Small, Gary R.; Hadoke, Patrick W. F.; Sharif, Isam; Dover, Anna R.; Armour, Danielle; Kenyon, Christopher J.; Gray, Gillian A.; Walker, Brian R.
2005-01-01
Angiogenesis restores blood flow to healing tissues, a process that is inhibited by high doses of glucocorticoids. However, the role of endogenous glucocorticoids and the potential for antiglucocorticoid therapy to enhance angiogenesis is unknown. Using in vitro and in vivo models of angiogenesis in mice, we examined effects of (i) endogenous glucocorticoids, (ii) blocking endogenous glucocorticoid action with the glucocorticoid receptor antagonist RU38486, and (iii) abolishing local regeneration of glucocorticoids by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1). Glucocorticoids, administered at physiological concentrations, inhibited angiogenesis in an in vitro aortic ring model and in vivo in polyurethane sponges implanted s.c. RU38486-enhanced angiogenesis in s.c. sponges, in healing surgical wounds, and in the myocardium of mice 7 days after myocardial infarction induced by coronary artery ligation. 11βHSD1 knockout mice showed enhanced angiogenesis in vitro and in vivo within sponges, wounds, and infarcted myocardium. Endogenous glucocorticoids, including those generated locally by 11βHSD1, exert tonic inhibition of angiogenesis. Inhibition of 11βHSD1 in liver and adipose has been advocated to reduce cardiovascular risk in the metabolic syndrome: these data suggest that 11βHSD1 inhibition offers a previously uncharacterized therapeutic approach to improve healing of ischemic or injured tissue. PMID:16093320
Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor
Christian, Catherine A.; Herbert, Anne G.; Holt, Rebecca L.; Peng, Kathy; Sherwood, Kyla D.; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R.
2014-01-01
Summary Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking (“endozepine”) roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a novel therapy for epilepsy and other neurological disorders. PMID:23727119
Tissue and Circulating Expression of IL-1 Family Members Following Heat Stroke
2011-01-01
physiological responses is the relationship of the endogenous cytokine to tissue and soluble forms of the recep- tor. Cleavage products of the...in sIL-1RII at hypothermia may be an endogenous mechanism that works to enhance recovery from HS in wild-type (i.e., C57BL/6J) mice by sequestering...rewarming to baseline Tc, all indexes of improved thermal tolerance in the absence of endogenous IL-1 actions. Third, IL-1RI KO mice displayed fever at
Ren, Yongxin; Liu, Bo; Feng, Yuxu; Shu, Lei; Cao, Xiaojian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun
2011-01-01
Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH. Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/-)) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/-) mice compared to vehicle-treated wild-type and Pth(-/-) mice. Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.
The transcription factor Lc-Maf participates in Col27a1 regulation during chondrocyte maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Jaime L.; Holden, Devin N.; Barrow, Jeffery R.
2009-08-01
The transcription factor Lc-Maf, which is a splice variant of c-Maf, is expressed in cartilage undergoing endochondral ossification and participates in the regulation of type II collagen through a cartilage-specific Col2a1 enhancer element. Type XXVII and type XI collagens are also expressed in cartilage during endochondral ossification, and so enhancer/reporter assays were used to determine whether Lc-Maf could regulate cartilage-specific enhancers from the Col27a1 and Col11a2 genes. The Col27a1 enhancer was upregulated over 4-fold by Lc-Maf, while the Col11a2 enhancer was downregulated slightly. To confirm the results of these reporter assays, rat chondrosarcoma (RCS) cells were transiently transfected with anmore » Lc-Maf expression plasmid, and quantitative RT-PCR was performed to measure the expression of endogenous Col27a1 and Col11a2 genes. Endogenous Col27a1 was upregulated 6-fold by Lc-Maf overexpression, while endogenous Col11a2 was unchanged. Finally, in situ hybridization and immunohistochemistry were performed in the radius and ulna of embryonic day 17 mouse forelimbs undergoing endochondral ossification. Results demonstrated that Lc-Maf and Col27a1 mRNAs are coexpressed in proliferating and prehypertrophic regions, as would be predicted if Lc-Maf regulates Col27a1 expression. Type XXVII collagen protein was also most abundant in prehypertrophic and proliferating chondrocytes. Others have shown that mice that are null for Lc-Maf and c-Maf have expanded hypertrophic regions with reduced ossification and delayed vascularization. Separate studies have indicated that Col27a1 may serve as a scaffold for ossification and vascularization. The work presented here suggests that Lc-Maf may affect the process of endochondral ossification by participating in the regulation of Col27a1 expression.« less
Navarro-Meléndez, Ariana L; Heil, Martin
2014-07-01
Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.
DREAM regulates BDNF-dependent spinal sensitization
2010-01-01
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062
Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwa, O.; Sugahara, T.
1981-08-01
The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation.more » For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells.« less
Rikiishi, Kazuhide; Matsuura, Takakazu; Ikeda, Yoko; Maekawa, Masahiko
2015-01-01
Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous darkness, whereas shoot regeneration was enhanced in cultures under a 16-h photoperiod in Golden Promise (GP) and Lenins (LN). These cultivars were classified as photo-inhibition type (KN5 and K3) or photo-induction type (GP and LN) according to their response to light. Contents of endogenous plant hormones were determined in calli cultured under a 16-h photoperiod and continuous darkness. In photo-inhibition type, higher accumulation of abscisic acid (ABA) was detected in calli cultured under a 16-h photoperiod, whereas calli showed lower levels of endogenous ABA in continuous darkness. However, cultivars of photo-induction type showed lower levels of ABA in calli cultured under both light conditions, similarly to photo-inhibition type in continuous darkness. Exogenous ABA inhibited the callus growth and shoot regeneration independent of light conditions in all cultivars. In photo-inhibition type, lower levels of endogenous ABA induced by ABA biosynthesis inhibitor, fluridone, reduced the photo-inhibition of shoot regeneration. Expression of ABA biosynthesis gene, HvNCED1, in calli was regulated by the light conditions. Higher expression was observed in calli cultured under a 16-h photoperiod. These results indicate that ABA biosynthesis could be activated through the higher expression of HvNCED1 in a 16-h photoperiod and that the higher accumulations of ABA inhibit shoot regeneration in the photo-inhibition type cultivars. PMID:26670930
Krishnan, Manickam; Janardhanan, Preethi; Roman, Linda; Reddick, Robert L; Natarajan, Mohan; van Haperen, Rien; Habib, Samy L; de Crom, Rini; Mohan, Sumathy
2015-10-01
The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKβ) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.
Van Hook, Matthew J; Thoreson, Wallace B
2015-01-01
Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977
Wu, Hui; Xu, Xiao; Meng, Ying; Xia, Fangzhen; Zhai, Hualing; Lu, Yingli
2014-01-01
Objective. Blood glucose concentrations of type 1 diabetic rats are vulnerable, especially to stress and trauma. The present study aimed to investigate the fasting endogenous glucose production and skeletal muscle glucose uptake of Streptozotocin induced type 1 diabetic rats using an unstressed vein and artery implantation of catheters at the tails of the rats as a platform. Research Design and Methods. Streptozotocin (65 mg·kg−1) was administered to induce type 1 diabetic state. The unstressed approach of catheters of vein and artery at the tails of the rats was established before the isotope tracer injection. Dynamic measurement of fasting endogenous glucose production was assessed by continuously infusing stable isotope [6, 6-2H2] glucose, while skeletal muscle glucose uptake by bolus injecting radioactively labeled [1-14C]-2-deoxy-glucose. Results. Streptozotocin induced type 1 diabetic rats displayed polydipsia, polyphagia, and polyuria along with overt hyperglycemia and hypoinsulinemia. They also had enhanced fasting endogenous glucose production and reduced glucose uptake in skeletal muscle compared to nondiabetic rats. Conclusions. The dual catheters implantation at the tails of the rats together with isotope tracers injection is a save time, unstressed, and feasible approach to explore the glucose metabolism in animal models in vivo. PMID:24772449
Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity
Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.
2011-01-01
Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148
Microbial endogenous response to acute inhibitory impact of antibiotics.
Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D
2017-06-13
Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).
Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.
Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi
2016-01-01
Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.
ERIC Educational Resources Information Center
Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil
2009-01-01
Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…
Mannucci, Pier Mannuccio; Kempton, Christine; Millar, Carolyn; Romond, Edward; Shapiro, Amy; Birschmann, Ingvild; Ragni, Margaret V; Gill, Joan Cox; Yee, Thynn Thynn; Klamroth, Robert; Wong, Wing-Yen; Chapman, Miranda; Engl, Werner; Turecek, Peter L; Suiter, Tobias M; Ewenstein, Bruce M
2013-08-01
Safety and pharmacokinetics (PK) of recombinant von Willebrand factor (rVWF) combined at a fixed ratio with recombinant factor VIII (rFVIII) were investigated in 32 subjects with type 3 or severe type 1 von Willebrand disease (VWD) in a prospective phase 1, multicenter, randomized clinical trial. rVWF was well tolerated and no thrombotic events, inhibitors, or serious adverse events were observed. The PK of rVWF ristocetin cofactor activity, VWF antigen, and collagen-binding activity were similar to those of the comparator plasma-derived (pd) VWF-pdFVIII. In vivo cleavage of ultra-large molecular-weight rVWF multimers by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; the endogenous VWF protease) and generation of characteristic satellite bands were demonstrated. In 2 subjects with specific nonneutralizing anti-VWF-binding antibodies already detectable before rVWF infusion, a reduction in VWF multimers and VWF activity was observed. Stabilization of endogenous FVIII was enhanced following post-rVWF-rFVIII infusion as shown by the difference in area under the plasma concentration curve compared with pdVWF-pdFVIII (AUC0-∞) (P < .01). These data support the concept of administering rVWF alone once a therapeutic level of endogenous FVIII is achieved.
Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong
2014-01-01
Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.
López-Hidalgo, Mónica; Salgado-Puga, Karla; Alvarado-Martínez, Reynaldo; Medina, Andrea Cristina; Prado-Alcalá, Roberto A.; García-Colunga, Jesús
2012-01-01
Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions. PMID:23185511
O'Brien, William G; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi
2015-08-07
Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.
Wang, Bin; Fu, Mengjiao; Liu, Yanan; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.
2018-01-01
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection. PMID:29564226
Endogenous cortisol levels influence exposure therapy in spider phobia.
Lass-Hennemann, Johanna; Michael, Tanja
2014-09-01
Previous research in patients with phobia showed that the administration of glucocorticoids reduces fear in phobic situations and enhances exposure therapy. Glucocorticoids underlie a daily cycle with a peak in the morning and low levels during the evening and night. The aim of the present study was to investigate whether exposure is more effective when conducted in the morning when endogenous cortisol levels are high. Sixty patients meeting DSM IV criteria for specific phobia (animal type) were randomly assigned to one-session exposure treatment either at 08.00 a.m. (high cortisol group) or at 06.00 p.m. (low cortisol group). Participants returned for a posttreatment assessment one week after therapy and a follow-up assessment three months after therapy. Both groups showed good outcome, but patients treated in the morning exhibited significantly less fear of spiders in the behavioral approach test (BAT) and a trend for lower scores on the Fear of Spiders Questionnaire (FSQ) than patients treated in the evening. This effect was present at posttreatment and follow-up. Our findings indicate that exposure therapy is more effective in the morning than in the evening. We suggest that this may be due to higher endogenous cortisol levels in the morning group that enhance extinction memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Muto, Machiko; Henry, Ryan E; Mayfield, Stephen P
2009-01-01
Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from the endogenous fusion partner, allowing for the purification of the intended mature protein. Conclusion These results demonstrate the utility of fusion proteins in algal chloroplast as a method to increase accumulation of recombinant proteins that are difficult to express. Since Rubisco is ubiquitous to land plants and green algae, this strategy may also be applied to higher plant transgenic expression systems. PMID:19323825
Heat Shock Proteins Are Important Mediators of Skeletal Muscle Insulin Sensitivity
Geiger, Paige C.; Gupte, Anisha A.
2013-01-01
Endogenous heat shock proteins (HSP) are decreased in disease states associated with insulin resistance and aging. Induction of HSPs has been shown to decrease oxidative stress, inhibit inflammatory pathways, and enhance metabolic characteristics in skeletal muscle. As such, HSPs have the potential to function as an important defense system against the development of insulin resistance and type 2 diabetes. PMID:21088604
El-Shenawy, N S; Abu Zaid, A; Amin, G A
2012-02-01
The present study was undertaken to evaluate the effects of feeding the male mice with miso that was prepared with a mixture of microbial starters on the level of lipid peroxidation as a marker of oxidative stress, antioxidant power of hepatocytes, the enzymatic and non-enzymatic antioxidant. The starters that were used in the preparation of miso were Aspergillus oryzae and Pleurotus ostreaus or A. oryzae and Bacillus subtilis. The miso that was prepared with A. oryzae and Bacillus subtilis has more effect on suppressing the oxidative stress and enhancement of endogenous antioxidant of hepatocytes and renal tissue of mice. © 2011 Blackwell Verlag GmbH.
Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes.
Perl, Sivan H; Bloch, Olga; Zelnic-Yuval, Dana; Love, Itamar; Mendel-Cohen, Lior; Flor, Hadar; Rapoport, Micha J
2018-05-01
High levels of circulating GLP-1 are associated with severity of sepsis in critically ill nondiabetic patients. Whether patients with type 2 diabetes (T2D) display different activation of the endogenous GLP-1 system during sepsis and whether it is affected by diabetes-related metabolic parameters are not known. Serum levels of GLP-1 (total and active forms) and its inhibitor enzyme sDPP-4 were determined by ELISA on admission and after 2 to 4 days in 37 sepsis patients with (n = 13) and without T2D (n = 24) and compared to normal healthy controls (n = 25). Correlations between GLP-1 system activation and clinical, inflammatory, and diabetes-related metabolic parameters were performed. A 5-fold (P < .001) and 2-fold (P < .05) increase in active and total GLP-1 levels, respectively, were found on admission as compared to controls. At 2 to 4 days from admission, the level of active GLP-1 forms in surviving patients were decreased significantly (P < .005), and positively correlated with inflammatory marker CRP (r = 0.33, P = .05). T2D survivors displayed a similar but more enhanced pattern of GLP-1 response than nondiabetic survivors. Nonsurvivors demonstrate an early extreme increase of both total and active GLP-1 forms, 9.5-fold and 5-fold, respectively (P < .05). The initial and late levels of circulating GLP-1 inhibitory enzyme sDPP-4 were twice lower in all studied groups (P < .001), compared with healthy controls. Taken together, these data indicate that endogenous GLP-1 system is activated during sepsis. Patients with T2D display an enhanced and prolonged activation as compared to nondiabetic patients. Extreme early increased GLP-1 levels during sepsis indicate poor prognosis. Copyright © 2018 John Wiley & Sons, Ltd.
Rogers, Nicole H.; Walsh, Heidi; Alvarez-Garcia, Oscar; Park, Seongjoon; Gaylinn, Bruce; Thorner, Michael O.
2016-01-01
Aging is associated with attenuated ghrelin signaling. During aging, chronic caloric restriction (CR) produces health benefits accompanied by enhanced ghrelin production. Ghrelin receptor (GH secretagogue receptor 1a) agonists administered to aging rodents and humans restore the young adult phenotype; therefore, we tested the hypothesis that the metabolic benefits of CR are mediated by endogenous ghrelin. Three month-old male mice lacking ghrelin (Ghrelin−/−) or ghrelin receptor (Ghsr−/−), and their wild-type (WT) littermates were randomly assigned to 2 groups: ad libitum (AL) fed and CR, where 40% food restriction was introduced gradually to allow Ghrelin−/− and Ghsr−/− mice to metabolically adapt and avoid severe hypoglycemia. Twelve months later, plasma ghrelin, metabolic parameters, ambulatory activity, hypothalamic and liver gene expression, as well as body composition were measured. CR increased plasma ghrelin and des-acyl ghrelin concentrations in WT and Ghsr−/− mice. CR of WT, Ghsr−/−, and Ghrelin−/− mice markedly improved metabolic flexibility, enhanced ambulatory activity, and reduced adiposity. Inactivation of Ghrelin or Ghsr had no effect on AL food intake or food anticipatory behavior. In contrast to the widely held belief that endogenous ghrelin regulates food intake, CR increased expression of hypothalamic Agrp and Npy, with reduced expression of Pomc across genotypes. In the AL context, ablation of ghrelin signaling markedly inhibited liver steatosis, which correlated with reduced Pparγ expression and enhanced Irs2 expression. Although CR and administration of GH secretagogue receptor 1a agonists both benefit the aging phenotype, we conclude the benefits of chronic CR are a consequence of enhanced metabolic flexibility independent of endogenous ghrelin or des-acyl ghrelin signaling. PMID:26812158
Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil
2009-01-01
Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB1-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for α-type peroxisome proliferator-activated nuclear receptors, PPAR-α) when and where they are naturally released in the brain. Using a passive-avoidance task in rats, we found that memory acquisition was enhanced by the FAAH inhibitor URB597 or by the PPAR-α agonist WY14643, and these enhancements were blocked by the PPAR-α antagonist MK886. These findings demonstrate novel mechanisms for memory enhancement by activation of PPAR-α, either directly by administering a PPAR-α agonist or indirectly by administering a FAAH inhibitor. PMID:19403796
Effect of Penetration Enhancers on the Percuaneous Delivery of Hormone Replacement Actives.
Trimble, John O; Light, Bob
2017-01-01
Transdermal compositions for hormone replacement are comprised of exogenous hormones that are biochemically similar to those produced endogenously by the ovaries or elsewhere in the body. In this work, estradiol, estriol, and testosterone were loaded in transdermal vehicles, prepared using one of three selected penetration enhancer mixtures: Vehicle 1 (olive oil and oleic acid), Vehicle 2 (isopropyl palmitate and lecithin), and Vehicle 3 (isopropyl myristate and lecithin). The influence of penetration enhancers on transdermal delivery was evaluated using Franz-type diffusion cells and Normal Human 3D Model of Epidermal Tissue. Results showed that drug delivery is affected by the penetration enhancer used in the transdermal composition. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu
2015-01-01
This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.
Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar
2014-07-01
In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.
Freitas, K; Negus, SS; Carroll, FI; Damaj, MI
2013-01-01
Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024
Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields
Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio
2014-01-01
Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402
He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei
2016-01-01
The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360
He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei
2016-01-26
The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β.
Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C
2015-01-01
Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).
Klein, Rebecca; Mahlberg, Nicolas; Ohren, Maurice; Ladwig, Anne; Neumaier, Bernd; Graf, Rudolf; Hoehn, Mathias; Albrechtsen, Morten; Rees, Stephen; Fink, Gereon Rudolf; Rueger, Maria Adele; Schroeter, Michael
2016-12-01
The neural cell adhesion molecule (NCAM)-derived peptide FG loop (FGL) modulates synaptogenesis, neurogenesis, and stem cell proliferation, enhances cognitive capacities, and conveys neuroprotection after stroke. Here we investigated the effect of subcutaneously injected FGL on cellular compartments affected by degeneration and regeneration after stroke due to middle cerebral artery occlusion (MCAO), namely endogenous neural stem cells (NSC), oligodendrocytes, and microglia. In addition to immunohistochemistry, we used non-invasive positron emission tomography (PET) imaging with the tracer [ 18 F]-fluoro-L-thymidine ([ 18 F]FLT) to visualize endogenous NSC in vivo. FGL significantly increased endogenous NSC mobilization in the neurogenic niches as evidenced by in vivo and ex vivo methods, and it induced remyelination. Moreover, FGL affected neuroinflammation. Extending previous in vitro results, our data show that the NCAM mimetic peptide FGL mobilizes endogenous NSC after focal ischemia and enhances regeneration by amplifying remyelination and modulating neuroinflammation via affecting microglia. Results suggest FGL as a promising candidate to promote recovery after stroke.
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2012-01-01
The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879
Kraus, Benjamin; Fischer, Katrin; Büchner, Sarah M; Wels, Winfried S; Löwer, Roswitha; Sliva, Katja; Schnierle, Barbara S
2013-01-01
Human endogenous retrovirus (HERV) genomes are chromosomally integrated in all cells of an individual. They are normally transcriptionally silenced and transmitted only vertically. Enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed in tumor patients and HIV-infected individuals. As HERV-K is usually not expressed and immunological tolerance development is unlikely, it is an appropriate target for the development of immunotherapies. We generated a recombinant vaccinia virus (MVA-HKenv) expressing the HERV-K envelope glycoprotein (ENV), based on the modified vaccinia virus Ankara (MVA), and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) or the HERV-K ENV gene (RLZ-HKenv cells). Intravenous injection of RLZ-HKenv cells into syngenic BALB/c mice led to the formation of pulmonary metastases, which were detectable by X-gal staining. A single vaccination of tumor-bearing mice with MVA-HKenv drastically reduced the number of pulmonary RLZ-HKenv tumor nodules compared to vaccination with wild-type MVA. Prophylactic vaccination of mice with MVA-HKenv precluded the formation of RLZ-HKenv tumor nodules, whereas wild-type MVA-vaccinated animals succumbed to metastasis. Protection from tumor formation correlated with enhanced HERV-K ENV-specific killing activity of splenocytes. These data demonstrate for the first time that HERV-K ENV is a useful target for vaccine development and might offer new treatment opportunities for diverse types of cancer.
USDA-ARS?s Scientific Manuscript database
The influence of endogenous subgroup E avian Leukosis virus (ALV-E) and strain SB-1 of serotype 2 Marek’s disease virus (MDV) on the enhancement of spontaneous lymphoid leukosis (LL)-like tumors was studied in chickens of Avian Disease and Oncology Laboratory (ADOL) line named 0.TVB*S1, or RFS. This...
Heijnen, M L; van den Berg, G J; Beynen, A C
1996-09-01
Dietary raw (RS2) vs. retrograded resistant starch (RS3) raises apparent magnesium absorption in rats. The mechanism proposed is that RS2 enhances magnesium avaibility for absorption; it does this by increasing ileal solubility of magnesium due to a reduction in pH as a consequence of RS2 fermentation in the gut. The mechanism implies that dietary RS2 vs. RS3 would raise true magnesium absorption and stimulate reabsorption of endogenous magnesium, leading to a lower fecal excretion of endogenous magnesium. Dietary lactulose vs. glucose raises apparent magnesium absorption, and the mechanism proposed is similar to that for the stimulatory effect of RS2 vs. RS3. Thus, we measured in rats fed RS3, RS2, glucose or lactulose true magnesium absorption on the basis of the retention of the orally and intraperitoneally administered radiotracer 28Mg. Feeding rats RS2 instead of RS3 significantly enhanced apparent but not true magnesium absorption, because RS2 lowered fecal excretion of endogenous magnesium. When compared with dietary glucose, lactulose significantly raised both apparent and true magnesium absorption, but did not affect fecal excretion of endogenous magnesium. It is suggested that the proposed mechanism by which RS2 and lactulose would enhance magnesium absorption is disproved by the present data.
Sunkara, Lakshmi T.; Achanta, Mallika; Schreiber, Nicole B.; Bommineni, Yugendar R.; Dai, Gan; Jiang, Weiyu; Lamont, Susan; Lillehoj, Hyun S.; Beker, Ali; Teeter, Robert G.; Zhang, Guolong
2011-01-01
Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance. PMID:22073293
Estes, D M; Tuo, W; Brown, W C; Goin, J
1998-12-01
In this report, we sought to determine the role of selected type I interferons [interferon-alpha (IFN-alpha) and interferon-tau (IFN-tau)], IFN-gamma and transforming growth factor-beta (TGF-beta) in the regulation of bovine antibody responses. B cells were stimulated via CD40 in the presence or absence of B-cell receptor (BCR) cross-linking. IFN-alpha enhanced IgM, IgG2 and IgA responses but did not enhance IgG1 responses. BCR signalling alone was more effective at inducing IgG2 responses with IFN-alpha than dual cross-linking with CD40. Recombinant ovine IFN-tau was less effective at inducing IgG2 responses when compared with IFN-alpha, though IgA responses were similar in magnitude following BCR cross-linking. At higher concentrations, IFN-tau enhanced IgA responses greater than twofold over the levels observed with IFN-alpha. Previous studies have shown that addition of IFN-gamma to BCR or pokeweed mitogen-activated bovine B cells stimulates IgG2 production. However, following CD40 stimulation alone, IFN-gamma was relatively ineffective at stimulating high-rate synthesis of any non-IgM isotype. Dual cross-linking via CD40 and the BCR resulted in decreased synthesis of IgM with a concomitant increase in IgA and similar levels of IgG2 production to those obtained via the BCR alone. We also assessed the effects of endogenous and exogenous TGF-beta on immunoglobulin synthesis by bovine B cells. Exogenous TGF-beta stimulates both IgG2 and IgA production following CD40 and BCR cross-linking in the presence of IL-2. Blocking endogenous TGF-beta did not inhibit the up-regulation of IgG2 or IgA by interferons.
Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants.
Xu, Wen; Cai, Shu-Yu; Zhang, Yun; Wang, Yu; Ahammed, Golam Jalal; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Reiter, Russel J; Zhou, Jie
2016-11-01
Melatonin is a pleiotropic signaling molecule that provides physiological protection against diverse environmental stresses in plants. Nonetheless, the mechanisms for melatonin-mediated thermotolerance remain largely unknown. Here, we report that endogenous melatonin levels increased with a rise in ambient temperature and that peaked at 40°C. Foliar pretreatment with an optimal dose of melatonin (10 μmol/L) or the overexpression of N-acetylserotonin methyltransferase (ASMT) gene effectively ameliorated heat-induced photoinhibition and electrolyte leakage in tomato plants. Both exogenous melatonin treatment and endogenous melatonin manipulation by overexpression of ASMT decreased the levels of insoluble and ubiquitinated proteins, but enhanced the expression of heat-shock proteins (HSPs) to refold denatured and unfolded proteins under heat stress. Meanwhile, melatonin also induced expression of several ATG genes and formation of autophagosomes to degrade aggregated proteins under the same stress. Proteomic profile analyses revealed that protein aggregates for a large number of biological processes accumulated in wild-type plants. However, exogenous melatonin treatment or overexpression of ASMT reduced the accumulation of aggregated proteins. Aggregation responsive proteins such as HSP70 and Rubisco activase were preferentially accumulated and ubiquitinated in wild-type plants under heat stress, while melatonin mitigated heat stress-induced accumulation and ubiquitination of aggregated proteins. These results suggest that melatonin promotes cellular protein protection through induction of HSPs and autophagy to refold or degrade denatured proteins under heat stress in tomato plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.
1979-11-30
hours after Butler 7 institution of antibiotic treatment. Polymorphonuclear leukocytes are known to release endogenous pyrogen after phagocytosis of...other bacteria (6), and endogenous pyrogen may be one of the mediators of the rigor and temperature rise in the Jarisch-Herxheimer reaction (2). Release...the pathogenesis of fever. XII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leukocytes. J. Exp. Med. 119:715
Srivastava, Sudhakar; Brychkova, Galina; Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya; Sagi, Moshe
2017-04-01
The Arabidopsis ( Arabidopsis thaliana ) aldehyde oxidases are a multigene family of four oxidases (AAO1-AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. © 2017 American Society of Plant Biologists. All Rights Reserved.
Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya
2017-01-01
The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272
Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael
2017-01-01
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development. PMID:28713249
Cytokines in the regulation of allograft rejection.
Huber, C; Irschick, E
1988-01-01
Stimulation of T lymphocytes with alloantigen leads to release of both IL-2 and IFN-gamma. IL-2 enhances clonal expansion of alloantigen-activated T cells. This permits it to overcome acquired allograft tolerance which, at the efferent limb of the cellular immune response, is caused by reduced clone size of donor-specific cytotoxic lymphocyte precursor cells. Cells exhibiting a low constitutive expression of class I MHC antigenes are refractory to lysis by cytotoxic T cells. This second type of tolerance located at the level of the allogeneic target cells can be easily broken by exogenous IFN-gamma, which increases the density of class I MHC antigens. There is suggestive evidence for enhanced endogenous production of lymphokines during rejection of cardiac allografts in mice and men. Rejection episodes are also associated with increased expression of class I and elevated frequency of class II MHC antigen-positive cells in the cardiac transplants. Whereas early immune recognition of histoincompatible grafts is primarily related to the presence of genetic barriers between donor and recipient, the further amplification of alloreactivity is driven by the release of antigen-unspecific lymphokines. Production of endogenous lymphokines can be modified by a variety of means: methylprednisone, ciclosporin and specific antibodies against lymphokines or their receptors represent effective inhibitors of this amplification mechanism which can finally lead to irreversible graft damage. It is well established in clinical experience that infectious complications subsequent to allografting may precipitate rejection or graft-vs.-host disease. Our finding of increased endogenous IFN-gamma levels during infections, in particular in those caused by cytomegalovirus, provides an explanation for this association.(ABSTRACT TRUNCATED AT 250 WORDS)
Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael
2017-01-01
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a . The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.
Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei
2012-12-01
Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.
Williams, Ruth M; Senanayake, Upeka; Artibani, Mara; Taylor, Gunes; Wells, Daniel; Ahmed, Ahmed Ashour; Sauka-Spengler, Tatjana
2018-02-23
CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo . © 2018. Published by The Company of Biologists Ltd.
Mesenchymal stem cells and cardiac repair
Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav
2008-01-01
Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237
Endogenous Cortisol: Acute Modulation of Cytokine Gene Expression in Bovine PBMCs
USDA-ARS?s Scientific Manuscript database
Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar, Neuroimmunomod 2009;16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expres...
Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
Yang, Yun; Ding, Yuanzhao; Hu, Yidan; Cao, Bin; Rice, Scott A; Kjelleberg, Staffan; Song, Hao
2015-07-17
Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)).
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
Luo, Michelle L.; Mullis, Adam S.; Leenay, Ryan T.; Beisel, Chase L.
2015-01-01
CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing and transcriptional regulation. Because these RNA-directed immune systems are found in most prokaryotes, an opportunity exists to harness the endogenous systems as convenient tools in these organisms. Here, we report that the Type I-E CRISPR-Cas system in Escherichia coli can be co-opted for programmable transcriptional repression. We found that deletion of the signature cas3 gene converted this immune system into a programmable gene regulator capable of reversible gene silencing of heterologous and endogenous genes. Targeting promoter regions yielded the strongest repression, whereas targeting coding regions showed consistent strand bias. Furthermore, multi-targeting CRISPR arrays could generate complex phenotypes. This strategy offers a simple approach to convert many endogenous Type I systems into transcriptional regulators, thereby expanding the available toolkit for CRISPR-mediated genetic control while creating new opportunities for genome-wide screens and pathway engineering. PMID:25326321
Brewer, Justin; Liu, Ruisheng; Lu, Yan; Scott, Jeremy; Wallace, Kedra; Wallukat, Gerd; Moseley, Janae; Herse, Florian; Dechend, Ralf; Martin, James N.; LaMarca, Babbette
2013-01-01
Hypertension during preeclampsia is associated with increased maternal vascular sensitivity to angiotensin II (ANGII). This study was designed to determine mechanisms whereby agonistic autoantibodies to the ANGII type I receptor (AT1-AA) enhance blood pressure (MAP) and renal vascular sensitivity to ANGII during pregnancy. First, we examined MAP and renal artery resistance index (RARI) in response to chronic administration of ANGII or AT1-AA or AT1-AA+ANGII in pregnant rats compared to control pregnant rats. In order to examine mechanisms of heightened sensitivity in response to AT1-AA during pregnancy we examined the role of endogenous ANGII in AT1-AA infused pregnant rats, Endothelin-1 and oxidative stress in AT1-AA+ANGII treated rats. Chronic ANGII increased MAP from 95 +/−2 in NP rats to 115 +/−2 mmHg. Chronic AT1-AA increased MAP to 118+/−1 mmHg in NP rats which further increased to 123+/−2 with AT1-AA+ANGII. Increasing ANGII from (10−11-10−8) decreased Af-Art diameter 15-20% but sharply decreased Af-Art diameter 60% in AT1-AA pretreated vessels. RARI increased from 0.67 in NP rats to 0.70 with AT1-AA infusion, which was exacerbated to 0.74 in AT1-AA + ANGII infused rats. AT1-AA-induced hypertension decreased with Enalapril but was not attenuated. Both tissue ET-1 and ROS increased with AT1-AA+ANGII compared to AT1-AA alone and blockade of either of these pathways had significant effects on MAP or RARI. These data support the hypothesis that AT1-AA, via activation of ET-1 and oxidative stress and interaction with endogenous ANGII, are important mechanisms whereby MAP and renal vascular responses are enhanced during preeclampsia. PMID:24041954
Acute modulation of cytokine gene expression in bovine PBMCs by endogenous cortisol
USDA-ARS?s Scientific Manuscript database
Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar, Neuroimmunomod 2009;16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expres...
Explaining Cigarette Smoking: An Endogenous-Exogenous Analysis.
ERIC Educational Resources Information Center
McKillip, Jack
Kruglanski's endogenous-exogenous partition, when applied to reasons given by smokers for smoking cigarettes, distinguishes two types of actions: (1) endogenous reasons implying that the behavior of consuming the cigarette is the goal of the action and the actor is positive toward the behavior, and (2) exogenous reasons implying that the behavior…
Koehler, Sybille; Brähler, Sebastian; Braun, Fabian; Hagmann, Henning; Rinschen, Markus M; Späth, Martin R; Höhne, Martin; Wunderlich, F Thomas; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T
2017-06-01
Podocyte injury is a key event in glomerular disease leading to proteinuria and opening the path toward glomerular scarring. As a consequence, glomerular research strives to discover molecular mechanisms and signaling pathways affecting podocyte health. The hNphs2.Cre mouse model has been a valuable tool to manipulate podocyte-specific genes and to label podocytes for lineage tracing and purification. Here we designed a novel podocyte-specific tricistronic Cre mouse model combining codon improved Cre expression and fluorescent cell labeling with mTomato under the control of the endogenous Nphs2 promoter using viral T2A-peptides. Independent expression of endogenous podocin, codon improved Cre, and mTomato was confirmed by immunofluorescence, fluorescent activated cell sorting and protein analyses. Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type mice developed normally and did not show any signs of glomerular disease or off-target effects under basal conditions and in states of disease. Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type -mediated gene recombination was superior to conventional hNphs2.Cre mice-mediated gene recombination. Last, we compared Cre efficiency in a disease model by mating Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type and hNphs2.Cre mice to Phb2 fl/fl mice. The podocyte-specific Phb2 knockout by Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type mice resulted in an aggravated glomerular injury as compared to a podocyte-specific Phb2 gene deletion triggered by hNphs2.Cre. Thus, we generated the first tricistronic podocyte mouse model combining enhanced Cre recombinase efficiency and fluorescent labeling in podocytes without the need for additional matings with conventional reporter mouse lines. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar. 2009. Neuroimmunomod. 16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expr...
Cerebellar Secretin Modulates Eyeblink Classical Conditioning
ERIC Educational Resources Information Center
Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T.
2014-01-01
We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…
Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases
Schmidt-Arras, Dirk-E.; Böhmer, Annette; Markova, Boyka; Choudhary, Chunaram; Serve, Hubert; Böhmer, Frank-D.
2005-01-01
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPα promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. PMID:15831474
Huang, Dongyang; Huang, Sha; Gao, Haixia; Liu, Yani; Qi, Jinlong; Chen, Pingping; Wang, Caixue; Scragg, Jason L; Vakurov, Alexander; Peers, Chris; Du, Xiaona; Zhang, Hailin; Gamper, Nikita
2016-08-10
Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. SP acutely inhibited T-type voltage-gated Ca(2+) channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca(2+) channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K(+) channels described earlier. Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca(2+) current and concurrent enhancement of anti-algesic M-type K(+) current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233-251.
Chang, Yizhao; Su, Tianyuan; Qi, Qingsheng; Liang, Quanfeng
2016-11-15
Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a recently developed powerful tool for gene regulation. In Escherichia coli, the type I CRISPR system expressed endogenously shall be easy for internal regulation without causing metabolic burden in compared with the widely used type II system, which expressed dCas9 as an additional plasmid. By knocking out cas3 and activating the expression of CRISPR-associated complex for antiviral defense (Cascade), we constructed a native CRISPRi system in E. coli. Downregulation of the target gene from 6 to 82% was demonstrated using green fluorescent protein. Regulation of the citrate synthase gene (gltA) in the TCA cycle affected host metabolism. The effect of metabolic flux regulation was demonstrated by the poly-3-hydroxbutyrate (PHB) accumulation in vivo. By regulating native gltA in E. coli using an engineered endogenous type I-E CRISPR system, we redirected metabolic flux from the central metabolic pathway to the PHB synthesis pathway. This study demonstrated that the endogenous type I-E CRISPR-Cas system is an easy and effective method for regulating internal metabolic pathways, which is useful for product synthesis.
Shi, Haitao; Chan, Zhulong
2014-09-01
Melatonin (N-acetyl-5-methoxytryptamine) is not only a widely known animal hormone, but also an important regulator in plant development and multiple abiotic stress responses. Recently, it has been revealed that melatonin alleviated cold stress through mediating several cold-related genes, including C-REPEAT-BINDING FACTORs (CBFs)/Drought Response Element Binding factors (DREBs), COR15a, and three transcription factors (CAMTA1, ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), and ZAT12). In this study, we quantified the endogenous melatonin level in Arabidopsis plant leaves and found the endogenous melatonin levels were significantly induced by cold stress (4 °C) treatment. In addition, we found one cysteine2/histidine2-type zinc finger transcription factor, ZAT6, was involved in melatonin-mediated freezing stress response in Arabidopsis. Interestingly, exogenous melatonin enhanced freezing stress resistance was largely alleviated in AtZAT6 knockdown plants, but was enhanced in AtZAT6 overexpressing plants. Moreover, the expression levels of AtZAT6 and AtCBFs were commonly upregulated by cold stress (4 °C) and exogenous melatonin treatments, and modulation of AtZAT6 expression significantly affected the induction AtCBFs transcripts by cold stress (4 °C) and exogenous melatonin treatments. Taken together, AtZAT6-activated CBF pathway might be essential for melatonin-mediated freezing stress response in Arabidopsis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion
Moreno-Navarrete, Jose Maria; Fernandez-Real, Jose Manuel; Mora, Silvia
2013-01-01
Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release. PMID:24040321
Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion
Wang, Jin; Cao, Huachuan; You, Changjun; Yuan, Bifeng; Bahde, Ralf; Gupta, Sanjeev; Nishigori, Chikako; Niedernhofer, Laura J.; Brooks, Philip J.; Wang, Yinsheng
2012-01-01
Exposure to reactive oxygen species (ROS) can give rise to the formation of various DNA damage products. Among them, d(G[8-5 m]T) can be induced in isolated DNA treated with Fenton reagents and in cultured human cells exposed to γ-rays, d(G[8-5m]T) can be recognized and incised by purified Escherichia coli UvrABC nuclease. However, it remains unexplored whether d(G[8-5 m]T) accumulates in mammalian tissues and whether it is a substrate for nucleotide excision repair (NER) in vivo. Here, we found that d(G[8-5 m]T) could be detected in DNA isolated from tissues of healthy humans and animals, and elevated endogenous ROS generation enhanced the accumulation of this lesion in tissues of a rat model of Wilson’s disease. Additionally, XPA-deficient human brain and mouse liver as well as various types of tissues of ERCC1-deficient mice contained higher levels of d(G[8-5 m]T) but not ROS-induced single-nucleobase lesions than the corresponding normal controls. Together, our studies established that d(G[8-5 m]T) can be induced endogenously in mammalian tissues and constitutes a substrate for NER in vivo. PMID:22581771
Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli.
Taverna, P; Sedgwick, B
1996-01-01
Escherichia coli ada ogt mutants, which are totally deficient in O6-methylguanine-DNA methyltransferases, have an increased spontaneous mutation rate. This phenotype is particularly evident in starving cells and suggests the generation of an endogenous DNA alkylating agent under this growth condition. We have found that in wild-type cells, the level of the inducible Ada protein is 20-fold higher in stationary-phase and starving cells than in rapidly growing cells, thus enhancing the defense of these cells against DNA damage. The increased level of Ada in stationary cells is dependent on RpoS, a stationary-phase-specific sigma subunit of RNA polymerase. We have also identified a potential source of the mutagenic agent. Nitrosation of amides and related compounds can generate directly acting methylating agents and can be catalyzed by bacteria] enzymes. E. coli moa mutants, which are defective in the synthesis of a molybdopterin cofactor required by several reductases, are deficient in nitrosation activity. It is reported here that a moa mutant shows reduced generation of a mutagenic methylating agent from methylamine (or methylurea) and nitrite added to agar plates. Moreover, a moa mutation eliminates much of the spontaneous mutagenesis in ada ogt mutants. These observations indicate that the major endogenous mutagen is not S-adenosylmethionine but arises by bacterially catalyzed nitrosation. PMID:8752326
Zhou, Jia; Wang, Chonglong; Yoon, Sang-Hwal; Jang, Hui-Jeong; Choi, Eui-Sung; Kim, Seon-Won
2014-01-01
Geraniol, a monoterpene alcohol, has versatile applications in the fragrance industry, pharmacy and agrochemistry. Moreover, geraniol could be an ideal gasoline alternative. In this study, recombinant overexpression of geranyl diphosphate synthase and the bottom portion of a foreign mevalonate pathway in Escherichia coli MG1655 produced 13.3mg/L of geraniol. Introduction of Ocimum basilicum geraniol synthase increased geraniol production to 105.2mg/L. However, geraniol production encountered a loss from its endogenous dehydrogenization and isomerization into other geranoids (nerol, neral and geranial). Three E. coli enzymes (YjgB, YahK and YddN) were identified with high sequence identity to plant geraniol dehydrogenases. YjgB was demonstrated to be the major one responsible for geraniol dehydrogenization. Deletion of yjgB increased geraniol production to 129.7mg/L. Introduction of the whole mevalonate pathway for enhanced building block synthesis from endogenously synthesized mevalonate improved geraniol production up to 182.5mg/L in the yjgB mutant after 48h of culture, which was a double of that obtained in the wild type control (96.5mg/L). Our strategy for improving geraniol production in engineered E. coli should be generalizable for addressing similar problems during metabolic engineering. Copyright © 2013 Elsevier B.V. All rights reserved.
Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori
2009-07-01
Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.
Do Endogenous and Exogenous Action Control Compete for Perception?
