Sample records for enhanced image processing

  1. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  2. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  3. Anniversary Paper: Image processing and manipulation through the pages of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G. III; Ginneken, Bram van; Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q0S.459, 3584 CX Utrecht

    The language of radiology has gradually evolved from ''the film'' (the foundation of radiology since Wilhelm Roentgen's 1895 discovery of x-rays) to ''the image,'' an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist's ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatialmore » alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the ''image'' as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of Medical Physics.« less

  4. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  5. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  6. Image processing for flight crew enhanced situation awareness

    NASA Technical Reports Server (NTRS)

    Roberts, Barry

    1993-01-01

    This presentation describes the image processing work that is being performed for the Enhanced Situational Awareness System (ESAS) application. Specifically, the presented work supports the Enhanced Vision System (EVS) component of ESAS.

  7. Fingerprint pattern restoration by digital image processing techniques.

    PubMed

    Wen, Che-Yen; Yu, Chiu-Chung

    2003-09-01

    Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared.

  8. The effect of image processing on the detection of cancers in digital mammography.

    PubMed

    Warren, Lucy M; Given-Wilson, Rosalind M; Wallis, Matthew G; Cooke, Julie; Halling-Brown, Mark D; Mackenzie, Alistair; Chakraborty, Dev P; Bosmans, Hilde; Dance, David R; Young, Kenneth C

    2014-08-01

    OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing subtle malignant masses; 30 image pairs, biopsy-proven benign lesions; 80 image pairs, simulated calcification clusters; and 80 image pairs, no cancer (normal). The 270 image pairs were processed with three types of image processing: standard (full enhancement), low contrast (intermediate enhancement), and pseudo-film-screen (no enhancement). Seven experienced observers inspected the images, locating and rating regions they suspected to be cancer for likelihood of malignancy. The results were analyzed using a jackknife-alternative free-response receiver operating characteristic (JAFROC) analysis. RESULTS. The detection of calcification clusters was significantly affected by the type of image processing: The JAFROC figure of merit (FOM) decreased from 0.65 with standard image processing to 0.63 with low-contrast image processing (p = 0.04) and from 0.65 with standard image processing to 0.61 with film-screen image processing (p = 0.0005). The detection of noncalcification cancers was not significantly different among the image-processing types investigated (p > 0.40). CONCLUSION. These results suggest that image processing has a significant impact on the detection of calcification clusters in digital mammography. For the three image-processing versions and the system investigated, standard image processing was optimal for the detection of calcification clusters. The effect on cancer detection should be considered when selecting the type of image processing in the future.

  9. Smart Image Enhancement Process

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Rahman, Zia-ur (Inventor); Woodell, Glenn A. (Inventor)

    2012-01-01

    Contrast and lightness measures are used to first classify the image as being one of non-turbid and turbid. If turbid, the original image is enhanced to generate a first enhanced image. If non-turbid, the original image is classified in terms of a merged contrast/lightness score based on the contrast and lightness measures. The non-turbid image is enhanced to generate a second enhanced image when a poor contrast/lightness score is associated therewith. When the second enhanced image has a poor contrast/lightness score associated therewith, this image is enhanced to generate a third enhanced image. A sharpness measure is computed for one image that is selected from (i) the non-turbid image, (ii) the first enhanced image, (iii) the second enhanced image when a good contrast/lightness score is associated therewith, and (iv) the third enhanced image. If the selected image is not-sharp, it is sharpened to generate a sharpened image. The final image is selected from the selected image and the sharpened image.

  10. A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  11. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  12. Image enhancement software for underwater recovery operations: User's manual

    NASA Astrophysics Data System (ADS)

    Partridge, William J.; Therrien, Charles W.

    1989-06-01

    This report describes software for performing image enhancement on live or recorded video images. The software was developed for operational use during underwater recovery operations at the Naval Undersea Warfare Engineering Station. The image processing is performed on an IBM-PC/AT compatible computer equipped with hardware to digitize and display video images. The software provides the capability to provide contrast enhancement and other similar functions in real time through hardware lookup tables, to automatically perform histogram equalization, to capture one or more frames and average them or apply one of several different processing algorithms to a captured frame. The report is in the form of a user manual for the software and includes guided tutorial and reference sections. A Digital Image Processing Primer in the appendix serves to explain the principle concepts that are used in the image processing.

  13. Noise reduction and image enhancement using a hardware implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    David, Robert; Williams, Erin; de Tremiolles, Ghislain; Tannhof, Pascal

    1999-03-01

    In this paper, we present a neural based solution developed for noise reduction and image enhancement using the ZISC, an IBM hardware processor which implements the Restricted Coulomb Energy algorithm and the K-Nearest Neighbor algorithm. Artificial neural networks present the advantages of processing time reduction in comparison with classical models, adaptability, and the weighted property of pattern learning. The goal of the developed application is image enhancement in order to restore old movies (noise reduction, focus correction, etc.), to improve digital television images, or to treat images which require adaptive processing (medical images, spatial images, special effects, etc.). Image results show a quantitative improvement over the noisy image as well as the efficiency of this system. Further enhancements are being examined to improve the output of the system.

  14. Using Correlative Properties of Neighboring Pixels to Enhance Contrast-to-Noise Ratio of Abnormal Hippocampus in Patients With Intractable Epilepsy and Mesial Temporal Sclerosis.

    PubMed

    Parsons, Matthew S; Sharma, Aseem; Hildebolt, Charles

    2018-06-12

    To test whether an image-processing algorithm can aid in visualization of mesial temporal sclerosis on magnetic resonance imaging by selectively increasing contrast-to-noise ratio (CNR) between abnormal hippocampus and normal brain. In this Institutional Review Board-approved and Health Insurance Portability and Accountability Act-compliant study, baseline coronal fluid-attenuated inversion recovery images of 18 adults (10 females, eight males; mean age 41.2 years) with proven mesial temporal sclerosis were processed using a custom algorithm to produce corresponding enhanced images. Average (Hmean) and maximum (Hmax) CNR for abnormal hippocampus were calculated relative to normal ipsilateral white matter. CNR values for normal gray matter (GM) were similarly calculated using ipsilateral cingulate gyrus as the internal control. To evaluate effect of image processing on visual conspicuity of hippocampal signal alteration, a neuroradiologist masked to the side of hippocampal abnormality rated signal intensity (SI) of hippocampi on baseline and enhanced images using a five-point scale (definitely abnormal to definitely normal). Differences in Hmean, Hmax, GM, and SI ratings for abnormal hippocampi on baseline and enhanced images were assessed for statistical significance. Both Hmean and Hmax were significantly higher in enhanced images as compared to baseline images (p < 0.0001 for both). There was no significant difference in the GM between baseline and enhanced images (p = 0.9375). SI ratings showed a more confident identification of abnormality on enhanced images (p = 0.0001). Image-processing resulted in increased CNR of abnormal hippocampus without affecting the CNR of normal gray matter. This selective increase in conspicuity of abnormal hippocampus was associated with more confident identification of hippocampal signal alteration. Copyright © 2018 Academic Radiology. Published by Elsevier Inc. All rights reserved.

  15. Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu

    2018-03-01

    The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.

  16. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  17. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  18. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  19. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  20. Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?

    PubMed Central

    Joshi, Anuja; Gislason-Lee, Amber J; Keeble, Claire; Sivananthan, Uduvil M

    2017-01-01

    Objective: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10–89% dose reduction). 16 observers with relevant experience scored the image quality of these angiograms in 3 states—with no image processing and with 2 different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction, respectively, as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusion: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose. PMID:28124572

  1. Computer image processing - The Viking experience. [digital enhancement techniques

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  2. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  3. Novel medical image enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  4. Image processing based detection of lung cancer on CT scan images

    NASA Astrophysics Data System (ADS)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  5. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry.

    PubMed

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-21

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.

  6. Rapid visuomotor processing of phobic images in spider- and snake-fearful participants.

    PubMed

    Haberkamp, Anke; Schmidt, Filipp; Schmidt, Thomas

    2013-10-01

    This study investigates enhanced visuomotor processing of phobic compared to fear-relevant and neutral stimuli. We used a response priming design to measure rapid, automatic motor activation by natural images (spiders, snakes, mushrooms, and flowers) in spider-fearful, snake-fearful, and control participants. We found strong priming effects in all tasks and conditions; however, results showed marked differences between groups. Most importantly, in the group of spider-fearful individuals, spider pictures had a strong and specific influence on even the fastest motor responses: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants, this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. We conclude that spider phobia leads to enhanced processing capacity for phobic images. We argue that this is enabled by long-term perceptual learning processes. © 2013.

  7. A novel image enhancement algorithm based on stationary wavelet transform for infrared thermography to the de-bonding defect in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Wei; Yan, Shaoze

    2015-10-01

    In this paper, a multi-scale image enhancement algorithm based on low-passing filtering and nonlinear transformation is proposed for infrared testing image of the de-bonding defect in solid propellant rocket motors. Infrared testing images with high-level noise and low contrast are foundations for identifying defects and calculating the defects size. In order to improve quality of the infrared image, according to distribution properties of the detection image, within framework of stationary wavelet transform, the approximation coefficients at suitable decomposition level is processed by index low-passing filtering by using Fourier transform, after that, the nonlinear transformation is applied to further process the figure to improve the picture contrast. To verify validity of the algorithm, the image enhancement algorithm is applied to infrared testing pictures of two specimens with de-bonding defect. Therein, one specimen is made of a type of high-strength steel, and the other is a type of carbon fiber composite. As the result shown, in the images processed by the image enhancement algorithm presented in the paper, most of noises are eliminated, and contrast between defect areas and normal area is improved greatly; in addition, by using the binary picture of the processed figure, the continuous defect edges can be extracted, all of which show the validity of the algorithm. The paper provides a well-performing image enhancement algorithm for the infrared thermography.

  8. Photo-reconnaissance applications of computer processing of images.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1972-01-01

    Discussion of imaging processing techniques for enhancement and calibration of Jet Propulsion Laboratory imaging experiment pictures returned from NASA space vehicles such as Ranger, Mariner and Surveyor. Particular attention is given to data transmission, resolution vs recognition, and color aspects of digital data processing. The effectiveness of these techniques in applications to images from a wide variety of sources is noted. It is anticipated that the use of computer processing for enhancement of imagery will increase with the improvement and cost reduction of these techniques in the future.

  9. Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusion

  10. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    PubMed Central

    Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching

    2015-01-01

    Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219

  11. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  12. Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.

    PubMed

    Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).

  13. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    PubMed Central

    Wu, Shibin; Xie, Yaoqin

    2013-01-01

    A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072

  14. Content-aware dark image enhancement through channel division.

    PubMed

    Rivera, Adin Ramirez; Ryu, Byungyong; Chae, Oksam

    2012-09-01

    The current contrast enhancement algorithms occasionally result in artifacts, overenhancement, and unnatural effects in the processed images. These drawbacks increase for images taken under poor illumination conditions. In this paper, we propose a content-aware algorithm that enhances dark images, sharpens edges, reveals details in textured regions, and preserves the smoothness of flat regions. The algorithm produces an ad hoc transformation for each image, adapting the mapping functions to each image's characteristics to produce the maximum enhancement. We analyze the contrast of the image in the boundary and textured regions, and group the information with common characteristics. These groups model the relations within the image, from which we extract the transformation functions. The results are then adaptively mixed, by considering the human vision system characteristics, to boost the details in the image. Results show that the algorithm can automatically process a wide range of images-e.g., mixed shadow and bright areas, outdoor and indoor lighting, and face images-without introducing artifacts, which is an improvement over many existing methods.

  15. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  16. Microscopy mineral image enhancement based on improved adaptive threshold in nonsubsampled shearlet transform domain

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Si, Yujuan; Jia, Zhenhong

    2018-03-01

    In this paper, a novel microscopy mineral image enhancement method based on adaptive threshold in non-subsampled shearlet transform (NSST) domain is proposed. First, the image is decomposed into one low-frequency sub-band and several high-frequency sub-bands. Second, the gamma correction is applied to process the low-frequency sub-band coefficients, and the improved adaptive threshold is adopted to suppress the noise of the high-frequency sub-bands coefficients. Third, the processed coefficients are reconstructed with the inverse NSST. Finally, the unsharp filter is used to enhance the details of the reconstructed image. Experimental results on various microscopy mineral images demonstrated that the proposed approach has a better enhancement effect in terms of objective metric and subjective metric.

  17. Image processing on the image with pixel noise bits removed

    NASA Astrophysics Data System (ADS)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  18. High Resolution Near Real Time Image Processing and Support for MSSS Modernization

    NASA Astrophysics Data System (ADS)

    Duncan, R. B.; Sabol, C.; Borelli, K.; Spetka, S.; Addison, J.; Mallo, A.; Farnsworth, B.; Viloria, R.

    2012-09-01

    This paper describes image enhancement software applications engineering development work that has been performed in support of Maui Space Surveillance System (MSSS) Modernization. It also includes R&D and transition activity that has been performed over the past few years with the objective of providing increased space situational awareness (SSA) capabilities. This includes Air Force Research Laboratory (AFRL) use of an FY10 Dedicated High Performance Investment (DHPI) cluster award -- and our selection and planned use for an FY12 DHPI award. We provide an introduction to image processing of electro optical (EO) telescope sensors data; and a high resolution image enhancement and near real time processing and summary status overview. We then describe recent image enhancement applications development and support for MSSS Modernization, results to date, and end with a discussion of desired future development work and conclusions. Significant improvements to image processing enhancement have been realized over the past several years, including a key application that has realized more than a 10,000-times speedup compared to the original R&D code -- and a greater than 72-times speedup over the past few years. The latest version of this code maintains software efficiency for post-mission processing while providing optimization for image processing of data from a new EO sensor at MSSS. Additional work has also been performed to develop low latency, near real time processing of data that is collected by the ground-based sensor during overhead passes of space objects.

  19. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli.

    PubMed

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-03-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

  20. Digital Image Processing Overview For Helmet Mounted Displays

    NASA Astrophysics Data System (ADS)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  1. Performance assessment of multi-frequency processing of ICU chest images for enhanced visualization of tubes and catheters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Couwenhoven, Mary E.; Foos, David H.; Doran, James; Yankelevitz, David F.; Henschke, Claudia I.

    2008-03-01

    An image-processing method has been developed to improve the visibility of tube and catheter features in portable chest x-ray (CXR) images captured in the intensive care unit (ICU). The image-processing method is based on a multi-frequency approach, wherein the input image is decomposed into different spatial frequency bands, and those bands that contain the tube and catheter signals are individually enhanced by nonlinear boosting functions. Using a random sampling strategy, 50 cases were retrospectively selected for the study from a large database of portable CXR images that had been collected from multiple institutions over a two-year period. All images used in the study were captured using photo-stimulable, storage phosphor computed radiography (CR) systems. Each image was processed two ways. The images were processed with default image processing parameters such as those used in clinical settings (control). The 50 images were then separately processed using the new tube and catheter enhancement algorithm (test). Three board-certified radiologists participated in a reader study to assess differences in both detection-confidence performance and diagnostic efficiency between the control and test images. Images were evaluated on a diagnostic-quality, 3-megapixel monochrome monitor. Two scenarios were studied: the baseline scenario, representative of today's workflow (a single-control image presented with the window/level adjustments enabled) vs. the test scenario (a control/test image pair presented with a toggle enabled and the window/level settings disabled). The radiologists were asked to read the images in each scenario as they normally would for clinical diagnosis. Trend analysis indicates that the test scenario offers improved reading efficiency while providing as good or better detection capability compared to the baseline scenario.

  2. Resiliency of the Multiscale Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-Ur; Jobson, Daniel J.; Woodell, Glenn A.

    1998-01-01

    The multiscale retinex with color restoration (MSRCR) continues to prove itself in extensive testing to be very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition, However, issues remain with regard to the resiliency of the MSRCR to different image sources and arbitrary image manipulations which may have been applied prior to retinex processing. In this paper we define these areas of concern, provide experimental results, and, examine the effects of commonly occurring image manipulation on retinex performance. In virtually all cases the MSRCR is highly resilient to the effects of both the image source variations and commonly encountered prior image-processing. Significant artifacts are primarily observed for the case of selective color channel clipping in large dark zones in a image. These issues are of concerning the processing of digital image archives and other applications where there is neither control over the image acquisition process, nor knowledge about any processing done on th data beforehand.

  3. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  4. Half-unit weighted bilinear algorithm for image contrast enhancement in capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Rukundo, Olivier

    2018-04-01

    This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.

  5. Beyond arousal and valence: The importance of the biological versus social relevance of emotional stimuli

    PubMed Central

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention; memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that: a) biologically emotional images hold attention more strongly than socially emotional images, b) memory for biologically emotional images was enhanced even with limited cognitive resources, but c) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images’ subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in visual cortex and greater functional connectivity between amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between amygdala and MPFC than biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity. PMID:21964552

  6. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  7. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  8. Edge enhancement of color images using a digital micromirror device.

    PubMed

    Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A

    2012-06-01

    A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.

  9. Digital processing of Mariner 9 television data.

    NASA Technical Reports Server (NTRS)

    Green, W. B.; Seidman, J. B.

    1973-01-01

    The digital image processing performed by the Image Processing Laboratory (IPL) at JPL in support of the Mariner 9 mission is summarized. The support is divided into the general categories of image decalibration (the removal of photometric and geometric distortions from returned imagery), computer cartographic projections in support of mapping activities, and adaptive experimenter support (flexible support to provide qualitative digital enhancements and quantitative data reduction of returned imagery). Among the tasks performed were the production of maximum discriminability versions of several hundred frames to support generation of a geodetic control net for Mars, and special enhancements supporting analysis of Phobos and Deimos images.

  10. Photo-reconnaissance applications of computer processing of images.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1971-01-01

    An imaging processing technique is developed for enhancement and calibration of imaging experiments. The technique is shown to be useful not only for the original application but also when applied to images from a wide variety of sources.

  11. Image processing in forensic pathology.

    PubMed

    Oliver, W R

    1998-03-01

    Image processing applications in forensic pathology are becoming increasingly important. This article introduces basic concepts in image processing as applied to problems in forensic pathology in a non-mathematical context. Discussions of contrast enhancement, digital encoding, compression, deblurring, and other topics are presented.

  12. Eliminating "Hotspots" in Digital Image Processing

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  13. Enhancement of time images for photointerpretation

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) images consist of six channels of data acquired in bands between 8 and 12 microns, thus they contain information about both temperature and emittance. Scene temperatures are controlled by reflectivity of the surface, but also by its geometry with respect to the Sun, time of day, and other factors unrelated to composition. Emittance is dependent upon composition alone. Thus the photointerpreter may wish to enhance emittance information selectively. Because thermal emittances in real scenes vary but little, image data tend to be highly correlated along channels. Special image processing is required to make this information available for the photointerpreter. Processing includes noise removal, construction of model emittance images, and construction of false-color pictures enhanced by decorrelation techniques.

  14. Effect of various digital processing algorithms on the measurement accuracy of endodontic file length.

    PubMed

    Kal, Betül Ilhan; Baksi, B Güniz; Dündar, Nesrin; Sen, Bilge Hakan

    2007-02-01

    The aim of this study was to compare the accuracy of endodontic file lengths after application of various image enhancement modalities. Endodontic files of three different ISO sizes were inserted in 20 single-rooted extracted permanent mandibular premolar teeth and standardized images were obtained. Original digital images were then enhanced using five processing algorithms. Six evaluators measured the length of each file on each image. The measurements from each processing algorithm and each file size were compared using repeated measures ANOVA and Bonferroni tests (P = 0.05). Paired t test was performed to compare the measurements with the true lengths of the files (P = 0.05). All of the processing algorithms provided significantly shorter measurements than the true length of each file size (P < 0.05). The threshold enhancement modality produced significantly higher mean error values (P < 0.05), while there was no significant difference among the other enhancement modalities (P > 0.05). Decrease in mean error value was observed with increasing file size (P < 0.05). Invert, contrast/brightness and edge enhancement algorithms may be recommended for accurate file length measurements when utilizing storage phosphor plates.

  15. Effect of software manipulation (Photoshop) of digitised retinal images on the grading of diabetic retinopathy.

    PubMed

    George, L D; Lusty, J; Owens, D R; Ollerton, R L

    1999-08-01

    To determine whether software processing of digitised retinal images using a "sharpen" filter improves the ability to grade diabetic retinopathy. 150 macula centred retinal images were taken as 35 mm colour transparencies representing a spectrum of diabetic retinopathy, digitised, and graded in random order before and after the application of a sharpen filter (Adobe Photoshop). Digital enhancement of contrast and brightness was performed and a X2 digital zoom was utilised. The grades from the unenhanced and enhanced digitised images were compared with the same retinal fields viewed as slides. Overall agreement in retinopathy grade from the digitised images improved from 83.3% (125/150) to 94.0% (141/150) with sight threatening diabetic retinopathy (STDR) correctly identified in 95.5% (84/88) and 98.9% (87/88) of cases when using unenhanced and enhanced images respectively. In total, five images were overgraded and four undergraded from the enhanced images compared with 17 and eight images respectively when using unenhanced images. This study demonstrates that the already good agreement in grading performance can be further improved by software manipulation or processing of digitised retinal images.

  16. Effect of software manipulation (Photoshop) of digitised retinal images on the grading of diabetic retinopathy

    PubMed Central

    George, L; Lusty, J; Owens, D; Ollerton, R

    1999-01-01

    AIMS—To determine whether software processing of digitised retinal images using a "sharpen" filter improves the ability to grade diabetic retinopathy.
METHODS—150 macula centred retinal images were taken as 35 mm colour transparencies representing a spectrum of diabetic retinopathy, digitised, and graded in random order before and after the application of a sharpen filter (Adobe Photoshop). Digital enhancement of contrast and brightness was performed and a X2 digital zoom was utilised. The grades from the unenhanced and enhanced digitised images were compared with the same retinal fields viewed as slides.
RESULTS—Overall agreement in retinopathy grade from the digitised images improved from 83.3% (125/150) to 94.0% (141/150) with sight threatening diabetic retinopathy (STDR) correctly identified in 95.5% (84/88) and 98.9% (87/88) of cases when using unenhanced and enhanced images respectively. In total, five images were overgraded and four undergraded from the enhanced images compared with 17 and eight images respectively when using unenhanced images.
CONCLUSION—This study demonstrates that the already good agreement in grading performance can be further improved by software manipulation or processing of digitised retinal images.

