range of 250 nm to 0.9 μm have been obtained by scanning electron microscopy. X-ray photoelectron spectroscopy for the LFMPI with x = 0.02 have clearly observed at 619.5 and 630.7 eV for I 3d5/2 and I 3d3/2, respectively. The electrochemical properties of the pure LFMP cathode material have been compared with those of I- anion substituted LFMPI samples. LFMPI with x = 0.015 has delivered the highest discharge capacity of 141.5 mAh g-1 at 0.1C, and LFMPI with x = 0.01 has 102.1 mAh g-1 at high rate of 3C. Iodine substituted LFMPI have demonstrated improved electrochemical properties with excellent reversible cycling.

  1. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    1992 ). 109. C . F. Jr. Windisch, J . W. Virden, S . H. Elser, J . Liu and M . H. Engelhard, J . Electrochem. Soc. 145, 1211 (1998). 110. M . R . Wixom, D . J ...G. Salitra, B. Markovsky, H. Teller, D . Aurbach, U . Heider and L. Heider, J . Electrochem. Soc., 146, 1279 (1999). 28. A. Anami, S . C -Baker, and R ...1233 (1993). 7. J . R . Dahn, E.W. Fuller, M . Obrovac and U

  2. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

    PubMed Central

    Pan, Lijia; Yu, Guihua; Zhai, Dongyuan; Lee, Hye Ryoung; Zhao, Wenting; Liu, Nian; Wang, Huiliang; Tee, Benjamin C.-K.; Shi, Yi; Cui, Yi; Bao, Zhenan

    2012-01-01

    Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g-1), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM-1). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes. PMID:22645374

  3. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene.

    PubMed

    Guo, Shaojun; Wen, Dan; Zhai, Yueming; Dong, Shaojun; Wang, Erkang

    2011-04-15

    Trinitrotoluene, usually known as TNT, is a kind of chemical explosive with hazardous and toxic effects on the environment and human health. Ever-increasing needs for a secure society and green environment essentially require the detection of TNT with rapidity, high sensitivity and low cost. In this article, ionic liquid-graphene hybrid nanosheets (IL-GNs) have been used as an enhanced material for rapidly electrochemical detection of trinitrotoluene (TNT). IL-GNs were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photo-electron spectroscopy, electrochemical impedance spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy, which confirmed that IL has been effectively functionalized on the surface of GNs. Significantly, IL-GNs modified glassy carbon electrode (GCE) showed 6.2 and 51.4-folds higher current signals for TNT reduction than IL-CNTs/GCE and bare GCE, respectively. Adsorptive stripping voltammetry (ASV) for the detection of TNT on IL-GNs exhibited a good linear range from 0.03 to 1.5 ppm with a detection limit of 4 ppb on the basis of the signal-to-noise characteristics (S/N=3). Moreover, IL-GNs/GCE exhibited good stability and reproducibility for the detection of TNT. And, IL-GNs based electrochemical detection platform was also successfully demonstrated for the detection of TNT in ground water, tap water, and lake water with satisfactory results.

  4. Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Qiu, Xinping; Cui, Mengzhong; Tang, Xiaozhen; Zhu, Wentao; Chen, Liquan

    ZSM-5 molecular sieves, usually known as shape-selective catalyst in a great deal of catalysis fields, due to its special pore size and two-dimensional interconnect channels. In this work, a novel PEO-based composite polymer electrolyte by using ZSM-5 as the filler has been developed. The interactions between ZSM-5 and PEO matrix are studied by DSC and SEM techniques. The effects of ZSM-5 on the electrochemical properties of the PEO-based electrolyte, such as ionic conductivity, lithium ion transference number, and interfacial stability with lithium electrode are studied by electrochemical impedance spectroscopy and steady-state current method. The experiment results show that ZSM-5 can enhance the ionic conductivity and increase the lithium ion transference number of PEO-based electrolyte more effectively comparing with traditional ceramic fillers such as SiO 2 and Al 2O 3, resulting from its special framework topology structure. The excellent performances such as high ionic conductivity, good compatibility with lithium metal electrode, and broad electrochemical stability window suggesting that PEO-LiClO 4/ZSM-5 composite polymer electrolyte can be used as candidate electrolyte materials for lithium polymer batteries.

  5. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge

    PubMed Central

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D.; Boettcher, Shannon W.

    2015-01-01

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg−1 based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30–50 Wh kg−1 is possible with optimization. PMID:26239891

  6. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.

    PubMed

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D; Boettcher, Shannon W

    2015-08-04

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg(-1) based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30-50 Wh kg(-1) is possible with optimization.

  7. Electrochemically active, anti-biofouling polymer adlayers on indium-tin-oxide electrodes.

    PubMed

    Kim, Eun Jeong; Shin, Hee-Young; Park, Sangjin; Sung, Daekyung; Jon, Sangyong; Sampathkumar, Srinivasa-Gopalan; Yarema, Kevin J; Choi, Sung-Yool; Kim, Kyuwon

    2008-08-14

    Here we report the synthesis of a novel electrochemically active polymer, preparation of adlayers of the polymer on optically transparent electrodes, and an application of the adlayers to immobilization of engineered cells through a direct covalent coupling reaction.

  8. Electrochemical flow injection analysis of hydrazine in an excess of an active pharmaceutical ingredient: achieving pharmaceutical detection limits electrochemically.

    PubMed

    Channon, Robert B; Joseph, Maxim B; Bitziou, Eleni; Bristow, Anthony W T; Ray, Andrew D; Macpherson, Julie V

    2015-10-06

    The quantification of genotoxic impurities (GIs) such as hydrazine (HZ) is of critical importance in the pharmaceutical industry in order to uphold drug safety. HZ is a particularly intractable GI and its detection represents a significant technical challenge. Here, we present, for the first time, the use of electrochemical analysis to achieve the required detection limits by the pharmaceutical industry for the detection of HZ in the presence of a large excess of a common active pharmaceutical ingredient (API), acetaminophen (ACM) which itself is redox active, typical of many APIs. A flow injection analysis approach with electrochemical detection (FIA-EC) is utilized, in conjunction with a coplanar boron doped diamond (BDD) microband electrode, insulated in an insulating diamond platform for durability and integrated into a two piece flow cell. In order to separate the electrochemical signature for HZ such that it is not obscured by that of the ACM (present in excess), the BDD electrode is functionalized with Pt nanoparticles (NPs) to significantly shift the half wave potential for HZ oxidation to less positive potentials. Microstereolithography was used to fabricate flow cells with defined hydrodynamics which minimize dispersion of the analyte and optimize detection sensitivity. Importantly, the Pt NPs were shown to be stable under flow, and a limit of detection of 64.5 nM or 0.274 ppm for HZ with respect to the ACM, present in excess, was achieved. This represents the first electrochemical approach which surpasses the required detection limits set by the pharmaceutical industry for HZ detection in the presence of an API and paves the wave for online analysis and application to other GI and API systems.

  9. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  10. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  11. Kinetically Enhanced Electrochemical Redox of Polysulfides on Polymeric Carbon Nitrides for Improved Lithium-Sulfur Batteries.

    PubMed

    Liang, Ji; Yin, Lichang; Tang, Xiaonan; Yang, Huicong; Yan, Wensheng; Song, Li; Cheng, Hui-Ming; Li, Feng

    2016-09-28

    The kinetics and stability of the redox of lithium polysulfides (LiPSs) fundamentally determine the overall performance of lithium-sulfur (Li-S) batteries. Inspired by theoretical predictions, we herein validated the existence of a strong electrostatic affinity between polymeric carbon nitride (p-C3N4) and LiPSs, that can not only stabilize the redox cycling of LiPSs, but also enhance their redox kinetics. As a result, utilization of p-C3N4 in a Li-S battery has brought much improved performance in the aspects of high capacity and low capacity fading over prolonged cycling. Especially upon the application of p-C3N4, the kinetic barrier of the LiPS redox reactions has been significantly reduced, which has thus resulted in a better rate performance. Further density functional theory simulations have revealed that the origin of such kinetic enhancement was from the distortion of molecular configurations of the LiPSs anchored on p-C3N4. Therefore, this proof-of-concept study opens up a promising avenue to improve the performance of Li-S batteries by accelerating their fundamental electrochemical redox processes, which also has the potential to be applied in other electrochemical energy storage/conversion systems.

  12. Electrochemical determination of chrysophanol based on the enhancement effect of acetylene black nanoparticles.

    PubMed

    Zhang, Yuanyuan; Wang, Yanying; Wu, Kangbing; Zhang, Shichao; Zhang, Yu; Wan, Chidan

    2013-03-01

    Acetylene black (AB) nanoparticles were readily dispersed into water in the presence of dihexadecyl hydrogen phosphate. After evaporation of water, the surface of glassy carbon electrode (GCE) was coated with AB nanoparticles as confirmed from the scanning electron microscopy measurements. The transmission electron microscopy images indicated that AB nanoparticles possessed porous structure. Electrochemical behavior of chrysophanol was studied, and a sensitive oxidation peak was observed in pH 3.6 acetate buffer solution. Compared with the bare GCE, the AB nanoparticles-modified GCE greatly increased the oxidation peak current of chrysophanol, showing remarkable signal enhancement effect. The influences of pH value, amount of AB, accumulation potential and time on the signal enhancement of chrysophanol were studied. As a result, a novel electrochemical method was developed for the determination of chrysophanol. The linear range was from 1.5 to 200 μgL(-1), and the detection limit was 0.51 μgL(-1) (2.01 × 10(-9)M) after 2-min accumulation. Finally, this method was used in traditional Chinese medicines, and the results consisted with the values that obtained by high-performance liquid chromatography.

  13. Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction.

    PubMed

    Sun, Ai-Li

    2015-12-07

    A new electrochemical immunosensor with signal enhancement was designed for sensitive detection of disease-related protein (human carbohydrate antigen 19-9, CA 19-9 used in this case). The assay was carried out on a capture antibody-modified screen-printed carbon electrode with a sandwich-type mode by using detection antibody-functionalized nanogold-encapsulated poly(amidoamine) dendrimer (AuNP-PAAD). The AuNP-PAAD was first synthesized through the in situ reduction method and functionalized with the polyclonal rabbit anti-human CA 19-9 antibody. Upon target CA 19-9 introduction, a sandwiched immunocomplex could be formed between the capture antibody and detection antibody. Accompanying the AuNP-PAAD, the electrocatalytic activity of the carried gold nanoparticles toward the hydrogen evolution reaction (HER) allowed the rapid quantification of the target analyte on the electrode. The amplified electrochemical signal mainly derived from AuNP-catalyzed HER in an acidic medium. Under optimal conditions, the immuno-HER assay displayed a wide dynamic concentration range from 0.01 to 300 U mL(-1) toward target CA 19-9 with a detection limit (LOD) of 6.3 mU mL(-1). The reproducibility, precision, specificity and stability of our strategy were acceptable. Additionally, the system was further validated by assaying 13 human serum specimens, giving well matched results obtained from the commercialized enzyme-linked immunosorbent assay (ELISA) method.

  14. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

    PubMed

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-31

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM(-1) cm(-2), a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM(-1) cm(-2), benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties.

  15. Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol.

    PubMed

    Velmurugan, Murugan; Karikalan, Natarajan; Chen, Shen-Ming; Cheng, Yi-Hui; Karuppiah, Chelladurai

    2017-03-31

    This paper describes the electrochemical preparation of highly electrochemically active and conductive activated graphene oxide (aGO). Afterwards, the electrochemical properties of aGO was studied towards the simultaneous determination of hydroquinone (HQ) and catechol (CC). This aGO is prepared by the electrochemical activation of GO by various potential treatments. The resultant aGOs are examined by various physical and electrochemical characterizations. The high potential activation (1.4 to -1.5) process results a highly active GO (aGO1), which manifest a good electrochemical behavior towards the determination of HQ and CC. This aGO1 modified screen printed carbon electrode (SPCE) was furnished the sensitive detection of HQ and CC with linear concentration range from 1 to 312μM and 1 to 350μM. The aGO1 modified SPCE shows the lowest detection limit of 0.27μM and 0.182μM for the HQ and CC, respectively. The aGO1 modified SPCE reveals an excellent selectivity towards the determination of HQ and CC in the presence of 100 fold of potential interferents. Moreover, the fabricated disposable aGO1/SPCE sensor was demonstrated the determination of HQ and CC in tap water and industrial waste water.

  16. Active Electrochemical Plasmonic Switching on Polyaniline-Coated Gold Nanocrystals.

    PubMed

    Lu, Wenzheng; Jiang, Nina; Wang, Jianfang

    2017-02-01

    High-performance electrochemical plasmonic switching is realized on both single-particle and ensemble levels by coating polyaniline on colloidal gold nanocrystals through surfactant-assisted oxidative polymerization. Under small applied potentials, the core@shell nanostructures exhibit reversible plasmon shifts as large as 150 nm, a switching time of less than 10 ms, and a high switching stability.

  17. Preparation of electrochemically active silicon nanotubes in highly ordered arrays.

    PubMed

    Grünzel, Tobias; Lee, Young Joo; Kuepper, Karsten; Bachmann, Julien

    2013-01-01

    Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry.

  18. One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity

    SciTech Connect

    Wei, Ang; Xiong, Li; Sun, Li; Liu, Yanjun; Li, Weiwei; Lai, Wenyong; Liu, Xiangmei; Wang, Lianhui; Huang, Wei; Dong, Xiaochen

    2013-08-01

    Graphical abstract: - Highlights: • Graphene–ZnO hybrid was synthesized by one-step electrochemical deposition. • Graphene–ZnO hybrid presents a special structure and wide UV–vis absorption spectra. • Graphene–ZnO hybrid exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue. - Abstract: A graphene–ZnO (G-ZnO) hybrid was synthesized by one-step electrochemical deposition. During the formation of ZnO nanostructure by cathodic electrochemical deposition, the graphene oxide was electrochemically reduced to graphene simultaneously. Scanning electron microscope images, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectra, and UV–vis absorption spectra indicate the resulting G-ZnO hybrid presents a special structure and wide UV–vis absorption spectra. More importantly, it exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue than that of pure ZnO nanostructure under both ultraviolet and sunlight irradiation.

  19. Combination of electrochemical, spectrometric and other analytical techniques for high throughput screening of pharmaceutically active compounds.

    PubMed

    Suzen, Sibel; Ozkan, Sibel A

    2010-08-01

    Recently, use of electrochemistry and combination of this method with spectroscopic and other analytical techniques are getting one of the important approaches in drug discovery and research as well as quality control, drug stability, determination of physiological activity, measurement of neurotransmitters. Many fundamental physiological processes are depending on oxido-reduction reactions in the body. Therefore, it may be possible to find connections between electrochemical and biochemical reactions concerning electron transfer pathways. Applications of electrochemical techniques to redox-active drug development and studies are one of the recent interests in drug discovery. In this review, the latest developments related to the use of electrochemical techniques in drug research in order to evaluate possible combination spectrometric methods with electrochemical techniques.

  20. Ultra-high electrochemical catalytic activity of MXenes.

    PubMed

    Pan, Hui

    2016-09-08

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies.

  1. Ultra-high electrochemical catalytic activity of MXenes

    PubMed Central

    Pan, Hui

    2016-01-01

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies. PMID:27604848

  2. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm

    NASA Astrophysics Data System (ADS)

    Ansari, Sajid Ali; Khan, Mohammad Mansoob; Kalathil, Shafeer; Nisar, Ambreen; Lee, Jintae; Cho, Moo Hwan

    2013-09-01

    Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the oxygen vacancy and band gap narrowing of m-ZnO. m-ZnO enhanced the visible light catalytic activity for the degradation of different classes of dyes and 4-nitrophenol compared to p-ZnO, which confirmed the band gap narrowing because of oxygen defects. This study shed light on the modification of metal oxide nanostructures by EAB with a controlled band structure.Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X

  3. Enhanced molten salt purification by electrochemical methods: feasibility experiments with flibe

    SciTech Connect

    Alan K Wertsching; Brandon S Grover; Pattrick Calderoni

    2010-09-01

    -chemistry properties in heat transport systems’ describes the options available to reach such objectives and contains extended references to published work. The report highlights how electrochemical methods are the most promising techniques for the development of instrumentation aimed at the measurement of melts composition and for enhanced purification systems. The purpose of this work is to summarize preliminary experimental activities performed at the INL Safety and Tritium Applied Research facility in support of the development of electrochemistry based instrumentation and purification systems. The experiments have been focused on the LiF-BeF2 eutectic (67 and 33 mol%, respectively), also known as flibe.

  4. Nano-sized Mn-doped activated carbon aerogel as electrode material for electrochemical capacitor: effect of activation conditions.

    PubMed

    Lee, Yoon Jae; Park, Hai Woong; Park, Sunyoung; Song, In Kyu

    2012-07-01

    Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.

  5. A Facile Electrochemical Sensor for Nonylphenol Determination Based on the Enhancement Effect of Cetyltrimethylammonium Bromide

    PubMed Central

    Lu, Qing; Zhang, Weina; Wang, Zhihui; Yu, Guangxia; Yuan, Yuan; Zhou, Yikai

    2013-01-01

    A facile electrochemical sensor for the determination of nonylphenol (NP) was fabricated in this work. Cetyltrimethylammonium bromide (CTAB), which formed a bilayer on the surface of the carbon paste (CP) electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10−7 mol·L−1 to 2.5 × 10−5 mol·L−1 was obtained for the sensor, with a low limit of detection at 1.0 × 10−8 mol·L−1. Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications. PMID:23296332

  6. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-15

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g{sup −1} at 2 A g{sup −1} and impressive high-rate capability with a specific capacitance of 338 F g{sup −1} at 40 A g{sup −1}. In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g{sup −1}, a high capacitance of 660 F g{sup −1} is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties.

  7. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst.

    PubMed

    Manthiram, Karthish; Beberwyck, Brandon J; Alivisatos, A Paul

    2014-09-24

    Although the vast majority of hydrocarbon fuels and products are presently derived from petroleum, there is much interest in the development of routes for synthesizing these same products by hydrogenating CO2. The simplest hydrocarbon target is methane, which can utilize existing infrastructure for natural gas storage, distribution, and consumption. Electrochemical methods for methanizing CO2 currently suffer from a combination of low activities and poor selectivities. We demonstrate that copper nanoparticles supported on glassy carbon (n-Cu/C) achieve up to 4 times greater methanation current densities compared to high-purity copper foil electrodes. The n-Cu/C electrocatalyst also exhibits an average Faradaic efficiency for methanation of 80% during extended electrolysis, the highest Faradaic efficiency for room-temperature methanation reported to date. We find that the level of copper catalyst loading on the glassy carbon support has an enormous impact on the morphology of the copper under catalytic conditions and the resulting Faradaic efficiency for methane. The improved activity and Faradaic efficiency for methanation involves a mechanism that is distinct from what is generally thought to occur on copper foils. Electrochemical data indicate that the early steps of methanation on n-Cu/C involve a pre-equilibrium one-electron transfer to CO2 to form an adsorbed radical, followed by a rate-limiting non-electrochemical step in which the adsorbed CO2 radical reacts with a second CO2 molecule from solution. These nanoscale copper electrocatalysts represent a first step toward the preparation of practical methanation catalysts that can be incorporated into membrane-electrode assemblies in electrolyzers.

  8. Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces

    SciTech Connect

    Morgan, Dane

    2015-09-30

    This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr)2CoO4 / perovskite (La,Sr)CoO3 heterostructure compared to pure (La,Sr)CoO3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in the performance of (La,Sr)CoO3 and (La,Sr)(Co,Fe)O3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr)2CoO4 and (La,Sr)CoO3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.

  9. Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode.

    PubMed

    Nie, Libo; Guo, Huishi; He, Quanguo; Chen, Jianrong; Miao, Yuqing

    2007-02-01

    A novel electrochemical genesensor using twice hybridization enhancement of gold nanoparticles based on carbon paste modified electrode is described. The carbon nanotube modified carbon paste electrode (CNTPE) and mesoporous molecular sieve SBA-15 modified carbon paste electrode (MSCPE) were investigated. The assay relies on the immobilization of streptavidin-biotin labeled target oligonucleotides onto the electrode surface and its hybridization to the gold nanoparticle-labeled DNA probe. After twice hybridization enhanced connection of gold nanoparticles to the hybridized system, the differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the adsorption of oligonucleotide and hybridized DPV signal on CNTPE were both enhanced in comparison with that of pure carbon paste electrode (CPE). But this trend was reverse on MSCPE. The DPV detection of twice hybridized gold nanoparticles indicated that the sensitivity of the genesensor enhanced about one order of magnitude compared with one-layer hybridization. One-base mismatched DNA and complementary DNA could be distinguished clearly. However, no distinct advantage of MSCPE over CPE was found.

  10. In Situ Laser Activation of Electrochemical Kinetics at Carbon Electrodes

    DTIC Science & Technology

    1994-05-31

    carbon. They include polishing [5,61, chemical and electrochemical pretreatment [12-15], vacuum heat treatment [7,16], thermal and rf plasma treat ...small (approx. 0.1 Atm) nodules, apparently solidified from molten Pt. Such nodules were absent on the polished surface. Electrodes treated with the...Galus proposed that CN- forms a protective layer by occupying chemisorption sites, similar to I-, and both CN-- and I-- treated surfaces yielded k

  11. Development and understanding of cobaloxime activity through electrochemical molecular catalyst screening.

    PubMed

    Wakerley, David W; Reisner, Erwin

    2014-03-28

    Electrochemical molecular catalyst screening (EMoCS) has been developed. This technique allows fast analysis and identification of homogeneous catalytic species through tandem catalyst assembly and electrochemistry. EMoCS has been used to study molecular proton reduction catalysts made from earth abundant materials to improve their viability for water splitting systems. The efficacy of EMoCS is proven through investigation of cobaloxime proton reduction activity with respect to the axial ligand in aqueous solution. Over 20 axial ligands were analysed, allowing rapid identification of the most active catalysts. Structure-activity relationships showed that more electron donating pyridine ligands result in enhanced catalytic currents due to the formation of a more basic Co-H species. The EMoCS results were validated by isolating and assaying the most electroactive cobaloximes identified during screening. The most active catalyst, [Co(III)Cl(dimethyl glyoximato)2(4-methoxypyridine)], showed high electro- and photoactivity in both anaerobic and aerobic conditions in pH neutral aqueous solution.

  12. Effect of nanostructured graphene oxide on electrochemical activity of its composite with polyaniline titanium dioxide

    NASA Astrophysics Data System (ADS)

    Binh Phan, Thi; Thanh Luong, Thi; Mai, Thi Xuan; Thanh Thuy Mai, Thi; Tot Pham, Thi

    2016-03-01

    Graphene oxide (GO) significantly affects the electrochemical activity of its composite with polyanline titanium dioxide (TiO2). In this work various composites with different GO contents have been successfully synthesized by chemical method to compare not only their material properties but also electrochemical characteristics with each other. The results of an electrochemical impedance study showed that their electrochemical property has been improved due to the presence of GO in a composite matrix. The galvanodynamic polarization explained that among them the composite with GO/Ani ratio in the range of 1-14 exhibits a better performance compared to the other due to yielding a higher current desity (280 μA cm-2). The TEM and SEM images which presented the fibres of a composite bundle with the presence of PANi and TiO2 were examined by IR-spectra and x-ray diffraction, respectively.

  13. Electrochemical in situ regeneration of granular activated carbon using a three-dimensional reactor.

    PubMed

    Sun, Hong; Liu, Zhigang; Wang, Ying; Li, Yansheng

    2013-12-01

    Electrochemical in situ regeneration of granular activated carbon (GAC) saturated with phenol was experimentally investigated using a three-dimensional electrode reactor with titanium filter electrode arrays. The feasibility of the electrochemical regeneration has been assessed by monitoring the regeneration efficiency and chemical oxygen demand (COD). The influence of the applied current, the effluent flow rate, and the effluent path of the electrochemical cell have been systematically studied. Under the optimum conditions, the regeneration efficiency of GAC could reach 94% in 2 hr, and no significant declination was observed after five-time continuous adsorption-regeneration cycles. The adsorption of organic pollutants was almost completely mineralized due to electrochemical oxidation, indicating that this regeneration process is much more potentially cost-effective for application.

  14. Peroxidase-encapsulated cyclodextrin nanosponge immunoconjugates as a signal enhancement tool in optical and electrochemical assays.

    PubMed

    Wajs, Ewelina; Caldera, Fabrizio; Trotta, Francesco; Fragoso, Alex

    2014-01-21

    Cyclodextrin nanosponges bearing carboxylate groups have been prepared by crosslinking β-cyclodextrin with pyromellitic dianhydride to form a carboxylic acid terminated nanoporous material. The surface of the particles was covalently modified with an anti-IgG antibody and then loaded with horseradish peroxidase. The structures of unmodified and protein modified nanosponge particles were investigated by Raman spectroscopy and imaging methods. Confocal microscopy indicates that the antibody is located in the outside of the particle while HRP is encapsulated in the inner part. The possibility to use these modified nanosponges as a signal enhancement tool in enzyme-linked colorimetric and electrochemical assays was evaluated using a sandwich format comprising immobilised gliadin as an antigen, a target anti-gliadin antibody and an anti-IgG antibody conjugated to the enzyme-loaded nanosponge immunoconjugates.

  15. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  16. Electrochemical detection of amaranth in food based on the enhancement effect of carbon nanotube film.

    PubMed

    Wang, Peng; Hu, Xiaozhong; Cheng, Qin; Zhao, Xiaoya; Fu, Xiaofang; Wu, Kangbing

    2010-12-08

    Amaranth is widely added to food and can cause many adverse health effects when it is excessively consumed. Therefore, the monitoring of amaranth is quite important. Herein, an electrochemical sensor for the sensitive and rapid detection of amaranth was reported using multiwall carbon nanotube (MWNT) as the sensing film. Due to the large surface area and high accumulation efficiency, the MWNT sensor showed a strong enhancement effect on the oxidation of amaranth, and greatly increased the current signal. The detection conditions such as pH value, amount of MWNT, accumulation potential and time were optimized. The linear range is from 40 nM to 0.8 μM, and the limit of detection is 35 nM. Finally, the new sensor was successfully employed to detect amaranth in soft drinks, and the results were tested by high-performance liquid chromatography.

  17. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.

    PubMed

    Hao, Fengbin; Zhang, Zhiwei; Yin, Longwei

    2013-09-11

    A facile hydrothermal and sol-gel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. The three-dimensional (3D) mesoporous Co3O4/CA hierarchical hybrids display an improved lithium storage performance and cycling stability, because of the intimate integration and strong synergistic effects between the Co3O4 nanoparticles and CA matrices. Such an interconnected Co3O4/CA hierarchical hybrid can effectively utilize the good conductivity, large surface area, 3D interconnected mesoporous structure, mechanical flexibility, chemical stability, and the short length of Li-ion transport of the CA matrix. The incorporation of Co3O4 nanoparticles into the interconnected CA matrix effectively reduces the number of active sites of Co3O4/CA hybrids, thus greatly increasing the reversible specific capacity and the initial Coulombic efficiency of the hybrids. The Co3O4/CA hybrid material displays the best lithium storage performance and good cycling stability as the Co3O4 loading content is up to 25 wt %, retains a Coulombic efficiency of 99.5% and a specific discharge capacity of 779 mAh g(-1) after 50 cycles, 10.1 and 1.6 times larger than the specific discharge capacity of 73 mAh g(-1) and 478 mAh g(-1) for Co3O4 and CA samples, respectively. The hierarchical hybrid nanostructures with enhanced electrochemical activities using a CA matrix framework can find potential applications in the related conversion reaction electrodes.

  18. Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst.

    PubMed

    Chang, Chiung-Fen; Chen, Tsan-Yao; Chin, Ching-Ju Monica; Kuo, Yu-Tsun

    2017-05-01

    Electrochemical advanced oxidation processes (EAOPs) regarded as a green technology for aqueous ibuprofen treatment was investigated in this study. Multi-walled carbon nanotubes (MWCNTs), Pt nanoparticles (Pt NPs), and PtRu alloy, of which physicochemical properties were characterized by XRD and X-ray absorption spectroscopy, were used to synthesize three types of cheap and effective anodes based on commercial conductive glass. Furthermore, the operating parameters, such as the current densities, initial concentrations, and solution pH were also investigated. The intermediates determined by a UPLC-Q-TOF/MS system were used to evaluate the possible reaction pathway of ibuprofen (IBU). The results revealed that the usage of MWCNTs and PtRu alloy can effectively reduce the grain size of electrocatalysts and increase the surface activity from the XRD and XANES analysis. The results of CV analysis, degradation and mineralization efficiencies revealed that the EAOPs with PtRu-FTO anode were very effective due to advantages of the higher capacitance, CO tolerance, catalytic ability at less positive voltage and stability. The concentration trend of intermediates indicated that the potential cytotoxic to human caused by 1-(1-hydroxyenthyl)-4-isobutylbenzene was completely eliminated as the reaction time reaches 60 min. Therefore, EAOPs combined with synthesized anodes can be feasibly applied on the electrochemical degradation of ibuprofen.

  19. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode.

    PubMed

    Santhosh, Padmanabhan; Senthil Kumar, Nagarajan; Renukadevi, Murugesan; Gopalan, Anantha Iyengar; Vasudevan, Thiyagarajan; Lee, Kwang-Pill

    2007-04-01

    A glassy carbon electrode modified with a coating of polypyrrole (Ppy) exhibited an attractive performance for the detection and determination of a non-steroidal and non-narcotic analgesic compound, ketorolac tromethamine (KT). Cyclic voltammetry, differential pulse and square wave voltammetry were used in a combined way to identify the electrochemical characteristics and to optimize the conditions for detection. For calibrating and estimating KT, square-wave voltammetry was mainly used. The drug shows a well-defined peak at -1.40 V vs. Ag/AgCl in the acetate buffer (pH 5.5). The existence of Ppy on the surface of the electrode gives higher electrochemical active sites at the electrode for the detection of KT and preconcentrate KT by adsorption. The square-wave stripping voltammetric response depends on the excitation signal and the accumulation time. The calibration curve is linear in the range 1 x 10(-11) to 1 x 10(-7) M with a detection limit of 1.0 x 10(-12) M. Applicability to serum samples was also demonstrated. A detection limit of 1.0 ng ml for serum was observed. Square-wave voltammetry shows superior performance over UV spectroscopy and other techniques.

  20. Electrochemical synthesis of novel 1,3-indandione derivatives and evaluation of their antiplatelet aggregation activities.

    PubMed

    Amidi, Salimeh; Kobarfard, Farzad; Bayandori Moghaddam, Abdolmajid; Tabib, Kimia; Soleymani, Zohreh

    2013-01-01

    Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which were provided in electrochemical cell. The in-vitro antiplatelet and anticoagulant activity of these compounds was evaluated, using arachidonic acid (AA) and adenosine diphosphate (ADP) as the platelet aggregation inducers. The results show that the incorporation of catechol ring in 1,3-indandione nucleus leads to the emergence of antiplatelet aggregation activity in these compounds. The compounds may exert their antiaggregation activity by interfering with the arachidonic acid pathway.

  1. Electrochemical Synthesis of Novel 1,3-Indandione Derivatives and Evaluation of Their Antiplatelet Aggregation Activities

    PubMed Central

    Amidi, Salimeh; Kobarfard, Farzad; Bayandori Moghaddam, Abdolmajid; Tabib, Kimia; Soleymani, Zohreh

    2013-01-01

    Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism was proposed for the formation of the analogs based on the reaction conditions which were provided in electrochemical cell. The in-vitro antiplatelet and anticoagulant activity of these compounds was evaluated, using arachidonic acid (AA) and adenosine diphosphate (ADP) as the platelet aggregation inducers. The results show that the incorporation of catechol ring in 1,3-indandione nucleus leads to the emergence of antiplatelet aggregation activity in these compounds. The compounds may exert their antiaggregation activity by interfering with the arachidonic acid pathway. PMID:24250677

  2. Electrochemical activity of some different iron polyphthalocyanines for the oxygen reduction reaction in acidic medium

    NASA Astrophysics Data System (ADS)

    Kreja, Ludwik; Dabrowski, Roman

    The electrochemical activity of iron polyphthalocyanines (pPcFe) synthesized from pyromellitic dianhydride (PMDA) or tetracyanobenzene (TCB) and dicyan It was found that pPcFe derived from PMDA has the highest activity and that the temperature dependences of electrical conductivity in vacuum and oxygen

  3. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    SciTech Connect

    Shim, HongShik; Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon E-mail: jinklee@snu.ac.kr; Lim, Joohyun; Lee, Jin-Kyu E-mail: jinklee@snu.ac.kr

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  4. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.

    PubMed

    Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra; Nørskov, Jens K; Bell, Alexis T

    2013-09-11

    The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that β-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of β-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of η = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction.

  5. Micro and nanoscale electrochemical systems for reagent generation, coupled electrokinetic transport and enhanced detection

    NASA Astrophysics Data System (ADS)

    Contento, Nicholas M.

    Chemical analysis is being performed in devices operated at ever decreasing length scales in order to harness the fundamental benefits of micro and nanoscale phenomena while minimizing operating footprint and sample size. The advantages of moving traditional sample or chemical processing steps (e.g. separation, detection, and reaction) into micro- and nanofluidic devices have been demonstrated, and they arise from the relatively rapid rates of heat and mass transport at small length scales. The use of electrochemical methods in micro/nanoscale systems to control and improve these processes holds great promise. Unfortunately, much is still not understood about the coupling of multiple electrode driven processes in a confined environment nor about the fundamental changes in device performance that occur as geometries approach the nanoscale regime. At the nanoscale a significant fraction of the sample volume is in close contact with the device surface, i.e. most of the sample is contained within electronic or diffusion layers associated with surface charge or surface reactions, respectively. The work presented in this thesis aims to understand some fundamental different behaviors observed in micro/nanofluidic structures, particularly those containing one or more embedded, metallic electrode structures. First, a quantitative method is devised to describe the impact of electric fields on electrochemistry in multi-electrode micro/nanofluidic systems. Next the chemical manipulation of small volumes (≤ 10-13 L) in micro/nanofluidic structures is explored by creating regions of high pH and high dissolved gas (H 2) concentration through the electrolysis of H2O. Massively parallel arrays of nanochannel electrodes, or embedded annular nanoband electrodes (EANEs), are then studied with a focus on achieving enhanced signals due to coupled electrokinetic and electrochemical effects. In EANE devices, electroosmotic flow results from the electric field generated between the

  6. Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Liu, Yanming; Quan, Xie; Yu, Hongtao; Chen, Shuo

    2015-02-17

    Membrane filtration provides effective solutions for removing contaminants, but achieving high permeability, good selectivity, and antifouling ability remains a great challenge for existing membrane filtration technologies. In this work, membrane filtration coupled with electrochemistry has been developed to enhance the filtration performance of a CNTs/Al2O3 membrane. The as-prepared CNTs/Al2O3 membrane, obtained by coating interconnected CNTs on an Al2O3 substrate, presented good pore-size tunability, mechanical stability, and electroconductivity. For the removal of a target (silica spheres as a probe) with a size comparable to the membrane pore size, the removal efficiency and flux at +1.5 V were 1.1 and 1.5 times higher, respectively, than those without electrochemical assistance. Moreover, the membrane also exhibited a greatly enhanced removal efficiency for contaminants smaller than the membrane pores, providing enhancements of 4 orders of magnitude and a factor of 5.7 for latex particles and phenol, respectively. These results indicated that both the permeability and the selectivity of CNTs/Al2O3 membranes can be significantly improved by electrochemical assistance, which was further confirmed by the removal of natural organic matter (NOM). The permeate flux and NOM removal efficiency at +1.5 V were about 1.6 and 3.0 times higher, respectively, than those without electrochemical assistance. In addition, the lost flux of the fouled membrane was almost completely recovered by an electrochemically assisted backwashing process.

  7. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  8. Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities

    SciTech Connect

    Chen, S.; Chu, W.; Huang, Y.Y.; Liu, X.; Tong, D.G.