ERIC Educational Resources Information Center
Pfister, Roland; Heinemann, Alexander; Kiesel, Andrea; Thomaschke, Roland; Janczyk, Markus
2012-01-01
Human actions are guided either by endogenous action plans or by external stimuli in the environment. These two types of action control seem to be mediated by neurophysiologically and functionally distinct systems that interfere if an endogenously planned action suddenly has to be performed in response to an exogenous stimulus. In this case, the…
Impaired Therapeutic Capacity of Autologous Stem Cells in a Model of Type 2 Diabetes
Shin, Laura
2012-01-01
Endogenous stem cells in the bone marrow respond to environmental cues and contribute to tissue maintenance and repair. In type 2 diabetes, a multifaceted metabolic disease characterized by insulin resistance and hyperglycemia, major complications are seen in multiple organ systems. To evaluate the effects of this disease on the endogenous stem cell population, we used a type 2 diabetic mouse model (db/db), which recapitulates these diabetic phenotypes. Bone marrow-derived mesenchymal stem cells (MSCs) from db/db mice were characterized in vitro using flow cytometric cell population analysis, differentiation, gene expression, and proliferation assays. Diabetic MSCs were evaluated for their therapeutic potential in vivo using an excisional splint wound model in both nondiabetic wild-type and diabetic mice. Diabetic animals possessed fewer MSCs, which were proliferation and survival impaired in vitro. Examination of the recruitment response of stem and progenitor cells after wounding revealed that significantly fewer endogenous MSCs homed to the site of injury in diabetic subjects. Although direct engraftment of healthy MSCs accelerated wound closure in both healthy and diabetic subjects, diabetic MSC engraftment produced limited improvement in the diabetic subjects and could not produce the same therapeutic outcomes as in their nondiabetic counterparts in vivo. Our data reveal stem cell impairment as a major complication of type 2 diabetes in mice and suggest that the disease may stably alter endogenous MSCs. These results have implications for the efficiency of autologous therapies in diabetic patients and identify endogenous MSCs as a potential therapeutic target. PMID:23197759
Selleck, Ryan A; Lake, Curtis; Estrada, Viridiana; Riederer, Justin; Andrzejewski, Matthew; Sadeghian, Ken; Baldo, Brian A
2015-09-01
Opioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control. Intra-PFC methylnaloxonium (M-NX, a limited diffusion opioid antagonist) was given to rats in a 'low-drive' condition (2-h food deprivation), and also after a motivational shift to a 'high-drive' condition (18-h food deprivation). Intra-PFC DAMGO (D-[Ala2,N-MePhe4, Gly-ol]-enkephalin; a μ-opioid agonist) and d-amphetamine were also tested in both tasks, under the low-drive condition. Intra-PFC M-NX nearly eliminated impulsive action in DRL engendered by hunger, at a dose (1 μg) that significantly affected neither hunger-induced PR enhancement nor hyperactivity. At a higher dose (3 μg), M-NX eliminated impulsive action and returned PR breakpoint to low-drive levels. Conversely, intra-PFC DAMGO engendered 'high-drive-like' effects: enhancement of PR and impairment of DRL performance. Intra-PFC d-amphetamine failed to produce effects in either task. These results establish that endogenous PFC opioid transmission is both necessary and sufficient for the expression of impulsive action in a high-arousal, high-drive appetitive state, and that PFC-based opioid systems enact functionally unique effects on food impulsivity and motivation relative to PFC-based monoamine systems. Opioid antagonists may represent effective treatments for a range of psychiatric disorders with impulsivity features.
Streeter, Elosie Y; Badoer, Emilio; Woodman, Owen L; Hart, Joanne L
2013-01-01
Hydrogen sulfide (H2S) is produced endogenously in vascular tissue and has both vasoregulation and antioxidant effects. This study examines the effect of diabetes-induced oxidative stress on H2S production and function in rat middle cerebral arteries. Diabetes was induced in rats with streptozotocin (50 mg/kg, i.v.). Middle cerebral artery function was examined using a small vessel myograph and superoxide anion generation measured using nicotinamide adenine dinucleotide phosphate (NADPH)-dependent lucigenin-enhanced chemiluminescence. Cystathionine-γ-lyase (CSE) mRNA expression was measured via RT-PCR. Diabetic rats had elevated blood glucose and significantly reduced cerebral artery endothelial function. Maximum vasorelaxation to the H2S donor NaHS was unaffected in diabetic cerebral arteries and was elicited via a combination of K+, Cl−, and Ca2+ channel modulation, although the contribution of Cl− channels was significantly less in the diabetic cerebral arteries. Vasorelaxation to the H2S precursor l-cysteine and CSE mRNA were significantly increased in diabetic cerebral arteries. Cerebral artery superoxide production was significantly increased in diabetes, but this increase was attenuated ex vivo by incubation with the H2S donor NaHS. These data confirm that cerebral artery endothelial dysfunction and oxidative stress occurs in diabetes. Endogenous H2S production and activity is upregulated in cerebral arteries in this model of diabetes. Vasorelaxation responses to exogenous H2S are preserved and exogenous H2S attenuates the enhanced cerebral artery generated superoxide observed in the diabetic group. These data suggest that upregulation of endogenous H2S in diabetes may play an antioxidant and vasoprotective role. PMID:24303182
Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Jacobstein, Douglas A.; Danilkovitch, Alla
2015-01-01
Objective: Regulation of oxidative stress and recruitment of key cell types are activities of human amniotic membrane (hAM) that contribute to its benefits for wound treatment. Progress in tissue preservation has led to commercialization of hAM. The majority of hAM products are devitalized with various degrees of matrix alteration. Data show the importance of hAM matrix preservation, but little is known about the advantages of retaining viable endogenous cells. In this study, we compared the antioxidant and chemoattractive properties of viable intact cryopreserved hAM (int-hAM) and devitalized cryopreserved hAM (dev-hAM) to determine the benefits of cell preservation. Approach: We evaluated the ability of int-hAM and dev-hAM to protect fibroblasts from oxidant-induced cell damage, to suppress oxidants, and to recruit fibroblasts and keratinocytes in vitro. Results: Both the int-hAM–derived conditioned medium (CM) and the int-hAM tissue rescued significantly more fibroblasts from oxidant-induced damage than dev-hAM (844% and 93% more, respectively). The int-hAM CM showed a 202% greater antioxidant capacity than dev-hAM. The int-hAM CM enhanced the recruitment of fibroblasts and normal and diseased keratinocytes to a greater extent than dev-hAM (1,555%, 315%, and 151% greater, respectively). Innovation and Conclusion: Int-hAM, in which all native components are preserved, including endogenous viable cells, demonstrated a significantly greater antioxidant and fibroblast and keratinocyte chemoattractive potential compared to dev-hAM, in which viable cells are destroyed. The release of soluble factors that protect fibroblasts from oxidative injury by hAM containing viable cells is a mechanism of hAM antioxidant activity, which is a novel finding of this study. PMID:26029483
Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai
2016-10-01
Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai
2015-01-01
Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179
Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A
2016-03-01
Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing oligomeric, fibrillar and/or total (monomeric and aggregated) α-synuclein. Following viral vector transduction, monomeric, oligomeric and fibrillar protein was detected within donor neurons in the medulla oblongata. In contrast, recipient axons in the pons were devoid of immunoreactivity for fibrillar α-synuclein, indicating that non-fibrillar forms of α-synuclein were primarily transferred from one neuron to the other, diffused within the brain and led to initial neuronal injury. This study elucidates a paradigm of α-synuclein propagation that may play a particularly important role under pathophysiological conditions associated with enhanced α-synuclein expression. Rapid long-distance diffusion and accumulation of monomeric and oligomeric α-synuclein does not necessarily involve pathological seeding but could still result in a significant neuronal burden during the pathogenesis of neurodegenerative diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory.
Harmatz, Elia S; Stone, Lauren; Lim, Seh Hong; Lee, Graham; McGrath, Anna; Gisabella, Barbara; Peng, Xiaoyu; Kosoy, Eliza; Yao, Junmei; Liu, Elizabeth; Machado, Nuno J; Weiner, Veronica S; Slocum, Warren; Cunha, Rodrigo A; Goosens, Ki A
2017-06-15
There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.
2015-01-01
GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by two endogenous neuromodulators. This article is part of the Special Issue entitled ‘GABAergic Signaling in Health and Disease’. PMID:25278033
Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis
Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio
2015-01-01
The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. PMID:26393505
Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M
2015-01-01
Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404
Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease
Karantalis, Vasileios; Hare, Joshua M.
2015-01-01
Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and/or precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells (MSCs) are widely studied and in early stage clinical studies show promise for repair and regeneration of cardiac tissues. The ability of MSCs to differentiate into mesoderm and non-mesoderm derived tissues, their immunomodulatory effects, their availability and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of MSCs, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting. PMID:25858066
Upregulation of Endogenous HMOX1 Expression by a Computer-Designed Artificial Transcription Factor
Guo, Hongfeng; Tian, Yi; Lu, Hai; Wei, Yong; Ying, Dajun
2010-01-01
Heme oxygenase-1 (HO-1) is well known as a cytoprotective factor. Research has revealed that it is a promising therapeutic target for cardiovascular diseases. In the current study, an HMOX1 (HO-1 gene) enhancer-specific artificial zinc-finger protein (AZP) was designed using bioinformatical methods. Then, an artificial transcription factor (ATF) was constructed based on the AZP. In the ATF, the p65 functional domain was used as the effector domain (ED), and a nuclear localization sequence (NLS) was also included. We next analyzed the affinity of the ATF to the HMOX1 enhancer and the effect of the ATF on endogenous HMOX1 expression. The results suggest that the ATF could effectively upregulate endogenous HMOX1 expression in ECV304 cells. With further research, the ATF could be developed as a potential drug for cardiovascular diseases. PMID:20706680
Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan
2011-02-01
In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.
Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley.
Chen, Jianshu; Liu, Cuicui; Shi, Bo; Chai, Yuqiong; Han, Ning; Zhu, Muyuan; Bian, Hongwu
2017-06-28
Vitamin E is a potent lipid-soluble antioxidant and essential nutrient for human health. Tocotrienols are the major form of vitamin E in seeds of most monocots. It has been known that homogentisate geranylgeranyl transferase (HGGT) catalyzes the committed step of tocotrienol biosynthesis. In the present study, we generated transgenic barley overexpressing HvHGGT under endogenous D-Hordein promoter (proHor). Overexpression of HvHGGT increased seed size and seed weight in transgenic barley. Notably, total tocotrienol content increased by 10-15% in seeds of transgenic lines, due to the increased levels of δ-, β-, and γ-tocotrienol, but not α-tocotrienol. Total tocopherol content decreased by 14-18% in transgenic lines, compared to wild type. The antioxidant activity of seeds was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and lipid peroxidation assays. Compared to wild type, radical scavenging activity of seed extracts was enhanced by 17-18% in transgenic lines. Meanwhile, the lipid peroxidation level was decreased by about 20% in transgenic barley seeds. Taken together, overexpression of HvHGGT enhanced the tocotrienol levels and antioxidant capacity in barley seeds.
Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.
Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C
2014-12-01
This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.
Delmas, Patrick; Brown, David A; Dayrell, Mariza; Abogadie, Fe C; Caulfield, Malcolm P; Buckley, Noel J
1998-01-01
Using whole-cell and perforated-patch recordings, we have examined the part played by endogenous G-protein βγ subunits in neurotransmitter-mediated inhibition of N-type Ca2+ channel current ICa) in dissociated rat superior cervical sympathetic neurones. Expression of the C-terminus domain of β-adrenergic receptor kinase 1 (βARK1), which contains the consensus motif (QXXER) for binding Gβγ, reduced the fast (pertussis toxin (PTX)-sensitive) and voltage-dependent inhibition of ICa by noradrenaline and somatostatin, but not the slow (PTX-insensitive) and voltage-independent inhibition induced by angiotensin II. βARK1 peptide reduced GTP-γ-S-induced voltage-dependent and PTX-sensitive inhibition of ICa but not GTP-γ-S-mediated voltage-independent inhibition. Overexpression of Gβ1γ2, which mimicked the voltage-dependent inhibition by reducing ICa density and enhancing basal facilitation, occluded the voltage-dependent noradrenaline- and somatostatin-mediated inhibitions but not the inhibition mediated by angiotensin II. Co-expression of the C-terminus of βARK1 with β1 and γ2 subunits prevented the effects of Gβγ dimers on basal Ca2+ channel behaviour in a manner consistent with the sequestering of Gβγ. The expression of the C-terminus of βARK1 slowed down reinhibition kinetics of ICa following conditioning depolarizations and induced long-lasting facilitation by cumulatively sequestering βγ subunits. Our findings identify endogenous Gβγ as the mediator of the voltage-dependent, PTX-sensitive inhibition of ICa induced by both noradrenaline and somatostatin but not the voltage-independent, PTX-insensitive inhibition by angiotensin II. They also support the view that voltage-dependent inhibition results from a direct Gβγ-Ca2+ channel interaction. PMID:9490860
2012-04-01
fermented yeast , pure hydrogen, or endogenous biomass decay). When similarly respiring (~120 ?eeq PCE/(L-hr)) batch and PSS cultures were contrasted, the...electron equivalence (eeq) basis), and electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure hydrogen, or endogenous biomass...acceptor ratios (0.7 to 17 on an electron equivalence (eeq) basis), and 12 electron donor type (butyrate, lactate, yeast extract, fermented yeast , pure
Novel natural and synthetic ligands of the endocannabinoid system.
Hanus, Lumír O; Mechoulam, Raphael
2010-01-01
In this review we describe recent advances in the chemistry of novel CB(1)/CB(2) agonists, CB(1) antagonists, selective CB(2) agonists, fatty acid amide hydrolase inibitors, monoglyceride (MGL) and diglyceride (DAGL) inhibitors and cannabinoid-type agonists and antagonists of non CB(1)/CB(2) receptors. In view of recent interest in the activities of fatty acid amides of amino acids (N-acyl amino acids) a list of this type of compounds was compiled and is presented as a Table. We conclude that further synthetic work based on both the plant cannabinoids and on the endocannabinoids may lead to novel therapeutics and that the identification and the elucidation of the biological profile of the myriad of endogenous N-acyl amino acids and related compounds may enhance the already wide spectrum of lipidomics.
Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.
Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A
2014-11-01
Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Ning; Institute of Radiation Medicine, Key Laboratory of Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192; Shi, Ji
2012-04-27
Highlights: Black-Right-Pointing-Pointer IQGAP1 interacts with Aurora-A through its RGCt domain. Black-Right-Pointing-Pointer Overexpression of IQGAP1 prevents ubiquitination of Aurora-A. Black-Right-Pointing-Pointer Overexpression of IQGAP1 enhances the protein stability of Aurora-A. Black-Right-Pointing-Pointer Overexpression of IQGAP1 promotes the kinase activity of Aurora-A. -- Abstract: IQGAP1, a ubiquitously expressed scaffold protein, has been identified in a wide range of organisms. It participates in multiple aspects of cellular events by binding to and regulating numerous interacting proteins. In our present study, we identified a new IQGAP1 binding protein named Aurora-A which is an oncogenic protein and overexpressed in various types of human tumors. In vitro analysismore » with GST-Aurora-A fusion proteins showed a physical interaction between Aurora-A and IQGAP1. Moreover, the binding also occurred in HeLa cells as endogenous Aurora-A co-immunoprecipitated with IQGAP1 from the cell lysates. Overexpression of IQGAP1 resulted in an elevation of both expression and activity of Aurora-A kinase. Endogenous IQGAP1 knockdown by siRNA promoted Aurora-A degradation whereas IQGAP1 overexpression enhanced the stability of Aurora-A. Additionally, we documented that the IQGAP1-induced cell proliferation was suppressed by knocking down Aurora-A expression. Taken together, our results showed an unidentified relationship between Aurora-A and IQGAP1, and provided a new insight into the molecular mechanism by which IQGAP1 played a regulatory role in cancer.« less
Toda, Chitoku; Shiuchi, Tetsuya; Kageyama, Haruaki; Okamoto, Shiki; Coutinho, Eulalia A.; Sato, Tatsuya; Okamatsu-Ogura, Yuko; Yokota, Shigefumi; Takagi, Kazuyo; Tang, Lijun; Saito, Kumiko; Shioda, Seiji; Minokoshi, Yasuhiko
2013-01-01
Leptin is a key regulator of glucose metabolism in mammals, but the mechanisms of its action have remained elusive. We now show that signaling by extracellular signal–regulated kinase (ERK) and its upstream kinase MEK in the ventromedial hypothalamus (VMH) mediates the leptin-induced increase in glucose utilization as well as its insulin sensitivity in the whole body and in red-type skeletal muscle of mice through activation of the melanocortin receptor (MCR) in the VMH. In contrast, activation of signal transducer and activator of transcription 3 (STAT3), but not the MEK-ERK pathway, in the VMH by leptin enhances the insulin-induced suppression of endogenous glucose production in an MCR-independent manner, with this effect of leptin occurring only in the presence of an increased plasma concentration of insulin. Given that leptin requires 6 h to increase muscle glucose uptake, the transient activation of the MEK-ERK pathway in the VMH by leptin may play a role in the induction of synaptic plasticity in the VMH, resulting in the enhancement of MCR signaling in the nucleus and leading to an increase in insulin sensitivity in red-type muscle. PMID:23530005
Li, Qin; Bartley, Aundrea F.
2017-01-01
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner. PMID:28053027
Wan, Fen; Mao, Yinting; Dong, Yangyang; Ju, Lili; Wu, Genfu; Gao, Haichun
2015-01-01
Oxidative stress is one of the major challenges that Shewanella encounter routinely because they thrive in redox-stratified environments prone to reactive oxygen species (ROS) formation, letting alone that ROS can be generated endogenously. As respiration is the predominant process for endogenous ROS, regulators mediating respiration have been demonstrated and/or implicated to play a role in oxidative stress response. In our efforts to unveil the involvement of global regulators for respiration in the oxidative stress response, we found that loss of the Arc system increases S. oneidensis sensitivity to H2O2 whereas neither Fnr nor Crp has a significant role. A comparison of transcriptomic profiles of the wild-type and its isogenic arcA mutant revealed that the OxyR regulon is independent of the Arc system. We then provided evidence that the enhanced H2O2 sensitivity of the arcA mutant is due to an increased H2O2 uptake rate, a result of a cell envelope defect. Although one of three proteases of the ArcA regulon when in excess is partially accountable for the envelope defect, the major contributors remain elusive. Overall, our data indicate that the Arc system influences the bacterial cell envelope biosynthesis, a physiological aspect that has not been associated with the regulator before. PMID:25975178
Ohmae, Susumu
2013-01-01
In 1961, Tellenbach published the concept of "Typus melancholicus" (melancholic type) to illustrate the complementary relationship between premelancholic (predepressive) situations and a premorbid personality. The melancholic type is often considered to be a non-universal type that is localized in Germany and Japan; however, this belief is increasingly considered to be incorrect. When referring to papers written in the United States around the time that Tellenbach's monograph was published, it is now possible to identify some personalities corresponding to the melancholic type. In the early 20th century in Germany, the precipitating events and premorbid personalities of manic-depressive illness were frequently reported by Kraepelin and other researchers. They identified a conscientious, punctual, and orderly character that is analogous to the melancholic type. However, they ignored the relationships between events and personality. For them, the etiologies of endogenous psychoses, such as schizophrenia and manic-depressive illness, should not be sought from exogenous factors, such as precipitating events and environmental factors, but from endogenous and constitutional factors. After the end of the Second World War, the traditional view of a reactive (exogenous)-endogenous dichotomy of depression increasingly began to be deemed no longer valid. Consequently, it gradually became clear that many patients develop endogenous and autonomous depression after a psychological precipitating event. Tellenbach tried to resolve the impasse in the reactive-endogenous dichotomy of depression through creation of the concept of the "endon" in place of the "endogenous" concept. Tellenbach considered the endon not as cryptogenic but as transcending the dichotomy between the somatogenic and psychogenic. The endon is represented phenomenologically as transformations of arising rhythms, transformations of form of movement, the globalism of transformations, binding to a maturing process, and reversibility. According to Goethe's morphology. Tellenbach placed the endon in the ideal and phenomenological (empirical) realms simultaneously. The essential feature of the melancholic type is orderliness, which manifests in the following three areas: work, behavior, and conscientiousness. The interpersonal relationships of people with the melancholic type are described as "Being-for-others", which is analogous to altruism. People with the melancholic type think highly of common sense and duty. Furthermore, they cannot lower their level of aspiration even if the quality and quantity of their work is beyond their abilities or their capacities are weakened. In these premelancholic situations, pre-melancholic persons are forced to choose either quality or quantity and are plunged into the depths of despair, which means a hiatus or onset of melancholia. Thus, Tellenbach analyzed the complementary relationship between premelancholic situations and a premorbid personality at the beginning of melancholia. However, Tellenbach failed to explain why people with the melancholic type do not develop any illnesses other than melancholia or contradict the possibility that people with non-melancholic type personalities could have melancholia. In Japan, the melancholic type originated from Hirasawa's viewpoint that he had shifted the essential feature of Shimoda's Immodithymie (Shuuchaku Seikaku) from enthusiasm to orderliness. Subsequently, Kasahara developed the Japanese concept of the melancholic type, which remains in the empirical and descriptive realm and its essential feature is "orderliness underlying the altruism." In the United States, although the melancholic type probably existed, the concept was infrequently discussed because there were few psychiatrists who knew the concept of endogenous depression very well. Moreover, in DSM-III, the difference between endogenous and reactive depression was eliminated according to the "atheoretical" policy. Consequently, Tellenbach's theory of melancholia lost significance. The value of the theory of endon, which constitutes Tellenbach's theory of melancholia in empirical medicine, is considered to be restrictive. However, the discovery of the melancholic type concurrently in Germany, the United States, and Japan is of marked significance. It is now possible to reappraise the importance of the melancholic type and premelancholic situations.
The endogenous preproglucagon system is not essential for gut growth homeostasis in mice.
Wismann, Pernille; Barkholt, Pernille; Secher, Thomas; Vrang, Niels; Hansen, Henrik B; Jeppesen, Palle Bekker; Baggio, Laurie L; Koehler, Jacqueline A; Drucker, Daniel J; Sandoval, Darleen A; Jelsing, Jacob
2017-07-01
The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor ( Glp1r ), GLP-2 receptor ( Glp2r ), and preproglucagon ( Gcg ) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). Comparison of Glp1r , Glp2r , and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r -/- mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent.
Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs
Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.
2014-01-01
ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines. PMID:24807715
Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin
2009-10-09
The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.
Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David
2016-10-18
C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.
Immunoadjuvants enhance the febrile responses of rats to endogenous pyrogen.
Stitt, J T; Shimada, S G
1989-11-01
The febrile responses of male Sprague-Dawley rats to a semipurified endogenous pyrogen produced from human monocytes were characterized by establishing fever dose-response curves. The animals were then injected intravenously with a number of substances that possessed the common properties of stimulating the phagocytic activity of the cells of the reticuloendothelial system and of acting as immunoadjuvants. The substances used were zymosan, lipopolysaccharide endotoxin, and muramyl dipeptide. Three days after any of these immunoadjuvants were injected, the fever sensitivity of the rats was remeasured. In each case, the slope of the fever dose-response curve tripled, and in some instances the response threshold for fever response was reduced by factors of three to eight. Furthermore, the maximum increase in body temperature produced by the endogenous pyrogen was more than doubled after immunoadjuvant treatment. By contrast latex beads, which are also phagocytized by the cells of the reticuloendothelial system but do not subsequently increase their phagocytic index nor do they enhance immune responses, had no effect on the fever sensitivity of rats in response to endogenous pyrogen. In the light of these findings, it is suggested that the febrile responses of rats to endogenous pyrogen are mediated in some manner by cells that possess some of the properties of reticuloendothelial cells. The location of these putative cells must be close to the circulation, because the immunoadjuvants used in this study were, for the most part, large molecular weight molecules that could not cross the blood-brain barrier easily.
Evidence for an endogenous papillomavirus-like element in the platypus genome.
Cui, Jie; Holmes, Edward C
2012-06-01
Papillomaviruses (PVs) infect a wide range of vertebrates and have diversified into multiple genetic types, some of which have serious consequences for human health. Although PVs have to date only been characterized as exogenous viral forms, here we report the observation of an endogenous viral element (EPVLoa) in the genome of the platypus (Ornithorhynchus anatinus) that is related to PVs. Further data mining for endogenous PV-like elements is therefore warranted.
Fan, Jian; Zhuang, Yongliang; Li, Bafang
2013-01-17
Jellyfish collagen (JC) was extracted from jellyfish umbrella and hydrolyzed to prepare jellyfish collagen hydrolysate (JCH). The effects of JC and JCH on UV-induced skin damage of mice were evaluated by the skin moisture, microscopic analyses of skin and immunity indexes. The skin moisture analyses showed that moisture retention ability of UV-induced mice skin was increased by JC and JCH. Further histological analysis showed that JC and JCH could repair the endogenous collagen and elastin protein fibers, and could maintain the natural ratio of type I to type III collagen. The immunity indexes showed that JC and JCH play a role in enhancing immunity of photoaging mice in vivo. JCH showed much higher protective ability than JC. These results suggest that JCH as a potential novel antiphotoaging agent from natural resources.
Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai
2017-01-01
Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape (Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L-tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N-acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N-acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N-acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro. Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant–rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions. PMID:28119731
Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai
2016-01-01
Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape ( Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L -tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N -acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N -acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N -acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro . Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant-rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions.
Nizhnikov, Michael E.; Kozlov, Andrey P.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.
2014-01-01
Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12–day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol–mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu- opioid activity that increases the pup’s sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity. PMID:24315831
Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination
Samanta, Jayshree; Grund, Ethan M.; Silva, Hernandez M.; Lafaille, Juan J.; Fishell, Gord; Salzer, James L.
2016-01-01
Summary Enhancing repair of myelin is an important, but still elusive therapeutic goal in many neurological disorders1. In Multiple Sclerosis (MS), an inflammatory demyelinating disease, endogenous remyelination does occur but is frequently insufficient to restore function. Both parenchymal oligodendrocyte progenitor cells (OPCs) and endogenous adult neural stem cells (NSCs) resident within the subventricular zone (SVZ) are known sources of remyelinating cells2. Here, we characterize the contribution to remyelination of a subset of adult NSCs, identified by their expression of Gli1, a transcriptional effector of the Sonic Hedgehog (Shh) pathway. We show that these cells are recruited from the SVZ to populate demyelinated lesions in the forebrain but never enter healthy, white matter tracts. Unexpectedly, recruitment of this pool of NSCs, and their differentiation into oligodendrocytes, is significantly enhanced by genetic or pharmacological inhibition of Gli1. Importantly, complete inhibition of canonical hedgehog signaling was ineffective indicating that Gli1’s role in both augmenting hedgehog signaling and retarding myelination is specialized. Indeed, inhibition of Gli1 improves the functional outcome in a relapsing/remitting model of experimental autoimmune encephalomyelitis (RR-EAE) and is neuroprotective. Thus, endogenous NSCs can be mobilized for the repair of demyelinated lesions by inhibiting Gli1, identifying a new therapeutic avenue for the treatment of demyelinating disorders. PMID:26416758
Singh, Amit Pal; Dixit, Garima; Kumar, Amit; Mishra, Seema; Kumar, Navin; Dixit, Sameer; Singh, Pradyumna Kumar; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Dhankher, Om Prakash; Norton, Gareth J; Chakrabarty, Debasis; Tripathi, Rudra Deo
2017-06-01
Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (As III ) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of As III on plant growth. Nitric oxide supplementation to As III treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether As III was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for As III uptake. The endogenous level of NO and SA were positively correlated to each other either when As III was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in As III stressed plants. Copyright © 2017. Published by Elsevier Masson SAS.
Fiedler, Nicola; Quant, Ellen; Fink, Ludger; Sun, Jianguang; Schuster, Ralph; Gerlich, Wolfram H; Schaefer, Stephan
2006-01-01
AIM: Hepatitis B virus protein X (HBx) has been shown to be weakly oncogenic in vitro. The transforming activities of HBx have been linked with the inhibition of several functions of the tumor suppressor p53. We have studied whether HBx may have different effects on p53 depending on the cell type. METHODS: We used the human hepatoma cell line HepG2 and the immortalized murine hepatocyte line AML12 and analyzed stably transfected clones which expressed physiological amounts of HBx. P53 was induced by UV irradiation. RESULTS: The p53 induction by UV irradiation was unaffected by stable expression of HBx. However, the expression of the cyclin kinase inhibitor p21waf/cip/sdi which gets activated by p53 was affected in the HBx transformed cell line AML12-HBx9, but not in HepG2. In AML-HBx9 cells, p21waf/cip/sdi-protein expression and p21waf/cip/sdi transcription were deregulated. Furthermore, the process of apoptosis was affected in opposite ways in the two cell lines investigated. While stable expression of HBx enhanced apoptosis induced by UV irradiation in HepG2-cells, apoptosis was decreased in HBx transformed AML12-HBx9. P53 repressed transcription from the HBV enhancer I, when expressed from expression vectors or after induction of endogenous p53 by UV irradiation. Repression by endogenous p53 was partially reversible by stably expressed HBx in both cell lines. CONCLUSION: Stable expression of HBx leads to deregulation of apoptosis induced by UV irradiation depending on the cell line used. In an immortalized hepatocyte line HBx acted anti-apoptotic whereas expression in a carcinoma derived hepatocyte line HBx enhanced apoptosis. PMID:16937438
Multiple Openings and Competitiveness of Forward Markets: Experimental Evidence
Ferreira, José Luis; Kujal, Praveen; Rassenti, Stephen
2016-01-01
We test the competition enhancing effect of selling forward in experimental Cournot duopoly and quadropoly with multiple forward markets. We find that two forward periods yields competitive outcomes and that the results are very close to the predicted theoretical results for quantity setting duopolies and quadropolies. Our experiments lend strong support to the hypothesis that forward markets are competition enhancing. We then test a new market that allows for endogenously determined indefinitely many forward periods that only close when sellers coordinate on selling a zero amount in a forward market. We find that the outcomes under an endogenous close rule are also very competitive. These results hold for both duopolies and quadropolies. PMID:27442516
Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P
2009-01-01
Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324
Down-Regulating α-Galactosidase Enhances Freezing Tolerance in Transgenic Petunia1
Pennycooke, Joyce C.; Jones, Michelle L.; Stushnoff, Cecil
2003-01-01
α-Galactosidase (α-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the α-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of α-Gal was modified in transgenic petunia (Petunia × hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that α-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of α-Gal mRNAs. α-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from –4°C for cold-acclimated wild-type plants to –8°C for the most tolerant antisense line. Down-regulating α-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the α-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with α-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789
Opioid modulation of reflex versus operant responses following stress in the rat.
King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P
2007-06-15
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
Hechler, Daniel; Boato, Francesco; Nitsch, Robert; Hendrix, Sven
2010-08-01
In this study, we investigated the hypothesis whether neurotrophins have a differential influence on neurite growth from the entorhinal cortex depending on the presence or absence of hippocampal target tissue. We investigated organotypic brain slices derived from the entorhinal-hippocampal system to analyze the effects of endogenous and recombinant neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) on neurite outgrowth and reinnervation. In the reinnervation assay, entorhinal cortex explants of transgenic mice expressing enhanced green fluorescent protein (EGFP) were co-cultured with wild-type hippocampi under the influence of recombinant NT-3 and NT-4 (500 ng/ml). Both recombinant NT-3 and NT-4 significantly increased the growth of EGFP+ nerve fibers into the target tissue. Consistently, reinnervation of the hippocampi of NT-4(-/-) and NT-3(+/-)NT-4(-/-) mice was substantially reduced. In contrast, the outgrowth assay did not exhibit reduction in axon outgrowth of NT-4(-/-) or NT-3(+/-)NT-4(-/-) cortex explants, while the application of recombinant NT-3 (500 ng/ml) induced a significant increase in the neurite extension of cortex explants. Recombinant NT-4 had no effect. In summary, only recombinant NT-3 stimulates axon outgrowth from cortex explants, while both endogenous and recombinant NT-3 and NT-4 synergistically promote reinnervation of the denervated hippocampus. These results suggest that endogenous and exogenous NT-3 and NT-4 differentially influence neurite growth depending on the presence or absence of target tissue.
The effects of elevated endogenous GABA levels on movement-related network oscillations.
Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K
2013-02-01
The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.
Luo, Fei; Zheng, Jian; Sun, Xuan; Tang, Hua
2017-02-01
The functions of prefrontal cortex (PFC) are sensitive to norepinephrine (NE). Endogenously released NE influences synaptic transmission through activation of different subtypes of adrenergic receptors in PFC including α 1 , α 2 , β 1 or β 2 -adrenoceptor. Our recent study has revealed that β 1 -adrenoceptor (β 1 -AR) activation modulates glutamatergic transmission in the PFC, whereas the roles of β 1 -AR in GABAergic transmission are elusive. In the current study, we probed the effects of the β 1 -AR agonist dobutamine (Dobu) on GABAergic transmission onto pyramidal neurons in the PFC of juvenile rats. Dobu increased both the frequency and amplitude of miniature IPSCs (mIPSCs). Ca 2+ influx through T-type voltage-gated Ca 2+ channel was required for Dobu-enhanced mIPSC frequency. We also found that Dobu facilitated GABA release probability and the number of releasable vesicles through regulating T-type Ca 2+ channel. Dobu depolarized GABAergic fast-spiking (FS) interneurons with no effects on the firing rate of action potentials (APs) of interneurons. Dobu-induced depolarization of FS interneurons required inward rectifier K + channel (Kir). Our results suggest that Dobu increase GABA release via inhibition of Kir, which further depolarizes FS interneurons resulting in Ca 2+ influx via T-type Ca 2+ channel. Copyright © 2016 Elsevier Inc. All rights reserved.
Kunstfeld, Rainer; Hawighorst, Thomas; Streit, Michael; Hong, Young-Kwon; Nguyen, Lynh; Brown, Lawrence F; Detmar, Michael
2014-05-01
We have previously reported stromal upregulation of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, and we found accelerated and enhanced skin angiogenesis and carcinogenesis in TSP-2 deficient mice. To investigate whether enhanced levels of TSP-2 might protect from skin cancer development. We established transgenic mice with targeted overexpression of TSP-2 in the skin and subjected hemizygous TSP-2 transgenic mice and their wild-type littermates to a chemical skin carcinogenesis regimen. TSP-2 transgenic mice showed a significantly delayed onset of tumor formation compared to wild-type mice, whereas the ratio of malignant conversion to squamous cell carcinomas was comparable in both genotypes. Computer-assisted morphometric analysis of blood vessels revealed pronounced tumor angiogenesis already in the early stages of carcinogenesis in wild type mice. TSP-2 overexpression significantly reduced tumor blood vessel density in transgenic mice but had no overt effect on LYVE-1 positive lymphatic vessels. The percentage of desmin surrounded, mature tumor-associated blood vessels and the degree of epithelial differentiation remained unaffected. The antiangiogenic effect of transgenic TSP-2 was accompanied by a significantly increased number of apoptotic tumor cells in transgenic mice. Our results demonstrate that enhanced levels of TSP-2 in the skin result in reduced susceptibility to chemically-induced skin carcinogenesis and identify TSP-2 as a new target for the prevention of skin cancer. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Ability of higenamine and related compounds to enhance glucose uptake in L6 cells.
Kato, Eisuke; Kimura, Shunsuke; Kawabata, Jun
2017-12-15
β2-Adrenergic receptor (β2AR) agonists are employed as bronchodilators to treat pulmonary disorders, but are attracting attention for their modulation of glucose handling and energy expenditure. Higenamine is a tetrahydroisoquinoline present in several plant species and has β2AR agonist activity, but the involvement of each functional groups in β2AR agonist activity and its effectiveness compared with endogenous catecholamines (dopamine, epinephrine, and norepinephrine) has rarely been studied. Glucose uptake of muscle cells are known to be induced through β2AR activation. Here, the ability to enhance glucose uptake of higenamine was compared with that of several methylated derivatives of higenamine or endogenous catecholamines. We found that: (i) the functional groups of higenamine except for the 4'-hydroxy group are required to enhance glucose uptake; (ii) higenamine shows a comparable ability to enhance glucose uptake with that of epinephrine and norepinephrine; (iii) the S-isomer shows a greater ability to enhance glucose uptake compared with that of the R-isomer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel
2014-01-01
Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene activity should be considered among the mechanisms underlying Bamforth–Lazarus syndrome. PMID:24219130
Llugany, M; Martin, S R; Barceló, J; Poschenrieder, C
2013-08-01
Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling. Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC-ESI(-)-MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.
Garvin, Jeffrey L.
2014-01-01
Luminal flow stimulates Na reabsorption along the nephron and activates protein kinase C (PKC) which enhances endogenous superoxide (O2−) production by thick ascending limbs (TALs). Exogenously-added O2− augments TAL Na reabsorption, a process also dependent on PKC. Luminal Na/H exchange (NHE) mediates NaHCO3 reabsorption. However, whether flow-stimulated, endogenously-produced O2− enhances luminal NHE activity and the signaling pathway involved are unclear. We hypothesized that flow-induced production of endogenous O2− stimulates luminal NHE activity via PKC in TALs. Intracellular pH recovery was measured as an indicator of NHE activity in isolated, perfused rat TALs. Increasing luminal flow from 5 to 20 nl/min enhanced total NHE activity from 0.104 ± 0.031 to 0.167 ± 0.036 pH U/min, 81%. The O2− scavenger tempol decreased total NHE activity by 0.066 ± 0.011 pH U/min at 20 nl/min but had no significant effect at 5 nl/min. With the NHE inhibitor EIPA in the bath to block basolateral NHE, tempol reduced flow-enhanced luminal NHE activity by 0.029 ± 0.010 pH U/min, 30%. When experiments were repeated with staurosporine, a nonselective PKC inhibitor, tempol had no effect. Because PKC could mediate both induction of O2− by flow and the effect of O2− on luminal NHE activity, we used hypoxanthine/xanthine oxidase to elevate O2−. Hypoxanthine/xanthine oxidase increased luminal NHE activity by 0.099 ± 0.020 pH U/min, 137%. Staurosporine and the PKCα/β1-specific inhibitor Gö6976 blunted this effect. We conclude that flow-induced O2− stimulates luminal NHE activity in TALs via PKCα/β1. This accounts for part of flow-stimulated bicarbonate reabsorption by TALs. PMID:25080525
Choi, Yun-Nam; Park, Jong Moon
2016-08-01
This study demonstrates that increased NADPH production can improve biomass and ethanol production in cyanobacteria. We over-expressed the endogenous zwf gene, which encodes glucose-6-phosphate dehydrogenase of pentose phosphate pathway, in the model cyanobacterium Synechocystis sp. PCC 6803. zwf over-expression resulted in increased NADPH production, and promoted biomass production compared to the wild type in both autotrophic and mixotrophic conditions. Ethanol production pathway including NADPH-dependent alcohol dehydrogenase was also integrated with and without zwf over-expression. Excessive NADPH production by zwf over-expression could improve both biomass and ethanol production in the autotrophic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ren, Tian-Bing; Xu, Wang; Zhang, Qian-Ling; Zhang, Xing-Xing; Wen, Si-Yu; Yi, Hai-Bo; Yuan, Lin; Zhang, Xiao-Bing
2018-06-18
Two-photon imaging is an emerging tool for biomedical research and clinical diagnostics. Electron donor-acceptor (D-A) type molecules are the most widely employed two-photon scaffolds. However, current D-A type fluorophores suffer from solvatochromic quenching in aqueous biological samples. To address this issue, we devised a novel class of D-A type green fluorescent protein (GFP) chromophore analogues that form a hydrogen-bond network in water to improve the two-photon efficiency. Our design results in two-photon chalcone (TPC) dyes with 0.80 quantum yield and large two-photon action cross section (210 GM) in water. This strategy to form hydrogen bonds can be generalized to design two-photon materials with anti-solvatochromic fluorescence. To demonstrate the improved in vivo imaging, we designed a sulfide probe based on TPC dyes and monitored endogenous H 2 S generation and scavenging in the cirrhotic rat liver for the first time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Timmer, Marco; Cesnulevicius, Konstantin; Winkler, Christian; Kolb, Julia; Lipokatic-Takacs, Esther; Jungnickel, Julia; Grothe, Claudia
2007-01-17
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
[Prostaglandins, insulin secretion and diabetes mellitus].
Giugliano, D; Torella, R; Scheen, A J; Lefebvre, P J; D'Onofrio, F
1988-12-01
The islets of Langerhans have the enzymatic equipment permitting the synthesis of the metabolites of arachidonic acid: cyclo-oxygenase and lipo-oxygenase. Numerous studies have shown that cyclo-oxygenase derivatives, mainly PGE2, reduce the insulin response to glucose whereas lipo-oxygenase derivatives, mainly 15-HPETE, stimulate insulin secretion. So, for instance, drugs that increase prostaglandins synthesis as colchicine or furosemide inhibit insulin secretion while non steroid anti-inflammator drugs, mainly salicylates, which inhibit cyclo-oxygenase, enhance the insulin response to various stimuli. In type-2 (non insulin-dependent) diabetes, an increased sensitivity to endogenous prostaglandins has been proposed as a possible cause for the insulin secretion defect which characterizes this disease. Play in favor of this hypothesis the fact that the administration of PGE inhibits the insulin response to arginine in type-2 diabetics but not in normal subject and the fact that the administration of salicylates could improve the insulin response to glucose in some of these patients.
A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.
Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A
2017-11-21
Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
Fan, Jian; Zhuang, Yongliang; Li, Bafang
2013-01-01
Jellyfish collagen (JC) was extracted from jellyfish umbrella and hydrolyzed to prepare jellyfish collagen hydrolysate (JCH). The effects of JC and JCH on UV-induced skin damage of mice were evaluated by the skin moisture, microscopic analyses of skin and immunity indexes. The skin moisture analyses showed that moisture retention ability of UV-induced mice skin was increased by JC and JCH. Further histological analysis showed that JC and JCH could repair the endogenous collagen and elastin protein fibers, and could maintain the natural ratio of type I to type III collagen. The immunity indexes showed that JC and JCH play a role in enhancing immunity of photoaging mice in vivo. JCH showed much higher protective ability than JC. These results suggest that JCH as a potential novel antiphotoaging agent from natural resources. PMID:23344251
Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram
2012-07-15
Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.
Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.
2013-01-01
In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737
Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R
2013-11-01
In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.
Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling
2017-09-01
In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.
Effects of Wounding on Cytokinin Activity in Cucumber Cotyledons
Crane, Karen E.; Ross, Cleon W.
1986-01-01
Three known physiological responses to exogenous cytokinins were measured in wounded and nonwounded cotyledons from cucumber (Cucumis sativus L. cv Marketer) seedlings grown in darkness. Enhanced cell division, chlorophyll formation, and cotyledon expansion were detected in wounded cotyledons. The data suggest that wounding enhances endogenous cytokinin activity. PMID:16665151
Effects of wounding on cytokinin activity in cucumber cotyledons.
Crane, K E; Ross, C W
1986-12-01
Three known physiological responses to exogenous cytokinins were measured in wounded and nonwounded cotyledons from cucumber (Cucumis sativus L. cv Marketer) seedlings grown in darkness. Enhanced cell division, chlorophyll formation, and cotyledon expansion were detected in wounded cotyledons. The data suggest that wounding enhances endogenous cytokinin activity.
Endogenous mitigation of H2S inside of the landfills.
Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang
2016-02-01
Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.
Grimm, Dirk; Wang, Lora; Lee, Joyce S; Schürmann, Nina; Gu, Shuo; Börner, Kathleen; Storm, Theresa A; Kay, Mark A
2010-09-01
shRNA overexpression from viral gene therapy vectors can trigger cytotoxicity leading to organ failure and lethality in mice and rats. This process likely involves saturation of endogenous cellular RNAi factors including exportin-5 (Xpo-5). Here, we have shown that Xpo-5 overexpression enhanced shRNA efficiency in the liver of adult mice but increased hepatotoxicity. We identified the 4 members of the human Argonaute (Ago) protein family as downstream factors involved in saturation of endogenous cellular RNAi, all of which were able to interact with shRNAs in cells and mice. In Ago/shRNA coexpression studies, Ago-2 (Slicer) was the primary rate-limiting determinant of both in vitro and in vivo RNAi efficacy, toxicity, and persistence. In adult mice, vector-based Ago-2/Xpo-5 coexpression enhanced U6-driven shRNA silencing of exogenous and endogenous hepatic targets, reduced hepatotoxicity, and extended RNAi stability by more than 3 months. Use of weaker RNA polymerase III promoters to minimize shRNA expression likewise alleviated in vivo toxicity and permitted greater than 95% persistent knockdown of hepatitis B virus and other transgenes in mouse liver for more than 1 year. Our studies substantiate that abundant small RNAs can overload the endogenous RNAi pathway and reveal possible strategies for reducing hepatotoxicity of short- and long-term clinical gene silencing in humans.