 PMID:10413691

  17. Digital image analysis techniques for fiber and soil mixtures.

    DOT National Transportation Integrated Search

    1999-05-01

    The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...

  18. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  19. Dynamic Denoising of Tracking Sequences

    PubMed Central

    Michailovich, Oleg; Tannenbaum, Allen

    2009-01-01

    In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences. Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement “collaborate” in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over “static” approaches, in which the tracking images are enhanced independently of each other. PMID:18482881

  20. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    PubMed Central

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529

  1. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  2. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  3. Guided filtering for solar image/video processing

    NASA Astrophysics Data System (ADS)

    Xu, Long; Yan, Yihua; Cheng, Jun

    2017-06-01

    A new image enhancement algorithm employing guided filtering is proposed in this work for the enhancement of solar images and videos so that users can easily figure out important fine structures embedded in the recorded images/movies for solar observation. The proposed algorithm can efficiently remove image noises, including Gaussian and impulse noises. Meanwhile, it can further highlight fibrous structures on/beyond the solar disk. These fibrous structures can clearly demonstrate the progress of solar flare, prominence coronal mass emission, magnetic field, and so on. The experimental results prove that the proposed algorithm gives significant enhancement of visual quality of solar images beyond original input and several classical image enhancement algorithms, thus facilitating easier determination of interesting solar burst activities from recorded images/movies.

  4. Fingerprint image enhancement by differential hysteresis processing.

    PubMed

    Blotta, Eduardo; Moler, Emilce

    2004-05-10

    A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results.

  5. Radar image enhancement and simulation as an aid to interpretation and training

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.

    1980-01-01

    Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.

  6. Applying Enhancement Filters in the Pre-processing of Images of Lymphoma

    NASA Astrophysics Data System (ADS)

    Henrique Silva, Sérgio; Zanchetta do Nascimento, Marcelo; Alves Neves, Leandro; Ramos Batista, Valério

    2015-01-01

    Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.

  7. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.

  8. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    PubMed

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Visually enhanced CCTV digital surveillance utilizing Intranet and Internet.

    PubMed

    Ozaki, Nobuyuki

    2002-07-01

    This paper describes a solution for integrated plant supervision utilizing closed circuit television (CCTV) digital surveillance. Three basic requirements are first addressed as the platform of the system, with discussion on the suitable video compression. The system configuration is described in blocks. The system provides surveillance functionality: real-time monitoring, and process analysis functionality: a troubleshooting tool. This paper describes the formulation of practical performance design for determining various encoder parameters. It also introduces image processing techniques for enhancing the original CCTV digital image to lessen the burden on operators. Some screenshots are listed for the surveillance functionality. For the process analysis, an image searching filter supported by image processing techniques is explained with screenshots. Multimedia surveillance, which is the merger with process data surveillance, or the SCADA system, is also explained.

  10. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  11. Chain of evidence generation for contrast enhancement in digital image forensics

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela

    2010-01-01

    The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.

  12. Digital enhancement of X-rays for NDT

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.

    1980-01-01

    Report is "cookbook" for digital processing of industrial X-rays. Computer techniques, previously used primarily in laboratory and developmental research, have been outlined and codified into step by step procedures for enhancing X-ray images. Those involved in nondestructive testing should find report valuable asset, particularly is visual inspection is method currently used to process X-ray images.

  13. Stochastic processes, estimation theory and image enhancement

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1978-01-01

    An introductory account of stochastic processes, estimation theory, and image enhancement is presented. The book is primarily intended for first-year graduate students and practicing engineers and scientists whose work requires an acquaintance with the theory. Fundamental concepts of probability were reviewed that are required to support the main topics. The appendices discuss the remaining mathematical background.

  14. Physics-based approach to color image enhancement in poor visibility conditions.

    PubMed

    Tan, K K; Oakley, J P

    2001-10-01

    Degradation of images by the atmosphere is a familiar problem. For example, when terrain is imaged from a forward-looking airborne camera, the atmosphere degradation causes a loss in both contrast and color information. Enhancement of such images is a difficult task because of the complexity in restoring both the luminance and the chrominance while maintaining good color fidelity. One particular problem is the fact that the level of contrast loss depends strongly on wavelength. A novel method is presented for the enhancement of color images. This method is based on the underlying physics of the degradation process, and the parameters required for enhancement are estimated from the image itself.

  15. Realization of a single image haze removal system based on DaVinci DM6467T processor

    NASA Astrophysics Data System (ADS)

    Liu, Zhuang

    2014-10-01

    Video monitoring system (VMS) has been extensively applied in domains of target recognition, traffic management, remote sensing, auto navigation and national defence. However the VMS has a strong dependence on the weather, for instance, in foggy weather, the quality of images received by the VMS are distinct degraded and the effective range of VMS is also decreased. All in all, the VMS performs terribly in bad weather. Thus the research of fog degraded images enhancement has very high theoretical and practical application value. A design scheme of a fog degraded images enhancement system based on the TI DaVinci processor is presented in this paper. The main function of the referred system is to extract and digital cameras capture images and execute image enhancement processing to obtain a clear image. The processor used in this system is the dual core TI DaVinci DM6467T - ARM@500MHz+DSP@1GH. A MontaVista Linux operating system is running on the ARM subsystem which handles I/O and application processing. The DSP handles signal processing and the results are available to the ARM subsystem in shared memory.The system benefits from the DaVinci processor so that, with lower power cost and smaller volume, it provides the equivalent image processing capability of a X86 computer. The outcome shows that the system in this paper can process images at 25 frames per second on D1 resolution.

  16. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the image, the target and the surrounding assistant targets could be identified easily, and the noise was not amplified much. For the low quality image, these improved algorithms augment the information entropy and improve the image and the video stream aesthetic quality, while for the high quality image they will not debase the quality of the image.

  17. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    To convert raw data into environmental products, the National Weather Service and other organizations use the Global 9000 image processing system marketed by Global Imaging, Inc. The company's GAE software package is an enhanced version of the TAE, developed by Goddard Space Flight Center to support remote sensing and image processing applications. The system can be operated in three modes and is combined with HP Apollo workstation hardware.

  18. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.

    PubMed

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.

  19. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  20. Low Vision Enhancement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with the Johns Hopkins Wilmer Eye Institute in Baltimore, Md., to incorporate NASA software originally developed by NASA to process satellite images into the Low Vision Enhancement System (LVES). The LVES, referred to as 'ELVIS' by its users, is a portable image processing system that could make it possible to improve a person's vision by enhancing and altering images to compensate for impaired eyesight. The system consists of two orientation cameras, a zoom camera, and a video projection system. The headset and hand-held control weigh about two pounds each. Pictured is Jacob Webb, the first Mississippian to use the LVES.

  1. Optimizing hippocampal segmentation in infants utilizing MRI post-acquisition processing.

    PubMed

    Thompson, Deanne K; Ahmadzai, Zohra M; Wood, Stephen J; Inder, Terrie E; Warfield, Simon K; Doyle, Lex W; Egan, Gary F

    2012-04-01

    This study aims to determine the most reliable method for infant hippocampal segmentation by comparing magnetic resonance (MR) imaging post-acquisition processing techniques: contrast to noise ratio (CNR) enhancement, or reformatting to standard orientation. MR scans were performed with a 1.5 T GE scanner to obtain dual echo T2 and proton density (PD) images at term equivalent (38-42 weeks' gestational age). 15 hippocampi were manually traced four times on ten infant images by 2 independent raters on the original T2 image, as well as images processed by: a) combining T2 and PD images (T2-PD) to enhance CNR; then b) reformatting T2-PD images perpendicular to the long axis of the left hippocampus. CNRs and intraclass correlation coefficients (ICC) were calculated. T2-PD images had 17% higher CNR (15.2) than T2 images (12.6). Original T2 volumes' ICC was 0.87 for rater 1 and 0.84 for rater 2, whereas T2-PD images' ICC was 0.95 for rater 1 and 0.87 for rater 2. Reliability of hippocampal segmentation on T2-PD images was not improved by reformatting images (rater 1 ICC = 0.88, rater 2 ICC = 0.66). Post-acquisition processing can improve CNR and hence reliability of hippocampal segmentation in neonate MR scans when tissue contrast is poor. These findings may be applied to enhance boundary definition in infant segmentation for various brain structures or in any volumetric study where image contrast is sub-optimal, enabling hippocampal structure-function relationships to be explored.

  2. Achieving superresolution with illumination-enhanced sparsity.

    PubMed

    Yu, Jiun-Yann; Becker, Stephen R; Folberth, James; Wallin, Bruce F; Chen, Simeng; Cogswell, Carol J

    2018-04-16

    Recent advances in superresolution fluorescence microscopy have been limited by a belief that surpassing two-fold resolution enhancement of the Rayleigh resolution limit requires stimulated emission or the fluorophore to undergo state transitions. Here we demonstrate a new superresolution method that requires only image acquisitions with a focused illumination spot and computational post-processing. The proposed method utilizes the focused illumination spot to effectively reduce the object size and enhance the object sparsity and consequently increases the resolution and accuracy through nonlinear image post-processing. This method clearly resolves 70nm resolution test objects emitting ~530nm light with a 1.4 numerical aperture (NA) objective, and, when imaging through a 0.5NA objective, exhibits high spatial frequencies comparable to a 1.4NA widefield image, both demonstrating a resolution enhancement above two-fold of the Rayleigh resolution limit. More importantly, we examine how the resolution increases with photon numbers, and show that the more-than-two-fold enhancement is achievable with realistic photon budgets.

  3. Real-time Enhancement, Registration, and Fusion for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than-human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests.

  4. Robust algebraic image enhancement for intelligent control systems

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  5. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  6. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  7. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  8. Image enhancement and color constancy for a vehicle-mounted change detection system

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Monnin, David

    2016-10-01

    Vehicle-mounted change detection systems allow to improve situational awareness on outdoor itineraries of inter- est. Since the visibility of acquired images is often affected by illumination effects (e.g., shadows) it is important to enhance local contrast. For the analysis and comparison of color images depicting the same scene at different time points it is required to compensate color and lightness inconsistencies caused by the different illumination conditions. We have developed an approach for image enhancement and color constancy based on the center/surround Retinex model and the Gray World hypothesis. The combination of the two methods using a color processing function improves color rendition, compared to both methods. The use of stacked integral images (SII) allows to efficiently perform local image processing. Our combined Retinex/Gray World approach has been successfully applied to image sequences acquired on outdoor itineraries at different time points and a comparison with previous Retinex-based approaches has been carried out.

  9. Fundamental techniques for resolution enhancement of average subsampled images

    NASA Astrophysics Data System (ADS)

    Shen, Day-Fann; Chiu, Chui-Wen

    2012-07-01

    Although single image resolution enhancement, otherwise known as super-resolution, is widely regarded as an ill-posed inverse problem, we re-examine the fundamental relationship between a high-resolution (HR) image acquisition module and its low-resolution (LR) counterpart. Analysis shows that partial HR information is attenuated but still exists, in its LR version, through the fundamental averaging-and-subsampling process. As a result, we propose a modified Laplacian filter (MLF) and an intensity correction process (ICP) as the pre and post process, respectively, with an interpolation algorithm to partially restore the attenuated information in a super-resolution (SR) enhanced image image. Experiments show that the proposed MLF and ICP provide significant and consistent quality improvements on all 10 test images with three well known interpolation methods including bilinear, bi-cubic, and the SR graphical user interface program provided by Ecole Polytechnique Federale de Lausanne. The proposed MLF and ICP are simple in implementation and generally applicable to all average-subsampled LR images. MLF and ICP, separately or together, can be integrated into most interpolation methods that attempt to restore the original HR contents. Finally, the idea of MLF and ICP can also be applied for average, subsampled one-dimensional signal.

  10. Retinex enhancement of infrared images.

    PubMed

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  11. Optoelectronic associative memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor)

    1993-01-01

    An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.

  12. Human body region enhancement method based on Kinect infrared imaging

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  13. Digital techniques for processing Landsat imagery

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1978-01-01

    An overview of the basic techniques used to process Landsat images with a digital computer, and the VICAR image processing software developed at JPL and available to users through the NASA sponsored COSMIC computer program distribution center is presented. Examples of subjective processing performed to improve the information display for the human observer, such as contrast enhancement, pseudocolor display and band rationing, and of quantitative processing using mathematical models, such as classification based on multispectral signatures of different areas within a given scene and geometric transformation of imagery into standard mapping projections are given. Examples are illustrated by Landsat scenes of the Andes mountains and Altyn-Tagh fault zone in China before and after contrast enhancement and classification of land use in Portland, Oregon. The VICAR image processing software system which consists of a language translator that simplifies execution of image processing programs and provides a general purpose format so that imagery from a variety of sources can be processed by the same basic set of general applications programs is described.

  14. Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.

    2003-01-01

    The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.

  15. Image Processing for Binarization Enhancement via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A. (Inventor)

    2009-01-01

    A technique for enhancing a gray-scale image to improve conversions of the image to binary employs fuzzy reasoning. In the technique, pixels in the image are analyzed by comparing the pixel's gray scale value, which is indicative of its relative brightness, to the values of pixels immediately surrounding the selected pixel. The degree to which each pixel in the image differs in value from the values of surrounding pixels is employed as the variable in a fuzzy reasoning-based analysis that determines an appropriate amount by which the selected pixel's value should be adjusted to reduce vagueness and ambiguity in the image and improve retention of information during binarization of the enhanced gray-scale image.

  16. Performance enhancement of various real-time image processing techniques via speculative execution

    NASA Astrophysics Data System (ADS)

    Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.

    1996-03-01

    In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.

  17. Processing Digital Imagery to Enhance Perceptions of Realism

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur

    2003-01-01

    Multi-scale retinex with color restoration (MSRCR) is a method of processing digital image data based on Edwin Land s retinex (retina + cortex) theory of human color vision. An outgrowth of basic scientific research and its application to NASA s remote-sensing mission, MSRCR is embodied in a general-purpose algorithm that greatly improves the perception of visual realism and the quantity and quality of perceived information in a digitized image. In addition, the MSRCR algorithm includes provisions for automatic corrections to accelerate and facilitate what could otherwise be a tedious image-editing process. The MSRCR algorithm has been, and is expected to continue to be, the basis for development of commercial image-enhancement software designed to extend and refine its capabilities for diverse applications.

  18. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  19. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging

    PubMed Central

    Lindsey, Brooks D.; Martin, K. Heath; Jiang, Xiaoning; Dayton, Paul A.

    2016-01-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200 µm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2 dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2 dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. PMID:27161022

  20. Land classification of south-central Iowa from computer enhanced images

    NASA Technical Reports Server (NTRS)

    Lucas, J. R.; Taranik, J. V.; Billingsley, F. C. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Enhanced LANDSAT imagery was most useful for land classification purposes, because these images could be photographically printed at large scales such as 1:63,360. The ability to see individual picture elements was no hindrance as long as general image patterns could be discerned. Low cost photographic processing systems for color printings have proved to be effective in the utilization of computer enhanced LANDSAT products for land classification purposes. The initial investment for this type of system was very low, ranging from $100 to $200 beyond a black and white photo lab. The technical expertise can be acquired from reading a color printing and processing manual.

  1. Local contrast-enhanced MR images via high dynamic range processing.

    PubMed

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  3. Evaluation of photographic enhancements of Landsat imagery

    NASA Technical Reports Server (NTRS)

    Dean, K. G.; Spencer, J. P.

    1982-01-01

    The photographic processing of color Landsat imagery was evaluated to determine the optimal enhancement techniques. Twenty-six images were examined to explore the effects of gamma values upon image interpretation in a subarctic environment. Gamma values were varied on the images of bands 4 through 7 prior to the creation of the color composites. This yielded color-composited images with various color balances. These images were evaluated in terms of visible geological features (drainage, lineaments, landforms, etc.) and landcover features (exposed rock and ground, coniferous forest, etc.). The results indicate that the most informative images are created by using gamma values of 2.0 for band 4, 1.0 for band 5, and 2.0 for band 6 or 7. Other photographic enhancements tend to enhance some features at the expense of others.

  4. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  5. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    NASA Astrophysics Data System (ADS)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  6. Emotional arousal amplifies the effects of biased competition in the brain

    PubMed Central

    Lee, Tae-Ho; Sakaki, Michiko; Cheng, Ruth; Velasco, Ricardo

    2014-01-01

    The arousal-biased competition model predicts that arousal increases the gain on neural competition between stimuli representations. Thus, the model predicts that arousal simultaneously enhances processing of salient stimuli and impairs processing of relatively less-salient stimuli. We tested this model with a simple dot-probe task. On each trial, participants were simultaneously exposed to one face image as a salient cue stimulus and one place image as a non-salient stimulus. A border around the face cue location further increased its bottom-up saliency. Before these visual stimuli were shown, one of two tones played: one that predicted a shock (increasing arousal) or one that did not. An arousal-by-saliency interaction in category-specific brain regions (fusiform face area for salient faces and parahippocampal place area for non-salient places) indicated that brain activation associated with processing the salient stimulus was enhanced under arousal whereas activation associated with processing the non-salient stimulus was suppressed under arousal. This is the first functional magnetic resonance imaging study to demonstrate that arousal can enhance information processing for prioritized stimuli while simultaneously impairing processing of non-prioritized stimuli. Thus, it goes beyond previous research to show that arousal does not uniformly enhance perceptual processing, but instead does so selectively in ways that optimizes attention to highly salient stimuli. PMID:24532703

  7. Multispectral image enhancement processing for microsat-borne imager

    NASA Astrophysics Data System (ADS)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  8. MEMS-based system and image processing strategy for epiretinal prosthesis.

    PubMed

    Xia, Peng; Hu, Jie; Qi, Jin; Gu, Chaochen; Peng, Yinghong

    2015-01-01

    Retinal prostheses have the potential to restore some level of visual function to the patients suffering from retinal degeneration. In this paper, an epiretinal approach with active stimulation devices is presented. The MEMS-based processing system consists of an external micro-camera, an information processor, an implanted electrical stimulator and a microelectrode array. The image processing strategy combining image clustering and enhancement techniques was proposed and evaluated by psychophysical experiments. The results indicated that the image processing strategy improved the visual performance compared with direct merging pixels to low resolution. The image processing methods assist epiretinal prosthesis for vision restoration.

  9. The magic of image processing

    NASA Astrophysics Data System (ADS)

    Sulentic, Jack W.; Lorre, Jean J.

    1984-05-01

    Digital technology has been used to improve enhancement techniques in astronomical image processing. Continuous tone variations in photographs are assigned density number (DN) values which are arranged in an array. DN locations are processed by computer and turned into pixels which form a reconstruction of the original scene on a television monitor. Digitized data can be manipulated to enhance contrast and filter out gross patterns of light and dark which obscure small scale features. Separate black and white frames exposed at different wavelengths can be digitized and processed individually, then recombined to produce a final image in color. Several examples of the use of the technique are provided, including photographs of spiral galaxy M33; four galaxies in Coma Berenices (NGC 4169, 4173, 4174, and 4175); and Stephens Quintet.

  10. Limitations of contrast enhancement for infrared target identification

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2009-05-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content. Automatic contrast enhancement techniques do not always achieve this improvement. In some cases, the contrast can increase to a level of target saturation. This paper assesses the range-performance effects of contrast enhancement for target identification as a function of image saturation. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing contrast enhancement processed images at various levels of saturation. Contrast enhancement is modeled in the U.S. Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of specific feature saturation or enhancement. The measured results follow the predicted performance based on the target task difficulty metric used in NVThermIP for the non-saturated cases. The saturated images reduce the information contained in the target and performance suffers. The model treats the contrast of the target as uniform over spatial frequency. As the contrast is enhanced, the model assumes that the contrast is enhanced uniformly over the spatial frequencies. After saturation, the spatial cues that differentiate one tank from another are located in a limited band of spatial frequencies. A frequency dependent treatment of target contrast is needed to predict performance of over-processed images.

  11. Digital processing of the Mariner 10 images of Venus and Mercury

    NASA Technical Reports Server (NTRS)

    Soha, J. M.; Lynn, D. J.; Mosher, J. A.; Elliot, D. A.

    1977-01-01

    An extensive effort was devoted to the digital processing of the Mariner 10 images of Venus and Mercury at the Image Processing Laboratory of the Jet Propulsion Laboratory. This effort was designed to optimize the display of the considerable quantity of information contained in the images. Several image restoration, enhancement, and transformation procedures were applied; examples of these techniques are included. A particular task was the construction of large mosaics which characterize the surface of Mercury and the atmospheric structure of Venus.

  12. Visual enhancement of images of natural resources: Applications in geology

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Neto, G.; Araujo, E. O.; Mascarenhas, N. D. A.; Desouza, R. C. M.

    1980-01-01

    The principal components technique for use in multispectral scanner LANDSAT data processing results in optimum dimensionality reduction. A powerful tool for MSS IMAGE enhancement, the method provides a maximum impression of terrain ruggedness; this fact makes the technique well suited for geological analysis.

  13. Digital image processing for photo-reconnaissance applications

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1972-01-01

    Digital image-processing techniques developed for processing pictures from NASA space vehicles are analyzed in terms of enhancement, quantitative restoration, and information extraction. Digital filtering, and the action of a high frequency filter in the real and Fourier domain are discussed along with color and brightness.

  14. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    PubMed Central

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  15. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    PubMed

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  16. Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters.