    2012-12-15

    Graphical abstract: Porous N-doped TiO{sub 2} microspheres were prepared for the first time via plasma technique. The sample exhibited better photocatalytic activity, photoinduced inactivation activity and better electrochemical activity than those of TiO{sub 2} microspheres and P25. Display Omitted Highlights: ► Porous N-doped TiO{sub 2} microspheres were prepared via nitrogen plasma technique. ► Plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. ► With the plasma treatment, the N contents in the samples increased. ► Their photocatalytic, antibacterial and electrochemical activities were studied. -- Abstract: Nitrogen-doped titanium dioxide (N-doped TiO{sub 2}) microspheres with porous structure were prepared via the nitrogen-assisted glow discharge plasma technique at room temperature for the first time. The samples were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption–desorption measurement, UV–Vis diffuse reflectance spectra, photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The results indicated that the plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. With the plasma treatment, the N contents in the samples increased. During the photocatalytic degradation of methylene blue under simulative sunlight irradiation, the sample after plasma treatment for 60 min (N-TiO{sub 2}-60) exhibited higher photocatalytic activity than those of the TiO{sub 2} microspheres, P25 and other N-doped TiO{sub 2} microspheres. Furthermore, the N-TiO{sub 2}-60 showed excellent antibacterial activities towards Escherichia coli under visible irradiation. These should be attributed to the enhancement of the visible light region absorption for TiO{sub 2} after N-doping. Electrochemical data demonstrated that the N-doping not only enhanced the electrochemical activity of TiO{sub 2}, but also improved the reversibility of Li insertion/extraction reactions

  9. Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor.

    PubMed

    Kim, Tae-Woong; Park, Soo-Jin

    2017-01-15

    Reduced graphene oxide (rGO)/thorn-like TiO2 nanofiber (TTF) aerogels, or GTTF aerogels, with different TTF weight ratios were successfully prepared by electrospinning, silica etching and hydrothermal combination method. During the hydrothermal reaction, the rGO nanosheets and TTF self-assembled into three-dimensional (3D) interconnected networks, in which the TTF is loaded onto the rGO nanosheets. The electrochemical performance of the GTTF aerogels was assessed using cyclic voltammetry and galvanostatic charge-discharge measurements in a 1M aqueous Na2SO4 electrolyte. The TTF-to-rGO ratio of the aerogel material significantly affected the electrochemical performance of the aerogel electrodes, and the GTTF aerogels prepared with 20wt% TTF (denoted GTTF-20) exhibited excellent electrochemical performance. The maximum specific capacitance of this aerogel electrode was 178F/g at a current density of 1A/g. The GTTF-20 aerogel also exhibited good electrochemical stability with a capacitance degradation of less than 10% after 3000cycles. We can deduce that the electrochemical performance of the as-prepared aerogels may be enhanced by increasing the chemical interactions between rGO and TiO2. The results indicate that the GTTF aerogels show enormous potential for application in energy storage devices.

  10. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors.

    PubMed

    Itoi, Hiroyuki; Hayashi, Shinya; Matsufusa, Hidenori; Ohzawa, Yoshimi

    2017-03-14

    Polyaniline (PANI) was synthesized exclusively inside the micropores of activated carbon (AC). This nanosized PANI was smaller than 2 nm in diameter and allowed for fast redox reactions, exhibiting superior pseudocapacitance in terms of power and energy densities over the electric double layer capacitance generated inside the micropores.

  11. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches.

    PubMed

    Sander, Michael; Hofstetter, Thomas B; Gorski, Christopher A

    2015-05-19

    Redox-active minerals are ubiquitous in the environment and are involved in numerous electron transfer reactions that significantly affect biogeochemical processes and cycles as well as pollutant dynamics. As a consequence, research in different scientific disciplines is devoted to elucidating the redox properties and reactivities of minerals. This review focuses on the characterization of mineral redox properties using electrochemical approaches from an applied (bio)geochemical and environmental analytical chemistry perspective. Establishing redox equilibria between the minerals and working electrodes is a major challenge in electrochemical measurements, which we discuss in an overview of traditional electrochemical techniques. These issues can be overcome with mediated electrochemical analyses in which dissolved redox mediators are used to increase the rate of electron transfer and to facilitate redox equilibration between working electrodes and minerals in both amperometric and potentiometric measurements. Using experimental data on an iron-bearing clay mineral, we illustrate how mediated electrochemical analyses can be employed to derive important thermodynamic and kinetic data on electron transfer to and from structural iron. We summarize anticipated methodological advancements that will further contribute to advance an improved understanding of electron transfer to and from minerals in environmentally relevant redox processes.

  12. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells.

    PubMed

    Shashaani, Hani; Faramarzpour, Mahsa; Hassanpour, Morteza; Namdar, Nasser; Alikhani, Alireza; Abdolahad, Mohammad

    2016-11-15

    Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results.

  13. Electrochemical detection of protein kinase activity based on carboxypeptidase Y digestion triggered signal amplification.

    PubMed

    Yin, Huanshun; Wang, Xinxu; Guo, Yunlong; Zhou, Yunlei; Ai, Shiyun

    2015-04-15

    An effective assay method for monitoring protein kinase activity and screening inhibitors is greatly beneficial to kinase-related drug discovery, early diagnosis of diseases, and therapeutic effect evaluation. Herein, we develop a simple electrochemical method for detecting the activity of casein kinase II (CK2) based on phosphorylation against carboxypeptidase Y (CPY) digestion triggered signal amplification, where CK2 catalyzed phosphorylation event protects the substrate peptide from the digestion of CPY, maintains the repulsive force of the substrate peptide towards the redox probe, and results in a weak electrochemical signal. Whereas, without phosphorylation, the substrate peptide is digested by CPY and a strong electrochemical signal is obtained. The detection feasibility is demonstrated for the assay of CK2 activity with low detection limit of 0.047unit/mL. Moreover, the biosensor was used for the analysis of kinase inhibition. Based on the electrochemical signal dependent inhibitor concentration, the IC50 value of ellagic acid was estimated to be 39.77nM. The proposed method is also successfully applied to analyze CK2 activity in cell lysates, proving the applicability in complex biological samples.

  14. Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sen, Sujat; Moazzen, Elahe; Aryal, Shankar; Segre, Carlo U.; Timofeeva, Elena V.

    2015-11-01

    Nanofluid electrodes or nanoelectrofuels have significant potential in the field of flow batteries, as at high loadings of solid battery active nanoparticles, their energy density can be orders of magnitude higher than in traditional redox flow battery electrolytes. Nanofluid electrodes must have a manageable viscosity at high particle concentrations (i.e., easily pumpable) and exhibit good electrochemical activity toward charge and discharge reactions. Engineering of such nanofluid electrodes involves development of new and unique approaches to stabilization of nanoparticle suspensions. In this work, we demonstrate a surface modification approach that allows controlling the viscosity of nanofluids at high solid loading, while simultaneously retaining electrochemical activity of the nanoparticles. A scalable single step procedure for the surface grafting of small organic molecules onto iron (III) oxide nanoparticles (γ-Fe2O3, maghemite, 40-150 nm) is demonstrated. Modified iron oxide nanoparticles reported here have 5 wt% of the grafting moiety on the surface, which helps forming stable dispersions with up to 40 wt% of solid loading in alkali aqueous electrolytes with a maximum viscosity of 12 cP at room temperature. The maximum particle concentration achievable in the same electrolyte with pristine nanoparticles is 15 wt%. Electrochemical testing of the pristine and modified nanomaterials in the form of solid-casted electrodes showed a maximum reversible discharge capacity of 280 and 155 mAh/g, respectively, indicating that electrochemical activity of modified nanoparticles is partially suppressed due to the surface grafted moiety.

  15. Tailoring the surface chemistry of activated carbon cloth by electrochemical methods.

    PubMed

    Tabti, Zakaria; Ruiz-Rosas, Ramiro; Quijada, César; Cazorla-Amorós, Diego; Morallón, Emilia

    2014-07-23

    This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.

  16. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    PubMed

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  17. Mechanism of enhanced removal of quinonic intermediates during electrochemical oxidation of Orange II under ultraviolet irradiation.

    PubMed

    Li, Fazhan; Li, Guoting; Zhang, Xiwang

    2014-03-01

    The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange II using a TiO2-modified β-PbO2 electrode. It was found that a characteristic absorbance of quinonic compounds at 255 nm, which is responsible for the rate-determining step during aromatics degradation, was formed only in electrocatalytic oxidation. The dye can be oxidized by either HO radicals or direct electron transfer. Quinonic compounds were produced concurrently. The removal of TOC by photo-assisted electrocatalytic oxidation was 1.56 times that of the sum of the other two processes, indicating a significant synergetic effect. In addition, once the ultraviolet irradiation was introduced into the process of electrocatalytic oxidation, the degradation rate of quinonic compounds was enhanced by as much as a factor of two. The more efficient generation of HO radicals resulted from the introduction of ultraviolet irradiation in electrocatalytic oxidation led to the significant synergetic effect as well as the inhibiting effect on the accumulation of quinonic compounds.

  18. Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries.

    PubMed

    Zeng, Peiyuan; Zhao, Yueying; Lin, Yingwu; Wang, Xiaoxiao; Li, Jianwen; Wang, Wanwan; Fang, Zhen

    2017-12-01

    The application of hematite in lithium-ion batteries (LIBs) has been severely limited because of its poor cycling stability and rate performance. To solve this problem, hematite nanoparticles with oxygen vacancies have been rationally designed by a facile sol-gel method and a sequential carbon-thermic reduction process. Thanks to the existence of oxygen vacancies, the electrochemical performance of the as-obtained hematite nanoparticles is greatly enhancing. When used as the anode material in LIBs, it can deliver a reversible capacity of 1252 mAh g(-1) at 2 C after 400 cycles. Meanwhile, the as-obtained hematite nanoparticles also exhibit excellent rate performance as compared to its counterparts. This method not only provides a new approach for the development of hematite with enhanced electrochemical performance but also sheds new light on the synthesis of other kinds of metal oxides with oxygen vacancies.

  19. Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Peiyuan; Zhao, Yueying; Lin, Yingwu; Wang, Xiaoxiao; Li, Jianwen; Wang, Wanwan; Fang, Zhen

    2017-01-01

    The application of hematite in lithium-ion batteries (LIBs) has been severely limited because of its poor cycling stability and rate performance. To solve this problem, hematite nanoparticles with oxygen vacancies have been rationally designed by a facile sol-gel method and a sequential carbon-thermic reduction process. Thanks to the existence of oxygen vacancies, the electrochemical performance of the as-obtained hematite nanoparticles is greatly enhancing. When used as the anode material in LIBs, it can deliver a reversible capacity of 1252 mAh g-1 at 2 C after 400 cycles. Meanwhile, the as-obtained hematite nanoparticles also exhibit excellent rate performance as compared to its counterparts. This method not only provides a new approach for the development of hematite with enhanced electrochemical performance but also sheds new light on the synthesis of other kinds of metal oxides with oxygen vacancies.

  20. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    PubMed

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  1. Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization.

    PubMed

    Varoni, Elena Maria; Altomare, Lina; Cochis, Andrea; GhalayaniEsfahani, Arash; Cigada, Alberto; Rimondini, Lia; De Nardo, Luigi

    2016-04-21

    Neo-vascularization is a key factor in tissue regeneration within porous scaffolds. Here, we tested the hypothesis that micro-patterned scaffolds, with precisely-designed, open micro-channels, might help endothelial cells to produce intra-scaffold vascular networks. Three series of micro-patterned scaffolds were produced via electrochemical replica-deposition of chitosan and cross-linking. All had regularly-oriented micro-channels (ϕ 500 μm), which differed for the inter-channel spacing, at 600, 700, or 900 μm, respectively. Random-pore scaffolds, using the same technique, were taken as controls. Physical-mechanical characterization revealed high water uptake and favorable elastic mechanical behavior for all scaffolds, slightly reduced in the presence of cross-linking and enhanced with the 700 μm-spaced micro-pattern. At MTT assay, mouse endothelial cell viability was >90% at day 1, 3 and 7, confirmed by visual examination with scanning electron microscopy (SEM). Intra-scaffold cell density, at fluorescence analysis, was higher for the 600 μm-spaced and the 700 μm-spaced micro-patterns over the others. The 700 μm-spaced scaffold was selected for the in vivo testing, to be compared to the random-pore one. Neither type produced an inflammatory reaction; both showed excellent tissue ingrowth. Micro-patterned scaffolds enhanced neo-vascularization, demonstrated by immunofluorescent, semi-quantitative analyses. These findings support the use of micro-patterned porous scaffolds, with adequately spaced micro-channels, to promote neo-vascularization.

  2. Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Hong, Tian-Zeng; Xue, Qiong; Yang, Zhi-Yong; Dong, Ya-Ping

    2016-01-01

    The Pt-carbon quantum dot (CQD)/reduced graphene oxide (RGO) catalysts are prepared by one pot reduction method and demonstrate ultraefficient performance towards methanol oxidation reaction (MOR). In the high content CQD products, Pt nanoparticles around 2-3 nm are dispersed uniformly on supporting materials. And the X-ray photoelectron spectroscopy analysis indicates that in the high content CQD products a large part of surface oxygen groups is contributed by CQD. The electrochemical tests reveal that the catalyst with the saturated CQD exhibits best performance in MOR: the mass and specific activity at forward peak position, the potential close to fuel cell operation and 3600 s of chronoamperometric curve are roughly 2-3 folds of the commercial Pt/C. Furthermore, the electrochemical data on the series of catalysts with different quantity of CQD disclose the improving tendency of MOR performance with the increasing content of CQD evidently. Overview the electrochemical and characterization results, we suggest CQD play multiple roles in the enhancement of Pt performance: present abundant nucleating and anchoring points to facilitate the formation of small size and uniform distributed Pt particles; act as spacer to alleviate restacking of RGO sheets; and provide fruitful surface oxygen groups to improve the antipoisonous ability of Pt.

  3. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries.

    PubMed

    Prasanna, K; Subburaj, T; Jo, Yong Nam; Lee, Won Jong; Lee, Chang Woo

    2015-04-22

    The biopolymer chitosan has been investigated as a potential binder for the fabrication of LiFePO4 cathode electrodes in lithium ion batteries. Chitosan is compared to the conventional binder, polyvinylidene fluoride (PVDF). Dispersion of the active material, LiFePO4, and conductive agent, Super P carbon black, is tested using a viscosity analysis. The enhanced structural and morphological properties of chitosan are compared to the PVDF binder using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FE-SEM). Using an electrochemical impedance spectroscopy (EIS) analysis, the LiFePO4 electrode with the chitosan binder is observed to have a high ionic conductivity and a smaller increase in charge transfer resistance based on time compared to the LiFePO4 electrode with the PVDF binder. The electrode with the chitosan binder also attains a higher discharge capacity of 159.4 mAh g(-1) with an excellent capacity retention ratio of 98.38% compared to the electrode with the PVDF binder, which had a discharge capacity of 127.9 mAh g(-1) and a capacity retention ratio of 85.13%. Further, the cycling behavior of the chitosan-based electrode is supported by scrutinizing its charge-discharge behavior at specified intervals and by a plot of dQ/dV.

  4. One-step carbonization synthesis of hollow carbon nanococoons with multimodal pores and their enhanced electrochemical performance for supercapacitors.

    PubMed

    Zhang, Jianan; Wang, Kaixi; Guo, Shaojun; Wang, Shoupei; Liang, Zhiqiang; Chen, Zhimin; Fu, Jianwei; Xu, Qun

    2014-02-12

    Hollow carbon capsules with multimodal pores are highly promising for developing novel electrode materials for high-performance electrochemical devices due to their more active sites for ion and electron transfer. However, at present, most of the previous efforts are focused on the multistep process for the synthesis of hollow carbon nanostructures with individual pores. Herein, hollow carbon nanococoons (HCNCs) with non-spherical cavity and multimodal hierarchical pores have been facilely synthesized via a one-step carbonization of a Fe2O3/carbon precursor core/shell nanospindle at 850 °C. We interestingly found that during the carbonization, Fe2O3 was automatically "escaped" from the inside nanospindle, leading to the formation of new HCNCs. Most importantly, the spindle-shaped cavity of the obtained HCNCs with high conductivity can offer a multimodal ion diffusion pathway, which can facilitate the reaction kinetics in a supercapacitor. As a result, the HCNCs-based supacapacitor exhibits the capacitance of 220.0 F g(-1) at a given scan rate of 5 mV s(-1), 3.5 times higher than that of hollow carbon spheres, high stability with 98% of the initial capacity maintained even after 1000 cycles, and high rate capability. This work provides a new and facile avenue for enhancing performance of a HCNCs-based supercapacitor by using the non-spherical hollow structures with multimodal pores.

  5. Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    NASA Astrophysics Data System (ADS)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-11-01

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO2 gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO2 activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO2 activation had developed the micropores and introduced the oxygen-containing groups to MPCs‧ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO2 activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples.

  6. Electrochemical Dealloying of PdCu3 Nanoparticles to Achieve Pt-like Activity for the Hydrogen Evolution Reaction.

    PubMed

    Jana, Rajkumar; Bhim, Anupam; Bothra, Pallavi; Pati, Swapan K; Peter, Sebastian C

    2016-10-20

    Manipulating the d-band center of the metal surface and hence optimizing the free energy of hydrogen adsorption (ΔGH ) close to the optimal adsorption energy (ΔGH =0) for hydrogen evolution reaction (HER), is an efficient strategy to enhance the activity for HER. Herein, we report a oleylamine-mediated (acting as the solvent, stabilizer, and reducing agent) strategy to synthesize intermetallic PdCu3 nanoparticles (NPs) without using any external reducing agent. Upon electrochemical cycling, PdCu3 transforms into Pd-rich PdCu (ΔGH =0.05 eV), exhibiting remarkably enhanced activity (with a current density of 25 mA cm(-2) at ∼69 mV overpotential) as an alternative to Pt for HER. The first-principle calculation suggests that formation of low coordination number Pd active sites alters the d-band center and hence optimal adsorption of hydrogen, leading to enhanced activity. This finding may provide guidelines towards the design and development of Pt-free highly active and robust electrocatalysts.

  7. Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces.

    PubMed

    Shrestha, Buddha R; Baimpos, Theodoros; Raman, Sangeetha; Valtiner, Markus

    2014-06-24

    Electrochemical solid|liquid interfaces are critically important for technological applications and materials for energy storage, harvesting, and conversion. Yet, a real-time Angstrom-resolved visualization of dynamic processes at electrified solid|liquid interfaces has not been feasible. Here we report a unique real-time atomistic view into dynamic processes at electrochemically active metal interfaces using white light interferometry in an electrochemical surface forces apparatus. This method allows simultaneous deciphering of both sides of an electrochemical interface-the solution and the metal side-with microsecond resolution under dynamically evolving reactive conditions that are inherent to technological systems in operando. Quantitative in situ analysis of the potentiodynamic electrochemical oxidation/reduction of noble metal surfaces shows that Angstrom thick oxides formed on Au and Pt are high-ik materials; that is, they are metallic or highly defect-rich semiconductors, while Pd forms a low-ik oxide. In contrast, under potentiostatic growth conditions, all noble metal oxides exhibit a low-ik behavior. On the solution side, we reveal hitherto unknown strong electrochemical reaction forces, which are due to temporary charge imbalance in the electric double layer caused by depletion/generation of charged species. The real-time capability of our approach reveals significant time lags between electron transfer, oxide reduction/oxidation, and solution side reaction during a progressing electrode process. Comparing the kinetics of solution and metal side responses provides evidence that noble metal oxide reduction proceeds via a hydrogen adsorption and subsequent dissolution/redeposition mechanism. The presented approach may have important implications for designing emerging materials utilizing electrified interfaces and may apply to bioelectrochemical processes and signal transmission.

  8. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    NASA Astrophysics Data System (ADS)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  9. Correlating Local Structure with Electrochemical Activity in Li2MnO3

    DOE PAGES

    Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-07-31

    Li2MnO3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li2MnO3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li2MnO3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemical properties as electrodes prepared from slurries,more » but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.« less

  10. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  11. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species.

    PubMed

    Jangir, Yamini; French, Sarah; Momper, Lily M; Moser, Duane P; Amend, Jan P; El-Naggar, Mohamed Y

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate

  12. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: spin coating vs electrochemical activation.

    PubMed

    Hernandez-Montelongo, J; Gallach, D; Naveas, N; Torres-Costa, V; Climent-Font, A; García-Ruiz, J P; Manso-Silvan, M

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering.

  13. Carbon nanospheres-promoted electrochemical immunoassay coupled with hollow platinum nanolabels for sensitivity enhancement.

    PubMed

    Zhou, Jun; Zhuang, Junyang; Miró, Manuel; Gao, Zhuangqian; Chen, Guonan; Tang, Dianping

    2012-05-15

    Two nanostructures including carbon nanospheres-graphene hybrid nanosheets (CNS-GNS) and hollow platinum nanospheres (HPtNS) were first synthesized by using direct electrolytic reduction and wet chemistry methods, respectively. Thereafter, a specific sandwich-type electrochemical immunoassay was designed for determination of carcinoembryonic antigen (CEA) by using HPtNS-labeled horseradish peroxidase-anti-CEA conjugates (HRP-anti-CEA) as molecular tags and anti-CEA-assembled CNS-GPS as sensing probes. Compared with pure graphene nanosheets, the presence of carbon nanospheres on the graphene increased the surface coverage of the substrate, and enhanced the immobilized amount of primary antibodies. Several labeling protocols, such as HRP-anti-CEA, solid platinum nanoparticle-labeled HRP-anti-CEA, and hollow platinum nanospheres-labeled HRP-anti-CEA, were investigated for determination of CEA and improved analytical features were obtained with hollow platinum nanosphere labeling. With the HPtNS labeling method, the effects of incubation time and pH on the current responses of the immunosensors were also studied. The strong attachment of biomolecules to the CNS-GPS and HPtNS resulted in a good repeatability and intermediate precision down to 10.2%. The dynamic concentration range spanned from 0.001 ng mL(-1) to 100 ng mL(-1) CEA with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. No significant differences at the 0.05 significance level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of CEA.

  14. Identification and quantitation of Bacillus globigii using metal enhanced electrochemical detection and capillary biosensor.

    PubMed

    Mwilu, Samuel K; Aluoch, Austin O; Miller, Seth; Wong, Paula; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D

    2009-09-15

    Presented herein are two detection strategies for the identification and quantification of Bacillus globigii, a spore forming nonpathogenic simulant of Bacillus anthracis. The first strategy involves a label-free, metal-enhanced electrochemical immunosensor for the quantitative detection of Bacillus globigii (atrophaeus). The immunosensor comprises of antibacillus globigii (BG) antibody self-assembled onto a gold quartz crystal electrode via cystamine bond. A solid-phase monolayer of silver underpotentially deposited onto the cystamine modified-Au-electrode surface is used as the redox probe. The monolayer was also generated by adsorbing silver nanoparticles on the gold electrode. When the antibody-modified electrode is exposed to BG spores, the antibody-antigen (Ab-Ag) complex formed insulated the electrode surface toward the silver redox probe. The variation of redox current was found to be proportional to the concentration of the BG spores between 1 x 10(2)-3.5 x 10(4) spores/mL. A detection limit of 602 spores/mL was obtained, which is well-below the infectious dose of anthrax spores at 2.5 x 10(5) spores/mL. The second approach involves the use of ultrasensitive portable capillary biosensor (UPAC) to detect the spores. The capillary is an enclosed system that acts as the flow cell, the waveguide, and the solid support for immobilized bimolecular probes. An evanescent excitation generates a signal from an antigen-antibody-fluorophore complex, which propagates along the capillary and is guided to the detector. A limit of detection of 112 spores/mL was reported using the UPAC sensor. Both methods showed lower detection limits compared to the conventional ELISA. The effect of potential interferants tested using Bacillus pumilus confirmed the selectivity for the analyte. This work should allow the first responders to rapidly detect and quantify Bacillus globigii spores at concentrations that are well-below the infectious dose.

  15. Enhanced detection of quantum dots by the magnetohydrodynamic effect for electrochemical biosensing.

    PubMed

    Martín-Yerga, Daniel; Fanjul-Bolado, Pablo; Hernández-Santos, David; Costa-García, Agustín

    2017-04-07

    In this work, we describe the use of a magnetoelectrochemical support for screen-printed electrodes to improve the anodic stripping voltammetry of cadmium due to the generated magnetohydrodynamic (MHD) effect. To create a significant MHD effect, Fe(iii) was added at mM concentrations to the solution. The reduction of Fe(iii) simultaneously with the cadmium deposition on the electrode surface allowed the production of a high cathodic current, which generated a large Lorentz force capable of exerting a convective effect on the solution in the presence of the magnetic field. This convective effect allowed the increase in the mass transfer in the quiescent solution, enhancing the deposition of cadmium as observed by an increased stripping peak current. The optimized method was applied to the detection of CdSe/ZnS quantum dots (QDs) in solution. Using the magnetoelectrochemical support, we were able to detect extremely low concentrations of QDs, with a detection limit of 100 amol of QDs (in particle number). The great performance shown by this system was evaluated in biosensing applications. Firstly, detection of biotin was carried out using a competitive bioassay between biotin and QD-labelled biotin, obtaining good analytical results (0.6 × 10(-10) M as the limit of detection). Then, the magnetoelectrochemical support was tested in a more complex biosensor for the determination of anti-transglutaminase IgA antibodies, a celiac disease biomarker. This work shows that the improvement in the metal electrodeposition caused by the MHD effect can be used successfully for the development of disposable electrochemical biosensors with great performance using screen-printed electrodes.

  16. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review

    PubMed Central

    2016-01-01

    Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840

  17. Redox enhanced energy storage in an aqueous high-voltage electrochemical capacitor with a potassium bromide electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qi; Haque, Mazharul; Kuzmenko, Volodymyr; Ramani, Namrata; Lundgren, Per; Smith, Anderson D.; Enoksson, Peter

    2017-04-01

    This paper reports a detailed electrochemical investigation of a symmetric carbon-carbon electrochemical device with a potassium bromide (KBr) electrolyte. Below 1.6 V, KBr gives electrochemical double layer behavior. At higher voltages the Br- /Br3- redox reaction comes into effect and enhances the energy storage. The redox-enhanced device has a high energy density, excellent stability, as well as high coulombic and energy efficiencies even at 1.9 V. More importantly, the redox contribution can be ;triggered; by pre-cycling at 1.9 V, and remains beneficial after switching to 1.6 V. The triggering operation leads to a 22% increase in stored energy with negligible sacrifice of power. The intriguing behavior is accompanied by a series of complex variations including the shifts of electrode potential limits and the shift of potential of zero voltage. The electro-oxidation of the positive electrode and kinetics of the Br- /Br3- electrode reactions are proposed to be the main causes for the triggering phenomenon. These findings provide means to improve the design and operation of devices that contain bromine, or other redox species with a comparably high electrode potential.

  18. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.

    PubMed

    Xie, Xiuqiang; Su, Dawei; Zhang, Jinqiang; Chen, Shuangqiang; Mondal, Anjon Kumar; Wang, Guoxiu

    2015-02-21

    SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison between SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart as anode materials for sodium-ion batteries has been conducted. The comparison is in a reasonable framework, where SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart have the same SnO2 ratio, similar SnO2 crystallinity and particle size, close surface area and pore size. The results clearly manifest that the improved electron transfer efficiency of SnO2/nitrogen-doped graphene due to nitrogen-doping plays a more important role than the increased electro-active sites within graphene network in enhancing the electro-activity of SnO2/nitrogen-doped graphene nanohybrids compared to the SnO2/graphene counterpart. In contrast to the previous reports which often ascribe the enhanced electro-activity of nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the electron transfer efficiency and increasing electro-active sites within graphene networks) in one single declaration, this work is expected to provide more specific information for understanding the effects of nitrogen-doping into graphene on improving the electrochemical performance of graphene based composites.

  19. Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol.

    PubMed

    Xiao, Lili; Yin, Jiao; Li, Yingchun; Yuan, Qunhui; Shen, Hangjia; Hu, Guangzhi; Gan, Wei

    2016-10-07

    Nitrogen (N) and sulfur (S) co-doped activated graphene (N,S-AGR) was prepared by the one-pot pyrolysis of a mixture of graphene oxide (GO), thiourea, and potassium hydroxide (KOH), where thiourea acts as the source of N and S dopants and KOH is the activator for porosity. N,S-AGR with a dopant abundance of 2.8 at% N and 2.3 at% S was then used as a high-activity electrocatalyst in the fabrication of an electrochemical sensor for simultaneous determination of dihydroxybenzene isomers, hydroquinone (HQ) and catechol (CC), in aqueous solution. Compared with the bare glassy carbon electrode (GCE), the electrodes modified with N,S-AGR showed enhanced electrochemical performance toward HQ and CC in both cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements because of their enlarged surface area, enhanced electron-transfer rate and increased active sites. Compared with some recently reported electrochemical sensors based on graphene composites, the N,S-AGR modified electrode exhibits higher sensitivity, a much lower detection limit and a comparable linear range for the simultaneous determination of HQ and CC. Moreover, the proposed sensor is promising in practical application for the satisfactory recoveries obtained in real water sample analyses.

  20. Enhancement of electrochemical performance of LiFePO4 nanoparticles by direct nanocoating with conductive carbon layers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Molenda, Marcin; Kulka, Andrzej; Molenda, Janina

    2016-07-01

    The results of simple and environmental-friendly method of the carbon nanocoatings on low-conductive cathode material have been shown in this work. The carbon nanocoatings were prepared during wet impregnation process of precursor derived from hydrophilic polymer based on poly(N-vinylformamide) modified by pyromellitic acid. The crystal structures and morphology of all composites were characterized by X-ray powder diffraction (XRD), low temperature nitrogen adsorption/desorption measurements (N2-BET) and transmission electronic microscopy (TEM). The electrical properties of the obtained composites were examined by EC studies. The electrochemical performance was carried out in galvanostatic mode with stable charge-discharge current and performed in Li/Li+/(CCL/LiFePO4) type cells. The process of formation CCL/LiFePO4 nanocomposite significantly enhances the electrical conductivity of the material and improves its capacity retention and electrochemical performance.

  1. Theoretical approach for optical response in electrochemical systems: Application to electrode potential dependence of surface-enhanced Raman scattering

    SciTech Connect

    Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki

    2014-09-28

    We propose a theoretical approach for optical response in electrochemical systems. The fundamental equation to be solved is based on a time-dependent density functional theory in real-time and real-space in combination with its finite temperature formula treating an electrode potential. Solvation effects are evaluated by a dielectric continuum theory. The approach allows us to treat optical response in electrochemical systems at the atomistic level of theory. We have applied the method to surface-enhanced Raman scattering (SERS) of 4-mercaptopyridine on an Ag electrode surface. It is shown that the SERS intensity has a peak as a function of the electrode potential. Furthermore, the real-space computational approach facilitates visualization of variation of the SERS intensity depending on an electrode potential.

  2. Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-06-01

    Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g-1 at 10 mA cm-2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application.

  3. Bactericidal efficacy of electrochemically activated solutions and of commercially available hypochlorite.

    PubMed

    Helme, A J; Ismail, M N; Scarano, F J; Yang, C L

    2010-01-01

    Electrochemical activation (ECA) has been developed as a quick and efficient method of hypochlorite production, and many claim increased efficacy when compared to conventional disinfectant solutions. Numerous potential applications, including hospital disinfection, waste-water treatment, routine drinking water disinfection and biological decontamination have been suggested. In this study, three solutions were produced by electrochemical activation of 0.5% NaCl and compared to commercially available NaOCl. The NaOCl concentration and pH of each solution was measured, and the minimum bactericidal concentration of each was determined using seven common microbial pathogens. All solutions were effective, the most significant of which was the ECA anolyte solution. This is notable due to its neutral pH and antimicrobial efficacy that is four times that of commercially available NaOCl. This process may lead to production of a highly effective yet non-caustic disinfectant that would have countless scientific, medical, military and public health applications.

  4. Direct electrochemical DNA detection originated from the self-redox signal of sulfonated polyaniline enhanced by graphene oxide in neutral solution.

    PubMed

    Yang, Tao; Meng, Le; Wang, Xinxing; Wang, Longlong; Jiao, Kui

    2013-11-13

    In this paper, a type of direct DNA impedance detection using the self-redox signal change of sulfonated polyaniline (SPAN) enhanced by graphene oxide (GNO) was reported, here SPAN is a copolymer obtained from aniline and m-aminobenzenesulfonic acid. The resulting nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The π-π planar structure of GNO and the carboxyl groups on the surface of GNO ensured it could act as an excellent substrate for adsorption and polymerization of aniline monomer. Because of the existence of GNO, the electrochemical activities of SPAN were enhanced obviously. Because of abundant sulfonic acid groups, the resulting nanocomposite showed obvious self-redox signal even at physiological pH, which is beneficial for biosensing field. DNA probes with amine groups could be covalently attached to the modified electrode surface through the acyl chloride cross-linking reaction of sulfonic groups and amines. When the flexible probe DNA was successfully grafted, the electrode was coated and electron transfer between electrode and buffer was restrained. Thus, the inner impedance value of SPAN (rather than using outer classic EIS probe, [Fe(CN)6](3-/4-)) increased significantly. After hybridization, the rigid helix opened the electron channel, which induced impedance value decreased dramatically. As an initial application of this system, the PML/RARA fusion gene sequence formed from promyelocytic leukemia (PML) and retinoic acid receptor alpha (RARA) was successfully detected.

  5. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity

    PubMed Central

    Burke, Colin M.; Pande, Vikram; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D.

    2015-01-01

    Among the “beyond Li-ion” battery chemistries, nonaqueous Li–O2 batteries have the highest theoretical specific energy and, as a result, have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li–O2 batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than fourfold) in Li–O2 cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using 7Li NMR and modeling, we confirm that this improvement is a result of enhanced Li+ stability in solution, which, in turn, induces solubility of the intermediate to Li2O2 formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anticorrelated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g., Li–S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation. PMID:26170330

  6. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  7. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.

    PubMed

    Harnisch, Falk; Rabaey, Korneel

    2012-06-01

    Microbial bioelectrochemical systems (BESs) employ whole microorganisms to catalyze electrode reactions. BESs allow electricity generation from wastewater, electricity-driven (bio)production, biosensing, and bioremediation. Many of these processes are perceived as highly promising; however, to date the performance of particularly bioproduction processes is not yet at the level required for practical applications. Critical to enabling high catalytic activity are the electrochemically active microorganisms. Whether the biocatalyst comes as a planktonic cell, a surface monolayer of cells, or a fully developed biofilm, effective electron transfer and process performance need to be achieved. However, despite many different approaches and extensive research, many questions regarding the functioning of electroactive microorganisms remain open. This is certainly due to the complexity of bioelectrochemical processes, as they depend on microbial, electrochemical, physical-chemical, and operational considerations. This versatility and complexity calls for a plethora of analytical tools required to study electrochemically active microorganisms, especially biofilms. Here, we present an overview of the parameters defining electroactive microbial biofilms (EABfs) and the analytical toolbox available to study them at different levels of resolution. As we will show, a broad diversity of techniques have been applied to this field; however, these have often led to conflicting information. Consequently, to alleviate this and further mature the field of BES research, a standardized framework appears essential.

  8. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    PubMed

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016.

  9. Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes

    PubMed Central

    Sharma, Priyanka; Bhalla, Vijayender; Dravid, Vinayak; Shekhawat, Gajendera; Jinsong-Wu, J W; Prasad, E. Senthil; Suri, C. Raman

    2012-01-01

    Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strategy based on magneto-electrochemical immunoassay which combines the advantages of carbon nanotube and reduced graphene oxide together with electrochemical bursting of magnetic nanoparticles into a large number of metal ions. Sensitive detection was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. We confirmed the ultrahigh sensitivity of this method for a new generation herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The novel immune-detection platform showed the excellent potential applicability in rapid and sensitive screening of environmental pollutants or toxins in samples. PMID:23166860

  10. Thiocyanates as attractive redox-active electrolytes for high-energy and environmentally-friendly electrochemical capacitors.

    PubMed

    Gorska, Barbara; Bujewska, Paulina; Fic, Krzysztof

    2017-03-15

    This manuscript reports on the novel insight into the development of high voltage carbon/carbon electrochemical capacitors operating in aqueous solutions of alkali metals and ammonium thiocyanates (KSCN, NaSCN, LiSCN, and NH4SCN). The effect of salt concentration, electrode porosity and current collectors on the capacitance value, system stability, and power performance has been investigated. Therefore, thiocyanate-based electrolytes were recognized as cheap and highly conductive electrolytic solutions (up to 401 mS cm(-1) for NH4SCN at RT) allowing a cell voltage of 1.6 V in a symmetric carbon/carbon system to be achieved. At the same time, they display an attractive redox activity, enhancing the energy of the device with a good performance during cycling.

  11. Enhanced Peroxidase-Like Properties of Graphene-Hemin-Composite Decorated with Au Nanoflowers as Electrochemical Aptamer Biosensor for the Detection of K562 Leukemia Cancer Cells.