Brar, Gurkirat S; Barrow, Breanne M; Watson, Matthew; Griesbach, Ryan; Choung, Edwina; Welch, Andrew; Ruzsicska, Bela; Raleigh, Daniel P; Zraika, Sakeneh
2017-08-01
Recent work has renewed interest in therapies targeting the renin-angiotensin system (RAS) to improve β-cell function in type 2 diabetes. Studies show that generation of angiotensin-(1-7) by ACE2 and its binding to the Mas receptor (MasR) improves glucose homeostasis, partly by enhancing glucose-stimulated insulin secretion (GSIS). Thus, islet ACE2 upregulation is viewed as a desirable therapeutic goal. Here, we show that, although endogenous islet ACE2 expression is sparse, its inhibition abrogates angiotensin-(1-7)-mediated GSIS. However, a more widely expressed islet peptidase, neprilysin, degrades angiotensin-(1-7) into several peptides. In neprilysin-deficient mouse islets, angiotensin-(1-7) and neprilysin-derived degradation products angiotensin-(1-4), angiotensin-(5-7), and angiotensin-(3-4) failed to enhance GSIS. Conversely, angiotensin-(1-2) enhanced GSIS in both neprilysin-deficient and wild-type islets. Rather than mediating this effect via activation of the G-protein-coupled receptor (GPCR) MasR, angiotensin-(1-2) was found to signal via another GPCR, namely GPCR family C group 6 member A (GPRC6A). In conclusion, in islets, intact angiotensin-(1-7) is not the primary mediator of beneficial effects ascribed to the ACE2/angiotensin-(1-7)/MasR axis. Our findings warrant caution for the concurrent use of angiotensin-(1-7) compounds and neprilysin inhibitors as therapies for diabetes. © 2017 by the American Diabetes Association.
Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking
2005-01-01
PKCζ (protein kinase Cζ) is a serine/threonine protein kinase controlled by insulin, various growth factors and phosphoinositide 3-kinase. It has been implicated in controlling glucose transport in response to insulin by the translocation of GLUT4-(glucose transporter 4) containing vesicles to the plasma membrane in stimulated cells. How PKCζ modulates GLUT4 vesicle trafficking remains unknown. A yeast two-hybrid screen using full-length human PKCζ identified 80K-H protein as an interactor with PKCζ. GST (glutathione S-transferase) pull-down assays with GST-tagged 80K-H constructs confirmed the interaction and showed that the N-terminal portion of 80K-H was not required for the interaction. Immunoprecipitates of endogenous PKCζ from Cho cells, 3T3-L1 adipocytes or L6 myotubes contained endogenous 80K-H, demonstrating a physiological interaction. Insulin stimulation enhanced the association 3–5-fold. Immunoprecipitates of endogenous 80K-H contained endogenous munc18c and immunoprecipitates of endogenous munc18c contained endogenous PKCζ, with insulin markedly increasing the amount of co-immunoprecipitated protein in each case. These results show that insulin triggers interactions in vivo between PKCζ, 80K-H and munc18c. Overexpression of 80K-H constructs mimicked the action of insulin in stimulating both glucose uptake and translocation of Myc-tagged GLUT4 in Cho cells, with the level of effect proportional to the ability of the constructs to associate with munc18c. These results identify 80K-H as a new player involved in GLUT4 vesicle transport and identify a link between a kinase involved in the insulin signalling cascade, PKCζ, and a known component of the GLUT4 vesicle trafficking pathway, munc18c. The results suggest a model whereby insulin triggers the formation of a PKCζ–80K-H–munc18c complex that enhances GLUT4 translocation to the plasma membrane. PMID:15707389
Wallin, Jeffrey J.; Guan, Jane; Edgar, Kyle A.; Zhou, Wei; Francis, Ross; Torres, Anthony C.; Haverty, Peter M.; Eastham-Anderson, Jeffrey; Arena, Sabrina; Bardelli, Alberto; Griffin, Sue; Goodall, John E.; Grimshaw, Kyla M.; Hoeflich, Klaus P.; Torrance, Christopher; Belvin, Marcia; Friedman, Lori S.
2012-01-01
The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis. PMID:22570710
Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency
NASA Astrophysics Data System (ADS)
Cao, Jingjing; Li, Mengya; Chen, Jian; Liu, Pei; Li, Zhen
2016-11-01
Jasmonates (JAs) play important roles in plant growth, development and defense. Comprehensive metabolomics profiling of plants under JA treatment provides insights into the interaction and regulation network of plant hormones. Here we applied high resolution mass spectrometry based metabolomics approach on Arabidopsis wild type and JA synthesis deficiency mutant opr3. The effects of exogenous MeJA treatment on the metabolites of opr3 were investigated. More than 10000 ion signals were detected and more than 2000 signals showed significant variation in different genotypes and treatment groups. Multivariate statistic analyses (PCA and PLS-DA) were performed and a differential compound library containing 174 metabolites with high resolution precursor ion-product ions pairs was obtained. Classification and pathway analysis of 109 identified compounds in this library showed that glucosinolates and tryptophan metabolism, amino acids and small peptides metabolism, lipid metabolism, especially fatty acyls metabolism, were impacted by endogenous JA deficiency and exogenous MeJA treatment. These results were further verified by quantitative reverse transcription PCR (RT-qPCR) analysis of 21 related genes involved in the metabolism of glucosinolates, tryptophan and α-linolenic acid pathways. The results would greatly enhance our understanding of the biological functions of JA.
Todaro, G J; Sherr, C J; Sen, A; King, N; Daniel, M D; Fleckenstein, B
1978-01-01
A type C virus (OMC-1) detected in a culture of owl monkey kidney cells resembled typical type C viruses morphologically, but was slightly larger than previously characterized mammalian type C viruses. OMC-1 can be transmitted to bat lung cells and cat embryo fibroblasts. The virions band at a density of 1.16 g/ml in isopycnic sucrose density gradients and contain reverse transcriptase and a 60-65S RNA genome composed of approximately 32S subunits. The reverse transcriptase is immunologically and biochemically distinct from the polymerases of othe retroviruses. Radioimmunoassays directed to the interspecies antigenic determinants of the major structure proteins of other type C viruses do not detect a related antigen in OMC-1. Nucleic acid hybridization experiments using labeled viral genomic RNA or proviral cDNA transcripts to normal cellular DNA of different species show that OMC-1 is an endogenous virus with multiple virogene copies (20-50 per haploid genome) present in normal owl monkey cells and is distinct from previously isolated type C and D viruses. Sequences related to the OMC-1 genome can be detected in other New World monkeys. Thus, similar to the Old World primates (e.g., baboons as a prototype), the New World monkeys contain endogenous type C viral genes that appear to have been transmitted in the primate germ line. Images PMID:76312
Small, David M; Sanchez, Washington Y; Roy, Sandrine F; Morais, Christudas; Brooks, Heddwen L; Coombes, Jeff S; Johnson, David W; Gobe, Glenda C
2018-05-01
Oxidative stress and mitochondrial dysfunction exacerbate acute kidney injury (AKI), but their role in any associated progress to chronic kidney disease (CKD) remains unclear. Antioxidant therapies often benefit AKI, but their benefits in CKD are controversial since clinical and preclinical investigations often conflict. Here we examined the influence of the antioxidant N-acetyl-cysteine (NAC) on oxidative stress and mitochondrial function during AKI (20-min bilateral renal ischemia plus reperfusion/IR) and progression to chronic kidney pathologies in mice. NAC (5% in diet) was given to mice 7 days prior and up to 21 days post-IR (21d-IR). NAC treatment resulted in the following: prevented proximal tubular epithelial cell apoptosis at early IR (40-min postischemia), yet enhanced interstitial cell proliferation at 21d-IR; increased transforming growth factor-β1 expression independent of IR time; and significantly dampened nuclear factor-like 2-initiated cytoprotective signaling at early IR. In the long term, NAC enhanced cellular metabolic impairment demonstrated by increased peroxisome proliferator activator-γ serine-112 phosphorylation at 21d-IR. Intravital multiphoton microscopy revealed increased endogenous fluorescence of nicotinamide adenine dinucleotide (NADH) in cortical tubular epithelial cells during ischemia, and at 21d-IR that was not attenuated with NAC. Fluorescence lifetime imaging microscopy demonstrated persistent metabolic impairment by increased free/bound NADH in the cortex at 21d-IR that was enhanced by NAC. Increased mitochondrial dysfunction in remnant tubular cells was demonstrated at 21d-IR by tetramethylrhodamine methyl ester fluorimetry. In summary, NAC enhanced progression to CKD following AKI not only by dampening endogenous cellular antioxidant responses at time of injury but also by enhancing persistent kidney mitochondrial and metabolic dysfunction.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2013-12-01
The relationship between sarcoplasmic reticulum (SR) Ca(2+) content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca(2+) content and maximal Ca(2+) capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca(2+) content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca(2+) per litre of fibre, respectively), with virtually all of this Ca(2+) evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg(2+)] solution (only 0.08 ± 0.01 and <0.07 mmol l(-1), respectively, remaining). The maximal Ca(2+) content that could be reached with SR Ca(2+) loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l(-1) in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca(2+) release and subsequent Ca(2+) reloading similarly indicated that (i) maximal SR Ca(2+) content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca(2+) content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3-fold more CSQ1 and ∼5-fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca(2+) content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2013-01-01
The relationship between sarcoplasmic reticulum (SR) Ca2+ content and calsequestrin (CSQ) isoforms was investigated in human skeletal muscle. A fibre-lysing assay was used to quantify the endogenous Ca2+ content and maximal Ca2+ capacity of the SR in skinned segments of type I and type II fibres from vastus lateralis muscles of young healthy adults. Western blotting of individual fibres showed the great majority contained either all fast or all slow isoforms of myosin heavy chain (MHC), troponins C and I, tropomyosin and SERCA, and that the strontium sensitivity of the force response was closely indicative of the troponin C isoform present. The endogenous SR Ca2+ content was slightly lower in type I compared to type II fibres (0.76 ± 0.03 and 0.85 ± 0.02 mmol Ca2+ per litre of fibre, respectively), with virtually all of this Ca2+ evidently being in the SR, as it could be rapidly released with a caffeine-low [Mg2+] solution (only 0.08 ± 0.01 and <0.07 mmol l−1, respectively, remaining). The maximal Ca2+ content that could be reached with SR Ca2+ loading was 1.45 ± 0.04 and 1.79 ± 0.03 mmol l−1 in type I and type II fibres, respectively (P < 0.05). In non-lysed skinned fibres, where the SR remained functional, repeated cycles of caffeine-induced Ca2+ release and subsequent Ca2+ reloading similarly indicated that (i) maximal SR Ca2+ content was lower in type I fibres than in type II fibres (P < 0.05), and (ii) the endogenous Ca2+ content represented a greater percentage of maximal content in type I fibres compared to type II fibres (∼59% and 41%, respectively, P < 0.05). Type II fibres were found on average to contain ∼3–fold more CSQ1 and ∼5–fold less CSQ2 than type I fibres (P < 0.001). The findings are consistent with the SR Ca2+ content characteristics in human type II fibres being primarily determined by the CSQ1 abundance, and in type I fibres by the combined amounts of both CSQ1 and CSQ2. PMID:24127619
Protection from experimental asthma by an endogenous bronchodilator.
Que, Loretta G; Liu, Limin; Yan, Yun; Whitehead, Gregory S; Gavett, Stephen H; Schwartz, David A; Stamler, Jonathan S
2005-06-10
Mechanisms that protect against asthma remain poorly understood. S-nitrosoglutathione (GSNO), an endogenous bronchodilator, is depleted from asthmatic airways, suggesting a protective role. We report that, following allergen challenge, wild-type mice exhibiting airway hyperresponsivity have increased airway levels of the enzyme GSNO reductase (GSNOR) and are depleted of lung S-nitrosothiols (SNOs). In contrast, mice with genetic deletion of GSNOR exhibit increases in lung SNOs and are protected from airway hyperresponsivity. Our results indicate that endogenous SNOs, governed by GSNOR, are critical regulators of airway responsivity and may provide new therapeutic approaches to asthma.
Ang, Meidjie; Linn, Thomas
2014-10-01
Isomaltulose attenuates postprandial glucose and insulin concentrations compared with sucrose in patients with type 2 diabetes mellitus (T2DM). However, the mechanism by which isomaltulose limits postprandial hyperglycemia has not been clarified. The objective was therefore to assess the effects of bolus administration of isomaltulose on glucose metabolism compared with sucrose in T2DM. In a randomized, double-blind, crossover design, 11 participants with T2DM initially underwent a 3-h euglycemic-hyperinsulinemic (0.8 mU · kg(-1) · min(-1)) clamp that was subsequently combined with 1 g/kg body wt of an oral (13)C-enriched isomaltulose or sucrose load. Hormonal responses and glucose kinetics were analyzed during a 4-h postprandial period. Compared with sucrose, absorption of isomaltulose was prolonged by ∼50 min (P = 0.004). Mean plasma concentrations of insulin, C-peptide, glucagon, and glucose-dependent insulinotropic peptide were ∼10-23% lower (P < 0.05). In contrast, glucagon-like peptide 1 (GLP-1) was ∼64% higher (P < 0.001) after isomaltulose ingestion, which results in an increased insulin-to-glucagon ratio (P < 0.001) compared with sucrose. The cumulative amount of systemic glucose appearance was ∼35% lower after isomaltulose than after sucrose (P = 0.003) because of the reduction in orally derived and endogenously produced glucose and a higher first-pass splanchnic glucose uptake (SGU). Insulin action was enhanced after isomaltulose compared with sucrose (P = 0.013). Ingestion of slowly absorbed isomaltulose attenuates postprandial hyperglycemia by reducing oral glucose appearance, inhibiting endogenous glucose production (EGP), and increasing SGU compared with ingestion of rapidly absorbed sucrose in patients with T2DM. In addition, GLP-1 secretion contributes to a beneficial shift in the insulin-to-glucagon ratio, suppression of EGP, and enhancement of SGU after isomaltulose consumption. This trial was registered at clinicaltrials.gov as NCT01070238. © 2014 American Society for Nutrition.
Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato
Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar
2017-01-01
Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937
Kono, Toru; Kaneko, Atsushi; Hira, Yoshiki; Suzuki, Tatsuya; Chisato, Naoyuki; Ohtake, Nobuhiro; Miura, Naoko; Watanabe, Tsuyoshi
2010-06-01
Adrenomedullin (ADM) is a member of the calcitonin family of regulatory peptides, and is reported to have anti-inflammatory effects in animal models of Crohn's disease (CD). We investigated the therapeutic effects of daikenchuto (DKT), an extracted Japanese herbal medicine, on the regulation of endogenous ADM in the gastrointestinal tract in a CD mouse model. Colitis was induced in mice by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS); afterwards, DKT was given orally. Colonic damage was assessed on day 3 by macroscopic and microscopic observation, enzyme immunoassays of proinflammatory cytokines in the colonic mucosa, and serum amyloid A (SAA), a hepatic acute-phase protein. To determine the involvement of ADM, an ADM antagonist was instilled intrarectally before DKT administration. The effect of DKT on ADM production by intestinal epithelial cells was evaluated by enzyme immunoassay and real-time PCR. DKT significantly attenuated mucosal damage and colonic inflammatory adhesions, and inhibited elevations of SAA in plasma and the proinflammatory cytokines TNFα and IFNγ in the colon. Small and large intestinal epithelial cells produced higher levels of ADM after DKT stimulation. A DKT-treated IEC-6 cell line also showed enhanced ADM production at protein and mRNA levels. Abolition of this effect by pretreatment with an ADM antagonist shows that DKT appears to exert its anti-colitis effect via up-regulation of endogenous ADM in the intestinal tract. DKT exerts beneficial effects in a CD mouse model through endogenous release and production of ADM. Endogenous ADM may be a therapeutic target for CD. Copyright © 2009 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Garvin, Jeffrey L.
2014-01-01
Luminal flow stimulates endogenous nitric oxide (NO) and superoxide (O2−) production by renal thick ascending limbs (TALs). The delicate balance between these two factors regulates Na transport in TALs; NO enhances natriuresis, whereas O2− augments Na absorption. Endogenous, flow-stimulated O2− enhances Na/H exchange (NHE). Flow-stimulated NO reduces flow-induced O2−, a process mediated by cGMP-dependent protein kinase (PKG). However, whether flow-stimulated, endogenously-produced NO diminishes O2−-stimulated NHE activity and the signaling pathway involved are unknown. We hypothesized that flow-induced NO reduces the stimulation of NHE activity caused by flow-induced O2− via PKG in TALs. Intracellular pH recovery after an acid load was measured as an indicator of NHE activity in isolated, perfused rat TALs. l-Arginine, the NO synthase substrate, decreased NHE activity by 34 ± 5% (n = 5; P < 0.04). The O2− scavenger tempol decreased NHE activity by 46 ± 8% (n = 6; P < 0.004) in the absence of NO. In the presence of l-arginine, the inhibitory effect of tempol on NHE activity was reduced to −19 ± 6% (n = 6; P < 0.03). The soluble guanylate cyclase inhibitor LY-83583 blocked the effect of l-arginine thus restoring tempol's effect on NHE activity to −42 ± 4% (n = 6; P < 0.0005). The PKG inhibitor KT-5823 also inhibited l-arginine's effect on tempol-reduced NHE activity (−43 ± 5%; n = 5; P < 0.03). We conclude that flow-induced NO reduces the stimulatory effect of endogenous, flow-induced O2− on NHE activity in TALs via an increase in cGMP and PKG activation. PMID:25503735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu
Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulatormore » of the IFN/STAT1 signaling pathway.« less
Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice.
Spencer, Nick J
2013-01-01
It is well established that the intrinsic pacemaker mechanism that generates cyclical colonic migrating motor complexes (CMMCs) does not require endogenous nitric oxide (NO). However, pharmacological blockade of endogenous NO production potently increases the frequency of CMMCs, suggesting that endogenous NO acts normally to inhibit the CMMC pacemaker mechanism. In this study, we investigated whether mice with a life long genetic deletion of the neuronal nitric oxide synthase (nNOS) gene would show similar CMMC characteristics as wild type mice that have endogenous NO production acutely inhibited. Intracellular electrophysiological and mechanical recordings were made from circular muscle cells of isolated whole mouse colon in wild type and nNOS knockout (KO) mice at 35°C. In wild type mice, the NOS inhibitor, L-NA (100 μM) caused a significant increase in CMMC frequency and a significant depolarization of the CM layer. However, unexpectedly, the frequency of CMMCs in nNOS KO mice was not significantly different from control mice. Also, the resting membrane potential of CM cells in nNOS KO mice was not depolarized compared to controls; and the amplitude of the slow depolarization phase underlying MCs was of similar amplitude between KO and wild type offspring. These findings show that in nNOS KO mice, the major characteristics of CMMCs and their electrical correlates are, at least in adult mice, indistinguishable from wild type control offspring. One possibility why the major characteristics of CMMCs were no different between both types of mice is that nNOS KO mice may compensate for their life long deletion of the nNOS gene, and their permanent loss of neuronal NO production. In this regard, we suggest caution should be exercised when assuming that data obtained from adult nNOS KO mice can be directly extrapolated to wild type mice, that have been acutely exposed to an inhibitor of NOS.
A homogeneous cell-based assay for measurement of endogenous paraoxonase 1 activity.
Ahmad, Syed; Carter, Jade J; Scott, John E
2010-05-01
Paraoxonase 1 (PON1) is a high-density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. Thus, there is significant interest in identifying nutritional and pharmacological enhancers of PON1 activity. To identify such compounds, we developed a rapid homogeneous assay to detect endogenous cell-associated PON1 activity. PON1 activity was measured by the simple addition of fluorigenic PON1 substrate DEPFMU to live Huh7 cells in medium and monitoring change in fluorescence. A specific PON1 inhibitor, 2-hydroxyquinoline, was used to confirm that the observed activity was due to PON1. The assay was optimized and characterized with regard to time course, substrate and sodium chloride concentration, number of cells, and tolerance to dimethyl sulfoxide and serum. Aspirin, quercetin, and simvastatin are compounds reported to increase PON1 expression. Consistent with the literature and Western blot data, these compounds enhanced PON1 activity in this assay with comparable efficacies and potencies. A known toxic compound did not increase assay signal. This assay method also detected PON1 activity in normal hepatocytes. Thus, a novel homogeneous assay for detection of endogenous PON1 expression has been developed and is amenable to high-throughput screening for the identification of small molecules that enhance PON1 expression. 2010 Elsevier Inc. All rights reserved.
Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer
2008-03-01
interact with the endogenous CrkL binding partner, Gab1 , which is enhanced upon HGF stimulation. The over- expression of CrkL and Gab1 leads to Rac...transgenic line in both virgin and lactating mice (Figure 1C). Moreover, although the antibody recognizes endogenous protein, it is clearly evident that...found equal levels in both the nucleus and cytoplasm using two different antibodies targeting CrkI/II or specifically CrkII (7). Furthermore, we have
IFNα enhances the production of IL-6 by human neutrophils activated via TLR8.
Zimmermann, Maili; Arruda-Silva, Fabio; Bianchetto-Aguilera, Francisco; Finotti, Giulia; Calzetti, Federica; Scapini, Patrizia; Lunardi, Claudio; Cassatella, Marco A; Tamassia, Nicola
2016-01-21
Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R
2010-07-29
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.
2010-01-01
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685
FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions.
Clemente, Diego; Ortega, María Cristina; Arenzana, Francisco Javier; de Castro, Fernando
2011-10-19
Multiple sclerosis is a demyelinating disease that affects ≈ 2,000,000 people worldwide. In the advanced stages of the disease, endogenous oligodendrocyte precursors cannot colonize the lesions or differentiate into myelinating oligodendrocytes. During development, both FGF-2 and Anosmin-1 participate in oligodendrocyte precursor cell migration, acting via the FGF receptor 1 (FGFR1). Hence, we performed a histopathological and molecular analysis of these developmental modulators in postmortem tissue blocks from multiple sclerosis patients. Accordingly, we demonstrate that the distribution of FGF-2 and Anosmin-1 varies between the different types of multiple sclerosis lesions: FGF-2 is expressed only within active lesions and in the periplaque of chronic lesions, whereas Anosmin-1 is upregulated within chronic lesions and is totally absent in active lesions. We show that the endogenous oligodendrocyte precursor cells recruited toward chronic-active lesions express FGFR1, possibly in response to the FGF-2 produced by microglial cells in the periplaque. Also in human tissue, FGF-2 is upregulated in perivascular astrocytes in regions of the normal-appearing gray matter, where the integrity of the blood-brain barrier is compromised. In culture, FGF-2 and Anosmin-1 influence adult mouse oligodendrocyte precursor cell migration in the same manner as at embryonic stages, providing an explanation for the histopathological observations: FGF-2 attracts/enhances its migration, which is hindered by Anosmin-1. We propose that FGF-2 and Anosmin-1 are markers for the histopathological type and the level of inflammation of multiple sclerosis lesions, and that they may serve as novel pharmacogenetic targets to design future therapies that favor effective remyelination and protect the blood-brain barrier.
Harada, Y; Ro, S; Ochiai, M; Hayashi, K; Hosomi, E; Fujitsuka, N; Hattori, T; Yakabi, K
2015-08-01
Functional dyspepsia (FD) is one of the most common disorders of gastrointestinal (GI) diseases. However, no curable treatment is available for FD because the detailed mechanism of GI dysfunction in stressed conditions remains unclear. We aimed to clarify the association between endogenous acylated ghrelin signaling and gastric motor dysfunction and explore the possibility of a drug with ghrelin signal-enhancing action for FD treatment. Solid gastric emptying (GE) and plasma acylated ghrelin levels were evaluated in an urocortin1 (UCN1) -induced stress model. To clarify the role of acylated ghrelin on GI dysfunction in the model, exogenous acylated ghrelin, an endogenous ghrelin enhancer, rikkunshito, or an α2 -adrenergic receptor (AR) antagonist was administered. Postprandial motor function was investigated using a strain gauge force transducer in a free-moving condition. Exogenous acylated ghrelin supplementation restored UCN1-induced delayed GE. Alpha2 -AR antagonist and rikkunshito inhibited the reduction in plasma acylated ghrelin and GE in the stress model. The action of rikkunshito on delayed GE was blocked by co-administration of the ghrelin receptor antagonist. UCN1 decreased the amplitude of contraction in the antrum while increasing it in the duodenum. The motility index of the antrum but not the duodenum was significantly reduced by UCN1 treatment, which was improved by acylated ghrelin or rikkunshito. The UCN1-induced gastric motility dysfunction was mediated by abnormal acylated ghrelin dynamics. Supplementation of exogenous acylated ghrelin or enhancement of endogenous acylated ghrelin secretion by rikkunshito may be effective in treating functional GI disorders. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.
Kuczyńska-Wiśnik, Dorota; Moruno-Algara, María; Stojowska-Swędrzyńska, Karolina; Laskowska, Ewa
2016-11-10
Acetylation of lysine residues is a reversible post-translational modification conserved from bacteria to humans. Several recent studies have revealed hundreds of lysine-acetylated proteins in various bacteria; however, the physiological role of these modifications remains largely unknown. Since lysine acetylation changes the size and charge of proteins and thereby may affect their conformation, we assumed that lysine acetylation can stimulate aggregation of proteins, especially for overproduced recombinant proteins that form inclusion bodies. To verify this assumption, we used Escherichia coli strains that overproduce aggregation-prone VP1GFP protein. We found that in ΔackA-pta cells, which display diminished protein acetylation, inclusion bodies were formed with a delay and processed faster than in the wild-type cells. Moreover, in ΔackA-pta cells, inclusion bodies exhibited significantly increased specific GFP fluorescence. In CobB deacetylase-deficient cells, in which protein acetylation was enhanced, the formation of inclusion bodies was increased and their processing was significantly inhibited. Similar results were obtained with regard to endogenous protein aggregates formed during the late stationary phase in ΔackA-pta and ΔcobB cells. Our studies revealed that protein acetylation affected the aggregation of endogenous E. coli proteins and the yield, solubility, and biological activity of a model recombinant protein. In general, decreased lysine acetylation inhibited the formation of protein aggregates, whereas increased lysine acetylation stabilized protein aggregates. These findings should be considered during the designing of efficient strategies for the production of recombinant proteins in E. coli cells.
Wang, Baolan; Wei, Haifang; Xue, Zhen
2017-01-01
Background and aims Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. Methods To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant (eui1) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI. Key Results Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA1 and GA4, the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. Conclusions The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. PMID:28065924
Lutz, Beat
2004-11-01
Neurons intensively exchange information among each other using both inhibitory and excitatory neurotransmitters. However, if the balance of excitation and inhibition is perturbed, the intensity of excitatory transmission may exceed a certain threshold and epileptic seizures can occur. As the occurrence of epilepsy in the human population is about 1%, the search for therapeutic targets to alleviate seizures is warranted. Extracts of Cannabis sativa have a long history in the treatment of various neurological diseases, including epilepsy. However, cannabinoids have been reported to exert both pro- and anti-convulsive activities. The recent progress in understanding the endogenous cannabinoid system has allowed new insights into these opposing effects of cannabinoids. When excessive neuronal activity occurs, endocannabinoids are generated on demand and activate cannabinoid type 1 (CB1) receptors. Using mice lacking CB1 receptors in principal forebrain neurons in a model of epileptiform seizures, it was shown that CB1 receptors expressed on excitatory glutamatergic neurons mediate the anti-convulsive activity of endocannabinoids. Systemic activation of CB1 receptors by exogenous cannabinoids, however, are anti- or pro-convulsive, depending on the seizure model used. The pro-convulsive activity of exogenous cannabinoids might be explained by the notion that CB1 receptors expressed on inhibitory GABAergic neurons are also activated, leading to a decreased release of GABA, and to a concomitant increase in seizure susceptibility. The concept that the endogenous cannabinoid system is activated on demand suggests that a promising strategy to alleviate seizure frequency is the enhancement of endocannabinoid levels by inhibiting the cellular uptake and the degradation of these endogenous compounds.
Ngwenya, Laura B.; Mazumder, Sarmistha; Porter, Zachary R.; Oswald, Duane J.
2018-01-01
Cognitive deficits after traumatic brain injury (TBI) are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI) in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC). Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation. PMID:29531536
Synthetic RORγt Agonists Enhance Protective Immunity
Chang, Mi Ra; Dharmarajan, Venkatasubramanian; Doebelin, Christelle; Garcia-Ordonez, Ruben D.; Novick, Scott J.; Kuruvilla, Dana S.; Kamenecka, Theodore M.; Griffin, Patrick R.
2016-01-01
The T cell specific RORγ isoform RORγt has been shown to be the key lineage-defining transcription factor to initiate the differentiation program of TH17 and Tc17 cells, cells that have demonstrated anti-tumor efficacy. RORγt controls gene networks that enhance immunity including increased IL17 production and decreased immune suppression. Both synthetic and putative endogenous agonists of RORγt have been shown to increase the basal activity of RORγt enhancing TH17 cell proliferation. Here we show that activation of RORγt using synthetic agonists drives proliferation of TH17 cells while decreasing levels of the immune checkpoint protein PD-1, a mechanism that should enhance anti-tumor immunity while blunting tumor associated adaptive immune resistance. Interestingly, putative endogenous agonists drive proliferation of TH17 cells but do not repress PD-1. These findings suggest that synthetic agonists of RORγt should activate TC17/TH17 cells (with concomitant reduction in the Tregs population), repress PD-1, and produce IL17 in situ (a factor associated with good prognosis in cancer). Enhanced immunity and blockage of immune checkpoints has transformed cancer treatment, thus such a molecule would provide a unique approach for the treatment of cancer. PMID:26785144
Interspecies radioimmunoassay for the major structural proteins of primate type-D retroviruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colcher, D.; Teramoto, Y.A.; Schlom, J.
1977-12-01
A competition radioimmunoassay has been developed in which type-D retroviruses from three primate species compete. The assay utilizes the major structural protein (36,000 daltons) of the endogenous squirrel monkey retrovirus and antisera directed against the major structural protein (27,000 daltons) of the Mason-Pfizer monkey virus isolated from rhesus monkeys. Purified preparations of both viruses grown in heterologous cells, as well as extracts of heterologous cells infected with squirrel monkey retrovirus or Mason-Pfizer monkey virus, compete completely in the assay. Addition of an endogenous virus of the langur monkey also results in complete blocking. No blocking in the assay is observedmore » with type-C baboon viruses, woolly monkey virus, and gibbon virus. Various other type-C and type-B viruses also showed no reactivity. An interspecies assay has thus been developed that recognizes the type-D retroviruses from both Old World monkey (rhesus and langur) and New World monkey (squirrel) species.« less
Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.
Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B
2018-03-01
Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Chang H; Rodeo, Scott A; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat; Mao, Jeremy J
2014-12-10
Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor-β3 (TGFβ3) from a three-dimensional (3D)-printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D-printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D-printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. Copyright © 2014, American Association for the Advancement of Science.
Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Iwamoto, Yukihide
2014-01-31
CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation by stimulating type X collagen and matrix metalloproteinase 13 during chondrocyte differentiation. However, the effect of C/EBPβ on proliferative chondrocytes is unclear. Here, we investigated whether C/EBPβ represses type II collagen (COL2A1) expression and is involved in the regulation of sex-determining region Y-type high mobility group box 9 (SOX9), a crucial factor for transactivation of Col2a1. Endogenous expression of C/EBPβ in the embryonic growth plate and differentiated ATDC5 cells were opposite to those of COL2A1 and SOX9. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked repression of Col2a1. The expression of Sox9 mRNA and nuclear protein was also repressed, resulting in decreased binding of SOX9 to the Col2a1 enhancer as shown by a ChIP assay. Knockdown of C/EBPβ by lentivirus expressing shRNA caused significant stimulation of these genes in ATDC5 cells. Reporter assays demonstrated that C/EBPβ repressed transcriptional activity of Col2a1. Deletion and mutation analysis showed that the C/EBPβ core responsive element was located between +2144 and +2152 bp within the Col2a1 enhancer. EMSA and ChIP assays also revealed that C/EBPβ directly bound to this region. Ex vivo organ cultures of mouse limbs transfected with C/EBPβ showed that the expression of COL2A1 and SOX9 was reduced upon ectopic C/EBPβ expression. Together, these results indicated that C/EBPβ represses the transcriptional activity of Col2a1 both directly and indirectly through modulation of Sox9 expression. This consequently promotes the phenotypic conversion from proliferative to hypertrophic chondrocytes during chondrocyte differentiation.
Involvement of Endogenous Enkephalins and β-Endorphin in Feeding and Diet-Induced Obesity
Mendez, Ian A; Ostlund, Sean B; Maidment, Nigel T; Murphy, Niall P
2015-01-01
Studies implicate opioid transmission in hedonic and metabolic control of feeding, although roles for specific endogenous opioid peptides have barely been addressed. Here, we studied palatable liquid consumption in proenkephalin knockout (PENK KO) and β-endorphin-deficient (BEND KO) mice, and how the body weight of these mice changed during consumption of an energy-dense highly palatable ‘cafeteria diet’. When given access to sucrose solution, PENK KOs exhibited fewer bouts of licking than wild types, even though the length of bouts was similar to that of wild types, a pattern that suggests diminished food motivation. Conversely, BEND KOs did not differ from wild types in the number of licking bouts, even though these bouts were shorter in length, suggesting that they experienced the sucrose as being less palatable. In addition, licking responses in BEND, but not PENK, KO mice were insensitive to shifts in sucrose concentration or hunger. PENK, but not BEND, KOs exhibited lower baseline body weights compared with wild types on chow diet and attenuated weight gain when fed cafeteria diet. Based on this and related findings, we suggest endogenous enkephalins primarily set a background motivational tone regulating feeding behavior, whereas β-endorphin underlies orosensory reward in high need states or when the stimulus is especially valuable. Overall, these studies emphasize complex interplays between endogenous opioid peptides targeting μ-receptors, such as enkephalins and endorphins, underlying the regulation of feeding and body weight that might explain the poor efficacy of drugs that generally target μ-opioid receptors in the long-term control of appetite and body weight. PMID:25754760
Das, Anusuya; Segar, Claire E; Hughley, Brian B; Bowers, Daniel T; Botchwey, Edward A
2013-01-01
Endogenous signals originating at the site of injury are involved in the paracrine recruitment, proliferation, and differentiation of circulating progenitor and diverse inflammatory cell types. Here, we investigate a strategy to exploit endogenous cell recruitment mechanisms to regenerate injured bone by local targeting and activation of sphingosine-1-phosphate (S1P) receptors. A mandibular defect model was selected for evaluating regeneration of bone following trauma or congenital disease. The particular challenges of mandibular reconstruction are inherent in the complex anatomy and function of the bone given that the area is highly vascularized and in close proximity to muscle. Nanofibers composed of poly(DL-lactide-co-glycolide) (PLAGA) and polycaprolactone (PCL) were used to delivery FTY720, a targeted agonist of S1P receptors 1 and 3. In vitro culture of bone progenitor cells on drug loaded constructs significantly enhanced SDF1α mediated chemotaxis of bone marrow mononuclear cells. In vivo results show that local delivery of FTY720 from composite nanofibers enhanced blood vessel ingrowth and increased recruitment of M2 alternatively activated macrophages, leading to significant osseous tissue ingrowth into critical sized defects after 12 weeks of treatment. These results demonstrate that local activation of S1P receptors is a regenerative cue resulting in recruitment of wound healing or anti-inflammatory macrophages and bone healing. Use of such small molecule therapy can provide an alternative to biological factors for the clinical treatment of critical size craniofacial defects. PMID:24064148
Das, Anusuya; Segar, Claire E; Hughley, Brian B; Bowers, Daniel T; Botchwey, Edward A
2013-12-01
Endogenous signals originating at the site of injury are involved in the paracrine recruitment, proliferation, and differentiation of circulating progenitor and diverse inflammatory cell types. Here, we investigate a strategy to exploit endogenous cell recruitment mechanisms to regenerate injured bone by local targeting and activation of sphingosine-1-phosphate (S1P) receptors. A mandibular defect model was selected for evaluating regeneration of bone following trauma or congenital disease. The particular challenges of mandibular reconstruction are inherent in the complex anatomy and function of the bone given that the area is highly vascularized and in close proximity to muscle. Nanofibers composed of poly(DL-lactide-co-glycolide) (PLAGA) and polycaprolactone (PCL) were used to delivery FTY720, a targeted agonist of S1P receptors 1 and 3. In vitro culture of bone progenitor cells on drug-loaded constructs significantly enhanced SDF1α mediated chemotaxis of bone marrow mononuclear cells. In vivo results show that local delivery of FTY720 from composite nanofibers enhanced blood vessel ingrowth and increased recruitment of M2 alternatively activated macrophages, leading to significant osseous tissue ingrowth into critical sized defects after 12 weeks of treatment. These results demonstrate that local activation of S1P receptors is a regenerative cue resulting in recruitment of wound healing or anti-inflammatory macrophages and bone healing. Use of such small molecule therapy can provide an alternative to biological factors for the clinical treatment of critical size craniofacial defects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi
2010-11-01
Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.
Meeting Report: The Role of the Mobilome in Cancer
Ardeljan, Daniel; Taylor, Martin S.; Burns, Kathleen H.; Boeke, Jef D.; Espey, Michael Graham; Woodhouse, Elisa C.; Howcroft, T. Kevin
2016-01-01
Approximately half of the human genome consists of repetitive sequence attributed to the activities of mobile DNAs, including DNA transposons, RNA transposons, and endogenous retroviruses. Of these, only Long INterspersed Elements (LINE-1 or L1) and sequences copied by LINE-1 remain mobile in our species today. Although cells restrict L1 activity by both transcriptional and post-transcriptional mechanisms, L1 de-repression occurs in developmental and pathologic contexts, including many types of cancers. However, we have limited knowledge of the extent and consequences of L1 expression in premalignancies and cancer. Participants in this NIH strategic workshop considered key questions to enhance our understanding of mechanisms and roles the mobilome may play in cancer biology. PMID:27527733
Tamiya, Y
1994-08-01
Hand eczema is one of the most common dermatological disorders. Although it is a general term referring to eczematous dermatitis of the hands, it actually covers a wide range of diseases. The classification of hand eczema is controversial even now, as definitions of individual diseases have not yet been established. It is well-known that exogenous factors, such as chemicals or water, are associated with the occurrence of hand eczema. In this study, we focused on endogenous factors, especially personal or family history of atopy as a causative factor in hand eczema. According to exogenous and endogenous factors, we classified hand eczema into three types: atopic dermatitis, contact dermatitis and dysidrosis. This classification is useful because it makes the definition of each disease clear. Skin-humidity and sebum measurement are simple and rapid methods of determining personal atopy, skin condition and the effect of treatment on hand eczema patients.
Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying
2014-01-01
Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322
Functional linkage between NOXA and Bim in mitochondrial apoptotic events.
Han, Jie; Goldstein, Leslie A; Hou, Wen; Rabinowich, Hannah
2007-06-01
NOXA is a BH3-only protein whose expression is induced by certain p53-depenent or independent apoptotic stimuli. Both NOXA and Bim are avid binders of Mcl-1, but a functional linkage between these BH3-only proteins has not yet been reported. In this study, we demonstrate that Mcl-1 binding of endogenously induced NOXA interferes with the ability of Mcl-1 to efficiently sequester endogenous Bim, as Bim is displaced from its complex with Mcl-1. Induced NOXA significantly enhances the UV sensitivity of cells, and the ensuing mitochondrial depolarization is entirely abrogated by Bim knockdown. These results demonstrate a Mcl-1-mediated cross-talk between endogenous NOXA and Bim that occurs upstream of the Bak/Bax-dependent execution of UV-induced mitochondrial depolarization. The current findings demonstrate that the mitochondrial response to an induced expression of NOXA is executed by endogenous Bim and suggest a plausible mechanism for the observed NOXA-Bim linkage.
NASA Astrophysics Data System (ADS)
Ganesan, Singaravelu; Ebenezar, Jeyasingh; Hemamalini, Srinivasan; Aruna, Prakasa R.
2002-05-01
Steady state fluorescence spectroscopic characterization of endogenous porphyrin emission from DMBA treated skin carcinogenesis in Swiss albino mice was carried out. The emission of endogenous porphyrin from normal and abnormal skin tissues was studied both in the presence and absence of exogenous ALA to compare the resultant porphyrin emission characterictics. The mice skin is excited at 405nm and emission spectra are scanned from 430 to 700nm. The average fluorescence emission spectra of mice skin at normal and various tissues transformation conditions were found to be different. Two peaks around 460nm and 636nm were observed and they may be attributed to NADH, Elastin and collagen combination and endogenous porphyrin emission. The intensity at 636nm increases as the stage of the cancer increases. Although exogenous ALA enhances the PPIX level in tumor, the synthesis of PPIX was also found in normal surrounding skin, in fact, with higher concentration than that of tumor tissues.
Liu, Hongyue; Ren, Xiaoqian; Zhu, Jiuzheng; Wu, Xi; Liang, Chanjuan
2018-05-31
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H + -ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H + -ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
IN VITRO EFFECTS OF X-RADIATION ON WHITE BLOOD CELLS AND BLOOD PLATELETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.; Meyerriecks, N.; Berman, C.Z.
Alkaline phosphatase activity of leukocytes is enhanced by radiation with 50000 r. This disturbance accentuates the inherent aging process of white blood cells and may be explained by changes in the cell envelope. X radiation dimin ishes the endogenous oxygen uptake of leukocyte-platelet suspensions by approximately 20%. This response to radiation is demonstrable at exposures of as little as 5000 r. The decreasing effect is dimirished when substrates such as sodium succinate or alpha -glycerophosphate are added, within a wide range of their concentration. With increasing substrate concentration the decrease due to radiation approaches that of the endogenous respiration andmore » even exceeds it in some of the experiments. In pure blood platelets a similar decreasing x radiation effect occurs for endogenous respiration as well as succinic dehydrogenase activity; alpha -glycerophosphate dehydrogenase activity, on the other hand is enhanced. The oxygen uptake in leukocyteplatelet suspensions due only to leukocytes can be calculated. While the percentage radiation decrease of pure leukocytes is unchanged for endogenous and succirate activity, the decrease for alpha -glycerophosphate as substrate reaches considerably higher levels (68% compared with 8.2% in leukocyte-platelet suspensions). Thus alpha glycerophosphate dehydrogenase activity seems to be most sensitive to x radiation. It was shown in a previous study that alpha -glycerophosphate dehydrogenase is one of the most importart respiratory enzymes in leukocytes. The glycolytic system in leukocytes remains intact following exposure to radiation with 50000 r. (auth)« less
Jiang, Li; Kundu, Srikanya; Lederman, James D.; López-Hernández, Gretchen Y.; Ballinger, Elizabeth C.; Wang, Shaohua; Talmage, David A.; Role, Lorna W.
2016-01-01
Summary We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photo-stimulation of endogenous cholinergic input: (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs); (2) enhances glutamatergic synaptic transmission in the BLA and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525
Sarin, Hemant
2010-08-11
Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.