    PubMed

    Ferrari, José A; Flores, Jorge L; Perciante, César D; Frins, Erna

    2009-07-01

    A new method for real-time edge enhancement and image equalization using photochromic filters is presented. The reversible self-adaptive capacity of photochromic materials is used for creating an unsharp mask of the original image. This unsharp mask produces a kind of self filtering of the original image. Unlike the usual Fourier (coherent) image processing, the technique we propose can also be used with incoherent illumination. Validation experiments with Bacteriorhodopsin and photochromic glass are presented.

  17. Frequency domain zero padding for accurate autofocusing based on digital holography

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Kim, Ju Wan; Eom, Tae Joong; Lee, Byeong Ha

    2018-01-01

    The numerical refocusing feature of digital holography enables the reconstruction of a well-focused image from a digital hologram captured at an arbitrary out-of-focus plane without the supervision of end users. However, in general, the autofocusing process for getting a highly focused image requires a considerable computational cost. In this study, to reconstruct a better-focused image, we propose the zero padding technique implemented in the frequency domain. Zero padding in the frequency domain enhances the visibility or numerical resolution of the image, which allows one to measure the degree of focus with more accuracy. A coarse-to-fine search algorithm is used to reduce the computing load, and a graphics processing unit (GPU) is employed to accelerate the process. The performance of the proposed scheme is evaluated with simulation and experiment, and the possibility of obtaining a well-refocused image with an enhanced accuracy and speed are presented.

  18. The image enhancement and region of interest extraction of lobster-eye X-ray dangerous material inspection system

    NASA Astrophysics Data System (ADS)

    Zhan, Qi; Wang, Xin; Mu, Baozhong; Xu, Jie; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan

    2016-10-01

    Dangerous materials inspection is an important technique to confirm dangerous materials crimes. It has significant impact on the prohibition of dangerous materials-related crimes and the spread of dangerous materials. Lobster-Eye Optical Imaging System is a kind of dangerous materials detection device which mainly takes advantage of backscatter X-ray. The strength of the system is its applicability to access only one side of an object, and to detect dangerous materials without disturbing the surroundings of the target material. The device uses Compton scattered x-rays to create computerized outlines of suspected objects during security detection process. Due to the grid structure of the bionic object glass, which imitate the eye of a lobster, grids contribute to the main image noise during the imaging process. At the same time, when used to inspect structured or dense materials, the image is plagued by superposition artifacts and limited by attenuation and noise. With the goal of achieving high quality images which could be used for dangerous materials detection and further analysis, we developed effective image process methods applied to the system. The first aspect of the image process is the denoising and enhancing edge contrast process, during the process, we apply deconvolution algorithm to remove the grids and other noises. After image processing, we achieve high signal-to-noise ratio image. The second part is to reconstruct image from low dose X-ray exposure condition. We developed a kind of interpolation method to achieve the goal. The last aspect is the region of interest (ROI) extraction process, which could be used to help identifying dangerous materials mixed with complex backgrounds. The methods demonstrated in the paper have the potential to improve the sensitivity and quality of x-ray backscatter system imaging.

  19. Flash X-ray with image enhancement applied to combustion events

    NASA Astrophysics Data System (ADS)

    White, K. J.; McCoy, D. G.

    1983-10-01

    Flow visualization of interior ballistic processes by use of X-rays has placed more stringent requirements on flash X-ray techniques. The problem of improving radiographic contrast of propellants in X-ray transparent chambers was studied by devising techniques for evaluating, measuring and reducing the effects of scattering from both the test object and structures in the test area. X-ray film and processing is reviewed and techniques for evaluating and calibrating these are outlined. Finally, after X-ray techniques were optimized, the application of image enhancement processing which can improve image quality is described. This technique was applied to X-ray studies of the combustion of very high burning rate (VHBR) propellants and stick propellant charges.

  20. Radiology utilizing a gas multiwire detector with resolution enhancement

    DOEpatents

    Majewski, Stanislaw; Majewski, Lucasz A.

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  1. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Martin, K Heath; Jiang, Xiaoning; Dayton, Paul A

    2016-08-01

    Intravascular ultrasound (IVUS) is one of the most commonly-used interventional imaging techniques and has seen recent innovations which attempt to characterize the risk posed by atherosclerotic plaques. One such development is the use of microbubble contrast agents to image vasa vasorum, fine vessels which supply oxygen and nutrients to the walls of coronary arteries and typically have diameters less than 200μm. The degree of vasa vasorum neovascularization within plaques is positively correlated with plaque vulnerability. Having recently presented a prototype dual-frequency transducer for contrast agent-specific intravascular imaging, here we describe signal processing approaches based on minimum variance (MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution and contrast-to-tissue ratio (CTR) in IVUS imaging. These approaches are examined through simulations, phantom studies, ex vivo studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF processing improved CTR by a mean of 4.2dB, while combined MV and PCF processing improved spatial resolution by 41.7%. Improvements of 2.2dB in CTR and 37.2% in resolution were observed in vivo. Applying these processing strategies can enhance image quality in conventional B-mode IVUS or in contrast-enhanced IVUS, where signal-to-noise ratio is relatively low and resolution is at a premium. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. An automatic optimum kernel-size selection technique for edge enhancement

    USGS Publications Warehouse

    Chavez, Pat S.; Bauer, Brian P.

    1982-01-01

    Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image. 

  3. Detecting fluorescence hot-spots using mosaic maps generated from multimodal endoscope imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Soper, Timothy D.; Seibel, Eric J.

    2013-03-01

    Fluorescence labeled biomarkers can be detected during endoscopy to guide early cancer biopsies, such as high-grade dysplasia in Barrett's Esophagus. To enhance intraoperative visualization of the fluorescence hot-spots, a mosaicking technique was developed to create full anatomical maps of the lower esophagus and associated fluorescent hot-spots. The resultant mosaic map contains overlaid reflectance and fluorescence images. It can be used to assist biopsy and document findings. The mosaicking algorithm uses reflectance images to calculate image registration between successive frames, and apply this registration to simultaneously acquired fluorescence images. During this mosaicking process, the fluorescence signal is enhanced through multi-frame averaging. Preliminary results showed that the technique promises to enhance the detectability of the hot-spots due to enhanced fluorescence signal.

  4. A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs.

    PubMed

    Chen, Sheng; Yao, Liping; Chen, Bao

    2016-11-01

    The enhancement of lung nodules in chest radiographs (CXRs) plays an important role in the manual as well as computer-aided detection (CADe) lung cancer. In this paper, we proposed a parameterized logarithmic image processing (PLIP) method combined with the Laplacian of a Gaussian (LoG) filter to enhance lung nodules in CXRs. We first applied several LoG filters with varying parameters to an original CXR to enhance the nodule-like structures as well as the edges in the image. We then applied the PLIP model, which can enhance lung nodule images with high contrast and was beneficial in extracting effective features for nodule detection in the CADe scheme. Our method combined the advantages of both the PLIP algorithm and the LoG algorithm, which can enhance lung nodules in chest radiographs with high contrast. To test our nodule enhancement method, we tested a CADe scheme, with a relatively high performance in nodule detection, using a publically available database containing 140 nodules in 140 CXRs enhanced through our nodule enhancement method. The CADe scheme attained a sensitivity of 81 and 70 % with an average of 5.0 frame rate (FP) and 2.0 FP, respectively, in a leave-one-out cross-validation test. By contrast, the CADe scheme based on the original image recorded a sensitivity of 77 and 63 % at 5.0 FP and 2.0 FP, respectively. We introduced the measurement of enhancement by entropy evaluation to objectively assess our method. Experimental results show that the proposed method obtains an effective enhancement of lung nodules in CXRs for both radiologists and CADe schemes.

  5. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo

    NASA Astrophysics Data System (ADS)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-11-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.

  6. Imaging model for the scintillator and its application to digital radiography image enhancement.

    PubMed

    Wang, Qian; Zhu, Yining; Li, Hongwei

    2015-12-28

    Digital Radiography (DR) images obtained by OCD-based (optical coupling detector) Micro-CT system usually suffer from low contrast. In this paper, a mathematical model is proposed to describe the image formation process in scintillator. By solving the correlative inverse problem, the quality of DR images is improved, i.e. higher contrast and spatial resolution. By analyzing the radiative transfer process of visible light in scintillator, scattering is recognized as the main factor leading to low contrast. Moreover, involved blurring effect is also concerned and described as point spread function (PSF). Based on these physical processes, the scintillator imaging model is then established. When solving the inverse problem, pre-correction to the intensity of x-rays, dark channel prior based haze removing technique, and an effective blind deblurring approach are employed. Experiments on a variety of DR images show that the proposed approach could improve the contrast of DR images dramatically as well as eliminate the blurring vision effectively. Compared with traditional contrast enhancement methods, such as CLAHE, our method could preserve the relative absorption values well.

  7. Emotional stimuli exert parallel effects on attention and memory.

    PubMed

    Talmi, Deborah; Ziegler, Marilyne; Hawksworth, Jade; Lalani, Safina; Herman, C Peter; Moscovitch, Morris

    2013-01-01

    Because emotional and neutral stimuli typically differ on non-emotional dimensions, it has been difficult to determine conclusively which factors underlie the ability of emotional stimuli to enhance immediate long-term memory. Here we induced arousal by varying participants' goals, a method that removes many potential confounds between emotional and non-emotional items. Hungry and sated participants encoded food and clothing images under divided attention conditions. Sated participants attended to and recalled food and clothing images equivalently. Hungry participants performed worse on the concurrent tone-discrimination task when they viewed food relative to clothing images, suggesting enhanced attention to food images, and they recalled more food than clothing images. A follow-up regression analysis of the factors predicting memory for individual pictures revealed that food images had parallel effects on attention and memory in hungry participants, so that enhanced attention to food images did not predict their enhanced memory. We suggest that immediate long-term memory for food is enhanced in the hungry state because hunger leads to more distinctive processing of food images rendering them more accessible during retrieval.

  8. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    PubMed

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  9. Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2014-01-01

    This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.

  10. Non-linear Post Processing Image Enhancement

    NASA Technical Reports Server (NTRS)

    Hunt, Shawn; Lopez, Alex; Torres, Angel

    1997-01-01

    A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,

  11. Application of the EM algorithm to radiographic images.

    PubMed

    Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J

    1992-01-01

    The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.

  12. Morphological rational operator for contrast enhancement.

    PubMed

    Peregrina-Barreto, Hayde; Herrera-Navarro, Ana M; Morales-Hernández, Luis A; Terol-Villalobos, Iván R

    2011-03-01

    Contrast enhancement is an important task in image processing that is commonly used as a preprocessing step to improve the images for other tasks such as segmentation. However, some methods for contrast improvement that work well in low-contrast regions affect good contrast regions as well. This occurs due to the fact that some elements may vanish. A method focused on images with different luminance conditions is introduced in the present work. The proposed method is based on morphological transformations by reconstruction and rational operations, which, altogether, allow a more accurate contrast enhancement resulting in regions that are in harmony with their environment. Furthermore, due to the properties of these morphological transformations, the creation of new elements on the image is avoided. The processing is carried out on luminance values in the u'v'Y color space, which avoids the creation of new colors. As a result of the previous considerations, the proposed method keeps the natural color appearance of the image.

  13. A multiresolution processing method for contrast enhancement in portal imaging.

    PubMed

    Gonzalez-Lopez, Antonio

    2018-06-18

    Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.

  14. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  15. Enhancement of morphological and vascular features in OCT images using a modified Bayesian residual transform

    PubMed Central

    Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka

    2018-01-01

    A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996

  16. A detail enhancement and dynamic range adjustment algorithm for high dynamic range images

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua

    2014-08-01

    Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.

  17. Non-invasive thermal IR detection of breast tumor development in vivo

    NASA Astrophysics Data System (ADS)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-03-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  18. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  19. Better Pictures in a Snap

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Retinex Imaging Processing, winner of NASA's 1999 Space Act Award, is commercially available through TruView Imaging Company. With this technology, amateur photographers use their personal computers to improve the brightness, scene contrast, detail, and overall sharpness of images with increased ease. The process was originally developed for remote sensing of the Earth by researchers at Langley Research Center and Science and Technology Corporation (STC). It automatically enhances a digital image in terms of dynamic range compression, color independence from the spectral distribution of the scene illuminant, and color/lightness rendition. As a result, the enhanced digital image is much closer to the scene perceived by the human visual system, under all kinds and levels of lighting variations. TruView believes there are other applications for the software in medical imaging, forensics, security, recognizance, mining, assembly, and other industrial areas.

  20. Emotion Modulation of Visual Attention: Categorical and Temporal Characteristics

    PubMed Central

    Ciesielski, Bethany G.; Armstrong, Thomas; Zald, David H.; Olatunji, Bunmi O.

    2010-01-01

    Background Experimental research has shown that emotional stimuli can either enhance or impair attentional performance. However, the relative effects of specific emotional stimuli and the specific time course of these differential effects are unclear. Methodology/Principal Findings In the present study, participants (n = 50) searched for a single target within a rapid serial visual presentation of images. Irrelevant fear, disgust, erotic or neutral images preceded the target by two, four, six, or eight items. At lag 2, erotic images induced the greatest deficits in subsequent target processing compared to other images, consistent with a large emotional attentional blink. Fear and disgust images also produced a larger attentional blinks at lag 2 than neutral images. Erotic, fear, and disgust images continued to induce greater deficits than neutral images at lag 4 and 6. However, target processing deficits induced by erotic, fear, and disgust images at intermediate lags (lag 4 and 6) did not consistently differ from each other. In contrast to performance at lag 2, 4, and 6, enhancement in target processing for emotional stimuli was observed in comparison to neutral stimuli at lag 8. Conclusions/Significance These findings suggest that task-irrelevant emotion information, particularly erotica, impairs intentional allocation of attention at early temporal stages, but at later temporal stages, emotional stimuli can have an enhancing effect on directed attention. These data suggest that the effects of emotional stimuli on attention can be both positive and negative depending upon temporal factors. PMID:21079773

  1. Interactive degraded document enhancement and ground truth generation

    NASA Astrophysics Data System (ADS)

    Bal, G.; Agam, G.; Frieder, O.; Frieder, G.

    2008-01-01

    Degraded documents are frequently obtained in various situations. Examples of degraded document collections include historical document depositories, document obtained in legal and security investigations, and legal and medical archives. Degraded document images are hard to to read and are hard to analyze using computerized techniques. There is hence a need for systems that are capable of enhancing such images. We describe a language-independent semi-automated system for enhancing degraded document images that is capable of exploiting inter- and intra-document coherence. The system is capable of processing document images with high levels of degradations and can be used for ground truthing of degraded document images. Ground truthing of degraded document images is extremely important in several aspects: it enables quantitative performance measurements of enhancement systems and facilitates model estimation that can be used to improve performance. Performance evaluation is provided using the historical Frieder diaries collection.1

  2. [Optimizing histological image data for 3-D reconstruction using an image equalizer].

    PubMed

    Roth, A; Melzer, K; Annacker, K; Lipinski, H G; Wiemann, M; Bingmann, D

    2002-01-01

    Bone cells form a wired network within the extracellular bone matrix. To analyse this complex 3D structure, we employed a confocal fluorescence imaging procedure to visualize live bone cells within their native surrounding. By means of newly developed image processing software, the "Image-Equalizer", we aimed to enhanced the contrast and eliminize artefacts in such a way that cell bodies as well as fine interconnecting processes were visible.

  3. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  4. Enhancement of chest radiographs using eigenimage processing

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.; Hurrell, Michael

    2006-08-01

    Frontal chest radiographs ("chest X-rays") are routinely used by medical personnel to assess patients for a wide range of suspected disorders. Often large numbers of images need to be analyzed. Furthermore, at times the images need to analyzed ("reported") when no radiological expert is available. A system which enhances the images in such a way that abnormalities are more obvious is likely to reduce the chance that an abnormality goes unnoticed. The authors previously reported the use of principal components analysis to derive a basis set of eigenimages from a training set made up of images from normal subjects. The work is here extended to investigate how best to emphasize the abnormalities in chest radiographs. Results are also reported for various forms of image normalizing transformations used in performing the eigenimage processing.

  5. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  6. Enhanced visualization of abnormalities in digital-mammographic images

    NASA Astrophysics Data System (ADS)

    Young, Susan S.; Moore, William E.

    2002-05-01

    This paper describes two new presentation methods that are intended to improve the ability of radiologists to visualize abnormalities in mammograms by enhancing the appearance of the breast parenchyma pattern relative to the fatty-tissue surroundings. The first method, referred to as mountain- view, is obtained via multiscale edge decomposition through filter banks. The image is displayed in a multiscale edge domain that causes the image to have a topographic-like appearance. The second method displays the image in the intensity domain and is referred to as contrast-enhancement presentation. The input image is first passed through a decomposition filter bank to produce a filtered output (Id). The image at the lowest resolution is processed using a LUT (look-up table) to produce a tone scaled image (I'). The LUT is designed to optimally map the code value range corresponding to the parenchyma pattern in the mammographic image into the dynamic range of the output medium. The algorithm uses a contrast weight control mechanism to produce the desired weight factors to enhance the edge information corresponding to the parenchyma pattern. The output image is formed using a reconstruction filter bank through I' and enhanced Id.

  7. Techniques for using diazo materials in remote sensor data analysis

    NASA Technical Reports Server (NTRS)

    Whitebay, L. E.; Mount, S.

    1978-01-01

    The use of data derived from LANDSAT is facilitated when special products or computer enhanced images can be analyzed. However, the facilities required to produce and analyze such products prevent many users from taking full advantages of the LANDSAT data. A simple, low-cost method is presented by which users can make their own specially enhanced composite images from the four band black and white LANDSAT images by using the diazo process. The diazo process is described and a detailed procedure for making various color composites, such as color infrared, false natural color, and false color, is provided. The advantages and limitations of the diazo process are discussed. A brief discussion interpretation of diazo composites for land use mapping with some typical examples is included.

  8. Contrast-Enhanced Magnetic Resonance Imaging of Gastric Emptying and Motility in Rats.

    PubMed

    Lu, Kun-Han; Cao, Jiayue; Oleson, Steven Thomas; Powley, Terry L; Liu, Zhongming

    2017-11-01

    The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.

  9. A comparison of ordinary fuzzy and intuitionistic fuzzy approaches in visualizing the image of flat electroencephalography

    NASA Astrophysics Data System (ADS)

    Zenian, Suzelawati; Ahmad, Tahir; Idris, Amidora

    2017-09-01

    Medical imaging is a subfield in image processing that deals with medical images. It is very crucial in visualizing the body parts in non-invasive way by using appropriate image processing techniques. Generally, image processing is used to enhance visual appearance of images for further interpretation. However, the pixel values of an image may not be precise as uncertainty arises within the gray values of an image due to several factors. In this paper, the input and output images of Flat Electroencephalography (fEEG) of an epileptic patient at varied time are presented. Furthermore, ordinary fuzzy and intuitionistic fuzzy approaches are implemented to the input images and the results are compared between these two approaches.

  10. Enhanced echolocation via robust statistics and super-resolution of sonar images

    NASA Astrophysics Data System (ADS)

    Kim, Kio

    Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust statistics is in fusing the images. It is shown that the maximum a posteriori fusion method can be formulated in a Kalman filter-like manner, and also that the resulting expression is identical to a W-estimator with a specific weight function.

  11. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  12. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  13. Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging

    PubMed Central

    Carasso, Alfred S; Vladár, András E

    2014-01-01

    This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),1 that can perform the above image processing tasks. PMID:26601050

  14. Survey of Technologies for the Airport Border of the Future

    DTIC Science & Technology

    2014-04-01

    geometry Handwriting recognition ID cards Image classification Image enhancement Image fusion Image matching Image processing Image segmentation Iris...00 Tongue print Footstep recognition Odour recognition Retinal recognition Emotion recognition Periocular recognition Handwriting recognition Ear...recognition Palmprint recognition Hand geometry DNA matching Vein matching Ear recognition Handwriting recognition Periocular recognition Emotion

  15. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator.

    PubMed

    Khazendar, S; Sayasneh, A; Al-Assam, H; Du, H; Kaijser, J; Ferrara, L; Timmerman, D; Jassim, S; Bourne, T

    2015-01-01

    Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered.

  16. Exploration of Mars by Mariner 9 - Television sensors and image processing.

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1973-01-01

    Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.

  17. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  18. A psychophysical comparison of two methods for adaptive histogram equalization.

    PubMed

    Zimmerman, J B; Cousins, S B; Hartzell, K M; Frisse, M E; Kahn, M G

    1989-05-01

    Adaptive histogram equalization (AHE) is a method for adaptive contrast enhancement of digital images. It is an automatic, reproducible method for the simultaneous viewing of contrast within a digital image with a large dynamic range. Recent experiments have shown that in specific cases, there is no significant difference in the ability of AHE and linear intensity windowing to display gray-scale contrast. More recently, a variant of AHE which limits the allowed contrast enhancement of the image has been proposed. This contrast-limited adaptive histogram equalization (CLAHE) produces images in which the noise content of an image is not excessively enhanced, but in which sufficient contrast is provided for the visualization of structures within the image. Images processed with CLAHE have a more natural appearance and facilitate the comparison of different areas of an image. However, the reduced contrast enhancement of CLAHE may hinder the ability of an observer to detect the presence of some significant gray-scale contrast. In this report, a psychophysical observer experiment was performed to determine if there is a significant difference in the ability of AHE and CLAHE to depict gray-scale contrast. Observers were presented with computed tomography (CT) images of the chest processed with AHE and CLAHE. Subtle artificial lesions were introduced into some images. The observers were asked to rate their confidence regarding the presence of the lesions; this rating-scale data was analyzed using receiver operating characteristic (ROC) curve techniques. These ROC curves were compared for significant differences in the observers' performances. In this report, no difference was found in the abilities of AHE and CLAHE to depict contrast information.