    PubMed

    Liu, Jing; Cui, Meirong; Niu, Li; Zhou, Hong; Zhang, Shusheng

    2016-12-12

    Graphene composites with hemin and gold nanoparticles show a better performance for hydrogen peroxide decomposition compared to that of the three components alone or duplex/hybrid complexes. Our previous studies showed that the morphology of the Au nanoparticles may greatly influence the catalytic activity of graphene-family peroxidase mimics. Recently, we found that Au nanoflowers could grow in situ and form on the surface of hemin/RGO (reduced graphene oxide). The prickly morphology of this Au nanoflower brought a higher catalytic ability with enhanced kinetic parameters than traditional Au nanoparticles that showed a smooth surface. Therefore, based on this discovery, a smart electrochemical aptamer biosensor for K562 leukemia cancer cells was further presented with good performance in selectivity and sensitivity attributed to the excellent mimetic peroxidase catalytic activity of this newly synthesized Au nanoflower decorated graphene-hemin composite (H-RGO-Au NFs).

  12. Enhanced electrochemical performance of mesoporous NiCo2O4 as an excellent supercapacitive alternative energy storage material

    NASA Astrophysics Data System (ADS)

    Bhojane, Prateek; Sen, Somaditya; Shirage, Parasharam M.

    2016-07-01

    Here we report the supercapacitive properties of mesoporous nickel cobalt oxide (NiCo2O4) synthesized by fast, inexpensive and facile chemical bath method, by avoiding high pressure, high temperature and chemical complexity. Physico-chemical characterization techniques such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman Spectra, and nitrogen adsorption-desorption isotherm analysis is performed to characterize the electrode material. Brunauer-Emmett-Teller (BET) measurements reveal the surface area 52.86 m2 g-1 and from Barrett-Joyner-Halenda (BJH), typical pores size ranges between 10 and 50 nm, also confirms the mesoporosity. The electrochemical properties are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. The synthesized material exhibits remarkably enhanced electrochemical performance with specific capacitance of 1130 F g-1 at 1 mV s-1 sweep rate and 1125 F g-1 at current density of 0.05 A g-1, highest without supporting base like carbon cloth, Ni-foam, Ti- foil used for direct growth (deposition) of electrode material. It is superior to those of its individual and hybrid components prepared by similar technique. Ragone plot shows high specific energy density (49.25 Wh kg-1) and corresponding specific power density (1851.31 W kg-1) even at high current density of 0.5 A g-1.

  13. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform.

    PubMed

    Gao, Feng; Gao, Cai; He, Suyu; Wang, Qingxiang; Wu, Aiqun

    2016-07-15

    A label-free and highly sensitive electrochemical aptasensor for Pb(2+) was constructed using thionine (TH) as the signaling molecule and graphene (GR) as the signal-enhancing platform. The electrochemical sensing interface was fabricated by stepwise assembly of GR and TH on the lead (II) specific aptamer (LSA) modified electrode. Upon interaction with Pb(2+), the aptamer probe on the sensor underwent conformational switch from a single-stranded DNA form to the G-quadruplex structure, causing the GR with assembled TH released from the electrode surface into solution. As a result, the electrochemical signal of TH on the aptasensor was substantially reduced. Under the optimal experimental conditions, the attenuation of peak currents presented a good linear relationship with the logarithm of Pb(2+) concentrations over the range from 1.6×10(-13) to 1.6×10(-10)M. The detection limit was estimated to be 3.2×10(-14)M. The aptasensor also exhibited good regenerability, excellent selectivity, and acceptable reproducibility, indicating promising application in environment monitoring of lead.

  14. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  15. Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes

    NASA Astrophysics Data System (ADS)

    Leyva-García, Sarai; Lozano-Castelló, Dolores; Morallón, Emilia; Vogl, Thomas; Schütter, Christoph; Passerini, Stefano; Balducci, Andrea; Cazorla-Amorós, Diego

    2016-12-01

    The electrochemical behaviour of a superporous activated carbon (named as ANK3) with a tailored porosity (high apparent specific surface area and a high volume of micropores with an average pore size of around 1.4 nm) is analysed in different non-aqueous electrolytes. ANK3 shows very high capacitance (higher than 160 F g-1) values in solvent-free electrolytes at different temperatures (20, 40 and 60 °C) as well as in 1 M Et4N BF4/PC, 1 M PYR14 BF4/PC and 1 M PYR14 TFSI/PC. The tailored porosity of the ANK3, makes possible to obtain very high capacitance values, making this superporous activated carbon a promising candidate to be used as electrode for electrochemical capacitors using both organic and ionic liquid electrolytes. It is also confirmed that several parameters, such as the ion/pore size ratio, the ion shape, the ion solvation and the conductivity and viscosity of the electrolyte have a strong influence on the electrochemical behaviour of the ANK3.

  16. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOEpatents

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  17. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment

    NASA Astrophysics Data System (ADS)

    Han, Yan; Zhao, Ping-Ping; Dong, Xiao-Ting; Zhang, Cui; Liu, Shuang-Xi

    2014-12-01

    Activated carbon (AC) obtained from the industrial pyrolytic tire char is treated by concentrated nitric acid (AC-HNO3) and then used as the electrode material for supercapacitors. Surface properties and electrochemical capacitances of AC and ACHNO3 are studied. It is found that the morphology and the porous texture for AC and AC-HNO3 have little difference, while the oxygen content increases and functional groups change after the acid treatment. Electrochemical results demonstrate that the AC-HNO3 electrode displays higher specific capacitance, better stability and cycling performance, and lower equivalent series resistance, indicating that AC obtained from the industrial pyrolytic tire char treated by concentrated nitric acid is applicable for supercapacitors.

  18. Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor.

    PubMed

    Pognon, Grégory; Cougnon, Charles; Mayilukila, Dilungane; Bélanger, Daniel

    2012-08-01

    Activated carbon (Black Pearls 2000) modified with electroactive catechol groups was evaluated for charge storage application as active composite electrode material in an aqueous electrochemical capacitor. High surface area Black Pearls 2000 carbon was functionalized by introduction of catechol groups by spontaneous reduction of catechol diazonium ions in situ prepared in aqueous solution from the corresponding amine. Change in the specific surface area and pore texture of the carbon following grafting was monitored by nitrogen gas adsorption measurements. The electrochemical properties and the chemical composition of the catechol-modified carbon electrodes were investigated by cyclic voltammetry. Such carbon-modified electrode combines well the faradaic capacitance, originating from the redox activity of the surface immobilized catechol groups, to the electrochemical double layer capacitance of the high surface area Black Pearls carbon. Due to the faradaic contribution, the catechol-modified electrode exhibits a higher specific capacitance (250 F/g) than pristine carbon (150 F/g) over a potential range of -0.4 to 0.75 V in 1 M H(2)SO(4). The stability of the modified electrode evaluated by long-time charge/discharge cycling revealed a low decrease of the capacitance of the catechol-modified carbon due to the loss of the catechol redox activity. Nonetheless, it was demonstrated that the benefit of redox groups persists for 10, 000 constant current charge/discharge cycles.

  19. Enhanced Structural and Electrochemical Properties of LiMn2O4 Nanocubes

    NASA Astrophysics Data System (ADS)

    Akhoon, Shabir Ahmad; Sofi, Ashaq Hussain; Rubab, Seemin; Shah, Mohammad Ashraf

    2017-02-01

    Particle morphology has a great influence on the electrochemical properties of LiMn2O4, as it determines the intercalation/deintercalation of lithium ions and mass-electrolyte contact. Therefore, efforts have been focused on controlling the shape, size, and dimensionality of LiMn2O4 nanomaterials. In the current study, LiMn2O4 cathode material with novel morphology has been successfully synthesized using oleic acid as surfactant. The effect of oleic acid on the morphology and structure of LiMn2O4 has been studied. Structural, morphological, and electrochemical investigations reveal the influence of oleic acid in controlling the structure as well as morphology of the LiMn2O4 nanocubes, resulting in improved electrochemical properties. The obtained electrochemical properties reveal an initial discharge capacity of 131.5 mAh g-1 with better cyclic performance of oleic-acid-treated LiMn2O4 samples, retaining 70% of their initial discharge capacity after 100 cycles and exhibiting better rate capability than pristine sample.

  20. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy.

    PubMed

    Abucayon, Erwin; Ke, Neng; Cornut, Renaud; Patelunas, Anthony; Miller, Douglas; Nishiguchi, Michele K; Zoski, Cynthia G

    2014-01-07

    Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 10(6) molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.

  1. Label-free detection of telomerase activity using guanine electrochemical oxidation signal.

    PubMed

    Eskiocak, Ugur; Ozkan-Ariksoysal, Dilsat; Ozsoz, Mehmet; Oktem, Huseyin Avni

    2007-11-15

    Telomerase is an important biomarker for cancer cells and its activation in 85% of all cancer types confers a clinical diagnostic value. A label-free electrochemical assay based on guanine oxidation signal to measure telomerase activity is described. This developed technology combined with a disposable sensor, carbon graphite electrode (CGE), and differential pulse voltammetry (DPV) was performed by using PCR amplicons with/without telomeric repeats as the guanine oxidation signal observed at +1.0 V measured after the immobilization of PCR products. Guanine oxidation signal was chosen as a measure of telomerase activity because a substantial increase in the number of guanines was introduced by the action of telomerase which adds hexameric repeats (TTAGGG)n that contain 50% guanine. The developed assay was shown to specifically measure telomerase activity from cell extracts, and elongation rates increased linearly in a concentration dependent manner. Telomerase activity could be detected in cell extracts containing as low as 100 ng/microL of protein. All of the electrochemical measurements were also confirmed with the conventional TRAP-silver staining assay. Rapidity, simplicity, and the label-free nature of the developed assay make it suitable for practical use in quantitative determination of telomerase activity from clinical samples for diagnosis of cancer.

  2. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species

    PubMed Central

    Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate

  3. Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing.

    PubMed

    Osikoya, Adeniyi Olugbenga; Parlak, Onur; Murugan, N Arul; Dikio, Ezekiel Dixon; Moloto, Harry; Uzun, Lokman; Turner, Anthony Pf; Tiwari, Ashutosh

    2017-03-15

    In this study, we have demonstrated the use of chemical vapour deposition (CVD) grown-graphene to develop a highly-ordered graphene-enzyme electrode for electrochemical biosensing. The graphene sheets were deposited on 1.00mm thick copper sheet at 850°C using acetylene (C2H2) as carbon source in an argon (Ar) and nitrogen (N2) atmosphere. An anionic surfactant was used to increase wettability and hydrophilicity of graphene; thereby facilitating the assembly of biomolecules on the electrode surface. Meanwhile, the theoretical calculations confirmed the successful modification of hydrophobic nature of graphene through the anionic surface assembly, which allowed high-ordered immobilisation of glucose oxidase (GOx) on the graphene. The electrochemical sensing activities of the graphene-electrode was explored as a model for bioelectrocatalysis. The bioelectrode exhibited a linear response to glucose concentration ranging from 0.2 to 9.8mM, with sensitivity of 0.087µA/µM/cm(2) and a detection limit of 0.12µM (S/N=3). This work sets the stage for the use of acetylene-sourced CVD-grown graphene as a fundamental building block in the fabrication of electrochemical biosensors and other bioelectronic devices.

  4. Vertically aligned carbon nanofiber nanoelectrode arrays: electrochemical etching and electrode reusability

    PubMed Central

    Gupta, Rakesh K.; Meyyappan, M.; Koehne, Jessica E.

    2014-01-01

    Vertically aligned carbon nanofibers in the form of nanoelectrode arrays were grown on nine individual electrodes, arranged in a 3 × 3 array geometry, in a 2.5 cm2 chip. Electrochemical etching of the carbon nanofibers was employed for electrode activation and enhancing the electrode kinetics. Here, we report the effects of electrochemical etching on the fiber height and electrochemical properties. Electrode regeneration by amide hydrolysis and electrochemical etching is also investigated for electrode reusability. PMID:25089188

  5. Electrochemical systems configured to harvest heat energy

    DOEpatents

    Lee, Seok Woo; Yang, Yuan; Ghasemi, Hadi; Chen, Gang; Cui, Yi

    2017-01-31

    Electrochemical systems for harvesting heat energy, and associated electrochemical cells and methods, are generally described. The electrochemical cells can be configured, in certain cases, such that at least a portion of the regeneration of the first electrochemically active material is driven by a change in temperature of the electrochemical cell. The electrochemical cells can be configured to include a first electrochemically active material and a second electrochemically active material, and, in some cases, the absolute value of the difference between the first thermogalvanic coefficient of the first electrochemically active material and the second thermogalvanic coefficient of the second electrochemically active material is at least about 0.5 millivolts/Kelvin.

  6. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, L.R.

    1981-01-23

    A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  7. Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Wan, Zhanghui; Yang, Tiezhu; Zhao, Mengen; Lv, Xinyan; Wang, Hao; Ren, Xiuli; Mei, Xifan

    2016-04-01

    Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors.

  8. Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

    PubMed Central

    Chen, Zhenhua; Wan, Zhanghui; Yang, Tiezhu; Zhao, Mengen; Lv, Xinyan; Wang, Hao; Ren, Xiuli; Mei, Xifan

    2016-01-01

    Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors. PMID:27114165

  9. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, Lowell R.

    1982-01-01

    A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  10. Reduced graphene oxide-yttria nanocomposite modified electrode for enhancing the sensitivity of electrochemical genosensor.

    PubMed

    Rasheed, P Abdul; Radhakrishnan, Thulasi; Shihabudeen, P K; Sandhyarani, N

    2016-09-15

    Reduced graphene oxide-yttria nanocomposite (rGO:Y) is applied as electrochemical genosensor platform for ultrahigh sensitive detection of breast cancer 1 (BRCA1) gene for the first time. The sensor is based on the sandwich assay in which gold nanoparticle cluster labeled reporter DNA hybridize to the target DNA. Glassy carbon electrode modified with rGO-yttria serves as the immobilization platform for capture probe DNA. The sensor exhibited a fine capability of sensing BRCA1 gene with linear range of 10attomolar (aM) to 1nanomolar (nM) and a detection limit of 5.95attomolar. The minimum distinguishable response concentration is down to the attomolar level with a high sensitivity and selectivity. We demonstrated that the use of rGO:Y modified electrode along with gold nanoparticle cluster (AuNPC) label leads to the highly sensitive electrochemical detection of BRCA1 gene.

  11. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  12. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    PubMed Central

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-01-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA. PMID:26924080

  13. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate.

    PubMed

    Ma, Xinying; Chao, Mingyong; Wang, Zhaoxia

    2013-06-01

    This paper describes a novel electrochemical method for the determination of Sudan I in food samples based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GMGCE) and the enhancement effect of an anionic surfactant: sodium dodecyl sulphonate (SDS). Using pH 6.0 phosphate buffer solution (PBS) as supporting electrolyte and in the presence of 1.5 × 10(-4)mol L(-1) SDS, Sudan I yielded a well-defined and sensitive oxidation peak at a GMGCE. The oxidation peak current of Sudan I remarkably increased in the presence of SDS. The experimental parameters, such as supporting electrolyte, concentration of SDS, and accumulation time, were optimised for Sudan I determination. The oxidation peak current showed a linear relationship with the concentrations of Sudan I in the range of 7.50 × 10(-8)-7.50 × 10(-6)mol L(-1), with the detection limit of 4.0 × 10(-8)mol L(-1). This new voltammetric method was successfully used to determine Sudan I in food products such as ketchup and chili sauce with satisfactory results.

  14. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material.

    PubMed

    Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E

    2009-12-15

    The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.

  15. Assessment of the ethanol oxidation activity and durability of Pt catalysts with or without a carbon support using Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saleh, Farhana S.; Easton, E. Bradley

    2014-01-01

    We compared the stability and performance of 3 commercially available Johnson Matthey catalysts with various Pt loadings (20, 40 and 100%) using two different accelerated durability testing (ADT) protocols. The various Pt-loaded catalysts were tested by means of a series of intermittent life tests (1, 200, 400, 1000, 2000, 3000 and 4000 cycles). The electrochemical surface area (ECSA) loss of electrode was investigated by electrochemical technique (CV). The use of EIS as an accelerated-testing protocol distinctly elucidates the extent of degradation of Johnson Matthey catalysts with various Pt loading. Using EIS, it was possible to show that Pt-black catalyst layers suffer from increased electronic resistance over the course of ADT which is not observed when a corrosion stable carbon support is present. The effect of Pt loading was further elucidated by comparing the electrocatalytic activity of the catalyst layers towards ethanol oxidation reaction (EOR). The catalyst layer with the lowest Pt loading showed the enhanced EOR performance.

  16. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris.

    PubMed

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming

    2016-01-01

    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process.

  17. Enhanced electron field emission from ZnO nanoparticles-embedded DLC films prepared by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Peizeng; Li, Ruishan; Yang, Hua; Feng, Youcai; Xie, Erqing

    2012-06-01

    ZnO nanoparticles-embedded diamond-like amorphous (DLC) carbon films have been prepared by electrochemical deposition. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) results confirm that the embedded ZnO nanoparticles are in the wurtzite structure with diameters of around 4 nm. Based on Raman measurements and atomic force microscope (AFM) results, it has been found that ZnO nanoparticles embedding could enhance both graphitization and surface roughness of DLC matrix. Also, the field electron emission (FEE) properties of the ZnO nanoparticles-embedded DLC film were improved by both lowering the turn-on field and increasing the current density. The enhancement of the FEE properties of the ZnO-embedded DLC film has been analyzed in the context of microstructure and chemical composition.

  18. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents.

    PubMed

    Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J; Lichtenstein, Timothy; Shen, Mei; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2014-11-19

    Enhancing the ionic conductivity across the electrolyte separator in nonaqueous redox flow batteries (NRFBs) is essential for improving their performance and enabling their widespread utilization. Separating redox-active species by size exclusion without greatly impeding the transport of supporting electrolyte is a potentially powerful alternative to the use of poorly performing ion-exchange membranes. However, this strategy has not been explored possibly due to the lack of suitable redox-active species that are easily varied in size, remain highly soluble, and exhibit good electrochemical properties. Here we report the synthesis, electrochemical characterization, and transport properties of redox-active poly(vinylbenzyl ethylviologen) (RAPs) with molecular weights between 21 and 318 kDa. The RAPs reported here show very good solubility (up to at least 2.0 M) in acetonitrile and propylene carbonate. Ultramicroelectrode voltammetry reveals facile electron transfer with E1/2 ∼ -0.7 V vs Ag/Ag(+)(0.1 M) for the viologen 2+/+ reduction at concentrations as high as 1.0 M in acetonitrile. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and that the electrolysis products are stable upon cycling. The dependence of the diffusion coefficient on molecular weight suggests the adequacy of the Stokes-Einstein formalism to describe RAPs. The size-selective transport properties of LiBF4 and RAPs across commercial off-the-shelf (COTS) separators such as Celgard 2400 and Celgard 2325 were tested. COTS porous separators show ca. 70 times higher selectivity for charge balancing ions (Li(+)BF4(-)) compared to high molecular weight RAPs. RAPs rejection across these separators showed a strong dependence on polymer molecular weight as well as the pore size; the rejection increased with both increasing polymer molecular weight and reduction in pore size. Significant rejection was observed even for rpoly/rpore (polymer

  19. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL.

  20. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  1. Turning the halide switch in the synthesis of Au–Pd alloy and core–shell nanoicosahedra with terraced shells: Performance in electrochemical and plasmon-enhanced catalysis

    SciTech Connect

    Hsu, Shih -Cheng; Chuang, Yu -Chun; Sneed, Brian T.; Cullen, David A.; Chiu, Te -Wei; Kuo, Chun -Hong

    2016-01-01

    Au Pd nanocrystals are an intriguing system to study the integrated functions of localized surface plasmon resonance (LSPR) and heterogeneous catalysis. Gold is both durable and can harness incident light energy to enhance the catalytic activity of another metal, such as Pd, via the SPR effect in bimetallic nanocrystals. Despite the superior catalytic performance of icosahedral (IH) nanocrystals compared to alternate morphologies, the controlled synthesis of alloy and core shell IH is still greatly challenged by the disparate reduction rates of metal precursors and lack of continuous epigrowth on multiply twinned boundaries of such surfaces. Herein, we demonstrate a one-step strategy for the controlled growth of monodisperse Au Pd alloy and core shell IH with terraced shells by turning an ionic switch between [Br ]/[Cl] in the coreduction process. The core shell IH nanocrystals contain AuPd alloy cores and ultrathin Pd shells (<2 nm). They not only display more than double the activity of the commercial Pd catalysts in ethanol electrooxidation attributed to monatomic step terraces but also show SPR-enhanced conversion of 4-nitrophenol. Furthermore, this strategy holds promise toward the development of alternate bimetallic IH nanocrystals for electrochemical and plasmon-enhanced catalysis.

  2. Turning the Halide Switch in the Synthesis of Au-Pd Alloy and Core-Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis.

    PubMed

    Hsu, Shih-Cheng; Chuang, Yu-Chun; Sneed, Brian T; Cullen, David A; Chiu, Te-Wei; Kuo, Chun-Hong

    2016-09-14

    Au-Pd nanocrystals are an intriguing system to study the integrated functions of localized surface plasmon resonance (LSPR) and heterogeneous catalysis. Gold is both durable and can harness incident light energy to enhance the catalytic activity of another metal, such as Pd, via the SPR effect in bimetallic nanocrystals. Despite the superior catalytic performance of icosahedral (IH) nanocrystals compared to alternate morphologies, the controlled synthesis of alloy and core-shell IH is still greatly challenged by the disparate reduction rates of metal precursors and lack of continuous epigrowth on multiply twinned boundaries of such surfaces. Herein, we demonstrate a one-step strategy for the controlled growth of monodisperse Au-Pd alloy and core-shell IH with terraced shells by turning an ionic switch between [Br(-)]/[Cl(-)] in the coreduction process. The core-shell IH nanocrystals contain AuPd alloy cores and ultrathin Pd shells (<2 nm). They not only display more than double the activity of the commercial Pd catalysts in ethanol electrooxidation attributed to monatomic step terraces but also show SPR-enhanced conversion of 4-nitrophenol. This strategy holds promise toward the development of alternate bimetallic IH nanocrystals for electrochemical and plasmon-enhanced catalysis.

  3. Turning the halide switch in the synthesis of Au–Pd alloy and core–shell nanoicosahedra with terraced shells: Performance in electrochemical and plasmon-enhanced catalysis

    DOE PAGES

    Hsu, Shih -Cheng; Chuang, Yu -Chun; Sneed, Brian T.; ...

    2016-01-01

    Au Pd nanocrystals are an intriguing system to study the integrated functions of localized surface plasmon resonance (LSPR) and heterogeneous catalysis. Gold is both durable and can harness incident light energy to enhance the catalytic activity of another metal, such as Pd, via the SPR effect in bimetallic nanocrystals. Despite the superior catalytic performance of icosahedral (IH) nanocrystals compared to alternate morphologies, the controlled synthesis of alloy and core shell IH is still greatly challenged by the disparate reduction rates of metal precursors and lack of continuous epigrowth on multiply twinned boundaries of such surfaces. Herein, we demonstrate a one-stepmore » strategy for the controlled growth of monodisperse Au Pd alloy and core shell IH with terraced shells by turning an ionic switch between [Br ]/[Cl–] in the coreduction process. The core shell IH nanocrystals contain AuPd alloy cores and ultrathin Pd shells (<2 nm). They not only display more than double the activity of the commercial Pd catalysts in ethanol electrooxidation attributed to monatomic step terraces but also show SPR-enhanced conversion of 4-nitrophenol. Furthermore, this strategy holds promise toward the development of alternate bimetallic IH nanocrystals for electrochemical and plasmon-enhanced catalysis.« less

  4. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Henry, J.; Mohanraj, K.; Sivakumar, G.; Umamaheswari, S.

    2015-05-01

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350 °C and 450 °C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichia coli and Bacillus.

  5. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity.

    PubMed

    Henry, J; Mohanraj, K; Sivakumar, G; Umamaheswari, S

    2015-05-15

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350°C and 450°C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichiacoli and Bacillus.

  6. Potential amoebicidal activity of hydrazone derivatives: synthesis, characterization, electrochemical behavior, theoretical study and evaluation of the biological activity.

    PubMed

    Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Navarro-Olivarria, Marisol; Flores-Alamo, Marcos; Manzanera-Estrada, Mayra; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Ruiz-Azuara, Lena; Meléndrez-Luevano, Ruth Ma; Cabrera-Vivas, Blanca M

    2015-05-29

    Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM). Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.

  7. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.

    PubMed

    Mosch, Heike L K S; Akintola, Oluseun; Plass, Winfried; Höppener, Stephanie; Schubert, Ulrich S; Ignaszak, Anna

    2016-05-10

    Carbon/polypyrrole (PPy) composites are promising electrode materials for energy storage applications such as lightweight capacitors. Although these materials are composed of relatively inexpensive components, there is a gap of knowledge regarding the correlation between surface, porosity, ion exchange dynamics, and the interplay of the double layer capacitance and pseudocapacitance. In this work we evaluate the specific surface area analyzed by the BET method and the area accessible for ions using electrochemical quartz-crystal microbalance (EQCM) for SWCNT/PPy and carbon black Vulcan XC72-R/PPy composites. The study revealed that the polymer has significant influence on the pore size of the composites. Although the BET surface is low for the polypyrrole, the electrode mass change and thus the electrochemical area are large for the polymer-containing electrodes. This indicates that multiple redox active centers in the charged polymer chain are good ion scavengers. Also, for the composite electrodes, the effective charge storage occurs at the polypyrrole-carbon junctions, which are easy to design/multiply by a proper carbon-to-polymer weight ratio. The specific BET surface and electrochemically accessible surface area are both important parameters in calculation of the electrode capacitance. SWCNTs/PPy showed the highest capacitances normalized to the BET and electrochemical surface as compared to the polymer-carbon black. TEM imaging revealed very homogeneous distribution of the nanosized polymer particles onto the CNTs, which facilitates the synergistic effect of the double layer capacitance (CNTs) and pseudocapacitance (polymer). The trend in the electrode mass change in correlation with the capacitance suggest additional effects such as a solvent co-insertion into the polymer and the contribution of the charge associated with the redox activity of oxygen-containing functional groups on the carbon surface.

  8. 2-Aryl-3H-indol-3-ones: synthesis, electrochemical behaviour and antiplasmodial activities.

    PubMed

    Najahi, Ennaji; Valentin, Alexis; Fabre, Paul-Louis; Reybier, Karine; Nepveu, Françoise

    2014-05-06

    The synthesis of indolone derivatives and their antiplasmodial activity in vitro against Plasmodium falciparum at the blood stage are described. The 2-aryl-3H-indol-3-ones were synthesized via deoxygenation of indolone-N-oxides. Electrochemical behaviour, antiplasmodial activity and cytotoxicity on human tumor cell lines were compared to those of indolone-N-oxides. The antiplasmodial IC50 (concentrations at 50% inhibition) of these compounds ranged between 49 and 1327 nM. Among them, the 2-(4-dimethylaminophenyl)-5-methoxy-indol-3-one, 7, had the best antiplasmodial activity in vitro (IC50 = 49 nM; FcB1 strain) and selectivity index (SI (CC50 MCF7/IC50 FcB1) = 423.4). Thus, the hits identified in this deoxygenated series correspond to their structural homologs in the N-oxide series with comparable electrochemical behaviour at the nitrogen-carbon double bond.

  9. Noise enhanced activity in a complex network

    NASA Astrophysics Data System (ADS)

    Choudhary, Anshul; Kohar, Vivek; Sinha, Sudeshna

    2014-09-01

    We consider the influence of local noise on a generalized network of populations having positive and negative feedbacks. The population dynamics at the nodes is nonlinear, typically chaotic, and allows cessation of activity if the population falls below a threshold value. We investigate the global stability of this large interactive system, as indicated by the average number of nodal populations that manage to remain active. Our central result is that the probability of obtaining active nodes in this network is significantly enhanced under fluctuations. Further, we find a sharp transition in the number of active nodes as noise strength is varied, along with clearly evident scaling behaviour near the critical noise strength. Lastly, we also observe noise induced temporal coherence in the active sub-network, namely, there is an enhancement in synchrony among the nodes at an intermediate noise strength.

  10. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    SciTech Connect

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  11. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  12. Material protection control and accounting program activities at the electrochemical plant

    SciTech Connect

    McAllister, S.

    1997-11-14

    The Electrochemical Plant (ECP) is the one of the Russian Federation`s four uranium enrichment plants and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. ECP is located approximately 200 km east of Krasnoyarsk in the closed city of Zelenogorsk (formerly Krasnoyarsk- 45). DOE`s MPC&A program first met with ECP in September of 1996. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with ECP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at ECP is expected to be completed during fiscal year 2001.

  13. Enhanced Yields of Iron-Oxidizing Bacteria by In Situ Electrochemical Reduction of Soluble Iron in the Growth Medium

    PubMed Central

    Blake, Robert C.; Howard, Gary T.; McGinness, Stephen

    1994-01-01

    An electrochemical apparatus for culturing chemolithotrophic bacteria that respire aerobically on ferrous ions is described. Enhanced yields of the bacteria were achieved by the in situ electrochemical reduction of soluble iron in the growth medium. When subjected to a direct current of 30 A for 60 days, a 45-liter culture of Thiobacillus ferrooxidans grew from 6 × 107 to 9.5 × 109 cells per ml. Growth of the bacterium within the electrolytic bioreactor was linear with time. A final cell density corresponding to 4.7 g of wet cell paste per liter was achieved, and a total of 320 g of wet cell paste was harvested from one culture. The apparatus was designed to deliver protons concomitantly with electrons; therefore, the pH of the culture remained stable at 1.6 ± 0.1 for the duration of growth. This laboratory-scale apparatus may be readily adapted to pilot or production scale. It is thus anticipated that abundant numbers of iron-oxidizing bacteria may be obtained for both fundamental and applied studies. PMID:16349344

  14. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling.

  15. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    PubMed

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.

  16. Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO{sub 2} nanotubes

    SciTech Connect

    Cai, Hua; Yang, Qin; You, Qinghu; Sun, Jian; Xu, Ning; Wu, Jiada; Hu, Zhigao; Duan, Zhihua

    2014-02-03

    Vertically aligned ZnO-TiO{sub 2} hetero-nanostructures constructed of anatase TiO{sub 2} nanotubes (NTs) and wurtzite ZnO coatings are fabricated by atomic layer deposition of ZnO coatings on electrochemical anodization formed TiO{sub 2} NTs, and their photoelectrochemical activities are studied through photoelectrochemical and electrochemical characterization. Compared with bare TiO{sub 2} NTs, the transient photocurrent increases to over 1.5-fold for the annealed ZnO-coated TiO{sub 2} NTs under visible illumination. The ZnO-coated TiO{sub 2} NTs also show a longer electron lifetime, a lower charge-transfer resistance and a more negative flat-band potential than the bare TiO{sub 2} NTs, confirming the improved photoelectrochemical activity due to the enhanced charge separation.

  17. Ionic self-assembled porphyrin-graphene composite for enhanced photocurrent response and electrochemical property

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Sun, Ruirui; Tang, Mingyi; Ren, Shi

    2017-02-01

    We have synthesized cationic mesa-tetra(4-pyridyl) porphine (TPyP)-reduced graphene oxide (RGO) hybrid structures through chemical reduction and subsequent ionic self-assembly. UV-vis spectroscopy, fluorescence emission spectroscopy and scanning and transmission electron microscopies are used to analyze the structures, which indicate that TPyP covalent bonds present between the double surface of RGO sheets. A reversible on/off photo-current density of 45.89 A/cm2 has been observed when the as-formed TPyP/RGO nanocomposite is placed in the environment of pulsed white-light illumination. In addition, an ultrasensitive electrochemical aptasensor could be fabricated by the as-prepared TPyP/RGO to detect thrombin. A linear response to thrombin has been observed with the as-formed electrochemical aptasensor in the concentration range of 1-1200 nM. Besides, the limitation of detection is determined to be 0.3 nM.

  18. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity

    NASA Astrophysics Data System (ADS)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-06-01

    We report a simple biogenic-route to narrow the band gap of TiO2 nanocrystals for visible light application by offering a greener method. When an electrochemically active biofilm (EAB) was challenged with a solution of Degussa-TiO2 using sodium acetate as the electron donor, greyish blue-colored TiO2 nanocrystals were obtained. A band gap study showed that the band gap of the modified TiO2 nanocrystals was significantly reduced (Eg = 2.85 eV) compared to the unmodified white Degussa TiO2 (Eg = 3.10 eV).

  19. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity.

    PubMed

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-07-21

    We report a simple biogenic-route to narrow the band gap of TiO2 nanocrystals for visible light application by offering a greener method. When an electrochemically active biofilm (EAB) was challenged with a solution of Degussa-TiO2 using sodium acetate as the electron donor, greyish blue-colored TiO2 nanocrystals were obtained. A band gap study showed that the band gap of the modified TiO2 nanocrystals was significantly reduced (E(g) = 2.85 eV) compared to the unmodified white Degussa TiO2 (E(g) = 3.10 eV).

  20. Enhanced electrochemical sensing of leukemia cells using drug/lipid co-immobilized on the conducting polymer layer.

    PubMed

    Gurudatt, N G; Naveen, M Halappa; Ban, Changill; Shim, Yoon-Bo

    2016-12-15

    Electrochemical biosensors using five anticancer drug and lipid molecules attached on the conducting polymer layer to obtain the orientation of drug molecules toward cancer cells, were evaluated as sensing materials and their performances were compared. Conjugation of the drug molecules with a lipid, phosphatidylcholine (PC) has enhanced the sensitivity towards leukemia cells and differentiates cancer cells from normal cells. The composition of each layer of sensor probe was confirmed by electrochemical and surface characterization experiments. Both impedance spectroscopy and voltammetry show the enhanced interaction of leukemia cells using the drug/lipid modified sensor probe. As the number of leukemia cells increased, the charge transfer resistance (Rct) in impedance spectra increased and the amine oxidation peak current of drug molecules in voltammograms decreased at around 0.7-1.0V. Of test drug molecules, raltitrexed (Rtx) showed the best performance for the cancer cells detection. Cancer and normal cell lines from different origins were examined to evaluate the degree of expression of folate receptors (FR) on cells surface, where cervical HeLa cell line was found to be shown the highest expression of the receptor. Impedance and chronoamperometric experiments for leukemia cell line (Jurkat E6-1) showed linear dynamic ranges of 1.0×10(3)-2.5×10(5) cells/mL and 1.0×10(3)-8.0×10(3) cells/mL with detection limits of 68±5 cells/mL and 21±3 cells/mL, respectively.

  1. Effects of CO{sub 2} activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2013-11-15

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation had developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.

  2. Determination of the activity coefficient of Am in liquid Al by electrochemical methods

    NASA Astrophysics Data System (ADS)

    De Córdoba, G.; Laplace, A.; Conocar, O.; Lacquement, J.

    2009-09-01

    The activity coefficient of americium in liquid aluminium has been determined by electrochemical methods. To the author's knowledge, this is the first time this value is published in the open literature. For radiation safety reasons only 100 mg of this highly radioactive element were permitted to be manipulated inside the glove-box. Hence an "ad hoc" experimental set-up, which allows working with small amounts of solvent, has been designed. The Am(III) solution has been prepared by direct AmO 2 dissolution into CaCl 2-NaCl; the conversion into its chloride form has been achieved by carbochlorination (Cl 2 + C) at 600 °C. Cyclic voltammetry technique, performed in the obtained CaCl 2-NaCl-AmCl 3 solution, has allowed a first estimation for the logarithm of the activity coefficient, being equal to logγ=-6.7±1 at 700 °C.

  3. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  4. Electrochemical study and analytical applications for new biologically active 2-nitrophenylbenzimidazole derivatives.

    PubMed

    Alvarez-Lueje, A; Zapata-Urzúa, C; Brain-Isasi, S; Pérez-Ortiz, M; Barros, L; Pessoa-Mahana, H; Kogan, M J

    2009-08-15

    The present study addresses the electrochemical behavior and the analytical applications of six 2-nitrophenylbenzimidazole derivatives with activity against Trypanosoma cruzi. When studied in a wide range of pH, by differential pulse polarography, tast polarography and cyclic voltammetry, these compounds exhibited two irreversible cathodic responses. With analytical purposes, the differential pulse polarography mode was selected, which exhibited adequate analytical parameters of repeatability, reproducibility and selectivity. The percentage of recovery was in all cases over 99%, and the detection and quantitation limits were at the level of 1 x 10(-7)mol L(-1) and 1 x 10(-6)mol L(-1), respectively. In addition, the differential pulse polarography method was successfully applied to study the hydrolytic degradation kinetic of one of the tested compounds. Activation energy, kinetic rate constants at different temperatures and half-life values of such application are reported.