Self-Enhancement of Hepatitis C Virus Replication by Promotion of Specific Sphingolipid Biosynthesis
Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori
2012-01-01
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle. PMID:22916015
Hirata, Yuichi; Ikeda, Kazutaka; Sudoh, Masayuki; Tokunaga, Yuko; Suzuki, Akemi; Weng, Leiyun; Ohta, Masatoshi; Tobita, Yoshimi; Okano, Ken; Ozeki, Kazuhisa; Kawasaki, Kenichi; Tsukuda, Takuo; Katsume, Asao; Aoki, Yuko; Umehara, Takuya; Sekiguchi, Satoshi; Toyoda, Tetsuya; Shimotohno, Kunitada; Soga, Tomoyoshi; Nishijima, Masahiro; Taguchi, Ryo; Kohara, Michinori
2012-01-01
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.
Main approaches for delivering antioxidant vitamins through the skin to prevent skin ageing.
Gašperlin, Mirjana; Gosenca, Mirjam
2011-07-01
One of the major contributions to skin photoageing and diseases is oxidative stress, caused by UV radiation inducing reactive oxygen and nitrogen species. Successful prophylaxis and therapy would necessitate control of the oxidant/antioxidant balance at the affected site, which can be achieved through the external supply of endogenous antioxidants. This review discusses possible strategies for dermal delivery of the antioxidant vitamins E and C, as oral supplementation has proved insufficient. These antioxidants have low skin bioavailability, owing to their poor solubility, inefficient skin permeability, or instability during storage. These drawbacks can be overcome by various approaches, such as chemical modification of the vitamins and the use of new colloidal drug delivery systems. New knowledge is included about the importance of: enhancing the endogenous skin antioxidant defense through external supply; the balance between various skin antioxidants; factors that can improve the skin bioavailability of antioxidants; and new delivery systems, such as microemulsions, used to deliver vitamins C and E into the skin simultaneously. A promising strategy for enhancing skin protection from oxidative stress is to support the endogenous antioxidant system, with antioxidants containing products that are normally present in the skin.
ERIC Educational Resources Information Center
Keeley, Robin J.; Wartman, Brianne C.; Hausler, Alexander N.; Holahan, Matthew R.
2010-01-01
Research has demonstrated that Long-Evans rats (LER) display superior mnemonic function over Wistar rats (WR). These differences are correlated with endogenous and input-dependent properties of the hippocampus. The present work sought to determine if juvenile pretraining might enhance hippocampal structural markers and if this would be associated…
Ireno, Ivanildce Cristiane; Wiehe, Rahel Stephanie; Stahl, Andreea Iulia; Hampp, Stephanie; Aydin, Sevtap; Troester, Melissa A; Selivanova, Galina; Wiesmüller, Lisa
2014-10-01
Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono- and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrinα further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrinα downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Do endogenous and exogenous action control compete for perception?
Pfister, Roland; Heinemann, Alexander; Kiesel, Andrea; Thomaschke, Roland; Janczyk, Markus
2012-04-01
Human actions are guided either by endogenous action plans or by external stimuli in the environment. These two types of action control seem to be mediated by neurophysiologically and functionally distinct systems that interfere if an endogenously planned action suddenly has to be performed in response to an exogenous stimulus. In this case, the endogenous representation has to be deactivated first to give way to the exogenous system. Here we show that interference of endogenous and exogenous action control is not limited to motor-related aspects but also affects the perception of action-related stimuli. Participants associated two actions with contingent sensory effects in learning blocks. In subsequent test blocks, preparing one of these actions specifically impaired responding to the associated effect in an exogenous speeded detection task, yielding a blindness-like effect for arbitrary, learned action effects. In accordance with the theory of event coding, this finding suggests that action planning influences perception even in the absence of any physical similarities between action and to-be-perceived stimuli.
Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.
Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S
2009-06-01
Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.
Evaluation of the endogenous glucocorticoid hypothesis of denervation atrophy
NASA Technical Reports Server (NTRS)
Konagaya, Masaaki; Konagaya, Yoko; Max, Stephen R.
1988-01-01
The effects are studied of the oral administration of RU38486, a potent selective glucocorticoid antagonist, on muscle weight, non-collagen protein content, and selected enzyme activities (choline acetyltransferase, glucose 6-phosphate dehydrogenase, and glutamine synthetase) following denervation of rat skeletal muscle. Neither decreases in muscle weight, protein content, and choline acetyltransferase activity, nor increases in the activities of glucose 6-phosphate dehydrogernase and glutamine synthetase were affected by RU38486. These data do not support the hypothesis that denervation atrophy results from enhanced sensitivity of muscle to endogenous glucocorticoids.
Wiedeman, Paul E; Trevillyan, James M
2003-04-01
Glucagon-like peptide-1 (GLP-1 (7-36) amide) is a gut hormone released from L-cells in the small intestine in response to the ingestion of nutrients and enhances the glucose-dependent secretion of insulin from pancreatic beta-cells. In type 2 diabetic patients, the continuous infusion of GLP-1 (7-36) amide decreases plasma glucose and hemoglobin A1c concentrations and improves beta-cell function. Hormone action is rapidly terminated by the N-terminal cleavage of GLP-1 at Ala2 by the aminopeptidase, dipeptidyl peptidase IV (DPPIV). The short in vivo half-life of GLP-1 (< 3 min) poses challenges to the development of exogenous GLP-1-based therapy. The inhibition of endogenous GLP-1 degradation by reducing DPPIV activity is an alternative strategy for improving the incretin action of GLP-1 in vivo. This review summarizes recent advances in the design of potent and selective small molecule inhibitors of DPPIV and the potential challenges to the development of DPPIV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes.
RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.
Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae
2016-05-27
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.
ten Kulve, Jennifer S; Veltman, Dick J; van Bloemendaal, Liselotte; Barkhof, Frederik; Deacon, Carolyn F; Holst, Jens J; Konrad, Robert J; Sloan, John H; Drent, Madeleine L; Diamant, Michaela; IJzerman, Richard G
2015-12-01
The central nervous system (CNS) is a major player in the regulation of food intake. The gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have an important role in this regulation by relaying information about nutritional status to the CNS. We hypothesised that endogenous GLP-1 has effects on CNS reward and satiety circuits. This was a randomised, crossover, placebo-controlled intervention study, performed in a university medical centre in the Netherlands. We included patients with type 2 diabetes and healthy lean control subjects. Individuals were eligible if they were 40-65 years. Inclusion criteria for the healthy lean individuals included a BMI <25 kg/m(2) and normoglycaemia. Inclusion criteria for the patients with type 2 diabetes included BMI >26 kg/m(2), HbA1c levels between 42 and 69 mmol/mol (6.0-8.5%) and treatment for diabetes with only oral glucose-lowering agents. We assessed CNS activation, defined as blood oxygen level dependent (BOLD) signal, in response to food pictures in obese patients with type 2 diabetes (n = 20) and healthy lean individuals (n = 20) using functional magnetic resonance imaging (fMRI). fMRI was performed in the fasted state and after meal intake on two occasions, once during infusion of the GLP-1 receptor antagonist exendin 9-39, which was administered to block actions of endogenous GLP-1, and on the other occasion during saline (placebo) infusion. Participants were blinded for the type of infusion. The order of infusion was determined by block randomisation. The primary outcome was the difference in BOLD signal, i.e. in CNS activation, in predefined regions in the CNS in response to viewing food pictures. All patients were included in the analyses. Patients with type 2 diabetes showed increased CNS activation in CNS areas involved in the regulation of feeding (insula, amygdala and orbitofrontal cortex) in response to food pictures compared with lean individuals (p ≤ 0.04). Meal intake reduced activation in the insula in response to food pictures in both groups (p ≤ 0.05), but this was more pronounced in patients with type 2 diabetes. Blocking actions of endogenous GLP-1 significantly prevented meal-induced reductions in bilateral insula activation in response to food pictures in patients with type 2 diabetes (p ≤ 0.03). Our findings support the hypothesis that endogenous GLP-1 is involved in postprandial satiating effects in the CNS of obese patients with type 2 diabetes. ClinicalTrials.gov NCT 01363609. Funding The study was funded in part by a grant from Novo Nordisk.
White, Stephanie; Marquez de Prado, Blanca; Russo, Andrew F; Hammond, Donna L
2014-01-01
This study examined whether mice with a deficiency of neurofibromin, a Ras GTPase activating protein, exhibit a nociceptive phenotype and probed a possible contribution by calcitonin gene-related peptide. In the absence of inflammation, Nf1+/- mice (B6.129S6 Nf1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur
Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction.more » The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids. -- Highlights: Black-Right-Pointing-Pointer Cultured preadipocytes were transfected with sense lipocalin-type PGD synthase. Black-Right-Pointing-Pointer The cloned transfectants had a higher ability to synthesize PGD{sub 2} and PGJ{sub 2} series. Black-Right-Pointing-Pointer The sustained expression of sense L-PGDS hampered the storage of fats. Black-Right-Pointing-Pointer Adipogenesis program was suppressed independently of endogenous prostanoids.« less
Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yazhou; Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing; Zhou, Yahui
Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and diskmore » diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. - Highlights: • PDC213 is an endogenous peptide presenting higher levels in preterm milk. • PDC213 showed obvious antimicrobial against S. aereus and Y. enterocolitica. • PDC213 can permeabilize bacterial membranes and cell walls to kill bacterias. • PDC213 is a novel type of antimicrobial peptides worthy further investigation.« less
Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F
2015-04-20
Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Tutak, Magdalena; Brodny, Jarosław
2018-01-01
Hazard of endogenous fires is one of the basic and common presented occupational safety hazards in coal mine in Poland and in the world. This hazard means possibility of coal self-ignition as the result of its self-heating process in mining heading or its surrounding. In underground coal-mining during ventilating of operating longwalls takes place migration of parts of airflow to goaf with caving. In a case when in these goaf a coal susceptible to self-ignition occurs, then the airflow through these goaf may influence on formation of favorable conditions for coal oxidation and subsequently to its self-heating and self-ignition. Endogenous fire formed in such conditions can pose a serious hazards for the crew and for continuity of operation of mining plant. From the practical point of view a very significant meaning has determination of the zone in the goaf with caving, in which necessary conditions for occurence of endogenous fire are fulfilled. In the real conditions determination of such a zone is practically impossible. The main aim of the analysis was to determine the impact of type of the roof rocks forming the goaf on the location and range of endogenous fires particular hazard zone by in these goaf. For determined mining-geological conditions, the critical value of velocity of airflow and oxygen concentration in goaf, conditioning initiation of coal oxidation process were determined.
USDA-ARS?s Scientific Manuscript database
The effects of azole-type P450 inhibitors and two metabolism-resistant ABA analogs on in vitro ABA 8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expr...
Liu, Yang; Fang, Yang; Huang, Mengjun; Jin, Yanling; Sun, Jiaolong; Tao, Xiang; Zhang, Guohua; He, Kaize; Zhao, Yun; Zhao, Hai
2015-01-01
Duckweed is a novel aquatic bioenergy crop that is found ubiquitously throughout the world. Uniconazole plays an important role in improving crop production through the regulation of endogenous hormone levels. We found that a high quantity and quality of duckweed growth can be achieved by uniconazole application, although the mechanisms are unknown. The fronds of Landoltia punctata were sprayed evenly with 800 mg/L uniconazole. The dry weight following treatment increased by 10% compared to the controls at 240 h. Endogenous cytokinin (CK) and abscisic acid (ABA) content both increased compared to the control, while the level of gibberellins (GAs) decreased. Additionally, gene expression profiling results showed that the expression of transcripts encoding key enzymes involved in endogenous CK and ABA biosynthesis were up-regulated, while the transcripts of key enzymes for GAs biosynthesis were down-regulated. On the other hand, chlorophyll a and chlorophyll b contents were both increased compared with the control. Moreover, the net photosynthetic rate was elevated to 25.6 μmol CO2/m(2)/s compared with the control value of 22.05 μmol CO2/m(2)/s. Importantly, the expression of some chlorophyll biosynthesis-related transcripts was up-regulated. Uniconazole treatment altered endogenous hormone levels and enhanced chlorophyll content and net photosynthetic rate in duckweed by regulating key enzymes involved in endogenous hormone and chlorophyll biosynthesis. The alterations of endogenous hormones and the increase of chlorophyll and photosynthetic rate data support the increase of biomass and starch accumulation.
Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.
Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y
2010-04-01
The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.
Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus?
Das, Undurti N.
2017-01-01
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM. PMID:28824543
Streptococcus dysgalactiae endocarditis presenting as acute endophthalmitis
Yong, Angelina Su-Min; Lau, Su Yin; Woo, Tsung Han; Li, Jordan Yuanzhi; Yong, Tuck Yean
2012-01-01
Endogenous endophthalmitis is a rare ocular infection affecting the vitreous and/or aqueous humours. It is associated with poor visual prognosis and its commonest endogenous aetiology is infective endocarditis. The causative organisms of endogenous endophthalmitis complicating endocarditis are mainly Group A or B streptococci. The identification of Group C and G streptococci such as Streptococcus dysgalactiae is comparatively uncommon and has only been reported in a few case reports or series. We therefore report a case of infective endocarditis caused by Streptococcus dysgalactiae first presenting with endogenous endophthalmitis, the most likely source being osteomyelitis of both feet in a patient with type I diabetes. The patient was treated with a course of intravenous benzylpenicillin, intravitreal antibiotics, bilateral below knee amputations and mitral valve replacement. She survived all surgical procedures and regained partial visual acuity in the affected eye. PMID:24470923
Porcu, Patrizia; Barron, Anna M.; Frye, Cheryl Anne; Walf, Alicia A.; Yang, Song-Yu; He, Xue-Ying; Morrow, A. Leslie; Panzica, Gian Carlo; Melcangi, Roberto C.
2015-01-01
Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-amino-butyric type A (GABAA) receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in several animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiological functions such as stress response, puberty, ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurologic diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharmacokinetics, low bioavailability, addiction potential, safety and tolerability that limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarizes recent approaches that target the neuroactive steroid biosynthetic pathway at different levels in order to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa (TSPO), and the pregnane xenobiotic receptor (PXR), as well as targeting of specific neurosteroidogenic enzymes like 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) or P450 side chain cleavage (P450scc). Enhanced neurosteroidogenesis through these targets may be beneficial for neurodegenerative diseases such as Alzheimer's disease and age-related dementia, but also for neuropsychiatric diseases, including alcohol use disorders. PMID:26681259
Agis-Torres, Ángel; Recio, Paz; López-Oliva, María Elvira; Martínez, María Pilar; Barahona, María Victoria; Benedito, Sara; Bustamante, Salvador; Jiménez-Cidre, Miguel Ángel; García-Sacristán, Albino; Prieto, Dolores; Fernandes, Vítor S; Hernández, Medardo
2018-03-16
Nitric oxide (NO) and hydrogen sulfide (H 2 S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H 2 S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H 2 S generation was diminished by H 2 S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H 2 S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H 2 S-mediated inhibitory neurotransmission.
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
Rex, Christopher S; Lauterborn, Julie C; Lin, Ching-Yi; Kramár, Eniko A; Rogers, Gary A; Gall, Christine M; Lynch, Gary
2006-08-01
Restoration of neuronal viability and synaptic plasticity through increased trophic support is widely regarded as a potential therapy for the cognitive declines that characterize aging. Previous studies have shown that in the hippocampal CA1 basal dendritic field deficits in the stabilization of long-term potentiation (LTP) are evident by middle age. The present study tested whether increasing endogenous brain-derived neurotrophic factor (BDNF) could reverse this age-related change. We report here that in middle-aged (8- to 10-mo-old) rats, in vivo treatments with a positive AMPA-type glutamate receptor modulator both increase BDNF protein levels in the cortical telencephalon and restore stabilization of basal dendritic LTP as assessed in acute hippocampal slices 18 h after the last drug treatment. These effects were not attributed to enhanced synaptic transmission or to facilitation of burst responses used to induce LTP. Increasing extracellular levels of BDNF by exogenous application to slices of middle-aged rats was also sufficient to rescue the stabilization of basal dendritic LTP. Finally, otherwise stable LTP in ampakine-treated middle-aged rats can be eliminated by infusion of the extracellular BDNF scavenger TrkB-Fc. Together these results indicate that increases in endogenous BDNF signaling can offset deficits in the postinduction processes that stabilize LTP.
Fortin, Dale A; Tillo, Shane E; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V; Guo, Caiying; Mao, Tianyi; Zhong, Haining
2014-12-10
Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. Copyright © 2014 the authors 0270-6474/14/3416698-15$15.00/0.
Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H
2001-04-01
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.
Bone morphogenetic protein (BMP)1-3 enhances bone repair.
Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan
2011-04-29
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.
Yanochko, Gina M.; Yool, Andrea J.
2004-01-01
Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca2+ and Ba2+ but not by Mg2+ in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu274) and aspartate (Asp253) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu71) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu71 to Asp introduced a new sensitivity to block by extracellular Mg2+; substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca2+, suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination. PMID:14990474
Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity
Ghosh, Arnab; Dogan, Yildirim; Moroz, Maxim; Holland, Amanda M.; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; Tannenbaum, Daniel; Masih, Durva; Velardi, Enrico; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Smith, Odette M.; Piersanti, Kelly; Lezcano, Cecilia; Murphy, George F.; Liu, Chen; Palomba, M. Lia; Sauer, Martin G.; Sadelain, Michel; Ponomarev, Vladimir; van den Brink, Marcel R.M.
2013-01-01
Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro–generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD. PMID:23676461
Solinski, Hans Jürgen; Petermann, Franziska; Rothe, Kathrin; Boekhoff, Ingrid; Gudermann, Thomas; Breit, Andreas
2013-01-01
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain. PMID:23505557
Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao
2017-04-01
Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Lok, Hiu Chuen; Sahni, Sumit; Jansson, Patric J.; Kovacevic, Zaklina; Hawkins, Clare L.; Richardson, Des R.
2016-01-01
Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity. PMID:27866158
Hamayun, Muhammad; Hussain, Anwar; Khan, Sumera A.; Kim, Ho-Youn; Khan, Abdul L.; Waqas, Muhammad; Irshad, Muhammad; Iqbal, Amjad; Rehman, Gauhar; Jan, Samin; Lee, In-Jung
2017-01-01
In the pursuit of sustainable agriculture through environment and human health friendly practices, we evaluated the potential of a novel gibberellins (GAs) producing basidiomycetous endophytic fungus Porostereum spadiceum AGH786, for alleviating salt stress and promoting health benefits of soybean. Soybean seedlings exposed to different levels of NaCl stress (70 and 140 mM) under greenhouse conditions, were inoculated with the AGH786 strain. Levels of phytohormones including GAs, JA and ABA, and isoflavones were compared in control and the inoculated seedlings to understand the mechanism through which the stress is alleviated. Gibberellins producing endophytic fungi have been vital for promoting plant growth under normal and stress conditions. We report P. spadiceum AGH786 as the ever first GAs producing basidiomycetous fungus capable of producing six types of GAs. In comparison to the so for most efficient GAs producing Gibberella fujikuroi, AGH786 produced significantly higher amount of the bioactive GA3. Salt-stressed phenotype of soybean seedlings was characterized by low content of GAs and high amount of ABA and JA with reduced shoot length, biomass, leaf area, chlorophyll contents, and rate of photosynthesis. Mitigation of salt stress by AGH786 was always accompanied by high GAs, and low ABA and JA, suggesting that this endophytic fungus reduces the effect of salinity by modulating endogenous phytohormones of the seedlings. Additionally, this strain also enhanced the endogenous level of two isoflavones including daidzen and genistein in soybean seedlings under normal as well as salt stress conditions as compared to their respective controls. P. spadiceum AGH786 boosted the NaCl stress tolerance and growth in soybean, by modulating seedlings endogenous phytohormones and isoflavones suggesting a valuable contribution of this potent fungal biofertilizer in sustainable agriculture in salt affected soils. PMID:28473818
Szabo, Attila; Kovacs, Attila; Riba, Jordi; Djurovic, Srdjan; Rajnavolgyi, Eva; Frecska, Ede
2016-01-01
N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain.
Lubna; Asaf, Sajjad; Hamayun, Muhammad; Khan, Abdul Latif; Waqas, Muhammad; Khan, Muhammad Aaqil; Jan, Rahmatullah; Lee, In-Jung; Hussain, Anwar
2018-07-01
Abiotic stress resistance strategies are powerful approaches to sustainable agriculture because they reduce chemical input and enhance plant productivity. In current study, an endophytic fungus, Aspergillus flavus CHS1 was isolated from Chenopodium album Roots. CHS1 was initially screened for growth promoting activities like siderphore, phosphate solubilization, and the production of indole acetic acid and gibberellins and were further assayed for its ability to promote the growth of mutant Waito-C rice. The results revealed that different plant growth characteristic such as chlorophyll content, root-shoot length, and biomass production were significantly promoted during CHS1 treatment. This growth promotion action was due to the presence of various types of GAs and IAA in the endophyte culture filtrate. Significant up regulation with respect to levels in the control was observed in all endogenous plant GAs, after treatment with CHS1. Furthermore, to evaluate the potential of CHS1 against NaCl stress up to 400 mM, it was tested for its ability to improve soybean plant growth under NaCl stress. In endophyte-soybean interaction, CHS1 association significantly increased plant growth and attenuated the NaCl stress by down regulating ABA and JA synthesis. Similarly, it significantly elevated antioxidant activities of enzymes catalase, polyphenoloxidase, superoxide dismutase and peroxidase as compared to non-inoculated salt stress plants. Thus, CHS1 ameliorated the adverse effect of high NaCl stress and rescued soybean plant growth by regulating the endogenous plant hormones and antioxidative system. We conclude that CHS1 isolate could be exploited to increase salt resistant and yield in crop plants. Copyright © 2018. Published by Elsevier Masson SAS.
Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects.
Nagasaka, Hironori; Tsukahara, Hirokazu; Yorifuji, Tohru; Miida, Takashi; Murayama, Kei; Tsuruoka, Tomoko; Takatani, Tomozumi; Kanazawa, Masaki; Kobayashi, Kunihiko; Okano, Yoshiyuki; Takayanagi, Masaki
2009-03-01
Nitric oxide (NO) is synthesized from arginine and O(2) by nitric oxide synthase (NOS). Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by the 2 enzymes acting in the urea cycle: argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Although the complete urea cycle is expressed only in the liver, ASS and ASL are expressed in other organs including the kidney and vascular endothelium. To examine possible alterations of the NO pathway in urea cycle defects, we measured plasma concentrations of arginine and citrulline and serum concentrations of nitrite/nitrate (NOx(-), stable NO metabolites) and asymmetric dimethylarginine (ADMA, an endogenous NOS inhibitor) in patients with congenital urea cycle disorders of 3 types: ornithine transcarbamylase (OTC) deficiency, ASS deficiency, and ASL deficiency. All were receiving oral arginine replacement at the time of this study. The same parameters were also measured in healthy subjects, who participated as controls. The OTC-deficient patients had significantly high NOx(-) and nonsignificantly high ADMA concentrations. Their NOx(-) was significantly positively correlated with arginine. The ASS-deficient patients had significantly low NOx(-) and significantly high ADMA concentrations. The ASL-deficient patients had normal NOx(-) and nonsignificantly high ADMA concentrations. In ASS-deficient and ASL-deficient patients, the NOx(-) was significantly inversely correlated with citrulline. These results suggest that NO synthesis is enhanced in OTC-deficient patients while receiving arginine but that NO synthesis remains low in ASS-deficient patients despite receiving arginine. They also suggest that endogenous NO synthesis is negatively affected by citrulline and ADMA in ASS-deficient and ASL-deficient patients. Although the molecular mechanisms remain poorly understood, we infer that the NO pathway might play a role in the pathophysiology related to congenital urea cycle disorders.
Szabo, Attila; Kovacs, Attila; Riba, Jordi; Djurovic, Srdjan; Rajnavolgyi, Eva; Frecska, Ede
2016-01-01
N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain. PMID:27683542
TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.
Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G
2017-02-24
Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*
Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.
2017-01-01
Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811
Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.
2010-01-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968
A New Method for Quantitative Immunoblotting of Endogenous α-Synuclein
Newman, Andrew J.; Selkoe, Dennis; Dettmer, Ulf
2013-01-01
β-Sheet-rich aggregates of α-synuclein (αSyn) are the hallmark neuropathology of Parkinson’s disease and related synucleinopathies, whereas the principal native structure of αSyn in healthy cells - unfolded monomer or α-helically folded oligomer - is under debate. Our recent crosslinking analysis of αSyn in intact cells showed that a large portion of endogenous αSyn can be trapped as oligomers, most notably as apparent tetramers. One challenge in such studies is accurately quantifying αSyn Western blot signals among samples, as crosslinked αSyn trends toward increased immunoreactivity. Here, we analyzed this phenomenon in detail and found that treatment with the reducible amine-reactive crosslinker DSP strongly increased αSyn immunoreactivity even after cleavage with the reducing agent β-mercaptoethanol. The effect was observed with all αSyn antibodies tested and in all sample types from human brain homogenates to untransfected neuroblastoma cells, permitting easy detection of endogenous αSyn in the latter, which had long been considered impossible. Coomassie staining of blots before and after several hours of washing revealed complete retention of αSyn after DSP/β-mercaptoethanol treatment, in contrast to a marked loss of αSyn without this treatment. The treatment also enhanced immunodetection of the homologs β- and γ-synuclein and of histones, another group of small, lysine-rich proteins. We conclude that by neutralizing positive charges and increasing protein hydrophobicity, amine crosslinker treatment promotes adhesion of αSyn to blotting membranes. These data help explain the recent report of fixing αSyn blots with paraformaldehyde after transfer, which we find produces similar but weaker effects. DSP/β-mercaptoethanol treatment of Western blots should be particularly useful to quantify low-abundance αSyn forms such as extracellular and post-translationally modified αSyn and splice variants. PMID:24278419
Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M
2010-11-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
Wang, Tian; Chai, Renjie; Kim, Grace S.; Pham, Nicole; Jansson, Lina; Nguyen, Duc-Huy; Kuo, Bryan; May, Lindsey; Zuo, Jian; Cunningham, Lisa L.; Cheng, Alan G.
2015-01-01
Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here, we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized β-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration. PMID:25849379
ZBTB20 is required for anterior pituitary development and lactotrope specification.
Cao, Dongmei; Ma, Xianhua; Cai, Jiao; Luan, Jing; Liu, An-Jun; Yang, Rui; Cao, Yi; Zhu, Xiaotong; Zhang, Hai; Chen, Yu-Xia; Shi, Yuguang; Shi, Guang-Xia; Zou, Dajin; Cao, Xuetao; Grusby, Michael J; Xie, Zhifang; Zhang, Weiping J
2016-04-15
The anterior pituitary harbours five distinct hormone-producing cell types, and their cellular differentiation is a highly regulated and coordinated process. Here we show that ZBTB20 is essential for anterior pituitary development and lactotrope specification in mice. In anterior pituitary, ZBTB20 is highly expressed by all the mature endocrine cell types, and to some less extent by somatolactotropes, the precursors of prolactin (PRL)-producing lactotropes. Disruption of Zbtb20 leads to anterior pituitary hypoplasia, hypopituitary dwarfism and a complete loss of mature lactotropes. In ZBTB20-null mice, although lactotrope lineage commitment is normally initiated, somatolactotropes exhibit profound defects in lineage specification and expansion. Furthermore, endogenous ZBTB20 protein binds to Prl promoter, and its knockdown decreases PRL expression and secretion in a lactotrope cell line MMQ. In addition, ZBTB20 overexpression enhances the transcriptional activity of Prl promoter in vitro. In conclusion, our findings point to ZBTB20 as a critical regulator of anterior pituitary development and lactotrope specification.
ZBTB20 is required for anterior pituitary development and lactotrope specification
Cao, Dongmei; Ma, Xianhua; Cai, Jiao; Luan, Jing; Liu, An-Jun; Yang, Rui; Cao, Yi; Zhu, Xiaotong; Zhang, Hai; Chen, Yu-Xia; Shi, Yuguang; Shi, Guang-Xia; Zou, Dajin; Cao, Xuetao; Grusby, Michael J.; Xie, Zhifang; Zhang, Weiping J.
2016-01-01
The anterior pituitary harbours five distinct hormone-producing cell types, and their cellular differentiation is a highly regulated and coordinated process. Here we show that ZBTB20 is essential for anterior pituitary development and lactotrope specification in mice. In anterior pituitary, ZBTB20 is highly expressed by all the mature endocrine cell types, and to some less extent by somatolactotropes, the precursors of prolactin (PRL)-producing lactotropes. Disruption of Zbtb20 leads to anterior pituitary hypoplasia, hypopituitary dwarfism and a complete loss of mature lactotropes. In ZBTB20-null mice, although lactotrope lineage commitment is normally initiated, somatolactotropes exhibit profound defects in lineage specification and expansion. Furthermore, endogenous ZBTB20 protein binds to Prl promoter, and its knockdown decreases PRL expression and secretion in a lactotrope cell line MMQ. In addition, ZBTB20 overexpression enhances the transcriptional activity of Prl promoter in vitro. In conclusion, our findings point to ZBTB20 as a critical regulator of anterior pituitary development and lactotrope specification. PMID:27079169
Enhanced radiosensitization of p53 mutant cells by oleamide.
Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil
2006-04-01
Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.
Klotzsche - von Ameln, Anne; Cremer, Sebastian; Hoffmann, Jedrzej; Schuster, Peggy; Khedr, Sherif; Korovina, Irina; Troulinaki, Maria; Neuwirth, Ales; Sprott, David; Chatzigeorgiou, Antonios; Economopoulou, Matina; Orlandi, Alessia; Hain, Andreas; Zeiher, Andreas M.; Deussen, Andreas; Hajishengallis, George; Dimmeler, Stefanie; Chavakis, Triantafyllos; Chavakis, Emmanouil
2017-01-01
We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin–dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischemia-related angiogenesis. Intriguingly, Del-1–deficient mice displayed increased neovascularization in two independent ischemic models (retinopathy of prematurity and hind-limb ischemia), as compared to Del-1–proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischemic neovascularization in Del-1-deficiency was linked to higher infiltration of the ischemic tissue by CD45+ hematopoietic and immune cells. Moreover, Del-1-deficiency promoted β2-integrin–dependent adhesion of hematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischemic muscles in vivo. Consistently, the increased hind limb ischemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the β2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularization in Del-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognized function of endogenous Del-1 as a local inhibitor of ischemia-induced angiogenesis by restraining LFA-1–dependent homing of pro-angiogenic hematopoietic cells to ischemic tissues. Our findings are relevant for the optimization of therapeutic approaches in the context of ischemic diseases. PMID:28447099
Meeting Report: The Role of the Mobilome in Cancer.
Ardeljan, Daniel; Taylor, Martin S; Burns, Kathleen H; Boeke, Jef D; Espey, Michael Graham; Woodhouse, Elisa C; Howcroft, Thomas Kevin
2016-08-01
Approximately half of the human genome consists of repetitive sequence attributed to the activities of mobile DNAs, including DNA transposons, RNA transposons, and endogenous retroviruses. Of these, only long interspersed elements (LINE-1 or L1) and sequences copied by LINE-1 remain mobile in our species today. Although cells restrict L1 activity by both transcriptional and posttranscriptional mechanisms, L1 derepression occurs in developmental and pathologic contexts, including many types of cancers. However, we have limited knowledge of the extent and consequences of L1 expression in premalignancies and cancer. Participants in this NIH strategic workshop considered key questions to enhance our understanding of mechanisms and roles the mobilome may play in cancer biology. Cancer Res; 76(15); 4316-9. ©2016 AACR. ©2016 American Association for Cancer Research.
Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J
2013-05-01
Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.
[Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].
Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong
2015-08-01
The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.
Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection.
Londrigan, Sarah L; Tate, Michelle D; Job, Emma R; Moffat, Jessica M; Wakim, Linda M; Gonelli, Christopher A; Purcell, Damien F J; Brooks, Andrew G; Villadangos, Jose A; Reading, Patrick C; Mintern, Justine D
2015-01-01
BST-2 (tetherin, CD317, HM1.24) restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV) is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC). BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection.
Antibody targeting KIT as pretransplantation conditioning in immunocompetent mice.
Xue, Xingkui; Pech, Nancy K; Shelley, W Christopher; Srour, Edward F; Yoder, Mervin C; Dinauer, Mary C
2010-12-09
Inherited hematologic defects that lack an in vivo selective advantage following gene correction may benefit from effective yet minimally toxic cytoreduction of endogenous hematopoietic stem cells (HSCs) prior to transplantation of gene-modified HSCs. We studied the efficacy of administering a novel sequential treatment of parenteral ACK2, an antibody that blocks KIT, followed by low-dose irradiation (LD-IR) for conditioning of wild-type and X-linked chronic granulomatous disease (X-CGD) mice. In wild-type mice, combining ACK2 and LD-IR profoundly decreased endogenous competitive long-term HSC repopulating activity, and permitted efficient and durable donor-derived HSC engraftment after congenic transplantation. ACK2 alone was ineffective. The combination of ACK2 and LD-IR was also effective conditioning in X-CGD mice for engraftment of X-CGD donor HSCs transduced ex vivo with a lentiviral vector. We conclude that combining ACK2 with LD-IR is a promising approach to effectively deplete endogenous HSCs and facilitate engraftment of transplanted donor HSCs.
PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins
Janer, Alexandre; Martin, Elodie; Muriel, Marie-Paule; Latouche, Morwena; Fujigasaki, Hiroto; Ruberg, Merle; Brice, Alexis; Trottier, Yvon; Sittler, Annie
2006-01-01
The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that expression of PML isoform IV leads to the formation of distinct nuclear bodies enriched in components of the ubiquitin-proteasome system. These bodies recruit soluble mutant ataxin-7 and promote its degradation by proteasome-dependent proteolysis, thus preventing the aggregate formation. Inversely, disruption of the endogenous nuclear bodies with cadmium increases the nuclear accumulation and aggregation of mutant ataxin-7, demonstrating their role in ataxin-7 turnover. Interestingly, β-interferon treatment, which induces the expression of endogenous PML IV, prevents the accumulation of transiently expressed mutant ataxin-7 without affecting the level of the endogenous wild-type protein. Therefore, clastosomes represent a potential therapeutic target for preventing polyQ disorders. PMID:16818720
Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection
Job, Emma R.; Moffat, Jessica M.; Wakim, Linda M.; Gonelli, Christopher A.; Purcell, Damien F. J.; Brooks, Andrew G.; Villadangos, Jose A.; Reading, Patrick C.; Mintern, Justine D.
2015-01-01
BST-2 (tetherin, CD317, HM1.24) restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV) is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC). BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection. PMID:26566124
Palacios, R.; Tarrab, Rebeca; Soberón, G.
1968-01-01
1. A study was undertaken of the conditions that might operate in the synthesis and hydrolysis of arginine by axolotl liver homogenate to test a previous postulate that liver arginase of the non-metamorphosed Mexican axolotl is not able to hydrolyse arginine formed from citrulline and aspartic acid, though it can split exogenous arginine, and also that an enhanced capacity to hydrolyse endogenous arginine plays a major role in the advent of ureotelism observed during the metamorphosis of the axolotl. 2. It was found that the arginase from axolotl liver is very unstable under the conditions followed, contrary to what is observed in rat liver. 3. Axolotl arginase is able to hydrolyse endogenous arginine if preserved. 4. Mn2+ protects the enzyme and renders it able to split endogenous arginine. 5. It is suggested that the metal ion produces a change of conformation of the enzyme that, being stable, is capable of hydrolysing the amino acid, or that the new conformation is appropriate for interaction with the sites of arginine synthesis. PMID:5701670
Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension
Chen, Selena; Tang, Chaoshu
2016-01-01
Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913
Long, Yu-Yang; Du, Yao; Fang, Yuan; Xu, Jing; He, Yan-Ni; Shen, Dong-Sheng
2016-07-01
Hydrogen sulfide (H2S) is a major odor in landfill gas and needs urgent treatment. In this study, the effect of migration and transformation of iron on the endogenous reduction of H2S was investigated in two simulated landfills. The results showed that the H2S emission concentration from the landfill cover of conventional anaerobic landfill (CL) and anaerobic landfill with leachate recirculation (RL) could reach 19.4mgm(-3) and 24.1mgm(-3), respectively. However, the migration and transformation of iron in anaerobic landfill with different operational modes results in different endogenous reduction mechanism for H2S. The proportion of precipitation-reduction mechanism and oxidation-reduction mechanism in CL was 73.3% and 26.3%, respectively. But for RL, the function of oxidation was enhanced, and the sulfide content was reduced 23.1% compared with CL. The iron in landfill with leachate recirculation revealed good endogenous reduction effect on H2S control after a period of time landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lu, Jing; Pierce, Marissa; Franklin, Andrew; Jilling, Tamas; Stafforini, Diana M.; Caplan, Michael
2010-01-01
Human preterm infants with necrotizing enterocolitis (NEC) have increased circulating and luminal levels of platelet-activating factor (PAF) and decreased serum PAF-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF. Formula supplemented with recombinant PAF-AH decreases NEC in a neonatal rat model. We hypothesized that endogenous PAF-AH contributes to neonatal intestinal homeostasis, and therefore developed PAF-AH−/− mice using standard approaches to study the role of this enzyme in the neonatal NEC model. Following exposure to a well-established NEC model, intestinal tissues were evaluated for histology, pro-inflammatory cytokine mRNA synthesis, and death using standard techniques. We found that mortality rates were significantly lower in PAF-AH−/− pups compared to wild-type controls before 24 hours of life but surviving PAF-AH−/− animals were more susceptible to NEC development compared to wild-type controls. Increased NEC incidence was associated with prominent inflammation characterized by elevated intestinal mRNA expression of sPLA2, iNOS and CXCL1. In conclusion, the data support a protective role for endogenous PAF-AH in the development of NEC, and since preterm neonates have endogenous PAF-AH deficiency, this may place them at increased risk for disease. PMID:20531249
Leskov, Konstantin S; Araki, Shinako; Lavik, John-Paul; Gomez, Jose A; Gama, Vivian; Gonos, Efstathios S; Trougakos, Ioannis P; Matsuyama, Shigemi; Boothman, David A
2011-11-18
Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ∼55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax(-/-) and bax(-/-)/bak(-/-) double knock-out cells were resistant to nCLU-mediated cell death, whereas bak(-/-) or wild-type bax(+/+)/bak(+/+) cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.
Go, Young-Mi; Walker, Douglas I; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A; Tran, ViLinh; Strobel, Frederick; Quyyumi, Arshed A; Ziegler, Thomas R; Pennell, Kurt D; Miller, Gary W; Jones, Dean P
2015-12-01
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of exposures and associated biologic impacts occurring over a lifetime. Biomonitoring is an established approach to evaluate internal body burden of environmental exposures, but use of biomonitoring for exposome research is often limited by the high costs associated with quantification of individual chemicals. High-resolution metabolomics (HRM) uses ultra-high resolution mass spectrometry with minimal sample preparation to support high-throughput relative quantification of thousands of environmental, dietary, and microbial chemicals. HRM also measures metabolites in most endogenous metabolic pathways, thereby providing simultaneous measurement of biologic responses to environmental exposures. The present research examined quantification strategies to enhance the usefulness of HRM data for cumulative exposome research. The results provide a simple reference standardization protocol in which individual chemical concentrations in unknown samples are estimated by comparison to a concurrently analyzed, pooled reference sample with known chemical concentrations. The approach was tested using blinded analyses of amino acids in human samples and was found to be comparable to independent laboratory results based on surrogate standardization or internal standardization. Quantification was reproducible over a 13-month period and extrapolated to thousands of chemicals. The results show that reference standardization protocol provides an effective strategy that will enhance data collection for cumulative exposome research. In principle, the approach can be extended to other types of mass spectrometry and other analytical methods. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Go, Young-Mi; Walker, Douglas I.; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A.; Tran, ViLinh; Strobel, Frederick; Quyyumi, Arshed A.; Ziegler, Thomas R.; Pennell, Kurt D.; Miller, Gary W.; Jones, Dean P.
2015-01-01
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of exposures and associated biologic impacts occurring over a lifetime. Biomonitoring is an established approach to evaluate internal body burden of environmental exposures, but use of biomonitoring for exposome research is often limited by the high costs associated with quantification of individual chemicals. High-resolution metabolomics (HRM) uses ultra-high resolution mass spectrometry with minimal sample preparation to support high-throughput relative quantification of thousands of environmental, dietary, and microbial chemicals. HRM also measures metabolites in most endogenous metabolic pathways, thereby providing simultaneous measurement of biologic responses to environmental exposures. The present research examined quantification strategies to enhance the usefulness of HRM data for cumulative exposome research. The results provide a simple reference standardization protocol in which individual chemical concentrations in unknown samples are estimated by comparison to a concurrently analyzed, pooled reference sample with known chemical concentrations. The approach was tested using blinded analyses of amino acids in human samples and was found to be comparable to independent laboratory results based on surrogate standardization or internal standardization. Quantification was reproducible over a 13-month period and extrapolated to thousands of chemicals. The results show that reference standardization protocol provides an effective strategy that will enhance data collection for cumulative exposome research. In principle, the approach can be extended to other types of mass spectrometry and other analytical methods. PMID:26358001
Zhang, Da; Wang, Xiuli; Tian, Xiaoyu; Zhang, Lulu; Yang, Guosheng; Tao, Yinghong; Liang, Chen; Li, Kun; Yu, Xiaoqi; Tang, Xinjing; Tang, Chaoshu; Zhou, Jing; Kong, Wei; Du, Junbao; Huang, Yaqian; Jin, Hongfang
2018-01-01
Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX exacerbated the pulmonary vascular inflammation induced by the broken endogenous H2S production in MCT-treated rat. In conclusion, for the first time, the present study showed that H2S inhibited endogenous SO2 generation by inactivating AAT via the sulfhydration of AAT1/2; and the increased endogenous SO2 generation might play a compensatory role when H2S/CSE pathway was downregulated, thereby exerting protective effects in endothelial inflammatory responses in vitro and in vivo. PMID:29760703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janoudi, A.K.; Gordon, W.R.; Poff, K.L.
1997-03-01
The amplitude of phototropic curvature to blue light is enhanced by a prior exposure of seedlings to red light. This enhancement is mediated by phytochrome. Fluence-response relationships have been constructed for red-light-induced enhancement in the phytochrome A (phyA) null mutant, the phytochrome B- (phyB) deficient mutant, and in two transgenic lines of Arabidopsis thaliana that overexpress either phyA or phyB. These fluence-response relationships demonstrate the existence of two responses in enhancement, a response in the very-low-to-low-fluence range, and a response in the high-fluence range. Only the response in the high-fluence range is present in the phyA null mutant. In contrast,more » the phyB-deficient mutant is indistinguishable from the wild-type parent in red-light responsiveness. These data indicate that phyA is necessary for the very-low-to-low but not the high-fluence response, and that phyB is not necessary for either response range. Based on these results, the high-fluence response, if controlled by a single phytochrome, must be controlled by a phytochrome other than phyA or phyB. Overexpression of phyA has a negative effect and overexpression of phyB has an enhancing effect in the high fluence range. These results suggest that overexpression of either phytochrome perturbs the function of the endogenous photoreceptor system in unpreditable fashion. 25 refs., 3 figs.« less
Mukai, Ikuko; Bahadur, Kandy; Kesavabhotla, Kartik; Ungerleider, Leslie G.