  19. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    PubMed

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  20. Image smoothing and enhancement via min/max curvature flow

    NASA Astrophysics Data System (ADS)

    Malladi, Ravikanth; Sethian, James A.

    1996-03-01

    We present a class of PDE-based algorithms suitable for a wide range of image processing applications. The techniques are applicable to both salt-and-pepper gray-scale noise and full- image continuous noise present in black and white images, gray-scale images, texture images and color images. At the core, the techniques rely on a level set formulation of evolving curves and surfaces and the viscosity in profile evolution. Essentially, the method consists of moving the isointensity contours in an image under curvature dependent speed laws to achieve enhancement. Compared to existing techniques, our approach has several distinct advantages. First, it contains only one enhancement parameter, which in most cases is automatically chosen. Second, the scheme automatically stops smoothing at some optimal point; continued application of the scheme produces no further change. Third, the method is one of the fastest possible schemes based on a curvature-controlled approach.

  1. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, M; Yuan, Y; Rosenzweig, K

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels onmore » individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.« less

  2. High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired.

    PubMed

    Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean

    2015-08-01

    Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids.

  3. Adaptive enhancement for nonuniform illumination images via nonlinear mapping

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Huang, Qian; Hu, Jing

    2017-09-01

    Nonuniform illumination images suffer from degenerated details because of underexposure, overexposure, or a combination of both. To improve the visual quality of color images, underexposure regions should be lightened, whereas overexposure areas need to be dimmed properly. However, discriminating between underexposure and overexposure is troublesome. Compared with traditional methods that produce a fixed demarcation value throughout an image, the proposed demarcation changes as local luminance varies, thus is suitable for manipulating complicated illumination. Based on this locally adaptive demarcation, a nonlinear modification is applied to image luminance. Further, with the modified luminance, we propose a nonlinear process to reconstruct a luminance-enhanced color image. For every pixel, this nonlinear process takes the luminance change and the original chromaticity into account, thus trying to avoid exaggerated colors at dark areas and depressed colors at highly bright regions. Finally, to improve image contrast, a local and image-dependent exponential technique is designed and applied to the RGB channels of the obtained color image. Experimental results demonstrate that our method produces good contrast and vivid color for both nonuniform illumination images and images with normal illumination.

  4. Chromaticity based smoke removal in endoscopic images

    NASA Astrophysics Data System (ADS)

    Tchaka, Kevin; Pawar, Vijay M.; Stoyanov, Danail

    2017-02-01

    In minimally invasive surgery, image quality is a critical pre-requisite to ensure a surgeons ability to perform a procedure. In endoscopic procedures, image quality can deteriorate for a number of reasons such as fogging due to the temperature gradient after intra-corporeal insertion, lack of focus and due to smoke generated when using electro-cautery to dissect tissues without bleeding. In this paper we investigate the use of vision processing techniques to remove surgical smoke and improve the clarity of the image. We model the image formation process by introducing a haze medium to account for the degradation of visibility. For simplicity and computational efficiency we use an adapted dark-channel prior method combined with histogram equalization to remove smoke artifacts to recover the radiance image and enhance the contrast and brightness of the final result. Our initial results on images from robotic assisted procedures are promising and show that the proposed approach may be used to enhance image quality during surgery without additional suction devices. In addition, the processing pipeline may be used as an important part of a robust surgical vision pipeline that can continue working in the presence of smoke.

  5. Automatic extraction of nuclei centroids of mouse embryonic cells from fluorescence microscopy images.

    PubMed

    Bashar, Md Khayrul; Komatsu, Koji; Fujimori, Toshihiko; Kobayashi, Tetsuya J

    2012-01-01

    Accurate identification of cell nuclei and their tracking using three dimensional (3D) microscopic images is a demanding task in many biological studies. Manual identification of nuclei centroids from images is an error-prone task, sometimes impossible to accomplish due to low contrast and the presence of noise. Nonetheless, only a few methods are available for 3D bioimaging applications, which sharply contrast with 2D analysis, where many methods already exist. In addition, most methods essentially adopt segmentation for which a reliable solution is still unknown, especially for 3D bio-images having juxtaposed cells. In this work, we propose a new method that can directly extract nuclei centroids from fluorescence microscopy images. This method involves three steps: (i) Pre-processing, (ii) Local enhancement, and (iii) Centroid extraction. The first step includes two variations: first variation (Variant-1) uses the whole 3D pre-processed image, whereas the second one (Variant-2) modifies the preprocessed image to the candidate regions or the candidate hybrid image for further processing. At the second step, a multiscale cube filtering is employed in order to locally enhance the pre-processed image. Centroid extraction in the third step consists of three stages. In Stage-1, we compute a local characteristic ratio at every voxel and extract local maxima regions as candidate centroids using a ratio threshold. Stage-2 processing removes spurious centroids from Stage-1 results by analyzing shapes of intensity profiles from the enhanced image. An iterative procedure based on the nearest neighborhood principle is then proposed to combine if there are fragmented nuclei. Both qualitative and quantitative analyses on a set of 100 images of 3D mouse embryo are performed. Investigations reveal a promising achievement of the technique presented in terms of average sensitivity and precision (i.e., 88.04% and 91.30% for Variant-1; 86.19% and 95.00% for Variant-2), when compared with an existing method (86.06% and 90.11%), originally developed for analyzing C. elegans images.

  6. An application of stereoscopy and image processing in forensics: recovering obliterated firearms serial number

    NASA Astrophysics Data System (ADS)

    da Silva Nunes, L. C.; dos Santos, Paulo Acioly M.

    2004-10-01

    We present an application of the use of stereoscope to recovering obliterated firearms serial number. We investigate a promising new combined cheap method using both non-destructive and destructive techniques. With the use of a stereomicroscope coupled with a digital camera and a flexible cold light source, we can capture the image of the damaged area, and with continuous polishing and sometimes with the help of image processing techniques we could enhance the observed images and they can also be recorded as evidence. This method has already proven to be useful, in certain cases, in aluminum dotted pistol frames, whose serial number is printed with a laser, when etching techniques are not successful. We can also observe acid treated steel surfaces and enhance the images of recovered serial numbers, which sometimes lack of definition.

  7. Single-scale center-surround Retinex based restoration of low-illumination images with edge enhancement

    NASA Astrophysics Data System (ADS)

    Kwok, Ngaiming; Shi, Haiyan; Peng, Yeping; Wu, Hongkun; Li, Ruowei; Liu, Shilong; Rahman, Md Arifur

    2018-04-01

    Restoring images captured under low-illuminations is an essential front-end process for most image based applications. The Center-Surround Retinex algorithm has been a popular approach employed to improve image brightness. However, this algorithm in its basic form, is known to produce color degradations. In order to mitigate this problem, here the Single-Scale Retinex algorithm is modifid as an edge extractor while illumination is recovered through a non-linear intensity mapping stage. The derived edges are then integrated with the mapped image to produce the enhanced output. Furthermore, in reducing color distortion, the process is conducted in the magnitude sorted domain instead of the conventional Red-Green-Blue (RGB) color channels. Experimental results had shown that improvements with regard to mean brightness, colorfulness, saturation, and information content can be obtained.

  8. Visual improvement for bad handwriting based on Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2014-03-01

    A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.

  9. Image enhancements of Landsat 8 (OLI) and SAR data for preliminary landslide identification and mapping applied to the central region of Kenya

    NASA Astrophysics Data System (ADS)

    Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.

    2017-04-01

    Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.

  10. Spatial light modulator array with heat minimization and image enhancement features

    DOEpatents

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  11. Enhancement of structure images of interstellar diamond microcrystals by image processing

    NASA Technical Reports Server (NTRS)

    O'Keefe, Michael A.; Hetherington, Crispin; Turner, John; Blake, David; Freund, Friedemann

    1988-01-01

    Image processed high resolution TEM images of diamond crystals found in oxidized acid residues of carbonaceous chondrites are presented. Two models of the origin of the diamonds are discussed. The model proposed by Lewis et al. (1987) supposes that the diamonds formed under low pressure conditions, whereas that of Blake et al (1988) suggests that the diamonds formed due to particle-particle collisions behind supernova shock waves. The TEM images of the diamond presented support the high pressure model.

  12. Imaging of the meninges and the extra-axial spaces.

    PubMed

    Kirmi, Olga; Sheerin, Fintan; Patel, Neel

    2009-12-01

    The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.

  13. Rotation Covariant Image Processing for Biomedical Applications

    PubMed Central

    Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences. PMID:23710255

  14. Review Article: The Imaging of What in the Multilingual Mind?

    ERIC Educational Resources Information Center

    de Bot, Kees

    2008-01-01

    In this review article it is argued that while the number of neuro-imaging (NI) studies on multilingual processing has exploded over the last few years, the contribution of such studies to enhance our understanding of the process of multilingual processing has not been very substantial. There are problems on various levels, which include the…

  15. Evaluating some computer exhancement algorithms that improve the visibility of cometary morphology

    NASA Technical Reports Server (NTRS)

    Larson, Stephen M.; Slaughter, Charles D.

    1992-01-01

    Digital enhancement of cometary images is a necessary tool in studying cometary morphology. Many image processing algorithms, some developed specifically for comets, have been used to enhance the subtle, low contrast coma and tail features. We compare some of the most commonly used algorithms on two different images to evaluate their strong and weak points, and conclude that there currently exists no single 'ideal' algorithm, although the radial gradient spatial filter gives the best overall result. This comparison should aid users in selecting the best algorithm to enhance particular features of interest.

  16. Resolution enhancement using simultaneous couple illumination

    NASA Astrophysics Data System (ADS)

    Hussain, Anwar; Martínez Fuentes, José Luis

    2016-10-01

    A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.

  17. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  18. Two-dimensional signal processing with application to image restoration

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1974-01-01

    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.

  19. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: comparison of image quality and diagnostic performance.

    PubMed

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  20. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  1. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage.

    PubMed

    Watanabe, Yoshiyuki; Tsukabe, Akio; Kunitomi, Yuki; Nishizawa, Mitsuo; Arisawa, Atsuko; Tanaka, Hisashi; Yoshiya, Kazuhisa; Shimazu, Takeshi; Tomiyama, Noriyuki

    2014-04-01

    Our study aimed to elucidate the diagnostic performance of dual-energy CT (DECT) in the detection of contrast enhancement in intracranial haematomas (ICrH) with early phase dual-energy computed tomography angiography (CTA) and compare the results with those obtained by delayed CT enhancement. Thirty-six patients with ICrH were retrospectively included in this study. All patients had undergone single-energy non-contrast CT and contrast-enhanced dual-source DECT. DECT images were post-processed with commercial software, followed by obtaining iodine images and virtual non-contrast images and generating combined images that created the impression of 120-kVp images. Two neuroradiologists, blinded to the patients' data, reviewed two reading sessions: session A (non-contrast CT and combined CT) and session B (non-contrast CT, combined CT, and iodine images) for detection of contrast enhancement in the haematomas. Contrast leakage or enhancement was detected in 23 (57.5 %) out of 40 haemorrhagic lesions in 36 patients on delayed CT. Three enhanced lesions were depicted only in the DECT iodine images. The sensitivity, specificity, positive predictive value, and negative predictive value of session A were 82.6, 94.1, 95.0, and 80.0 %, respectively, and those of session B were 95.7, 94.1, 95.7, and 94.1 %, respectively. DECT emphasised the iodine enhancement and facilitated the detection of contrast enhancement or leakage.

  2. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  3. Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.

    PubMed

    Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2017-06-01

    Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.

  4. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

    NASA Astrophysics Data System (ADS)

    Kanamori, Katsuhiro

    2016-07-01

    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  5. Image processing via level set curvature flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malladi, R.; Sethian, J.A.

    We present a controlled image smoothing and enhancement method based on a curvature flow interpretation of the geometric heat equation. Compared to existing techniques, the model has several distinct advantages. (i) It contains just one enhancement parameter. (ii) The scheme naturally inherits a stopping criterion from the image; continued application of the scheme produces no further change. (iii) The method is one of the fastest possible schemes based on a curvature-controlled approach. 15 ref., 6 figs.

  6. Digital staining for histopathology multispectral images by the combined application of spectral enhancement and spectral transformation.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2011-01-01

    In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.

  7. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  8. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  9. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  10. The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications. [image enhancement and thematic classification in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.

    1982-01-01

    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.

  11. Image processing of angiograms: A pilot study

    NASA Technical Reports Server (NTRS)

    Larsen, L. E.; Evans, R. A.; Roehm, J. O., Jr.

    1974-01-01

    The technology transfer application this report describes is the result of a pilot study of image-processing methods applied to the image enhancement, coding, and analysis of arteriograms. Angiography is a subspecialty of radiology that employs the introduction of media with high X-ray absorption into arteries in order to study vessel pathology as well as to infer disease of the organs supplied by the vessel in question.

  12. New opportunities for quality enhancing of images captured by passive THz camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2014-10-01

    As it is well-known, the passive THz camera allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Obviously, efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection for concealed object: minimal size of the object; maximal distance of the detection; image quality. Computer processing of the THz image may lead to many times improving of the image quality without any additional engineering efforts. Therefore, developing of modern computer code for its application to THz images is urgent problem. Using appropriate new methods one may expect such temperature resolution which will allow to see banknote in pocket of a person without any real contact. Modern algorithms for computer processing of THz images allow also to see object inside the human body using a temperature trace on the human skin. This circumstance enhances essentially opportunity of passive THz camera applications for counterterrorism problems. We demonstrate opportunities, achieved at present time, for the detection both of concealed objects and of clothes components due to using of computer processing of images captured by passive THz cameras, manufactured by various companies. Another important result discussed in the paper consists in observation of both THz radiation emitted by incandescent lamp and image reflected from ceramic floorplate. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China). All algorithms for computer processing of the THz images under consideration in this paper were developed by Russian part of author list. Keywords: THz wave, passive imaging camera, computer processing, security screening, concealed and forbidden objects, reflected image, hand seeing, banknote seeing, ceramic floorplate, incandescent lamp.

  13. Image-Processing Program

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Hull, D. R.

    1994-01-01

    IMAGEP manipulates digital image data to effect various processing, analysis, and enhancement functions. It is keyboard-driven program organized into nine subroutines. Within subroutines are sub-subroutines also selected via keyboard. Algorithm has possible scientific, industrial, and biomedical applications in study of flows in materials, analysis of steels and ores, and pathology, respectively.

  14. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator

    PubMed Central

    Khazendar, S.; Sayasneh, A.; Al-Assam, H.; Du, H.; Kaijser, J.; Ferrara, L.; Timmerman, D.; Jassim, S.; Bourne, T.

    2015-01-01

    Introduction: Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. Objectives: In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Materials and methods: Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. Results: The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). Conclusion: We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered. PMID:25897367

  15. Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.

  16. Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database

    PubMed Central

    2017-01-01

    Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799

  17. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    PubMed

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  18. EROS Data Center Landsat digital enhancement techniques and imagery availability

    USGS Publications Warehouse

    Rohde, Wayne G.; Lo, Jinn Kai; Pohl, Russell A.

    1978-01-01

    The US Geological Survey's EROS Data Center (EDC) is experimenting with the production of digitally enhanced Landsat imagery. Advanced digital image processing techniques are used to perform geometric and radiometric corrections and to perform contrast and edge enhancements. The enhanced image product is produced from digitally preprocessed Landsat computer compatible tapes (CCTs) on a laser beam film recording system. Landsat CCT data have several geometric distortions which are corrected when NASA produces the standard film products. When producing film images from CCT's, geometric correction of the data is required. The EDC Digital Image Enhancement System (EDIES) compensates for geometric distortions introduced by Earth's rotation, variable line length, non-uniform mirror scan velocity, and detector misregistration. Radiometric anomalies such as bad data lines and striping are common to many Landsat film products and are also in the CCT data. Bad data lines or line segments with more than 150 contiguous bad pixels are corrected by inserting data from the previous line in place of the bad data. Striping, caused by variations in detector gain and offset, is removed with a destriping algorithm applied after digitally enhancing the data. Image enhancement is performed by applying a linear contrast stretch and an edge enhancement algorithm. The linear contrast enhancement algorithm is designed to expand digitally the full range of useful data recorded on the CCT over the range of 256 digital counts. This minimizes the effect of atmospheric scattering and saturates the relative brightness of highly reflecting features such as clouds or snow. It is the intent that no meaningful terrain data are eliminated by the digital processing. The edge enhancement algorithm is designed to enhance boundaries between terrain features that exhibit subtle differences in brightness values along edges of features. After the digital data have been processed, data for each Landsat band are recorded on black-and-white film with a laser beam film recorder (LBR). The LBR corrects for aspect ratio distortions as the digital data are recorded on the recording film over a preselected density range. Positive transparencies of MSS bands 4, 5, and 7 produced by the LBR are used to make color composite transparencies. Color film positives are made photographically from first generation black-and-white products generated on the LBR.

  19. Numerical image manipulation and display in solar astronomy

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Flagg, J. C.

    1977-01-01

    The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.

  20. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  1. Uses of software in digital image analysis: a forensic report

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Jha, Shailendra

    2010-02-01

    Forensic image analysis is required an expertise to interpret the content of an image or the image itself in legal matters. Major sub-disciplines of forensic image analysis with law enforcement applications include photo-grammetry, photographic comparison, content analysis and image authentication. It has wide applications in forensic science range from documenting crime scenes to enhancing faint or indistinct patterns such as partial fingerprints. The process of forensic image analysis can involve several different tasks, regardless of the type of image analysis performed. Through this paper authors have tried to explain these tasks, which are described in to three categories: Image Compression, Image Enhancement & Restoration and Measurement Extraction. With the help of examples like signature comparison, counterfeit currency comparison and foot-wear sole impression using the software Canvas and Corel Draw.

  2. An anisotropic diffusion method for denoising dynamic susceptibility contrast-enhanced magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki; Kawakami, Kazunori; Kikuchi, Keiichi; Miki, Hitoshi; Mochizuki, Teruhito; Ikezoe, Junpei

    2001-10-01

    The purpose of this study was to present an application of a novel denoising technique for improving the accuracy of cerebral blood flow (CBF) images generated from dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI). The method presented in this study was based on anisotropic diffusion (AD). The usefulness of this method was firstly investigated using computer simulations. We applied this method to patient data acquired using a 1.5 T MR system. After a bolus injection of Gd-DTPA, we obtained 40-50 dynamic images with a 1.32-2.08 s time resolution in 4-6 slices. The dynamic images were processed using the AD method, and then the CBF images were generated using pixel-by-pixel deconvolution analysis. For comparison, the CBF images were also generated with or without processing the dynamic images using a median or Gaussian filter. In simulation studies, the standard deviation of the CBF values obtained after processing by the AD method was smaller than that of the CBF values obtained without any processing, while the mean value agreed well with the true CBF value. Although the median and Gaussian filters also reduced image noise, the mean CBF values were considerably underestimated compared with the true values. Clinical studies also suggested that the AD method was capable of reducing the image noise while preserving the quantitative accuracy of CBF images. In conclusion, the AD method appears useful for denoising DSC-MRI, which will make the CBF images generated from DSC-MRI more reliable.

  3. 7 CFR 1219.15 - Industry information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... efficiency in processing, enhance the development of new markets and marketing strategies, increase marketing efficiency, and enhance the image of Hass avocados and the Hass avocado industry in the United States. ...

  4. 7 CFR 1219.15 - Industry information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency in processing, enhance the development of new markets and marketing strategies, increase marketing efficiency, and enhance the image of Hass avocados and the Hass avocado industry in the United States. ...

  5. 7 CFR 1219.15 - Industry information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... efficiency in processing, enhance the development of new markets and marketing strategies, increase marketing efficiency, and enhance the image of Hass avocados and the Hass avocado industry in the United States. ...

  6. 7 CFR 1219.15 - Industry information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... efficiency in processing, enhance the development of new markets and marketing strategies, increase marketing efficiency, and enhance the image of Hass avocados and the Hass avocado industry in the United States. ...

  7. Managing Institutional Image.

    ERIC Educational Resources Information Center

    Melchiori, Gerlinda S.

    1990-01-01

    A managerial process for enhancing the image and public reputation of a higher education institution is outlined. It consists of five stages: market research; data analysis and market positioning; communication of results and recommendations to the administration; development of a global image program; and impact evaluation. (MSE)

  8. Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction.

    PubMed

    Banić, Nikola; Lončarić, Sven

    2015-11-01

    Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.

  9. Artificial vision support system (AVS(2)) for improved prosthetic vision.

    PubMed

    Fink, Wolfgang; Tarbell, Mark A

    2014-11-01

    State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.

  10. Auditory-musical processing in autism spectrum disorders: a review of behavioral and brain imaging studies.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Tryfon, Ana; Hyde, Krista L

    2012-04-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by atypical social and communication skills, repetitive behaviors, and atypical visual and auditory perception. Studies in vision have reported enhanced detailed ("local") processing but diminished holistic ("global") processing of visual features in ASD. Individuals with ASD also show enhanced processing of simple visual stimuli but diminished processing of complex visual stimuli. Relative to the visual domain, auditory global-local distinctions, and the effects of stimulus complexity on auditory processing in ASD, are less clear. However, one remarkable finding is that many individuals with ASD have enhanced musical abilities, such as superior pitch processing. This review provides a critical evaluation of behavioral and brain imaging studies of auditory processing with respect to current theories in ASD. We have focused on auditory-musical processing in terms of global versus local processing and simple versus complex sound processing. This review contributes to a better understanding of auditory processing differences in ASD. A deeper comprehension of sensory perception in ASD is key to better defining ASD phenotypes and, in turn, may lead to better interventions. © 2012 New York Academy of Sciences.

  11. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.