  5. Enhanced electrochemical oxidation of Acid Red 3R wastewater with iron phosphomolybdate supported catalyst.

    PubMed

    Wang, Li; Yue, Lin; Shi, Feng; Guo, Jianbo; Yang, Jingliang; Lian, Jing; Luo, Xiao; Guo, Yankai

    2015-01-01

    Electrochemical oxidation of Acid Red 3R (AR3R) was investigated with the new catalyst of iron phosphomolybdate (FePMo12) supported on modified molecular sieves type 4 Å (4A) as packing materials in the reactor. The results of the Fourier transform infrared spectroscopy and X-ray diffraction indicated that the heteropolyanion had a Keggin structure. The optimal conditions for decolorization of simulated AR3R wastewater were as follows: current density 35 mA/cm², initial pH 4.0, airflow 0.08 m³/hour and inter-electrode distance 3.0 cm. With the addition of NaCl to the system, the decolorization efficiency increased. But Na₂SO₄had a negative effect on the decolorization efficiency, which was attributed to the negative salt effect. The degradation mechanisms of AR3R were also discussed in detail.

  6. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte

    PubMed Central

    2014-01-01

    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance (1H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte. PMID:25317101

  7. A Pilot-scale Benthic Microbial Electrochemical System (BMES) for Enhanced Organic Removal in Sediment Restoration

    NASA Astrophysics Data System (ADS)

    Li, Henan; Tian, Yan; Qu, Youpeng; Qiu, Ye; Liu, Jia; Feng, Yujie

    2017-01-01

    A benthic microbial electrochemical systems (BMES) of 195 L (120 cm long, 25 cm wide and 65 cm height) was constructed for sediment organic removal. Sediment from a natural river (Ashi River) was used as test sediments in the present research. Three-dimensional anode (Tri-DSA) with honeycomb structure composed of carbon cloth and supporting skeleton was employed in this research for the first time. The results demonstrated that BMES performed good in organic-matter degradation and energy generation from sediment and could be considered for river sediments in situ restoration as novel method. Community analysis from the soil and anode using 16S rDNA gene sequencing showed that more electrogenic functional bacteria was accumulated in anode area when circuit connected than control system.

  8. A Pilot-scale Benthic Microbial Electrochemical System (BMES) for Enhanced Organic Removal in Sediment Restoration

    PubMed Central

    Li, Henan; Tian, Yan; Qu, Youpeng; Qiu, Ye; Liu, Jia; Feng, Yujie

    2017-01-01

    A benthic microbial electrochemical systems (BMES) of 195 L (120 cm long, 25 cm wide and 65 cm height) was constructed for sediment organic removal. Sediment from a natural river (Ashi River) was used as test sediments in the present research. Three-dimensional anode (Tri-DSA) with honeycomb structure composed of carbon cloth and supporting skeleton was employed in this research for the first time. The results demonstrated that BMES performed good in organic-matter degradation and energy generation from sediment and could be considered for river sediments in situ restoration as novel method. Community analysis from the soil and anode using 16S rDNA gene sequencing showed that more electrogenic functional bacteria was accumulated in anode area when circuit connected than control system. PMID:28059105

  9. 3D flower-like hierarchical Ag@nickel-cobalt hydroxide microsphere with enhanced electrochemical properties

    NASA Astrophysics Data System (ADS)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng

    2016-10-01

    The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.

  10. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte.

    PubMed

    Plylahan, Nareerat; Maria, Sébastien; Phan, Trang Nt; Letiche, Manon; Martinez, Hervé; Courrèges, Cécile; Knauth, Philippe; Djenizian, Thierry

    2014-01-01

    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance ((1)H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte.

  11. Elucidation of the factors affecting the oxidative activity of Acremonium sp. HI-25 ascorbate oxidase by an electrochemical approach.

    PubMed

    Murata, Kenichi; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2008-03-07

    Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.

  12. Elucidation of the factors affecting the oxidative activity of Acremonium sp. HI-25 ascorbate oxidase by an electrochemical approach

    SciTech Connect

    Murata, Kenichi; Nakamura, Nobuhumi Ohno, Hiroyuki

    2008-03-07

    Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.

  13. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes.

    PubMed

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-27

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  14. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    PubMed Central

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-01-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes. PMID:27671269

  15. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors.

    PubMed

    Zhao, Xin; Zhang, Lili; Murali, Shanthi; Stoller, Meryl D; Zhang, Qinghua; Zhu, Yanwu; Ruoff, Rodney S

    2012-06-26

    Manganese dioxide (MnO(2)) particles 2-3 nm in size were deposited onto a porous "activated microwave expanded graphite oxide" (aMEGO) carbon scaffold via a self-controlled redox process. Symmetric electrochemical capacitors were fabricated that yielded a specific capacitance of 256 F/g (volumetric: 640 F/cm(3)) and a capacitance retention of 87.7% after 1000 cycles in 1 M H(2)SO(4); when normalized to MnO(2), the specific capacitance was 850 F/g. Asymmetric electrochemical capacitors were also fabricated with aMEGO/MnO(2) as the positive electrode and aMEGO as the negative electrode and had a power density of 32.3 kW/kg (for an energy density of 20.8 Wh/kg), an energy density of 24.3 Wh/kg (for a power density of 24.5 kW/kg), and a capacitance retention of 80.5% over 5000 cycles.

  16. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    PubMed

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  17. The effect of coal type and pyrolysis temperature on the electrochemical activity of coal at a solid carbon anode in molten carbonate media

    NASA Astrophysics Data System (ADS)

    Allen, J. A.; Glenn, M.; Donne, S. W.

    2015-04-01

    A systematic assessment of the electrochemical activity of two different parent coal types, pyrolysed at temperatures between 500 and 900 °C higher heating temperature (HHT), is presented in this work. Analysis shows that certain coal chars are catalytically activated in molten carbonate media at 600 °C, however activity does not appear to follow trends established for ashless carbon sources. It is seen here that it is not possible to predict activity based solely on electrical resistance, surface functionalization, or the BET surface area of pyrolysed coals. Instead, it is suggested that coal ash type, abundance and distribution plays a pivotal role in activating the coal char to allow fast electrochemical oxidation through a catalytically enhanced pathway. Activation from ash influence is discussed to result from wetting of the molten carbonate media with the carbon surface (change in polarity of electrode surface), through ash mediated oxide adsorption and transfer to carbon particles, or possibly through another catalytic pathway not yet able to be predicted from current results.

  18. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  19. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  20. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  1. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  2. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  3. Enhancement of electrochemical hydrogen storage in NiCl2-FeCl3-PdCl2-graphite intercalation compound effected by chemical exfoliation

    NASA Astrophysics Data System (ADS)

    Skowroński, J. M.; Rozmanowski, T.; Krawczyk, P.

    2013-06-01

    In the present work, a quaternary NiCl2-FeCl3-PdCl2-graphite intercalation compound (NiCl2-FeCl3-PdCl2-GIC) was successfully synthesized by molten salts method. A part of this compound was subsequently subjected to chemical exfoliation to obtain expanded compound (NiCl2-FeCl3-PdCl2-EGIC). The changes created in crystalline structure, morphology and chemical composition of GIC due to exfoliation were examined by XRD, SEM and EDS techniques and then related to electrochemical behaviour of electrodes made of the original and exfoliated compound. The results of electrochemical studies carried out by the cyclic voltammetry (CV) method in 6 M KOH solution showed that current charges of all the cathodic and anodic peaks recorded for NiCl2-FeCl3-PdCl2-EGIC are considerably higher already in the first two cycles as compared to those observed for the original NiCl2-FeCl3-PdCl2-GIC. This improvement is ascribed to chemical exfoliation leading to a tremendous development of surface area of the compound due to the splitting and wrinkling of graphite flakes followed by easier access of hydroxyl ions of the electrolyte to active species of intercalates preserved between the graphene interspaces as well as expelled from the graphite interspacing. A large anodic peak was recorded on CV curves after the potentiostatic polarization of electrodes at the potential of -1.2 V where the reaction of hydrogen sorption/evolution occurs and intercalates highly dispersed in the graphite matrix are reduced to a metal form. This peak mainly corresponding to the recovery of hydrogen stored in the electrode appeared to be over five times higher for electrode made of exfoliated compound. This significant enhancement of the hydrogen storage capacity is attributed to electrochemically active Pd nanoparticles highly dispersed in porous structure of exfoliated compound and likely functioning in synergy with Ni/Fe clusters.

  4. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xie, Xiuqiang; Su, Dawei; Zhang, Jinqiang; Chen, Shuangqiang; Mondal, Anjon Kumar; Wang, Guoxiu

    2015-02-01

    SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison between SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart as anode materials for sodium-ion batteries has been conducted. The comparison is in a reasonable framework, where SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart have the same SnO2 ratio, similar SnO2 crystallinity and particle size, close surface area and pore size. The results clearly manifest that the improved electron transfer efficiency of SnO2/nitrogen-doped graphene due to nitrogen-doping plays a more important role than the increased electro-active sites within graphene network in enhancing the electro-activity of SnO2/nitrogen-doped graphene nanohybrids compared to the SnO2/graphene counterpart. In contrast to the previous reports which often ascribe the enhanced electro-activity of nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the electron transfer efficiency and increasing electro-active sites within graphene networks) in one single declaration, this work is expected to provide more specific information for understanding the effects of nitrogen-doping into graphene on improving the electrochemical performance of graphene based composites.SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison

  5. Active control of the depletion boundary layers in microfluidic electrochemical reactors.

    PubMed

    Yoon, Seong Kee; Fichtl, Geoff W; Kenis, Paul J A

    2006-12-01

    In this paper, we describe three methods to improve the performance of pressure-driven laminar flow-based microreactors by manipulating reaction-depletion boundary layers to overcome mass transfer limitations at reactive surfaces on the walls, such as electrodes. The transport rate of the reactants to the reactive surfaces is enhanced by (i) removing the depleted zone through multiple periodically-placed outlets; (ii) adding fresh reactants through multiple periodically-placed inlets along the reactive surface; or (iii) producing a spiraling, transverse flow through the integration of herringbone ridges along the channel walls. For approaches (i) and (ii), the network of microfluidic channels needs to be designed such that under the operating conditions used the right amount of boundary layer at each outlet or inlet is removed or replenished, respectively. Here, we report a set of design rules, derived with the help of a fluidic resistance circuit model, to aid in the design of appropriate microfluidic networks. Also, the actual enhancement of the performance of the electrochemical microreactor, i.e. chemical conversion efficiency, using multiple inlets, multiple outlets, or herringbone ridges is reported.

  6. Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization

    NASA Astrophysics Data System (ADS)

    Sánchez-Tovar, R.; Fernández-Domene, R. M.; García-García, D. M.; García-Antón, J.

    2015-07-01

    This work studies the electrochemical and photoelectrochemical properties of a new type of TiO2 nanostructure (nanosponge) obtained by means of anodization in a glycerol/water/NH4F electrolyte under controlled hydrodynamic conditions. For this purpose different techniques such as Scanning Electronic Microscopy (SEM), Raman Spectroscopy, Electrochemical Impedance Spectroscopy (EIS) measurements, Mott-Schottky (M-S) analysis and photoelectrochemical water splitting tests under standard AM 1.5 conditions are carried out. The obtained results show that electron-hole separation is facilitated in the TiO2 nanosponge if compared with highly ordered TiO2 nanotube arrays. As a result, nanosponges enhance the photoelectrochemical activity for water splitting.

  7. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.

    PubMed

    López-Bernabeu, S; Ruiz-Rosas, R; Quijada, C; Montilla, F; Morallón, E

    2016-02-01

    The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.

  8. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    PubMed

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  9. Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes

    NASA Astrophysics Data System (ADS)

    Marques, A. C.; Santos, L.; Costa, M. N.; Dantas, J. M.; Duarte, P.; Gonçalves, A.; Martins, R.; Salgueiro, C. A.; Fortunato, E.

    2015-04-01

    Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 +/- 0.04, and a response time of two hours.

  10. A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity

    NASA Astrophysics Data System (ADS)

    Su, Shao; He, Yao; Song, Shiping; Li, Di; Wang, Lihua; Fan, Chunhai; Lee, Shuit-Tong

    2010-09-01

    An electrochemical glucose biosensor was developed by immobilizing glucose oxidase (GOx) on an electrode decorated with a novel nanostructure, silicon nanowires (SiNWs) with in situ grown gold nanoparticles (AuNPs). The immobilized GOx displayed a pair of well-defined and quasi-reversible redox peaks with a formal potential (E°') of -0.376 V in a phosphate buffer solution. The fabricated glucose biosensor has good electrocatalytic activity toward oxidation of glucose. In addition, such resultant SiNWs-based glucose biosensor possesses high biological affinity. Particularly, the apparent Michaelis-Mentan constant was estimated to be 0.902 mM, which is much smaller than the reported values for GOx at a range of nanomaterials-incorporated electrodes. Consequently, this novel SiNWs-based biosensor is expected to be a promising tool for biological assays (e.g., monitoring blood glucose).

  11. Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes

    PubMed Central

    Marques, A. C.; Santos, L.; Costa, M. N.; Dantas, J. M.; Duarte, P.; Gonçalves, A.; Martins, R.; Salgueiro, C. A.; Fortunato, E.

    2015-01-01

    Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours. PMID:25891213

  12. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].

    PubMed

    Li, Jianchang; Zhang, Wudi; Yin, Fang; Xu, Rui; Chen, Yubao

    2009-06-01

    Fermentative hydrogen production can be improved by electrolysis and electrochemically active microorganisms which are capable of using an electrode as an electron acceptor for the oxidation of organic matter, in particular, volatile acids produced after fermentation. Firstly volatile acids can be completely converted into CO2, electrons and protons on the surface of anode. Then the electrons flow to cathode through anode and wires, and at the same time the protons move to cathode through cation membrane between anode chamber and cathode chamber. Finally the electrons and the protons combine into hydrogen when they meet at the surface of cathode. In such a process, the fermentation barrier and the product inhibition can be avoided to improve the conversion of hydrogen. 8-9 mol H2/mol glucose of hydrogen potential can be obtained when glucose is used as substrate. This technology is very likely to be applied to produce hydrogen high efficiently from any energy crops, organic waste and wastewater.

  13. Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes.

    PubMed

    Marques, A C; Santos, L; Costa, M N; Dantas, J M; Duarte, P; Gonçalves, A; Martins, R; Salgueiro, C A; Fortunato, E

    2015-04-20

    Electrochemically active bacteria (EAB) have the capability to transfer electrons to cell exterior, a feature that is currently explored for important applications in bioremediation and biotechnology fields. However, the number of isolated and characterized EAB species is still very limited regarding their abundance in nature. Colorimetric detection has emerged recently as an attractive mean for fast identification and characterization of analytes based on the use of electrochromic materials. In this work, WO3 nanoparticles were synthesized by microwave assisted hydrothermal synthesis and used to impregnate non-treated regular office paper substrates. This allowed the production of a paper-based colorimetric sensor able to detect EAB in a simple, rapid, reliable, inexpensive and eco-friendly method. The developed platform was then tested with Geobacter sulfurreducens, as a proof of concept. G. sulfurreducens cells were detected at latent phase with an RGB ratio of 1.10 ± 0.04, and a response time of two hours.

  14. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  15. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag.

    PubMed

    Han, Jing; Zhuo, Ying; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo

    2013-08-06

    This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05pg mL(-1) to 5ng mL(-1) and a low detection limit down to 15fg mL(-1). Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples.

  16. Enhanced Electronic Communication and Electrochemical Sensitivity Benefiting from the Cooperation of Quadruple Hydrogen Bonding and π-π Interactions in Graphene/Multi-Walled Carbon Nanotube Hybrids.

    PubMed

    Wang, Qiguan; Wang, Sumin; Shang, Jiayin; Qiu, Shenbao; Zhang, Wenzhi; Wu, Xinming; Li, Jinhua; Chen, Weixing; Wang, Xinhai

    2017-02-22

    By designing a molecule labeled as UPPY with both ureidopyrimidinone (UP) and pyrene (PY) units, the supramolecular self-assembly of multiwalled carbon nanotube (MWNT) and reduced graphene oxide (rGO) was driven by the UP quadruple hydrogen-bonding and PY-based π-π interactions to form a novel hybrid of rGO-UPPY-MWNT in which the morphology of rGO-wrapped MWNT was found. Bridged by the two kinds of noncovalent bonding, enhanced electronic communication occurred in rGO-UPPY-MWNT. Also, under the cooperation of UP quadruple hydrogen-bonding and PY-based π-π interactions, higher electrical conductivity and better charge transfer were observed for rGO-UPPY-MWNT, compared with the rGO-MWNT composite without such noncovalent bonds, and that with just single PY-based π-π interaction (rGO-PY-MWNT) or UP quadruple hydrogen bond (rGO-UP-MWNT). Specifically, the electrical conductivity of rGO-PY-MWNT hybrids was increased approximately sevenfold, and the interfacial charge transfer resistance was nearly decreased by 1 order of magnitude compared with rGO-MWNT, rGO-UP-MWNT, and rGO-PY-MWNT. Resulting from its excellent electrical conductivity and charge transfer properties, the rGO-UPPY-MWNT modified electrode exhibited enhanced electrochemical activity toward dopamine with detection limit as low as 20 nM.

  17. An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles.

    PubMed

    Li, Jianping; Gao, Huiling; Chen, Zhiqiang; Wei, Xiaoping; Yang, Catherine F

    2010-04-14

    A quick and reproducible electrochemical-based immunosensor technique, using magnetic core/shell particles that are coated with self-assembled multilayer of nanogold, has been developed. Magnetic particles that are structured from Au/Fe(3)O(4) core-shells were prepared and aminated after a reaction between gold and thiourea, and additional multilayered coatings of gold nanoparticles were assembled on the surface of the core/shell particles. The carcinoembryonic antibody (anti-CEA) was immobilized on the modified magnetic particles, which were then attached on the surface of solid paraffin carbon paste electrode (SPCE) by an external magnetic field. This is an assembly of a novel immuno biosensor for carcinoembryonic antigen (CEA). The sensitivity and response features of this immunoassay are significantly affected by the surface area and the biological compatibility of the multilayered nanogold. The linear range for the detection of CEA was from 0.005 to 50 ng mL(-1) and the limit of detection (LOD) was 0.001 ng mL(-1). The LOD is approximately 500 times more sensitive than that of the traditional enzyme-linked immunosorbent assay for CEA detection.

  18. A new sono-electrochemical method for enhanced detoxification of hydrophilic chloroorganic pollutants in water.

    PubMed

    Yasman, Yakov; Bulatov, Valery; Gridin, Vladimir V; Agur, Sabina; Galil, Noah; Armon, Robert; Schechter, Israel

    2004-09-01

    A new method for detoxification of hydrophilic chloroorganic pollutants in effluent water was developed, using a combination of ultrasound waves, electrochemistry and Fenton's reagent. The advantages of the method are exemplified using two target compounds: the common herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its derivative 2,4-dichlorophenol (2,4-DCP). The high degradation power of this process is due to the large production of oxidizing hydroxyl radicals and high mass transfer due to sonication. Application of this sono-electrochemical Fenton process (SEF) treatment (at 20 kHz) with quite a small current density, accomplished almost 50% oxidation of 2,4-D solution (300 ppm, 1.2 mM) in just 60 s. Similar treatments ran for 600 s resulted in practically full degradation of the herbicide; sizable oxidation of 2,4-DCP also occurs. The main intermediate compounds produced in the SEF process were identified. Their kinetic profile was measured and a chemical reaction scheme was suggested. The efficiency of the SEF process is tentatively much higher than the reference degradation methods and the time required for full degradation is considerably shorter. The SEF process maintains high performance up to concentrations which are higher than reference methods. The optimum concentration of Fe2+ ions required for this process was found to be of about 2 mM, which is lower than that in reference techniques. These findings indicate that SEF process may be an effective method for detoxification of environmental water.

  19. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  20. Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyue; Wang, Tao; Bi, Yujing; Liu, Meng; Yang, Wenchao; Peng, Zhe; Wang, Deyu

    2017-02-01

    LiMnPO4 has attracted massive interests due to its appropriate redox potential and the success of its iron comparative in the lithium ion batteries. The bulk substitution has been widely used to address the poor electrochemical activity of LiMnPO4, which is much lower than that of LiFePO4. In this work, we compare the performance of the core-shell structure and the homogeneous substitution with the same Mn/Fe molar ratio of LiMn0.8Fe0.2PO4. The core-shell phosphate material after carbon coating is composed of a core part of quasi-single LiMnPO4 phase, and a 3-4 nm shell layer of quasi-single LiFePO4-phase, separated by the phase boundary with 1-2 nm thickness. It is interesting to reveal that the core-shell samples exhibit capacities of 156.4, 144.5, 128.2 mAh g-1 under 0.1C, 1C and 5C respectively, which are 5-10% higher than that of the homogenous substituted LiMn0.8Fe0.2PO4 at the corresponding rates, while both of these samples present excellent cyclic stability, still retaining ∼95% of the initial capacities after 1000 cycles under 1C discharging rate. Our results demonstrate that the main reason for LiMnPO4's poor electrochemical activity should be emphasized on the surface polarization, whereas the tardiness on bulk transportation is not as serious as it was presumed.

  1. CoOx thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity.

    PubMed

    Weidler, Natascha; Paulus, Sarina; Schuch, Jona; Klett, Joachim; Hoch, Sascha; Stenner, Patrick; Maljusch, Artjom; Brötz, Joachim; Wittich, Carolin; Kaiser, Bernhard; Jaegermann, Wolfram

    2016-04-28

    To reduce energy losses in water electrolysers a fundamental understanding of the water oxidation reaction steps is necessary to design efficient oxygen evolution catalysts. Here we present CoOx/Ti electrocatalytic films deposited by thermal and plasma enhanced chemical vapor deposition (CVD) onto titanium substrates. We report electrochemical (EC), photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The electrochemical behavior of the samples was correlated with the chemical and electronic structure by recording XPS spectra before and after each electrochemical treatment (conditioning and cyclovoltammetry). The results show that the electrochemical behavior of CoOx/Ti strongly depends on the resulting electronic structure and composition. The thermal deposition leads to the formation of a pure Co(II)Ox which transforms to a mixed Co(II)Co(III)Ox during the OER. This change in oxidation state is coupled with a decrease in overpotential from η = 0.57 V to η = 0.43 V at 5 mA cm(-2). Plasma deposition in oxygen leads to a Co(III)-dominated mixed CoOx, that has a lower onset potential as deposited due to a higher Co(III) content in the initial deposited material. After the OER XPS results of the CoOx/Ti indicate a partial formation of hydroxides and oxyhydroxides on the oxide surface. Finally the plasma deposition in air, results in a CoOxOH2 surface, that is able to completely oxidizes during OER to an oxyhydroxide Co(III)OOH. With the in situ formed CoOOH we present a highly active catalyst for the OER (η = 0.34 at 5 mA cm(-2); η = 0.37 V at 10 mA cm(-2)).

  2. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-09

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  3. Enzyme-based electrochemical biosensor for sensitive detection of DNA demethylation and the activity of DNA demethylase.

    PubMed

    Zhou, Yunlei; Li, Bingchen; Wang, Mo; Yang, Zhiqing; Yin, Huanshun; Ai, Shiyun

    2014-08-20

    A novel electrochemical method is developed for detection of DNA demethylation and assay of DNA demethylase activity. This method is constructed by hybridizing the probe with biotin tagged hemi-methylated complementary DNA and further capturing streptavidin tagged alkaline phosphatase (SA-ALP) to catalyze the hydrolysis reaction of p-nitrophenyl phosphate. The hydrolysate of p-nitrophenol (PNP) is then used as electrochemical probe for detecting DNA demethylation and assaying the activity of DNA demethylase. Demethylation of target DNA initiates a degradation reaction of the double-stranded DNA (dsDNA) by restriction endonuclease of BstUI. It makes the failed immobilization of ALP, resulting in a decreased electrochemical oxidation signal of PNP. Through the change of this electrochemical signal, the DNA demethylation is identified and the activity of DNA demethylase is analyzed with low detection limit of 1.3 ng mL(-1). This method shows the advantages of simple operation, cheap and miniaturized instrument, high selectivity. Thus, it provides a useful platform for detecting DNA demethylation, analyzing demethylase activity and screening inhibited drug.

  4. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.

    PubMed

    Huang, Ta-Jen; Wu, Chung-Ying; Lin, Yu-Hsien

    2011-07-01

    A solid oxide fuel cell (SOFC) unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3)-Ce(0.9)Gd(0.1)O(1.95) as the cathode. The SOFC operation is performed at 600 °C with a cathode gas simulating the lean-burn engine exhaust and at various fixed voltage, at open-circuit voltage, and with an inert gas flowing over the anode side, respectively. Electrochemical enhancement of NO decomposition occurs when an operating voltage is generated; higher O(2) concentration leads to higher enhancement. Smaller NO concentration results in larger NO conversion. Higher operating voltage and higher O(2) concentration can lead to both higher NO conversion and lower fuel consumption. The molar rate of the consumption of the anode fuel can be very much smaller than that of NO to N(2) conversion. This makes the anode fuel consumed in the SOFC-DeNO(x) process to be much less than the equivalent amount of ammonia consumed in the urea-based selective catalytic reduction process. Additionally, the NO conversion increases with the addition of propylene and SO(2) into the cathode gas. These are beneficial for the application of the SOFC-DeNO(x) technology on treating diesel and other lean-burn engine exhausts.

  5. TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries

    PubMed Central

    Wang, Xianfu; Xiang, Qingyi; Liu, Bin; Wang, Lijing; Luo, Tao; Chen, Di; Shen, Guozhen

    2013-01-01

    Anatase TiO2 modified FeS nanowires assembled by numerous nanosheets were synthesized by using a typical hydrothermal method. The carbon-free nanocoated composite electrodes exhibit improved reversible capacity of 510 mAh g−1 after 100 discharge/charge cycles at 200 mA g−1, much higher than that of the pristine FeS nanostructures, and long-term cycling stability with little performance degradation even after 500 discharge/charge cycles at current density of 400 mA g−1. Full batteries fabricated using the FeS@TiO2 nanostructures anode and the LiMn2O4 nanowires cathode with excellent stability, and good rate capacities could also be achieved. The enhanced electrochemical performance of the composite electrodes can be attributed to the improved conductively of the integrated electrodes and the enhanced kinetics of lithium insertion/extraction at the electrode/electrolyte interface because of the incorporation of anatase TiO2 phase. PMID:23774372

  6. Scanning tunneling microscopy of electrochemically activated platinum surfaces. A direct ex-situ determination of the electrode nanotopography

    SciTech Connect

    Vazquez, L.; Gomez, J.; Baro, A.M.; Garcia, N.; Marcos, M.L.; Velasco, J.G.; Vara, J.M.; Arvia, A.J.; Presa, J.; Garcia, A.; Aguilar, M.

    1987-03-18

    A direct scanning tunneling microscopy ex-situ determination on the nanometer scale of the topography of electrochemically highly activated platinum electrodes is presented. A correlation between catalytic activity and surface microtopography becomes evident. This result gives support to a structural model for the activated electrode surface. In the model, a volume with a pebble-like structure allows electrocatalytic processes to occur practically free of diffusion relaxation contributions under usual voltammetric conditions.

  7. On-demand electrochemical activation of the click reaction on self-assembled monolayers on gold presenting masked acetylene groups.

    PubMed

    Choi, Inseong; Kim, Young-Kwan; Min, Dal-Hee; Lee, SangWook; Yeo, Woon-Seok

    2011-10-26

    We report on a new surface modification method for grafting a "dynamic" property for on-demand activation of the click reaction. Our approach utilizes the acetylene group masked with dicobalt hexacarbonyl, Co(2)(CO)(6), which is not reactive toward the click reaction. Electrochemical treatment reveals the acetylene group on the selected region, which is then used as a chemical handle for surface functionalization via the click reaction with an azide-containing molecule. Electrochemical and chemical conversions on the surface were verified by cyclic voltammetry, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. We have demonstrated immobilization of an azide-modified RGD peptide and promotion of cell adhesion/migration to the region of electrochemical induction.

  8. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors.

    PubMed

    Yang, MinHo; Jeong, Jae-Min; Lee, Kyoung G; Kim, Do Hyun; Lee, Seok Jae; Choi, Bong Gill

    2017-03-15

    The integration of organic and inorganic building blocks into hierarchical porous architectures makes potentially desirable electrocatalytic materials in many electrochemical applications due to their combination of attractive qualities of dissimilar components and well-constructed charge transfer pathways. Herein, we demonstrate the preparation of the hierarchical porous Co3O4@graphene (Co3O4@G) microspheres by one-step hydrothermal method to achieve high electrocatalytic performance for enzyme-free biosensor applications. The obtained Co3O4@G microspheres are consisted of the interconnected networks of Co3O4 and graphene sheets, and thus provide large accessible active sites through porous structure, while graphene sheets offer continuous electron pathways for efficient electrocatalytic reaction of Co3O4. These structural merits with synergy effect of Co3O4 and graphene lead to a high performance of enzyme-free detection for glucose: high sensitivity, good selectivity, and remarkable stability.

  9. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity.

    PubMed

    Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin

    2016-12-15

    DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs.

  10. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Xie, Yibing; Xia, Chi; Du, Hongxiu; Wang, Wei

    2015-07-01

    The ternary nanocomposite of polyaniline/carbon/titanium nitride (PANI/C/TiN) nanowire array (NWA) is fabricated as electroactive electrode material for flexible supercapacitor application. Firstly, TiN NWA is formed through ammonia nitridation treatment of TiO2 NWA, which is synthesized via seed-assisted hydrothermal reaction. PANI/C/TiN NWA is then formed through sequentially coating carbon and PANI on the surface of TiN NWA. PANI/C/TiN NWA has unique shell/shell/core architecture, including a core layer of TiN NWA with a diameter of 40-160 nm and a length of 1.5 μm, a middle shell layer of carbon with a thickness of about 6.0 nm and an external surface layer of PANI with a thickness of 20-50 nm. PANI/C/TiN NWA provides ion diffusion channel at interspaces between the neighboring nanowires and electron transfer route along independent nanowires. The carbon shell layer is able to protect TiN NWA from electrochemical corrosion during charge/discharge process. PANI/C/TiN NWA displays high specific capacitance of 1093 F g-1 at 1.0 Ag-1, and good cycling stability with a capacity retention of 98% after 2000 cycles, presenting better supercapacitive performance than other integrated nanocomposites of C/PANI/TiN, PANI/TiN and PANI/C/TiO2 NWA. Such a ternary nanocomposite of PANI/C/TiN NWA can be used as an electrode material of flexible supercapacitors.

  11. Preparation of activated carbon from sorghum pith and its structural and electrochemical properties

    SciTech Connect

    Senthilkumar, S.T.; Senthilkumar, B.; Balaji, S.; Sanjeeviraja, C.; Kalai Selvan, R.

    2011-03-15

    Research highlights: {yields} Sorghum pith as the cost effective raw material for activated carbon preparation. {yields} Physicochemical method/KOH activation for preparation of activated carbon is inexpensive. {yields} Activated carbon having lower surface area surprisingly delivered a higher specific capacitance. {yields} Treated at 500 {sup o}C activated carbon exceeds maximum specific capacitances of 320.6 F/g at 10 mV/s. -- Abstract: The cost effective activated carbon (AC) has been prepared from sorghum pith by NaOH activation at various temperatures, including 300 {sup o}C (AC1), 400 {sup o}C (AC2) and 500 {sup o}C (AC3) for the electrodes in electric double layer capacitor (EDLC) applications. The amorphous nature of the samples has been observed from X-ray diffraction and Raman spectral studies. Subsequently, the surface functional groups, surface morphology, pore diameter and specific surface area have been identified through FT-IR, SEM, histogram and N{sub 2} adsorption/desorption isotherm methods. The electrochemical characterization of AC electrodes has been examined using cyclic voltammetry technique in the potential range of -0.1-1.2 V in 1.0 M H{sub 2}SO{sub 4} electrolyte at different scan rates (10, 20, 30, 40, 50 and 100 mV/s). The maximum specific capacitances of 320.6 F/g at 10 mV/s and 222.1 F/g at 100 mV/s have been obtained for AC3 electrode when compared with AC1 and AC2 electrodes. Based on the characterization studies, it has been inferred that the activated carbon prepared from sorghum pith may be one of the innovative carbon electrode materials for EDLC applications.

  12. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE PAGES

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; ...

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  13. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  14. Enhancing laboratory activities in nuclear medicine education.

    PubMed

    Grantham, Vesper; Martin, Chris; Schmitz, Casey

    2009-12-01

    Hands-on or active learning is important in nuclear medicine education. As more curricula start to require greater standards and as distance education expands, the effective use of laboratories in nuclear medicine education remains important in physics, instrumentation, and imaging but is often overlooked or underutilized. Laboratory exercises are a unique opportunity for nuclear medicine educators to facilitate students' critical thinking and problem-solving skills in a manner that often cannot occur in lectures or during online education. Given the lack of current laboratory tools and publications, there exists a requirement for nuclear medicine educators to develop, enhance, and monitor educational tools for laboratory exercises. Expanding technologies, variations in imaging and measurement systems, and the need to ensure that the taught technology is relevant to nuclear medicine students are issues faced by nuclear medicine educators. This article, based on principles of instructional design, focuses on the components and development of effective and enhanced nuclear medicine laboratories in our current educational environment.

  15. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    SciTech Connect

    Zhuang Lina; Wang Wenjin; Hong Feng; Yang Shengchun; You Hongjun; Fang Jixiang; Ding Bingjun

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  16. One strategy to enhance electrochemical properties of Ni-based cathode materials under high cut-off voltage for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Liang, Longwei; Jiang, Feng; Cao, Yanbing; Hu, Guorong; Du, Ke; Peng, Zhongdong

    2016-10-01

    Well-distributed, nano-sized and amorphous or crystalized NaTi2(PO4)3 (NTP) coating layer with high ionic conductivity is successfully introduced onto the surface of LiNi0.6Co0.2Mn0.2O2 (LNCM) particles by a simple and effective mechanical activation method followed by adjusting the reheating temperature appropriately. The promoting influence of NTP coating on the structure stability, cycle life and high rate capability under elevated cut-off voltage has been investigated in-depth. Particularly for the crystalized NTP-coated LNCM, the main reason for the enhanced electrochemical performance can be attributed to the NTP layer with rhombohedral structure providing convenient and low activation barrier diffusion pathways for Li+ ions to insert/extract the interface of electrode/electrolyte. Besides, the NTP-coated layer with stable structure can effectively inhibit the surface side reaction during the long charge/discharge process under high cut-off voltage, which will reduce the harmful insulative by-products. It's worth mentioning that the cyclic stability of crystalized NTP-coated LNCM between 3.0 and 4.6 V is also improved significantly even under the rigorous test environment.

  17. In-Situ Generation of Oxide Nanowire Arrays from AgCuZn Alloy Sulfide with Enhanced Electrochemical Oxygen-Evolving Performance.

    PubMed

    Xie, Minghao; Ai, Shiqi; Yang, Jian; Yang, Yudi; Chen, Yihan; Jin, Yong

    2015-08-12

    In this study, AgCuZn sulfide is fabricated on the surface of AgCuZn alloys by hydrothermal sulfuration. This ternary metal sulfide is equipped with enhanced activity toward oxygen evolution reaction (OER) in an alkaline electrolyte. Through comparison of the alloys with diverse compositions, we find out the best electrochemical property of a particular alloy sulfide forming on a AgCuZn substrate (Ag:Cu:Zn=43:49:8). The alloy sulfide exhibits an onset overpotential (η) of 0.27 V with a Tafel slope of 95±2 mV dec(-1) and a current density of 130 mA cm(-2) at η of 0.57 V. Moreover, the obtained AgCuZn sulfide displays excellent stability, where the current density can increase to 130% of the initial value after a water electrolysis test for 100,000 s (27.7 h). Through investigating the electrode before and after the electrocatalysis, we find a remarkable activated process during which self-supported copper-silver oxide nanowire (CuO-Ag2O NW) arrays in situ form on the surface of the electrode. This work provides a feasible strategy for synthesis of high performance nonprecious metal electrocatalysts for water splitting.