2012-01-01
There is conflicting evidence in the literature regarding the role played by attention in perceptual learning. To further examine this issue, we independently manipulated exogenous and endogenous attention and measured the rate of perceptual learning of oriented Gabor patches presented in different quadrants of the visual field. In this way, we could track learning at attended, divided-attended, and unattended locations. We also measured contrast thresholds of the Gabor patches before and after training. Our results showed that, for both exogenous and endogenous attention, accuracy in performing the orientation discrimination improved to a greater extent at attended than at unattended locations. Importantly, however, only exogenous attention resulted in improved contrast thresholds. These findings suggest that both exogenous and endogenous attention facilitate perceptual learning, but that these two types of attention may be mediated by different neural mechanisms. PMID:21282340
Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani
2016-09-01
Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Boettiger, Charlotte A.; Kelley, Elizabeth A.; Mitchell, Jennifer M.; D’Esposito, Mark; Fields, Howard L.
2009-01-01
Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate (“Now”) and larger delayed rewards (“Later”). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with Naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROI) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX’s therapeutic effects. PMID:19258022
Effect of endogenous angiotensin II on the frequency response of the renal vasculature.
Dibona, Gerald F; Sawin, Linda L
2004-12-01
The renal vasculature functions as an efficient low-pass filter of the multiple frequencies contained within renal sympathetic nerve activity. This study examined the effect of angiotensin II on the frequency response of the renal vasculature. Physiological changes in the activity of the endogenous renin-angiotensin system were produced by alterations in dietary sodium intake. The frequency response of the renal vasculature was evaluated using pseudorandom binary sequence renal nerve stimulation, and the role of angiotensin II was evaluated by the administration of the angiotensin II AT(1)-receptor antagonist losartan. In low-sodium-diet rats with increased renin-angiotensin system activity, losartan steepened the renal vascular frequency response (i.e., greater attenuation); this was not seen in normal- or high-sodium-diet rats with normal or decreased renin-angiotensin system activity. Analysis of the transfer function from arterial pressure to renal blood flow, i.e., dynamic autoregulation, showed that the tubuloglomerular feedback but not the myogenic component was enhanced in low- and normal- but not in high-sodium-diet rats and that this was reversed by losartan administration. Thus physiological increases in endogenous renin-angiotensin activity inhibit the renal vascular frequency response to renal nerve stimulation while selectively enhancing the tubuloglomerular feedback component of dynamic autoregulation of renal blood flow.
Enhanced attention-dependent activity in the auditory cortex of older musicians.
Zendel, Benjamin Rich; Alain, Claude
2014-01-01
Musical training improves auditory processing abilities, which correlates with neuro-plastic changes in exogenous (input-driven) and endogenous (attention-dependent) components of auditory event-related potentials (ERPs). Evidence suggests that musicians, compared to non-musicians, experience less age-related decline in auditory processing abilities. Here, we investigated whether lifelong musicianship mitigates exogenous or endogenous processing by measuring auditory ERPs in younger and older musicians and non-musicians while they either attended to auditory stimuli or watched a muted subtitled movie of their choice. Both age and musical training-related differences were observed in the exogenous components; however, the differences between musicians and non-musicians were similar across the lifespan. These results suggest that exogenous auditory ERPs are enhanced in musicians, but decline with age at the same rate. On the other hand, attention-related activity, modeled in the right auditory cortex using a discrete spatiotemporal source analysis, was selectively enhanced in older musicians. This suggests that older musicians use a compensatory strategy to overcome age-related decline in peripheral and exogenous processing of acoustic information. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Zhong-Min; Laura Messi, María; Renganathan, Muthukrishnan; Delbono, Osvaldo
1999-01-01
We investigated whether insulin-like growth factor-1 (IGF-1), an endogenous potent activator of skeletal muscle proliferation and differentiation, enhances L-type Ca2+ channel gene expression resulting in increased functional voltage sensors in single skeletal muscle cells. Charge movement and inward Ca2+ current were recorded in primary cultured rat myoballs using the whole-cell configuration of the patch-clamp technique. Ca2+ current and maximum charge movement (Qmax) were potentiated in cells treated with IGF-1 without significant changes in their voltage dependence. Peak Ca2+ current in control and IGF-1-treated cells was -7·8 ± 0·44 and -10·5 ± 0·37 pA pF−1, respectively (P < 0·01), whilst Qmax was 12·9 ± 0·4 and 22·0 ± 0·3 nC μF−1, respectively (P < 0·01). The number of L-type Ca2+ channels was found to increase in the same preparation. The maximum binding capacity (Bmax) of the high-affinity radioligand [3H]PN200-110 in control and IGF-1-treated cells was 1·21 ± 0·25 and 3·15 ± 0·5 pmol (mg protein)−1, respectively (P < 0·01). No significant change in the dissociation constant for [3H]PN200-110 was found. Antisense RNA amplification showed a significant increase in the level of mRNA encoding the L-type Ca2+ channel α1-subunit in IGF-1-treated cells. This study demonstrates that IGF-1 regulates charge movement and the level of L-type Ca2+ channel α1-subunits through activation of gene expression in skeletal muscle cells. PMID:10087334
Hopfinger, Joseph B; Parsons, Jonathan; Fröhlich, Flavio
2017-04-01
Previous electrophysiological studies implicate both alpha (8-12 Hz) and gamma (>30 Hz) neural oscillations in the mechanisms of selective attention. Here, participants preformed two separate visual attention tasks, one endogenous and one exogenous, while transcranial alternating current stimulation (tACS), at 10 Hz, 40 Hz, or sham, was applied to the right parietal lobe. Our results provide new evidence for the roles of gamma and alpha oscillations in voluntary versus involuntary shifts of attention. Gamma (40 Hz) stimulation resulted in improved disengagement from invalidly cued targets in the endogenous attention task, whereas alpha stimulation (10 Hz) had no effect on endogenous attention, but increased the exogenous cuing effect. These findings agree with previous studies suggesting that right inferior parietal regions may be especially important for the disengagement of attention, and go further to provide details about the specific type of oscillatory neural activity within that brain region that is differentially involved in endogenous versus exogenous attention. Our results also have potential implications for the plasticity and training of attention systems.
Role of Endogenous Cholecystokinin on Growth of Human Pancreatic Cancer
Matters, Gail L.; McGovern, Christopher; Harms, John F.; Markovic, Kevin; Anson, Krystal; Jayakumar, Calpurnia; Martenis, Melissa; Awad, Christina; Smith, Jill P.
2012-01-01
Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer. Although down regulation of gastrin inhibits growth of pancreatic cancer, the contribution of endogenous CCK to tumor growth is unknown. The purpose of this study was to evaluate the role of endogenous CCK on autocrine growth of pancreatic cancer. Pancreatic cancer cell lines were analyzed for CCK mRNA and peptide expression by real time RT-PCR and radioimmunoassay, respectively. The effect of endogenous CCK on growth was evaluated by treating cancer cells with CCK neutralizing antibodies and by down regulating CCK mRNA by RNAi. Wild type pancreatic cancer cells expressed significantly lower CCK mRNA and peptide levels than gastrin. Neither treatment of pancreatic cancer cells with CCK antibodies nor the down regulation of CCK mRNA and peptide by shRNAs altered growth in vitro or in vivo. Conversely, when gastrin mRNA expression was down regulated, the same cells failed to produce tumors in spite of having sustained levels of endogenous CCK. Pancreatic cancer cells produce CCK and gastrin; however, the autocrine production of gastrin is more important for stimulating tumor growth. PMID:21186400
NASA Astrophysics Data System (ADS)
Goloshchapov, D. L.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Plotnikova, Y. A.; Bambery, K.
2016-08-01
The efficiency carious preventive methods was detected with the use of equipment for IR-spectromicroscopy and high-intensive synchrotron radiation. The results of the experiment are indicative of the use of exogenous caries prevention alone (use of a toothpaste) being inadequate in saturating hard dental tissues by mineral groups and, thus, keeping teeth healthy, as this method is only short-lived. The use of endogenous methods (mineral tablets based on calcium glycerophosphate) in combination with exogenous prevention enhances prevention as part of remineralisation of dental tissues.
He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang
2016-01-01
Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease. PMID:27488468
NASA Astrophysics Data System (ADS)
He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang
2016-08-01
Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.
Do, Thanh D.; Comi, Troy J.; Dunham, Sage J. B.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.
2017-01-01
A high-throughput single cell profiling method has been developed for matrix-enhanced secondary ion mass spectrometry (ME-SIMS) to investigate the lipid profiles of neuronal cells. Populations of cells are dispersed onto the substrate, their locations determined using optical microscopy, and the cell locations used to guide the acquisition of SIMS spectra from the cells. Up to 2,000 cells can be assayed in one experiment at a rate of 6 s per cell. Multiple saturated and unsaturated phosphatidylcholines (PCs) and their fragments are detected and verified with tandem mass spectrometry from individual cells when ionic liquids are employed as a matrix. Optically guided single cell profiling with ME-SIMS is suitable for a range of cell sizes, from Aplysia californica neurons larger than 75 μm to 7-μm rat cerebellar neurons. ME-SIMS analysis followed by t-distributed stochastic neighbor embedding of peaks in the lipid molecular mass range (m/z 700–850) distinguishes several cell types from the rat central nervous system, largely based on the relative proportions of the four dominant lipids, PC(32:0), PC(34:1), PC(36:1), and PC(38:5). Furthermore, subpopulations within each cell type are tentatively classified consistent with their endogenous lipid ratios. The results illustrate the efficacy of a new approach to classify single cell populations and subpopulations using SIMS profiling of lipid and metabolite contents. These methods are broadly applicable for high throughput single cell chemical analyses. PMID:28194949
Hecht, S J; Stedman, K E; Carlson, J O; DeMartini, J C
1996-01-01
The jaagsiekte sheep retrovirus (JSRV), which appears to be a type B/D retrovirus chimera, has been incriminated as the cause of ovine pulmonary carcinoma. Recent studies suggest that the sequences related to this virus are found in the genomes of normal sheep and goats. To learn whether there are breeds of sheep that lack the endogenous viral sequences and to study their distribution among other groups of mammals, we surveyed several domestic sheep and goat breeds, other ungulates, and various mammal groups for sequences related to JSRV. Probes prepared from the envelope (SU) region of JSRV and the capsid (CA) region of a Peruvian type D virus related to JSRV were used in Southern blot hybridization with genomic DNA followed by low- and high-stringency washes. Fifteen to 20 CA and SU bands were found in all members of the 13 breeds of domestic sheep and 6 breeds of goats tested. There were similar findings in 6 wild Ovis and Capra genera. Within 22 other genera of Bovidae including domestic cattle, and 7 other families of Artiodactyla including Cervidae, there were usually a few CA or SU bands at low stringency and rare bands at high stringency. Among 16 phylogenetically distant genera, there were generally fewer bands hybridizing with either probe. These results reveal wide-spread phylogenetic distribution of endogenous type B and type D retroviral sequences related to JSRV among mammals and argue for further investigation of their potential role in disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8622932
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-01-01
Background and Purpose The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K+ channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. Experimental Approach The short-term variability of beat-to-beat QT interval (STVQT), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Key Results Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. Conclusions and Implications These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. PMID:25625756
Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors
Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo
2014-01-01
The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around −120 to −80 bp, while highly effective sgRNAs targeted from −147 to −89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells. PMID:24500196
Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo
2014-04-01
The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-06-01
The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K(+) channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. The short-term variability of beat-to-beat QT interval (STVQT ), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. © 2015 The British Pharmacological Society.
Stroke Repair via Biomimicry of the Subventricular Zone
NASA Astrophysics Data System (ADS)
Matta, Rita; Gonzalez, Anjelica L.
2018-03-01
Stroke is among the leading causes of death and disability worldwide, 85% of which are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time and fail to effectively complete the recovery of the damaged area. Magnetic resonance imaging of the subventricular zone (SVZ) following infarct/stroke has allowed visualization of new axonal connections and projections being formed, while new immature neurons migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a primary source of regenerative cells for the repair and regeneration of stroke-damaged neurons and tissue. Therefore, the development of tissue engineered scaffolds that serve as a bioreplicative SVZ niche would support the survival of multiple cell types that reside in the SVZ. Essential to replication of the human SVZ microenvironment is the establishment of microvasculature that regulates both the healthy and stroke-injured blood brain barrier, which is dysregulated post-stroke. In order to reproduce this niche, understanding how cells interact in this environment is critical, in particular neural stem cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support functional recovery when enhanced by an artificial niche that supports the survival and proliferation of migrating vascular and neuronal cells. Critical considerations to mimic this area include an understanding of resident cell types, delivery method, and the use of biocompatible materials. Controlling stem cell survival, differentiation, and migration are key factors to consider when transplanting stem cells. Here, we discuss the role of the SVZ architecture and resident cells in the promotion and enhancement of endogenous repair mechanisms. We elucidate the interplay between the extracellular matrix composition and cell interactions prior to and following stroke. Lastly, we review current cell and neuronal niche biomimetic materials that allow for a tissue- engineered approach in order to promote structural and functional restoration of neural circuitry. By creating an artificial mimetic SVZ, tissue engineers can strive to facilitate tissue regeneration and functional recovery.
Amaike, Kazuma; Tamura, Tomonori; Hamachi, Itaru
2017-11-14
Endogenous protein labeling is one of the most invaluable methods for studying the bona fide functions of proteins in live cells. However, multi-molecular crowding conditions, such as those that occur in live cells, hamper the highly selective chemical labeling of a protein of interest (POI). We herein describe how the efficient coupling of molecular recognition with a chemical reaction is crucial for selective protein labeling. Recognition-driven protein labeling is carried out by a synthetic labeling reagent containing a protein (recognition) ligand, a reporter tag, and a reactive moiety. The molecular recognition of a POI can be used to greatly enhance the reaction kinetics and protein selectivity, even under live cell conditions. In this review, we also briefly discuss how such selective chemical labeling of an endogenous protein can have a variety of applications at the interface of chemistry and biology.
Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration
Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C.; Ottmüller, Katja J.; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F.; Kreines, Fabiana; Lieberman, Sophia R.; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M.; Shono, Yusuke; Jenq, Robert R.; Hanash, Alan M.; Nolan, Daniel J.; Butler, Jason M.; Beilhack, Andreas; Manley, Nancy R.; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel RM
2018-01-01
The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. Here we show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration, via their production of BMP4. ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signalling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance and regeneration; and its downstream targets such as Dll4, itself a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. PMID:29330161
Towards two-photon excited endogenous fluorescence lifetime imaging microendoscopy
Hage, C. H.; Leclerc, P.; Brevier, J.; Fabert, M.; Le Nézet, C.; Kudlinski, A.; Héliot, L.; Louradour, F.
2017-01-01
In situ fluorescence lifetime imaging microscopy (FLIM) in an endoscopic configuration of the endogenous biomarker nicotinamide adenine dinucleotide (NADH) has a great potential for malignant tissue diagnosis. Moreover, two-photon nonlinear excitation provides intrinsic optical sectioning along with enhanced imaging depth. We demonstrate, for the first time to our knowledge, nonlinear endogenous FLIM in a fibered microscope with proximal detection, applied to NADH in cultured cells, as a first step to a nonlinear endomicroscope, using a double-clad microstructured fiber with convenient fiber length (> 3 m) and excitation pulse duration (≈50 fs). Fluorescence photons are collected by the fiber inner cladding and we show that its contribution to the impulse response function (IRF), which originates from its intermodal and chromatic dispersions, is small (< 600 ps) and stable for lengths up to 8 m and allows for short lifetime measurements. We use the phasor representation as a quick visualization tool adapted to the endoscopy speed requirements. PMID:29359093
Zhang, Jie; Zong, Wenming; Hong, Wei; Zhang, Zhong-Tian; Wang, Yi
2018-03-09
Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel and biochemical production using the CRISPR-Cas based genome engineering toolkit. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
HOST-PARASITE FACTORS IN GROUP A STREPTOCOCCAL INFECTIONS
Watson, Dennis W.
1960-01-01
The factors present in streptococcal lesion extracts (SLE) which enhanced the lethal and tissue-damaging properties of Gram-negative bacterial endotoxins and streptolysin O were identified with the scarlet fever group of toxins. Toxic manifestations attributed to this group of toxins included lethality, cardiotoxic and other tissue damage, enhancement of toxicity, and pyrogenicity. Of these, the measurement of febrile response in American Dutch rabbits was the most useful parameter of toxicity. In rabbits, repeated daily intravenous injections of 0.125 Lf of a purified erythrogenic toxin immunizes specifically against the pyrogenic activity; this technique was used to type the toxins and to distinguish them from exogenous and endogenous pyrogens; non-specific pyrogens, such as streptococcal endotoxin, were not found in SLE. All types of the Lancefield Group A streptococci tested produced one or or more immunologically distinct toxins in vivo in contrast to Groups B and C which did not produce them; toxins A and B, previously distinguished by neutralization of rash-inducing activity in the skin, were produced in vivo. The A toxin was the most common, as indicated by its presence in extracts prepared with Types 28, 12, 17, and 10 (NY-5); B toxin was found in 10 (NY-5) and 19. A new toxin, designated C, was obtained from a Type 18. In American Dutch rabbits, purified toxin at a concentration of 15 Lf (900,000 STD) neither gave a Dick test nor prepared the skin for the local Shwartzman reaction; by this route, however, in contrast to classical endotoxins, they enhance the lethal and tissue-damaging properties of sublethal doses of these and other toxins. These properties of the immunologic distinct exotoxins as demonstrated in American Dutch rabbits suggest by analogy their importance in the pathogenesis of streptococcal disease in man. Evidence that might implicate them in sequelae, in addition to scarlet fever, is discussed. PMID:13783427
Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An
2013-05-01
Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.
Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis
Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei
2016-01-01
Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436
Liu, Fushan; Zhao, Qianru; Mano, Noel; ...
2015-08-19
Here, we have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm–expressed maize ( Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch–free background and with the wild–type plants. Each of the maize–derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more–than–trebled oilseed production while maintaining seed oil quality. Enhanced oilseedmore » production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fushan; Zhao, Qianru; Mano, Noel
Here, we have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm–expressed maize ( Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch–free background and with the wild–type plants. Each of the maize–derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more–than–trebled oilseed production while maintaining seed oil quality. Enhanced oilseedmore » production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.« less
Dynamic reciprocity in cell-scaffold interactions.
Mauney, Joshua R; Adam, Rosalyn M
2015-03-01
Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Lack of tyrosine 320 impairs spontaneous endocytosis and enhances release of HLA-B27 molecules.
Santos, Susana G; Antoniou, Antony N; Sampaio, Paula; Powis, Simon J; Arosa, Fernando A
2006-03-01
Several lines of evidence suggest that endocytosis of MHC class I molecules requires conserved motifs within the cytoplasmic domain. In this study, we show, in the C58 rat thymoma cell line transfected with HLA-B27 molecules, that replacement of the highly conserved tyrosine (Tyr320) in the cytoplasmic domain of HLA-B27 does not hamper cell surface expression of beta2-microglobulin H chain heterodimers or formation of misfolded molecules. However, Tyr320 replacement markedly impairs spontaneous endocytosis of HLA-B27. Although wild-type molecules are mostly internalized via endosomal compartments, Tyr320-mutated molecules remain at the plasma membrane in which partial colocalization with endogenous transferrin receptors can be observed, also impairing their endocytosis. Finally, we show that Tyr320 substitution enhances release of cleaved forms of HLA-B27 from the cell surface. These studies show for the first time that Tyr320 is most likely part of a cytoplasmic sorting motif involved in spontaneous endocytosis and shedding of MHC class I molecules.
Liu, Fushan; Zhao, Qianru; Mano, Noel; Ahmed, Zaheer; Nitschke, Felix; Cai, Yinqqi; Chapman, Kent D; Steup, Martin; Tetlow, Ian J; Emes, Michael J
2016-03-01
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.
Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito
2006-01-01
SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. SCG shows antitumor activity and also enhances the hematopoietic response in cyclophosphamide (CY)-treated mice. In the present study, the molecular mechanism of the enhancement of the hematopoietic response was investigated. The levels of interferon-(IFN-)gamma, tumor necrosis factor-(TNF-)alpha, granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin-(IL-) 6 and IL-12p70 were significantly increased by SCG in CY-treated mice. GM-CSF production in the splenocytes from the CY-treated mice was higher than that in normal mice regardless of SCG stimulation. Neutralizing GM-CSF significantly inhibited the induction of IFN-gamma, TNF-alpha and IL-12p70 by SCG. The level of cytokine induction by SCG was regulated by the amount of endogenous GM-CSF produced in response to CY treatment in a dose-dependent manner. The expression of beta-glucan receptors, such as CR3 and dectin-1, was up-regulated by CY treatment. Blocking dectin-1 significantly inhibited the induction of TNF-alpha and IL-12p70 production by SCG. Taken together, these results suggest that the key factors in the cytokine induction in CY-treated mice were the enhanced levels of both endogenous GM-CSF production and dectin-1 expression.
Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells
2010-01-01
Background Ephrin A1 (EFNA1) is a member of the A-type ephrin family of cell surface proteins that function as ligands for the A-type Eph receptor tyrosine kinase family. In malignancy, the precise role of EFNA1 and its preferred receptor, EPHA2, is controversial. Several studies have found that EFNA1 may suppress EPHA2-mediated oncogenesis, or enhance it, depending on cell type and context. However, little is known about the conditions that influence whether EFNA1 promotes or suppresses tumorigenicity. EFNA1 exists in a soluble form as well as a glycophosphatidylinositol (GPI) membrane attached form. We investigated whether the contradictory roles of EFNA1 in malignancy might in part be related to the existence of both soluble and membrane attached forms of EFNA1 and potential differences in the manner in which they interact with EPHA2. Results Using a RNAi strategy to reduce the expression of endogenous EFNA1 and EPHA2, we found that both EFNA1 and EPHA2 are required for growth of HeLa and SK-BR3 cells. The growth defects could be rescued by conditioned media from cells overexpressing soluble EFNA1. Interestingly, we found that overexpression of the membrane attached form of EFNA1 suppresses growth of HeLa cells in 3D but not 2D. Knockdown of endogenous EFNA1, or overexpression of full-length EFNA1, resulted in relocalization of EPHA2 from the cell surface to sites of cell-cell contact. Overexpression of soluble EFNA1 however resulted in more EPHA2 distributed on the cell surface, away from cell-cell contacts, and promoted the growth of HeLa cells. Conclusions We conclude that soluble EFNA1 is necessary for the transformation of HeLa and SK-BR3 cells and participates in the relocalization of EPHA2 away from sites of cell-cell contact during transformation. PMID:20979646
Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery.
Soop, Mattias; Nygren, Jonas; Thorell, Anders; Weidenhielm, Lars; Lundberg, Mari; Hammarqvist, Folke; Ljungqvist, Olle
2004-08-01
Postoperative metabolism is characterised by insulin resistance and a negative whole-body nitrogen balance. Preoperative carbohydrate treatment reduces insulin resistance in the first day after surgery. We hypothesised that preoperative oral carbohydrate treatment attenuates insulin resistance and improves whole-body nitrogen balance 3 days after surgery. Fourteen patients undergoing total hip replacement were double-blindly randomised to preoperative oral carbohydrate treatment (12.5%, 800 + 400 ml, n = 8) or placebo (n = 6). Glucose kinetics (6,6-D2-glucose), substrate utilisation (indirect calorimetry) and insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) were measured preoperatively and on the third day after surgery. Nitrogen losses were monitored for 3 days after surgery. Values are mean (SEM). Analysis of variance (ANOVA) statistics were used. Endogenous glucose release during insulin infusion increased after surgery in the placebo group. Preoperative carbohydrate treatment, as compared to placebo, significantly attenuated postoperative endogenous glucose release (0.69 (0.07) vs. 1.21 (0.13)mg kg(-1) x min(-1), P < 0.01), while whole-body glucose disposal and nitrogen balance were similar between groups. While insulin resistance in the first day after surgery has previously been characterised by reduced glucose disposal, enhanced endogenous glucose release was the main component of postoperative insulin resistance on the third postoperative day. Preoperative carbohydrate treatment attenuated endogenous glucose release on the third postoperative day. Copyright 2004 Elsevier Ltd.
Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin
2018-01-01
Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.
Mariotti, F; Pueyo, M E; Tomé, D; Benamouzig, R; Mahé, S
2001-10-01
Viscous gums enhance viscosity in the upper gastrointestinal lumen, quickly disturbing motility and promoting fluid secretion. We sought to determine whether guar gum could acutely affect the absorption and utilization of dietary nitrogen and whether these luminal effects could also perturb the kinetics of urea. We studied the short-term effect of adding 1% of highly viscous guar gum to a (15)N-labeled protein meal (30 g soy protein isolate in 500 mL water) during the postprandial phase in humans. The effects on bioavailability were studied by using the [(13)C]glycine breath test (to assess gastric emptying) and (15)N enrichment in plasma amino acids (for systemic amino acid bioavailability). The kinetics of dietary and endogenous urea were assessed in plasma and urine. Guar gum modulated the gastric emptying kinetics of the liquid phase of the meal slightly (P < 0.05), but had no significant effect on either the systemic appearance of dietary amino acids or plasma and urinary dietary urea kinetics. Without significantly affecting plasma urea concentrations, guar gum reduced by approximately 40% the urinary excretion of endogenous urea for the first 2-h period after the meal (P < 0.01), although endogenous urinary excretion was similar at later stages. Guar gum did not significantly affect the bioavailability or utilization of dietary protein. We showed an early effect of guar gum on endogenous urea kinetics, which most probably arose from very early, short-term stimulation of the intestinal disposal of endogenous urea, at the expense of its urinary excretion.
Ebihara, Ken; Fujiwara, Hironori; Awale, Suresh; Dibwe, Dya Fita; Araki, Ryota; Yabe, Takeshi; Matsumoto, Kinzo
2017-09-15
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABA A receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABA A receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.
Functional Interaction between Class II Histone Deacetylases and ICP0 of Herpes Simplex Virus Type 1
Lomonte, Patrick; Thomas, Joëlle; Texier, Pascale; Caron, Cécile; Khochbin, Saadi; Epstein, Alberto L.
2004-01-01
This study describes the physical and functional interactions between ICP0 of herpes simplex virus type 1 and class II histone deacetylases (HDACs) 4, 5, and 7. Class II HDACs are mainly known for their participation in the control of cell differentiation through the regulation of the activity of the transcription factor MEF2 (myocyte enhancer factor 2), implicated in muscle development and neuronal survival. Immunofluorescence experiments performed on transfected cells showed that ICP0 colocalizes with and reorganizes the nuclear distribution of ectopically expressed class I and II HDACs. In addition, endogenous HDAC4 and at least one of its binding partners, the corepressor protein SMRT (for silencing mediator of retinoid and thyroid receptor), undergo changes in their nuclear distribution in ICP0-transfected cells. As a result, during infection endogenous HDAC4 colocalizes with ICP0. Coimmunoprecipitation and glutathione S-transferase pull-down assays confirmed that class II but not class I HDACs specifically interacted with ICP0 through their amino-terminal regions. This region, which is not conserved in class I HDACs but homologous to the MITR (MEF2-interacting transcription repressor) protein, is responsible for the repression, in a deacetylase-independent manner, of MEF2 by sequestering it under an inactive form in the nucleus. Consequently, we show that ICP0 is able to overcome the HDAC5 amino-terminal- and MITR-induced MEF2A repression in gene reporter assays. This is the first report of a viral protein interacting with and controlling the repressor activity of class II HDACs. We discuss the putative consequences of such an interaction for the biology of the virus both during lytic infection and reactivation from latency. PMID:15194749
Resistance training enhances insulin suppression of endogenous glucose production in elderly women.
Honka, Miikka-Juhani; Bucci, Marco; Andersson, Jonathan; Huovinen, Ville; Guzzardi, Maria Angela; Sandboge, Samuel; Savisto, Nina; Salonen, Minna K; Badeau, Robert M; Parkkola, Riitta; Kullberg, Joel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo
2016-03-15
An altered prenatal environment during maternal obesity predisposes offspring to insulin resistance, obesity, and their consequent comorbidities, type 2 diabetes and cardiovascular disease. Telomere shortening and frailty are additional risk factors for these conditions. The aim of this study was to evaluate the effects of resistance training on hepatic metabolism and ectopic fat accumulation. Thirty-five frail elderly women, whose mothers' body mass index (BMI) was known, participated in a 4-mo resistance training program. Endogenous glucose production (EGP) and hepatic and visceral fat glucose uptake were measured during euglycemic hyperinsulinemia with [(18)F]fluorodeoxyglucose and positron emission tomography. Ectopic fat was measured using magnetic resonance spectroscopy and imaging. We found that the training intervention reduced EGP during insulin stimulation [from 5.4 (interquartile range 3.0, 7.0) to 3.9 (-0.4, 6.1) μmol·kg body wt(-1)·min(-1), P = 0.042] in the whole study group. Importantly, the reduction was higher among those whose EGP was more insulin resistant at baseline (higher than the median) [-5.6 (7.1) vs. 0.1 (5.4) μmol·kg body wt(-1)·min(-1), P = 0.015]. Furthermore, the decrease in EGP was associated with telomere elongation (r = -0.620, P = 0.001). The resistance training intervention did not change either hepatic or visceral fat glucose uptake or the amounts of ectopic fat. Maternal obesity did not influence the studied measures. In conclusion, resistance training improves suppression of EGP in elderly women. The finding of improved insulin sensitivity of EGP with associated telomere lengthening implies that elderly women can reduce their risk for type 2 diabetes and cardiovascular disease with resistance training. Copyright © 2016 the American Physiological Society.
HSP27 Protects the Blood-Brain Barrier Against Ischemia-Induced Loss of Integrity
Leak, Rehana K.; Zhang, Lili; Stetler, R. Anne; Weng, Zhongfang; Li, Peiying; Atkins, G. Brandon; Gao, Yanqin; Chen, Jun
2014-01-01
Loss of integrity of the blood-brain barrier (BBB) in stroke victims initiates a devastating cascade of events including extravasation of blood-borne molecules, water, and inflammatory cells deep into brain parenchyma. Thus, it is important to identify mechanisms by which BBB integrity can be maintained in the face of ischemic injury in experimental stroke. We previously demonstrated that the phylogenetically conserved small heat shock protein 27 (HSP27) protects against transient middle cerebral artery occlusion (tMCAO). Here we show that HSP27 transgenic overexpression also maintains the integrity of the BBB in mice subjected to tMCAO. Extravasation of endogenous IgG antibodies and exogenous FITC-albumin into the brain following tMCAO was reduced in transgenic mice, as was total brain water content. HSP27 overexpression abolished the appearance of TUNEL-positive profiles in microvessel walls. Transgenics also exhibited less loss of microvessel proteins following tMCAO. Notably, primary endothelial cell cultures were rescued from oxygen-glucose deprivation (OGD) by lentiviral HSP27 overexpression according to four viability assays, supporting a direct effect on this cell type. Finally, HSP27 overexpression reduced the appearance of neutrophils in the brain and inhibited the secretion of five cytokines. These findings reveal a novel role for HSP27 in attenuating ischemia/reperfusion injury - the maintenance of BBB integrity. Endogenous upregulation of HSP27 after ischemia in wild-type animals may exert similar protective functions and warrants further investigation. Exogenous enhancement of HSP27 by rational drug design may lead to future therapies against a host of injuries, including but not limited to a harmful breach in brain vasculature. PMID:23469858
Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan
2012-05-01
Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
PD-1 and cancer: molecular mechanisms and polymorphisms.
Salmaninejad, Arash; Khoramshahi, Vahid; Azani, Alireza; Soltaninejad, Ehsan; Aslani, Saeed; Zamani, Mohammad Reza; Zal, Masoud; Nesaei, Abolfazl; Hosseini, Sayed Mostafa
2018-02-01
The programmed cell death protein 1 (PD-1) is expressed by activated T cells that act as an immunoregulatory molecule, and are responsible for the negative regulation of T cell activation and peripheral tolerance. The PD-1 gene also encodes an inhibitory cell surface receptor involved in the regulation of T cell functions during immune responses/tolerance. Beyond potent inhibitory effects on T cells, PD-1 also has a role in regulating B cell and monocyte responses. An overexpression of PD-1 has been reported to contribute to immune system avoidance in different cancers. In particular, PD-1 over-expression influences tumor-specific T cell immunity in a cancer microenvironment. Blocking the PD-1/PD-1 ligand (PD-L1) pathway could potentially augment endogenous antitumor responses. Along these lines, the use of PD-1/PD-L1 inhibitors has been applied in clinical trials against diverse forms of cancer. It was believed that antibodies targeting PD-1/PD-L1 might synergize with other treatments that enhance endogenous antitumor immunity by blocking inhibitory receptor-ligand interactions. However, in all cases, the host genetic status (as well as that of the tumor) is likely to have an impact on the expected outcomes. Various investigations have evaluated the association between PD-1 polymorphisms and the risk of various types of cancer. Frequently studied PD-1 polymorphisms, PD-1.1 (rs36084323), PD-1.3 (rs11568821), PD-1.5 (rs2227981), PD-1.9 (rs2227982), and PD-1 rs7421861, and their associations in the risk of susceptibility to different types of cancer are mentioned in this review, as are studies highlighting the significance of conducting genetic association studies in different ethnic populations.
Skeate, Joseph G; Porras, Tania B; Woodham, Andrew W; Jang, Julie K; Taylor, Julia R; Brand, Heike E; Kelly, Thomas J; Jung, Jae U; Da Silva, Diane M; Yuan, Weiming; Kast, W Martin
2016-02-01
Herpes simplex virus (HSV) was originally implicated in the aetiology of cervical cancer, and although high-risk human papillomavirus (HPV) is now the accepted causative agent, the epidemiological link between HSV and HPV-associated cancers persists. The annexin A2 heterotetramer (A2t) has been shown to mediate infectious HPV type 16 (HPV16) uptake by human keratinocytes, and secretory leukocyte protease inhibitor (SLPI), an endogenous A2t ligand, inhibits HPV16 uptake and infection. Interestingly, HSV infection induces a sustained downregulation of SLPI in epithelial cells, which we hypothesized promotes HPV16 infection through A2t. Here, we show that in vitro infection of human keratinocytes with HSV-1 or HSV-2, but not with an HSV-1 ICP4 deletion mutant that does not downregulate SLPI, leads to a >70% reduction of SLPI mRNA and a >60% decrease in secreted SLPI protein. Consequently, we observed a significant increase in the uptake of HPV16 virus-like particles and gene transduction by HPV16 pseudovirions (two- and 2.5-fold, respectively) in HSV-1- and HSV-2-infected human keratinocyte cell cultures compared with uninfected cells, whereas exogenously added SLPI reversed this effect. Using a SiMPull (single-molecule pulldown) assay, we demonstrated that endogenously secreted SLPI interacts with A2t on epithelial cells in an autocrine/paracrine manner. These results suggested that ongoing HSV infection and resultant downregulation of local levels of SLPI may impart a greater susceptibility for keratinocytes to HPV16 infection through the host cell receptor A2t, providing a mechanism that may, in part, provide an explanation for the aetiological link between HSV and HPV-associated cancers.
Macdonald, Peter S
2015-10-01
The aims of this article were to review the rationale behind the development of combined angiotensin receptor/neprilysin inhibitors (ARNIs) for the management of chronic heart failure (HF) and to review the major clinical trials of LCZ696, the first drug in this class, that have been conducted to date. A selected review was undertaken of publications examining the preclinical and clinical studies of drugs aimed at enhancing the activity of the endogenous natriuretic peptide system and their combination with inhibitors of the renin-angiotensin-aldosterone system, initially angiotensin-converting enzyme inhibitors (ACEIs) and more recently angiotensin II type 1 receptor blockers. Selective neprilysin inhibitors are unlikely to be of benefit and may be associated with adverse effects when used in isolation in HF. Combining NIs with ACEIs is unsafe because of an unacceptably high prevalence of angioedema, which may be mediated by elevated levels of endogenous bradykinin. Combining a neprilysin inhibitor with an angiotensin II type 1 receptor blockers avoids the risk for angioedema. The ARNI LCZ696 was associated with greater reductions both mortality and morbidity compared with those with enalapril in a large-scale, Phase III clinical trial in patients with HF with reduced ejection fraction. Findings from a Phase II clinical trial suggested that LCZ696 may also be beneficial in HF with preserved ejection fraction, and a Phase III clinical trial of LCZ696 used for this indication is under way. ARNIs have been described as a "game changer" by cardiologists. Based on findings from clinical trials conducted to date, there is an expectation that they will replace ACEIs as a building block of the pharmacologic treatment of chronic HF. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
On the origins of the universal dynamics of endogenous granules in mammalian cells.
Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G
2009-12-01
Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.
Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors
Partridge, John G.
2015-01-01
The family of GCaMPs are engineered proteins that contain Ca2+ binding motifs within a circularly permutated variant of the Aequorea Victoria green fluorescent protein (cp-GFP). The rapidly advancing field of utilizing GCaMP reporter constructs represents a major step forward in our ability to monitor intracellular Ca2+ dynamics. With the use of these genetically encoded Ca2+ sensors, investigators have studied activation of endogenous Gq types of G protein-coupled receptors (GPCRs) and subsequent rises in intracellular calcium. Escalations in intracellular Ca2+ from GPCR activation can be faithfully monitored in space and time as an increase in fluorescent emission from these proteins. Further, transgenic mice are now commercially available that express GCaMPs in a Cre recombinase dependent fashion. These GCaMP reporter mice can be bred to distinct Cre recombinase driver mice to direct expression of this sensor in unique populations of cells. Concerning the central nervous system (CNS), sources of calcium influx, including those arising from Gq activation can be observed in targeted cell types like neurons or astrocytes. This powerful genetic method allows simultaneous monitoring of the activity of dozens of cells upon activation of endogenous Gq-coupled GPCRs. Therefore, in combination with pharmacological tools, this strategy of monitoring GPCR activation is amenable to analysis of orthosteric and allosteric ligands of Gq-coupled receptors in their endogenous environments. PMID:25805995
Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines
Hayashi, Hideki; Kubo, Yoshinao; Izumida, Mai; Takahashi, Etsuhisa; Kido, Hiroshi; Sato, Ko; Yamaya, Mutsuo; Nishimura, Hidekazu; Nakayama, Kou; Matsuyama, Toshifumi
2018-01-01
Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines. PMID:29629340
Granstein, Richard D; Ding, Wanhong; Huang, Jing; Holzer, Aton; Gallo, Richard L; Di Nardo, Anna; Wagner, John A
2005-06-15
Extracellular nucleotides activate ligand-gated P2XR ion channels and G protein-coupled P2YRs. In this study we report that intradermal administration of ATPgammaS, a hydrolysis-resistant P2 agonist, results in an enhanced contact hypersensitivity response in mice. Furthermore, ATPgammaS enhanced the induction of delayed-type hypersensitivity to a model tumor vaccine in mice and enhanced the Ag-presenting function of Langerhans cells (LCs) in vitro. Exposure of a LC-like cell line to ATPgammaS in the presence of LPS and GM-CSF augmented the induction of I-A, CD80, CD86, IL-1beta, and IL-12 p40 while inhibiting the expression of IL-10, suggesting that the immunostimulatory activities of purinergic agonists in the skin are mediated at least in part by P2Rs on APCs. In this regard, an LC-like cell line was found to express mRNA for P2X(1), P2X(7), P2Y(1), P2Y(2), P2Y(4), P2Y(9), and P2Y(11) receptors. We suggest that ATP, when released after trauma or infection, may act as an endogenous adjuvant to enhance the immune response, and that P2 agonists may augment the efficacy of vaccines.
APOBEC4 Enhances the Replication of HIV-1
Hofmann, Henning; Hanschmann, Kay-Martin; Mühlebach, Michael D.; Schumann, Gerald G.; König, Renate; Cichutek, Klaus; Häussinger, Dieter; Münk, Carsten
2016-01-01
APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters. PMID:27249646
Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.
2009-01-01
The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037
Further evidence for GHB naturally occurring in common non-alcoholic beverages.
Elliott, Simon P; Fais, Paolo
2017-08-01
GHB has been implicated in many cases of suspected surreptitious administration with the purpose of increasing victim vulnerability to sexual assault. Low amounts of endogenous (or naturally occurring) GHB, which do not reach pharmacologically active levels, have been detected in alcoholic and non-alcoholic beverages. Due to the continued requirement to obtain data on the presence of endogenous GHB in various beverage types, GHB concentrations were measured in a series of non-alcoholic beverages. Tonic water and lemon flavoured tonic water beverages were analysed at 0, 24 and 96h after the bottle opening using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) on an Agilent 6890/7000C Triple Quadrupole. GHB was detected in all beverages at very low amounts ranging from 89 to 145ng/mL (0.089-0.145mg/L) and did not demonstrate a general trend of variation for concentration along the tested time span (96h). The presented data provide additional evidence for the endogenous nature of GHB in non-alcoholic beverages at very low concentrations, which are many orders of magnitude lower than those described to produce any pharmacological effect on the subject. However, when considering a case of alleged drug-facilitated sexual assault, a low level of GHB detected in a drink may be related both to a surreptitiously GHB administration with subsequent dilution for concealment or to the presence of endogenous GHB. On this basis, a comprehensive analysis of all the available information, including circumstantial data demonstrating possible attempts to conceal GHB administration and an assessment of levels of endogenous GHB in the suspected beverage type, is of the utmost importance for a proper interpretation of the toxicological results. Copyright © 2017 Elsevier B.V. All rights reserved.
Gertz, Jason; Reddy, Timothy E.; Varley, Katherine E.; Garabedian, Michael J.; Myers, Richard M.
2012-01-01
Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2. PMID:23019147
Kapczinski, F; Curran, H V; Przemioslo, R; Williams, R; Fluck, E; Fernandes, C; File, S E
1996-01-01
OBJECTIVES--To determine whether differences in cognitive function between alcoholic and non-alcoholic cirrhotic patients relate to differences in endogenous ligands for the benzodiazepine receptor and/or benzodiazepine binding. METHODS--Seventeen grade-I hepatic encephalopathic patients (nine alcoholic, eight non-alcoholic) were compared with 10 matched controls on plasma concentrations of endogenous ligands for the neuronal benzodiazepine receptor, benzodiazepine binding in platelets, and performance on tests of cognitive function. RESULTS--Both groups of patients were impaired on verbal recall and on reaction time tasks compared with controls; alcoholic patients were also impaired on Reitan's trails test and digit cancellation. Four of the 17 patients had detectable concentrations of endogenous benzodiazepine ligands and they were more impaired than other patients on trails and cancellation tests. The groups did not differ in the density of benzodiazepine platelet receptors, but receptor affinity was higher in alcoholic patients than in controls; furthermore, receptor affinity correlated with the time to complete the cancellation task and with reaction time. CONCLUSION--Alcoholic cirrhotic patients may have enhanced concentrations of ligands for neuronal and peripheral benzodiazepine receptors and these may contribute to cognitive impairments in these patients. PMID:8648337
Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song
2016-05-01
On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.