    PubMed

    Zugaj, D; Chenet, A; Petit, L; Vaglio, J; Pascual, T; Piketty, C; Bourdes, V

    2018-02-04

    Currently, imaging technologies that can accurately assess or provide surrogate markers of the human cutaneous microvessel network are limited. Dynamic optical coherence tomography (D-OCT) allows the detection of blood flow in vivo and visualization of the skin microvasculature. However, image processing is necessary to correct images, filter artifacts, and exclude irrelevant signals. The objective of this study was to develop a novel image processing workflow to enhance the technical capabilities of D-OCT. Single-center, vehicle-controlled study including healthy volunteers aged 18-50 years. A capsaicin solution was applied topically on the subject's forearm to induce local inflammation. Measurements of capsaicin-induced increase in dermal blood flow, within the region of interest, were performed by laser Doppler imaging (LDI) (reference method) and D-OCT. Sixteen subjects were enrolled. A good correlation was shown between D-OCT and LDI, using the image processing workflow. Therefore, D-OCT offers an easy-to-use alternative to LDI, with good repeatability, new robust morphological features (dermal-epidermal junction localization), and quantification of the distribution of vessel size and changes in this distribution induced by capsaicin. The visualization of the vessel network was improved through bloc filtering and artifact removal. Moreover, the assessment of vessel size distribution allows a fine analysis of the vascular patterns. The newly developed image processing workflow enhances the technical capabilities of D-OCT for the accurate detection and characterization of microcirculation in the skin. A direct clinical application of this image processing workflow is the quantification of the effect of topical treatment on skin vascularization. © 2018 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.

  12. Retinex based low-light image enhancement using guided filtering and variational framework

    NASA Astrophysics Data System (ADS)

    Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong

    2018-03-01

    A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.

  13. Fluorescent Microscopy Enhancement Using Imaging

    NASA Astrophysics Data System (ADS)

    Conrad, Morgan P.; Reck tenwald, Diether J.; Woodhouse, Bryan S.

    1986-06-01

    To enhance our capabilities for observing fluorescent stains in biological systems, we are developing a low cost imaging system based around an IBM AT microcomputer and a commercial image capture board compatible with a standard RS-170 format video camera. The image is digitized in real time with 256 grey levels, while being displayed and also stored in memory. The software allows for interactive processing of the data, such as histogram equalization or pseudocolor enhancement of the display. The entire image, or a quadrant thereof, can be averaged over time to improve the signal to noise ratio. Images may be stored to disk for later use or comparison. The camera may be selected for better response in the UV or near IR. Combined with signal averaging, this increases the sensitivity relative to that of the human eye, while still allowing for the fluorescence distribution on either the surface or internal cytoskeletal structure to be observed.

  14. High Resolution Imaging of the Sun with CORONAS-1

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    1998-01-01

    We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.

  15. Inherent Contrast in Magnetic Resonance Imaging and the Potential for Contrast Enhancement

    PubMed Central

    Brasch, Robert C.

    1985-01-01

    Magnetic resonance (MR) imaging is emerging as a powerful new diagnostic tool valued for its apparent lack of adverse effects. The excellent inherent contrast between biologic tissues and fluids afforded by MR imaging is one of the foremost characteristics of this technique and depends on physicochemical properties such as hydrogen density and T1 and T2 relaxation rates, on magnetic field strength and on operator-chosen factors for acquiring the MR imaging signal. Pharmaceutical contrast-enhancing agents shorten the MR imaging process and improve sensitivity and diagnostic accuracy. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 8.Figure 9.Figure 10.Figure 11. PMID:2992172

  16. Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.

    PubMed

    Sund, T; Møystad, A

    2006-05-01

    To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.

  17. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma.

    PubMed

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-07-21

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene's expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.

  18. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma

    PubMed Central

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment. PMID:27468205

  19. Touch HDR: photograph enhancement by user controlled wide dynamic range adaptation

    NASA Astrophysics Data System (ADS)

    Verrall, Steve; Siddiqui, Hasib; Atanassov, Kalin; Goma, Sergio; Ramachandra, Vikas

    2013-03-01

    High Dynamic Range (HDR) technology enables photographers to capture a greater range of tonal detail. HDR is typically used to bring out detail in a dark foreground object set against a bright background. HDR technologies include multi-frame HDR and single-frame HDR. Multi-frame HDR requires the combination of a sequence of images taken at different exposures. Single-frame HDR requires histogram equalization post-processing of a single image, a technique referred to as local tone mapping (LTM). Images generated using HDR technology can look less natural than their non- HDR counterparts. Sometimes it is only desired to enhance small regions of an original image. For example, it may be desired to enhance the tonal detail of one subject's face while preserving the original background. The Touch HDR technique described in this paper achieves these goals by enabling selective blending of HDR and non-HDR versions of the same image to create a hybrid image. The HDR version of the image can be generated by either multi-frame or single-frame HDR. Selective blending can be performed as a post-processing step, for example, as a feature of a photo editor application, at any time after the image has been captured. HDR and non-HDR blending is controlled by a weighting surface, which is configured by the user through a sequence of touches on a touchscreen.

  20. A framework for small infrared target real-time visual enhancement

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoliang; Long, Gucan; Shang, Yang; Liu, Xiaolin

    2015-03-01

    This paper proposes a framework for small infrared target real-time visual enhancement. The framework is consisted of three parts: energy accumulation for small infrared target enhancement, noise suppression and weighted fusion. Dynamic programming based track-before-detection algorithm is adopted in the energy accumulation to detect the target accurately and enhance the target's intensity notably. In the noise suppression, the target region is weighted by a Gaussian mask according to the target's Gaussian shape. In order to fuse the processed target region and unprocessed background smoothly, the intensity in the target region is treated as weight in the fusion. Experiments on real small infrared target images indicate that the framework proposed in this paper can enhances the small infrared target markedly and improves the image's visual quality notably. The proposed framework outperforms tradition algorithms in enhancing the small infrared target, especially for image in which the target is hardly visible.

  1. Automatic x-ray image contrast enhancement based on parameter auto-optimization.

    PubMed

    Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan

    2017-11-01

    Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more accurate treatment setup and facilitating the subsequent offline review and verification. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Geologic interpretation of Seasat SAR imagery near the Rio Lacantum, Mexico

    NASA Technical Reports Server (NTRS)

    Rebillard, PH.; Dixon, T.

    1984-01-01

    A mosaic of the Seasat Synthetic Aperture Radar (SAR) optically processed images over Central America is presented. A SAR image of the Rio Lacantum area (southeastern Mexico) has been digitally processed and its interpretation is presented. The region is characterized by low relief and a dense vegetation canopy. Surface is believed to be indicative of subsurface structural features. The Seasat-SAR system had a steep imaging geometry (incidence angle 23 + or - 3 deg off-nadir) which is favorable for detection of subtle topographic variations. Subtle textural features in the image corresponding to surface topography were enhanced by image processing techniques. A structural and lithologic interpretation of the processed images is presented. Lineaments oriented NE-SW dominate and intersect broad folds trending NW-SE. Distinctive karst topography characterizes one high relief area

  3. Space Imagery Enhancement Investigations; Software for Processing Middle Atmosphere Data

    DTIC Science & Technology

    2011-12-19

    SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes work related to optical superresolution for the ideal incoherent 1D spread function...optical superresolution , incoherent image eigensystem, image registration, multi-frame image reconstruction, deconvolution 16. SECURITY... Superresolution -Related Investigations ............................................................................. 1 2.2.1 Eigensystem Formulations

  4. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  5. Benefit from NASA

    NASA Image and Video Library

    1985-01-01

    The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.

  6. Cost-effective forensic image enhancement

    NASA Astrophysics Data System (ADS)

    Dalrymple, Brian E.

    1998-12-01

    In 1977, a paper was presented at the SPIE conference in Reston, Virginia, detailing the computer enhancement of the Zapruder film. The forensic value of this examination in a major homicide investigation was apparent to the viewer. Equally clear was the potential for extracting evidence which is beyond the reach of conventional detection techniques. The cost of this technology in 1976, however, was prohibitive, and well beyond the means of most police agencies. Twenty-two years later, a highly efficient means of image enhancement is easily within the grasp of most police agencies, not only for homicides but for any case application. A PC workstation combined with an enhancement software package allows a forensic investigator to fully exploit digital technology. The goal of this approach is the optimization of the signal to noise ratio in images. Obstructive backgrounds may be diminished or eliminated while weak signals are optimized by the use of algorithms including Fast Fourier Transform, Histogram Equalization and Image Subtraction. An added benefit is the speed with which these processes are completed and the results known. The efficacy of forensic image enhancement is illustrated through case applications.

  7. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing

    PubMed Central

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-01-01

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855

  8. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    PubMed

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  9. Enhanced visualization of inner ear structures

    NASA Astrophysics Data System (ADS)

    Niemczyk, Kazimierz; Kucharski, Tomasz; Kujawinska, Malgorzata; Bruzgielewicz, Antoni

    2004-07-01

    Recently surgery requires extensive support from imaging technologies in order to increase effectiveness and safety of operations. One of important tasks is to enhance visualisation of quasi-phase (transparent) 3d structures. Those structures are characterized by very low contrast. It makes differentiation of tissues in field of view very difficult. For that reason the surgeon may be extremly uncertain during operation. This problem is connected with supporting operations of inner ear during which physician has to perform cuts at specific places of quasi-transparent velums. Conventionally during such operations medical doctor views the operating field through stereoscopic microscope. In the paper we propose a 3D visualisation system based on Helmet Mounted Display. Two CCD cameras placed at the output of microscope perform acquisition of stereo pairs of images. The images are processed in real-time with the goal of enhancement of quasi-phased structures. The main task is to create algorithm that is not sensitive to changes in intensity distribution. The disadvantages of existing algorithms is their lack of adaptation to occuring reflexes and shadows in field of view. The processed images from both left and right channels are overlaid on the actual images exported and displayed at LCD's of Helmet Mounted Display. A physician observes by HMD (Helmet Mounted Display) a stereoscopic operating scene with indication of the places of special interest. The authors present the hardware ,procedures applied and initial results of inner ear structure visualisation. Several problems connected with processing of stereo-pair images are discussed.

  10. Diazo processing of LANDSAT imagery: A low-cost instructional technique

    NASA Technical Reports Server (NTRS)

    Lusch, D. P.

    1981-01-01

    Diazo processing of LANDSAT imagery is a relatively simple and cost effective method of producing enhanced renditions of the visual LANDSAT products. This technique is capable of producing a variety of image enhancements which have value in a teaching laboratory environment. Additionally, with the appropriate equipment, applications research which relys on accurate and repeatable results is possible. Exposure and development equipment options, diazo materials, and enhancement routines are discussed.

  11. Infrared image enhancement based on the edge detection and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng

    2010-11-01

    The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.

  12. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  13. Image Analysis and Modeling

    DTIC Science & Technology

    1976-03-01

    This report summarizes the results of the research program on Image Analysis and Modeling supported by the Defense Advanced Research Projects Agency...The objective is to achieve a better understanding of image structure and to use this knowledge to develop improved image models for use in image ... analysis and processing tasks such as information extraction, image enhancement and restoration, and coding. The ultimate objective of this research is

  14. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images.

    PubMed

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S

    2016-01-01

    Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t -test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects.

  15. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.

    2016-01-01

    Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180

  16. Digital Imaging

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.

  17. Automated, on-board terrain analysis for precision landings

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  18. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  19. Video enhancement method with color-protection post-processing

    NASA Astrophysics Data System (ADS)

    Kim, Youn Jin; Kwak, Youngshin

    2015-01-01

    The current study is aimed to propose a post-processing method for video enhancement by adopting a color-protection technique. The color-protection intends to attenuate perceptible artifacts due to over-enhancements in visually sensitive image regions such as low-chroma colors, including skin and gray objects. In addition, reducing the loss in color texture caused by the out-of-color-gamut signals is also taken into account. Consequently, color reproducibility of video sequences could be remarkably enhanced while the undesirable visual exaggerations are minimized.

  20. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, R.; Malladi, R.; Sochen, N.

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as amore » surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.« less

  1. Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals

    NASA Astrophysics Data System (ADS)

    Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.

    2018-02-01

    Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.

  2. Understanding Appearance-Enhancing Drug Use in Sport Using an Enactive Approach to Body Image

    PubMed Central

    Hauw, Denis; Bilard, Jean

    2017-01-01

    From an enactive approach to human activity, we suggest that the use of appearance-enhancing drugs is better explained by the sense-making related to body image rather than the cognitive evaluation of social norms about appearance and consequent psychopathology-oriented approach. After reviewing the main psychological disorders thought to link body image issues to the use of appearance-enhancing substances, we sketch a flexible, dynamic and embedded account of body image defined as the individual’s propensity to act and experience in specific situations. We show how this enacted body image is a complex process of sense-making that people engage in when they are trying to adapt to specific situations. These adaptations of the enacted body image require effort, perseverance and time, and therefore any substance that accelerates this process appears to be an easy and attractive solution. In this enactive account of body image, we underline that the link between the enacted body image and substance use is also anchored in the history of the body’s previous interactions with the world. This emerges during periods of upheaval and hardship, especially in a context where athletes experience weak participatory sense-making in a sport community. We conclude by suggesting prevention and intervention designs that would promote a safe instrumental use of the body in sports and psychological helping procedures for athletes experiencing difficulties with substances use and body image. PMID:29238320

  3. Enhancing facial features by using clear facial features

    NASA Astrophysics Data System (ADS)

    Rofoo, Fanar Fareed Hanna

    2017-09-01

    The similarity of features between individuals of same ethnicity motivated the idea of this project. The idea of this project is to extract features of clear facial image and impose them on blurred facial image of same ethnic origin as an approach to enhance a blurred facial image. A database of clear images containing 30 individuals equally divided to five different ethnicities which were Arab, African, Chines, European and Indian. Software was built to perform pre-processing on images in order to align the features of clear and blurred images. And the idea was to extract features of clear facial image or template built from clear facial images using wavelet transformation to impose them on blurred image by using reverse wavelet. The results of this approach did not come well as all the features did not align together as in most cases the eyes were aligned but the nose or mouth were not aligned. Then we decided in the next approach to deal with features separately but in the result in some cases a blocky effect was present on features due to not having close matching features. In general the available small database did not help to achieve the goal results, because of the number of available individuals. The color information and features similarity could be more investigated to achieve better results by having larger database as well as improving the process of enhancement by the availability of closer matches in each ethnicity.

  4. V-Sipal - a Virtual Laboratory for Satellite Image Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Buddhiraju, K. M.; Eeti, L.; Tiwari, K. K.

    2011-09-01

    In this paper a virtual laboratory for the Satellite Image Processing and Analysis (v-SIPAL) being developed at the Indian Institute of Technology Bombay is described. v-SIPAL comprises a set of experiments that are normally carried out by students learning digital processing and analysis of satellite images using commercial software. Currently, the experiments that are available on the server include Image Viewer, Image Contrast Enhancement, Image Smoothing, Edge Enhancement, Principal Component Transform, Texture Analysis by Co-occurrence Matrix method, Image Indices, Color Coordinate Transforms, Fourier Analysis, Mathematical Morphology, Unsupervised Image Classification, Supervised Image Classification and Accuracy Assessment. The virtual laboratory includes a theory module for each option of every experiment, a description of the procedure to perform each experiment, the menu to choose and perform the experiment, a module on interpretation of results when performed with a given image and pre-specified options, bibliography, links to useful internet resources and user-feedback. The user can upload his/her own images for performing the experiments and can also reuse outputs of one experiment in another experiment where applicable. Some of the other experiments currently under development include georeferencing of images, data fusion, feature evaluation by divergence andJ-M distance, image compression, wavelet image analysis and change detection. Additions to the theory module include self-assessment quizzes, audio-video clips on selected concepts, and a discussion of elements of visual image interpretation. V-SIPAL is at the satge of internal evaluation within IIT Bombay and will soon be open to selected educational institutions in India for evaluation.

  5. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  6. Proceedings of the Augmented VIsual Display (AVID) Research Workshop

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K. (Editor); Sweet, Barbara T. (Editor)

    1993-01-01

    The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics.

  7. Detection of fresh bruises in apples by structured-illumination reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yuzhen; Li, Richard; Lu, Renfu

    2016-05-01

    Detection of fresh bruises in apples remains a challenging task due to the absence of visual symptoms and significant chemical alterations of fruit tissues during the initial stage after the fruit have been bruised. This paper reports on a new structured-illumination reflectance imaging (SIRI) technique for enhanced detection of fresh bruises in apples. Using a digital light projector engine, sinusoidally-modulated illumination at the spatial frequencies of 50, 100, 150 and 200 cycles/m was generated. A digital camera was then used to capture the reflectance images from `Gala' and `Jonagold' apples, immediately after they had been subjected to two levels of bruising by impact tests. A conventional three-phase demodulation (TPD) scheme was applied to the acquired images for obtaining the planar (direct component or DC) and amplitude (alternating component or AC) images. Bruises were identified in the amplitude images with varying image contrasts, depending on spatial frequency. The bruise visibility was further enhanced through post-processing of the amplitude images. Furthermore, three spiral phase transform (SPT)-based demodulation methods, using single and two images and two phase-shifted images, were proposed for obtaining AC images. Results showed that the demodulation methods greatly enhanced the contrast and spatial resolution of the AC images, making it feasible to detect the fresh bruises that, otherwise, could not be achieved by conventional imaging technique with planar or uniform illumination. The effectiveness of image enhancement, however, varied with spatial frequency. Both 2-image and 2-phase SPT methods achieved the performance similar to that by conventional TPD. SIRI technique has demonstrated the capability of detecting fresh bruises in apples, and it has the potential as a new imaging modality for enhancing food quality and safety detection.

  8. Intensity dependent spread theory

    NASA Technical Reports Server (NTRS)

    Holben, Richard

    1990-01-01

    The Intensity Dependent Spread (IDS) procedure is an image-processing technique based on a model of the processing which occurs in the human visual system. IDS processing is relevant to many aspects of machine vision and image processing. For quantum limited images, it produces an ideal trade-off between spatial resolution and noise averaging, performs edge enhancement thus requiring only mean-crossing detection for the subsequent extraction of scene edges, and yields edge responses whose amplitudes are independent of scene illumination, depending only upon the ratio of the reflectance on the two sides of the edge. These properties suggest that the IDS process may provide significant bandwidth reduction while losing only minimal scene information when used as a preprocessor at or near the image plane.

  9. Digital video system for on-line portal verification

    NASA Astrophysics Data System (ADS)

    Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott

    1990-07-01

    A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.

  10. Effects of empty bins on image upscaling in capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Rukundo, Olivier

    2017-07-01

    This paper presents a preliminary study of the effect of empty bins on image upscaling in capsule endoscopy. The presented study was conducted based on results of existing contrast enhancement and interpolation methods. A low contrast enhancement method based on pixels consecutiveness and modified bilinear weighting scheme has been developed to distinguish between necessary empty bins and unnecessary empty bins in the effort to minimize the number of empty bins in the input image, before further processing. Linear interpolation methods have been used for upscaling input images with stretched histograms. Upscaling error differences and similarity indices between pairs of interpolation methods have been quantified using the mean squared error and feature similarity index techniques. Simulation results demonstrated more promising effects using the developed method than other contrast enhancement methods mentioned.

  11. ESARR: enhanced situational awareness via road sign recognition

    NASA Astrophysics Data System (ADS)

    Perlin, V. E.; Johnson, D. B.; Rohde, M. M.; Lupa, R. M.; Fiorani, G.; Mohammad, S.

    2010-04-01

    The enhanced situational awareness via road sign recognition (ESARR) system provides vehicle position estimates in the absence of GPS signal via automated processing of roadway fiducials (primarily directional road signs). Sign images are detected and extracted from vehicle-mounted camera system, and preprocessed and read via a custom optical character recognition (OCR) system specifically designed to cope with low quality input imagery. Vehicle motion and 3D scene geometry estimation enables efficient and robust sign detection with low false alarm rates. Multi-level text processing coupled with GIS database validation enables effective interpretation even of extremely low resolution low contrast sign images. In this paper, ESARR development progress will be reported on, including the design and architecture, image processing framework, localization methodologies, and results to date. Highlights of the real-time vehicle-based directional road-sign detection and interpretation system will be described along with the challenges and progress in overcoming them.

  12. VEGFR2-Targeted Ultrasound Imaging Agent Enhances the Detection of Ovarian Tumors at Early Stage in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-07-01

    Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.

  13. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    PubMed

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention

    PubMed Central

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.

    2012-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685

  15. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  16. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  17. Fast Fourier transform-based Retinex and alpha-rooting color image enhancement

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.; Gonzales, Analysa M.

    2015-05-01

    Efficiency in terms of both accuracy and speed is highly important in any system, especially when it comes to image processing. The purpose of this paper is to improve an existing implementation of multi-scale retinex (MSR) by utilizing the fast Fourier transforms (FFT) within the illumination estimation step of the algorithm to improve the speed at which Gaussian blurring filters were applied to the original input image. In addition, alpha-rooting can be used as a separate technique to achieve a sharper image in order to fuse its results with those of the retinex algorithm for the sake of achieving the best image possible as shown by the values of the considered color image enhancement measure (EMEC).

  18. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.

  19. Dynamic feature analysis for Voyager at the Image Processing Laboratory

    NASA Technical Reports Server (NTRS)

    Yagi, G. M.; Lorre, J. J.; Jepsen, P. L.

    1978-01-01

    Voyager 1 and 2 were launched from Cape Kennedy to Jupiter, Saturn, and beyond on September 5, 1977 and August 20, 1977. The role of the Image Processing Laboratory is to provide the Voyager Imaging Team with the necessary support to identify atmospheric features (tiepoints) for Jupiter and Saturn data, and to analyze and display them in a suitable form. This support includes the software needed to acquire and store tiepoints, the hardware needed to interactively display images and tiepoints, and the general image processing environment necessary for decalibration and enhancement of the input images. The objective is an understanding of global circulation in the atmospheres of Jupiter and Saturn. Attention is given to the Voyager imaging subsystem, the Voyager imaging science objectives, hardware, software, display monitors, a dynamic feature study, decalibration, navigation, and data base.