  18. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    NASA Astrophysics Data System (ADS)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-11-01

    TiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Agcore-Cushell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  19. -graphene nanocomposites and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xian, Tao; Yang, Hua; Di, Lijing; Ma, Jinyuan; Zhang, Haimin; Dai, Jianfeng

    2014-06-01

    SrTiO3-graphene nanocomposites were prepared via photocatalytic reduction of graphene oxide by UV light-irradiated SrTiO3 nanoparticles. Fourier transformed infrared spectroscopy analysis indicates that graphene oxide is reduced into graphene. Transmission electron microscope observation shows that SrTiO3 nanoparticles are well assembled onto graphene sheets. The photocatalytic activity of as-prepared SrTiO3-graphene composites was evaluated by the degradation of acid orange 7 (AO7) under a 254-nm UV irradiation, revealing that the composites exhibit significantly enhanced photocatalytic activity compared to the bare SrTiO3 nanoparticles. This can be explained by the fact that photogenerated electrons are captured by graphene, leading to an increased separation and availability of electrons and holes for the photocatalytic reaction. Hydroxyl (·OH) radicals were detected by the photoluminescence technique using terephthalic acid as a probe molecule and were found to be produced over the irradiated SrTiO3 nanoparticles and SrTiO3-graphene composites; especially, an enhanced yield is observed for the latter. The influence of ethanol, KI, and N2 on the photocatalytic efficiency was also investigated. Based on the experimental results, ·OH, h+, and H2O2 are suggested to be the main active species in the photocatalytic degradation of AO7 by SrTiO3-graphene composites.

  20. LRRK2 autophosphorylation enhances its GTPase activity

    PubMed Central

    Liu, Zhiyong; Mobley, James A.; DeLucas, Lawrence J.; Kahn, Richard A.; West, Andrew B.

    2016-01-01

    The leucine-rich repeat kinase (LRRK)-2 protein contains nonoverlapping GTPase and kinase domains, and mutation in either domain can cause Parkinson disease. GTPase proteins are critical upstream modulators of many effector protein kinases. In LRRK2, this paradigm may be reversed, as the kinase domain phosphorylates its own GTPase domain. In this study, we found that the ameba LRRK2 ortholog ROCO4 phosphorylates the GTPase domain [termed Ras-of-complex (ROC) domain in this family] of human LRRK2 on the same residues as the human LRRK2 kinase. Phosphorylation of ROC enhances its rate of GTP hydrolysis [from kcat (catalytic constant) 0.007 to 0.016 min−1], without affecting GTP or GDP dissociation kinetics [koff = 0.093 and 0.148 min−1 for GTP and GDP, respectively). Phosphorylation also promotes the formation of ROC dimers, although GTPase activity appears to be equivalent between purified dimers and monomers. Modeling experiments show that phosphorylation induces conformational changes at the critical p-loop structure. Finally, ROC appears to be one of many GTPases phosphorylated in p-loop residues, as revealed by alignment of LRRK2 autophosphorylation sites with GTPases annotated in the phosphoproteome database. These results provide an example of a novel mechanism for kinase-mediated control of GTPase activity.—Liu, Z., Mobley, J. A., DeLucas, L. J., Kahn, R. A., West, A. B. LRRK2 autophosphorylation enhances its GTPase activity. PMID:26396237

  1. Electrochemical cell stack assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  2. Use of electrochemically activated aqueous solutions in the manufacture of fur materials.

    PubMed

    Danylkovych, Anatoliy G; Lishchuk, Viktor I; Romaniuk, Oksana O

    2016-01-01

    The influence of characteristics of electrochemically activated aqueous processing mediums in the treatment of fur skins with different contents of fatty substances was investigated. The use of electroactive water, namely anolytes and catholytes, forgoing antiseptics or surface-active materials, helped to restore the hydration of fur skins and to remove from them soluble proteins, carbohydrates and fatty substances. The activating effect of anolyte and catholyte in solutions of water on the processes of treating raw furs is explained by their special physical and chemical properties, namely the presence of free radicals, ions and molecules of water which easily penetrate cells' membranes and into the structure of non-collagen components and microfiber structure of dermic collagen. The stage of lengthy acid and salt treatment is excluded from the technical treatment as a result of using electroactivated water with high oxidizing power. A low-cost technology of processing different kinds of fur with the use of electroactivated water provides for substantial economy of water and chemical reagents, a two to threefold acceleration of the soaking and tanning processes and creation of highly elastic fur materials with a specified set of physical and chemical properties. At the same time the technology of preparatory processes of fur treatment excludes the use of such toxic antiseptics as formalin and sodium silicofluoride, which gives grounds to regard it as ecologically safe.

  3. Antibacterial Activity of Electrochemically Synthesized Colloidal Silver Nanoparticles Against Hospital-Acquired Infections

    NASA Astrophysics Data System (ADS)

    Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc

    2017-02-01

    This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.

  4. Enhanced Electrochemical Performance of Ultracentrifugation-Derived nc-Li3VO4/MWCNT Composites for Hybrid Supercapacitors.

    PubMed

    Iwama, Etsuro; Kawabata, Nozomi; Nishio, Nagare; Kisu, Kazuaki; Miyamoto, Junichi; Naoi, Wako; Rozier, Patrick; Simon, Patrice; Naoi, Katsuhiko

    2016-05-24

    Nanocrystalline Li3VO4 dispersed within multiwalled carbon nanotubes (MWCNTs) was prepared using an ultracentrifugation (uc) process and electrochemically characterized in Li-containing electrolyte. When charged and discharged down to 0.1 V vs Li, the material reached 330 mAh g(-1) (per composite) at an average voltage of about 1.0 V vs Li, with more than 50% capacity retention at a high current density of 20 A g(-1). This current corresponds to a nearly 500C rate (7.2 s) for a porous carbon electrode normally used in electric double-layer capacitor devices (1C = 40 mA g(-1) per activated carbon). The irreversible structure transformation during the first lithiation, assimilated as an activation process, was elucidated by careful investigation of in operando X-ray diffraction and X-ray absorption fine structure measurements. The activation process switches the reaction mechanism from a slow "two-phase" to a fast "solid-solution" in a limited voltage range (2.5-0.76 V vs Li), still keeping the capacity as high as 115 mAh g(-1) (per composite). The uc-Li3VO4 composite operated in this potential range after the activation process allows fast Li(+) intercalation/deintercalation with a small voltage hysteresis, leading to higher energy efficiency. It offers a promising alternative to replace high-rate Li4Ti5O12 electrodes in hybrid supercapacitor applications.

  5. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP.

  6. Graphene oxide as nanogold carrier for ultrasensitive electrochemical immunoassay of Shewanella oneidensis with silver enhancement strategy.

    PubMed

    Wen, Junlin; Zhou, Shungui; Yuan, Yong

    2014-02-15

    The genus Shewanella is ubiquitous in environment and has been extensively studied for their applications in bioremediation. A novel immunoassay for ultrasensitive detection of Shewanella oneidensis was presented based on graphene oxide (GO) as nanogold carrier with silver enhancement strategy. The enhanced sensitivity was achieved by employing conjugate-featuring gold nanoparticles (AuNPs) and antibodies (Ab) assembled on bovine serum albumin (BSA)-modified GO (Ab/AuNPs/BSA/GO). After a sandwich-type antigen-antibody reaction, Ab/AuNPs/BSA/GO conjugate binding on the target analyte produced an enhanced immune-recognition response by the reduction of silver ion in the present of hydroquinone. The deposited silver metal was dissolved with nitric acid and subsequently quantified by anodic stripping voltammetry. The high AuNPs loading capacity of GO and the obvious signal amplification by gold-catalyzed silver deposition offer an excellent detection method with a wide range of linear relationship between 7.0 × 10(1) and 7.0 × 10(7)cfu/mL. Furthermore, the immunoassay developed in this work exhibited high sensitivity, acceptable stability and reproducibility. This simple and sensitive assay method has promising application in various fields for rapid detection of bacteria, protein and DNA.

  7. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.

    PubMed

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Yu, Chung-Chin; Wu, Yi-Hao

    2012-11-07

    As shown in the literature, electrochemical underpotential deposition (UPD) offers the ability to deposit up to a monolayer of one metal onto a more noble metal with a flat surface. In this work, we develop an electrochemical pathway to prepare more surface-enhanced Raman scattering (SERS)-active substrates with Ag UPD-modified Au nanoparticles (NPs) by using sonoelectrochemical deposition-dissolution cycles (SEDDCs). Encouragingly, the SERS of Rhodamine 6G (R6G) adsorbed on these Ag UPD-modified Au NPs exhibits a higher intensity by ca. 12-fold magnitude, as compared with that of R6G adsorbed on unmodified Au NPs. The prepared SERS-active substrate demonstrates a large Raman scattering enhancement for R6G with a detection limit of 2 × 10(-14) M and an enhancement factor of 5.0 × 10(8). Also, the strategy proposed in this work to improve the SERS effects by using UPD Ag based on SEDDCs has an effect on the smaller probe molecules of 2,2'-bipyridine (BPy).

  8. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    SciTech Connect

    Azam, M.A.; Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A.; Kudin, T.I.T.; Yahya, M.Z.A.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  9. Correlating Local Structure with Electrochemical Activity in Li2MnO3

    SciTech Connect

    Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; Dixit, Hemant M.; Cooper, Valentino R.; Pezeshki, Alan M.; Ruther, Rose E.

    2015-07-31

    Li2MnO3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li2MnO3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li2MnO3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemical properties as electrodes prepared from slurries, but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.

  10. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  11. Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wu, Dazhao; He, Jinlin; Zhang, Mingzu; Ni, Peihong; Li, Xiaofei; Hu, Jiankang

    2015-09-01

    In this work, two kinds of composite separators are prepared and used for lithium-ion batteries, which are a PP nonwoven/PVdF-HFP/PMMA blending-type composite separator (CS) and a sandwich-like PP nonwoven/PVdF-HFP composite separator with the introduction of PMMA nanoparticles on the surface (nano-CS). The morphology, electrolyte uptake, ionic conductivity and electrochemical properties of the separators are studied by SEM analysis, impedance measurements, charge-discharge cycle and C-rate tests, respectively. The nano-CS and CS(0.2) exhibit similar properties in electrolyte uptake (212% and 202%, respectively) and porosity (77.9% and 75.3%, respectively). Nonetheless, nano-CS shows enhanced thermal stability and higher ionic conductivity compared with CS(0.2) and commercial PP nonwoven/PVdF-HFP separators. Meanwhile, the LiFePO4/Li half-cell assembled with nano-CS displays the best C-rate capacity and cyclability especially at the high discharge current rate, indicating that the nano-CS separator is a kind of promising candidate for the high-performance lithium-ion batteries.

  12. L-Cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Qiannan; Chen, Weixiang; Ye, Jianbo; Wang, Zhen; Lee, Jim Yang

    2015-10-01

    NiS2/graphene composite is synthesized by a facile hydrothermal reaction between NiCl2 and L-cysteine in the presence of graphene oxide sheets. L-Cysteine serves as both the sulfur source for NiS2 and reductant for reduction of graphene oxide sheets. The reduced graphene oxides can be used as a platform for growth of NiS2 particles and restrain NiS2 from agglomerating during hydrothermal process. The results of characterizations show that the sphere-like NiS2 particles exhibit smaller sizes and are well dispersed on the surface of reduced graphene sheets. The electrochemical measurements demonstrate that the NiS2/graphene composite delivers a reversible capacity as high as 1200 mAh g-1 at a current density of 100 mA g-1 and enhanced high-rate capability of 740 mAh g-1 at a high current density of 1000 mA g-1. After 1000 cycles, the NiS2/graphene still preserves the reversible capacity about 810 mAh g-1 at a current density of 500 mA g-1, indicating its excellent cyclic stability.

  13. Enhancement of the electrochemical behaviour and biological performance of Ti-25Ta-5Zr alloy by thermo-mechanical processing.

    PubMed

    Cimpean, Anisoara; Vasilescu, Ecaterina; Drob, Paula; Cinca, Ion; Vasilescu, Cora; Anastasescu, Mihai; Mitran, Valentina; Drob, Silviu Iulian

    2014-05-01

    A new Ti-25Ta-5Zr alloy based only on non-toxic and non-allergic elements was elaborated in as-cast and thermo-mechanical processed, recrystallized states (XRD and SEM) in order to be used as candidate material for implant applications. Its long-term interactions with Ringer-Brown and Ringer solutions of different pH values and its cytocompatibility were determined. The thermo-mechanically processed alloy has nobler electrochemical behaviour than as-cast alloy due to finer microstructure obtained after the applied treatment. Corrosion and ion release rates presented the lowest values for the treated alloy. Nyquist and Bode plots displayed higher impedance values and phase angles for the processed alloy, denoting a more protective passive film. SEM micrographs revealed depositions from solutions that contain calcium, phosphorous and oxygen ions (EDX analysis), namely calcium phosphate. An electric equivalent circuit with two time constants was modelled. Cell culture experiments with MC3T3-E1 pre-osteoblasts demonstrated that thermo-mechanically processed Ti-25Ta-5Zr alloy supports a better cell adhesion and spreading, and enhanced cell proliferation. Altogether, these data indicate that thermo-mechanical treatment endows the alloy with improved anticorrosion and biological performances.

  14. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen.

    PubMed

    Han, Lu; Liu, Cheng-Mei; Dong, Shi-Lei; Du, Cai-Xia; Zhang, Xiao-Yong; Li, Lu-Hai; Wei, Yen

    2017-01-15

    Electrode materials play a vital role in the development of electrochemical immunosensors (EIs), particularly of label-free EIs. In this study, composites containing reduced graphene oxide with silver nanoparticles (rGO/Ag NPs) were synthesized using binary reductants, i.e. hydrazine hydrate and sodium citrate. Due to the fact that graphene oxide (GO) was fully restored to rGO, and rGO stacking was effectively inhibited by insertion of small Ag NPs between the graphene sheets, the electrical conductivity of rGO/Ag NPs composites was significantly improved compared to rGO alone, with an enhancement factor of 346% at 40wt% of rGO. Moreover, the conducting path between rGO and Ag NPs formed because the structural defects in rGO were effectively repaired by decoration with Ag NPs. Subsequently, based on a screen-printed three-electrode system, a label-free EI for detecting prostate-specific antigen (PSA) was constructed using rGO/Ag NPs composites as a support material. The fabricated EIs demonstrated a wide linear response range (1.0-1000ng/ml), low detection limit (0.01ng/ml) and excellent specificity, reproducibility and stability. Thus, the proposed EIs based on rGO/Ag NPs composites can be easily extended for the ultrasensitive detection of different protein biomarkers.

  15. Enhanced Electrochemical Sensing with Carbon Nanotubes Modified with Bismuth and Magnetic Nanoparticles in a Lab-on-a-Chip

    PubMed Central

    Jothimuthu, Preetha; Hsu, Joe L.; Chen, Robert; Inayathullah, Mohammed; Pothineni, Venkata Raveendra; Jan, Antony; Gurtner, Geoffrey C.

    2016-01-01

    Iron plays an especially important role in human physiological functions and pathological impairments. The superior properties of carbon nanotubes (CNTs) and their modification with bismuth and magnetic nanoparticles as developed in this work have led to an extraordinary and novel material to facilitate ultrasensitive detection in the nanomolar range. Here, we present the development of an electrochemical sensor for detection of ferrous (Fe2+) and ferric (Fe3+) iron by means of CNTs modified with bismuth and magnetic nanoparticles for higher sensitivity of detection. The sensor fabrication includes microfabrication methodologies, soft lithography, and electrodeposition. Cyclic voltammetry and differential pulse voltammetry are used for the electroanalytical studies and detection of the ions in samples. The sensor has a dynamic range of detection from 0.01 nm to 10 mm. The performance of the sensor with modified CNTs was explored for sensitivity and specificity. CNTs, modified with bismuth and magnetic nanoparticles by means of electrodeposition, enhanced the detection limit significantly down to 0.01 nm. PMID:27857882

  16. Ultrasensitive electrochemical detection of DNA hybridization using Au/Fe3O4 magnetic composites combined with silver enhancement.

    PubMed

    Bai, Yu-Hui; Li, Jin-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2010-07-01

    A novel method is described for the highly effective amplifying electrochemical response of DNA based on oligonucleotides functionalized with Au/Fe(3)O(4) nanocomposites by the aid of silver (Ag) enhancement. Via electrostatic layer-by-layer (LBL) assembly, the prepared Fe(3)O(4) nanoparticles form nano-clusters coated with a bilayer composed of polystyrene sulfonate sodium salt (PSS) and poly(diallyldimethylammonium chloride) (PDDA), which are in favor of adsorbing lots of gold nanoparticles (AuNPs) on the surface. The application of magnetic Fe(3)O(4) made the procedures much more simple, convenient and feasible. The resulting composites were then used as labels via the Au-S bond for the DNA hybridization, followed by catalytic deposition of silver on the gold tags. Such an assay is then combined with a sensitive anodic stripping voltammetry (ASV) measurement of multiple silver nanoparticle tracers. A 27-mer sequence DNA target is detected at a glassy carbon (GC) electrode with a detection limit down to ca. 100 aM, which is 800 times lower than that obtained using gold nanoparticles only as labels in the control experiments. This Fe(3)O(4)/PSS/PDDA/Au composite offers a great promising future for the ultrasensitive detection of other biorecognition events.

  17. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Mosavati, Negar; Salley, Steven O.; Ng, K. Y. Simon

    2017-02-01

    The Lithium Sulfur (Li-S) battery system is one of the most promising candidates for electric vehicle applications due to its higher energy density when compared to conventional lithium ion batteries. However, there are some challenges facing Li-S battery commercialization, such as: low active material utilization, high self-discharge rate, and high rate of capacity fade. In this work, a series of transition metal nitrides: Tungsten nitride (WN), Molybdenum Nitride (Mo2N), and Vanadium Nitride (VN) was investigated as cathode materials for lithium polysulfide conversion reactions. Capacities of 697, 569, and 264 mAh g-1 were observed for WN, Mo2N, VN, respectively, with 8 mg cm-2 loading, after 100 cycles at a 0.1 C rate. WN higher electrochemical performance may be attributed to a strong reversible reaction between nitrides and polysulfide, which retains the sulfur species on the electrode surface, and minimizes the active material and surface area loss. X-ray photoelectron spectroscopy (XPS) analysis was performed to gain a better understanding of the mechanism underlying each metal nitride redox reactions.

  18. Electrochemical, catalytic and antimicrobial activity of N-functionalized tetraazamacrocyclic binuclear nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Prabu, R.; Vijayaraj, A.; Suresh, R.; Shenbhagaraman, R.; Kaviyarasan, V.; Narayanan, V.

    2011-02-01

    The five binuclear nickel(II) complexes have been synthesized by the Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclo-tetradecane (PC) with appropriate aliphatic diamines and nickel(II) perchlorate. All the five complexes were characterized by elemental and spectral analysis. The electronic spectra of the complexes show three d-d transition in the range of 550-1055 nm due to 3A 2g → 3T 2g(F), 3A 2g → 3T 1g(F) and 3A 2g → 3T 1g(P). These spin allowed electronic transitions are characteristic of an octahedral Ni 2+ center. Electrochemical studies of the complexes show two irreversible one electron reduction waves at cathodic region. The reduction potential of the complexes shifts towards anodically upon increasing the chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves at anodic region. The oxidation potential of the complexes shift towards anodically upon increasing the chain length of the macrocyclic ring. The catalytic activities of the complexes were observed to be increase with increase the macrocyclic ring size. The observed rate constant values for the catalytic hydrolysis of 4-nitrophenyl phosphate are in the range of 5.85 × 10 -3 to 9.14 × 10 -3 min -1. All the complexes were screened for antimicrobial activity.

  19. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions.

    PubMed

    Mueller, David N; Machala, Michael L; Bluhm, Hendrik; Chueh, William C

    2015-01-19

    Surface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions. In contrast to the conventional view that the transition metal cations are the dominant redox-active centres, we find that the oxygen anions near the surface are a significant redox partner to molecular oxygen due to the strong hybridization between oxygen 2p and transition metal 3d electronic states. We propose that a narrow electronic state of significant oxygen 2p character near the Fermi level exchanges electrons with the oxygen adsorbates. This result highlights the importance of surface anion-redox chemistry in oxygen-deficient transition-metal oxides.

  20. Electrochemical assay of α-glucosidase activity and the inhibitor screening in cell medium.

    PubMed

    Zhang, Juan; Liu, Ying; Wang, Xiaonan; Chen, Yangyang; Li, Genxi

    2015-12-15

    An electrochemical method is established in this work for the assay of α-glucosidase activity and the inhibitor screening through one-step displacement reaction, which can be directly used in cell medium. The displacement reaction can be achieved via strong binding of 4-aminophenyl-α-D-glucopyranoside (pAPG)/magnetic nanoparticles (MNPs) to pyrene boric acid (PBA) immobilized on the surface of graphite electrode (GE), compared to that of dopamine (DA)/sliver nanoparticles (AgNPs). Since α-glucosidase can specifically catalyze MNPs/pAPG into MNPs/pAP which has no binding capacity with PBA, the activity of both isolated and membrane bound enzyme can be well evaluated by using this proposed method. Meanwhile, signal amplification can be accomplished via the immobilization of DA at the outer layer of AgNPs, and the accuracy can be strengthened through magnetic separation. Moreover, this method can also be utilized for inhibitor screening not only in the medium containing the enzyme but also in cell medium. With good precision and accuracy, it may be extended to other proteases and their inhibitors as well.

  1. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    PubMed

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  2. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    NASA Astrophysics Data System (ADS)

    Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.

    2011-12-01

    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.

  3. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors.

    PubMed

    Pandey, Gaind P; Liu, Tao; Brown, Emery; Yang, Yiqun; Li, Yonghui; Sun, Xiuzhi Susan; Fang, Yueping; Li, Jun

    2016-04-13

    Mesoporous hybrids of V2O5 nanoparticles anchored on reduced graphene oxide (rGO) have been synthesized by slow hydrolysis of vanadium oxytriisopropoxide using a two-step solvothermal method followed by vacuum annealing. The hybrid material possesses a hierarchical structure with 20-30 nm V2O5 nanoparticles uniformly grown on rGO nanosheets, leading to a high surface area with mesoscale porosity. Such hybrid materials present significantly improved electronic conductivity and fast electrolyte ion diffusion, which synergistically enhance the electrical energy storage performance. Symmetrical electrochemical capacitors with two rGO-V2O5 hybrid electrodes show excellent cycling stability, good rate capability, and a high specific capacitance up to ∼466 F g(-1) (regarding the total mass of V2O5) in a neutral aqueous electrolyte (1.0 M Na2SO4). When used as the cathode in lithium-ion batteries, the rGO-V2O5 hybrid demonstrates excellent cycling stability and power capability, able to deliver a specific capacity of 295, 220, and 132 mAh g(-1) (regarding the mass of V2O5) at a rate of C/9, 1C, and 10C, respectively. The value at C/9 rate matches the full theoretical capacity of V2O5 for reversible 2 Li(+) insertion/extraction between 4.0 and 2.0 V (vs Li/Li(+)). It retains ∼83% of the discharge capacity after 150 cycles at 1C rate, with only 0.12% decrease per cycle. The enhanced performance in electrical energy storage reveals the effectiveness of rGO as the structure template and more conductive electron pathway in the hybrid material to overcome the intrinsic limits of single-phase V2O5 materials.

  4. Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence.

    PubMed

    Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu

    2017-02-21

    Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.

  5. Visible-light-driven Bi 2 O 3 /WO 3 composites with enhanced photocatalytic activity

    DOE PAGES

    Adhikari, Shiba P.; Dean, Hunter; Hood, Zachary D.; ...

    2015-10-19

    Semiconductor heterojunctions (composites) have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from electron–hole recombination and narrow photo-response range. We prepared a novel visible-light-driven Bi2O3/WO3 composite photocatalyst by hydrothermal synthesis. The composite was characterized by scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy (EIS) to better understand the structures, compositions, morphologies and optical properties. Bi2O3/WO3 heterojunction was found to exhibit significantly higher photocatalytic activity towards the decomposition of Rhodaminemore » B (RhB) and 4-nitroaniline (4-NA) under visible light irradiation compared to that of Bi2O3 and WO3. A tentative mechanism for the enhanced photocatalytic activity of the heterostructured composite is discussed based on observed activity, band position calculations, photoluminescence, and electrochemical impedance data. Our study provides a new strategy for the design of composite materials with enhanced visible light photocatalytic performance.« less

  6. ELECTROCHEMICAL DEGRADATION OF POLYCHLOROBIPHENYLS

    EPA Science Inventory

    Granular graphite is an ideal conductive material for electrochemical reduction technology applications in the field. Granular graphite was used to enhance the transfer of chlorinated aliphatic compounds in saturated, low permeability soils by electroosmosis. It was also used to ...

  7. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  8. Using liquid metal alloy (EGaIn) to electrochemically enhance SS stimulation electrodes for biobotic applications.

    PubMed

    Latif, Tahmid; Fengyuan Gong; Dickey, Michael; Sichitiu, Mihail; Bozkurt, Alper

    2016-08-01

    Biobotics is an emerging and useful advent in the field of robotics which harnesses the mechanical power of live invertebrates and benefits from them as "working" animals. Most biobotic applications rely on neural or muscular stimulation through implanted electrodes for achieving direct control of their locomotory behavior. Degradation of stimulation efficiency is often noticed through extended usage, partly owing to incompatibility of implanted electrodes to the application. Our previous achievements in biobotics utilized commercially available stainless steel wires as stimulation electrodes due to its availability and lower cost. In this study, we look into the potential of using a liquid metal alloy, eutectic gallium-indium (EGaIn), as a means of enhancing properties of the stainless steel electrodes and its first time consideration as in vivo neurostimulation electrodes. We present in vitro analysis of the electrodes in terms of the electrolyte-electrode interface impedance and interface equivalent circuit model.

  9. The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor.

    PubMed

    Zhou, Minghua; Lei, Lecheng

    2006-11-01

    Three-phase electrochemical reactor is still far from concerned in wastewater treatment in order to improve electrochemical treatment efficiency especially when the concentrations of organic pollutants are relatively low. This paper presents a novel process integrated electrocatalysis and activated carbon (AC) adsorption in a fluidization mode for p-nitrophenol (PNP) abatement, with special attention on probing the role of AC. Sparged by external gas (e.g., O(2)), the electrochemical reactor is actually a three-phase (gas, liquid, solid) reactor. By this one-step integrated process, the treatment efficiency was significantly promoted where PNP of initial concentration 150 mg l(-1) could be completely removed in no more than 30 min and it kept good performance for five consecutive runs, showing potential application for environmental remediation. In the integrated process, AC is in a dynamic state of adsorption and in situ electrochemical regeneration by the attack of electrogenerated hydroxyl radical on organic pollutants. When oxygen is sparged into the process, hydrogen peroxide can be formed by cathodic reduction and then decomposed by catalytic reaction on AC, which further promotes organic pollutants degradation.

  10. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis.

    PubMed

    Pathirathna, Pavithra; Samaranayake, Srimal; Atcherley, Christopher W; Parent, Kate L; Heien, Michael L; McElmurry, Shawn P; Hashemi, Parastoo

    2014-09-21

    Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.

  11. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  12. Phanerochaete mutants with enhanced ligninolytic activity

    SciTech Connect

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1993-06-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organopollutants in soils and aqueous media. Although some of the organic compounds are degraded under nonligninolytic conditions, most are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, biopulping, biobleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated or are hyperproducers or supersecretors of key enzymes under enriched conditions. Through ultraviolet-light and gamma-rays mutagenesis we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants produced 272 units (U) of lignin peroxidases enzyme activity per liter after nine days under high nitrogen. The mutant and the parent strains produced up to 54 U/L and 62 U/L, respectively, of the enzyme activity under low-nitrogen growth conditions during this period. In some experiments the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 days.

  13. How Soluble GARP Enhances TGFβ Activation

    PubMed Central

    Fridrich, Sven; Hahn, Susanne A.; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo. PMID:27054568

  14. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples.

  15. Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid

    PubMed Central

    Zhang, Yong; Li, Jiaojiao; Wang, Zhiling; Ma, Hongmin; Wu, Dan; Cheng, Qianhe; Wei, Qin

    2016-01-01

    The improvement of sensitivity of electrochemical immunosensor can be achieved via two approaches: increasing loading capacities of antibody and enlarging responding electrochemical signals. Based on these, CoFe2O4/graphene nanohybrid (CoFe2O4/rGO) as support was firstly used for preparing electrochemical biosensor, and with the addition of Au@Pd nanorods (NRs) as mimic enzyme, a label-free electrochemical immunosensor was prepared. Due to the high electrical conductivity, open porous structure and large loading capacities of CoFe2O4/rGO, the enhanced signal amplification between Au@Pd NRs and CoFe2O4/rGO was studied. Fabricated as a novel substrate, the prepared immunosensor had a good analytical performance and exhibited a wide linear range from 0.01 to 18.0 ng·mL−1 with a low detection limit of 3.3 pg·mL−1 for estradiol, which was succeeded in applying to detect estradiol in the natural water. PMID:26987503

  16. Aggregation of Individual Sensing Units for Signal Accumulation: Conversion of Liquid-Phase Colorimetric Assay into Enhanced Surface-Tethered Electrochemical Analysis.

    PubMed

    Wei, Tianxiang; Dong, Tingting; Wang, Zhaoyin; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-07-22

    A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+) determination. Through a specific T-Hg(2+)-T coordination, the validation system based on functionalized sensing units not only can perform well in a colorimetric Hg(2+) assay, but also can be developed into a more sensitive and stable electrochemical Hg(2+) sensor. In electrochemical analysis, the simple principle of analyte-induced aggregation of MNs can be used as a dual signal amplification strategy for significantly improving the detection sensitivity. More importantly, those numerous and diverse colorimetric assays that rely on the target-induced aggregation of MNs can be augmented to satisfy the ambitious demands of sensitive analysis by converting them into electrochemical assays via this approach.

  17. New metal based drugs: Spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties

    NASA Astrophysics Data System (ADS)

    Çeşme, Mustafa; Gölcü, Aysegul; Demirtaş, Ibrahim

    2015-01-01

    The NSAID piroxicam (PRX) drug was used for complex formation reactions with Cu(II), Zn(II) and Pt(II) metal salts have been synthesized. Then, these complexes have been characterized by spectroscopic and analytical techniques. Thermal behavior of the complexes were also investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSFSdsDNA) with UV spectroscopy. UV studies of the interaction of the PRX and its complexes with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. The morphology of the FSdsDNA, PRX, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with FSdsDNA has been studied by means of differential pulse voltammetry (DPV) at FSdsDNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. The effect of proliferation PRX and complexes were examined on the HeLA and C6 cells using real-time cell analyzer with four different concentrations.

  18. The new generation drug candidate molecules: Spectral, electrochemical, DNA-binding and anticancer activity properties

    NASA Astrophysics Data System (ADS)

    Gölcü, Ayşegül; Muslu, Harun; Kılıçaslan, Derya; Çeşme, Mustafa; Eren, Özge; Ataş, Fatma; Demirtaş, İbrahim

    2016-09-01

    The new generation drug candidate molecules [Cu(5-Fu)2Cl2H2O] (NGDCM1) and [Zn(5-Fu)2(CH3COO)2] (NGDCM2) were obtained from the reaction of copper(II) and zinc(II) salts with the anticancer drug 5-fluoracil (5-Fu). These compounds have been characterized by spectroscopic and analytical techniques. Thermal behavior of the compounds were also investigated. The electrochemical properties of the compounds have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the NGDCM1 and NGDCM2 has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSdsDNA) with UV spectroscopy. UV studies of the interaction of the 5-Fu and metal derivatives with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. Thermal decomposition of the compounds lead to the formation of CuO and ZnO as final products. The effect of proliferation 5-Fu, NGDCM1 and NGDCM2 were examined on the HeLa cells using real-time cell analyzer with three different concentrations.

  19. Electrochemical release testing of nickel-titanium orthodontic wires in artificial saliva using thin layer activation.

    PubMed

    Cioffi, M; Gilliland, D; Ceccone, G; Chiesa, R; Cigada, A

    2005-11-01

    Alloys based on Ni-Ti intermetallics generally exhibit special shape memory and pseudoelastic properties, which make them desirable for use in the dental field as orthodontic wires. The possibility of nickel release from these materials is of high concern, because the allergenicity of this element. The aim of this study was to test pseudoelastic Ni-Ti wires in simulated physiological conditions, investigating the combined effect of strain and fluoridated media: the wires were examined both under strained (5% tensile strain) and unstrained conditions, in fluoridated artificial saliva at 37 degrees C. Real time electrochemical nickel release testing was performed using a novel application of a radiotracer based method, thin layer activation (TLA). TLA was validated, in unstrained conditions, against adsorptive stripping voltammetry methodology. Control tests were also performed in non-fluoridated artificial saliva. From our research it transpired that the corrosion behaviour of Ni-Ti alloy is highly affected by the fluoride content, showing a release of 4.79+/-0.10 microg/cm2/day, but, differently from other biomaterials, it does not seem to be affected by elastic tensile strain. The application of the TLA method in the biomedical field appears a suitable technique to monitor in real time the corrosion behaviour of biomedical devices.

  20. Kinetic enhancement in nanoscale electrochemical systems caused by non-normal distributions of the electrode potential

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir; Krischer, Katharina

    2011-06-01

    We have recently shown [Proc. Natl. Acad. Sci. U.S.A. 107, 4528 (2010)] that the discreteness and stochasticity of an electron transfer event on a resistively coupled nanoelectrode causes mesoscopic fluctuations in time of the electrode potential. These fluctuations give rise to a time-average faradaic current density substantially larger than in the macroscopic limit. The deviations result to a large extent from the potentiostatic control, which imposes a constraint on the evolution of the electrode potential that leads to non-normal distributions. The degree of freedom of the electrode potential requires a resistance between nanoelectrode and metallic support. In this article, we study the dependence of the mesoscopic stochastic dynamics on this resistance (assumed to be ohmic). We show that the enhancement of the reaction rate vanishes in both limits, zero and infinite resistance. The distribution of the electrode potential continuously transforms from a normal distribution at infinite resistance (the galvanostatic limit), through a more and more peaked distribution with increasingly important rare events to the deterministic behavior at zero resistance.

  1. Electrochemical performance enhancement in MnCo2O4 nanoflake/graphene nanoplatelets composite

    NASA Astrophysics Data System (ADS)

    Al-Rubaye, Shaymaa; Rajagopalan, Ranjusha; Subramaniyam, Chandrasekar M.; Yu, Zheyin; Dou, Shi Xue; Cheng, Zhenxiang

    2016-08-01

    The synthesis and characterization of MnCo2O4 nanoflake/graphene nanoplatelets composite is reported here for high performance supercapacitor electrode applications. The MnCo2O4 nanoflakes with different morphologies were synthesized successfully via a hydrothermal technique by changing the amount of NH4F. The MnCo2O4 nanoflakes in combination with the graphene nanoplatelets was deposited on Ni foam using an electrophoretic deposition technique. The as prepared composite electrode showed superior performance in terms of specific capacitance and cycling stability, as compared to the pristine MnCo2O4 system, due to the enhanced electronic conductivity resulted from bond formation between carbon and MnCo2O4. A high specific capacitance of ∼1268 F g-1 was observed at 1 mV s-1 scan rate. Noteworthy cycling stability was observed even at the end of 10,000 cycles of consecutive charging and discharging at a current density of 7.81Ag-1.

  2. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy.

    PubMed

    Huo, Sheng-Juan; Xue, Xiao-Kang; Li, Qiao-Xia; Xu, Su-Fan; Cai, Wen-Bin

    2006-12-28

    Ag nanoparticle films (simplified as nanofilms hereafter) on Si for electrochemical ATR surface enhanced IR absorption spectroscopy (ATR-SEIRAS) have been successfully fabricated by using chemical deposition, which incorporates initial embedding of Ag seeds on the reflecting plane of an ATR Si prism and subsequent chemical plating of conductive and SEIRA-active Ag nanofilms. Two alternative methods for embedding initial Ag seeds have been developed: one is based on self-assembly of Ag colloids on an aminosilanized Si surface, whereas the other the reduction of Ag+ in a HF-containing solution. A modified silver-mirror reaction was employed for further growth of Ag seeds into Ag nanofilm electrodes with a theoretically average thickness of 40-50 nm. Both Ag seeds and as-deposited Ag nanofilms display island structure morphologies facilitating SEIRA, as revealed by AFM imaging. The cyclic voltammetric feature of the as-prepared Ag nanofilm electrodes is close to that of a polycrystalline bulk Ag electrode. With thiocyanate as a surface probe, enhancement factors of ca. 50-80 were estimated for the as-deposited Ag nanofilms as compared to a mechanically polished Ag electrode in the conventional IRAS after reasonable calibration of surface roughness factor, incident angles, surface coverage, and polarization states. As a preliminary example for extended application, the pyridine adsorption configuration at an as-deposited Ag electrode was re-examined by ATR-SEIRAS. The results revealed that pyridine molecules are bound via N end to the Ag electrode with its ring plane perpendicular or slightly tilted to the local surface without rotating its C2 axis about the surface normal, consistent with the conclusion drawn by SERS in the literature.