Castro, André L; Dias, Mário; Reis, Flávio; Teixeira, Helena M
2014-10-01
Gamma-Hydroxybutyric Acid (GHB) is an endogenous compound with a story of clinical use, since the 1960's. However, due to its secondary effects, it has become a controlled substance, entering the illicit market for recreational and "dance club scene" use, muscle enhancement purposes and drug-facilitated sexual assaults. Its endogenous context can bring some difficulties when interpreting, in a forensic context, the analytical values achieved in biological samples. This manuscript reviewed several crucial aspects related to GHB forensic toxicology evaluation, such as its post-mortem behaviour in biological samples; endogenous production values, whether in in vivo and in post-mortem samples; sampling and storage conditions (including stability tests); and cut-off reference values evaluation for different biological samples, such as whole blood, plasma, serum, urine, saliva, bile, vitreous humour and hair. This revision highlights the need of specific sampling care, storage conditions, and cut-off reference values interpretation in different biological samples, essential for proper practical application in forensic toxicology. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635
Bamberger, Ana-Maria; Minas, Vassilis; Kalantaridou, Sophia N.; Radde, Jessica; Sadeghian, Helen; Löning, Thomas; Charalampopoulos, Ioannis; Brümmer, Jens; Wagener, Christoph; Bamberger, Christoph M.; Schulte, Heinrich M.; Chrousos, George P.; Makrigiannakis, Antonis
2006-01-01
Abnormalities in the process of trophoblast invasion may result in abnormal placentation. Both the embryonic trophoblast and maternal decidua produce corticotropin-releasing hormone (CRH), which promotes implantation. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is expressed in extravillous trophoblasts (EVTs) of normal human placenta, may also function in tro-phoblast/endometrial interactions. We investigated whether locally produced CRH plays a role in trophoblast invasion, primarily by regulating CEACAM1 expression. We examined cultures of freshly isolated human EVTs, which express CEACAM1, and an EVT-based hybridoma cell line, which is devoid of endogenous CEACAM1. CRH inhibited EVT invasion in Matrigel invasion assays, and this effect was blocked by the CRH receptor type 1 (CRHR1)-specific antagonist antalarmin. Additionally, CRH decreased CEACAM1 expression in EVTs in a dose-dependent manner. After transfection of the hybridoma cell line with a CEACAM1 expression vector, the invasiveness of these cells was strongly enhanced. This effect was inhibited by addition of blocking monoclonal antibody against CEACAM1. Furthermore, blocking of endogenous CEACAM1 in EVTs inhibited the invasive potential of these cells. Taken together these findings suggest that CRH inhibits trophoblast invasion by decreasing the expression of CEACAM1 through CRHR1, an effect that might be involved in the pathophysiology of clinical conditions, such as preeclampsia and placenta accreta. PMID:16400017
Rac1b enhances cell survival through activation of the JNK2/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways
Wang, Hong; Wei, Si-Si; Chen, Jie; Chen, Yi-He; Xu, Wei-Ping; Jie, Qi-Qiang; Zhou, Qing; Li, Yi-Gang; Wei, Yi-Dong; Wang, Yue-Peng
2016-01-01
Rac1b is a constitutively activated, alternatively spliced form of the small GTPase Rac1. Previous studies showed that Rac1b promotes cell proliferation and inhibits apoptosis. In the present study, we used microarray analysis to detect genes differentially expressed in HEK293T cells and SW480 human colon cancer cells stably overexpressing Rac1b. We found that the pro-proliferation genes JNK2, c-JUN and cyclin-D1 as well as anti-apoptotic AKT2 and MCL1 were all upregulated in both lines. Rac1b promoted cell proliferation and inhibited apoptosis by activating the JNK2/c-JUN/cyclin-D1 and AKT2/MCL1 pathways, respectively. Very low Rac1b levels were detected in the colonic epithelium of wild-type Sprague-Dawley rats. Knockout of the rat Rac1 gene exon-3b or knockdown of endogenous Rac1b in HT29 human colon cancer cells downregulated only the AKT2/MCL1 pathway. Our study revealed that very low levels of endogenous Rac1b inhibit apoptosis, while Rac1b upregulation both promotes cell proliferation and inhibits apoptosis. It is likely the AKT2/MCL1 pathway is more sensitive to Rac1b regulation. PMID:26918455
Leiva-Rodríguez, Tatiana; Romeo-Guitart, David; Marmolejo-Martínez-Artesero, Sara; Herrando-Grabulosa, Mireia; Bosch, Assumpció; Forés, Joaquim; Casas, Caty
2018-05-24
Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes.
Nandrolone excretion is not increased by exhaustive exercise in trained athletes.
Schmitt, Nelly; Flament, Marie-Madeleine; Goubault, Claude; Legros, Patrick; Grenier-Loustalot, Marie France; Denjean, André
2002-09-01
The anabolic steroid nandrolone is widely used as a performance enhancer. Traces of its naturally occurring metabolite 19-norandrosterone (19-NA) have been found in human urine (below 0.6 ng.mL(-1)), and it has been suggested that strenuous exercise may increase urinary 19-NA. The aim of our study was to assess the effect of exhaustive exercise on the nandrolone excretion under controlled conditions in two groups of trained male athletes, one composed of judoka and the other of long-distance runners. A Wingate test and a treadmill limited-time test (running at 85% (.)VO(2max)) were carried out on 14 judoka and 15 athletes. Hydration was controlled during each session. Urine samples were obtained before each test and 30 min, 60 min, and 24 h after each test. Urinary 19-NA concentrations were determined using gas chromatography coupled with mass spectrometry. Baseline urinary 19-NA concentrations varied widely across individuals, from undetectable levels to 0.250 ng.mL (-1)(mean, 0.048 +/- 0.050 ng.mL(-1)). The both exercise tests did not significantly modified urinary 19-NA levels in the two groups of subjects. Our study provides compelling evidence that endogenous nandrolone production in male athletes, during two very different types of exercise, produces urine levels far below the IOC threshold of 2 ng.mL(-1) urine. Thus, exercise does not induce endogenous nandrolone secretion.
Pauli, Eva-Katharina; Chan, Ying Kai; Davis, Meredith E; Gableske, Sebastian; Wang, May K; Feister, Katharina F; Gack, Michaela U
2014-01-07
Ubiquitylation is an important mechanism for regulating innate immune responses to viral infections. Attachment of lysine 63 (Lys(63))-linked ubiquitin chains to the RNA sensor retinoic acid-inducible gene-I (RIG-I) by the ubiquitin E3 ligase tripartite motif protein 25 (TRIM25) leads to the activation of RIG-I and stimulates production of the antiviral cytokines interferon-α (IFN-α) and IFN-β. Conversely, Lys(48)-linked ubiquitylation of TRIM25 by the linear ubiquitin assembly complex (LUBAC) stimulates the proteasomal degradation of TRIM25, thereby inhibiting the RIG-I signaling pathway. Here, we report that ubiquitin-specific protease 15 (USP15) deubiquitylates TRIM25, preventing the LUBAC-dependent degradation of TRIM25. Through protein purification and mass spectrometry analysis, we identified USP15 as an interaction partner of TRIM25 in human cells. Knockdown of endogenous USP15 by specific small interfering RNA markedly enhanced the ubiquitylation of TRIM25. In contrast, expression of wild-type USP15, but not its catalytically inactive mutant, reduced the Lys(48)-linked ubiquitylation of TRIM25, leading to its stabilization. Furthermore, ectopic expression of USP15 enhanced the TRIM25- and RIG-I-dependent production of type I IFN and suppressed RNA virus replication. In contrast, depletion of USP15 resulted in decreased IFN production and markedly enhanced viral replication. Together, these data identify USP15 as a critical regulator of the TRIM25- and RIG-I-mediated antiviral immune response, thereby highlighting the intricate regulation of innate immune signaling.
Pauli, Eva-Katharina; Chan, Ying Kai; Davis, Meredith E.; Gableske, Sebastian; Wang, May K.; Feister, Katharina F.; Gack, Michaela U.
2014-01-01
Ubiquitylation is an important mechanism for regulating innate immune responses to viral infections. Attachment of lysine 63 (Lys63)–linked ubiquitin chains to the RNA sensor retinoic acid–inducible gene-I (RIG-I) by the ubiquitin E3 ligase tripartite motif protein 25 (TRIM25) leads to the activation of RIG-I and stimulates production of the antiviral cytokines interferon-α (IFN-α) and IFN-β. Conversely, Lys48-linked ubiquitylation of TRIM25 by the linear ubiquitin assembly complex (LUBAC) stimulates the proteasomal degradation of TRIM25, thereby inhibiting the RIG-I signaling pathway. Here, we report that ubiquitin-specific protease 15 (USP15) deubiquitylates TRIM25, preventing the LUBAC-dependent degradation of TRIM25. Through protein purification and mass spectrometry analysis, we identified USP15 as an interaction partner of TRIM25 in human cells. Knockdown of endogenous USP15 by specific small interfering RNA markedly enhanced the ubiquitylation of TRIM25. In contrast, expression of wild-type USP15, but not its catalytically inactive mutant, reduced the Lys48-linked ubiquitylation of TRIM25, leading to its stabilization. Furthermore, ectopic expression of USP15 enhanced the TRIM25- and RIG-I–dependent production of type I IFN and suppressed RNA virus replication. In contrast, depletion of USP15 resulted in decreased IFN production and markedly enhanced viral replication. Together, these data identify USP15 as a critical regulator of the TRIM25- and RIG-I–mediated antiviral immune response, thereby highlighting the intricate regulation of innate immune signaling. PMID:24399297
Exhaled human breath analysis has become a standard technique for assessing exposure to exogenous volatile organic compounds (VOCs) such as trihalomethanes from water chlorination; aromatics, hydrocarbons, and oxygenates from fuels usage; and various chlorinated solvents from i...
Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.
Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide
2017-07-07
Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area.
Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang
2015-01-01
Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation.
Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy
Beavis, Paul A.; Henderson, Melissa A.; Giuffrida, Lauren; Mills, Jane K.; Sek, Kevin; Cross, Ryan S.; Davenport, Alexander J.; John, Liza B.; Mardiana, Sherly; Slaney, Clare Y.; Johnstone, Ricky W.; Trapani, Joseph A.; Stagg, John; Loi, Sherene; Kats, Lev; Gyorki, David; Kershaw, Michael H.; Darcy, Phillip K.
2017-01-01
Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types. PMID:28165340
Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation1
Keyel, Peter A; Tkacheva, Olga A.; Larregina, Adriana T.; Salter, Russell D
2012-01-01
Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay utilizing liposomes of defined lipid compositions. We found that TLRs signaling through Trif promoted foam cell formation by inducing both NF-KB signaling and Type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFNα to TLR2 activator promoted robust foam cell formation. TLR signaling further required PPARα, as inhibition of PPARα blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFNα. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNFα production and T cell activation, showing that foam cell formation can occur by immunosuppressive microparticles. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation. PMID:23018455
Quispe Calla, N E; Vicetti Miguel, R D; Boyaka, P N; Hall-Stoodley, L; Kaur, B; Trout, W; Pavelko, S D; Cherpes, T L
2016-11-01
Depot-medroxyprogesterone acetate (DMPA) is a hormonal contraceptive especially popular in areas with high prevalence of HIV and other sexually transmitted infections (STI). Although observational studies identify DMPA as an important STI risk factor, mechanisms underlying this connection are undefined. Levonorgestrel (LNG) is another progestin used for hormonal contraception, but its effect on STI susceptibility is much less explored. Using a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, we herein found that DMPA and LNG similarly reduced genital expression of the desmosomal cadherin desmoglein-1α (DSG1α), enhanced access of inflammatory cells to genital tissue by increasing mucosal epithelial permeability, and increased susceptibility to viral infection. Additional studies with uninfected mice revealed that DMPA-mediated increases in mucosal permeability promoted tissue inflammation by facilitating endogenous vaginal microbiota invasion. Conversely, concomitant treatment of mice with DMPA and intravaginal estrogen restored mucosal barrier function and prevented HSV-2 infection. Evaluating ectocervical biopsy tissue from women before and 1 month after initiating DMPA remarkably revealed that inflammation and barrier protection were altered by treatment identically to changes seen in progestin-treated mice. Together, our work reveals DMPA and LNG diminish the genital mucosal barrier; a first-line defense against all STI, but may offer foundation for new contraceptive strategies less compromising of barrier protection.
Type III TGF-β Receptor Enhances Colon Cancer Cell Migration and Anchorage-Independent Growth12
Gatza, Catherine E; Holtzhausen, Alisha; Kirkbride, Kellye C; Morton, Allyson; Gatza, Michael L; Datto, Michael B; Blobe, Gerard C
2011-01-01
The type III TGF-β receptor (TβRIII or betagylcan) is a TGF-β superfamily coreceptor with emerging roles in regulating TGF-β superfamily signaling and cancer progression. Alterations in TGF-β superfamily signaling are common in colon cancer; however, the role of TβRIII has not been examined. Although TβRIII expression is frequently lost at the message and protein level in human cancers and suppresses cancer progression in these contexts, here we demonstrate that, in colon cancer, TβRIII messenger RNA expression is not significantly altered and TβRIII expression is more frequently increased at the protein level, suggesting a distinct role for TβRIII in colon cancer. Increasing TβRIII expression in colon cancer model systems enhanced ligand-mediated phosphorylation of p38 and the Smad proteins, while switching TGF-β and BMP-2 from inhibitors to stimulators of colon cancer cell proliferation, inhibiting ligand-induced p21 and p27 expression. In addition, increasing TβRIII expression increased ligand-stimulated anchorage-independent growth, a resistance to ligand- and chemotherapy-induced apoptosis, cell migration and modestly increased tumorigenicity in vivo. In a reciprocal manner, silencing endogenous TβRIII expression decreased colon cancer cell migration. These data support a model whereby TβRIII mediates TGF-β superfamily ligand-induced colon cancer progression and support a context-dependent role for TβRIII in regulating cancer progression. PMID:21847367
Collaborating with Alexander Scriabine and the Miles Institute for Preclinical Pharmacology.
Janis, Ronald A
2015-11-15
This article represents a timely opportunity to express my affection, admiration and gratitude to Professor David Triggle. David was my Ph.D. advisor as well as a key consultant in the 1980s and early 1990s for research programs at Miles Institute for Preclinical Pharmacology in West Haven, CT, the U.S. research operation of Bayer AG, in the areas of Ca(2+) and K(+) channel ligands. The binding methodology developed in his laboratory was used to search for an endogenous ligand for L-type Ca(2+) channels. We did not find the substance that we were searching for, a genetically-determined, competitive inhibitor for the 1,4-dihydropyridine binding site, but instead isolated the endogenous ligand for the brain's own marijuana, anandamide. Devane, Mechoulam and coworkers first discovered that this compound was the endogenous ligand for delta-9-tetrahydrocannabinol, the active substance in cannabis. The endogenous endocannabinoid system is now the target of many exciting new approaches to drug discovery. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Lei; Pre-Doctoral Chinese Fellowship Student, Second West China Hospital, Sichuan University, Sichuan; Ling, Xiang
2012-05-04
Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role inmore » p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1} expression at least in part by neutralizing p53-mediated transcriptional activation of the p21 gene.« less
Betzenhauser, Matthew J.; Fike, Jenna L.; Wagner, Larry E.; Yule, David I.
2009-01-01
Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) represents a mechanism for shaping intracellular Ca2+ signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca2+ release in cells that express predominantly InsP3R2. PKA is known to phosphorylate InsP3R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP3R2 in DT40-3KO cells that are devoid of endogenous InsP3R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca2+ signals and augmented the single channel open probability of InsP3R2. A PKA phosphorylation site unique to the InsP3R2 was identified at Ser937. The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser937, since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca2+ signaling following PKA activation in cells that express predominantly InsP3R2. PMID:19608738
Control of G1 arrest after DNA damage.
Kastan, M B; Kuerbitz, S J
1993-01-01
The temporal relationship between DNA damage and DNA replication may be critical in determining whether the genetic changes necessary for cellular transformation occur after DNA damage. Recent characterization of the mechanisms responsible for alterations in cell-cycle progression after DNA damage in our laboratory have implicated the p53 (tumor suppressor) protein in the G1 arrest that occurs after certain types of DNA damage. In particular, we found that levels of p53 protein increased rapidly and transiently after nonlethal doses of gamma irradiation (XRT) in hematopoietic cells with wild-type, but not mutant, p53 genes. These changes in p53 protein levels were temporally linked to a transient G1 arrest in these cells. Hematopoietic cells with mutant or absent p53 genes did not exhibit this G1 arrest, through they continued to demonstrate a G2 arrest. We recently extended these observations of a tight correlation between the status of the endogenous p53 genes and this G1 arrest after XRT and this cell-cycle alteration after XRT was then established by transfecting cells lacking endogenous p53 genes with a wild-type gene and observing acquisition of the G1 arrest and by transfecting cells processing endogenous wild-type p53 genes with a mutant p53 gene and observing loss of the G1 arrest after XRT. These observations and their significance for our understanding of the mechanisms of DNA damage-induced cellular transformation are discussed. PMID:8013425
Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert
2015-06-01
To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.
Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook
2015-10-15
Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.
Wissing, Silke; Montano, Mauricio; Garcia-Perez, Jose Luis; Moran, John V; Greene, Warner C
2011-10-21
Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.
Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation.
McLeay, Yanita; Stannard, Stephen; Houltham, Stuart; Starck, Carlene
2017-01-01
Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced reactive oxygen species (ROS). Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with supplementation. The up-regulation of endogenous antioxidant systems brought about by exercise training allows for greater tolerance to subsequent ROS, thus, athletes may benefit from increasing these systems through dietary thiol donors. Recent work has shown supplementation with a cysteine donor (N-acetylcysteine; NAC) improves antioxidant capacity by augmenting glutathione levels and reducing markers of oxidative stress, as well as ergogenic potential through association with delayed fatigue in numerous experimental models. However, the use of this, and other thiol donors may have adverse physiological effects. A recent discovery for the use of a thiol donor food source, keratin, to potentially enhance endogenous antioxidants may have important implications for endurance athletes hoping to enhance performance and recovery without blunting training adaptations.
Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan
2017-06-01
Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A
2005-07-01
The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.
Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W
1986-01-31
We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.
NASA Technical Reports Server (NTRS)
Hardman, P.; Klement, B. J.; Spooner, B. S.
1993-01-01
Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.
Regulation of type 17 helper T-cell function by nitric oxide during inflammation
Niedbala, Wanda; Alves-Filho, Jose C.; Fukada, Sandra Y.; Vieira, Silvio Manfredo; Mitani, Akio; Sonego, Fabiane; Mirchandani, Ananda; Nascimento, Daniele C.; Cunha, Fernando Q.; Liew, Foo Y.
2011-01-01
Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants. PMID:21576463
Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).
Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying
2016-11-01
Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).
Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds.
Flematti, Gavin R; Waters, Mark T; Scaffidi, Adrian; Merritt, David J; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M
2013-01-01
Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the strigolactone class of plant hormones, and both signal through a common F-box protein. However, karrikins and strigolactones operate through otherwise distinct signaling pathways, each distinguished by a specific α/β hydrolase protein. Genetic analysis suggests that plants contain endogenous compounds that signal specifically through the karrikin pathway. The other active compounds discovered in smoke are cyanohydrins that release germination-stimulating cyanide upon hydrolysis. Cyanohydrins occur widely in plants and have a role in defense against other organisms, but an additional role in endogenous cyanide signaling should also now be considered.
The Cannabinoid Acids, Analogs and Endogenous Counterparts
Burstein, Sumner H.
2015-01-01
The cannabinoid acids are a structurally heterogeneous group of compounds some of which are endogenous molecules and others that are metabolites of phytocannabinoids. The prototypic endogenous substance is N-arachidonoyl glycine (NAgly) that is closely related in structure to the cannabinoid agonist anandamide. The most studied phytocannabinoid is Δ9–THC-11-oic acid, the principal metabolite of Δ9–THC. Both types of acids have in common several biological actions such as low affinity for CB1, anti-inflammatory activity and analgesic properties. This suggests that there may be similarities in their mechanism of action, a point that is discussed in this review. Also presented are reports on analogs of the acids that provide opportunities for the development of novel therapeutic agents, such as ajulemic acid. PMID:24731541
Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.
Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus
2003-04-01
Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.
Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology
NASA Technical Reports Server (NTRS)
Shi, Yufang; Devadas, Satish; Greeneltch, Kristy M.; Yin, Deling; Allan Mufson, R.; Zhou, Jian-nian
2003-01-01
Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.
Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.
Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo
2016-01-01
Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.
Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E.; Li, Xiaoguang
2015-01-01
Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015
Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M
2004-05-01
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.
Park, Junwon; Yamashita, Naoyuki; Wu, Guangxue; Tanaka, Hiroaki
2017-12-15
We carried out batch experiments using biomass from a membrane bioreactor (MBR) to study the influence of ammonia oxidizing bacteria (AOB) on the removal of 45 pharmaceuticals and personal care products (PPCPs). Kinetic parameters such as biodegradation constants and adsorption coefficients with and without AOB inhibition were estimated. No significant differences in adsorption tendency were found, but the biodegradability of most compounds was enhanced when ammonia was completely oxidized, indicating that AOB present in MBR played a critical role in eliminating the PPCPs. Moreover, target PPCPs were degraded in 2 stages, first by cometabolic degradation related to AOB growth, and then by endogenous respiration by microorganisms in the absence of other growth substrate. The compounds were classified into 3 groups according to removal performance and cometabolic degradation. Our approach provides new insight into the removal of PPCPs via cometabolism and endogenous respiration under AOB enrichment cultures developed in MBR. Copyright © 2017 Elsevier B.V. All rights reserved.
TESTOSTERONE AND SPORT: CURRENT PERSPECTIVES
Wood, Ruth I.; Stanton, Steven J.
2011-01-01
Testosterone and other anabolic-androgenic steroids enhance athletic performance in men and women. As a result, exogenous androgen is banned from most competitive sports. However, due to variability in endogenous secretion, and similarities with exogenous testosterone, it has been challenging to establish allowable limits for testosterone in competition. Endogenous androgen production is dynamically regulated by both exercise and winning in competition. Furthermore, testosterone may promote athletic performance, not only through its long-term anabolic actions, but also through rapid effects on behavior. In women, excess production of endogenous testosterone due to inborn disorders of sexual development (DSD) may convey a competitive advantage. For many years, female competitors have been subject to tests of sexual genotype and phenotype known as gender verification. Although gender verification has not identified any normal man competing as a woman, this process has identified women athletes with DSD. As understanding of DSD has expanded in recent years, women with DSD are increasingly able to continue athletic competition. PMID:21983229
Kanemitsu, Michiko; Tsupykov, Oleg; Potter, Gaël; Boitard, Michael; Salmon, Patrick; Zgraggen, Eloisa; Gascon, Eduardo; Skibo, Galina; Dayer, Alexandre G; Kiss, Jozsef Z
2017-11-01
Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
López-Moreno, J A; López-Jiménez, A; Gorriti, M A; de Fonseca, F Rodríguez
2010-04-01
Although the first studies regarding the endogenous opioid system and addiction were published during the 1940s, addiction and cannabinoids were not addressed until the 1970s. Currently, the number of opioid addiction studies indexed in PubMed-Medline is 16 times greater than the number of cannabinoid addiction reports. More recently, functional interactions have been demonstrated between the endogenous cannabinoid and opioid systems. For example, the cannabinoid brain receptor type 1 (CB1) and mu opioid receptor type 1 (MOR1) co-localize in the same presynaptic nerve terminals and signal through a common receptor-mediated G-protein pathway. Here, we review a great variety of behavioral models of drug addiction and alcohol-related behaviors. We also include data providing clear evidence that activation of the cannabinoid and opioid endogenous systems via WIN 55,512-2 (0.4-10 mg/kg) and morphine (1.0-10 mg/kg), respectively, produces similar levels of relapse to alcohol in operant alcohol self-administration tasks. Finally, we discuss genetic studies that reveal significant associations between polymorphisms in MOR1 and CB1 receptors and drug addiction. For example, the SNP A118G, which changes the amino acid aspartate to asparagine in the MOR1 gene, is highly associated with altered opioid system function. The presence of a microsatellite polymorphism of an (AAT)n triplet near the CB1 gene is associated with drug addiction phenotypes. But, studies exploring haplotypes with regard to both systems, however, are lacking.
Wang, Jinyong; Liu, Yangang; Li, Zeyang; Wang, Zhongde; Tan, Li Xuan; Ryu, Myung-Jeom; Meline, Benjamin; Du, Juan; Young, Ken H.; Ranheim, Erik; Chang, Qiang
2011-01-01
Both monoallelic and biallelic oncogenic NRAS mutations are identified in human leukemias, suggesting a dose-dependent role of oncogenic NRAS in leukemogenesis. Here, we use a hypomorphic oncogenic Nras allele and a normal oncogenic Nras allele (Nras G12Dhypo and Nras G12D, respectively) to create a gene dose gradient ranging from 25% to 200% of endogenous Nras G12D/+. Mice expressing Nras G12Dhypo/G12Dhypo develop normally and are tumor-free, whereas early embryonic expression of Nras G12D/+ is lethal. Somatic expression of Nras G12D/G12D but not Nras G12D/+ leads to hyperactivation of ERK, excessive proliferation of myeloid progenitors, and consequently an acute myeloproliferative disease. Using a bone marrow transplant model, we previously showed that ∼ 95% of animals receiving Nras G12D/+ bone marrow cells develop chronic myelomonocytic leukemia (CMML), while ∼ 8% of recipients develop acute T-cell lymphoblastic leukemia/lymphoma [TALL] (TALL-het). Here we demonstrate that 100% of recipients transplanted with Nras G12D/G12D bone marrow cells develop TALL (TALL-homo). Although both TALL-het and -homo tumors acquire Notch1 mutations and are sensitive to a γ-secretase inhibitor, endogenous Nras G12D/+ signaling promotes TALL through distinct genetic mechanism(s) from Nras G12D/G12D. Our data indicate that the tumor transformation potential of endogenous oncogenic Nras is both dose- and cell type-dependent. PMID:21586752
Disruption of a -35kb enhancer impairs CTCF binding and MLH1 expression in colorectal cells.
Liu, Qing; Thoms, Julie A; Nunez, Andrea C; Huang, Yizhou; Knezevic, Kathy; Packham, Deborah; Poulos, Rebecca C; Williams, Rachel; Beck, Dominik; Hawkins, Nicholas J; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Sloane, Mathew A; Pimanda, John
2018-06-13
MLH1 is a major tumour suppressor gene involved in the pathogenesis of Lynch syndrome and various sporadic cancers. Despite their potential pathogenic importance, genomic regions capable of regulating MLH1 expression over long distances have yet to be identified. Here we use chromosome conformation capture (3C) to screen a 650-kb region flanking the MLH1 locus to identify interactions between the MLH1 promoter and distal regions in MLH1 expressing and non-expressing cells. Putative enhancers were functionally validated using luciferase reporter assays, chromatin immunoprecipitation and CRISPR-Cas9 mediated deletion of endogenous regions. To evaluate whether germline variants in the enhancer might contribute to impaired MLH1 expression in patients with suspected Lynch syndrome, we also screened germline DNA from a cohort of 74 patients with no known coding mutations or epimutations at the MLH1 promoter. A 1.8kb DNA fragment, 35kb upstream of the MLH1 transcription start site enhances MLH1 gene expression in colorectal cells. The enhancer was bound by CTCF and CRISPR-Cas9 mediated deletion of a core binding region impairs endogenous MLH1 expression. 5.4% of suspected Lynch syndrome patients have a rare single nucleotide variant (G>A; rs143969848; 2.5% in gnomAD European, non-Finnish) within a highly conserved CTCF binding motif, which disrupts enhancer activity in SW620 colorectal carcinoma cells. A CTCF bound region within the MLH1 -35 enhancer regulates MLH1 expression in colorectal cells and is worthy of scrutiny in future genetic screening strategies for suspected Lynch syndrome associated with loss of MLH1 expression. Copyright ©2018, American Association for Cancer Research.
Xie, Qiang; Li, Xue-Xiang; Zhang, Peng; Li, Jin-Cao; Cheng, Ying; Feng, Yan-Ling; Huang, Bing-Sheng; Zhuo, Yu-Feng; Xu, Guo-Hua
2014-08-01
Ischemia or hypoxia‑induced myocardial injury is closely associated with oxidative stress. Scavenging free radicals and/or enhancing endogenous antioxidative defense systems may be beneficial for the impediment of myocardial ischemic injury. Hydrogen (H2) gas, as a water‑ and lipid‑soluble small molecule, is not only able to selectively eliminate hydroxyl (·OH) free radicals, but also to enhance endogenous antioxidative defense systems in rat lungs and arabidopsis plants. However, thus far, it has remained elusive whether H2 gas protects cardiomyocytes through enhancement of endogenous antioxidative defense systems. In the present study, the cardioprotective effect of H2 gas against ischemic or hypoxic injury was investigated, along with the underlying molecular mechanisms. H9c2 cardiomyoblasts (H9c2 cells) were treated in vitro with a chemical hypoxia inducer, cobalt chloride (CoCl2), to imitate hypoxia, or by serum and glucose deprivation (SGD) to imitate ischemia. Cell viability and intracellular ·OH free radicals were assessed. The role of an endogenous antioxidative defense system, the NF‑E2‑related factor 2 (Nrf2)/heme oxygenase 1 (HO‑1) signaling pathway, was evaluated. The findings revealed that treatment with CoCl2 or SGD markedly reduced cell viability in H9c2 cells. H2 gas‑rich medium protected against cell injury induced by SGD, but not that induced by CoCl2. When the cells were exposed to SGD, levels of intracellular ·OH free radicals were markedly increased; this was mitigated by H2 gas‑rich medium. Exposure of the cells to SGD also resulted in significant increases in HO‑1 expression and nuclear Nrf2 levels, and the HO‑1 inhibitor ZnPP IX and the Nrf2 inhibitor brusatol aggravated SGD‑induced cellular injury. H2 gas‑rich medium enhanced SGD‑induced upregulation of HO‑1 and Nrf2, and the HO‑1 or Nrf2 inhibition partially suppressed H2 gas‑induced cardioprotection. Furthermore, following genetic silencing of Nrf2 by RNA interference, the effects of H2 gas on the induction of HO‑1 and cardioprotection were markedly reduced. In conclusion, H2 gas protected cardiomyocytes from ischemia‑induced myocardial injury through elimination of ·OH free radicals and also through activation of the Nrf2/HO‑1 signaling pathway.
Knize, M G; Shen, N H; Felton, J S
1988-11-01
Ground chicken breast and ground beef with either endogenous or a 10-fold increase in the concentration of creatine were fried at 220 degrees C for 10 min per side. One patty (100 g) of chicken meat yielded 120,000 Salmonella (TA1538) revertants following metabolic activation. The pan residues had 39% of the total activity. Added creatine (10-fold the endogenous level) increased mutagen yields an average of 2-fold. Beef cooked under identical conditions yielded 150,000 revertants/100 g for the meat patties and pan residues combined. Added creatine to beef prior to cooking increased mutagen yields 3-fold. The mutagenic profiles following initial HPLC separation showed that chicken samples with endogenous or added creatine were remarkably similar. Chicken and beef HPLC mutagenicity profiles were also similar to each other, but not identical. This suggests that the general mutagen-forming reactions with the two different types of muscle are qualitatively similar with only minor quantitative differences. The pan residues from both meat types with and without added creatine showed some significant differences in the mutagen peak profile. This work suggests that the types of mutagens formed in chicken are similar to those formed in beef and that creatine appears to be involved in the formation of all the mutagenic compounds produced from fried muscle tissue.
Broeders, Martijn A W; Tangelder, Geert Jan; Slaaf, Dick W; Reneman, Robert S; oude Egbrink, Mirjam G A
2002-04-01
We investigated in vivo the effect of cholesterol diet-induced hypercholesterolemia (HC) on thromboembolism in nonatherosclerotic rabbit mesenteric arterioles and venules (diameter 21 to 45 micrometer). After mechanical vessel wall injury, the ensuing thromboembolic reaction was studied by intravital videomicroscopy. A dramatic prolongation of embolization duration (median >600 seconds) was observed in the arterioles of the HC group compared with the arterioles of a normal chow-fed (NC) control group (142 seconds, P<0.0001); concomitantly, relative thrombus height increased (thrombus height/vessel diameter was 68% for the HC group and 58% for the NC group; P<0.05). By contrast, in venules, cholesterol did not affect embolization duration (42 seconds for HC group, 34 seconds for NC group) and thrombus height (66% for HC group, 64% for NC group). Furthermore, the role of endothelial NO synthesis was studied. In arterioles, stimulation of endogenous NO synthesis through mesenteric superfusion of L-arginine (1 mmol/L) completely reversed cholesterol-enhanced embolization (152 seconds) but did not influence thrombus height (63%). L-Arginine had no effect in venules of the HC group (51 seconds) and nor in the arterioles and venules of the NC group (177 seconds for arterioles, 43 seconds for venules). This study indicates that hypercholesterolemia selectively enhances thrombus formation and embolization in arterioles but not in venules and that stimulation of endogenous NO production antagonizes this enhancement of arteriolar thromboembolism.
Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.
Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E
2010-07-02
Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.
Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells
Chahal, Manpreet S.; Brauner, Daniel J.; Meier, Kathryn E.
2010-01-01
Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells. PMID:27713341
Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles.
Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav
2014-06-01
By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging - a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue and thus improves the PA imaging contrast. In this study, we demonstrated the 3D MPA image of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA images show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA for high contrast in vivo mapping of dual-contrast nanoparticles.
Oxidation enhances calpain-induced turbidity in young rat lenses.
Nakamura, Y; Fukiage, C; Azuma, M; Shearer, T R
1999-07-01
To determine if oxidation enhances turbidity after proteolysis of rat lens crystallins by the calcium-activated protease calpain (EC 3.4.22.17). Total soluble proteins from young rat lens were hydrolyzed for 24 hr by endogenous lens calpain, and the proteins were further incubated with the oxidant diamide for up to 7 days. Turbidity was measured daily at 405 nm. To measure proteolysis and turbidity in cultured lenses, rat lenses were cultured for 6 days in low calcium medium and diamide. The lenses were then photographed to assess transmission of light. SDS-PAGE and immunoblotting assessed proteolysis of crystallins, alpha-spectrin, and activation of calpain. Appreciable in vitro turbidity occurred in soluble proteins from young rat lenses after proteolysis of crystallins by endogenous calpain. Calpain inhibitor E64, or anti-oxidants DTE and GSH, inhibited this turbidity. On the other hand, the oxidant diamide markedly enhanced calpain-induced turbidity. Cultured rat lenses showed elevated intralenticular calcium and proteolysis of crystallins by calpain, but no nuclear cataract. Addition of diamide to the culture medium caused development of nuclear cataract. Diamide enhanced turbidity only when crystallins were proteolyzed. Oxidation may be one of the factors promoting light scatter and insolubilization after proteolysis. These data are consistent with the hypothesis that proteolysis of crystallins from young rat lens may expose cysteine residues, which are then oxidized, become insoluble and scatter light.
Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles☆
Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav
2014-01-01
By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging – a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue thus improving the PA imaging contrast. In this study, we demonstrated the 3D MPA imaging of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA imaging show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA imaging for high contrast in vivo mapping of dual-contrast nanoparticles. PMID:24653976
Peptidase modulation of airway effects of neuropeptides.
Lilly, C M; Drazen, J M; Shore, S A
1993-09-01
SP and NKA are potent endogenous bronchoconstrictors, whereas VIP is a potent endogenous bronchodilator. There is abundant evidence that these neuropeptides are released in the lung in a variety of conditions and that they have the capacity to modulate the bronchoactivity of the same stimuli that release them. On many occasions, their bronchoactive effects are masked by their degradation at or near the site of their release. However, when the microenvironment is modified to decrease their cleavage, they can express enhanced physiologic effects. Although it appears that the human asthmatic lung may be an environment in which the effects of neuropeptides can be amplified, the role of neuropeptides in the pathogenesis of airway obstruction remains speculative.
Fu, Ssu-Ju; Jeng, Chung-Jiuan; Ma, Chia-Hao; Peng, Yi-Jheng; Lee, Chi-Ming; Fang, Ya-Ching; Lee, Yi-Ching; Tang, Sung-Chun; Hu, Meng-Chun; Tang, Chih-Yung
2017-03-01
Voltage-gated Ca V 2.1 channels comprise a pore-forming α 1A subunit with auxiliary α 2 δ and β subunits. Ca V 2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the Ca V 2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of Ca V 2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human Ca V 2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel Ca V 2.1-binding partner. In neurons, RNF138 and Ca V 2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of Ca V 2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the Ca V 2.1 protein level and enhances Ca V 2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of Ca V 2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on Ca V 2.1 WT functional expression, which can be attributed to defective membrane trafficking of Ca V 2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of Ca V 2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human Ca V 2.1 subunits. SIGNIFICANCE STATEMENT Loss-of-function mutations in the human Ca V 2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and nystagmus. EA2-causing mutants may exert dominant-negative effects on the Ca V 2.1 wild-type subunit via aberrant proteasomal degradation. The molecular nature of the Ca V 2.1 ubiquitin-proteasome degradation pathway is currently unknown. The present study reports the first identification of an E3 ubiquitin ligase for Ca V 2.1, RNF138. Ca V 2.1 protein stability is dynamically regulated by RNF138 and auxiliary α 2 δ and β subunits. We provide a proof of concept that protecting the human Ca V 2.1 subunit from excessive proteasomal degradation with specific interruption of endogenous RNF138 function may partially contribute to the future development of a novel therapeutic strategy for EA2 patients. Copyright © 2017 the authors 0270-6474/17/372485-19$15.00/0.
Ribeiro, Joaquim A; Sebastião, Ana M
2010-01-01
Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine.
Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions.
Austermann, Judith; Friesenhagen, Judith; Fassl, Selina Kathleen; Petersen, Beatrix; Ortkras, Theresa; Burgmann, Johanna; Barczyk-Kahlert, Katarzyna; Faist, Eugen; Zedler, Siegfried; Pirr, Sabine; Rohde, Christian; Müller-Tidow, Carsten; von Köckritz-Blickwede, Maren; von Kaisenberg, Constantin S; Flohé, Stefanie B; Ulas, Thomas; Schultze, Joachim L; Roth, Johannes; Vogl, Thomas; Viemann, Dorothee
2014-12-24
Hyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4) but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs). Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14(-/-) mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Zhou, J; Wang, F; Ma, Y; Wei, F
2018-06-02
The anti-oxidative effects of vitamin D3 (Vd3) on mesenchymal stem cells (MSCs) have not been studied before. The present study suggested that Vd3 could not only promote the osteogenic differentiation of MSCs under normal condition but also partly protect it from oxidative stress damage by activating the endogenous antioxidant system. Evolving evidence proved that oxidative stress caused by reactive oxygen species (ROS) overproduction might lead to bone loss. Vd3, a commonly used osteogenic induction drug, was proved to exhibit potent anti-oxidative effects on other cell types. The present study aims to investigate the protective effects of Vd3 on oxidative stress-induced dysfunctions of MSCs, as well as its underlying mechanisms. The H 2 O 2 was used as exogenous reactive oxygen species (ROS). The influence of ROS and anti-oxidative protection of Vd3 on MSCs were analyzed too. Multi-techniques were used to assess the beneficial effects of Vd3 on MSCs under oxidative stress condition. The results demonstrated that Vd3 could significantly attenuate the H 2 O 2 -induced cell injury of MSCs via Sirt1/FoxO1 signaling pathway, and reduced the H 2 O 2 exposure-induced intracellular oxidative stress status of MSCs. What's more, the H 2 O 2 exposure resulted in the decreased osteogenic differentiation of MSCs, as evidenced by decreased alkaline phosphatase activity, calcium deposition level, and osteogenic differentiation gene mRNA levels, but the injury was restored via Vd3 administration. The results suggested that Vd3 could not only promote the osteogenic differentiation of osteoblastic cells under normal condition but also partly protect the cell from oxidative stress damage by activating endogenous antioxidant system. The study shed light on the new roles of Vd3 in bone modeling and remodeling regulation.
Zhu, Xiaoyan; Fréchou, Magalie; Liere, Philippe; Zhang, Shaodong; Pianos, Antoine; Fernandez, Neïké; Denier, Christian; Mattern, Claudia; Schumacher, Michael; Guennoun, Rachida
2017-11-08
Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes. SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential. Copyright © 2017 the authors 0270-6474/17/3710998-23$15.00/0.
Brodmann, Marianne; Seinost, Gerald; Stark, Gerhard; Pilger, Ernst
2006-01-01
Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case of a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.
2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor
Hanuš, Lumír; Abu-Lafi, Saleh; Fride, Ester; Breuer, Aviva; Vogel, Zvi; Shalev, Deborah E.; Kustanovich, Irina; Mechoulam, Raphael
2001-01-01
Two types of endogenous cannabinoid-receptor agonists have been identified thus far. They are the ethanolamides of polyunsaturated fatty acids—arachidonoyl ethanolamide (anandamide) is the best known compound in the amide series—and 2-arachidonoyl glycerol, the only known endocannabinoid in the ester series. We report now an example of a third, ether-type endocannabinoid, 2-arachidonyl glyceryl ether (noladin ether), isolated from porcine brain. The structure of noladin ether was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by comparison with a synthetic sample. It binds to the CB1 cannabinoid receptor (Ki = 21.2 ± 0.5 nM) and causes sedation, hypothermia, intestinal immobility, and mild antinociception in mice. It binds weakly to the CB2 receptor (Ki > 3 μM). PMID:11259648
Wissing, Silke; Montano, Mauricio; Garcia-Perez, Jose Luis; Moran, John V.; Greene, Warner C.
2011-01-01
Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2–3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells. PMID:21878639
Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells
Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.
2018-01-01
Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328
Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection
Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.
2014-01-01
Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272
Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R
2018-04-01
Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus
Goh, Jinzhong Jeremy
2013-01-01
Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536
Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk.
Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin
2017-02-26
Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. I...
Do Study Abroad Programs Enhance the Employability of Graduates?
ERIC Educational Resources Information Center
Di Pietro, Giorgio
2015-01-01
Using data on a large sample of recent Italian graduates, this paper investigates the extent to which participation in study abroad programs during university studies impacts subsequent employment likelihood. To address the problem of endogeneity related to participation in study abroad programs, I use a combination of fixed effects and…
Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S
2016-05-01
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.
Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.
Richards, Dylan J; Tan, Yu; Coyle, Robert; Li, Yang; Xu, Ruoyu; Yeung, Nelson; Parker, Arran; Menick, Donald R; Tian, Bozhi; Mei, Ying
2016-07-13
The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.
Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua
2015-01-01
Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810
Ueno, Nobuhiro; Shimizu, Akio; Kanai, Michiyuki; Iwaya, Yugo; Ueda, Shugo; Nakayama, Jun; Seo, Misuzu Kurokawa
2015-01-01
Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy. PMID:26487184
Shimoda, Takeshi; Nishihara, Masahiro; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro
2012-03-01
Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Bernatchez, Pascal; Sharma, Arpeeta; Bauer, Philip M.; Marin, Ethan; Sessa, William C.