  20. Video enhancement of X-ray and neutron radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    System was devised for displaying radiographs on television screen and enhancing fine detail in picture. System uses analog-computer circuits to process television signal from low-noise television camera. Enhanced images are displayed in black and white and can be controlled to vary degree of enhancement and magnification of details in either radiographic transparencies or opaque photographs.

  1. Video image processing

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.

  2. MRI evaluation of infectious and non-infectious synovitis: preliminary studies in a rabbit model.

    PubMed

    Strouse, P J; Londy, F; DiPietro, M A; Teo, E L; Chrisp, C E; Doi, K

    1999-05-01

    Literature on magnetic resonance imaging (MR) evaluation of inflammatory joint effusions is sparse. To describe an animal model for studying infectious and non-infectious joint effusions with magnetic resonance imaging. Ten rabbit knees with septic arthritis and four with talc synovitis were imaged with MR. Contralateral knees injected with saline served as controls. Fat saturation T2-weighted and gadolinium-enhanced T1-weighted images were assessed for joint effusion, and periarticular and adjacent intraosseous increased signal or enhancement. Each knee was cultured and underwent pathologic examination. Both Staphylococcus aureus and talc produced effusions in all knees. The degree of periarticular signal and enhancement was greater in infected knees than talc-injected knees. No abnormal enhancement was seen within bone. Pathologic examination showed a greater degree of inflammation and joint destruction in the infected knees, but no evidence of osteomyelitis. A greater degree of abnormal signal and enhancement seen on MR suggests a more vigorous inflammatory process, as seen with septic arthritis. In spite of advanced septic arthritis, no enhancement was evident within bone, suggesting that enhancement within bone is not an expected finding in isolated septic arthritis and should raise concern for osteomyelitis.

  3. Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2018-04-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.

  4. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  5. Image contrast enhancement of Ni/YSZ anode during the slice-and-view process in FIB-SEM.

    PubMed

    Liu, Shu-Sheng; Takayama, Akiko; Matsumura, Syo; Koyama, Michihisa

    2016-03-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) is a widely used and easily operational equipment for three-dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB-SEM with In-Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In-Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. HALO: a reconfigurable image enhancement and multisensor fusion system

    NASA Astrophysics Data System (ADS)

    Wu, F.; Hickman, D. L.; Parker, Steve J.

    2014-06-01

    Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.

  7. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    PubMed

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  8. Image-Enhancement Aid For The Partially Sighted

    NASA Technical Reports Server (NTRS)

    Lawton, T. A.; Gennery, D. B.

    1989-01-01

    Digital filtering enhances ability to read and to recognize objects. Possible to construct portable vision aid by combining miniature video equipment to observe scene and display images with very-large-scale integrated circuits to implement real-time digital image-data processing. Afflicted observer views scene through magnifier to shift spatial frequencies downward and thereby improves perceived image. However, less magnification needed, larger the scene observed. Thus, one measure of effectiveness of new system is amount of magnification required with and without it. In series of tests, found 27 to 70 percent more magnification needed for afflicted observers to recognize unfiltered words than to recognize filtered words.

  9. Image detection and compression for memory efficient system analysis

    NASA Astrophysics Data System (ADS)

    Bayraktar, Mustafa

    2015-02-01

    The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.

  10. Supervised restoration of degraded medical images using multiple-point geostatistics.

    PubMed

    Pham, Tuan D

    2012-06-01

    Reducing noise in medical images has been an important issue of research and development for medical diagnosis, patient treatment, and validation of biomedical hypotheses. Noise inherently exists in medical and biological images due to the acquisition and transmission in any imaging devices. Being different from image enhancement, the purpose of image restoration is the process of removing noise from a degraded image in order to recover as much as possible its original version. This paper presents a statistically supervised approach for medical image restoration using the concept of multiple-point geostatistics. Experimental results have shown the effectiveness of the proposed technique which has potential as a new methodology for medical and biological image processing. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    NASA Astrophysics Data System (ADS)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  12. Robust resolution enhancement optimization methods to process variations based on vector imaging model

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong

    2012-03-01

    Optical proximity correction (OPC) and phase shifting mask (PSM) are the most widely used resolution enhancement techniques (RET) in the semiconductor industry. Recently, a set of OPC and PSM optimization algorithms have been developed to solve for the inverse lithography problem, which are only designed for the nominal imaging parameters without giving sufficient attention to the process variations due to the aberrations, defocus and dose variation. However, the effects of process variations existing in the practical optical lithography systems become more pronounced as the critical dimension (CD) continuously shrinks. On the other hand, the lithography systems with larger NA (NA>0.6) are now extensively used, rendering the scalar imaging models inadequate to describe the vector nature of the electromagnetic field in the current optical lithography systems. In order to tackle the above problems, this paper focuses on developing robust gradient-based OPC and PSM optimization algorithms to the process variations under a vector imaging model. To achieve this goal, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. The steepest descent algorithm is used to optimize the mask iteratively. In order to improve the efficiency of the proposed algorithms, a set of algorithm acceleration techniques (AAT) are exploited during the optimization procedure.

  13. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    PubMed

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  14. Enhanced Visual Cortical Activation for Emotional Stimuli is Preserved in Patients with Unilateral Amygdala Resection

    PubMed Central

    Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica

    2013-01-01

    Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407

  15. An improved K-means clustering algorithm in agricultural image segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  16. Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.

    2017-05-01

    In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.

  17. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  18. Incorporating digital imaging into dental hygiene practice.

    PubMed

    Saxe, M J; West, D J

    1997-01-01

    The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.

  19. Contrast enhancement of mail piece images

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Chul; Sridhar, Ramalingam; Demjanenko, Victor; Palumbo, Paul W.; Hull, Jonathan J.

    1992-08-01

    A New approach to contrast enhancement of mail piece images is presented. The contrast enhancement is used as a preprocessing step in the real-time address block location (RT-ABL) system. The RT-ABL system processes a stream of mail piece images and locates destination address blocks. Most of the mail pieces (classified into letters) show high contrast between background and foreground. As an extreme case, however, the seasonal greeting cards usually use colored envelopes which results in reduced contrast osured by an error rate by using a linear distributed associative memory (DAM). The DAM is trained to recognize the spectra of three classes of images: with high, medium, and low OCR error rates. The DAM is not forced to make a classification every time. It is allowed to reject as unknown a spectrum presented that does not closely resemble any that has been stored in the DAM. The DAM was fairly accurate with noisy images but conservative (i.e., rejected several text images as unknowns) when there was little ground and foreground degradations without affecting the nondegraded images. This approach provides local enhancement which adapts to local features. In order to simplify the computation of A and (sigma) , dynamic programming technique is used. Implementation details, performance, and the results on test images are presented in this paper.

  20. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  1. Refocusing Space Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video presents two examples of NASA Technology Transfer. The first is a Downhole Video Logger, which uses remote sensing technology to help in mining. The second example is the use of satellite image processing technology to enhance ultrasound images taken during pregnancy.

  2. Color enhancement and image defogging in HSI based on Retinex model

    NASA Astrophysics Data System (ADS)

    Gao, Han; Wei, Ping; Ke, Jun

    2015-08-01

    Retinex is a luminance perceptual algorithm based on color consistency. It has a good performance in color enhancement. But in some cases, the traditional Retinex algorithms, both Single-Scale Retinex(SSR) and Multi-Scale Retinex(MSR) in RGB color space, do not work well and will cause color deviation. To solve this problem, we present improved SSR and MSR algorithms. Compared to other Retinex algorithms, we implement Retinex algorithms in HSI(Hue, Saturation, Intensity) color space, and use a parameter αto improve quality of the image. Moreover, the algorithms presented in this paper has a good performance in image defogging. Contrasted with traditional Retinex algorithms, we use intensity channel to obtain reflection information of an image. The intensity channel is processed using a Gaussian center-surround image filter to get light information, which should be removed from intensity channel. After that, we subtract the light information from intensity channel to obtain the reflection image, which only includes the attribute of the objects in image. Using the reflection image and a parameter α, which is an arbitrary scale factor set manually, we improve the intensity channel, and complete the color enhancement. Our experiments show that this approach works well compared with existing methods for color enhancement. Besides a better performance in color deviation problem and image defogging, a visible improvement in the image quality for human contrast perception is also observed.

  3. Exemplar-Based Image and Video Stylization Using Fully Convolutional Semantic Features.

    PubMed

    Zhu, Feida; Yan, Zhicheng; Bu, Jiajun; Yu, Yizhou

    2017-05-10

    Color and tone stylization in images and videos strives to enhance unique themes with artistic color and tone adjustments. It has a broad range of applications from professional image postprocessing to photo sharing over social networks. Mainstream photo enhancement softwares, such as Adobe Lightroom and Instagram, provide users with predefined styles, which are often hand-crafted through a trial-and-error process. Such photo adjustment tools lack a semantic understanding of image contents and the resulting global color transform limits the range of artistic styles it can represent. On the other hand, stylistic enhancement needs to apply distinct adjustments to various semantic regions. Such an ability enables a broader range of visual styles. In this paper, we first propose a novel deep learning architecture for exemplar-based image stylization, which learns local enhancement styles from image pairs. Our deep learning architecture consists of fully convolutional networks (FCNs) for automatic semantics-aware feature extraction and fully connected neural layers for adjustment prediction. Image stylization can be efficiently accomplished with a single forward pass through our deep network. To extend our deep network from image stylization to video stylization, we exploit temporal superpixels (TSPs) to facilitate the transfer of artistic styles from image exemplars to videos. Experiments on a number of datasets for image stylization as well as a diverse set of video clips demonstrate the effectiveness of our deep learning architecture.

  4. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  5. Modeling the effects of contrast enhancement on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2008-04-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.

  6. An enhanced approach for biomedical image restoration using image fusion techniques

    NASA Astrophysics Data System (ADS)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  7. Working memory and decision processes in visual area v4.

    PubMed

    Hayden, Benjamin Y; Gallant, Jack L

    2013-01-01

    Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.

  8. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  9. Study on Over-Sampling for Imager

    NASA Technical Reports Server (NTRS)

    Kigawa, Seiichiro; Sullivan, Pamela C.

    1998-01-01

    This report describes the potential improvement of the effective ground resolution of MTSAT (Multi-functional Transport Satellite) Imager. The IFOV (Instantaneous Field of View) of MTSAT Imager is 4 km for infrared and 1 km visible. A combination of some images acquired by the MTSAT Imager could generate 2 km-latticed infrared images. Furthermore, it is possible to generate an effective 2 km IFOV image by the enhancement of the 2 km-latticed image using Digital Signal Processing. This report also mentions the on-orbit demonstration of this concept.

  10. Improving human object recognition performance using video enhancement techniques

    NASA Astrophysics Data System (ADS)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  11. Mapping biomass for a northern forest ecosystem using multi-frequency SAR data

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, Guoqing

    1992-01-01

    Image processing methods for mapping standing biomass for a forest in Maine, using NASA/JPL airborne synthetic aperture radar (AIRSAR) polarimeter data, are presented. By examining the dependence of backscattering on standing biomass, it is determined that the ratio of HV backscattering from a longer wavelength (P- or L-band) to a shorter wavelength (C) is a good combination for mapping total biomass. This ratio enhances the correlation of the image signature to the standing biomass and compensates for a major part of the variations in backscattering attributed to radar incidence angle. The image processing methods used include image calibration, ratioing, filtering, and segmentation. The image segmentation algorithm uses both means and variances of the image, and it is combined with the image filtering process. Preliminary assessment of the resultant biomass maps suggests that this is a promising method.

  12. Making the PACS workstation a browser of image processing software: a feasibility study using inter-process communication techniques.

    PubMed

    Wang, Chunliang; Ritter, Felix; Smedby, Orjan

    2010-07-01

    To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.

  13. Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John Edward; Unal, Cetin

    A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.

  14. Medical image enhancement using resolution synthesis

    NASA Astrophysics Data System (ADS)

    Wong, Tak-Shing; Bouman, Charles A.; Thibault, Jean-Baptiste; Sauer, Ken D.

    2011-03-01

    We introduce a post-processing approach to improve the quality of CT reconstructed images. The scheme is adapted from the resolution-synthesis (RS)1 interpolation algorithm. In this approach, we consider the input image, scanned at a particular dose level, as a degraded version of a high quality image scanned at a high dose level. Image enhancement is achieved by predicting the high quality image by classification based linear regression. To improve the robustness of our scheme, we also apply the minimum description length principle to determine the optimal number of predictors to use in the scheme, and the ridge regression to regularize the design of the predictors. Experimental results show that our scheme is effective in reducing the noise in images reconstructed from filtered back projection without significant loss of image details. Alternatively, our scheme can also be applied to reduce dose while maintaining image quality at an acceptable level.

  15. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  16. Applying a visual language for image processing as a graphical teaching tool in medical imaging

    NASA Astrophysics Data System (ADS)

    Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.

  17. Halftoning and Image Processing Algorithms

    DTIC Science & Technology

    1999-02-01

    screening techniques with the quality advantages of error diffusion in the half toning of color maps, and on color image enhancement for halftone ...image quality. Our goals in this research were to advance the understanding in image science for our new halftone algorithm and to contribute to...image retrieval and noise theory for such imagery. In the field of color halftone printing, research was conducted on deriving a theoretical model of our

  18. Resolution enhancement of 2-photon microscopy using high-refractive index microspheres

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan Forouhesh; Darafsheh, Arash; Phang, Sendy; Mortensen, Luke J.

    2018-02-01

    Intravital microscopy using multiphoton processes is the standard tool for deep tissue imaging inside of biological specimens. Usually, near-infrared and infrared light is used to excite the sample, which enables imaging several mean free path inside a scattering tissues. Using longer wavelengths, however, increases the width of the effective multiphoton Point Spread Function (PSF). Many features inside of cells and tissues are smaller than the diffraction limit, and therefore not possible to distinguish using a large PSF. Microscopy using high refractive index microspheres has shown promise to increase the numerical aperture of an imaging system and enhance the resolution. It has been shown that microspheres can image features λ/7 using single photon process fluorescence. In this work, we investigate resolution enhancement for Second Harmonic Generation (SHG) and 2-photon fluorescence microscopy. We used Barium Titanate glass microspheres with diameters ˜20-30 μm and refractive index ˜1.9-2.1. We show microsphere-assisted SHG imaging in bone collagen fibers. Since bone is a very dense tissue constructed of bundles of collagen fibers, it is nontrivial to image individual fibers. We placed microspheres on a dense area of the mouse cranial bone, and achieved imaging of individual fibers. We found that microsphere assisted SHG imaging resolves features of the bone fibers that are not readily visible in conventional SHG imaging. We extended this work to 2-photon microscopy of mitochondria in mouse soleus muscle, and with the help of microsphere resolving power, we were able to trace individual mitochondrion from their ensemble.

  19. Enhanced Images for Checked and Carry-on Baggage and Cargo Screening

    NASA Technical Reports Server (NTRS)

    Woodell, Glenn; Rahman, Zia-ur; Jobson, Daniel J.; Hines, Glenn

    2004-01-01

    The current X-ray systems used by airport security personnel for the detection of contraband, and objects such as knives and guns that can impact the security of a flight, have limited effect because of the limited display quality of the X-ray images. Since the displayed images do not possess optimal contrast and sharpness, it is possible for the security personnel to miss potentially hazardous objects. This problem is also common to other disciplines such as medical Xrays, and can be mitigated, to a large extent, by the use of state-of-the-art image processing techniques to enhance the contrast and sharpness of the displayed image. The NASA Langley Research Center's Visual Information Processing Group has developed an image enhancement technology that has direct applications to this problem of inadequate display quality. Airport security X-ray imaging systems would benefit considerably by using this novel technology, making the task of the personnel who have to interpret the X-ray images considerably easier, faster, and more reliable. This improvement would translate into more accurate screening as well as minimizing the screening time delays to airline passengers. This technology, Retinex, has been optimized for consumer applications but has been applied to medical X-rays on a very preliminary basis. The resultant technology could be incorporated into a new breed of commercial x-ray imaging systems which would be transparent to the screener yet allow them to see subtle detail much more easily, reducing the amount of time needed for screening while greatly increasing the effectiveness of contraband detection and thus public safety.

  20. Enhanced Images for Checked and Carry-on Baggage and Cargo Screening

    NASA Technical Reports Server (NTRS)

    Woodell, Glen; Rahman, Zia-ur; Jobson, Daniel J.; Hines, Glenn

    2004-01-01

    The current X-ray systems used by airport security personnel for the detection of contraband, and objects such as knives and guns that can impact the security of a flight, have limited effect because of the limited display quality of the X-ray images. Since the displayed images do not possess optimal contrast and sharpness, it is possible for the security personnel to miss potentially hazardous objects. This problem is also common to other disciplines such as medical X-rays, and can be mitigated, to a large extent, by the use of state-of-the-art image processing techniques to enhance the contrast and sharpness of the displayed image. The NASA Langley Research Centers Visual Information Processing Group has developed an image enhancement technology that has direct applications to this problem of inadequate display quality. Airport security X-ray imaging systems would benefit considerably by using this novel technology, making the task of the personnel who have to interpret the X-ray images considerably easier, faster, and more reliable. This improvement would translate into more accurate screening as well as minimizing the screening time delays to airline passengers. This technology, Retinex, has been optimized for consumer applications but has been applied to medical X-rays on a very preliminary basis. The resultant technology could be incorporated into a new breed of commercial x-ray imaging systems which would be transparent to the screener yet allow them to see subtle detail much more easily, reducing the amount of time needed for screening while greatly increasing the effectiveness of contraband detection and thus public safety.

  1. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.

    PubMed

    Xia, Yuqiong; Zhang, Ruili; Wang, Zhongliang; Tian, Jie; Chen, Xiaoyuan

    2017-05-22

    RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.

  2. Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation

    NASA Astrophysics Data System (ADS)

    Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.

    2017-01-01

    Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.

  3. Underwater image enhancement based on the dark channel prior and attenuation compensation

    NASA Astrophysics Data System (ADS)

    Guo, Qingwen; Xue, Lulu; Tang, Ruichun; Guo, Lingrui

    2017-10-01

    Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior (ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.

  4. Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation

    PubMed Central

    Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.

    2017-01-01

    Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system. PMID:28106129

  5. Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals.

    PubMed

    Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron; Bearer, Elaine L

    2017-07-05

    Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm 3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. Word Imageability Enhances Association-memory by Increasing Hippocampal Engagement.

    PubMed

    Caplan, Jeremy B; Madan, Christopher R

    2016-10-01

    The hippocampus is thought to support association-memory, particularly when tested with cued recall. One of the most well-known and studied factors that influences accuracy of verbal association-memory is imageability; participants remember pairs of high-imageability words better than pairs of low-imageability words. High-imageability words are also remembered better in tests of item-memory. However, we previously found that item-memory effects could not explain the enhancement in cued recall, suggesting that imageability enhances association-memory strength. Here we report an fMRI study designed to ask, what is the role of the hippocampus in the memory advantage for associations due to imageability? We tested two alternative hypotheses: (1) Recruitment Hypothesis: High-imageability pairs are remembered better because they recruit the underlying hippocampal association-memory function more effectively. Alternatively, (2) Bypassing Hypothesis: Imageability functions by making the association-forming process easier, enhancing memory in a way that bypasses the hippocampus, as has been found, for example, with explicit unitization imagery strategies. Results found, first, hippocampal BOLD signal was greater during study and recall of high- than low-imageability word pairs. Second, the difference in activity between recalled and forgotten pairs showed a main effect, but no significant interaction with imageability, challenging the bypassing hypothesis, but consistent with the predictions derived from the recruitment hypothesis. Our findings suggest that certain stimulus properties, like imageability, may leverage, rather than avoid, the associative function of the hippocampus to support superior association-memory.

  7. Digital watermarking algorithm research of color images based on quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    An, Mali; Wang, Weijiang; Zhao, Zhen

    2013-10-01

    A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.

  8. New false color mapping for image fusion

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; Walraven, Jan

    1996-03-01

    A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).

  9. Using image processing technology and mathematical algorithm in the automatic selection of vocal cord opening and closing images from the larynx endoscopy video.

    PubMed

    Kuo, Chung-Feng Jeffrey; Chu, Yueng-Hsiang; Wang, Po-Chun; Lai, Chun-Yu; Chu, Wen-Lin; Leu, Yi-Shing; Wang, Hsing-Won

    2013-12-01

    The human larynx is an important organ for voice production and respiratory mechanisms. The vocal cord is approximated for voice production and open for breathing. The videolaryngoscope is widely used for vocal cord examination. At present, physicians usually diagnose vocal cord diseases by manually selecting the image of the vocal cord opening to the largest extent (abduction), thus maximally exposing the vocal cord lesion. On the other hand, the severity of diseases such as vocal palsy, atrophic vocal cord is largely dependent on the vocal cord closing to the smallest extent (adduction). Therefore, diseases can be assessed by the image of the vocal cord opening to the largest extent, and the seriousness of breathy voice is closely correlated to the gap between vocal cords when closing to the smallest extent. The aim of the study was to design an automatic vocal cord image selection system to improve the conventional selection process by physicians and enhance diagnosis efficiency. Also, due to the unwanted fuzzy images resulting from examination process caused by human factors as well as the non-vocal cord images, texture analysis is added in this study to measure image entropy to establish a screening and elimination system to effectively enhance the accuracy of selecting the image of the vocal cord closing to the smallest extent. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.

    PubMed

    Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha

    2017-04-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage.