  3. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media

    PubMed Central

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-01-01

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media. PMID:26310526

  4. Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Moon, San; Jung, Young Hwa; Kim, Do Kyung

    2015-10-01

    Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g-1), the lithium-sulfur (Li-S) battery has been considered a promising candidate for future high-energy battery applications. Li-S batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The encapsulation of sulfur with various conductive materials has addressed this issue to some extent. Nevertheless, most approaches still present partial encapsulation of sulfur and moreover require a large quantity of conductive material (typically, >30 wt%), making the use of sulfur less desirable from the viewpoint of capacity. Here, we address these chronic issues of Li-S cells by developing a graphene oxide-sulfur composite with a thin crosslinked polyaniline (PANI) layer. Graphene oxide nanosheets with large surface area, high conductivity and a uniform conductive PANI layer, which are synthesized by a layer-by-layer method, have a synergetic interaction with a large portion of the sulfur in the active material. Furthermore, a simple crosslinking process efficiently prevents polysulfide dissolution, resulting in unprecedented electrochemical performance, even with a high sulfur content (∼75%): a high capacity retention of ∼80% is observed, in addition to 97.53% of the average Coulombic efficiency being retained after 500 cycles. The performance we demonstrate represents an advance in the field of lithium-sulfur batteries for applications such as power tools.

  5. Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay.

    PubMed

    Thorn, R M S; Robinson, G M; Reynolds, D M

    2013-05-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces.

  6. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  7. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity.

    PubMed

    Jahangiri, Elham; Seiwert, Bettina; Reemtsma, Thorsten; Schlosser, Dietmar

    2017-02-01

    Metabolite formation from radical-based oxidation of the environmental pollutant triclosan (TCS) was compared using an ascomycete (Phoma sp. UHH 5-1-03) and a basidiomycete (Trametes versicolor) laccase, laccase-redox mediator systems, and electrochemical oxidation (EC). Laccase oxidation predominantly yielded TCS di- and trimers, but notably also caused TCS ether bond cleavage. The latter was more prominent during EC-catalysed TCS oxidation, which generally resulted in a broader and more divergent product spectrum. By contrast, only quantitative but not qualitative differences in TCS metabolite formation were observed for the two laccases. Application of the presumable natural laccase redox mediator syringaldehyde (SYD) shifted the TCS-transforming reactions of laccase systems from oligomerization more towards ether bond cleavage. However, the observed rapid removal of SYD from reaction systems caused by predominant adduct formation from SYD and TCS, and concomitant conversion of SYD into 2,6-dimethoxy-1,4-benzoquinone (DMBQ) clearly demonstrates that SYD does not function as a "true" laccase redox mediator in the sense of being recycled during TCS oxidation. Laccase treatment of TCS without SYD decreased the anti-bacterial TCS activity more than treatment employing SYD in addition, indicating that SYD and/or its transformation products contribute to bacterial toxicity. DMBQ was found to be about 80% more active in a bacterial growth inhibition test than its parent compound SYD in terms of IC20 values. These observations establish DMBQ as a potential cause of toxicity effects of SYD-laccase systems. They further illustrate that a natural origin of a redox mediator does not automatically qualify its use as environmentally benign or non-hazardous.

  8. NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries

    SciTech Connect

    Cao, F.; Pan, G.X.; Tang, P.S.; Chen, H.F.

    2013-03-15

    Graphical abstract: Self-supported NiO nanowall array is fabricated by a facile hydrothermal synthesis method and exhibits noticeable Li ion battery performance with good cycle life and high capacity. Highlights: ► NiO nanowall array is prepared by a hydrothermal synthesis method. ► NiO nanowall array with high capacity as anode material for Li ion battery. ► Nanowall array structure is favorable for fast ion/electron transfer. - Abstract: Free-standing quasi-single-crystalline NiO nanowall array is successfully fabricated via a simple hydrothermal synthesis method. The as-prepared NiO film exhibits a highly porous nanowall structure composed of many interconnected nanoflakes with thicknesses of ∼20 nm. The NiO nanowalls arrange vertically to the substrate resulting in the formation of extended porous net-like structure with pores of 30–300 nm. As anode material for lithium ion batteries, the quasi-single-crystalline NiO nanowall array exhibits pretty good electrochemical performances with high capacity, weaker polarization, higher coulombic efficiency and better cycling performance as compared to the dense polycrystalline NiO film. The quasi-single-crystalline NiO nanowall array presents an initial coulombic efficiency of 76% and good cycling life with a capacity of 564 mAh g{sup −1} at 0.5 A g{sup −1} after 50 cycles, higher than that of the dense polycrystalline NiO film (358 mAh g{sup −1}). The enhanced performance is due to the unique nanowall array structure providing faster ion/electron transport and better morphological stability.

  9. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10.

    PubMed

    Strauss, Florian; Rousse, Gwenaëlle; Alves Dalla Corte, Daniel; Ben Hassine, Mohamed; Saubanère, Matthieu; Tang, Mingxue; Vezin, Hervé; Courty, Matthieu; Dominko, Robert; Tarascon, Jean-Marie

    2016-06-01

    In the search for new cathode materials for Li-ion batteries, borate (BO3(3-)) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O5(4-) based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (∼0.3 Li(+)) in a potential window ranging from 2.5 to 4.5 V vs. Li(+)/Li(0). We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li(+)/Li(0) is associated with the Cu(3+)/Cu(2+) redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li(+)/Li(0) which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ∼1.4 mS cm(-1) at 500 °C.

  10. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    SciTech Connect

    Watkins, K.G.; Steen, W.M.; Manna, I.

    1996-12-31

    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire. A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.

  11. Electrochemical cell

    DOEpatents

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  12. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  13. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome

    PubMed Central

    Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.

    2017-01-01

    In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291

  14. [Biological activity of electrochemically activated solutions obtained in a diaphragm electrolyser].

    PubMed

    Miroshnikov, A I; Konovalov, V F; Serikov, I S

    2006-01-01

    The biological activity of the catholyte and anolyte of bidistilled water in experiments with the germination of wheat grains in the period from March to May has been studied. The activity of solutions, which was characterized by the grain germination index, was high at the beginning of the period, then it gradually decreased and was equal to zero at the middle of the period; at the end of the period it gradually increased almost to initial values. It has been established that the effectiveness of bidistilled water anolyte was as a rule higher than that of catholyte throughout the observation period. At the beginning and end, the stimulating effect of anolyte was 5-5.5 times greater than that of catholyte. The seasonal changes in the biological activity of M 9 medium catholyte were compared with those of bidistilled water anolyte and catholyte. The stimulating effect of M 9 catholyte was estimated by changes in the growth of E. coli cells. The stimulating effect, which was estimated from an increase in the optical density of cell suspension in the initial period at a cultivation temperature of 20 degrees C was 55-60% relative to control (untreated medium). Then it decreased almost to zero in the middle of the period to increase again approximately to the initial values. The assumption has been made that the physicochemical causes of the influence of catholyte and anolyte of bidistilled water on wheat grains and of the culture medium catholyte on E. coli cells are of different nature.

  15. The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification

    NASA Astrophysics Data System (ADS)

    Hui, Kai Hwee; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin; Bonanni, Alessandra

    2015-05-01

    Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry.Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for

  16. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    PubMed Central

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  17. Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications.

    PubMed

    Yu, Xin-Yao; Yao, Xian-Zhi; Luo, Tao; Jia, Yong; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-03-12

    A facile synthesis of novel urchin-like NiCo2O4 hierarchical hollow microspheres has been developed based on a template-free solvothermal and subsequent calcination method. The growth process of NiCo2O4 hollow microsphere precursors has been investigated, and a plausible mechanism was proposed. Because of their unique structure and high specific surface area, these NiCo2O4 hollow microspheres displayed enhanced electrochemical properties in methanol electrooxidation and determination of heavy-metal ions compared with solid urchin-like NiCo2O4 microspheres, Co3O4, and NiO microspheres. The good electrochemical performances suggested that these unique hierarchical NiCo2O4 hollow microspheres could be promising materials for energy and environmentally related applications.

  18. Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers.

    PubMed

    Tedim, J; Poznyak, S K; Kuznetsova, A; Raps, D; Hack, T; Zheludkevich, M L; Ferreira, M G S

    2010-05-01

    The present work reports the synthesis of layered double hydroxides (LDHs) nanocontainers loaded with different corrosion inhibitors (vanadate, phosphate, and 2-mercaptobenzothiazolate) and the characterization of the resulting pigments by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The anticorrosion activity of these nanocontainers with respect to aluminum alloy AA2024 was investigated by electrochemical impedance spectroscopy (EIS). The bare metallic substrates were immersed in dispersions of nanocontainers in sodium chloride solution and tested to understand the inhibition mechanisms and efficiency. The nanocontainers were also incorporated into commercial coatings used for aeronautical applications to study the active corrosion protection properties in systems of industrial relevance. The results show that an enhancement of the active protection effect can be reached when nanocontainers loaded with different inhibitors are combined in the same protective coating system.

  19. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    SciTech Connect

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advances in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.

  20. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGES

    Zhu, Chengzhou; Yang, Guohai; Li, He; ...

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  1. Eastward electrojet enhancements during substorm activity

    NASA Astrophysics Data System (ADS)

    D'Onofrio, M.; Partamies, N.; Tanskanen, E.

    2014-11-01

    In this study, we use a semi-automatic routine to identify negative and positive bays in the IMAGE magnetometer data during seven months in 2003. The IMAGE stations have been divided into three latitude regions to monitor the time evolution and temporal relationship between the regions during substorms. In particular, we focus on the events where both positive and negative ground magnetic deflections are observed in different latitude regions. We found 101 events in total. We examine separately a subset of 32 events, for which the local electrojet index values are larger than the global ones, suggesting that the strongest activity at that time takes place within or very close to the local time sector of IMAGE. We systematically analyze the temporal difference and the intensity of the positive and negative bays. Our results show that the magnitude of the positive bay is on average about half of that of the negative bay. Two thirds of the positive bays within the IMAGE network peak earlier than the negative bays. Because the positive and negative bays occur meridionally very close together, we suggest that the enhancements of the westward current at the poleward part of the auroral oval and the eastward current within the return flow are very tightly coupled through field-aligned currents and closing horizontal currents. The substorm current system appears as a superposition on the large-scale current pattern in the vicinity of the evening sector shear flow region.

  2. Enhanced-performance active fiber composites

    NASA Astrophysics Data System (ADS)

    Gentilman, Richard L.; McNeal, Kelley; Schmidt, Gerald E.; Pizzochero, Alessandro E.; Rossetti, George A., Jr.

    2003-08-01

    Active fiber composites (AFCs) find applications in a variety of industrial, commercial, and aerospace markets as both actuators and sensors. Among the key attributes of AFCs relative to conventional monolithic piezoceramic actuators are high strain energy density, unidirectional response, conformability, and robustness. Recently, performance enhancements in AFCs have been demonstrated through the use of a modified injection molding process to produce piezoceramic modules with multiple identical fibers of a uniform rectangular cross section. AFC actuators made from Type II PZT fiber modules exhibit free micro-strains of 1830 +/- 30 ppm at a peak-peak E-field drive of 26.1 kV/cm, and show exceptional part-to-part uniformity. In addition, AFCs made from injection molded PMN-PT fiber modules show a low-field d33 of 650 pm/V. The successful incorporation of PMN-PT materials into AFCs also demonstrates the viability of using highly textured ceramic PMN-PT piezofibers, for which even larger increases in strain response are expected.

  3. Stiff substrates enhance cultured neuronal network activity.

    PubMed

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  4. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    PubMed

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment.

  5. Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface.

    PubMed

    Teixeira, Carlos A; Giordano, Gabriela F; Beltrame, Maisa B; Vieira, Luis C S; Gobbi, Angelo L; Lima, Renato S

    2016-11-15

    The contamination, passivation, or fouling of the detection electrodes is a serious problem undermining the analytical performance of electroanalytical devices. The methods to regenerate the electrochemical activity of the solid electrodes involve mechanical, physical, or chemical surface treatments that usually add operational time, complexity, chemicals, and further instrumental requirements to the analysis. In this paper, we describe for the first time a reproducible method for renewing solid electrodes whenever their morphology or composition are nonspecifically changed without any surface treatment. These renewable electrodes are the closest analogue to the mercury drop electrodes. Our approach was applied in microfluidics, where the downsides related to nonspecific modifications of the electrode are more critical. The renewal consisted in manually sliding metal-coated microwires across a channel with the sample. For this purpose, the chip was composed of a single piece of polydimethylsiloxane (PDMS) with three parallel channels interconnected to one perpendicular and top channel. The microwires were inserted in each one of the parallel channels acting as working, counter, and pseudoreference electrodes for voltammetry. This assembly allowed the renewal of all the three electrodes by simply pulling the microwires. The absence of any interfaces in the chips and the elastomeric nature of the PDMS allowed us to pull the microwires without the occurrence of leakages for the electrode channels even at harsh flow rates of up to 40.0 mL min(-1). We expect this paper can assist the researchers to develop new microfluidic platforms that eliminate any steps of electrode cleaning, representing a powerful alternative for precise and robust analyses to real samples.

  6. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  7. Assessments of the Effect of Increasingly Severe Cathodic Pretreatments on the Electrochemical Activity of Polycrystalline Boron-Doped Diamond Electrodes.

    PubMed

    Brocenschi, Ricardo F; Hammer, Peter; Deslouis, Claude; Rocha-Filho, Romeu C

    2016-05-17

    The electrochemical response of many redox species on boron-doped diamond (BDD) electrodes can be strongly dependent on the type of chemical termination on their surface, hydrogen (HT-BDD) or oxygen (OT-BDD). For instance, on an HT-BDD electrode the [Fe(CN)6](3-/4-) redox system presents a reversible voltammetric behavior, whereas the oxidation overpotential of ascorbic acid (AA) is significantly decreased. Moreover, the electrochemical activity of BDD electrodes can be significantly affected by electrochemical pretreatments, with cathodic pretreatments (CPTs) leading to redox behaviors associated with HT-BDD. Here we report on the effect of increasingly severe CPTs on the electrochemical activity of a highly doped BDD electrode, assessed with the [Fe(CN)6](3-/4-) and AA redox probes, and on the atomic bonding structure on the BDD surface, assessed by XPS. The hydrogenation level of the BDD surface was increased by CPTs, leading to decreases of the total relative level of oxidation of the BDD surface of up to 36%. Contrary to what is commonly assumed, we show that BDD surfaces do not need to be highly hydrogenated to ensure that a reversible voltammetric behavior is obtained for Fe(CN)6](3-/4-); after a CPT, this was attained even when the total relative level of oxidation on the BDD surface was about 15%. At the same time, the overpotential for AA oxidation was confirmed as being very sensitive to the level of oxidation of the BDD surface, a behavior that might allow the use of AA as a secondary indicator of the relative atomic bonding structure on the BDD surface.

  8. Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity.

    PubMed

    Anik, Ülkü; Tepeli, Yudum; Diouani, Mohamed F

    2016-06-21

    Neuroaminidase (NA) enzyme is a kind of glycoprotein that is found on the influenza A virus. During infection, NA is important for the release of influenza virions from the host cell surface together with viral aggregates. It may also be involved in targeting the virus to respiratory epithelial cells. In this study, a model electrochemical influenza A viral biosensor in which receptor-binding properties have been based on NA was developed for the first time. The biosensor's working principle is based on monitoring the interactions between fetuin A and NA enzyme. The assay was monitored step by step by using electrochemical impedance spectroscopy.

  9. In trans promoter activation by enhancers in transient transfection.

    PubMed

    Smirnov, N A; Akopov, S B; Didych, D A; Nikolaev, L G

    2017-03-01

    Earlier, it was reported that the strong cytomegalovirus enhancer can activate the cytomegalovirus promoter in trans, i.e. as a separate plasmid co-transfected with a promoter-reporter gene construct. Here we demonstrate that the ability of enhancers to activate promoters in trans in transient transfection experiments is a property of not only viral regulatory elements but also of various genomic enhancers and promoters. Enhancer-promoter activation in trans is promoter- and cell type-specific, and accompanied by physical interaction between promoter and enhancer as revealed by chromosome conformation capture assays. Thus, promoter activation in transient co-transfection of promoters and enhancers shares a number of important traits with long-distance promoter activation by enhancers in living cells and may therefore serve as a model of this fundamental cellular process.

  10. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials.

    PubMed

    Kim, Dae-wook; Li, Oi Lun; Saito, Nagahiro

    2015-01-07

    Heteroatom-doped carbon matrices have been attracting significant attention due to their superior electrochemical stability, light weight and low cost. Hence, in this study, various types of heteroatom, including single dopants of N, B and P and multiple dopants of B-N and P-N with a carbon matrix were synthesized by an innovative method named the solution plasma process. The heteroatom was doped into the carbon matrix during the discharge process by continuous dissociation and recombination of precursors. The chemical bonding structure, ORR activity and electrochemical performance were compared in detail for each single dopant and multiple dopants. According to the Raman spectra, the carbon structures were deformed by the doped heteroatoms in the carbon matrix. In comparison with N-doped structures (NCNS), the ORR potential of PN-doped structures (PNCNS) was positively shifted from -0.27 V to -0.24 V. It was observed that doping with N decreased the bonding between P and C in the matrix. The multiple doping induced additional active sites for ORR which further enhanced ORR activity and stability. Therefore, PNCNS is a promising metal-free catalyst for ORR at the cathode in a fuel cell.

  11. Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating.

    PubMed

    Qin, CanCan; Cao, JiaLi; Chen, Jun; Dai, GaoLe; Wu, TongFu; Chen, Yanbin; Tang, YueFeng; Li, AiDong; Chen, Yanfeng

    2016-06-21

    LiNi0.6Co0.2Mn0.2O2 cathode material has been surface-modified by coating with ultrathin TiO2via atomic layer deposition (ALD) technology to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathodes for lithium ion batteries. Within the cut-off voltage of 2.5-4.3 V, the coated sample delivers an initial discharge capacity of 187.7 mA h g(-1) at 0.1 C and with a capacity retention about 85.9% after 100 cycles at 1 C, which provides a significant improvement in terms of discharge capacity and cyclability, as compared with those of the bare one. Such enhanced electrochemical performance of the coated sample is ascribed to its high-quality ultrathin coating of amorphous TiO2, which can protect the active material from HF attack, withstand the dissolution of metal ions in the electrode and favor the lithium diffusion of oxide as proved by electrochemical impedance spectroscopy (EIS) tests. TiO2 coating via the ALD process provides a potential approach for battery factories to surface-modify Ni-rich electrode materials so as to realize improvements in electrochemical performance.

  12. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.

    PubMed

    Guo, Ting; Dong, Xiaolei; Shirolkar, Mandar M; Song, Xiao; Wang, Meng; Zhang, Lei; Li, Ming; Wang, Haiqian

    2014-09-24

    The effects of cobalt (Co) addition in the Ni-YSZ anode functional layer (AFL) on the structure and electrochemical performance of solid oxide fuel cells (SOFCs) are investigated. X-ray diffraction (XRD) analyses confirmed that the active metallic phase is a Ni(1-x)Co(x) alloy under the operation conditions of the SOFC. Scanning electron microscopy (SEM) observations indicate that the grain size of Ni(1-x)Co(x) increases with increasing Co content. Thermogravimetric analyses on the reduction of the Ni(1-x)Co(x)O-YSZ powders show that there are two processes: the chemical-reaction-controlled process and the diffusion-controlled process. It is found that the reduction peak corresponding to the chemical-reaction-controlled process in the DTG curves moves toward lower temperatures with increasing Co content, suggesting that the catalytic activity of Ni(1-x)Co(x) is enhanced by the doping of Co. It is observed that the SOFC shows the best performance at x = 0.03, and the corresponding maximum power densities are 445, 651, and 815 mW cm(-2) at 700, 750, and 800 °C, respectively. The dependence of the SOFC performance on the Co content can be attributed to the competing results between the decreased three-phase-boundary length in the AFL and the enhanced catalytic activity of the Ni(1-x)Co(x) phase with increasing Co content.

  13. Reliability enhancement activities for the TANSO interferometer

    NASA Astrophysics Data System (ADS)

    Châteauneuf, François; Soucy, Marc-André; Perron, Gaétan; Lévesque, Luc; Tanii, Jun

    2006-08-01

    The Greenhouse gases Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO II) from orbit. It is a joint project of Japan Aerospace Exploration Agency, the Ministry of Environment (MOE), and the National Institute for Environmental Studies (NIES). JAXA is responsible for the satellite and instrument development, MOE is involved in the instrument development, and NIES is responsible for the satellite data retrieval. It is scheduled to be launched in 2008. As existing ground monitoring stations are limited and still unevenly distributed, the satellite observation has advantages of global and frequent observations. The objective of the mission is in response to COP3 (Kyoto Protocol): Observation of Green House Gases (GHGs) including CO II with 1% relative accuracy in sub-continental spatial resolution and to identify the GHGs source and sink from the data obtained by GOSAT in conjunction with the data from the ground instruments, with simulated models. In order to detect the CO II variation of boundary layers, the technique to measure the column density and the retrieval algorithm to remove cloud and aerosol contamination are investigated. The simultaneous observation of methane (CH 4), which is the second largest contribution molecule, is studied. A Thermal And Near infrared Sensor for carbon Observation (TANSO) based on a Fourier transform spectrometer (FTS) with high optical throughput and spectral resolution is currently under design for the GOSAT mission. This paper presents an overview of the design of the TANSO interferometer as well as key reliability enhancement activities conducted during the design phase.

  14. Dual Signal Amplification Electrochemical Biosensor for Monitoring the Activity and Inhibition of the Alzheimer's Related Protease β-Secretase.

    PubMed

    Qu, Fengli; Yang, Minghui; Rasooly, Avraham

    2016-11-01

    The protease BACE1 (the β-site amyloid precursor protein cleaving enzyme 1) catalyzes the first step in the synthesis of β-amyloids (Aβ), peptides that accumulate in the brain in Alzheimer's disease (AD). Measurement of BACE1 activity is important for the development of BACE1 inhibitors to slow or stop AD. To measure BACE1 cleavage of the electrode-immobilized substrate peptide, we developed a redox-generating hydroxyapatite (HAP) probe which generates electrochemical current by reaction of the nanoparticle with molybdate (MoO4(2-)). The probe combines alkaline phosphatase (ALP) for dual signal amplification and Aβ antibody to bind the probe to the immobilized peptide substrate on the surface of the electrode. We measured the activity of BACE1 at concentrations ranging from 0.25 to 100 U/mL. The use of the dual-signal HAP-ALP probe increased the signal by an order of magnitude compared to HAP-only probe, enabling detection limits as low as 0.1 U/mL. To measure the inhibition of BACE1 activity, the BACE1 inhibitor OM99-2 was added to 25 U/mL of BACE1 in concentrations ranging from 5 to 150 nM. The observed detection limit of inhibition is 10 nM of OM99-2. These results demonstrate the capabilities of this novel biosensor to measure BACE1 activity and inhibitors of BACE1 activity. To the best of our knowledge this is the first report that reaction of HAP nanoparticles with molybdate can generate electrochemical current. This dual signal amplification strategy can be extended to other electrochemical assays and adapted for wide applications.

  15. Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy.

    PubMed

    Munteanu, Sorin; Roger, Jean Paul; Fedala, Yasmina; Amiot, Fabien; Combellas, Catherine; Tessier, Gilles; Kanoufi, Frédéric

    2013-01-01

    The coating of gold (Au) electrode surfaces with nitrophenyl (NP) layers is studied by combination of electrochemical actuation and optical detection. The electrochemical actuation of the reduction of the nitrobenzenediazonium (NBD) precursor is used to generate NP radicals and therefore initiate the electrografting. The electrografting process is followed in situ and in real time by light reflectivity microscopy imaging, allowing for spatio-temporal imaging with sub-micrometer lateral resolution and sub-nanometer thickness sensitivity of the local growth of a transparent organic coating onto a reflecting Au electrode. The interest of the electrochemical actuation resides in its ability to finely control the grafting rate of the NP layer through the electrode potential. Coupling the electrochemical actuation with microscopic imaging of the electrode surface allows quantitative estimates of the local grafting rates and subsequently a real time and in situ mapping of the reacting fluxes of NP radicals on the surface. Over the 2 orders of magnitude range of grafting rates (from 0.04 to 4 nm s(-1)), it is demonstrated that the edge of Au electrodes are grafted -1.3 times more quickly than their centre, illustrating the manifestation of edge-effects on flux distribution at an electrode. A model is proposed to explain the observed edge-effect, it relies on the short lifetime of the intermediate NP radical species.

  16. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    PubMed

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb.

  17. The Significance of Electrochemical Activation Parameters for Surface-Attached Reactants.

    DTIC Science & Technology

    1982-11-18

    interesting 7 8 results for the ferrocene /ferricinium couple bound to a platinum electrode. Values of k* for this couple were reported as a function of...S.W. Barr, M.J. Weaver, in "Proc. Symp. on Electrocatalysis ", W.E. O’Grady, P.N. Ross Jr., F.G. Will (eds), The Electrochemical Society, Pennington

  18. Electrochemical supercapacitors

    DOEpatents

    Rudge, Andrew J.; Ferraris, John P.; Gottesfeld, Shimshon

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  19. The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification.

    PubMed

    Hui, Kai Hwee; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin; Bonanni, Alessandra

    2015-05-21

    Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry.

  20. Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity.

    PubMed

    Sen, Sujat; Govindarajan, Vijay; Pelliccione, Christopher J; Wang, Jie; Miller, Dean J; Timofeeva, Elena V

    2015-09-23

    This study presents a new approach to the formulation of functional nanofluids with high solid loading and low viscosity while retaining the surface activity of nanoparticles, in particular, their electrochemical response. The proposed methodology can be applied to a variety of functional nanomaterials and enables exploration of nanofluids as a medium for industrial applications beyond heat transfer fluids, taking advantage of both liquid behavior and functionality of dispersed nanoparticles. The highest particle concentration achievable with pristine 25 nm titania (TiO2) nanoparticles in aqueous electrolytes (pH 11) is 20 wt %, which is limited by particle aggregation and high viscosity. We have developed a scalable one-step surface modification procedure for functionalizing those TiO2 nanoparticles with a monolayer coverage of propyl sulfonate groups, which provides steric and charge-based separation of particles in suspension. Stable nanofluids with TiO2 loadings up to 50 wt % and low viscosity are successfully prepared from surface-modified TiO2 nanoparticles in the same electrolytes. Viscosity and thermal conductivity of the resulting nanofluids are evaluated and compared to nanofluids prepared from pristine nanoparticles. Furthermore, it is demonstrated that the surface-modified titania nanoparticles retain more than 78% of their electrochemical response as compared to that of the pristine material. Potential applications of the proposed nanofluids include, but are not limited to, electrochemical energy storage and catalysis, including photo- and electrocatalysis.

  1. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Salian, Girish D.; Lebouin, Chrystelle; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, Thierry

    2017-02-01

    We report that electrodeposition of polymer electrolyte in nanostructured electrodes has a strong influence on the electrochemical properties of thin-film Li-ion microbatteries. Electropolymerization of PMMA-PEG (polymethyl methacrylate-polyethylene glycol) was carried out on both the anode (self-supported titania nanotubes) and the cathode (porous LiNi0.5Mn1.5O4) by cyclic voltammetry and the resulting electrode-electrolyte interface was examined by scanning electron microscopy. The electrochemical characterizations performed by galvanostatic experiments reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte.

  2. Ambient synthesis, characterization, and electrochemical activity of LiFePO₄ nanomaterials derived from iron phosphate intermediates

    SciTech Connect

    Patete, Jonathan M.; Wong, Stanislaus S.; Scofield, Megan E.; Volkov, Vyacheslav; Koenigsmann, Christopher; Zhang, Yiman; Marschilok, Amy C.; Wang, Xiaoya; Bai, Jianming; Han, Jinkyu; Wang, Lei; Wang, Feng; Zhu, Yimei; Graetz, Jason A.

    2015-05-30

    LiFePO₄ materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO₄ by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematically assessed using transmission electron microscopy TEM, HRTEM, SEM, XRD, SAED, EDAX and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO₄ nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent first principles calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.

  3. Ambient synthesis, characterization, and electrochemical activity of LiFePO₄ nanomaterials derived from iron phosphate intermediates

    DOE PAGES

    Patete, Jonathan M.; Wong, Stanislaus S.; Scofield, Megan E.; ...

    2015-05-30

    LiFePO₄ materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO₄ by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematicallymore » assessed using transmission electron microscopy TEM, HRTEM, SEM, XRD, SAED, EDAX and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO₄ nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent first principles calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.« less

  4. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  5. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay.

    PubMed

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-18

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3',5,5'-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  6. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    PubMed Central

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-01-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at −0.65 V, −0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes. PMID:26577799

  7. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons.

    PubMed

    Papadopoulou, Evanthia; Goodchild, Sarah A; Cleary, David W; Weller, Simon A; Gale, Nittaya; Stubberfield, Michael R; Brown, Tom; Bartlett, Philip N

    2015-02-03

    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples.

  8. Microwave-enhanced electrochemical cycling performance of the LiNi0.2Mn1.8O4 spinel cathode material at elevated temperature.

    PubMed

    Raju, Kumar; Nkosi, Funeka P; Viswanathan, Elumalai; Mathe, Mkhulu K; Damodaran, Krishnan; Ozoemena, Kenneth I

    2016-05-14

    The well-established poor electrochemical cycling performance of the LiMn2O4 (LMO) spinel cathode material for lithium-ion batteries at elevated temperature stems from the instability of the Mn(3+) concentration. In this work, a microwave-assisted solid-state reaction has been used to dope LMO with a very low amount of nickel (i.e., LiNi0.2Mn1.8O4, herein abbreviated as LMNO) for lithium-ion batteries from Mn3O4 which is prepared from electrolytic manganese oxide (EMD, γ-MnO2). To establish the impact of microwave irradiation on the electrochemical cycling performance at an elevated temperature (60 °C), the Mn(3+) concentration in the pristine and microwave-treated LMNO samples was independently confirmed by XRD, XPS, (6)LiMAS-NMR and electrochemical studies including electrochemical impedance spectroscopy (EIS). The microwave-treated sample (LMNOmic) allowed for the clear exposure of the {111} facets of the spinel, optimized the Mn(3+) content, promoting structural and cycle stability at elevated temperature. At room temperature, both the pristine (LMNO) and microwave-treated (LMNOmic) samples gave comparable cycling performance (>96% capacity retention and ca. 100% coulombic efficiency after 100 consecutive cycling). However, at an elevated temperature (60 °C), the LMNOmic gave an improved cycling stability (>80% capacity retention and ca. 90% coulombic efficiency after 100 consecutive cycling) compared to the LMNO. For the first time, the impact of microwave irradiation on tuning the average manganese redox state of the spinel material to enhance the cycling performance of the LiNi0.2Mn1.8O4 at elevated temperature and lithium-ion diffusion kinetics has been clearly demonstrated.

  9. Prediction of optimized composition for enhanced mechanical and electrochemical response of Zr-C-N-Ag coatings for medical devices

    NASA Astrophysics Data System (ADS)

    Calderon V., S.; Oliveira, J. C.; Evaristo, M.; Cavaleiro, A.; Carvalho, S.

    2014-11-01

    The necessity of improving the performance of existing biocompatible materials promotes the investigation of new approaches to solve biocompatibility problems caused by low chemical stability and poor mechanical performance of implanted materials. Envisioning those problems and considering the current reported complications of implanted stainless steel 316L devices, this work aimed to produce new Zr-C-N-Ag coatings and to predict an optimal composition to provide the required electrochemical stability and mechanical performance to the stainless steel 316L. The coatings were deposited by dual unbalance magnetron sputtering and characterized in terms of chemical, structural, mechanical and electrochemical properties to optimize their functional properties by means of a second-order response surface methodology. The optimization process revealed that the best mechanical and electrochemical performance was reached when stoichiometric ZrC0.5N0.5 phase is the main constituent of the materials, with low amounts of silver (<8 at.%) and residual oxygen, mainly explained by the electrochemical stability and mechanical performance of the Zr-C-N solid solution. The current density applied to the silver target was identified as the main parameter affecting the final properties of the films due to its direct relation to the incorporation of metallic silver in the system. However, the reactive gases, as well as the high amount of residual oxygen, were also found to be significant in the process.

  10. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors

  11. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-06

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  12. Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2014-12-14

    The first examples of redox-active ferrocene-functionalised neutral [2]rotaxanes have been synthesised via chloride anion templation. (1)H NMR spectroscopic titrations reveal that these [2]rotaxane host systems recognize chloride selectively over other halides and oxoanions in highly-competitive aqueous media. By replacing the hydrogen bonding prototriazole units of the rotaxane axle component with iodotriazole halogen bond-donor groups, the degree of chloride selectivity of the [2]rotaxanes is modulated. Electrochemical voltammetric experiments demonstrate that the rotaxanes can sense chloride via cathodic perturbations of the respective rotaxanes' ferrocene-ferrocenium redox-couple upon anion addition.

  13. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  14. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  15. Electrochemical activity of glucose oxidase on a poly(ionic liquid) - Au nanoparticle composite.

    SciTech Connect

    Lee, S.; Ringstrand, B. S.; Stone, D. A.; Firestone, M. A.

    2012-01-01

    Glucose oxidase (GOx) adsorbed on an ionic liquid-derived polymer containing internally organized columns of Au nanoparticles exhibits direct electron transfer and bioelectrocatalytic properties towards the oxidation of glucose. The cationic poly(ionic liquid) provides an ideal substrate for the electrostatic immobilization of GOx. The encapsulated Au nanoparticles serve to both promote the direct electron transfer with the recessed enzyme redox centers and impart electronic conduction to the composite, allowing it to function as an electrode for electrochemical detection.

  16. Synthesis, crystal structure, antibacterial activities, and electrochemical studies of new N,N‧-polymethylene bis-sulfonamides

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Mamaş, Serhat; Şahin, Ertan; Karacan, Nurcan

    2012-02-01

    Four disulfonamide derivatives (C2H5·SO2·NH)2(CH2)n (n = 2, 3, 4, 5) were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HETCOR, LCMS and elemental analysis. Ethanesulfonamide-N,N'-pentamethylene bis was also characterized by X-ray single crystal diffraction measurement. The electrochemical characteristics of the disulfonamide derivatives were performed by cyclic voltammetry and chronoamperometry. 1H and 13C NMR chemical shifts of the compounds were calculated by using DFT/B3LYP methods with a 6-311++G (d,p) basis set. Antibacterial activity and the structural relationship of the compounds showed that activity decreases proportionately to the increasing length of the carbon chain between NH groups, log P values, hydration energy and molecular volumes. Anodic peak potentials and HOMO values do not correlate with the activity, but reduction potential and LUMO decrease weakly with increasing activity.

  17. Reversible Electrochemical Trapping of Carbon Dioxide Using 4,4'-Bipyridine That Does Not Require Thermal Activation.

    PubMed

    Ranjan, Rajeev; Olson, Jarred; Singh, Poonam; Lorance, Edward D; Buttry, Daniel A; Gould, Ian R

    2015-12-17

    Sequestering carbon dioxide emissions by the trap and release of CO2 via thermally activated chemical reactions has proven problematic because of the energetic requirements of the release reactions. Here we demonstrate trap and release of carbon dioxide using electrochemical activation, where the reactions in both directions are exergonic and proceed rapidly with low activation barriers. One-electron reduction of 4,4'-bipyridine forms the radical anion, which undergoes rapid covalent bond formation with carbon dioxide to form an adduct. One-electron oxidation of this adduct releases the bipyridine and carbon dioxide. Reversible trap and release of carbon dioxide over multiple cycles is demonstrated in solution at room temperature, and without the requirement for thermal activation.

  18. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity.

    PubMed

    Keymer, Philip C; Pratt, Steven; Lant, Paul A

    2013-09-01

    The development of an Electrochemical System for Oxygen Control (ESOC) for examining algal photosynthetic activity as a function of dissolved oxygen (DO) is outlined. The main innovation of the tool is coulombic titration in order to balance the electrochemical reduction of oxygen with the oxygen input to achieve a steady DO set-point. ESOC allows quantification of algal oxygen production whilst simultaneously maintaining a desired DO concentration. The tool was validated abiotically by comparison with a mass transfer approach for quantifying oxygenation. It was then applied to quantify oxygen inhibition of algal activity. Five experiments, using an enriched culture of Scenedesmus sp. as the inoculum, are presented. For each experiment, ESOC was used to quantify algal activity at a series of DO set-points. In all experiments substantial oxygen inhibition was observed at DO >30 mgO2 L-1. Inhibition was shown to fit a Hill inhibition model, with a common Hill coefficient of 0.22±0.07 L mg-1 and common log10  CI50 of 27.2±0.7 mg L-1. This is the first time that the oxygen inhibition kinetic parameters have been quantified under controlled DO conditions.