2011-01-01
Aberrant regulation of eNOS and associated NO release are directly linked with various vascular diseases. Caveolin-1 (Cav-1), the main coat protein of caveolae, is highly expressed in endothelial cells. Its scaffolding domain serves as an endogenous negative regulator of eNOS function. Structure-function analysis of Cav-1 has shown that phenylalanine 92 (F92) is critical for the inhibitory actions of Cav-1 toward eNOS. Herein, we show that F92A–Cav-1 and a mutant cell–permeable scaffolding domain peptide called Cavnoxin can increase basal NO release in eNOS-expressing cells. Cavnoxin reduced vascular tone ex vivo and lowered blood pressure in normal mice. In contrast, similar experiments performed with eNOS- or Cav-1–deficient mice showed that the vasodilatory effect of Cavnoxin is abolished in the absence of these gene products, which indicates a high level of eNOS/Cav-1 specificity. Mechanistically, biochemical assays indicated that noninhibitory F92A–Cav-1 and Cavnoxin specifically disrupted the inhibitory actions of endogenous Cav-1 toward eNOS and thereby enhanced basal NO release. Collectively, these data raise the possibility of studying the inhibitory influence of Cav-1 on eNOS without interfering with the other actions of endogenous Cav-1. They also suggest a therapeutic application for regulating the eNOS/Cav-1 interaction in diseases characterized by decreased NO release. PMID:21804187
Dadwal, Parvati; Mahmud, Neemat; Sinai, Laleh; Azimi, Ashkan; Fatt, Michael; Wondisford, Fredric E; Miller, Freda D; Morshead, Cindi M
2015-08-11
The development of cell replacement strategies to repair the injured brain has gained considerable attention, with a particular interest in mobilizing endogenous neural stem and progenitor cells (known as neural precursor cells [NPCs]) to promote brain repair. Recent work demonstrated metformin, a drug used to manage type II diabetes, promotes neurogenesis. We sought to determine its role in neural repair following brain injury. We find that metformin administration activates endogenous NPCs, expanding the size of the NPC pool and promoting NPC migration and differentiation in the injured neonatal brain in a hypoxia-ischemia (H/I) injury model. Importantly, metformin treatment following H/I restores sensory-motor function. Lineage tracking reveals that metformin treatment following H/I causes an increase in the absolute number of subependyma-derived NPCs relative to untreated H/I controls in areas associated with sensory-motor function. Hence, activation of endogenous NPCs is a promising target for therapeutic intervention in childhood brain injury models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?
Wang, Rui
2002-11-01
Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.
Chinchilla, Misael; Valerio, Idalia; Duszynski, Donald
2015-08-01
The endogenous life cycle of Eimeria marmosopos was studied in experimentally infected young opossums, Didelphis marsupialis . All the endogenous stages were located in the epithelial cells of villi in the small intestine. Giemsa-stained mucosal scrapings and histological sections were studied for the diagnosis of all the life cycle stages. Eimeria marmosopos has 3 generations of meronts (M) that differ by size, shape, and number of merozoites (m), which also differ in their size, shape, and location of their nuclei within the cytoplasm of the meronts. The 3 meront types, M(1)-M(3), respectively, had 8-15 (m(1)), 4-9 (m(2)), and 22-30 (m(3)) merozoites. Macrogametocytes and microgametocytes, as well as macrogametes and microgametes, completed the sexual cycle, finishing with the formation of unsporulated oocysts. This parasite's endogenous development produced severe intestinal lesions in experimentally infected opossums. There are 56 Eimeria species known from all marsupials worldwide, but this is the first complete life cycle in which both the asexual and sexual stages have been documented.
Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B
2014-07-01
Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [(3)H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy. Copyright © 2014 the American Physiological Society.
The Hallucinogen N,N-Dimethyltryptamine (DMT) Is an Endogenous Sigma-1 Receptor Regulator
Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R.; Cozzi, Nicholas V.; Jackson, Meyer B.; Ruoho, Arnold E.
2010-01-01
The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor. PMID:19213917
The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator.
Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R; Cozzi, Nicholas V; Jackson, Meyer B; Ruoho, Arnold E
2009-02-13
The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.
Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y
2018-04-15
Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia. Published by Elsevier Inc.
Enhancing acupuncture by low dose naltrexone.
Hesselink, Jan M Keppel; Kopsky, David J
2011-06-01
To find appropriate and effective treatment options for chronic pain syndromes is a challenging task. Multimodal treatment approach has been gaining acceptance for chronic pain. However, combining treatments, such as acupuncture, with rational pharmacology is still in its infancy. Acupuncture influences the opioid and cannabinoid system through releasing endogenous receptor ligands. Low dose naltrexone also acts on both these systems, and upregulates the opioid and cannabinoid receptors. The authors hypothesise that low dose naltrexone could enhance the pain-relieving effect of acupuncture.
IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure
Mathias, Clinton B.; Schramm, Craig M.; Guernsey, Linda A.; Wu, Carol A.; Polukort, Stephanie H.; Rovatti, Jeffrey; Ser-Dolansky, Jennifer; Secor, Eric; Schneider, Sallie S.; Thrall, Roger S.; Aguila, Hector L.
2017-01-01
Background Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple hematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+T cells. We therefore hypothesized that IL-15−/− mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). Objective To determine whether IL-15−/− mice have attenuated allergic responses in a mouse model of AAD. Methods C57BL/6 wild-type (WT) and IL-15−/− mice were sensitized and challenged with ovalbumin (OVA) and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. Results Here we report that IL-15−/− mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+T and B cells in the spleens and broncholaveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα−/− animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15−/− animals to levels observed in WT mice, but had no further effects. Conclusion and Clinical Relevance These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice. PMID:28093832
Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.
2012-01-01
The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension. PMID:22140038
Two-Production-Period in a Duopoly with Nonprofit and For-Profit Firms
NASA Astrophysics Data System (ADS)
Ferreira, Fernanda A.
2010-09-01
We investigate endogenous roles in a competition between a nonprofit firm and a for-profit firm in a homogeneous goods market, by allowing two production periods. We find that the Cournot-type equilibrium and one Stackelberg-type equilibrium where the nonprofit firm becomes the follower exist; however, another tackelberg-type equilibrium where the nonprofit firm becomes the leader does not exist.
USDA-ARS?s Scientific Manuscript database
Until now, functional analyses of soybean genes have been very arduous because of the lack of a rapid transformation procedure. Recently identified the active endogenous type II transposable element, Tgm9, excises from insertion sites and restores wild-type phenotypes. Thus, this element provides a ...
Limkul, Juthamard; Misaki, Ryo; Kato, Ko; Fujiyama, Kazuhito
2015-11-01
Gaucher's disease is a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCase). It is currently treated by enzyme replacement therapy using recombinant GCase expressed in mammalian cells. Plant production systems are among the most attractive alternatives for pharmaceutical protein production due to such advantages as low-cost, high-scalability, and safety from human pathogen contamination. Because of its high biomass yield, Nicotiana benthamiana could be an economical recombinant GCase production system. In this study, a translational enhancer and suitable terminator were utilized to obtain a powerful expression system for GCase production in N. benthamiana plants. Six plasmid constructs were used. The highest activity of 44.5units/mg protein (after subtraction of endogenous glucosidase activity of the wild-type plant) was observed in transgenic plants transformed with pAt-GC-HSP combined with a 5' untranslated region of the Arabidopsis alcohol dehydrogenase gene with the Arabidopsis heat shock protein terminator. These transgenic plant lines could pave the way to a stable plant-production system for low-cost, high-yield human GCase production. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses.
Kabayama, Miyuki; Sakoori, Kazuto; Yamada, Kazuyuki; Ornthanalai, Veravej G; Ota, Maya; Morimura, Naoko; Katayama, Kei-ichi; Murphy, Niall P; Aruga, Jun
2013-08-07
Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.
Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui
2015-12-01
Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
Sizemore, Tyler R.; Dacks, Andrew M.
2016-01-01
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing. PMID:27845422
Jia, Gui-Qing; Zhang, Ming-Ming; Wang, Kang; Zhao, Gao-Ping; Pang, Ming-Hui; Chen, Zhe-Yu
2018-05-08
Emerging evidence has identified that long non-coding RNAs (lncRNAs) may play an important role in the pathogenesis of many cancer types, including colorectal cancer (CRC). However, the role of PlncRNA-1 in CRC remains unclear. The aim of our present study was to investigate the potential functions of PlncRNA-1 in CRC and to identify the underlying mechanisms of action. We demonstrated that up-regulated PlncRNA-1 in CRC tissues and cells promoted cell proliferation by accelerating cell cycle process and inhibiting cell apoptosis in vitro, enhanced tumor growth and matastasis in vivo and was associated with cell migration and invasion, EMT process of CRC cells. In addition, PlncRNA-1 was a target of miR-204 and enhanced the expression of an endogenous miR-204 target, MMP9 in CRC cells. Furthermore, we found that PlncRNA-1 activates Wnt/β-catenin pathway through the miR-204 in CRC cells. These results suggest that the PlncRNA-1/miR-204/ Wnt/β-catenin regulatory network may shed light on tumorigenesis in CRC. © 2018 Wiley Periodicals, Inc.
Kim, Ki-Hyung; Park, Seong-Hwan; Do, Kee Hun; Kim, Juil; Choi, Kyung Un; Moon, Yuseok
2016-11-01
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in developed countries. Chronic endogenous sterile pro-inflammatory responses are strongly linked to EOC progression and chemoresistance to anti-cancer therapeutics. In the present study, the activity of epithelial NF-κB, a key pro-inflammatory transcription factor, was enhanced with the progress of EOC. This result was mechanistically linked with an increased expression of NSAID-Activated Gene 1 (NAG-1) in MyD88-positive type I EOC stem-like cells, compared with that in MyD88-negative type II EOC cells. Elevated NAG-1 as a potent biomarker of poor prognosis in the ovarian cancer was positively associated with the levels of NF-κB activation, chemokines and stemness markers in type I EOC cells. In terms of signal transduction, NAG-1-activated SMAD-linked and non-canonical TGFβ-activated kinase 1 (TAK-1)-activated pathways contributed to NF-κB activation and the subsequent induction of some chemokines and cancer stemness markers. In addition to effects on NF-κB-dependent gene regulation, NAG-1 was involved in expression of EGF receptor and subsequent activation of EGF receptor-linked signaling. The present study also provided evidences for links between NAG-1-linked signaling and chemoresistance in ovarian cancer cells. NAG-1 and pro-inflammatory NF-κB were positively associated with resistance to paclitaxel in MyD88-positive type I EOC cells. Mechanistically, this chemoresistance occurred due to enhanced activation of the SMAD-4- and non-SMAD-TAK-1-linked pathways. All of the present data suggested NAG-1 protein as a crucial mediator of EOC progression and resistance to the standard first-line chemotherapy against EOC, particularly in MyD88-positive ovarian cancer stem-like cells.
Carver, Chase Matthew; Wu, Xin; Gangisetty, Omkaram
2014-01-01
Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial epilepsy. PMID:25339733
Are endogenous feline leukemia viruses really endogenous?
Stewart, H; Jarrett, O; Hosie, M J; Willett, B J
2011-10-15
Full length endogenous feline leukemia virus (FeLV) proviruses exist within the genomes of many breeds of domestic cat raising the possibility that they may also exist in a transmissible exogenous form. Such viruses would share receptor usage with the recombinant FeLV-B subgroup, a viral subgroup that arises in vivo by recombination between exogenous subgroup A virus (FeLV-A) and endogenous FeLV. Accordingly, all isolates of FeLV-B made to date have contained a "helper" FeLV-A, consistent with their recombinatorial origin. In order to assess whether endogenous viruses are transmitted between cats, we examined primary isolates of FeLV for which the viral subgroup had been determined for the presence of a subgroup B virus that lacked an FeLV-A. Here we describe the identification of two primary field isolates of FeLV (2518 and 4314) that appeared to contain subgroup B virus only by classical interference assays, raising the possibility of between-host transmission of endogenous FeLV. Sequencing of the env gene and U3 region of the 3' long terminal repeat (LTR) confirmed that both viral genomes contained endogenous viral env genes. However the viral 3' LTRs appeared exogenous in origin with a putative 3' recombination breakpoint residing at the 3' end of the env gene. Further, the FeLV-2518 virions also co-packaged a truncated FeLV-A genome containing a defective env gene, termed FeLV-2518(A) whilst no helper subgroup A viral genome was detected in virions of FeLV-4314. The acquisition of an exogenous LTR by the endogenous FeLV in 4314 may have allowed a recombinant FeLV variant to outgrow an exogenous FeLV-A virus that was presumably present during first infection. Given time, a similar evolution may also occur within the 2518 isolate. The data suggest that endogenous FeLVs may be mobilised by acquisition of exogenous LTRs yielding novel viruses that type biologically as FeLV-B. Copyright © 2011 Elsevier B.V. All rights reserved.
Obodo, Udochukwu C.; Epum, Esther A.; Platts, Margaret H.; Seloff, Jacob; Dahlson, Nicole A.; Velkovsky, Stoycho M.; Paul, Shira R.
2016-01-01
DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition. PMID:27044869
Kraus, Benjamin; Fischer, Katrin; Sliva, Katja; Schnierle, Barbara S
2014-03-26
Human endogenous retroviruses (HERVs) are remnants of ancestral infections and chromosomally integrated in all cells of an individual, are transmitted only vertically and are defective in viral replication. However enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed inter-alia in HIV-infected individuals and tumor patients. Therefore HERV-K might serve as a tumor-specific antigen or even as a constant target for the development of an HIV vaccine. To verify our hypothesis, we tested the immunogenicity of HERV-K Gag by using a recombinant vaccinia virus (MVA-HKcon) expressing the HERV-K Gag protein and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) and the HERV-K Gag protein (RLZ-HKGag cells). Subcutaneous application of RLZ-HKGag cells into syngenic BALB/c mice resulted in the formation of local tumors in MVA vaccinated mice. MVA-HKcon vaccination reduced the tumor growth. Furthermore, intravenous injection of RLZ-HKGag cells led to the formation of pulmonary metastases. Vaccination of tumor-bearing mice with MVA-HKcon drastically reduced the number of pulmonary RLZ-HKGag tumor nodules compared to vaccination with wild-type MVA. The data demonstrate that HERV-K Gag is a useful target for vaccine development and might offer new treatment opportunities for cancer patients.
Blaustein, Mordecai P; Hamlyn, John M
2010-12-01
Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.
Watt, Stephen A.; Dayal, Jasbani H. S.; Wright, Sheila; Riddle, Megan; Pourreyron, Celine; McMillan, James R.; Kimble, Roy M.; Prisco, Marco; Gartner, Ulrike; Warbrick, Emma; McLean, W. H. Irwin; Leigh, Irene M.; McGrath, John A.; Salas-Alanis, Julio C.; Tolar, Jakub; South, Andrew P.
2015-01-01
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention. PMID:26380979
Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo
1997-01-01
Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758
Cellular receptor traffic is essential for productive duck hepatitis B virus infection.
Breiner, K M; Schaller, H
2000-03-01
We have investigated the mechanism of duck hepatitis B virus (DHBV) entry into susceptible primary duck hepatocytes (PDHs), using mutants of carboxypeptidase D (gp180), a transmembrane protein shown to act as the primary cellular receptor for avian hepatitis B virus uptake. The variant proteins were abundantly produced from recombinant adenoviruses and tested for the potential to functionally outcompete the endogenous wild-type receptor. Overexpression of wild-type gp180 significantly enhanced the efficiency of DHBV infection in PDHs but did not affect ongoing DHBV replication, an observation further supporting gp180 receptor function. A gp180 mutant deficient for endocytosis abolished DHBV infection, indicating endocytosis to be the route of hepadnaviral entry. With further gp180 variants, carrying mutations in the cytoplasmic domain and characterized by an accelerated turnover, the ability of gp180 to function as a DHBV receptor was found to depend on a wild-type-like sorting phenotype which largely avoids transport toward the endolysosomal compartment. Based on these data, we propose a model in which a distinct intracellular DHBV traffic to the endosome, but not beyond, is a prerequisite for completion of viral entry, i.e., for fusion and capsid release. Furthermore, the deletion of the two enzymatically active carboxypeptidase domains of gp180 did not lead to a loss of receptor function.
Identification of Compounds That Prolong Type I Interferon Signaling as Potential Vaccine Adjuvants.
Shukla, Nikunj M; Arimoto, Kei-Ichiro; Yao, Shiyin; Fan, Jun-Bao; Zhang, Yue; Sato-Kaneko, Fumi; Lao, Fitzgerald S; Hosoya, Tadashi; Messer, Karen; Pu, Minya; Cottam, Howard B; Carson, Dennis A; Hayashi, Tomoko; Zhang, Dong-Er; Corr, Maripat
2018-05-01
Vaccines are reliant on adjuvants to enhance the immune stimulus, and type I interferons (IFNs) have been shown to be beneficial in augmenting this response. We were interested in identifying compounds that would sustain activation of an endogenous type I IFN response as a co-adjuvant. We began with generation of a human monocytic THP-1 cell line with an IFN-stimulated response element (ISRE)-β-lactamase reporter construct for high-throughput screening. Pilot studies were performed to optimize the parameters and conditions for this cell-based Förster resonance energy transfer (FRET) reporter assay for sustaining an IFN-α-induced ISRE activation signal. These conditions were confirmed in an initial pilot screen, followed by the main screen for evaluating prolongation of an IFN-α-induced ISRE activation signal at 16 h. Hit compounds were identified using a structure enrichment strategy based on chemoinformatic clustering and a naïve "Top X" approach. A select list of confirmed hits was then evaluated for toxicity and the ability to sustain IFN activity by gene and protein expression. Finally, for proof of concept, a panel of compounds was used to immunize mice as co-adjuvant with a model antigen and an IFN-inducing Toll-like receptor 4 agonist, lipopolysaccharide, as an adjuvant. Selected compounds significantly augmented antigen-specific immunoglobulin responses.
Endogenous reward mechanisms and their importance in stress reduction, exercise and the brain.
Esch, Tobias; Stefano, George B
2010-06-30
Stress can facilitate disease processes and causes strain on the health care budgets. It is responsible or involved in many human ailments of our time, such as cardiovascular illnesses, particularly related to the psychosocial stressors of daily life, including work. Besides pharmacological or clinical medical treatment options, behavioral stress reduction is much-needed. These latter approaches rely on an endogenous healing potential via life-style modification. Hence, research has suggested different ways and approaches to self-treat stress or buffer against stressors and their impacts. These self-care-centred approaches are sometimes referred to as mind-body medicine or multi-factorial stress management strategies. They consist of various cognitive behavioral techniques, as well as relaxation exercises and nutritional counselling. However, a critical and consistent element of modern effective stress reduction strategies are exercise practices. With regard to underlying neurobiological mechanisms of stress relief, reward and motivation circuitries that are imbedded in the limbic regions of the brain are responsible for the autoregulatory and endogenous processing of stress. Exercise techniques clearly have an impact upon these systems. Thereby, physical activities have a potential to increase mood, i.e., decrease psychological distress by pleasure induction. For doing so, neurobiological signalling molecules such as endogenous morphine and coupled nitric oxide pathways get activated and finely tuned. Evolutionarily, the various activities and autoregulatory pathways are linked together, which can also be demonstrated by the fact that dopamine is endogenously converted into morphine which itself leads to enhanced nitric oxide release by activation of constitutive nitric oxide synthase enzymes. These molecules and mechanisms are clearly stress-reducing.
Polyamine-dependent migration of retinal pigment epithelial cells.
Johnson, Dianna A; Fields, Carolyn; Fallon, Amy; Fitzgerald, Malinda E C; Viar, Mary Jane; Johnson, Leonard R
2002-04-01
Migration of retinal pigment epithelial (RPE) cells can be triggered by disruption of the RPE monolayer or injury to the neural retina. Migrating cells may re-establish a confluent monolayer, or they may invade the neural retina and disrupt visual function. The purpose of this study was to examine the role of endogenous polyamines in mechanisms of RPE migration. Endogenous polyamine levels were determined in an immortalized RPE cell line, D407, using HPLC. Activities of the two rate-limiting enzymes for polyamine synthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (SAMdc), were measured by liberation of ((14)CO(2))(.) Migration was assessed in confluent cultures by determining the number of cells migrating into a mechanically denuded area. All measurements were obtained both in control cultures and in cultures treated with synthesis inhibitors that deplete endogenous polyamines. Subcellular localization of endogenous polyamines was determined using a polyamine antibody. The polyamines, spermidine and spermine, as well as their precursor, putrescine, were normal constituents of RPE cells. The two rate-limiting synthetic enzymes were also present, and their activities were stimulated dramatically by addition of serum to the culture medium. Cell migration was similarly stimulated by serum exposure. When endogenous polyamines were depleted, migration was blocked. When polyamines were replenished through uptake, migration was restored. Polyamine immunoreactivity was limited to membrane patches in quiescent cells. In actively migrating and dividing cells, immunoreactivity was enhanced throughout the cytoplasm. Polyamines are essential for RPE migration. Pharmacologic manipulation of the polyamine pathway could provide a therapeutic strategy for regulating anomalous migration.
Hwang, Geelsu; Dong, Tao; Islam, Md Sahinoor; Sheng, Zhiya; Pérez-Estrada, Leónidas A; Liu, Yang; Gamal El-Din, Mohamed
2013-02-01
To examine the effects of the ozonation process (as an oxidation treatment for water and wastewater treatment applications) on microbial biofilm formation and biodegradability of organic compounds present in oil sands process-affected water (OSPW), biofilm reactors were operated continuously for 6weeks. Two types of biofilm substrate materials: polyethylene (PE) and polyvinylchloride (PVC), and two types of OSPW-fresh and ozonated OSPWs-were tested. Endogenous microorganisms, in OSPW, quickly formed biofilms in the reactors. Without ozonation, the bioreactor (using endogenous microorganisms) removed 13.8% of the total acid-extractable organics (TAO) and 18.5% of the parent naphthenic acids (NAs) from fresh OSPW. The combined ozonation and biodegradation process removed 87.2% of the OSPW TAO and over 99% of the OSPW parent NAs. Further UPLC/HRMS analysis showed that NA biodegradability decreased as the NA cyclization number increased. Microbial biofilm formation was found to depend on the biofilm substrate type. Copyright © 2012 Elsevier Ltd. All rights reserved.
TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area
Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang
2015-01-01
Background: Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Methods: Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. Results: TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). Conclusions: fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation. PMID:26269751
Calcagnoli, Federica; de Boer, Sietse F; Beiderbeck, Daniela I; Althaus, Monika; Koolhaas, Jaap M; Neumann, Inga D
2014-03-15
We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inverse relationship between aggressiveness and tonic endogenous OXT signaling properties. Aim of the present study was to verify the hypothesis that variations in OXT expression and/or OXT receptor (OXTR) binding in selected brain regions are associated with different levels or forms of aggression. To this end, male resident wild-type Groningen rats that repeatedly contested and dominated intruder conspecifics were categorized as being low aggressive, highly aggressive or excessively aggressive. Their brains were subsequently collected and quantified for OXT mRNA expression and OXTR binding levels. Our results showed that OXT mRNA expression in the hypothalamic paraventricular nucleus (PVN), but not in the supraoptic nucleus (SON), negatively correlates with the level of offensiveness. In particular, the excessively aggressive group showed a significantly lower OXT mRNA expression in the PVN as compared to both low and highly aggressive groups. Further, the excessively aggressive animals showed the highest OXTR binding in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). These findings demonstrate that male rats with excessively high levels and abnormal forms of aggressive behavior have diminished OXT transcription and enhanced OXTR binding capacities in specific nodes of the social behavioral brain circuitry. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Sheng; Nheu, Thao; Luwor, Rodney; Nicholson, Sandra E; Zhu, Hong-Jian
2015-07-17
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Sirko, Swetlana; Beckers, Johannes; Irmler, Martin
2015-01-01
Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468 PMID:25965557
Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M
2012-11-01
The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.
Systemic Adenosine Triphosphate Impairs Neutrophil Chemotaxis and Host Defense in Sepsis.
Li, Xiaoou; Kondo, Yutaka; Bao, Yi; Staudenmaier, Laura; Lee, Albert; Zhang, Jingping; Ledderose, Carola; Junger, Wolfgang G
2017-01-01
Sepsis remains an unresolved clinical problem. Therapeutic strategies focusing on inhibition of neutrophils (polymorphonuclear neutrophils) have failed, which indicates that a more detailed understanding of the underlying pathophysiology of sepsis is required. Polymorphonuclear neutrophil activation and chemotaxis require cellular adenosine triphosphate release via pannexin-1 channels that fuel autocrine feedback via purinergic receptors. In the current study, we examined the roles of endogenous and systemic adenosine triphosphate on polymorphonuclear neutrophil activation and host defense in sepsis. Prospective randomized animal investigation and in vitro studies. Preclinical academic research laboratory. Wild-type C57BL/6 mice, pannexin-1 knockout mice, and healthy human subjects used to obtain polymorphonuclear neutrophils for in vitro studies. Wild-type and pannexin-1 knockout mice were treated with suramin or apyrase to block the endogenous or systemic effects of adenosine triphosphate. Mice were subjected to cecal ligation and puncture and polymorphonuclear neutrophil activation (CD11b integrin expression), organ (liver) injury (plasma aspartate aminotransferase), bacterial spread, and survival were monitored. Human polymorphonuclear neutrophils were used to study the effect of systemic adenosine triphosphate and apyrase on chemotaxis. Inhibiting endogenous adenosine triphosphate reduced polymorphonuclear neutrophil activation and organ injury, but increased the spread of bacteria and mortality in sepsis. By contrast, removal of systemic adenosine triphosphate improved bacterial clearance and survival in sepsis by improving polymorphonuclear neutrophil chemotaxis. Systemic adenosine triphosphate impairs polymorphonuclear neutrophil functions by disrupting the endogenous purinergic signaling mechanisms that regulate cell activation and chemotaxis. Removal of systemic adenosine triphosphate improves polymorphonuclear neutrophil function and host defenses, making this a promising new treatment strategy for sepsis.
TALE-mediated modulation of transcriptional enhancers in vivo.
Crocker, Justin; Stern, David L
2013-08-01
We tested whether transcription activator-like effectors (TALEs) could mediate repression and activation of endogenous enhancers in the Drosophila genome. TALE repressors (TALERs) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. TALE activators (TALEAs) targeting the eve promoter or enhancers caused increased expression primarily in cells normally activated by the promoter or targeted enhancer, respectively. This effect supports the view that repression acts in a dominant fashion on transcriptional activators and that the activity state of an enhancer influences TALE binding or the ability of the VP16 domain to enhance transcription. In these assays, the Hairy repression domain did not exhibit previously described long-range transcriptional repression activity. The phenotypic effects of TALER and TALEA expression in larvae and adults are consistent with the observed modulations of eve expression. TALEs thus provide a novel tool for detection and functional modulation of transcriptional enhancers in their native genomic context.
Propagation of thrombosis by neutrophils and extracellular nucleosome networks
Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd
2017-01-01
Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771
Jabbur, James R; Tabor, Amy D; Cheng, Xiaodong; Wang, Hua; Uesugi, Motonari; Lozano, Guillermina; Zhang, Wei
2002-10-10
Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21(Waf1/Cip1) (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha-helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAF(II)31. However, prior incubation of p53 mutants with Mdm-2 modulated TAF(II)31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAF(II)31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAF(II)31 recruitment.
Krampert, Monika; Chirasani, Sridhar Reddy; Wachs, Frank-Peter; Aigner, Robert; Bogdahn, Ulrich; Yingling, Jonathan M.; Heldin, Carl-Henrik; Aigner, Ludwig; Heuchel, Rainer
2010-01-01
Members of the transforming growth factor β (TGF-β) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-β and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-β and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-β and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-β and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-β- and BMP-independent manner. PMID:20479122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodmann, Marianne, E-mail: marianne.brodmann@meduni-graz.at; Seinost, Gerald; Stark, Gerhard
2006-12-15
Background. Significant bradycardia followed by cardiac arrest related to single bolus administration of X-ray contrast medium into a peripheral artery has not, to our knowledge, been described in the literature. Methods and Results. While performing a percutaneous transluminal angioplasty of the left superficial femoral artery in a 68-year old patient with a pre-existing atrioventricular (AV) block, Wenckebach type, he developed an AV block III after a single bolus injection of intra-arterial X-ray contrast medium. Conclusion. We believe that application of contrast medium causes a transitory ischemia in the obstructed vessel and therefore elevation of endogenous adenosine. In the case ofmore » a previously damaged AV node this elevation of endogenous adenosine may be responsible for the development of a short period of third-degree AV block.« less
Structure and biological activity of endogenous and synthetic agonists of GPR119
NASA Astrophysics Data System (ADS)
Tyurenkov, I. N.; Ozerov, A. A.; Kurkin, D. V.; Logvinova, E. O.; Bakulin, D. A.; Volotova, E. V.; Borodin, D. D.
2018-02-01
A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules. The bibliography includes 104 references.
Xu, Xiang-Ru Shannon; Gantz, Valentino Matteo; Siomava, Natalia; Bier, Ethan
2017-12-23
The knirps ( kni ) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila . Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ' in locus ' mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. © 2017, Xu et al.
Siomava, Natalia
2017-01-01
The knirps (kni) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila. Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ‘in locus’ mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. PMID:29274230
Gonai, Takeru; Kawahara, Shusuke; Tougou, Makoto; Satoh, Shigeru; Hashiba, Teruyoshi; Hirai, Nobuhiro; Kawaide, Hiroshi; Kamiya, Yuji; Yoshioka, Toshihito
2004-01-01
Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.
Vitriol, Eric A; Uetrecht, Andrea C; Shen, Feimo; Jacobson, Ken; Bear, James E
2007-04-17
Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.
Armstrong, Regina C; Le, Tuan Q; Frost, Emma E; Borke, Rosemary C; Vana, Adam C
2002-10-01
This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model produces focal areas of spinal cord demyelination with inflammation. The cuprizone neurotoxicant model causes extensive corpus callosum demyelination without a lymphocytic cell response. In both models, FGF2 expression is upregulated in areas of demyelination in wild-type mice. Surprisingly, in both models, oligodendrocyte repopulation of demyelinated white matter was significantly increased in FGF2 -/- mice compared with wild-type mice and even surpassed the oligodendrocyte density of nonlesioned mice. This dramatic result indicated that the absence of FGF2 promoted oligodendrocyte regeneration, possibly by enhancing oligodendrocyte progenitor proliferation and/or differentiation. FGF2 -/- and +/+ mice had similar oligodendrocyte progenitor densities in normal adult CNS, as well as similar progenitor proliferation and accumulation during demyelination. To directly analyze progenitor differentiation, glial cultures from spinal cords of wild-type mice undergoing remyelination after MHV-A59 demyelination were treated for 3 d with either exogenous FGF2 or an FGF2 neutralizing antibody. Elevating FGF2 favored progenitor proliferation, whereas attenuating endogenous FGF2 activity promoted the differentiation of progenitors into oligodendrocytes. These in vitro results are consistent with enhanced progenitor differentiation in FGF2 -/- mice. These studies demonstrate that the FGF2 genotype regulates oligodendrocyte regeneration and that FGF2 appears to inhibit oligodendrocyte lineage differentiation during remyelination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min Soo; Kim, Gyoung Mi; Choi, Yun-Jeong
2013-11-15
Highlights: •TrkA was mainly present in other types of leukemia including AML. •TrkA enhances the survival of leukemia by activation of PI3K/Akt pathway. •TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1. •TrkA acted as a key regulator of leukemogenesis and survival through c-Src activation. -- Abstract: Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkAmore » is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.« less
Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto
2013-06-01
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.
Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin
2013-01-01
Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.
Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin
2013-01-01
Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188
Galli, Uwe M; Sauter, Marlies; Lecher, Bernd; Maurer, Simone; Herbst, Hermann; Roemer, Klaus; Mueller-Lantzsch, Nikolaus
2005-04-28
Germ cell tumors (GCTs) are among the most common malignancies in young men. We have previously documented that patients with GCT frequently produce serum antibodies directed against proteins encoded by human endogenous retrovirus (HERV) type K sequences. Transcripts originating from the env gene of HERV-K, including the rec-relative of human immunodeficiency virus rev, are highly expressed in GCTs. We report here that mice that inducibly express HERV-K rec show a disturbed germ cell development and may exhibit, by 19 months of age, changes reminiscent of carcinoma in situ, the predecessor lesion of classic seminoma in humans. This provides the first direct evidence that the expression of a human endogenous retroviral gene previously established as a marker in human germ cell tumors may contribute to organ-specific tumorigenesis in a transgenic mouse model.
Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Duszynski, Donald W
2017-02-01
Endogenous stages of the life cycle of Eimeria melanomytis, infecting the peripheral epithelial cells of villi of the small intestine of experimentally infected young dusky rice rats, Melanomys caliginosus , were studied. Giemsa-stained mucosal scrapings and histological sections were examined for all the stages. Eimeria melanomytis has 3 generations of meronts (M), different in size, shape, and number of merozoites (m); and in size, shape, and location of the nuclei within the cytoplasm of the meronts. The 3 meront types, M 1 -M 3 , respectively, had 11-14 (m 1 ), 7-10 (m 2 ), and 20-30 (m 3 ) merozoites. Macrogametocytes and microgametocytes, as well as macrogametes and microgametes, complete the sexual cycle forming the unsporulated oocysts. This parasite's endogenous development produced severe intestinal lesions in experimentally infected dusky rice rats.
Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes
Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.
2009-01-01
Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express non-exosomal proteins into exosomes with therapeutic purposes. PMID:19367702
Cruz, Ariadne Cristiane Cabral; Silva, Mariana Lúcia; Caon, Thiago; Simões, Cláudia Maria Oliveira
2012-01-01
Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.
Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.
Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C; Ottmüller, Katja J; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F; Kreines, Fabiana; Lieberman, Sophia R; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M; Shono, Yusuke; Jenq, Robert R; Hanash, Alan M; Nolan, Daniel J; Butler, Jason M; Beilhack, Andreas; Manley, Nancy R; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel R M
2018-01-12
The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1 , a key transcription factor involved in TEC development, maintenance, and regeneration, and its downstream targets such as Dll4 , a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation
Kossel, Albrecht H.; Cambridge, Sidney B.; Wagner, Uta; Bonhoeffer, Tobias
2001-01-01
Neurotrophins have been shown to be involved in functional strengthening of central nervous system synapses. Although their general importance in this process is undisputed, it remains unresolved whether neurotrophins are truly mediators of synaptic strengthening or merely important cofactors. To address this question, we have devised a method to inactivate endogenous brain-derived neurotrophic factor (BDNF) with high time resolution by “caging” a function-blocking mAb against BDNF with a photosensitive protecting compound. Different assays were used to show that this inactivation of the Ab is reversible by UV light. Synaptic potentiation after τ-burst stimulation in the CA1 region of acute hippocampal slices was significantly less when applying the unmodified Ab compared with the caged Ab. Importantly, photoactivation of the caged Ab during the time of induction of synaptic enhancement led to a marked decrease in potentiation. Our experiments therefore strengthen the view that endogenous BDNF has fast effects during induction of synaptic plasticity. The results additionally show that caged Abs can provide a tool for precise spatiotemporal control over endogenous protein levels. PMID:11724927
The Emerging Role of Epigenetics in Stroke
Qureshi, Irfan A.; Mehler, Mark F.
2013-01-01
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016
Endogenous versus exogenous generic reference pricing for pharmaceuticals.
Antoñanzas, F; Juárez-Castelló, C A; Rodríguez-Ibeas, R
2017-12-01
In this paper we carry out a vertical differentiation duopoly model applied to pharmaceutical markets to analyze how endogenous and exogenous generic reference pricing influence competition between generic and branded drugs producers. Unlike the literature, we characterize for the exogenous case the equilibrium prices for all feasible relevant reference prices. Competition is enhanced after the introduction of a reference pricing system. We also compare both reference pricing systems on welfare grounds, assuming two different objective functions for health authorities: (i) standard social welfare and (ii) gross consumer surplus net of total pharmaceutical expenditures. We show that regardless of the objective function, health authorities will never choose endogenous reference pricing. When health authorities are paternalistic, the exogenous reference price that maximizes standard social welfare is such that the price of the generic drug is the reference price while the price of the branded drug is higher than the reference price. When health authorities are not paternalistic, the optimal exogenous reference price is such that the price of the branded drug is the reference price while the price of the generic drug is lower than the reference price.
CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells.
Sharma, Arun; Toepfer, Christopher N; Ward, Tarsha; Wasson, Lauren; Agarwal, Radhika; Conner, David A; Hu, Johnny H; Seidman, Christine E
2018-01-24
Human induced pluripotent stem cells (hiPSCs) can be used to mass produce surrogates of human tissues, enabling new advances in drug screening, disease modeling, and cell therapy. Recent developments in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing technology use homology-directed repair (HDR) to efficiently generate custom hiPSC lines harboring a variety of genomic insertions and deletions. Thus, hiPSCs that encode an endogenous protein fused to a fluorescent reporter protein can be rapidly created by employing CRISPR/Cas9 genome editing, enhancing HDR efficiency and optimizing homology arm length. These fluorescently tagged hiPSCs can be used to visualize protein function and dynamics in real time as cells proliferate and differentiate. Given that nearly any intracellular protein can be fluorescently tagged, this system serves as a powerful tool to facilitate new discoveries across many biological disciplines. In this unit, we present protocols for the design, generation, and monoclonal expansion of genetically customized hiPSCs encoding fluorescently tagged endogenous proteins. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Functional characterization of the vitellogenin promoter in the silkworm, Bombyx mori.
Xu, J; Wang, Y Q; Li, Z Q; Ling, L; Zeng, B S; You, L; Chen, Y Z; Aslam, A F M; Huang, Y P; Tan, A J
2014-10-01
Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis-regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798-bp DNA sequence adjacent to the 5'-end of the vitellogenin gene (Bmvg). PiggyBac-based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex-, tissue- and stage-specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval-pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20-hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis-regulatory element in B. mori. © 2014 The Royal Entomological Society.
C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.
Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C
2018-06-02
CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.
Gertsch, Jürg
2008-05-01
Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.
Jung, Eun Sung; Park, Hye Min; Hyun, Seung Min; Shon, Jong Cheol; Singh, Digar; Liu, Kwang-Hyeon; Whon, Tae Woong; Bae, Jin-Woo; Hwang, Jae Sung; Lee, Choong Hwan
2017-01-01
The attenuating effects of green tea supplements (GTS) against the ultraviolet (UV) radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB), class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR). Conversely, in GTS fed UVB-exposed mice (U+GTS), the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.
NASA Astrophysics Data System (ADS)
Gong, Qianhong; Yu, Wengong; Dai, Jixun; Liu, Hongquan; Xu, Rifu; Guan, Huashi; Pan, Kehou
2007-01-01
Endogenous tubulin promoter has been widely used for expressing foreign genes in green algae, but the efficiency and feasibility of endogenous tubulin promoter in the economically important Porphyra yezoensis (Rhodophyta) are unknown. In this study, the flanking sequences of beta-tubulin gene from P. yezoensis were amplified and two transient expression vectors were constructed to determine their transcription promoting feasibility for foreign gene gusA. The testing vector pATubGUS was constructed by inserting 5'-and 3'-flanking regions ( Tub5' and Tub3') up-and down-stream of β-glucuronidase (GUS) gene ( gusA), respectively, into pA, a derivative of pCAT®3-enhancer vector. The control construct, pAGUSTub3, contains only gusA and Tub3'. These constructs were electroporated into P. yezoensis protoplasts and the GUS activities were quantitatively analyzed by spectrometry. The results demonstrated that gusA gene was efficiently expressed in P. yezoensis protoplasts under the regulation of 5'-flanking sequence of the beta-tubulin gene. More interestingly, the pATubGUS produced stronger GUS activity in P. yezoensis protoplasts when compared to the result from pBI221, in which the gusA gene was directed by a constitutive CaMV 35S promoter. The data suggest that the integration of P. yezoensis protoplast and its endogenous beta-tubulin flanking sequences is a potential novel system for foreign gene expression.
Li, Zhou; Li, Yaping; Zhang, Yan; Cheng, Bizhen; Peng, Yan; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong
2018-06-09
Endogenous hormones and polyamines (PAs) could interact to regulate growth and tolerance to water stress in white clover. The objective of this study was to investigate whether the alteration of endogenous indole-3-acetic acid (IAA) level affected other hormones level and PAs metabolism contributing to the regulation of tolerance to water stress in white clover. Plants were pretreated with IAA or L-2-aminooxy-3-phenylpropionic acid (L-AOPP, the inhibitor of IAA biosynthesis) for 3 days and then subjected to water-sufficient condition and water stress induced by 15% polyethylene glycol 6000 for 8 days in growth chambers. Exogenous application of IAA significantly increased endogenous IAA, gibberellin (GA), abscisic acid (ABA), and polyamine (PAs) levels, but had no effect on cytokinin content under water stress. The increase in endogenous IAA level enhanced PAs anabolism via the improvement of enzyme activities and transcript level of genes including arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. Exogenous application of IAA also affected PAs catabolism, as manifested by an increase in diamine oxidase and a decrease in polyamine oxidase activities and genes expression. More importantly, the IAA deficiency in white clover decreased endogenous hormone levels (GA, ABA, and PAs) and PAs anabolism along with decline in antioxidant defense and osmotic adjustment (OA). On the contrary, exogenous IAA effectively alleviated stress-induced oxidative damage, growth inhibition, water deficit, and leaf senescence through the maintenance of higher chlorophyll content, OA, and antioxidant defense as well as lower transcript levels of senescence marker genes SAG101 and SAG102 in leaves under water stress. These results indicate that IAA-induced the crosstalk between endogenous hormones and PAs could be involved in the improvement of antioxidant defense and OA conferring tolerance to water stress in white clover. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart-Hutchinson, P.J.; Hale, Christopher M.; Wirtz, Denis
The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affectmore » cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.« less
Steffensen, Charlotte; Pereira, Alberto M; Dekkers, Olaf M; Jørgensen, Jens Otto L
2016-12-01
Type 2 diabetes (T2D) and Cushing's syndrome (CS) share clinical characteristics, and several small studies have recorded a high prevalence of hypercortisolism in T2D, which could have therapeutic implications. We aimed to assess the prevalence of endogenous hypercortisolism in T2D patients. Systematic review and meta-analysis of the literature. A search was performed in SCOPUS, MEDLINE, and EMBASE for original articles assessing the prevalence of endogenous hypercortisolism and CS in T2D. Data were pooled in a random-effect logistic regression model and reported with 95% confidence intervals (95% CI). Fourteen articles were included, with a total of 2827 T2D patients. The pooled prevalence of hypercortisolism and CS was 3.4% (95% CI: 1.5-5.9) and 1.4% (95 CI: 0.4-2.9) respectively. The prevalence did not differ between studies of unselected patients and patients selected based on the presence of metabolic features such as obesity or poor glycemic control (P = 0.41 from meta-regression). Imaging in patients with hypercortisolism (n = 102) revealed adrenal tumors and pituitary tumors in 52 and 14% respectively. Endogenous hypercortisolism is a relatively frequent finding in T2D, which may have therapeutic implications. © 2016 European Society of Endocrinology.
Shoura, Massa J; Gabdank, Idan; Hansen, Loren; Merker, Jason; Gotlib, Jason; Levene, Stephen D; Fire, Andrew Z
2017-10-05
Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples. Copyright © 2017 Shoura et al.
Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.
Eisbrenner, G; Evans, H J
1982-01-01
An investigation has been conducted to identify electron transport carriers that participate in the oxidation of H2 by H2 uptake-positive strains of Rhizobium japonicum bacteroids. We have observed that the reduced form of dibromothymoquinone at a concentration of 0.2 mM strongly inhibited H2 uptake, endogenous respiration, and C2H2 reduction by bacteroid suspensions. Reduced dibromothymoquinone, however, failed to inhibit the transfer of electrons from H2 to methylene blue under anaerobic conditions, indicating that the hydrogenase per se is insensitive to this inhibitor. Metronidazole, at 1 mM, affected rates of H2 uptake and endogenous respiration only slightly, but strongly inhibited C2H2 reduction. Evidence for H2-dependent cytochrome reduction in an H2 uptake-positive strain of R. japonicum bacteroids is presented. In kinetic studies, the rates of reduction of the type b and c cytochromes in the presence of H2 were shown to be severalfold higher than the rates due to endogenous respiration alone. With hydrogenase-deficient mutants of R. japonicum, no measurable effect of H2 on cytochrome reduction was observed. Our results indicate that ubiquinone and cytochromes of types b and c are involved in the oxyhydrogen reaction in R. japonicum. PMID:6277845
Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants.