  11. Data Processing of LAPAN-A3 Thermal Imager

    NASA Astrophysics Data System (ADS)

    Hartono, R.; Hakim, P. R.; Syafrudin, AH

    2018-04-01

    As an experimental microsatellite, LAPAN-A3/IPB satellite has an experimental thermal imager, which is called as micro-bolometer, to observe earth surface temperature for horizon observation. The imager data is transmitted from satellite to ground station by S-band video analog signal transmission, and then processed by ground station to become sequence of 8-bit enhanced and contrasted images. Data processing of LAPAN-A3/IPB thermal imager is more difficult than visual digital camera, especially for mosaic and classification purpose. This research aims to describe simple mosaic and classification process of LAPAN-A3/IPB thermal imager based on several videos data produced by the imager. The results show that stitching using Adobe Photoshop produces excellent result but can only process small area, while manual approach using ImageJ software can produce a good result but need a lot of works and time consuming. The mosaic process using image cross-correlation by Matlab offers alternative solution, which can process significantly bigger area in significantly shorter time processing. However, the quality produced is not as good as mosaic images of the other two methods. The simple classifying process that has been done shows that the thermal image can classify three distinct objects, i.e.: clouds, sea, and land surface. However, the algorithm fail to classify any other object which might be caused by distortions in the images. All of these results can be used as reference for development of thermal imager in LAPAN-A4 satellite.

  12. Developments in the recovery of colour in fine art prints using spatial image processing

    NASA Astrophysics Data System (ADS)

    Rizzi, A.; Parraman, C.

    2010-06-01

    Printmakers have at their disposal a wide range of colour printing processes. The majority of artists will utilise high quality materials with the expectation that the best materials and pigments will ensure image permanence. However, as many artists have experienced, this is not always the case. Inks, papers and materials can deteriorate over time. For artists and conservators who need to restore colour or tone to a print could benefit from the assistance of spatial colour enhancement tools. This paper studies two collections from the same edition of fine art prints that were made in 1991. The first edition has been kept in an archive and not exposed to light. The second edition has been framed and exposed to light for about 18 years. Previous experiments using colour enhancement methods [9,10] have involved a series of photographs that had been taken under poor or extreme lighting conditions, fine art works, scanned works. There are a range of colour enhancement methods: Retinex, RSR, ACE, Histogram Equalisation, Auto Levels, which are described in this paper. In this paper we will concentrate on the ACE algorithm and use a range of parameters to process the printed images and describe these results.

  13. Application of digital image processing techniques to astronomical imagery, 1979

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1979-01-01

    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  14. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  15. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    PubMed

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  16. Review of dynamic contrast-enhanced MRI: Technical aspects and applications in the musculoskeletal system.

    PubMed

    Sujlana, Parvinder; Skrok, Jan; Fayad, Laura M

    2018-04-01

    Although postcontrast imaging has been used for many years in musculoskeletal imaging, dynamic contrast enhanced (DCE) MRI is not routinely used in many centers around the world. Unlike conventional contrast-enhanced sequences, DCE-MRI allows the evaluation of the temporal pattern of enhancement in the musculoskeletal system, perhaps best known for its use in oncologic applications (such as differentiating benign from malignant tumors, evaluating for treatment response after neoadjuvant chemotherapy, and differentiating postsurgical changes from residual tumor). However, DCE-MRI can also be used to evaluate inflammatory processes such as Charcot foot and synovitis, and evaluate bone perfusion in entities like Legg Calve Perthes disease and arthritis. Finally, vascular abnormalities and associated complications may be better characterized with DCE-MRI than conventional imaging. The goal of this article is to review the applications and technical aspects of DCE-MRI in the musculoskeletal system. 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:875-890. © 2017 International Society for Magnetic Resonance in Medicine.

  17. UWGSP7: a real-time optical imaging workstation

    NASA Astrophysics Data System (ADS)

    Bush, John E.; Kim, Yongmin; Pennington, Stan D.; Alleman, Andrew P.

    1995-04-01

    With the development of UWGSP7, the University of Washington Image Computing Systems Laboratory has a real-time workstation for continuous-wave (cw) optical reflectance imaging. Recent discoveries in optical science and imaging research have suggested potential practical use of the technology as a medical imaging modality and identified the need for a machine to support these applications in real time. The UWGSP7 system was developed to provide researchers with a high-performance, versatile tool for use in optical imaging experiments with the eventual goal of bringing the technology into clinical use. One of several major applications of cw optical reflectance imaging is tumor imaging which uses a light-absorbing dye that preferentially sequesters in tumor tissue. This property could be used to locate tumors and to identify tumor margins intraoperatively. Cw optical reflectance imaging consists of illumination of a target with a band-limited light source and monitoring the light transmitted by or reflected from the target. While continuously illuminating the target, a control image is acquired and stored. A dye is injected into a subject and a sequence of data images are acquired and processed. The data images are aligned with the control image and then subtracted to obtain a signal representing the change in optical reflectance over time. This signal can be enhanced by digital image processing and displayed in pseudo-color. This type of emerging imaging technique requires a computer system that is versatile and adaptable. The UWGSP7 utilizes a VESA local bus PC as a host computer running the Windows NT operating system and includes ICSL developed add-on boards for image acquisition and processing. The image acquisition board is used to digitize and format the analog signal from the input device into digital frames and to the average frames into images. To accommodate different input devices, the camera interface circuitry is designed in a small mezzanine board that supports the RS-170 standard. The image acquisition board is connected to the image- processing board using a direct connect port which provides a 66 Mbytes/s channel independent of the system bus. The image processing board utilizes the Texas Instruments TMS320C80 Multimedia Video Processor chip. This chip is capable of 2 billion operations per second providing the UWGSP7 with the capability to perform real-time image processing functions like median filtering, convolution and contrast enhancement. This processing power allows interactive analysis of the experiments as compared to current practice of off-line processing and analysis. Due to its flexibility and programmability, the UWGSP7 can be adapted into various research needs in intraoperative optical imaging.

  18. High-performance image processing on the desktop

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen D.

    1996-04-01

    The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.

  19. Image quality enhancement for skin cancer optical diagnostics

    NASA Astrophysics Data System (ADS)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  20. Image enhancement by spatial frequency post-processing of images obtained with pupil filters

    NASA Astrophysics Data System (ADS)

    Estévez, Irene; Escalera, Juan C.; Stefano, Quimey Pears; Iemmi, Claudio; Ledesma, Silvia; Yzuel, María J.; Campos, Juan

    2016-12-01

    The use of apodizing or superresolving filters improves the performance of an optical system in different frequency bands. This improvement can be seen as an increase in the OTF value compared to the OTF for the clear aperture. In this paper we propose a method to enhance the contrast of an image in both its low and its high frequencies. The method is based on the generation of a synthetic Optical Transfer Function, by multiplexing the OTFs given by the use of different non-uniform transmission filters on the pupil. We propose to capture three images, one obtained with a clear pupil, one obtained with an apodizing filter that enhances the low frequencies and another one taken with a superresolving filter that improves the high frequencies. In the Fourier domain the three spectra are combined by using smoothed passband filters, and then the inverse transform is performed. We show that we can create an enhanced image better than the image obtained with the clear aperture. To evaluate the performance of the method, bar tests (sinusoidal tests) with different frequency content are used. The results show that a contrast improvement in the high and low frequencies is obtained.

  1. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  2. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake.

  3. Extended depth of field imaging for high speed object analysis

    NASA Technical Reports Server (NTRS)

    Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)

    2011-01-01

    A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.

  4. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  5. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  6. Comparison of DP3 Signals Evoked by Comfortable 3D Images and 2D Images — an Event-Related Potential Study using an Oddball Task

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Wu, Xiang; Gao, Dingguo; Liang, Haowen; Wang, Jiahui; Deng, Shaozhi; Xu, Ningsheng; She, Juncong; Chen, Jun

    2017-02-01

    The horizontal binocular disparity is a critical factor for the visual fatigue induced by watching stereoscopic TVs. Stereoscopic images that possess the disparity within the ‘comfort zones’ and remain still in the depth direction are considered comfortable to the viewers as 2D images. However, the difference in brain activities between processing such comfortable stereoscopic images and 2D images is still less studied. The DP3 (differential P3) signal refers to an event-related potential (ERP) component indicating attentional processes, which is typically evoked by odd target stimuli among standard stimuli in an oddball task. The present study found that the DP3 signal elicited by the comfortable 3D images exhibits the delayed peak latency and enhanced peak amplitude over the anterior and central scalp regions compared to the 2D images. The finding suggests that compared to the processing of the 2D images, more attentional resources are involved in the processing of the stereoscopic images even though they are subjectively comfortable.

  7. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  8. Facial identification in very low-resolution images simulating prosthetic vision.

    PubMed

    Chang, M H; Kim, H S; Shin, J H; Park, K S

    2012-08-01

    Familiar facial identification is important to blind or visually impaired patients and can be achieved using a retinal prosthesis. Nevertheless, there are limitations in delivering the facial images with a resolution sufficient to distinguish facial features, such as eyes and nose, through multichannel electrode arrays used in current visual prostheses. This study verifies the feasibility of familiar facial identification under low-resolution prosthetic vision and proposes an edge-enhancement method to deliver more visual information that is of higher quality. We first generated a contrast-enhanced image and an edge image by applying the Sobel edge detector and blocked each of them by averaging. Then, we subtracted the blocked edge image from the blocked contrast-enhanced image and produced a pixelized image imitating an array of phosphenes. Before subtraction, every gray value of the edge images was weighted as 50% (mode 2), 75% (mode 3) and 100% (mode 4). In mode 1, the facial image was blocked and pixelized with no further processing. The most successful identification was achieved with mode 3 at every resolution in terms of identification index, which covers both accuracy and correct response time. We also found that the subjects recognized a distinctive face especially more accurately and faster than the other given facial images even under low-resolution prosthetic vision. Every subject could identify familiar faces even in very low-resolution images. And the proposed edge-enhancement method seemed to contribute to intermediate-stage visual prostheses.

  9. The interactive astronomical data analysis facility - image enhancement techniques to Comet Halley

    NASA Astrophysics Data System (ADS)

    Klinglesmith, D. A.

    1981-10-01

    PDP 11/40 computer is at the heart of a general purpose interactive data analysis facility designed to permit easy access to data in both visual imagery and graphic representations. The major components consist of: the 11/40 CPU and 256 K bytes of 16-bit memory; two TU10 tape drives; 20 million bytes of disk storage; three user terminals; and the COMTAL image processing display system. The application of image enhancement techniques to two sequences of photographs of Comet Halley taken in Egypt in 1910 provides evidence for eruptions from the comet's nucleus.

  10. An augmented-reality edge enhancement application for Google Glass.

    PubMed

    Hwang, Alex D; Peli, Eli

    2014-08-01

    Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.

  11. Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images

    NASA Astrophysics Data System (ADS)

    Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2007-03-01

    Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.

  12. Installing and Executing Information Object Analysis, Intent, Dissemination, and Enhancement (IOAIDE) and Its Dependencies

    DTIC Science & Technology

    2017-02-01

    Image Processing Web Server Administration ...........................17 Fig. 18 Microsoft ASP.NET MVC 4 installation...algorithms are made into client applications that can be accessed from an image processing web service2 developed following Representational State...Transfer (REST) standards by a mobile app, laptop PC, and other devices. Similarly, weather tweets can be accessed via the Weather Digest Web Service

  13. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement.

    PubMed

    Nguyen, N; Milanfar, P; Golub, G

    2001-01-01

    In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.

  14. Characteristics of different frequency ranges in scanning electron microscope images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  15. Tracking Sunspots from Mars, April 2015 Animation

    NASA Image and Video Library

    2015-07-10

    This single frame from a sequence of six images of an animation shows sunspots as viewed by NASA Curiosity Mars rover from April 4 to April 15, 2015. From Mars, the rover was in position to see the opposite side of the sun. The images were taken by the right-eye camera of Curiosity's Mast Camera (Mastcam), which has a 100-millimeter telephoto lens. The view on the left of each pair in this sequence has little processing other than calibration and putting north toward the top of each frame. The view on the right of each pair has been enhanced to make sunspots more visible. The apparent granularity throughout these enhanced images is an artifact of this processing. These sunspots seen in this sequence eventually produced two solar eruptions, one of which affected Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19802

  16. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  17. Noise Enhanced Sensory Signal Processing

    DTIC Science & Technology

    2012-01-31

    Moreover, a contrast sensitivity function (CSF), as an object feature enhancer , was employed for further improving the segmentation performance, which...Digital mammography work appeared in ACM Tech News on Feb. 3, 2010. 8. Interactions/Transitions Invited talks: • P.K. Varshney, “Noise Enhanced ... mammography machines with regard to our work on image enhancement based on SR. • Lectures at Lockheed Martin in Syracuse and SRC that included discussion

  18. Voyager Cartography

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Bridges, P. M.; Mullins, K. F.

    1985-01-01

    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps include specially formatted color mosaics, controlled photomosaics, and airbrush maps. More than 500 Voyager images of the Jovian and Saturnian satellites were radiometrically processed in preparation for cartographic processing. Of these images, 235 were geometrically transformed to map projections for base mosaic compilations. Special techniques for producing hybrid photomosaic/airbrush maps of Callisto are under investigation. The techniques involve making controlled computer mosaics of all available images with highest resolution images superimposed on lowest resolution images. The mosaics are then improved by airbrushing: seams and artifacts are removed, and image details enhanced that had been lost by saturation in some images. A controlled mosaic of the northern hemisphere of Rhea is complete, as is all processing for a similar mosaic of the equatorial region. Current plans and status of the various series are shown in a table.

  19. Halftoning processing on a JPEG-compressed image

    NASA Astrophysics Data System (ADS)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.

  20. Video enhancement workbench: an operational real-time video image processing system

    NASA Astrophysics Data System (ADS)

    Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.

    1993-01-01

    Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.

  1. Adaptive image contrast enhancement using generalizations of histogram equalization.

    PubMed

    Stark, J A

    2000-01-01

    This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.

  2. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency

    NASA Astrophysics Data System (ADS)

    Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup

    2017-06-01

    This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.

  3. Automated metastatic brain lesion detection: a computer aided diagnostic and clinical research tool

    NASA Astrophysics Data System (ADS)

    Devine, Jeremy; Sahgal, Arjun; Karam, Irene; Martel, Anne L.

    2016-03-01

    The accurate localization of brain metastases in magnetic resonance (MR) images is crucial for patients undergoing stereotactic radiosurgery (SRS) to ensure that all neoplastic foci are targeted. Computer automated tumor localization and analysis can improve both of these tasks by eliminating inter and intra-observer variations during the MR image reading process. Lesion localization is accomplished using adaptive thresholding to extract enhancing objects. Each enhancing object is represented as a vector of features which includes information on object size, symmetry, position, shape, and context. These vectors are then used to train a random forest classifier. We trained and tested the image analysis pipeline on 3D axial contrast-enhanced MR images with the intention of localizing the brain metastases. In our cross validation study and at the most effective algorithm operating point, we were able to identify 90% of the lesions at a precision rate of 60%.

  4. Retinex Preprocessing for Improved Multi-Spectral Image Classification

    NASA Technical Reports Server (NTRS)

    Thompson, B.; Rahman, Z.; Park, S.

    2000-01-01

    The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original images, without preprocessing, are much less similar.

  5. PI2GIS: processing image to geographical information systems, a learning tool for QGIS

    NASA Astrophysics Data System (ADS)

    Correia, R.; Teodoro, A.; Duarte, L.

    2017-10-01

    To perform an accurate interpretation of remote sensing images, it is necessary to extract information using different image processing techniques. Nowadays, it became usual to use image processing plugins to add new capabilities/functionalities integrated in Geographical Information System (GIS) software. The aim of this work was to develop an open source application to automatically process and classify remote sensing images from a set of satellite input data. The application was integrated in a GIS software (QGIS), automating several image processing steps. The use of QGIS for this purpose is justified since it is easy and quick to develop new plugins, using Python language. This plugin is inspired in the Semi-Automatic Classification Plugin (SCP) developed by Luca Congedo. SCP allows the supervised classification of remote sensing images, the calculation of vegetation indices such as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) and other image processing operations. When analysing SCP, it was realized that a set of operations, that are very useful in teaching classes of remote sensing and image processing tasks, were lacking, such as the visualization of histograms, the application of filters, different image corrections, unsupervised classification and several environmental indices computation. The new set of operations included in the PI2GIS plugin can be divided into three groups: pre-processing, processing, and classification procedures. The application was tested consider an image from Landsat 8 OLI from a North area of Portugal.

  6. Image gathering and digital restoration for fidelity and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1991-01-01

    The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.

  7. Merged GLORIA sidescan and hydrosweep pseudo-sidescan: Processing and creation of digital mosaics

    USGS Publications Warehouse

    Bird, R.T.; Searle, R.C.; Paskevich, V.; Twichell, D.C.

    1996-01-01

    We have replaced the usual band of poor-quality data in the near-nadir region of our GLORIA long-range sidescan-sonar imagery with a shaded-relief image constructed from swath bathymetry data (collected simultaneously with GLORIA) which completely cover the nadir area. We have developed a technique to enhance these "pseudo-sidescan" images in order to mimic the neighbouring GLORIA backscatter intensities. As a result, the enhanced images greatly facilitate the geologic interpretation of the adjacent GLORIA data, and geologic features evident in the GLORIA data may be correlated with greater confidence across track. Features interpreted from the pseudo-sidescan may be extrapolated from the near-nadir region out into the GLORIA range where they may not have been recognized otherwise, and therefore the pseudo-sidescan can be used to ground-truth GLORIA interpretations. Creation of digital sidescan mosaics utilized an approach not previously used for GLORIA data. Pixels were correctly placed in cartographic space and the time required to complete a final mosaic was significantly reduced. Computer software for digital mapping and mosaic creation is incorporated into the newly-developed Woods Hole Image Processing System (WHIPS) which can process both low- and high-frequency sidescan, and can interchange data with the Mini Image Processing System (MIPS) most commonly used for GLORIA processing. These techniques are tested by creating digital mosaics of merged GLORIA sidescan and Hydrosweep pseudo-sidescan data from the vicinity of the Juan Fernandez microplate along the East Pacific Rise (EPR). 

  8. Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles

    NASA Technical Reports Server (NTRS)

    Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.

    1989-01-01

    The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.

  9. Processing the image gradient field using a topographic primal sketch approach.

    PubMed

    Gambaruto, A M

    2015-03-01

    The spatial derivatives of the image intensity provide topographic information that may be used to identify and segment objects. The accurate computation of the derivatives is often hampered in medical images by the presence of noise and a limited resolution. This paper focuses on accurate computation of spatial derivatives and their subsequent use to process an image gradient field directly, from which an image with improved characteristics can be reconstructed. The improvements include noise reduction, contrast enhancement, thinning object contours and the preservation of edges. Processing the gradient field directly instead of the image is shown to have numerous benefits. The approach is developed such that the steps are modular, allowing the overall method to be improved and possibly tailored to different applications. As presented, the approach relies on a topographic representation and primal sketch of an image. Comparisons with existing image processing methods on a synthetic image and different medical images show improved results and accuracy in segmentation. Here, the focus is on objects with low spatial resolution, which is often the case in medical images. The methods developed show the importance of improved accuracy in derivative calculation and the potential in processing the image gradient field directly. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  11. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  12. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals.

    PubMed

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H

    2014-07-24

    In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.

  13. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.

    PubMed

    Kim, Hyeongseok; Lee, Taewon; Hong, Joonpyo; Sabir, Sohail; Lee, Jung-Ryun; Choi, Young Wook; Kim, Hak Hee; Chae, Eun Young; Cho, Seungryong

    2017-02-01

    Nonlinear pre-reconstruction processing of the projection data in computed tomography (CT) where accurate recovery of the CT numbers is important for diagnosis is usually discouraged, for such a processing would violate the physics of image formation in CT. However, one can devise a pre-processing step to enhance detectability of lesions in digital breast tomosynthesis (DBT) where accurate recovery of the CT numbers is fundamentally impossible due to the incompleteness of the scanned data. Since the detection of lesions such as micro-calcifications and mass in breasts is the purpose of using DBT, it is justified that a technique producing higher detectability of lesions is a virtue. A histogram modification technique was developed in the projection data domain. Histogram of raw projection data was first divided into two parts: One for the breast projection data and the other for background. Background pixel values were set to a single value that represents the boundary between breast and background. After that, both histogram parts were shifted by an appropriate amount of offset and the histogram-modified projection data were log-transformed. Filtered-backprojection (FBP) algorithm was used for image reconstruction of DBT. To evaluate performance of the proposed method, we computed the detectability index for the reconstructed images from clinically acquired data. Typical breast border enhancement artifacts were greatly suppressed and the detectability of calcifications and masses was increased by use of the proposed method. Compared to a global threshold-based post-reconstruction processing technique, the proposed method produced images of higher contrast without invoking additional image artifacts. In this work, we report a novel pre-processing technique that improves detectability of lesions in DBT and has potential advantages over the global threshold-based post-reconstruction processing technique. The proposed method not only increased the lesion detectability but also reduced typical image artifacts pronounced in conventional FBP-based DBT. © 2016 American Association of Physicists in Medicine.

  14. The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.

    PubMed

    Pooley, R A; McKinney, J M; Miller, D A

    2001-01-01

    A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.

  15. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  16. Extraction of line properties based on direction fields.

    PubMed

    Kutka, R; Stier, S

    1996-01-01

    The authors present a new set of algorithms for segmenting lines, mainly blood vessels in X-ray images, and extracting properties such as their intensities, diameters, and center lines. The authors developed a tracking algorithm that checks rules taking the properties of vessels into account. The tools even detect veins, arteries, or catheters of two pixels in diameter and with poor contrast. Compared with other algorithms, such as the Canny line detector or anisotropic diffusion, the authors extract a smoother and connected vessel tree without artifacts in the image background. As the tools depend on common intermediate results, they are very fast when used together. The authors' results will support the 3-D reconstruction of the vessel tree from stereoscopic projections. Moreover, the authors make use of their line intensity measure for enhancing and improving the visibility of vessels in 3-D X-ray images. The processed images are intended to support radiologists in diagnosis, radiation therapy planning, and surgical planning. Radiologists verified the improved quality of the processed images and the enhanced visibility of relevant details, particularly fine blood vessels.