  19. Catalytic activity for nitrate electroreduction of nano-structured polypyrrole films electrochemically synthesized onto a copper electrode

    NASA Astrophysics Data System (ADS)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Hai Le, Viet

    2010-03-01

    Polypyrrole film was synthesized electrochemically onto a copper electrode in oxalate, oxalic acid and salicylic acid solutions. The electrochemical oxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied by cyclic voltammetry. Polypyrrole nano-porous film formation and the activity of the modified Ppy/Cu electrode for nitrate reduction were found to be dependent on the synthesis medium and conditions: pH; content and concentrations of the electrolytes; pyrrole concentration; electrode potential; electrolysis duration; drying time and temperature for finishing the Ppy/Cu electrode and immersion time in water for storing the Ppy/Cu electrode before use. High catalytic activity for nitrate reduction was found for composite electrodes with nano-porous structured Ppy films. The Ppy/Cu electrodes prepared in oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than for an electrode prepared in oxalic acid solution.

  20. Enhanced Electrochemical Performances of Bi2O3/rGO Nanocomposite via Chemical Bonding as Anode Materials for Lithium Ion Batteries.

    PubMed

    Deng, Zhuo; Liu, Tingting; Chen, Tao; Jiang, Jiaxiang; Yang, Wanli; Guo, Jun; Zhao, Jianqing; Wang, Haibo; Gao, Lijun

    2017-03-31

    Bismuth oxide/reduced graphene oxide (termed Bi2O3@rGO) nanocomposite has been facilely prepared by a solvothermal method via introducing chemical bonding that has been demonstrated by Raman and X-ray photoelectron spectroscopy spectra. Tremendous single-crystal Bi2O3 nanoparticles with an average size of ∼5 nm are anchored and uniformly dispersed on rGO sheets. Such a nanostructure results in enhanced electrochemical reversibility and cycling stability of Bi2O3@rGO composite materials as anodes for lithium ion batteries in comparison with agglomerated bare Bi2O3 nanoparticles. The Bi2O3@rGO anode material can deliver a high initial capacity of ∼900 mAh/g at 0.1C and shows excellent rate capability of ∼270 mAh/g at 10C rates (1C = 600 mA/g). After 100 electrochemical cycles at 1C, the Bi2O3@rGO anode material retains a capacity of 347.3 mAh/g with corresponding capacity retention of 79%, which is significantly better than that of bare Bi2O3 material. The lithium ion diffusion coefficient during lithiation-delithiation of Bi2O3@rGO nanocomposite has been evaluated to be around ∼10(-15)-10(-16) cm(2)/S. This work demonstrates the effects of chemical bonding between Bi2O3 nanoparticles and rGO substrate on enhanced electrochemical performances of Bi2O3@rGO nanocomposite, which can be used as a promising anode alterative for superior lithium ion batteries.

  1. Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation

    PubMed Central

    Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong

    2016-01-01

    We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer. PMID:27032957

  2. Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation

    NASA Astrophysics Data System (ADS)

    Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong

    2016-04-01

    We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer.

  3. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-05-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron-hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems.

  4. Simultaneous imaging of the topography and electrochemical activity of a 2D carbon nanotube network using a dual functional L-shaped nanoprobe.

    PubMed

    Lee, Eunjoo; Sung, Jungwoo; An, Taechang; Shin, Heungjoo; Nam, Hong Gil; Lim, Geunbae

    2015-05-07

    The application of nanomaterials for biosensors and fuel cells is becoming more common, but it requires an understanding of the relationship between the structure and electrochemical characteristics of the materials at the nanoscale. Herein, we report the development of scanning electrochemical microscopy-atomic force microscopy (SECM-AFM) nanoprobes for collecting spatially resolved data regarding the electrochemical activity of nanomaterials such as carbon nanotube (CNT) networks. The fabrication of the nanoprobe begins with the integration of a CNT-bundle wire into a conventional AFM probe followed by the deposition of an insulating layer and cutting of the probe end. In addition, a protrusive insulating tip is integrated at the end of the insulated CNT-bundle wire to maintain a constant distance between the nanoelectrode and the substrate; this yields an L-shaped nanoprobe. The resulting nanoprobes produced well-fitted maps of faradaic current data with less than 300 nm spatial resolution and topographical images of CNT networks owing to the small effective distance (of the order of tens of nanometers) between the electrode and the substrate. Electrochemical imaging using the L-shaped nanoprobe revealed that the electrochemical activity of the CNT network is not homogeneous and provided further understanding of the relationship between the topography and electrochemical characteristics of CNT networks.

  5. A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances

    SciTech Connect

    Shi, Qiurong; Zhu, Chengzhou; Li, Yijing; Xia, Haibing; Engelhard, Mark H.; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-11-08

    Currently, three dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity etc. that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of dendritic core-shell structured Au/Pt3Pd ternary metallic aerogels via a one-pot self-assembly gelation strategy. The as-prepared Au/Pt3Pd ternary metallic aerogels demonstrated superior electrochemical performances toward oxygen reduction reaction compared to commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells and the cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect, geometric effect and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties hold great promise in a variety of applications.

  6. An enhanced sensitive electrochemical immunosensor based on efficient encapsulation of enzyme in silica matrix for the detection of human immunodeficiency virus p24.

    PubMed

    Fang, Yi-Shan; Huang, Xin-Jian; Wang, Li-Shi; Wang, Ju-Fang

    2015-02-15

    We report a new electrochemical immunosensor for enhanced sensitive detection of human immunodeficiency virus p24 (HIV-p24) based on graphene oxide (GO) as a nanocarrier and enzyme encapsulated in carbon nanotubes-silica as a matrix in a multienzyme amplification strategy. Greatly enhanced sensitivity was achieved by using the bioconjugates featuring horseradish peroxidase-HIV-p24 signal antibody (HRP-HIV-p24) linked to functionalized GO and thionine (TH) as well as efficient encapsulation of enzyme (HRP) in the silica matrix with retained bioactivity. After a sandwich immunoreactions, the HRP in carbon nanotubes-silica matrix and the HRP-HIV-p24-TH/GO captured onto the electrode surface produced an amplified electrocatalytic response by the reduction of enzymatically oxidized thionine in the presence of hydrogen peroxide. The increase of response current was proportional to the HIV-p24 concentration in the range of 0.5 pg/mL-8.5 ng/mL with the detection limit of 0.15 pg/mL, which was lower than that of the traditional sandwich electrochemical measurement for HIV-p24. The amplified immunoassay developed in this work shows acceptable stability and reproducibility, and the assay results for HIV-p24 spiked in human plasma also show good accuracy. This simple and low-cost immunosensor shows great promise for detection of other proteins and clinical applications.

  7. Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yan, Qiuyun; Zhang, Shanshan; Lu, Luhua; Xie, Bingqiao; Xie, Ting; Zhang, Yong; Wu, Yucheng; Zhang, Yuxing; Liu, Dong

    2016-11-01

    In this work, designed growth of two type of N-doped graphene nanosheets has been investigated using NH4H2PO4 and (NH4)2HPO4 as buffering agents, respectively, in a mild hydrothermal process. X-ray photoelectron spectroscopy (XPS) characterization indicates that the graphene nanosheets grown using NH4H2PO4 (NGC) have lower nitrogen but higher oxygen content than those using (NH4)2HPO4 (NGL). Electrochemical measurements in three-electrode systems show that both type of the graphene products exhibit superior electrochemical performance (383 and 356 F g-1 at 1 A g-1). While the specific capacitance of NGC is steadily higher than that of NGL under all investigated current densities, the capacitance attenuation of NGL is 4.80% from 500 to 10000 cycles showing more durable in cyclicity than that of NGC (8.81%). The two-electrode supercapacitor devices for NGC and NGL exhibit high energy density of 12.21 Wh kg-1 and 9.28 Wh kg-1 at 0.25 A g-1. The difference in electrochemical behaviors between NGC and NGL electrodes can be attributed to the different contribution of nitrogen and oxygenic groups. The buffer agents assisted synthesis procedure coupled with the reasonable capacitance performance suggests an alternative way in the designed functionalization of graphene for developing high performance supercapacitors.

  8. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  9. Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities.

    PubMed Central

    Ondek, B; Shepard, A; Herr, W

    1987-01-01

    The SV40 enhancer contains three genetically defined elements, called A, B and C, that can functionally compensate for one another. By using short, synthetic DNA oligonucleotides, we show that each of these elements can act autonomously as an enhancer when present as multiple tandem copies. Analysis of a progressive series of B element oligomers shows a single element is ineffective as an enhancer and that the activity of two or more elements increases with copy number. Assay in five different cell lines of two separate enhancers containing six tandem copies of either the B or C element shows that these elements possess different cell-specific activities. Parallel oligomer enhancer constructs containing closely spaced double point mutations display no enhancer activity in any of the cell lines tested, indicating that these elements represent single units of enhancer function. These elements contain either a 'core' or 'octamer' consensus sequence but these consensus sequences alone are not sufficient for enhancer activity. The different cell-specific activities of the B and C elements are consistent with functional interactions with different trans-acting factors. We discuss how tandem duplication of such dissimilar elements, as in the wild-type SV40 72-bp repeats, can serve to expand the conditions under which an enhancer can function. Images Fig. 2. Fig. 3. Fig. 4. PMID:3036487

  10. Ellipsometric and Electrochemical Characterization of Charge Transport in Electroactive Polymers and of the Surface Phase Produced by Electrochemical Activation of Glassy Carbon Electrodes

    NASA Astrophysics Data System (ADS)

    Kepley, Larry Joe

    1990-01-01

    In situ ellipsometry was used to study the electrodeposition of polymer films formed by oxidation of bipyrazine, polyvinylferrocene (PVF), and aniline; the deposition of a viologen-containing siloxane polymer (PQ^{2+/+}) formed by electroreduction of N,N^' -bis (-3-(trimethoxysilyl)propyl) -4,4^ '-bipyridinium dichloride (I) solutions and by spin-casting solutions of I; and the oxidation-dependent swelling of spin-cast films of two structurally similar, ferrocene-containing polyamides. Electrodeposited films displayed good optical characteristics (i.e., high reflectivity, uniform coverage, and homogeneity) for thicknesses up to 400 nm in some cases. Nonideal illipsometric behavior was observed when film morphology varied with film growth. The complex refractive index, film thickness, and the viologen and ferrocene concentrations in the films were measured as a function of oxidation state, both during depositions and after transferring coated-electrodes into blank electrolyte solutions. The voltammetry of the redox polymers was studied and charge-transport modeled by finite -difference simulations of charge diffusion and diffusion coupled to dimerization/monomerization reactions. Equations were derived for linear-sweep voltammetry of a reversible couple in equilibrium with its dimer in a thin-layer cell. Ellipsometric data during electrolysis of the redox films by potential sweeps and steps were compared to theoretical curves for diffusional transport to determine the mechanism of charge transport and to optically measure its rate. The influence of redox-induced thickness changes and solvent sorption on charge transport and voltammetric behavior is described. The electrochemical activation of glassy carbon electrodes for electrolysis of aromatic molecules, such as catechol and hydroquinone, was studied by combined ellipsometric and voltammetric measurements. Ellipsometry was used to detect the anodic growth of nearly transparent layer which activated the surface. X

  11. [The causes of the biological action of electrochemically activated solutions by changes in the growth of Escherichia coli cells].

    PubMed

    Miroshnikov, A I

    2004-01-01

    To study the causes of the biological effect of electrochemically activated solutions, nutrient growth media M 9 were prepared using catholyte and anolyte solutions containing separate components of the nutrient medium, such as distilled water, phosphate buffer, phosphate buffer with chlorides (NaCl, NH4Cl), and chlorides. The biological activity of different nutrient media was assessed by a comparison with the stimulation or inhibition of the growth of Escherichia coli cells in the catholyte and anolyte of the complete nutrient medium M 9. It was shown that medium M 9 prepared on the catholytes of different initial solutions acquired the stimulating properties only if the initial solution contained salts containing chlorine. The stimulating effect of the initial solution was 18-24%. Electrochemical treatment of solutions containing no chlorides (distilled water, phosphate buffer) and subsequent addition of the components of nutrient medium to exposed solutions had neither a stimulating nor the inhibiting effect on cell growth. The cultivation of cells in a nutrient medium based on the catholyte of preliminarily treated hydrochloric acid showed that it is the presence of chlorine ions in solution during electrolysis that causes the stimulating effect of the nutrient medium based on the catholyte. The formation of oxidizers and the inhibitory effect of the anolyte described previously was also observed if the solution contained chlorine ions during electrolysis. Possible mechanisms of the biological effect of catholytes containing chlorides during electrolysis were discussed.

  12. In-situ electrochemically active surface area evaluation of an open-cathode polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.

    2016-09-01

    The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.

  13. One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers.

    PubMed

    Liu, Zhimin; Rong, Qinfeng; Ma, Zhanfang; Han, Hongliang

    2015-03-15

    In this work, a simple and sensitive multiplexed immunoassay protocol for simultaneous electrochemical determination of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) was designed using redox-active nanocomposites. As the redox-active species, the poly(o-phenylenediamine) (POPD)/Au nanocomposite and poly(vinyl ferrocene-2-aminothiophenol) (poly(VFc-ATP))/Au nanocomposite were obtained by one-step method which HAuCl4 was used as the oxidant. With Au nanoparticles (AuNPs), the nanocomposites were successful to immobilize labeled anti-CEA and anti-AFP as the immunosensing probes. The proposed electrochemical immunoassay enabled the simultaneous monitoring of AFP and CEA in a wide range of 0.01-100ngmL(-1). The detection limits was 0.006ngmL(-1) for CEA and 0.003ngmL(-1) for AFP (S/N=3). The assay results of serum samples with the proposed method were well consistent with the reference values from standard ELISA method. And the negligible cross-reactivity between the two analytes makes it possesses potential promise in clinical diagnosis.

  14. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  15. Enormous enhancement of electric field in active gold nanoshells

    NASA Astrophysics Data System (ADS)

    Jiang, Shu-Min; Wu, Da-Jian; Wu, Xue-Wei; Liu, Xiao-Jun

    2014-04-01

    The electric field enhancement properties of an active gold nanoshell with gain material inside have been investigated by using Mie theory. As the gain coefficient of the inner core increases to a critical value, a super-resonance appears in the active gold nanoshell, and enormous enhancements of the electric fields can be found near the surface of the particle. With increasing shell thickness, the critical value of the gain coefficient for the super-resonance of the active gold nanoshell first decreases and then increases, and the corresponding surface enhanced Raman scattering (SERS) enhancement factor (G factor) also first increases and then decreases. The optimized active gold nanoshell can be obtained with an extremely high SERS G factor of the order of 1019-1020. Such an optimized active gold nanoshell possesses a high-efficiency SERS effect and may be useful for single-molecule detection.

  16. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene.

    PubMed

    Juanjuan, Zhang; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2014-05-21

    Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10(3) S m(-1)), specific surface area (1258 m(2) g(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10(-8) to 1.8 × 10(-4) M for HQ and 1 × 10(-8) to 2.0 × 10(-4) M for DHB. The detection limit is 1.5 × 10(-8) M for HQ and 3.3 × 10(-9) M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which

  17. Computational Identification of Active Enhancers in Model Organisms

    PubMed Central

    Wang, Chengqi; Zhang, Michael Q.; Zhang, Zhihua

    2013-01-01

    As a class of cis-regulatory elements, enhancers were first identified as the genomic regions that are able to markedly increase the transcription of genes nearly 30 years ago. Enhancers can regulate gene expression in a cell-type specific and developmental stage specific manner. Although experimental technologies have been developed to identify enhancers genome-wide, the design principle of the regulatory elements and the way they rewire the transcriptional regulatory network tempo-spatially are far from clear. At present, developing predictive methods for enhancers, particularly for the cell-type specific activity of enhancers, is central to computational biology. In this review, we survey the current computational approaches for active enhancer prediction and discuss future directions. PMID:23685394

  18. Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences.

    PubMed

    Salazar, P; Martín, M; O'Neill, R D; Roche, R; González-Mora, J L

    2012-04-01

    We report here for the first time a comparison of the beneficial effects of different cationic surfactants - cetyl trimethyl ammonium bromide (CTAB), benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) - for the electrochemical synthesis of Prussian Blue (PB) films, using cyclic voltammetry (CV), on screen-printed carbon electrodes (SPCEs). Their electrochemical properties were investigated, paying special attention to parameters such as the amount of PB deposited, film thickness, charge transfer rate, permeability, reversibility, stability and sensitivity to hydrogen peroxide detection. All surfactant-enhanced PB-modified SPCEs displayed a significant improvement in their electrochemical properties compared with PB-modified SPCEs formed in the absence of surfactants. Surfactant-modified electrodes displayed a consistently higher PB surface concentration value of 2.1±0.4×10(-8) mol cm(-2) (mean±SD, n=3) indicating that PB deposition efficiency was improved 2-3 fold. K(+) and Na(+) permeability properties of the films were also studied, as were kinetic parameters, such as the surface electron transfer rate constant (k(s)) and the transfer coefficient (α). The hydrogen peroxide sensitivity of surfactant-modified PB films generated by 10 electro-deposition CV cycles gave values of 0.63 A M(-1) cm(-2), which is higher than those reported previously for SPCEs by other authors. Finally, the first lactate microbiosensor described in the literature based on BZT-modified PB-coated carbon fiber electrodes is presented. Its very small cross-section (~10 μm diameter) makes it particularly suitable for neuroscience studies in vivo.

  19. ODV mobility enhancement using active height control

    NASA Astrophysics Data System (ADS)

    Rich, Shayne C.; Wood, Carl G.; Keller, Jared

    2000-07-01

    To enhance the mobility of the USU T-class of vehicles, the T3 vehicle has been developed that incorporates Z-axis motion of the drive wheel modules. Moving the wheels up and down provides the ability to pitch and roll the vehicle chassis and move the vehicle center of gravity to change the force distribution on the individual drive wheels. The omni- directional capability of the vehicle provides the capability to align the vehicle with the slope gradient that maximizes the vehicle stability. This paper shows that by pitching the vehicle into the slope, that the uphill traction limit of the vehicle can be increased by about 10 degree(s). Future research efforts concerning stair climbing, step negotiation, and obstacle field navigation are also discussed.

  20. Is Enhanced Physical Activity Possible Using Active Videogames?

    PubMed

    Baranowski, Tom; Baranowski, Janice; O'Connor, Teresia; Lu, Amy Shirong; Thompson, Debbe

    2012-06-01

    Our research indicated that 10-12-year-old children receiving two active Wii(™) (Nintendo(®); Nintendo of America, Inc., Redmond, WA) console videogames were no more physically active than children receiving two inactive videogames. Research is needed on how active videogames may increase physical activity.

  1. Electrochemical impedance spectroscopy study of high-palladium dental alloys. Part II: behavior at active and passive potentials.

    PubMed

    Sun, D; Monaghan, P; Brantley, W A; Johnston, W M

    2002-05-01

    Electrochemical impedance spectroscopic (EIS) analyses were performed on three high-palladium alloys and a gold-palladium alloy at active and passive potentials in five electrolytes that simulated body fluid and oral environmental conditions. All four alloys were previously found to have excellent corrosion resistance in these in vitro environments. Before performing the EIS analyses, alloy specimens were subjected to a clinically relevant heat treatment that simulated the firing cycles for a dental porcelain. It was found that the EIS spectra varied with test potential and electrolyte. Diffusional effects, related to the dealloying and subsequent surface enrichment in palladium of the high-palladium alloys, along with species adsorption and passivation, were revealed at both active and passive potentials, although these effects were more evident at the passive potentials.

  2. Enhancing Engagement through Active Student Response

    ERIC Educational Resources Information Center

    Tincani, Matt; Twyman, Janet S.

    2016-01-01

    Student engagement is critical to academic success. High-Active Student Response (ASR) teaching techniques are an effective way to improve student engagement and are an important component of evidence-based practice. High-ASR teaching strategies accompany important assumptions: (1) ASR is an alterable variable; (2) teachers can increase ASR in…

  3. Writing Composition Activities to Enhance Reading Comprehension.

    ERIC Educational Resources Information Center

    Gold, Janet T.

    A program of written composition based on reading comprehension can help students gain greater in-depth understanding of reading materials. Once the reading comprehension skill has been clearly defined for the class, the writing activity can provide clarification by allowing for analysis of the definition through written manipulation of language.…

  4. Electrochemical, catalytic and antimicrobial activities of N-functionalized cyclam based unsymmetrical dicompartmental binuclear nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Sreedaran, S.; Bharathi, K. Shanmuga; Rahiman, A. Kalilur; Suresh, R.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2009-11-01

    Five binuclear nickel(II) complexes have been prepared by simple Schiff base condensation of the compound 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (L) with appropriate aliphatic or aromatic diamine, nickel(II) perchlorate and triethylamine. All the complexes were characterized by elemental and spectral analysis. Positive ion FAB mass spectra show the presence of dinickel core in the complexes. The electronic spectra of the complexes show red shift in the d-d transition. Electrochemical studies of the complexes show two irreversible one electron reduction processes in the range of 0 to -1.4 V. The reduction potential of the complexes shifts towards anodically upon increasing chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves in the range 0.4-1.6 V. The observed rate constant values for catalysis of the hydrolysis of 4-nitrophenyl phosphate are in the range of 1.36 × 10 -2-9.14 × 10 -2 min -1. The rate constant values for the complexes containing aliphatic diimines are found to be higher than the complexes containing aromatic diimines. Spectral, electrochemical and catalytic studies of the complexes were compared on the basis of increasing chain length of the imine compartment. All the complexes show higher antimicrobial activity than the ligand and metal salt.

  5. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.

    PubMed

    Xie, Keyu; Guo, Min; Lu, Wei; Huang, Haitao

    2014-11-14

    A novel TiO₂ three-dimensional (3D) anode with an aligned TiO₂ nanotube/nanoparticle heterostructure (TiO₂ NTs/NPs) is developed by simply immersing as-anodized TiO₂ NTs into water and further crystallizing the TiO₂ NTs by post-annealing. The heterostructure, with its core in a tubular morphology and with both the outer and inner surface consisting of nanoparticles, is confirmed by FESEM and TEM. A reversible areal capacity of 0.126 mAh · cm(-2) is retained after 50 cycles for the TiO₂ NTs/NPs heterostructure electrode, which is higher than that of the TiO₂ NTs electrode (0.102 mAh · cm(-2) after 50 cycles). At the current densities of 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mA · cm(-2), the areal capacities are 0.142, 0.127, 0.117, 0.110, 0.104 and 0.089 mAh · cm(-2), respectively, for the TiO₂ NTs/NPs heterostructure electrode compared to the areal capacities of 0.123, 0.112, 0.105, 0.101, 0.094 and 0.083 mAh · cm(-2), respectively, for the the TiO₂ NTs electrode. The enhanced electrochemical performance is attributed to the unique microstructure of the TiO₂ NTs/NPs heterostructure electrode with the TiO₂ NT core used as a straight pathway for electronic transport and with TiO₂ NP offering enhanced surface areas for facile Li+ insertion/extraction. The results described here inspire a facile approach to fabricate a 3D anode with an enhanced electrochemical performance for lithium-ion microbattery applications.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Solid state electrochemical composite

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2009-06-30

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  8. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo

    2016-06-01

    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes

  9. Active Tails Enhance Arboreal Acrobatics in Geckos

    DTIC Science & Technology

    2008-03-18

    SI Movie 6). Discovering that active tails allow arboreal acrobatics in geckos opens the door for future studies of the tail’s neurome- chanical...declare no conflict of interest. This article is a PNAS Direct Submission. Freely available online through the PNAS open access option. *Present...ranging from 2.5 to 8.0 ms1. We mounted transparent Plexiglas sidewalls around the opening of the wind tunnel. This prevented geckos from maneuvering

  10. Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zhu, Guobin; Zhang, Li; Qu, Qunting; Shen, Ming; Zheng, Honghe

    2015-01-01

    A spinel lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode material is synthesized with a modified oxalate co-precipitation method by controlling pH value of the precursor solution and introducing excessive Li source in the precursor. All the samples synthesized through this method are of Fd3m phase with a small amount of P4332 phase. It is found that pH value of the precursor solution considerably affects the morphology, stoichiometry and crystallographic structure of the target material, thereby resulting in different amounts of Mn3+ (i.e., different degree of disorder). 5% excessive Li source in the precursor may compensate for the lithium loss during the high-temperature sintering process and eliminate the LixNi1-xO impurity phase. Under the optimized synthesis conditions, the obtained high-purity LiNi0.5Mn1.5O4 spinel exhibits enhanced electrochemical performances. A reversible capacity of ca. 140 mAh g-1 can be delivered at 0.1C and the electrode retains 106 mAh g-1 at 10C rate. When cycled at 0.2C, a capacity retention of more than 98% is obtained in the initial 50 electrochemical cycles.

  11. An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Martin, Vincent; Bassat, Jean-Marc; Djurado, Elisabeth

    2016-06-01

    An architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2-δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.

  12. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-11-04

    Novel water-based binder lithium carboxymethyl cellulose (CMC-Li) is synthesized by cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries' cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and water-soluble binder are investigated. Sodium carboxymethyl cellulose (CMC-Na, CMC) and CMC-Li are used as the binder. After 200 cycles, compared with conventional poly(vinylidene fluoride) (PVDF) binder, the CMC-Li binder significantly improves cycling performance of the LFP cathode 96.7% of initial reversible capacity achieved at 175 mA h g(-1). Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, followed closely by those using CMC and PVDF binders, respectively. Electrochemical impedance spectroscopy test results show that the electrode using CMC-Li as the binder has lower charge transfer resistance than the electrodes using CMC and PVDF as the binders.

  13. Is enhanced physical activity possible using active videogames?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our research indicated that 10– to 12-year-old children receiving two active Wii (TM)(Nintendo (R); Nintendo of America, Inc., Redmond, WA) console videogames were no more physically active than children receiving two inactive videogames. Research is needed on how active videogames may increase phys...

  14. Activity and Imagined Activity Can Enhance Young Children's Reading Comprehension

    ERIC Educational Resources Information Center

    Glenberg, Arthur M.; Gutierrez, Tiana; Levin, Joel R.; Japuntich, Sandra; Kaschak, Michael P.

    2004-01-01

    The Indexical Hypothesis suggests a new method for enhancing children's reading comprehension. Young readers may not consistently "index," or map, words to the objects the words represent. Consequently, these readers fail to derive much meaning from the text. The instructional method involves manipulating toy objects referred to in the…

  15. Electrochemical reduction of flavocytochromes 2B4 and 1A2 and their catalytic activity.

    PubMed

    Shumyantseva, V V; Bulko, T V; Bachmann, T T; Bilitewski, U; Schmid, R D; Archakov, A I

    2000-05-01

    The present study shows that cytochromes P450 2B4 and 1A2 with a covalently attached riboflavin (semisynthetic flavocytochromes RfP450 2B4 and RfP450 1A2) can be reduced electrochemically on rhodium-graphite electrodes at a potential of -500 mV (vs Ag/AgCl). In the presence of substrates such as aminopyrine, aniline, 7-ethoxyresorufin, and 7-pentoxyresorufin, N-demethylation, p-hydroxylation, and O-dealkylation reactions proceeded, as was confirmed by product analysis. Rates of electrocatalytically driven reactions are comparable to those obtained using NAD(P)H as the source of reducing equivalents. These results suggest the practicality of developing flavocytochrome P450s as catalysts for oxidation reactions with different classes of organic substrates.

  16. Influence of the Phase State of Self-Assembling Redox Mediators on their Electrochemical Activity

    PubMed Central

    Muller, John P. E.; Aytar, Burcu S.; Kondo, Yukishige; Lynn, David M.; Abbott, Nicholas L.

    2014-01-01

    Self-assembling redox mediators have the potential to be broadly useful in a range of interfacial electrochemical contexts because the oxidation state and state of assembly of the mediator are closely coupled. In this paper, we report an investigation of the self-assembly of single- and double-tailed ferrocenyl amphiphiles (FTMA and BFDMA, respectively) at the surfaces of Pt electrodes and the impact of the dynamic assembled state of the amphiphiles on their rate of oxidation. We conclude that frozen aggregates of BFDMA adsorb to the surfaces of the Pt electrodes, and that slow dynamics of reorganization BFDMA within these aggregates limits the rate of electrooxidation of BFDMA. In contrast, FTMA, while forming assemblies on the surfaces of Pt electrodes, is characterized by fast reorganization dynamics and a corresponding rate of oxidation that is an order of magnitude greater than BFDMA. PMID:24882870

  17. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis.

    PubMed

    Wade, Mary Margaret; Zhang, Ying

    2004-08-01

    Pyrazinamide (PZA) is an unconventional front line tuberculosis drug characterized by high in vivo sterilizing activity, but poor in vitro activity. This disparity in PZA activity may reflect differences between the in vivo tissue environment and in vitro culture conditions. This study examined the effect of anaerobic conditions, which exist in granulomatous lesions in vivo, on PZA activity in vitro. Low oxygen enhanced the activity of PZA against Mycobacterium tuberculosis, with anaerobic conditions resulting in greater enhancement than microaerobic conditions. ATPase and respiratory chain enzyme inhibitors enhanced PZA activity under normal atmospheric conditions, but not under anaerobic conditions. Furthermore, the inhibitors did not enhance isoniazid or rifampicin activity. Nitrate as an alternative electron acceptor antagonized PZA activity under anaerobic conditions. These findings provide further support for a proposed mechanism of action of PZA in which the active form of PZA (pyrazinoic acid) depletes the membrane energy reserve. They also provide another explanation for the higher sterilizing activity of PZA within in vivo lesions with low oxygen than under in vitro drug susceptibility testing conditions with ambient oxygen.

  18. Electrochemical activity of iron in acid treated bentonite and influence of added nickel

    NASA Astrophysics Data System (ADS)

    Mudrinić, T.; Mojović, Z.; Milutinović-Nikolić, A.; Mojović, M.; Žunić, M.; Vukelić, N.; Jovanović, D.

    2015-10-01

    Bentonite originated from Mečji Do, Serbia, was submitted to acid treatment at 70 °C for 30 min, while only the concentration of applied HCl varied. The obtained acid treated samples were used to modify glassy carbon (GC) electrode. The effect of applied acid treatment on the electrochemical behavior of GC electrodes modified with these materials was investigated. Furthermore, the effect of the introduction of nickel into acid treated samples was studied. The incorporation of nickel into acid treated bentonite was achieved by either ion exchange or impregnation/decomposition method. The obtained samples were characterized using the following methods: inductively coupled plasma (ICP), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy. The electrochemical behavior of these samples was tested by cyclic voltammetry in 0.1 mol dm-3 H2SO4 solution. The ICP, FTIR and ESR results exhibited a slight decrease of iron content in the acid treated samples. XRD and FTIR results confirmed that the conditions applied for the acid treatment were mild enough for the smectite structure to be preserved. The electrocatalytic test showed that the current response of Fe2+/Fe3+ oxidation/reduction process increased on the GC electrodes separately modified with each of the acid treated samples in comparison with current obtained on the GC electrode modified with untreated sample. These results indicated that applied acid treatment probably increased the accessibility of the electroactive iron within smectite. Cyclic voltammograms obtained for the GC electrodes modified with acid treated bentonite materials showed greater anodic charge (qa) than cathodic charge (qc). This difference might be due to iron detachment from smectite structure during the oxidation process. Further modification of the selected acid treated sample with nickel species resulted in decreased current response of the Fe2+/Fe3+ oxidation

  19. An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection.

    PubMed

    Haque, Al-Monsur Jiaul; Park, Hyejin; Sung, Daekyung; Jon, Sangyong; Choi, Sung-Yool; Kim, Kyuwon

    2012-02-21

    We present an electrochemically reduced graphene oxide (ERGO)-based electrochemical immunosensing platform for the ultrasensitive detection of an antigen by the sandwich enzyme-linked immunosorbent assay (ELISA) protocol. Graphene oxide (GO) sheets were initially deposited on the amine-terminated benzenediazonium-modified indiun tin oxide (ITO) surfaces through both electrostatic and π-π interactions between the modified surfaces and GO. This deposition was followed by the electrochemical reduction of graphene oxide (GO) for preparing ERGO-modified ITO surfaces. These surfaces were then coated with an N-acryloxysuccinimide-activated amphiphilic polymer, poly(BMA-r-PEGMA-r-NAS), through π-π stacking interactions between the benzene ring tethered to the polymer and ERGO. After covalent immobilization of a primary antibody on the polymer-modified surfaces, sandwich ELISA was carried out for the detection of an antigen by use of a horseradish peroxidase (HRP)-labeled secondary antibody. Under the optimized experimental conditions, the developed electrochemical immunosensor exhibited a linear response over a wide range of antigen concentrations with a very low limit of detection (ca. 100 fg/mL, which corresponds to ca. 700 aM). The high sensitivity of the electrochemical immunosensor may be attributed not only to the enhanced electrocatalytic activity owing to ERGO but also to the minimized background current owing to the reduced nonspecific binding of proteins.

  20. Boron-doped diamond nanograss array for electrochemical sensors.

    PubMed

    Wei, Min; Terashima, Chiaki; Lv, Mei; Fujishima, Akira; Gu, Zhong-Ze

    2009-06-28

    A novel BDD nanograss array has been prepared simply on a heavily doped BDD film by reactive ion etching for use as an electrochemical sensor, which improved the reactive site, promoted the electrocatalytic activity, accelerated the electron transfer, and enhanced the selectivity.

  1. A sensitive electrochemical biosensor for detection of protein kinase A activity and inhibitors based on Phos-tag and enzymatic signal amplification.

    PubMed

    Yin, Huanshun; Wang, Mo; Li, Bingchen; Yang, Zhiqing; Zhou, Yunlei; Ai, Shiyun

    2015-01-15

    A simple, highly sensitive and selective electrochemical assay is developed for the detection of protein kinase A (PKA) activity based on the specific recognition utility of Phos-tag for kinase-induced phosphopeptides and enzymatic signal amplification. When the substrate peptide was phosphorylated by PKA reaction, they could specifically bind with Phos-tag-biotin in the presence of Zn(2+) through the formation of a specific noncovalent complex with the phosphomonoester dianion in phosphorylated peptides. Through the further specific interaction between biotin and avidin, avidin functionalized horseradish peroxidase (HRP) can be captured on the electrode surface. Under the catalytic effect of HRP, a sensitive electrochemical signal for benzoquinone was obtained, which was related to PKA activity. Under the optimal experiment conditions, the proposed electrochemical method presented dynamic range from 0.5 to 25 unit/mL with low detection limit of 0.15 unit/mL. This new detection strategy was also successfully applied to analyze the inhibition effect of inhibitors (ellagic acid and H-89) on PKA activity and monitored the PKA activity in cell lysates. Therefore, this Phos-tag-based electrochemical assay offers an alternative platform for PKA activity assay and inhibitor screening, and thus it might be a valuable tool for development of targeted therapy and clinical diagnosis.

  2. Highly sensitive electrochemical stripping detection of hepatitis B surface antigen based on copper-enhanced gold nanoparticle tags and magnetic nanoparticles.

    PubMed

    Shen, Guangyu; Zhang, Yun

    2010-07-26

    On the basis of copper-enhanced gold nanoparticle tags as an amplification approach, we introduced, in this paper, magnetic nanoparticles for further improving performance of electrochemical immunoassay by anodic stripping voltammetry (ASV) at a glassy-carbon electrode. Due to the use of antibody-immobilized magnetic nanoparticles, the immunoreaction between antibody and antigen takes place in a homogeneous bulk solution phase. Compared with traditional solid interface reaction, the proposed strategy can provide some advantages such as easy of separation, shorter analytical time, wider linear range, and lower detection limit. It was also successfully applied to HBsAg determination in a linear range of 0.1-1500 ng mL(-1) with a detection limit of 87 pg mL(-1). The proposed analytical strategy holds good selectivity, sensitivity and repeatability and also great promise for the extended application in the fields of clinical diagnosis, bio-affinity assay and environmental monitoring.

  3. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Yang, Zhengchun; Qi, Wen; Li, Yutao; Wu, Ying; Zhou, Shaoxiong; Huang, Shengming; Wei, Jun; Li, Huijun; Yao, Pei

    2016-02-01

    Herein, binder-free Co3O4@NiCoAl-layered double hydroxide (Co3O4@LDH) core-shell hybrid architectural nanowire arrays were prepared via a two-step hydrothermal synthesis route. LDH nanosheets possessing a large electroactive surface area uniformly dispersed on the surface of Co3O4 nanowires were successfully fabricated allowing for fast electron transport that enhances the electrochemical performance of LDH nanosheets. Co3O4@LDH nanowire arrays of 2 to 1.5 molar ratio (Co3O4:LDH) exhibit high specific capacitance (1104 F g-1 at 1 A g-1), adequate rate capability and cycling stability (87.3% after 5000 cycles), attributed to the synergistic effect between the robust Co3O4 nanowire arrays and LDH nanosheets.