Porcel, Rosa; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo
2014-01-25
Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.
Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells
Peters, Haley L.; Tripathi, Satyendra C.; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R.; St. John, Lisa S.; Federico, Lorenzo; Meraz, Ismail M.; Roth, Jack A.; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L.; Heymach, John V.; Swisher, Stephen G.; Bernantchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J.
2017-01-01
Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these re-invigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAM were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTL from healthy donors that had been expanded against select peptides. Finally, CTL specific for serine proteases–induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. PMID:28254787
Zhang, Chen; Li, Xia; He, Yafei; Zhang, Jinfei; Yan, Ting; Liu, Xiaolong
2017-06-01
We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C 4 PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C 4 -PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C 4 photosynthesis can be used to increase the yield of rice under drought conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Yongqiang; Liu, Zhongjuan; Wang, Xiaoyun; Wang, Jianfeng; Fan, Kai; Li, Zhaowei; Lin, Wenxiong
2018-03-24
DELLA proteins' negative regulation of dark-induced senescence and chlorophyll degradation in Arabidopsis is through interaction with WRKY6 and thus repression of its transcriptional activities on senescence-related genes. Senescence is an intricate and highly orchestrated process regulated by numerous endogenous and environmental signals. Gibberellins (GAs) and their signaling components DELLA proteins have been known to participate in the regulation of senescence. However, the mechanism of the GA-DELLA system involved in the senescence process remains largely unclear. Darkness is a known environmental factor that induces plant senescence. In this study, exogenous GA 3 (an active form of GA) accelerated but paclobutrazol (a specific GA biosynthesis inhibitor) retarded dark-induced leaf yellowing in Arabidopsis. Moreover, the dark-triggered decrease in chlorophyll content, increase in cell membrane leakage, and upregulation of senescence-associated genes were notably impaired in both endogenous GA-decreased mutants ga3ox1/ga3ox2 and ga20ox1/ga20ox2 compared with those in wild-type Col-0. These effects of darkness were enhanced in the quintuple mutant of DELLA genes gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 and conversely attenuated in the gain-of-function mutant gai and transgenic plant 35S::TAP-RGAd17 compared with wild-type Ler. Subsequently, RGA interacted with the transcription factor WRKY6 in a yeast two-hybrid assay, as confirmed by bimolecular fluorescence complementation and pull-down analyses. In addition, mutation and overexpression of WRKY6 retarded and accelerated dark-induced senescence, respectively. Furthermore, transient expression assays in Arabidopsis protoplasts indicated that RGA and GAI weakened the transcriptional activities of WRKY6 on its downstream senescence-related genes, including SAG13 and SGR. Taken together, these results suggest that GAs positively and DELLAs negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis. DELLAs function in this process, at least in part, by interacting with WRKY6.
Ku, Jacqueline M.; Andrews, Zane B.; Barsby, Tom; Reichenbach, Alex; Lemus, Moyra B.; Drummond, Grant R.; Sleeman, Mark W.; Spencer, Sarah J.; Sobey, Christopher G.
2015-01-01
The ghrelin-related peptides, acylated ghrelin, des-acylated ghrelin, and obestatin, are novel gastrointestinal hormones. We firstly investigated whether the ghrelin gene, ghrelin O-acyltransferase, and the ghrelin receptor (GH secretagogue receptor 1a [GHSR1a]) are expressed in mouse cerebral arteries. Secondly, we assessed the cerebrovascular actions of ghrelin-related peptides by examining their effects on vasodilator nitric oxide (NO) and superoxide production. Using RT-PCR, we found the ghrelin gene and ghrelin O-acyltransferase to be expressed at negligible levels in cerebral arteries from male wild-type mice. mRNA expression of GHSR1a was also found to be low in cerebral arteries, and GHSR protein was undetectable in GHSR-enhanced green fluorescent protein mice. We next found that exogenous acylated ghrelin had no effect on the tone of perfused cerebral arteries or superoxide production. By contrast, exogenous des-acylated ghrelin or obestatin elicited powerful vasodilator responses (EC50 < 10 pmol/L) that were abolished by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester. Furthermore, exogenous des-acylated ghrelin suppressed superoxide production in cerebral arteries. Consistent with our GHSR expression data, vasodilator effects of des-acylated ghrelin or obestatin were sustained in the presence of YIL-781 (GHSR1a antagonist) and in arteries from Ghsr-deficient mice. Using ghrelin-deficient (Ghrl−/−) mice, we also found that endogenous production of ghrelin-related peptides regulates NO bioactivity and superoxide levels in the cerebral circulation. Specifically, we show that NO bioactivity was markedly reduced in Ghrl−/− vs wild-type mice, and superoxide levels were elevated. These findings reveal protective actions of exogenous and endogenous ghrelin-related peptides in the cerebral circulation and show the existence of a novel ghrelin receptor(s) in the cerebral endothelium. PMID:25322462
Khaosaad, Thanasan; Staehelin, Christian; Steinkellner, Siegrid; Hage-Ahmed, Karin; Ocampo, Juan Antonio; Garcia-Garrido, Jose Manuel; Vierheilig, Horst
2010-11-01
Nitrogen-fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non-host plants. Here, we used a split-root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split-root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234. Copyright © Physiologia Plantarum 2010.
Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes.
Di Marzo, Vincenzo; Piscitelli, Fabiana; Mechoulam, Raphael
2011-01-01
The cannabinoid receptors for Δ(9)-THC, and particularly, the CB(1) receptor, as well as its endogenous ligands, the endocannabinoids anandamide and 2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy balance in mammals. While initially it was believed that this endocannabinoid signaling system would only facilitate energy intake, we now know that perhaps even more important functions of endocannabinoids and CB(1) receptors in this context are to enhance energy storage into the adipose tissue and reduce energy expenditure by influencing both lipid and glucose metabolism. Although normally well controlled by hormones and neuropeptides, both central and peripheral aspects of endocannabinoid regulation of energy balance can become dysregulated and contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility that CB(1) antagonists might be used for the treatment of these metabolic disorders. On the other hand, evidence is emerging that some nonpsychotropic plant cannabinoids, such as cannabidiol, can be employed to retard β-cell damage in type 1 diabetes. These novel aspects of endocannabinoid research are reviewed in this chapter, with emphasis on the biological effects of plant cannabinoids and endocannabinoid receptor antagonists in diabetes.
Potting, Christoph; Crochemore, Christophe; Moretti, Francesca; Nigsch, Florian; Schmidt, Isabel; Manneville, Carole; Carbone, Walter; Knehr, Judith; DeJesus, Rowena; Lindeman, Alicia; Maher, Rob; Russ, Carsten; McAllister, Gregory; Reece-Hoyes, John S; Hoffman, Gregory R; Roma, Guglielmo; Müller, Matthias; Sailer, Andreas W; Helliwell, Stephen B
2018-01-09
PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min
2017-06-01
We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.
Sonke, Eric; Verrydt, Megan; Postenka, Carl O.; Pardhan, Siddika; Willie, Chantalle J.; Mazzola, Clarisse R.; Hammers, Matthew D.; Pluth, Michael D.; Lobb, Ian; Power, Nicholas E.; Chambers, Ann F.; Leong, Hon S.; Sener, Alp
2016-01-01
Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel–Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease. PMID:26068241
Exacerbation of Diabetic Renal Alterations in Mice Lacking Vasohibin-1
Hinamoto, Norikazu; Maeshima, Yohei; Yamasaki, Hiroko; Nasu, Tatsuyo; Saito, Daisuke; Watatani, Hiroyuki; Ujike, Haruyo; Tanabe, Katsuyuki; Masuda, Kana; Arata, Yuka; Sugiyama, Hitoshi; Sato, Yasufumi; Makino, Hirofumi
2014-01-01
Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/−) or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1+/− mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic VASH1+/− mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy. PMID:25255225
Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus
Serhan, C N; Chiang, N
2008-01-01
Complete resolution of an acute inflammatory response and its return to homeostasis are essential for healthy tissues. Here, we overview ongoing efforts to characterize cellular and molecular mechanisms that govern the resolution of self-limited inflammation. Systematic temporal analyses of evolving inflammatory exudates using mediator lipidomics-informatics, proteomics, and cellular trafficking with murine resolving exudates demonstrate novel endogenous pathways of local-acting mediators that share both anti-inflammatory and pro-resolving properties. In murine systems, resolving-exudate leukocytes switch their phenotype to actively generate new families of mediators from major omega-3 fatty acids EPA and DHA termed resolvins and protectins. Recent advances on their biosynthesis and actions are reviewed with a focus on the E-series resolvins (RvE1, RvE2), D series resolvins (RvD1, RvD2) and the protectins including neuroprotectin D1/protectin D1 (NPD1/PD1) as well as their aspirin-triggered epimeric forms. Members of each new family demonstrate potent stereo-specific actions, joining the lipoxins as endogenous local signals that govern resolution and endogenous anti-inflammation mechanisms. In addition to their origins and roles in resolution biology in the immune system, recent findings indicate that these new mediator families also display potent protective actions in lung, kidney, and eye as well as enhance microbial clearance. Thus, these endogenous agonists of resolution pathways constitute a novel genus of chemical mediators that possess pro-resolving, anti-inflammatory, and antifibrotic as well as host-directed antimicrobial actions. These may be useful in the design of new therapeutics and treatments for diseases with the underlying trait of uncontrolled inflammation and redox organ stress. PMID:17965751
Hospital's activity-based financing system and manager-physician [corrected] interaction.
Crainich, David; Leleu, Hervé; Mauleon, Ana
2011-10-01
This paper examines the consequences of the introduction of an activity-based reimbursement system on the behavior of physicians and hospital's managers. We consider a private for-profit sector where both hospitals and physicians are initially paid on a fee-for-service basis. We show that the benefit of the introduction of an activity-based system depends on the type of interaction between managers and physicians (simultaneous or sequential decision-making games). It is shown that, under the activity-based system, a sequential interaction with physician leader could be beneficial for both agents in the private sector. We further model an endogenous timing game à la Hamilton and Slutsky (Games Econ Behav 2: 29-46, 1990) in which the type of interaction is determined endogenously. We show that, under the activity-based system, the sequential interaction with physician leader is the unique subgame perfect equilibrium.
Market mechanism based on the endogenous changing of game types such as Minority-Majority games
NASA Astrophysics Data System (ADS)
Ahn, Sanghyun; Lim, Gyuchang; Kim, Sooyong; Kim, Kyungsik
2010-03-01
In many social and biological systems agents simultaneously and adaptively compete for limited resources, thereby altering their environment. We propose a evolution function extending Minority-Majority Games that captures the competition between agents to make money. The dynamics changes the ratio of two types of boundedly rational traders, fundamentalists and chartists with the payoff function endogenously. In the previous game theories, the best strategies are not always targeting the minority but are shifting opportunistically between the minority and the majority. And using a mixture of local bifurcation theory and numerical methods, there are possible bifurcation routes to complicated asset price dynamics, chaotic attractors. Hereby we improve the thinking logic of the atoms for attaching the dynamics to the market. This working shows that removing unrealistic features of the game theories leads to models which reproduce a behavior close to what is observed in real markets.
GENOMIC INSTABILITY AND ENHANCED RADIOSENSITIVITY IN HSP70.1- AND HSP70.3-DEFICIENT MICE
Abstract
Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine wheth...
Genetic Inactivation of D-Amino Acid Oxidase Enhances Extinction and Reversal Learning in Mice
ERIC Educational Resources Information Center
Labrie, Viviane; Duffy, Steven; Wang, Wei; Barger, Steven W.; Baker, Glen B.; Roder, John C.
2009-01-01
Activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site has been shown to accelerate adaptive forms of learning that may benefit psychopathologies involving cognitive and perseverative disturbances. In this study, the effects of increasing the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic…
USDA-ARS?s Scientific Manuscript database
A 23-amino acid peptide, AtPep1, and its homologues are endogenous elicitors in Arabidopsis, inducing defense related genes. AtPep1 enhances resistance to a root pathogen, Pythium irregulare, through the salicylic acid, jasmonic acid, ethylene, and reactive oxygen species signaling pathways. AtPep...
Clinical study of the hypothesis of endogenous collateral wind on acute coronary syndrome: a review.
Wang, Xian; Zhang, Cong; Yang, Ran; Zhu, Haiyan; Zhao, Huaibing; Li, Xiaoming
2014-01-01
Acute Coronary Syndrome (ACS), is a serious threat to people's health, and life, and in recent years, the incidence has increased yearly. This study was to propose the hypothesis of "endogenous collateral wind" based on the patho-mechanism of thrombogenesis complicated by ruptured plaque on ACS, and the theory of traditional Chinese medicine. Through successful coronary angiography (CAG), and intravascular ultrasound (IVUS), patients with coronary artery disease were made the differential diagnosis such as blood stasis, blood stasis due to phlegm obstruction, and endogenous collateral wind. The levels of plasma inflammatory marker were measured to study on the characteristics of "endogenous collateral wind". Luo heng dripping pills with promoting blood circulation to expel wind-evil, and remove wetness were made based on the hypothesis of "endogenous collateral wind" on ACS. Patients with unstable angina were randomly divided into 3, groups based on therapeutic methods: conventional therapy group, Luo Heng dripping pills group and Tongxinluo caps. Differences among groups were compared. There were great changes in number and degree of coronary arteriostenosis confirmed by CAG, the types of ACC/AHA lesion and Levin lesion confirmed by CAG, remodeling index, positive or negative remodeling percentage measured by IVUS, the plasma levels of plasma inflammatory marker measured by ELLSA in the patients with endogenous collateral wind, compared with patients with blood stasis and blood stasis due to phlegm obstruction. The total effective rate of improved angina in Luo Heng dripping pills group was significantly higher than those in other two groups. The levels of plasma inflammatory marker were significantly lower in Luo Heng dripping pills group. There were some pathological basis which were found about the hypothesis of "endogenous collateral wind" on acute coronary syndrome. It provided evidences for patients with coronary artery disease treated by medicines with expelling evil-wind, and removing wetness.
Guan, Yi; Li, Yiping; Zhao, Gang; Li, Yunqian
2018-06-01
Impaired autophagic clearance of aggregated α-synuclein is considered as one of key mechanisms underlining Parkinson disease (PD). High-mobility group protein B1 (HMGB1) has recently been demonstrated to mediate persistent neuroinflammation and consequent progressive neurodegeneration by promoting multiple inflammatory and neurotoxic factors. In this study, we examined the influence of the overexpression of wild-type (WT) and mutant-type (MT, A53T and A30P) α-synuclein on the autophagy in neuroblastoma SH-SY5Y cells under starvation, and then investigated the regulation of endogenous HMGB1 on the α-synuclein degradation and on the starvation-induced autophagy in the α-synuclein-overexpressed SH-SY5Y cells. It was demonstrated that the overexpression of WT or MT α-synuclein significantly downregulated the starvation-induced conversion of LC3I to LC3II and autophagy protein (Atg) 5 expression, whereas markedly inhibited the starvation-downregulated mTOR in SH-SY5Y cells. On the other side, the lentivirus-mediated upregulation of endogenous HMGB1 promoted the degradation of WT or MT α-synuclein in SH-SY5Y cells autophagy-dependently via promoting Atg 5, but not mTOR, the Atg 5 knockdown downregulated the HMGB1-mediated promotion to α-synuclein degeneration. Thus, we concluded that α-synuclein inhibited the starvation-induced autophagy in neuroblastoma SH-SY5Y cells via inhibiting the mTOR/Atg 5 signaling. However, the endogenous HMGB1 promoted the autophagic degradation of α-synuclein via the Atg 5-dependent autophagy-initiation pathway, implying the protective role of endogenous HMGB1 in the neuroblastoma cells against the α-synuclein accumulation. Copyright © 2018. Published by Elsevier Inc.
Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.
DiBona, Gerald F; Jones, Susan Y
2003-08-01
To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus and aortic depressor nerve stimulation, respectively.
Makris, Eleftherios A.; Responte, Donald J.; Hu, Jerry C.; Athanasiou, Kyriacos A.
2014-01-01
The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effects of lysyl oxidase (LOX), the enzyme responsible for the formation of collagen cross-links. Hypoxia-induced endogenous LOX was applied in multiple musculoskeletal tissues (i.e., cartilage, meniscus, tendons, ligaments). Results of these studies showed that both native and engineered tissues are enhanced by invoking a mechanism of hypoxia-induced pyridinoline (PYR) cross-links via intermediaries like LOX. Hypoxia was shown to enhance PYR cross-linking 1.4- to 6.4-fold and, concomitantly, to increase the tensile properties of collagen-rich tissues 1.3- to 2.2-fold. Direct administration of exogenous LOX was applied in native cartilage and neocartilage generated using a scaffold-free, self-assembling process of primary chondrocytes. Exogenous LOX was found to enhance native tissue tensile properties 1.9-fold. LOX concentration- and time-dependent increases in PYR content (∼16-fold compared with controls) and tensile properties (approximately fivefold compared with controls) of neocartilage were also detected, resulting in properties on par with native tissue. Finally, in vivo subcutaneous implantation of LOX-treated neocartilage in nude mice promoted further maturation of the neotissue, enhancing tensile and PYR content approximately threefold and 14-fold, respectively, compared with in vitro controls. Collectively, these results provide the first report, to our knowledge, of endogenous (hypoxia-induced) and exogenous LOX applications for promoting collagen cross-linking and improving the tensile properties of a spectrum of native and engineered tissues both in vitro and in vivo. PMID:25349395
Bovine Foamy Virus Transactivator BTas Interacts with Cellular RelB To Enhance Viral Transcription▿
Wang, Jian; Tan, Juan; Guo, Hongyan; Zhang, Qicheng; Jia, Rui; Xu, Xuan; Geng, Yunqi; Qiao, Wentao
2010-01-01
Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interaction in vitro and in vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription. PMID:20844054
Bovine foamy virus transactivator BTas interacts with cellular RelB to enhance viral transcription.
Wang, Jian; Tan, Juan; Guo, Hongyan; Zhang, Qicheng; Jia, Rui; Xu, Xuan; Geng, Yunqi; Qiao, Wentao
2010-11-01
Viruses are obligate intracellular parasites that depend on cellular machinery for their efficient transcription and replication. In a previous study we reported that bovine foamy virus (BFV) is able to activate the nuclear factor κB (NF-κB) pathway through the action of its transactivator BTas to enhance viral transcription. However, the mechanism used by NF-κB to enhance BFV transcription remains elusive. To address this question, we employed a yeast two-hybrid assay to screen for BTas-interacting proteins. We found that RelB, a member of NF-κB protein family, interacts with BTas. We confirmed the putative RelB-BTas interaction in vitro and in vivo and identified the protein regions responsible for the RelB-BTas interaction. Using a luciferase reporter assay, we next showed that RelB enhances BFV transcription (BTas-induced long terminal repeat [LTR] transactivation) and that this process requires both the localization of the RelB-BTas interaction in the nucleus and the Rel homology domain of RelB. The knockdown of the cellular endogenous RelB protein using small interfering RNA (siRNA) significantly attenuated BTas-induced LTR transcription. The results of chromatin immunoprecipitation (ChIP) analysis showed that endogenous RelB binds to the viral LTR in BFV-infected cells. Together, these results suggest that BFV engages the RelB protein as a cotransactivator of BTas to enhance viral transcription. In addition, our findings indicate that BFV infection upregulates cellular RelB expression through BTas-induced NF-κB activation. Thus, this study demonstrates the existence of a positive-feedback circuit in which BFV utilizes the host's NF-κB pathway through the RelB protein for efficient viral transcription.
Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip
2010-01-01
The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251
Aroca, Angeles; Schneider, Markus; Scheibe, Renate; Gotor, Cecilia; Romero, Luis C
2017-06-01
Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Lilley, Jodi L. Stewart; Gee, Christopher W.; Sairanen, Ilkka; Ljung, Karin; Nemhauser, Jennifer L.
2012-01-01
The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing pathway via the PHYTOCHROME-INTERACTING FACTOR (PIF) family of transcription factors, as plants grown in elevated carbon dioxide showed the same PIF-dependent growth promotion. Overexpression of PIF5 was sufficient to suppress photosynthetic rate, enhance response to elevated carbon dioxide, and prolong seedling survival in nitrogen-limiting conditions. Thus, PIF transcription factors integrate growth with metabolic demands and thereby facilitate functional equilibrium during photomorphogenesis. PMID:23073695
Rubin, Nicole; Harrison, Michael R.; Krainock, Michael; Kim, Richard; Lien, Ching-Ling
2016-01-01
Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models. PMID:27132022
Masuda, Kana; Ujike, Haruyo; Hinamoto, Norikazu; Miyake, Hiromasa; Tanimura, Satoshi; Sugiyama, Hitoshi; Sato, Yasufumi; Maeshima, Yohei; Wada, Jun
2018-01-01
Angiogenesis has been implicated in glomerular alterations in the early stage of diabetic nephropathy. We previously reported the renoprotective effects of vasohibin-1 (VASH1), which is a novel angiogenesis inhibitor derived from endothelial cells, on diabetic nephropathy progression. Vasohibin-2 (VASH2) was originally identified as a VASH1 homolog and possesses pro-angiogenic activity in contrast to VASH1. In addition, VASH2 was recently shown to promote epithelial-to-mesenchymal transition via enhanced transforming growth factor (TGF)-β signaling in cancer cells. Herein, we investigated the pathogenic roles of VASH2 in diabetic nephropathy using VAHS2-deficient mice. The type 1 diabetes model was induced by intraperitoneal injections of streptozotocin in VASH2 homozygous knockout (VASH2LacZ/LacZ) or wild-type mice. These mice were euthanized 16 weeks after inducing hyperglycemia. Increased urine albumin excretion and creatinine clearance observed in diabetic wild-type mice were significantly prevented in diabetic VASH2-deficient mice. Accordingly, diabetes-induced increase in glomerular volume and reduction in glomerular slit-diaphragm density were significantly improved in VASH2 knockout mice. Increased glomerular endothelial area was also suppressed in VASH2-deficient mice, in association with inhibition of enhanced vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), but not VEGF level. Furthermore, glomerular accumulation of mesangial matrix, including type IV collagen, and increased expression of TGF-β were improved in diabetic VASH2 knockout mice compared with diabetic wild-type mice. Based on the immunofluorescence findings, endogenous VASH2 localization in glomeruli was consistent with mesangial cells. Human mesangial cells (HMCs) were cultured under high glucose condition in in vitro experiments. Transfection of VASH2 small interfering RNA (siRNA) into the HMCs resulted in the suppression of type IV collagen production induced by high glucose compared with control siRNA. These results indicate that VASH2 may be involved in diabetes-induced glomerular alterations, particularly impaired filtration barrier and mesangial expansion. Therefore, VASH2 is likely to represent a promising therapeutic target for diabetic nephropathy. PMID:29641565
Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis.
Bégay, Valérie; Smink, Jeske J; Loddenkemper, Christoph; Zimmermann, Karin; Rudolph, Cornelia; Scheller, Marina; Steinemann, Doris; Leser, Ulf; Schlegelberger, Brigitte; Stein, Harald; Leutz, Achim
2015-01-01
Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform. Elevated C/EBPβ LIP promotes cancer in mice. C/EBPβ LIP is upregulated in B-NHL. Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.
Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A
2014-01-01
In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.
Das, Anusuya; Barker, Daniel A.; Wang, Tiffany; Lau, Cheryl M.; Lin, Yong; Botchwey, Edward A.
2014-01-01
In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy. PMID:25077607
Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan
2013-10-01
Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.
Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle.
Bowles, D K; Maddali, K K; Ganjam, V K; Rubin, L J; Tharp, D L; Turk, J R; Heaps, C L
2004-11-01
Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.
Napoli, C; Lemieux, C; Jorgensen, R
1990-01-01
We attempted to overexpress chalcone synthase (CHS) in pigmented petunia petals by introducing a chimeric petunia CHS gene. Unexpectedly, the introduced gene created a block in anthocyanin biosynthesis. Forty-two percent of plants with the introduced CHS gene produced totally white flowers and/or patterned flowers with white or pale nonclonal sectors on a wild-type pigmented background; none of hundreds of transgenic control plants exhibited such phenotypes. Progeny testing of one plant demonstrated that the novel color phenotype co-segregated with the introduced CHS gene; progeny without this gene were phenotypically wild type. The somatic and germinal stability of the novel color patterns was variable. RNase protection analysis of petal RNAs isolated from white flowers showed that, although the developmental timing of mRNA expression of the endogenous CHS gene was not altered, the level of the mRNA produced by this gene was reduced 50-fold from wild-type levels. Somatic reversion of plants with white flowers to phenotypically parental violet flowers was associated with a coordinate rise in the steady-state levels of the mRNAs produced by both the endogenous and the introduced CHS genes. Thus, in the altered white flowers, the expression of both genes was coordinately suppressed, indicating that expression of the introduced CHS gene was not alone sufficient for suppression of endogenous CHS transcript levels. The mechanism responsible for the reversible co-suppression of homologous genes in trans is unclear, but the erratic and reversible nature of this phenomenon suggests the possible involvement of methylation. PMID:12354959
THE ROLE OF ELECTRICAL SIGNALS IN MURINE CORNEAL WOUND RE-EPITHELIALISATION
Kucerova, R.; Walczysko, P.; Reid, B.; Ou, J.; Leiper, L. J.; Rajnicek, A. M.; McCaig, C. D.; Zhao, M.; Collinson, J. M.
2011-01-01
Ion flow from intact tissue into epithelial wound sites results in lateral electric currents that may represent a major driver of wound healing cell migration. Use of applied electric fields to promote wound healing is the basis of Medicare-approved electric stimulation therapy. This study investigated the roles for electric fields in wound re-epithelialisation, using the Pax6+/− mouse model of the human ocular surface abnormality aniridic keratopathy (in which wound healing and corneal epithelial cell migration are disrupted). Both wild-type and Pax6+/− corneal epithelial cells showed increased migration speeds in response to applied electric fields in vitro. However, only Pax6+/+ cells demonstrated directional galvanotaxis towards the cathode, with activation of pSrc signalling, polarised to the leading edges of cells. In vivo, the epithelial wound site normally represents a cathode, but 43% of Pax6+/− corneas exhibited reversed endogenous wound-induced currents (the wound was an anode). These corneas healed at the same rate as wild-type. Surprisingly, epithelial migration did not correlate with direction or magnitude of endogenous currents for wild-type or mutant corneas. Furthermore, during healing in vivo, no polarisation of pSrc was observed. We found little evidence that Src-dependent mechanisms of cell migration, observed in response to applied EFs in vitro, normally exist in vivo. It is concluded that endogenous electric fields do not drive long-term directionality of sustained healing migration in this mouse corneal epithelial model. Ion flow from wounds may nevertheless represent an important component of wound signalling initiation. PMID:20945376
NASA Astrophysics Data System (ADS)
Padilla-Martinez, J. P.; Ortega-Martinez, A.; Franco, W.
2016-03-01
The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.
The effect of fatigue driving on injury severity considering the endogeneity.
Li, Yanyan; Yamamoto, Toshiyuki; Zhang, Guangnan
2018-02-01
Fatigue driving is one of the most risky driving-related behaviors and represented a significant social and economic cost to the community. Several studies have already examined the relationship between fatigue driving behavior and traffic injury severity from different aspects. However, fatigue driving and injury severity in traffic crash may share some common influential factors. Ignoring the impact of these common factors will lead to endogeneity problem and result in biased parameter estimation. Based on 38,564 crash records during 2006-2011 in Guangdong province, China, we apply a bivariate endogenous binary-ordered probit model to examine the relationship between fatigue driving and injury severity considering endogeneity of fatigue driving. We also explore the difference of influential factors between commercial and non-commercial vehicle drivers. This study identifies several common observed influential factors of fatigue driving propensity and fatal injury propensity and reveals a substantial and significant negative correlation of unobserved factors between them. The influence of fatigue driving on injury severity is significantly underestimated if the endogeneity of fatigue driving on fatal injury propensity is ignored. Factors such as vehicle insurance and road types not only affect fatal injury propensity, but also fatigue driving propensity. The findings in this study can help better understand how those factors affect fatigue driving and injury severity, and contributes to more efficient policy for preventing the harmfulness of fatigue-related crashes. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Elliott-Sale, Kirsty Jayne; Smith, Stephanie; Bacon, James; Clayton, David; McPhilimey, Martin; Goutianos, Georgios; Hampson, Jennifer; Sale, Craig
2013-09-01
This study was conducted to examine the effect of oral contraceptives on endogenous reproductive hormone levels in order to assess the suitability of oral contraceptive users as experimental and/or control groups in human performance studies. Ninety-five females who were taking a variety of oral contraceptives (2 types and 11 brands) were recruited. A single blood sample was analysed for endogenous concentrations of oestradiol and progesterone. There were significant differences (p<.05) in circulating oestradiol and progesterone as a result of oral contraceptive type and brand. Overall, oral contraceptive use resulted in low levels of oestradiol and progesterone and large variation in hormone concentration when multiple brands were analysed together. This study indicates that future studies should employ a single pill type and brand when using oral contraceptive users as either a control or experimental group and that comparison between oral contraceptive users as a control group and the early follicular phase of the menstrual cycle as an experimental group should be reconsidered. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ando, Jun; Sekiya, Takumasa; Ka, Den; Yamakoshi, Hiroyuki; Dodo, Kosuke; Sodeoka, Mikiko; Kawata, Satoshi; Fujita, Katsumasa
2017-02-01
We propose the combination of alkyne-tag and surface-enhanced Raman scattering (SERS) spectroscopy to perform highly-sensitive and selective drug imaging in live cells. Gold nanoparticles are introduced in lysosomes through endocytosis as SERS agents, and the alkyne-tagged drugs are subsequently administered in cells. Raman microscopic observation reveals the arrival of drug in lysosome through enhanced Raman signal of alkyne. Since the peak of alkyne appears in Raman-silent region of biomolecules, selective detection of drugs is possible without background signal of endogenous molecules. From endocytosed gold nanoparticles in living HeLa cells, we observed distinct Raman signal from alkyne-tagged inhibitor of lysosomal enzyme.
Sapoznik, Sivan; Ortenberg, Rona; Galore-Haskel, Gilli; Kozlovski, Stav; Levy, Daphna; Avivi, Camila; Barshack, Iris; Cohen, Cyrille J; Besser, Michal J; Schachter, Jacob; Markel, Gal
2012-10-01
Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.
Taura, Kojiro; Yamamoto, Yuzo; Nakajima, Akio; Hata, Koichiro; Uchinami, Hiroshi; Yonezawa, Kei; Hatano, Etsuro; Nishino, Norikazu; Yamaoka, Yoshio
2004-05-01
Histone deacetylase inhibitors (HDIs) are known to enhance adenovirus (Ad)-mediated transgene expression. Recently, novel HDIs, including cyclic hydroxamic-acid-containing peptide 31 (CHAP31) and FR901228 (FK228), have been developed. The effects of these two novel HDIs on Ad-transduced or endogenous gene expression were investigated. Acetylation of core histones and the expression of the coxsackie and adenovirus receptor (CAR) in HDI-treated cells were examined using Western blot and a quantitative reverse transcription polymerase chain reaction (TaqMan RT-PCR), respectively. Their in vivo effect on adenoviral gene expression was investigated in BALB/c mice. Both compounds enhanced and prolonged Ad-mediated beta-galactosidase expression more effectively than did trichostatin A, a classic HDI. The same effect was observed in Ad-transduced heat shock protein 72 (HSP72), but not in hyperthermia-induced endogenous expression of HSP72, suggesting that the effect is specific for transduced gene expression. Hyperacetylation of core histones induced by HDIs was considered responsible for the augmentative effects of gene expression. Intravenous administration of either CHAP31 or FR901228 enhanced beta-galactosidase expression in mice infected with AdLacZ. CHAP31 and FR901228 amplified Ad-mediated transgene expression. The enhancement of transgene expression by HDIs may result in fewer vector doses for necessary gene expression, helping to alleviate disadvantages caused by Ad vectors. This could be a useful tool in overcoming current limitations of gene therapy using adenovirus vectors. Copyright 2004 John Wiley & Sons, Ltd.
Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra
2010-04-23
The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.
Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.
Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling
2017-10-05
Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.
Tzafestas, Kyriakos; Razalan, Maria M; Gyulev, Ivan; Mazari, Aslam M A; Mannervik, Bengt; Rylott, Elizabeth L; Bruce, Neil C
2017-04-01
The explosive 2,4,6-trinitrotoluene (TNT) is a significant, global environmental pollutant that is both toxic and recalcitrant to degradation. Given the sheer scale and inaccessible nature of contaminated areas, phytoremediation may be a viable clean-up approach. Here, we have characterized a Drosophila melanogaster glutathione transferase (DmGSTE6) which has activity towards TNT. Recombinantly expressed, purified DmGSTE6 produces predominantly 2-glutathionyl-4,6-dinitrotoluene, and has a 2.5-fold higher Maximal Velocity (V max ), and five-fold lower Michaelis Constant (K m ) than previously characterized TNT-active Arabidopsis thaliana (Arabidopsis) GSTs. Expression of DmGSTE6 in Arabidopsis conferred enhanced resistance to TNT, and increased the ability to remove TNT from contaminated soil relative to wild-type plants. Arabidopsis lines overexpressing TNT-active GSTs AtGST-U24 and AtGST-U25 were compromised in biomass production when grown in the absence of TNT. This yield drag was not observed in the DmGSTE6-expressing Arabidopsis lines. We hypothesize that increased levels of endogenous TNT-active GSTs catalyse excessive glutathionylation of endogenous substrates, depleting glutathione pools, an activity that DmGST may lack. In conclusion, DmGSTE6 has activity towards TNT, producing a compound with potential for further biodegradation. Selecting or manipulating plants to confer DmGSTE6-like activity could contribute towards development of phytoremediation strategies to clean up TNT from polluted military sites. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon
2012-01-01
ATP7A and ATP7B are copper-transporting P1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis. PMID:22130675
Lin, Chunjing; Lin, Xiuyun; Hu, Lanjuan; Yang, Jingjing; Zhou, Tianqi; Long, Likun; Xu, Chunming; Xing, Shaochen; Qi, Bao; Dong, Yingshan; Liu, Bao
2012-11-01
KEY MESSAGE : We show for the first time that intraspecific crossing may impact mobility of the prominent endogenous retrotransposon Tos17 under tissue culture conditions in rice. Tos17, an endogenous copia retrotransposon of rice, is transpositionally active in tissue culture. To study whether there exists fundamental genotypic difference in the tissue culture-induced mobility of Tos17, and if so, whether the difference is under genetic and/or epigenetic control, we conducted this investigation. We show that dramatic difference in tissue culture-induced Tos17 mobility exists among different rice pure-line cultivars sharing the same maternal parent: of the three lines studied that harbor Tos17, two showed mobilization of Tos17, which accrued in proportion to subculture duration, while the third line showed total quiescence (immobility) of the element and the fourth line did not contain the element. In reciprocal F1 hybrids between Tos17-mobile and -immobile (or absence) parental lines, immobility was dominant over mobility. In reciprocal F1 hybrids between both Tos17-mobile parental lines, an additive or synergistic effect on mobility of the element was noticed. In both types of reciprocal F1 hybrids, clear difference in the extent of Tos17 mobility was noted between crossing directions. Given that all lines share the same maternal parent, this observation indicates the existence of epigenetic parent-of-origin effect. We conclude that the tissue culture-induced mobility of Tos17 in rice is under complex genetic and epigenetic control, which can be either enhanced or repressed by intraspecific genetic crossing.
Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan
2017-01-01
In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ 1 -pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.
Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Ju, E-mail: juzi.cui@gmail.com; Pang, Jing; Lin, Ya-Jun
2016-08-05
Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with themore » induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. - Highlights: • The KIF5B level was up regulated during 3T3-L1 adipogenesis. • Endogenous KIF5B and adiponectin were partially colicalized. • Adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. • The secretion of adiponectin, but not leptin, is dependent on functional KIF5B.« less
Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen
2014-01-01
Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418
Sonawane, Parshuram J; Gupta, Vinayak; Sasi, Binu K; Kalyani, Ananthamohan; Natarajan, Bhargavi; Khan, Abrar A; Sahu, Bhavani S; Mahapatra, Nitish R
2014-11-11
Renalase, a novel monoamine oxidase, is emerging as an important regulator of cardiovascular, metabolic, and renal diseases. However, the mechanism of transcriptional regulation of this enzyme remains largely unknown. We undertook a systematic analysis of the renalase gene to identify regulatory promoter elements and transcription factors. Computational analysis coupled with transfection of human renalase promoter/luciferase reporter plasmids (5'-promoter-deletion constructs) into various cell types (HEK-293, IMR32, and HepG2) identified two crucial promoter domains at base pairs -485 to -399 and -252 to -150. Electrophoretic mobility shift assays using renalase promoter oligonucleotides with and without potential binding sites for transcription factors Sp1, STAT3, and ZBP89 displayed formation of specific complexes with HEK-293 nuclear proteins. Consistently, overexpression of Sp1, STAT3, and ZBP89 augmented renalase promoter activity; additionally, siRNA-mediated downregulation of Sp1, STAT3, and ZBP89 reduced the level of endogenous renalase transcription as well as the transfected renalase promoter activity. In addition, chromatin immunoprecipitation assays showed in vivo interactions of these transcription factors with renalase promoter. Interestingly, renalase promoter activity was augmented by nicotine and catecholamines; while Sp1 and STAT3 synergistically activated the nicotine-induced effect, Sp1 appeared to enhance epinephrine-evoked renalase transcription. Moreover, renalase transcript levels in mouse models of human essential hypertension were concomitantly associated with endogenous STAT3 and ZBP89 levels, suggesting crucial roles for these transcription factors in regulating renalase gene expression in cardiovascular pathological conditions.
Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan
2017-01-01
In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism. PMID:29312009
Ancestry of a human endogenous retrovirus family.
Mariani-Costantini, R; Horn, T M; Callahan, R
1989-01-01
The human endogenous retrovirus type II (HERVII) family of HERV genomes has been found by Southern blot analysis to be characteristic of humans, apes, and Old World monkeys. New World monkeys and prosimians lack HERVII proviral genomes. Cellular DNAs of humans, common chimpanzees, gorillas, and orangutans, but not lesser ape lar gibbons, appear to contain the HERVII-related HLM-2 proviral genome integrated at the same site (HLM-2 maps to human chromosome 1). This suggests that the ancestral HERVII retrovirus(es) entered the genomes of Old World anthropoids by infection after the divergence of New World monkeys (platyrrhines) but before the evolutionary radiation of large hominoids. Images PMID:2507793
NASA Technical Reports Server (NTRS)
Deroshia, C. W.; Winget, C. M.; Bond, G. H.
1976-01-01
A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.
Intapad, Suttira; Ojeda, Norma B.; Varney, Elliott; Royals, Thomas P.; Alexander, Barbara T.
2015-01-01
The renal endothelin system contributes to sex differences in blood pressure with males demonstrating greater endothelin type-A receptor-mediated responses relative to females. Intrauterine growth restriction programs hypertension and enhanced renal sensitivity to acute angiotensin II in male growth-restricted rats. Endothelin is reported to work synergistically with angiotensin II. Thus, this study tested the hypothesis that endothelin augments the blood pressure response to acute angiotensin II in male growth-restricted rats. Systemic and renal hemodynamics were determined in response to acute angiotensin II (100 nanogram/kilogram/minute for 30 minutes) with and without the endothelin type-A receptor antagonist, ABT 627(10 nanogram/kilogram/minute for 30 minutes), in rats pretreated with enalapril (250 milligram/Liter for one week) to normalize the endogenous renin angiotensin system. Endothelin type-A receptor blockade reduced angiotensin II-mediated increases in blood pressure in male control and male growth-restricted rats. Endothelin type-A receptor blockade also abolished hyper-responsiveness to acute angiotensin II in male growth-restricted rats. Yet, blood pressure remained significantly elevated above baseline following endothelin type-A receptor blockade suggesting that factors in addition to endothelin contribute to the basic angiotensin II-induced pressor response in male rats. We also determined sex-specific effects of endothelin on acute angiotensin II-mediated hemodynamic responses. Endothelin type-A receptor blockade did not reduce acute angiotensin II-mediated increases in blood pressure in female control or growth-restricted rats, intact or ovariectomized. Thus, these data suggest that endothelin type-A receptor blockade contributes to hypersensitivity to acute angiotensin II in male growth-restricted rats and further supports the sex-specific effect of endothelin on blood pressure. PMID:26459423
Taguchi, Ayumi; Kawana, Kei; Tomio, Kensuke; Yamashita, Aki; Isobe, Yosuke; Nagasaka, Kazunori; Koga, Kaori; Inoue, Tomoko; Nishida, Haruka; Kojima, Satoko; Adachi, Katsuyuki; Matsumoto, Yoko; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki
2014-01-01
Cancer associated fibroblasts (CAFs) are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP)-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA) have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV) oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.
Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo
2009-01-01
Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862
Richter, Corinna; Dy, Ron L; McKenzie, Rebecca E; Watson, Bridget N J; Taylor, Corinda; Chang, James T; McNeil, Matthew B; Staals, Raymond H J; Fineran, Peter C
2014-07-01
Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼ 350 new spacers acquired in priming events and identified a 5'-protospacer-GG-3' protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2-3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Awal, Mehraj R.; Shay, James; McLoed, Melissa M.; Mazur, Eric; Gabel, Christopher V.
2016-01-01
During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity. PMID:27078101
FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets.
Begonja, Antonija Jurak; Pluthero, Fred G; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M; Kahr, Walter H A; Hartwig, John H; Falet, Hervé
2015-07-02
Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. © 2015 by The American Society of Hematology.
Kawata, Sanae; Ariumi, Yasuo; Shimotohno, Kunitada
2003-01-01
Human T-cell leukemia virus type 1 (HTLV-1) Tax regulates the expression of virally encoded genes, as well as various endogenous host genes in trans. Tax-mediated regulation of gene expression is important for the immortalization of normal human T lymphocytes and the transformation of fibroblast cells, such as Rat-1 cells. Tax has the ability to transactivate p21Waf1/Cip1/Sdi1, resulting in high expression levels in HTLV-1-immortalized cells. Since p21 expression is suppressed due to methylation of the promoter region in Rat-l cell line, p21 may not be critical for the transformation of this cell line by Tax. To further understand the role of p21 for the proliferation of Tax-transformed Rat-1 cells, we examined the effect of ectopic expression of p21 in these cells. Here, we observed that p21 expression enhanced the transformation of this cell line via at least two mechanisms: (i) the enhancement of NF-κB activation and/or CREB signaling and (ii) the excitation of antiapoptotic machinery. To analyze the role of p21 that is overexpressed in HTLV-1-immortalized lymphocytes, p21 expression was suppressed by using an antisense oligonucleotide specific for p21 mRNA; these cells then became sensitive to apoptotic induction. These results suggest that p21 plays an important role in the proliferation of Tax-expressing cells through the regulation of at least two independent mechanisms. PMID:12805427