  4. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K.

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO 4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO 4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO 4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g -1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g -1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO 4//Li 4Ti 5O 12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and

  5. Synergistic effect of MgO nanoparticles for electrochemical sensing, photocatalytic-dye degradation and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Reddy Yadav, L. S.; Lingaraju, K.; Manjunath, K.; Raghu, G. K.; Sudheer Kumar, K. H.; Nagaraju, G.

    2017-02-01

    MgO nanoparticles (NPs) have been synthesized by a simple and eco-friendly route using watermelon juice as a novel fuel. The synthesized MgO NPs have been subjected to detailed characterization using various analytical techniques. The XRD pattern confirms the crystal structure of MgO which is composed of cubic phase of periclase. The FTIR spectrum gave another manifest for the presence of Mg–O bonding at 552 cm‑1. The surface structure, morphology and particle size have been studied using SEM and TEM which show the MgO NPs are in agglomerated form, almost spherical in shape and average size is about 30–50 nm. Finally, the multidimensional studies have been examined by subjecting MgO NPs as a catalyst for the photodegradation of methylene blue dye (one of the most commonly encountered environmental pollutants), antibacterial activities and electrochemical sensing for the detection of hydrazine at trace level concentration.

  6. Electrochemically active nanocrystalline SnO{sub 2} films: Surface modification with thiazine and oxazine dye aggregates

    SciTech Connect

    Liu, D.; Kamat, P.V.

    1995-03-01

    Thin films of SnO{sub 2}, nanocrystallites have been surface-modified with thionine, methylene blue, and oxazine 170 by adsorption from the corresponding dye solutions. The strong electrostatic interaction between the cationic dye and the negatively charged semiconductor nanocrystallites results in close packing of the dye on the semiconductor surface. These closely packed H-aggregates of the adsorbed dye are active both electrochemically and photoelectrochemically. Electron transfer from semiconductor nanocrystallites into the adsorbed dye aggregates leads to bleaching of the colored film. The extent of dye bleaching which is readily controlled by the applied potential, has been probed by spectroelectrochemical measurements. The photocurrent action spectra of these dye-modified SnO{sub 2} films indicate charge injection from excited dye aggregate into the semiconductor nanocrystallites with an incident photon-to-photocurrent efficiency of < 1 %.

  7. Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering.

    PubMed

    Arán-Ais, Rosa M; Yu, Yingchao; Hovden, Robert; Solla-Gullón, Jose; Herrero, Enrique; Feliu, Juan M; Abruña, Héctor D

    2015-12-02

    We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500-1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

  8. A Photometric High-Throughput Method for Identification of Electrochemically Active Bacteria Using a WO3 Nanocluster Probe

    PubMed Central

    Yuan, Shi-Jie; He, Hui; Sheng, Guo-Ping; Chen, Jie-Jie; Tong, Zhong-Hua; Cheng, Yuan-Yuan; Li, Wen-Wei; Lin, Zhi-Qi; Zhang, Feng; Yu, Han-Qing

    2013-01-01

    Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO3 nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations. PMID:23439110

  9. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    PubMed

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  10. Parthenolide enhances dacarbazine activity against melanoma cells.

    PubMed

    Koprowska, Kamila; Hartman, Mariusz L; Sztiller-Sikorska, Malgorzata; Czyz, Malgorzata E

    2013-09-01

    Dacarbazine induces a clinical response only in 15% of melanoma patients. New treatment strategies may involve combinations of drugs with different modes of action to target the tumor heterogeneity. We aimed to determine whether the combined treatment of heterogeneous melanoma cell populations in vitro with the alkylating agent dacarbazine and the nuclear factor-κB inhibitor parthenolide could be more effective than either drug alone. A panel of melanoma cell lines, including highly heterogeneous populations derived from surgical specimens, was treated with dacarbazine and parthenolide. The effect of drugs on the viable cell number was examined using an acid phosphatase activity assay, and the combination effect was determined by median-effect analysis. Cell death and cell-cycle arrest were assessed by flow cytometry. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by western blotting. Secretion of vascular endothelial growth factor and interleukin-8 was determined using an enzyme-linked immunosorbent assay. The self-renewing capacity was assessed using a clonogenic assay. Dacarbazine was less effective in heterogeneous melanoma populations than in the A375 cell line. Parthenolide and dacarbazine synergistically reduced the viable cell numbers. Both drugs induced cell-cycle arrest and apoptotic cell death. Importantly, parthenolide abrogated the baseline and dacarbazine-induced vascular endothelial growth factor secretion from melanoma cells in heterogeneous populations, whereas interleukin-8 secretion was not significantly affected by either drug. Parthenolide eradicated melanoma cells with self-renewing capacity also in cultures simultaneously treated with dacarbazine. The combination of parthenolide and dacarbazine might be considered as a new therapeutic modality against metastatic melanoma.

  11. The Idefix enhancer-blocking insulator also harbors barrier activity.

    PubMed

    Brasset, E; Hermant, C; Jensen, S; Vaury, C

    2010-01-15

    Chromatin insulators are cis-regulatory sequences participating in the regulation of gene expression. Their presence within the genome is associated with two main functions. One of them is an enhancer-blocking function that blocks enhancer-promoter communication when the insulator is located in between. The second is a boundary or barrier function that insulates independent units of transcription. This latter is observed when two insulators flanking a gene and its regulatory sequences block the regulatory influences of surrounding chromatin. Some years ago, we reported the presence of an insulator within the retrotransposon Idefix from Drosophila melanogaster. This insulator displays an enhancer-blocking activity toward an enhancer located within a second retrotransposon called ZAM. Here, we show that this insulator is not specific to the ZAM enhancer but has the capacity to interfere in the communication established between a broad range of cis-regulatory enhancer and a promoter. Furthermore, we show that, if it is placed on both sides of a transgene, this insulator acts as a barrier able to isolate the transgene from its repressive or enhancing environment. Thus, the Idefix insulator carries both an enhancer-blocking and a barrier activity. According to these properties, the Idefix insulator might prove to be a useful tool to isolate artificial transgenes from positive or negative influences from their integration sites.

  12. Environmental Education Activities to Enhance Decision-Making.

    ERIC Educational Resources Information Center

    Yambert, Paul A.; And Others

    This document contains a set of 10 activities that teachers may use with students (ages 10 to adult) to enhance environmental knowledge and environmentally responsible behavior. Sample worksheets are included when applicable. The activities focus on: renewable and nonrenewable resources; recycling; population growth; wildlife; recycling in a…

  13. Photo-enhanced activity of Pt and Pt-Ru catalysts towards the electro-oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Arulmani, Dheevesh V.; Eastcott, Jennie I.; Mavilla, Stephanie G.; Easton, E. Bradley

    2014-02-01

    Electrocatalyst materials, consisting of Pt or Pt-Ru supported on carbon with and without TiO2, are evaluated for their activity towards the methanol oxidation reaction (MOR) in 1.0 M H2SO4 at 25 °C in the presence and absence of visible light irradiation. Electrochemical studies showed that enhanced MOR activity is achieved upon irradiation with visible light for each catalyst, in both the presence and absence of TiO2. Irradiation leads to no improvement in activity towards the formic acid oxidation reaction (FAOR) indicating that irradiation aids in the removal of adsorbed intermediate species, such as CO, during MOR. While the presence of a TiO2 support does lead to an increase in activity upon irradiation, about 50% of the improvements arise solely from the irradiation of the metal-containing electrocatalysts themselves.

  14. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    PubMed

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  15. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  16. Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Li, Shuai; Si, Yanmei; Zhang, Ning; Sun, Zongzhao; Wu, Hong; Lin, Yuehe

    2014-06-01

    A powerful enzymatic mimetic has been fabricated by employing graphene oxide (GO) nanocolloids to disperse conductive carbon supports of hydrophobic carbon nanotubes (CNTs) before and after the loading of Pt nanocatalysts. The resulting GOCNT-Pt nanocomposites could present improved aqueous dispersion stability and Pt spatial distribution. Unexpectedly, they could show greatly enhanced peroxidase-like catalysis and electrocatalysis activities in water, as evidenced in the colorimetric and electrochemical investigations in comparison to some inorganic nanocatalysts commonly used. Moreover, it is found that the new enzyme mimetics could exhibit peroxidase-like catalysis activity comparable to natural enzymes; yet, they might circumvent some of their inherent problems in terms of catalysis efficiency, electron transfer, environmental stability, and cost effectiveness. Also, sandwiched electrochemical immunoassays have been successfully conducted using GOCNT-Pt as enzymatic tags. Such a fabrication avenue of noble metal nanocatalysts loaded on well-dispersed conductive carbon supports should be tailored for the design of different enzyme mimics promising the extensive catalysis applications in environmental, medical, industrial, and particularly aqueous biosensing fields.A powerful enzymatic mimetic has been fabricated by employing graphene oxide (GO) nanocolloids to disperse conductive carbon supports of hydrophobic carbon nanotubes (CNTs) before and after the loading of Pt nanocatalysts. The resulting GOCNT-Pt nanocomposites could present improved aqueous dispersion stability and Pt spatial distribution. Unexpectedly, they could show greatly enhanced peroxidase-like catalysis and electrocatalysis activities in water, as evidenced in the colorimetric and electrochemical investigations in comparison to some inorganic nanocatalysts commonly used. Moreover, it is found that the new enzyme mimetics could exhibit peroxidase-like catalysis activity comparable to natural

  17. The Effect of Long-Term Storage on the Physiochemical and Bactericidal Properties of Electrochemically Activated Solutions

    PubMed Central

    Robinson, Gareth; Thorn, Robin; Reynolds, Darren

    2013-01-01

    Electrochemically activated solutions (ECAS) are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a “green biocide.” Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L) in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log10 reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications. PMID:23263673

  18. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2015-09-30

    Grove, CA, November, 2014. [in press, refereed]. C . Gianelli, L. Xu, and J. Li, " Active Sonar Systems in the Presence of Strong Direct Blast", Oceans...3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal... active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design

  19. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2014-09-30

    DATES COVERED (From - To) Oct. 01. 2013-Sept. 30, 2014 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal Processing 5a...DISTRIBUTION AVAILABILITY STATEMENT Approved for Public Release; Distribution is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Pulsed active sonar ...PAS) and continuous active sonar (CAS) in the presence of strong direct blast are studied for the Doppler-tolerant linear frequency modulation

  20. In situ electrochemical activation of Ni-based colloids from an NiCl2 electrode and their advanced energy storage performance.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2016-10-06

    The formation of electrochemical activated cations in electrode materials to induce multiple-electron transfer reactions is a challenge for high-energy storage systems. Herein, highly electroactive Ni-based colloidal electrode materials have been synthesized by in situ electrochemical activation of a NiCl2 electrode. The highest specific capacitance of the activated Ni-based electrodes was 10 286 F g(-1) at a current density of 3 A g(-1), indicating that a three-electron Faradaic redox reaction (Ni(3+) ↔ Ni) occurred. Upon potential cycling and constant potential activation, a decrease in the charge transfer resistance can be found. Activation and utilization of multiple-electron reactions is an efficient route to increase the energy density of supercapacitors. This newly designed colloidal pseudocapacitor is compatible with inorganic pseudocapacitor chemistry, which enables us to use metal cations directly via their commercial salts rather than their oxide/hydroxide compounds.

  1. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp(2) hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed.

  2. Characterizing mechanisms of extracellular electron transport in sulfur and iron-oxidizing electrochemically active bacteria isolated from marine sediments

    NASA Astrophysics Data System (ADS)

    Rowe, A. R.; Bird, L. J.; Lam, B. R.; Nealson, K. H.

    2014-12-01

    Lithotrophic reactions, including the oxidation of mineral species, are often difficult to detect in environmental systems. This could be due to the nature of substrate or metabolite quantification or the rapid consumption of metabolic end products or intermediates by proximate biological or abiotic processes. Though recently genetic markers have been applied to detecting these processes in environmental systems, our knowledge of lithotrophic markers are limited to those processes catalyzed by organisms that have been cultured and physiologically characterized. Here we describe the use of electrochemical enrichment techniques to isolate marine sediment-dwelling microbes capable of the oxidation or insoluble forms of iron and sulfur including both the elemental species. All the organisms isolated fall within the Alphaproteobacteria and Gammaproteobacteria and are capable of acquiring electrons from an electrode while using either oxygen or nitrate as a terminal electron acceptor. Electrochemical analysis of these microbes has demonstrated that, though they have similar geochemical abilities (either sulfur or iron oxidation), they likely utilize different biochemical mechanisms demonstrated by the variability in dominant electron transfer modes or interactions (i.e., biofilm, planktonic or mediator facilitated interactions) and the wide range of midpoint potentials observed for dominant redox active cellular components (ranging from -293 to +50 mV vs. Ag/AgCl). For example, organisms isolated on elemental sulfur tended to have higher midpoint potentials than iron-oxidizing microbes. A variety of techniques are currently being applied to understanding the different mechanisms of extracellular electron transport for oxidizing an electrode or corresponding insoluble electron donor including both genomic and genetic manipulation experiments. The insight gained from these experiments is not limited to the physiology of the organisms isolated but will also aid in

  3. Forecast of enhanced activity of eta-Aquariids in 2013

    NASA Astrophysics Data System (ADS)

    Sato, M.; Watanabe, J.

    2014-07-01

    We tried to simulate distributions for Eta-Aquariids (ETA) of dust trails from 1P/Halley, we found out that some dust trails formed by meteoroids ejected in -1197 and -910 would approach the Earth in 2013. It means that the enhancement of eta-Aquariids would be expected. Actually, the enhanced activity of eta-Aquariids was observed in 2013. Its peak time corresponded with the time when the dust trails approached the Earth based on our simulation. Therefore, it was sure that the enhancement was caused by these dust trails.

  4. Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction

    SciTech Connect

    Loukrakpam, Rameshwori; Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Zhong, Chuan-Jian

    2013-10-01

    For oxygen reduction reaction (ORR) over alloy electrocatalysts, the understanding of how the atomic arrangement of the metal species in the nanocatalysts is responsible for the catalytic enhancement is challenging for achieving better design and tailoring of nanoalloy catalysts. This paper reports results of an investigation of the atomic structures and the electrocatalytic activities of ternary and binary nanoalloys, aiming at revealing a fundamental insight into the unique atomic-scale structure-electrocatalytic activity relationship. PtIrCo catalyst and its binary counterparts (PtCo and PtIr) are chosen as a model system for this study. The effect of thermochemical treatment temperature on the atomic-scale structure of the catalysts was examined as a useful probe to the structure-activity correlation. The structural characterization of the binary and ternary nanoalloy catalysts was performed by combining surface sensitive techniques such as XPS and 3D atomic ordering sensitive techniques such as high-energy X-ray diffraction (HE-XRD) coupled to atomic pair distribution function (PDF) analysis (HE-XRD/PDFs) and computer simulations. The results show that the thermal treatment temperature tunes the nanoalloy’s atomic and chemical ordering in a different way depending on the chemical composition, leading to differences in the nanoalloy’s mass and specific activities. A unique structural tunability of the atomic ordering in a platinum-iridium-cobalt nanoalloy has been revealed for enhancing greatly the electrocatalytic activity toward oxygen reduction reaction, which has significant implication for rational design and nanoengineering of advanced catalysts for electrochemical energy conversion and storage.

  5. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  6. Space Electrochemical Research and Technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of NASA's third Space Electrochemical Research and Technology (SERT) conference are presented. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions in the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: the electrochemical interface, the next generation in aerospace batteries and fuel cells, and electrochemistry for nonenergy storage applications.

  7. Pre-adsorption of protein on electrochemically grooved nanostructured stainless steel implant and relationship to cellular activity.

    PubMed

    Nune, K C; Misra, R D K

    2014-07-01

    The successful integration of a biomedical device is governed by the surface properties of the material and also depends on the interaction with the physiological fluid involving adsorption of proteins on the surface. Pre-adsorbed proteins act as pilots for cell adhesion and subsequently govern cellular activity. In this regard, nanograined materials are excellent vehicles to obtain an unambiguous understanding of protein adsorption, which regulate cell adhesion and cellular activity. Toward this end, we have used the concept of phase reversion-induced nanograined structure to understand grain structure-induced self-assembly of a model protein, bovine serum albumin. Furthermore, in the context of bio-mechanical interlocking between implant and bone, and osseointegration of the implant, grain boundaries were electrochemically grooved and studied for osteoblast functions. Experiments indicated that the significant differences in cell attachment, proliferation, and expression level of prominent proteins (actin, vinculin, and fibronectin) is related to synergistic effects of grain structure, pre-adsorbed protein, and grooving of grain boundaries such that the osteoblasts functions and cellular activity is promoted on the nanostructured surface in relation to the coarse-grained counterpart.

  8. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells.

    PubMed

    Liu, Ying; Harnisch, Falk; Fricke, Katja; Schröder, Uwe; Climent, Victor; Feliu, Juan Miguel

    2010-05-15

    In this communication we show that the achievable maximum current density for mature wastewater-based microbial biofilms is strongly dependent on the electrode material and the operation temperature. On graphite and polycrystalline carbon rods, the catalytic current of about 500 microA cm(-2) (projected surface area) at 30 degrees C was achieved. Carbon fiber veil or carbon-paper based materials, having a large microbially-accessible surface gave a projected current density approximately 40% higher than on graphite rod. In contrast, the biofilm cannot form well on graphite foil. Elevating the temperature from 30 to 40 degrees C increased current density by 80% on graphite rod anodes. Interestingly, the formal potential of the active site (-0.12 V (vs. standard hydrogen electrode (SHE))) is similar to all electrocatalytically active microbial biofilms and to that found for Geobacter sulfurreducens in previous studies. In addition, the real surface area values measured by BET surface area technique cannot provide a reasonable explanation for suitability of an electrode material for the formation of electrochemically active biofilm.

  9. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    PubMed Central

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-01-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg−1, a high reversible specific capacity of 1055.20 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries. PMID:27296103

  10. Scanning electrochemical microscopy of DNA hybridization on DNA microarrays enhanced by HRP-modified SiO2 nanoparticles.

    PubMed

    Fan, Huajun; Wang, Xiaolan; Jiao, Fang; Zhang, Fan; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2013-07-02

    Imaging of localized hybridization of nucleic acids immobilized on a glass DNA microarray was performed by means of generation collection (GC) mode scanning electrochemical microscopy (SECM). Amine-tethered oligodeoxynucleotide probes, spotted on the glass surface, were hybridized with an unmodified target sequence and a biotinylated indicator probe via sandwich hybridization. Spots where sequence-specific hybridization had occurred were modified by streptavidin-horseradish-peroxidase-(HRP)-wrapped SiO2 nanoparticles through the biotin-streptavidin interaction. In the presence of H2O2, hydroquinone (H2Q) was oxidized to benzoquinone (BQ) at the modified spot surface through the HRP catalytic reaction, and the generated BQ corresponding to the amount of target DNA was reduced in solution by an SECM tip. With this DNA microarray, a number of genes could be detected simultaneously and selectively enough to discriminate between complementary sequences and those containing base mismatches. The DNA targets at prepared spots could be imaged in SECM GC mode over a wide concentration range (10(-7)-10(-12) M). This technique may find applications in genomic sequencing.

  11. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis

    NASA Astrophysics Data System (ADS)

    Basu, Mrinmoyee; Nazir, Roshan; Fageria, Pragati; Pande, Surojit

    2016-10-01

    An efficient Hydrogen evolution catalyst has been developed by decorating Au nanoparticle on the surface of CuS nanostructure following a green and environmental friendly approach. CuS nanostructure is synthesized through a simple wet-chemical route. CuS being a visible light photocatalyst is introduced to function as an efficient reducing agent. Photogenerated electron is used to reduce Au(III) on the surface of CuS to prepare CuS/Au heterostructure. The as-obtained heterostructure shows excellent performance in electrochemical H2 evolution reaction with promising durability in acidic condition, which could work as an efficient alternative for novel metals. The most efficient CuS-Au heterostructure can generate 10 mA/cm2 current density upon application of 0.179 V vs. RHE. CuS-Au heterostructure can also perform as an efficient photocatalyst for the degradation of organic pollutant. This dual nature of CuS and CuS/Au both in electrocatalysis and photocatalysis has been unveiled in this study.

  12. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells.

    PubMed

    Shin, Kyeong-Sik; Ji, Jae Hoon; Hwang, Kyo Seon; Jun, Seong Chan; Kang, Ji Yoon

    2016-11-15

    This paper reports a novel electrochemical impedance spectroscopy (EIS) biosensors that uses magnetic beads trapped in a microwell array to improve the sensitivity of conventional bead-based EIS (BEIS) biosensors. Unloading the previously measured beads by removing the magnetic bar enables the BEIS sensor to be used repeatedly by reloading it with new beads. Despite its recyclability, the sensitivity of conventional BEIS biosensors is so low that it has not attracted much attentions from the biosensor industry. We significantly improved the sensitivity of the BEIS system by introducing of a microwell array that contains two electrodes (a working electrode and a counter electrode) to concentrate the electric field on the surfaces of the beads. We confirmed that the performance of the BEIS sensor in a microwell array using an immunoassay of prostate specific antigen (PSA) in PBS buffer and human plasma. The experimental results showed that a low concentration of PSA (a few tens or hundreds of fg/mL) were detectable as a ratio of the changes in the impedance of the PBS buffer or in human plasma. Therefore, our BEIS sensor with a microwell array could be a promising platform for low cost, high-performance biosensors for applications that require high sensitivity and recyclability.

  13. Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO2 Nanoparticles.

    PubMed

    Pan, Du; Wan, Ning; Ren, Yong; Zhang, Weifeng; Lu, Xia; Wang, Yuesheng; Hu, Yong-Sheng; Bai, Ying

    2017-03-22

    A facile one-pot hydrothermal strategy is applied to prepare Co and F codoped SnO2 (Co-F/SnO2) nanoparticles, which exhibit a unique rice-shaped self-similar structure. Compared with the pristine and Co-doped counterparts (SnO2 and Co/SnO2), the Co-F/SnO2 electrode demonstrates higher capacity, better cyclability, and rate capability as anode material for lithium ion batteries (LIBs). A high charge capacity of 800 mAh g(-1) can be successfully delivered after 50 cycles at 0.1 C, and a high reversible capacity of 700 mAh g(-1) could be retained after 100 cycles at 5 C. The excellent lithium storage performances of the Co-F/SnO2 nanoparticles could be attributed to the synergetic effects of the doped Co and F, as well as the unique hierarchical self-similar structure with moderate oxygen defect and inactive pillars, which not only facilitates the fast diffusion of Li ions, but also stabilizes the structure during the electrochemical cycling.

  14. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis

    PubMed Central

    Basu, Mrinmoyee; Nazir, Roshan; Fageria, Pragati; Pande, Surojit

    2016-01-01

    An efficient Hydrogen evolution catalyst has been developed by decorating Au nanoparticle on the surface of CuS nanostructure following a green and environmental friendly approach. CuS nanostructure is synthesized through a simple wet-chemical route. CuS being a visible light photocatalyst is introduced to function as an efficient reducing agent. Photogenerated electron is used to reduce Au(III) on the surface of CuS to prepare CuS/Au heterostructure. The as-obtained heterostructure shows excellent performance in electrochemical H2 evolution reaction with promising durability in acidic condition, which could work as an efficient alternative for novel metals. The most efficient CuS-Au heterostructure can generate 10 mA/cm2 current density upon application of 0.179 V vs. RHE. CuS-Au heterostructure can also perform as an efficient photocatalyst for the degradation of organic pollutant. This dual nature of CuS and CuS/Au both in electrocatalysis and photocatalysis has been unveiled in this study. PMID:27703212

  15. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-06-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg‑1, a high reversible specific capacity of 1055.20 mAhg‑1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg‑1 when cycled at the current density of 1000 mAg‑1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries.

  16. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance.

    PubMed

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-06-14

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg(-1), a high reversible specific capacity of 1055.20 mAhg(-1) after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg(-1) when cycled at the current density of 1000 mAg(-1), indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries.

  17. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    PubMed

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.

  18. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples.

  19. Enhanced electrochemical performance of Si-Cu-Ti thin films by surface covered with Cu3Si nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Kaiqi; He, Yu; Ben, Liubin; Li, Hong; Huang, Xuejie

    2015-05-01

    Si-Cu-Ti thin films with Cu3Si nanowires on the surface and voids in the Cu layer are fabricated for the first time by magnetron sputtering combined with atomic layer deposition (ALD) of alumina. The formation of the surface Cu3Si nanowires is strongly dependent on the thickness of the coated alumina and cooling rate of the thin films during annealing. The maximum coverage of the surface Cu3Si nanowires is obtained with an alumina thickness of 2 nm and a cooling rate of 1 °C min-1. The electrode based on this thin film shows an excellent capacity retention of more than 900 mAh g-1 and a high columbic efficiency of more than 99% after 100 cycles. The improvement of the electrochemical performance of Si-Cu-Ti thin film electrode is attributed to the surface Cu3Si nanowires which reduce the polarization and inhomogeneous lithiation by formation of a surface conductive network, in addition to the alleviation of volume expansion of Si by voids in the Cu layer during cycling.

  20. Au@Ag nanorods based electrochemical immunoassay for immunoglobulin G with signal enhancement using carbon nanofibers-polyamidoamine dendrimer nanocomposite.

    PubMed

    Ma, Lina; Ning, Danlei; Zhang, Hongfang; Zheng, Jianbin

    2015-06-15

    Au@Ag nanorods (Au@AgNRs) was utilized to construct a novel sandwich-type electrochemical immunosensor for the detection of immunoglobulin G (IgG). The sensor was prepared by immoblizing capture antibodies on the amine-terminated nanocomposite of carbon nanofibers-polyamidoamine dendrimer (CNFs-PAMAM), whilst the trace tag was prepared by loading anti-human IgG on Au@AgNRs. The "built-in" Ag layer on Au nanorods was characterized by UV-vis extinction spectra, transmission electron microscopy and energy dispersive spectroscopy. The results of cyclic voltammetry indicated that modifying CNFs-PAMAM nanocomposite on glassy carbon electrode enabled 177 times of peak current increase of Ag in the bimetallic nanorods. The peak current was quantitatively related with the concentration of the target protein IgG via the formation of immunocomplex. After the parameter optimization, the oxidative peak current of silver was proportional to the concentration of IgG in a wide linear range of six orders of magnitude with a low detection limit of 0.5 fg mL(-1). Besides, this sensor showed acceptable reproducibility and stability, and thus the strategy reported here has great promise for extension to the other disease biomarkers.

  1. Enhancement of photoelectric catalytic activity of TiO 2 film via Polyaniline hybridization

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Xu, Jing; Zong, Weizheng; Zhu, Yongfa

    2011-06-01

    A Polyaniline (PANI)/TiO 2 film coated on titanium foil was successfully prepared using the sol-gel method followed by a facile chemisorption. Compared with pristine TiO 2, the photocatalytic (PC) and photoelectrocatalytic (PEC) degradation rates of 2,4-dichlorophenol (2,4-DCP) with the PANI/TiO 2 film were enhanced by 22.2% and 57.5%, respectively. 2,4-DCP can be mineralized more effectively in the presence of PANI/TiO 2 film. The best PEC degradation efficiency of 2,4-DCP with the PANI/TiO 2 film was acquired at an external potential of 1.5 V with a layer of 1 nm thick PANI. The PANI/TiO 2 film was characterized by Raman spectra, Fourier transform infrared spectra (FT-IR), Auger electron spectroscopy (AES), and electrochemical analysis. These results indicated that there was a chemical interaction on the interface of PANI and TiO 2. This interaction may be of significance to promote the migration efficiency of carriers and induce a synergetic effect to enhance the PC and PEC activities.

  2. Electrochemical Engineering

    ERIC Educational Resources Information Center

    Alkire, Richard

    1976-01-01

    Discusses an electrochemical engineering course that combines transport phenomena and basic physical chemistry. Lecture notes and homework problems are used instead of a textbook; an outline of lecture topics is presented. (MLH)

  3. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  4. Synthesis and characterization of electrospun PVdF-HFP/silane-functionalized ZrO2 hybrid nanofiber electrolyte with enhanced optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2016-12-01

    A facile method to produce a hybrid of organic-inorganic nanofiber electrolyte via electrospinning is hereby presented. The incorporation of functionalized zirconium oxide (ZrO2) nanoparticles into poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and complexed with lithium trifluoromethanesulfonate (LiCF3SO3) provided an enhanced optical transmissivity and ionic conductivity. The dependence of the nanofiber's morphology, optical and electrochemical properties on the various ZrO2 loading was studied. Results show that while nanofiller content was increased, the diameter of the nanofibers was reduced. The improved bulk ionic conductivity of the nanofiber electrolyte was at 1.96 × 10-5 S cm-1. Owing to the enhanced dispersibility of the 3-(trimethoxysilyl)propyl methacrylate (MPS) functionalized ZrO2, the optical transmissivity of the nanofiber electrolyte was improved significantly. This new nanofiber composite electrolyte membrane with further development has the potential to be next generation electrolyte for energy efficient windows like electrochromic devices.

  5. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine.

    PubMed

    Qiu, Xinlan; Lu, Limin; Leng, Jing; Yu, Yongfang; Wang, Wenmin; Jiang, Min; Bai, Ling

    2016-01-01

    A novel electrochemical platform was designed for the simultaneous determination of Sunset Yellow (SY) and Tartrazine (TT), synthetic food dyes, by combining the signal amplification properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable dispersion of GO/MWCNTs composite was produced by sonication mixing. Compared with glassy carbon, MWCNTs and GO electrodes, GO/MWCNTs electrode exhibited strong enhancement effect and greatly increased the oxidation signal of SY and TT. Under optimized conditions, the enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 0.09-8.0 μM, with a low limit of detection of 0.025 μM for SY and 0.01 μM for TT (S/N = 3), respectively. To further validate its possible application, the proposed method was successfully used for the determination of SY and TT in orange juice with satisfactory results.

  6. C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Guohui; Wu, Quanping; Zhao, Jun; Ma, Qianqian; Wang, Chengyang

    2014-02-01

    C/LiFePO4/multi-walled carbon nanotubes composite is prepared by a hybrid of hydrothermal progress that involves an in-situ multi-walled carbon nanotubes embedding approach and a facile electro-polymerization polyaniline process. The designed material on nanosize with about 100-200 nm in length contains tridimensional networks and uniform-thickness carbon layer, which remarkably enhance its electronic conductivity. The synthesized LiFePO4 composite offers a discharge capacity of 169.8 mAh g-1 at the C/2 rate and high capacity retention at the 5C rate. Meanwhile, the well-crystallized material composed of many densely aggregated nanoparticles and interconnected nanochannels presents a high tap density leading to excellent volumetric Li storage properties at high current rates (>135 mAh cm-3 at 20C), and stable charge/discharge cycle ability (>95% capacity retention after 200 charge/discharge cycles). As such, the prepared material with controllable size and structure yields an enhanced electrochemical performance in terms of charming rate capability, cycling life and capacity retention as a cathode in lithium-ion batteries, this non-organic facile synthesize avenue can be promising to prepare high-power electrode materials.

  7. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability.

  8. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase.

    PubMed

    Zhou, Yunlei; Yin, Huanshun; Li, Xue; Li, Zhi; Ai, Shiyun; Lin, Hai

    2016-12-15

    A sensitive and selective electrochemical biosensor was fabricated for protein kinase A (PKA) activity assay. Multiple signal amplification techniques were employed including the nanocomposite of gold nanoparticles and carbon nanospheres (Au@C), the biocomposite of SiO2 and streptavidin (SiO2-SA), the composite of AuNPs and biotinylated β-galactosidase (AuNPs-B-Gal) and in situ enzymatic generation of electrochemical activity molecule of p-aminophenol. After peptides were assembled on Au@C modified electrode surface, they were phosphorylated by PKA in the presence of ATP. Then, biotinylated Phos-tag was modified on electrode surface through the specific interaction between Phos-tag and phosphate group. Finally, SiO2-SA and AuNPs-B-Gal were captured through the specific interaction between biotin and streptavidin. Because the electrochemical response of p-aminophenol was directly related to PKA concentration, an innovative electrochemical assay could be realized for PKA detection. The detection limit was 0.014unit/mL. The developed method showed high detection sensitivity and selectivity. In addition, the fabricated biosensor can be also applied to detect PKA in human normal gastricepithelial cell line and human gastric carcinoma cell line with satisfactory results.

  9. Aspirin can stimulate luminol-enhanced chemiluminescence of activated platelets.

    PubMed

    Gabbasov, Zufar; Ivanova, Oksana; Kogan-Yasny, Victor; Vasilieva, Elena

    2010-01-01

    A preliminary investigation was conducted into the influence of aspirin on the luminol-enhanced chemiluminescence of platelets stimulated with platelet-activating factor (PAF). Ten coronary artery disease patients and six volunteers without coronary artery disease were included in the study. All the patients received aspirin (daily dose, 100 mg) for at least 10 days before in vitro experiments. Luminol-enhanced luminescence of platelet-rich plasma samples mixed with a PAF solution was measured. After stimulation of platelets with PAF, we did not find a luminol-enhanced chemiluminescent response either in the non-coronary artery disease volunteers or in eight out of the 10 coronary artery disease patients examined. However, in samples from two patients where platelets were stimulated with PAF reactive oxygen species were formed. This ability was expressed as an intensive luminol-enhanced luminescence of activated platelets. Such a reaction was observed against the background of the administration of aspirin. The addition of aspirin to a test tube considerably enhanced the intensity of chemiluminescence. In one case, the cancellation of aspirin was accompanied by diminution of the intensity of luminol-enhanced chemiluminescence of platelets. The clinical significance of this phenomenon is unknown.

  10. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    SciTech Connect

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  11. Chemical modification of capuramycins to enhance antibacterial activity

    PubMed Central

    Bogatcheva, Elena; Dubuisson, Tia; Protopopova, Marina; Einck, Leo; Nacy, Carol A.; Reddy, Venkata M.

    2011-01-01

    Objectives To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. Methods Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). Results Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. Conclusions Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv. PMID:21186194

  12. alpha-MSH enhances activity-based anorexia.

    PubMed

    Hillebrand, Jacquelien J G; Kas, Martien J H; Adan, Roger A H

    2005-10-01

    Activity-based anorexia (ABA) is considered an animal model of anorexia nervosa (AN). In ABA, scheduled feeding in combination with voluntary access to running wheels, results in hyperactivity, hypophagia, body weight loss and activation of the HPA axis. Since stimulation of the melanocortin (MC) system has similar effects, this system is a candidate system involved in ABA. Here it is shown that chronic alpha-MSH treatment enhances ABA by increasing running wheel activity (RWA), decreasing food intake and increasing HPA axis activation.

  13. Active DNA demethylation at enhancers during the vertebrate phylotypic period.

    PubMed

    Bogdanović, Ozren; Smits, Arne H; de la Calle Mustienes, Elisa; Tena, Juan J; Ford, Ethan; Williams, Ruth; Senanayake, Upeka; Schultz, Matthew D; Hontelez, Saartje; van Kruijsbergen, Ila; Rayon, Teresa; Gnerlich, Felix; Carell, Thomas; Veenstra, Gert Jan C; Manzanares, Miguel; Sauka-Spengler, Tatjana; Ecker, Joseph R; Vermeulen, Michiel; Gómez-Skarmeta, José Luis; Lister, Ryan

    2016-04-01

    The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases.

  14. Immunoglobulin octanucleotide: independent activity and selective interaction with enhancers

    SciTech Connect

    Parslow, T.G.; Jones, S.D.; Bond, B.; Yamamoto, K.R.

    1987-03-20

    The thymidine kinase (tk) promoter of herpes simplex virus includes an octanucleotide sequence motif (ATTTGCAT) that is also an essential component of immunoglobulin kappa gene promoters. In the absence of an enhancer, tk promoter derivatives that contain this element support a higher rate of transcription than those that lack it. The action of the kappa enhancer augments that of the octanucleotide in B lymphoid cells; when both elements are present, tk promoter activity is increased by more than an order of magnitude. In contrast, the presence of the octanucleotide in this promoter markedly reduces its response to a nonimmunoglobulin enhancer. These results suggest that the octanucleotide may mediate a selective interaction among promoters and enhancers.

  15. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Yang, Fan; Zhang, Yi; Xiao, Jianping; Yu, Liang; Liu, Qingfei; Ning, Yanxiao; Zhou, Zhiwen; Chen, Hao; Huang, Wugen; Liu, Ping; Bao, Xinhe

    2017-02-01

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that re