  17. Real time imaging of infrared scene data generated by the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) system

    NASA Astrophysics Data System (ADS)

    Baca, Michael J.

    1990-09-01

    A system to display images generated by the Naval Postgraduate School Infrared Search and Target Designation (a modified AN/SAR-8 Advanced Development Model) in near real time was developed using a 33 MHz NIC computer as the central controller. This computer was enhanced with a Data Translation DT2861 Frame Grabber for image processing and an interface board designed and constructed at NPS to provide synchronization between the IRSTD and Frame Grabber. Images are displayed in false color in a video raster format on a 512 by 480 pixel resolution monitor. Using FORTRAN, programs have been written to acquire, unscramble, expand and display a 3 deg sector of data. The time line for acquisition, processing and display has been analyzed and repetition periods of less than four seconds for successive screen displays have been achieved. This represents a marked improvement over previous methods necessitating slower Direct Memory Access transfers of data into the Frame Grabber. Recommendations are made for further improvements to enhance the speed and utility of images produced.

  18. Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2D QDFT

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; John, Aparna; Agaian, Sos S.

    2017-03-01

    2-D quaternion discrete Fourier transform (2-D QDFT) is the Fourier transform applied to color images when the color images are considered in the quaternion space. The quaternion numbers are four dimensional hyper-complex numbers. Quaternion representation of color image allows us to see the color of the image as a single unit. In quaternion approach of color image enhancement, each color is seen as a vector. This permits us to see the merging effect of the color due to the combination of the primary colors. The color images are used to be processed by applying the respective algorithm onto each channels separately, and then, composing the color image from the processed channels. In this article, the alpha-rooting and zonal alpha-rooting methods are used with the 2-D QDFT. In the alpha-rooting method, the alpha-root of the transformed frequency values of the 2-D QDFT are determined before taking the inverse transform. In the zonal alpha-rooting method, the frequency spectrum of the 2-D QDFT is divided by different zones and the alpha-rooting is applied with different alpha values for different zones. The optimization of the choice of alpha values is done with the genetic algorithm. The visual perception of 3-D medical images is increased by changing the reference gray line.

  19. The Effect Of Digital Unsharp Masking On The Detectability Of Interstitial Infiltrates And Pneumothoraces

    NASA Astrophysics Data System (ADS)

    MacMahon, Heber; Vyborny, Carl; Sabeti, Victoria; Metz, Charles; Doi, Kunio

    1985-09-01

    A potential advantage of digital radiographic systems is their ability to enhance images by various types of processing. Digital unsharp masking is one of the simplest and potentially most useful forms of enhancement. The efficacy of unsharp masking in clinical radiologic diagnosis has not been investigated systematically, however. The effect of digital unsharp masking on the detectability of two types of subtle abnormalities, pneumothorax and interstitial infiltrate, was studied in an observer performance test. An ROC analysis of this preliminary data suggests that unsharp masking may improve diagnostic accuracy for pneumothorax. Radiologists' performance in identifying interstitial infiltrates was degraded by the image processing, however, and false positive diagnoses tended to be more frequent.

  20. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    PubMed

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. MOPEX: a software package for astronomical image processing and visualization

    NASA Astrophysics Data System (ADS)

    Makovoz, David; Roby, Trey; Khan, Iffat; Booth, Hartley

    2006-06-01

    We present MOPEX - a software package for astronomical image processing and display. The package is a combination of command-line driven image processing software written in C/C++ with a Java-based GUI. The main image processing capabilities include creating mosaic images, image registration, background matching, point source extraction, as well as a number of minor image processing tasks. The combination of the image processing and display capabilities allows for much more intuitive and efficient way of performing image processing. The GUI allows for the control over the image processing and display to be closely intertwined. Parameter setting, validation, and specific processing options are entered by the user through a set of intuitive dialog boxes. Visualization feeds back into further processing by providing a prompt feedback of the processing results. The GUI also allows for further analysis by accessing and displaying data from existing image and catalog servers using a virtual observatory approach. Even though originally designed for the Spitzer Space Telescope mission, a lot of functionalities are of general usefulness and can be used for working with existing astronomical data and for new missions. The software used in the package has undergone intensive testing and benefited greatly from effective software reuse. The visualization part has been used for observation planning for both the Spitzer and Herschel Space Telescopes as part the tool Spot. The visualization capabilities of Spot have been enhanced and integrated with the image processing functionality of the command-line driven MOPEX. The image processing software is used in the Spitzer automated pipeline processing, which has been in operation for nearly 3 years. The image processing capabilities have also been tested in off-line processing by numerous astronomers at various institutions around the world. The package is multi-platform and includes automatic update capabilities. The software package has been developed by a small group of software developers and scientists at the Spitzer Science Center. It is available for distribution at the Spitzer Science Center web page.

  2. Artwork Separation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Under a grant from California Institute of Technology, Jet Propulsion Laboratory (JPL) and LACMA (Los Angeles County Museum of Art) used image enhancement techniques to separate x-ray images of paintings when one had been painted on top of another. The technique is derived from computer processing of spacecraft-acquired imagery, and will allow earlier paintings, some of which have been covered for centuries, to be evaluated. JPL developed the program for "subtracting" the top painting and enhancing the bottom one, and believes an even more advanced system is possible.

  3. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies are presented and laser speckle imaging is combined to enable quantitative cerebral blood flow (CBF) imaging at high spatiotemporal resolutions. An angiography-enhanced Doppler optical coherence tomography (aDFR-OCT) was also demonstrated to enable quantitative imaging of capillary changes for brain functional studies. Lastly, future work on technological development and potential biomedical applications is briefly outlined.

  4. Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

    PubMed

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2015-01-01

    Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

  5. Imaging features of hepatic angiomyolipomas on real-time contrast-enhanced ultrasound

    PubMed Central

    Wang, Z; Xu, H-X; Xie, X-Y; Xie, X-H; Kuang, M; Xu, Z-F; Liu, G-J; Chen, L-D; Lin, M-X; Lu, M-D

    2010-01-01

    The aim of this study was to evaluate the imaging features of hepatic angiomyolipoma (AML) on contrast-enhanced ultrasound (CEUS). The imaging features of 12 pathologically proven hepatic AML lesions in 10 patients who had undergone baseline ultrasound (BUS) and CEUS examinations were evaluated retrospectively. The enhancement extent, pattern and dynamic change, along with the enhancement process, on CEUS were analysed. The diagnostic results of BUS and CEUS before pathological examination were also recorded. The results showed that 75% (9/12) of the AML lesions exhibited mixed echogenicity on BUS and most showed remarkable hyperechogenicity in combination with a hypoechoic or anechoic portion. Arterial flow signals were detected in 75% (9/12) of the lesions on colour Doppler imaging. On CEUS, 66.7% (n = 8) of the 12 lesions exhibited hyperenhancement in the arterial phase, slight hyperenhancement (n = 2) or isoenhancement (n = 6) in the portal phase, and slight hyperenhancement (n = 1) or isoenhancement (n = 7) in the late phase. Three (25%) lesions exhibited hyperenhancement in the arterial phase and hypoenhancement in both portal and late phases. One (8.3%) lesion exhibited hypoenhancement throughout the CEUS process. Before pathological examination with BUS, only 3 (25%) lesions were correctly diagnosed as hepatic AML. Conversely, on CEUS, correct diagnoses were made for 66.8% (8/12) of hepatic AMLs. Therefore, arterial hyperenhancement and subsequent sustained enhancement on CEUS were found in the majority of hepatic AMLs. The combination of BUS and CEUS leads to the correct diagnosis in the majority of hepatic AMLs, and is higher than the success rate achieved by BUS alone. PMID:19723766

  6. Enhanced microlithography using coated objectives and image duplication

    NASA Astrophysics Data System (ADS)

    Erdelyi, Miklos; Bor, Zsolt; Szabo, Gabor; Tittel, Frank K.

    1998-06-01

    Two processes were investigated theoretically using both a scalar wave optics model and a microlithography simulation tool (Solid-C). The first method introduces a phase- transmission filter into the exit pupil plane. The results of both the scalar optics calculation (aerial image) and the Solid-C simulation (resist image) show that the final image profile is optimum, when the exit pupil plane filter is divided into two zones with the inner zone having a phase retardation of (pi) rad with respect to the outer one and the ratio of the radii of the zones is 0.3. Using this optimized filter for the fabrication of isolated contact holes, the focus-exposure process window increases significantly, and the depth of focus (DOF) can be enhanced by a factor of 1.5 to 2. The second technique enhances the DOF of the aerial image by means of a birefringent plate inserted between the projection lens and the wafer. As the shift in focus introduced by the plate strongly depends on the refractive index, two focal points will appear when using a birefringent plate instead of an isotropic plate: the first one is created by the ordinary, and the second one is created by the extraordinary ray. The distance between these images can be controlled by the thickness of the plate. The results of the calculations show that application of a thin but strongly birefringent material is a better candidate than using a slightly birefringent but thick plate, since aberrations proportional to the thickness can cause undesirable effects.

  7. A Framework for Reproducible Latent Fingerprint Enhancements.

    PubMed

    Carasso, Alfred S

    2014-01-01

    Photoshop processing of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology.

  8. A Framework for Reproducible Latent Fingerprint Enhancements

    PubMed Central

    Carasso, Alfred S.

    2014-01-01

    Photoshop processing1 of latent fingerprints is the preferred methodology among law enforcement forensic experts, but that appproach is not fully reproducible and may lead to questionable enhancements. Alternative, independent, fully reproducible enhancements, using IDL Histogram Equalization and IDL Adaptive Histogram Equalization, can produce better-defined ridge structures, along with considerable background information. Applying a systematic slow motion smoothing procedure to such IDL enhancements, based on the rapid FFT solution of a Lévy stable fractional diffusion equation, can attenuate background detail while preserving ridge information. The resulting smoothed latent print enhancements are comparable to, but distinct from, forensic Photoshop images suitable for input into automated fingerprint identification systems, (AFIS). In addition, this progressive smoothing procedure can be reexamined by displaying the suite of progressively smoother IDL images. That suite can be stored, providing an audit trail that allows monitoring for possible loss of useful information, in transit to the user-selected optimal image. Such independent and fully reproducible enhancements provide a valuable frame of reference that may be helpful in informing, complementing, and possibly validating the forensic Photoshop methodology. PMID:26601028

  9. Instructional image processing on a university mainframe: The Kansas system

    NASA Technical Reports Server (NTRS)

    Williams, T. H. L.; Siebert, J.; Gunn, C.

    1981-01-01

    An interactive digital image processing program package was developed that runs on the University of Kansas central computer, a Honeywell Level 66 multi-processor system. The module form of the package allows easy and rapid upgrades and extensions of the system and is used in remote sensing courses in the Department of Geography, in regional five-day short courses for academics and professionals, and also in remote sensing projects and research. The package comprises three self-contained modules of processing functions: Subimage extraction and rectification; image enhancement, preprocessing and data reduction; and classification. Its use in a typical course setting is described. Availability and costs are considered.

  10. Two dimensional recursive digital filters for near real time image processing

    NASA Technical Reports Server (NTRS)

    Olson, D.; Sherrod, E.

    1980-01-01

    A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.

  11. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  12. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  13. Image Analysis and Modeling

    DTIC Science & Technology

    1975-08-01

    image analysis and processing tasks such as information extraction, image enhancement and restoration, coding, etc. The ultimate objective of this research is to form a basis for the development of technology relevant to military applications of machine extraction of information from aircraft and satellite imagery of the earth’s surface. This report discusses research activities during the three month period February 1 - April 30,

  14. Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach

    NASA Astrophysics Data System (ADS)

    Jazaeri, Amin

    High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.

  15. An imaging system for PLIF/Mie measurements for a combusting flow

    NASA Technical Reports Server (NTRS)

    Wey, C. C.; Ghorashi, B.; Marek, C. J.; Wey, C.

    1990-01-01

    The equipment required to establish an imaging system can be divided into four parts: (1) the light source and beam shaping optics; (2) camera and recording; (3) image acquisition and processing; and (4) computer and output systems. A pulsed, Nd:YAG-pummped, frequency-doubled dye laser which can freeze motion in the flowfield is used for an illumination source. A set of lenses is used to form the laser beam into a sheet. The induced fluorescence is collected by an UV-enhanced lens and passes through an UV-enhanced microchannel plate intensifier which is optically coupled to a gated solid state CCD camera. The output of the camera is simultaneously displayed on a monitor and recorded on either a laser videodisc set of a Super VHS VCR. This videodisc set is controlled by a minicomputer via a connection to the RS-232C interface terminals. The imaging system is connected to the host computer by a bus repeater and can be multiplexed between four video input sources. Sample images from a planar shear layer experiment are presented to show the processing capability of the imaging system with the host computer.

  16. Variable Delay Multi-Pulse Train for Fast Chemical Exchange Saturation Transfer and Relayed-Nuclear Overhauser Enhancement MRI

    PubMed Central

    Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.

    2013-01-01

    Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483

  17. Noise properties and task-based evaluation of diffraction-enhanced imaging

    PubMed Central

    Brankov, Jovan G.; Saiz-Herranz, Alejandro; Wernick, Miles N.

    2014-01-01

    Abstract. Diffraction-enhanced imaging (DEI) is an emerging x-ray imaging method that simultaneously yields x-ray attenuation and refraction images and holds great promise for soft-tissue imaging. The DEI has been mainly studied using synchrotron sources, but efforts have been made to transition the technology to more practical implementations using conventional x-ray sources. The main technical challenge of this transition lies in the relatively lower x-ray flux obtained from conventional sources, leading to photon-limited data contaminated by Poisson noise. Several issues that must be understood in order to design and optimize DEI imaging systems with respect to noise performance are addressed. Specifically, we: (a) develop equations describing the noise properties of DEI images, (b) derive the conditions under which the DEI algorithm is statistically optimal, (c) characterize the imaging performance that can be obtained as measured by task-based metrics, and (d) consider image-processing steps that may be employed to mitigate noise effects. PMID:26158056

  18. Perceptual processing of natural scenes at rapid rates: Effects of complexity, content, and emotional arousal

    PubMed Central

    Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    During rapid serial visual presentation (RSVP), the perceptual system is confronted with a rapidly changing array of sensory information demanding resolution. At rapid rates of presentation, previous studies have found an early (e.g., 150–280 ms) negativity over occipital sensors that is enhanced when emotional, as compared with neutral, pictures are viewed, suggesting facilitated perception. In the present study, we explored how picture composition and the presence of people in the image affect perceptual processing of pictures of natural scenes. Using RSVP, pictures that differed in perceptual composition (figure–ground or scenes), content (presence of people or not), and emotional content (emotionally arousing or neutral) were presented in a continuous stream for 330 ms each with no intertrial interval. In both subject and picture analyses, all three variables affected the amplitude of occipital negativity, with the greatest enhancement for figure–ground compositions (as compared with scenes), irrespective of content and emotional arousal, supporting an interpretation that ease of perceptual processing is associated with enhanced occipital negativity. Viewing emotional pictures prompted enhanced negativity only for pictures that depicted people, suggesting that specific features of emotionally arousing images are associated with facilitated perceptual processing, rather than all emotional content. PMID:23780520

  19. Image processing of metal surface with structured light

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Feng, Chang; Wang, Congzheng

    2014-09-01

    In structured light vision measurement system, the ideal image of structured light strip, in addition to black background , contains only the gray information of the position of the stripe. However, the actual image contains image noise, complex background and so on, which does not belong to the stripe, and it will cause interference to useful information. To extract the stripe center of mental surface accurately, a new processing method was presented. Through adaptive median filtering, the noise can be preliminary removed, and the noise which introduced by CCD camera and measured environment can be further removed with difference image method. To highlight fine details and enhance the blurred regions between the stripe and noise, the sharping algorithm is used which combine the best features of Laplacian operator and Sobel operator. Morphological opening operation and closing operation are used to compensate the loss of information.Experimental results show that this method is effective in the image processing, not only to restrain the information but also heighten contrast. It is beneficial for the following processing.

  20. Multi-template image matching using alpha-rooted biquaternion phase correlation with application to logo recognition

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2011-06-01

    Hypercomplex approaches are seeing increased application to signal and image processing problems. The use of multicomponent hypercomplex numbers, such as quaternions, enables the simultaneous co-processing of multiple signal or image components. This joint processing capability can provide improved exploitation of the information contained in the data, thereby leading to improved performance in detection and recognition problems. In this paper, we apply hypercomplex processing techniques to the logo image recognition problem. Specifically, we develop an image matcher by generalizing classical phase correlation to the biquaternion case. We further incorporate biquaternion Fourier domain alpha-rooting enhancement to create Alpha-Rooted Biquaternion Phase Correlation (ARBPC). We present the mathematical properties which justify use of ARBPC as an image matcher. We present numerical performance results of a logo verification problem using real-world logo data, demonstrating the performance improvement obtained using the hypercomplex approach. We compare results of the hypercomplex approach to standard multi-template matching approaches.

  1. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  2. Active imaging with the aids of polarization retrieve in turbid media system

    NASA Astrophysics Data System (ADS)

    Tao, Qiangqiang; Sun, Yongxuan; Shen, Fei; Xu, Qiang; Gao, Jun; Guo, Zhongyi

    2016-01-01

    We propose a novel active imaging based on the polarization retrieve (PR) method in turbid media system. In our simulations, the Monte Carlo (MC) algorithm has been used to investigate the scattering process between the incident photons and the scattering particles, and the visually concordant object but with different polarization characteristics in different regions, has been selected as the original target that is placed in the turbid media. Under linearly and circularly polarized illuminations, the simulation results demonstrate that the corresponding polarization properties can provide additional information for the imaging, and the contrast of the polarization image can also be enhanced greatly compared to the simplex intensity image in the turbid media. Besides, the polarization image adjusted by the PR method can further enhance the visibility and contrast. In addition, by PR imaging method, with the increasing particles' size in Mie's scale, the visibility can be enhanced, because of the increased forward scattering effect. In general, in the same circumstance, the circular polarization images can offer a better contrast and visibility than that of linear ones. The results indicate that the PR imaging method is more applicable to the scattering media system with relatively larger particles such as aerosols, heavy fog, cumulus, and seawater, as well as to biological tissues and blood media.

  3. A new method of SC image processing for confluence estimation.

    PubMed

    Soleimani, Sajjad; Mirzaei, Mohsen; Toncu, Dana-Cristina

    2017-10-01

    Stem cells images are a strong instrument in the estimation of confluency during their culturing for therapeutic processes. Various laboratory conditions, such as lighting, cell container support and image acquisition equipment, effect on the image quality, subsequently on the estimation efficiency. This paper describes an efficient image processing method for cell pattern recognition and morphological analysis of images that were affected by uneven background. The proposed algorithm for enhancing the image is based on coupling a novel image denoising method through BM3D filter with an adaptive thresholding technique for improving the uneven background. This algorithm works well to provide a faster, easier, and more reliable method than manual measurement for the confluency assessment of stem cell cultures. The present scheme proves to be valid for the prediction of the confluency and growth of stem cells at early stages for tissue engineering in reparatory clinical surgery. The method used in this paper is capable of processing the image of the cells, which have already contained various defects due to either personnel mishandling or microscope limitations. Therefore, it provides proper information even out of the worst original images available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An Augmented-Reality Edge Enhancement Application for Google Glass

    PubMed Central

    Hwang, Alex D.; Peli, Eli

    2014-01-01

    Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871

  5. Rose-Colored Jupiter

    NASA Image and Video Library

    2018-03-15

    This image captures a close-up view of a storm with bright cloud tops in the northern hemisphere of Jupiter. NASA's Juno spacecraft took this color-enhanced image on Feb. 7 at 5:38 a.m. PST (8:38 a.m. EST) during its 11th close flyby of the gas giant planet. At the time, the spacecraft was 7,578 miles (12,195 kilometers) from the tops of Jupiter's clouds at 49.2 degrees north latitude. Citizen scientist Matt Brealey processed the image using data from the JunoCam imager. Citizen scientist Gustavo B C then adjusted colors and embossed Matt Brealey's processing of this storm. https://photojournal.jpl.nasa.gov/catalog/PIA21981

  6. Temporal subtraction contrast-enhanced dedicated breast CT

    PubMed Central

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-01-01

    Purpose To develop a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. Methods An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, Intensity Difference Adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using Normalized Cross Correlation (NCC), Symmetric Uncertainty Coefficient (SUC), Normalized Mutual Information (NMI), Mean Square Error (MSE) and Target Registration Error (TRE). Results The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE(0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Conclusion Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake. PMID:27494376

  7. Cortical Enhanced Tissue Segmentation of Neonatal Brain MR Images Acquired by a Dedicated Phased Array Coil

    PubMed Central

    Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang

    2010-01-01

    The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268

  8. DSP Implementation of the Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2004-01-01

    The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.

  9. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing.

    PubMed

    Leong, Siow Hoo; Ong, Seng Huat

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.

  10. Fuzzy Matching Based on Gray-scale Difference for Quantum Images

    NASA Astrophysics Data System (ADS)

    Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia

    2018-05-01

    Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.

  11. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing

    PubMed Central

    Leong, Siow Hoo

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634

  12. Application of Neutron Tomography in Culture Heritage research.

    PubMed

    Mongy, T

    2014-02-01

    Neutron Tomography (NT) investigation of Culture Heritages (CH) is an efficient tool for understanding the culture of ancient civilizations. Neutron imaging (NI) is a-state-of-the-art non-destructive tool in the area of CH and plays an important role in the modern archeology. The NI technology can be widely utilized in the field of elemental analysis. At Egypt Second Research Reactor (ETRR-2), a collimated Neutron Radiography (NR) beam is employed for neutron imaging purposes. A digital CCD camera is utilized for recording the beam attenuation in the sample. This helps for the detection of hidden objects and characterization of material properties. Research activity can be extended to use computer software for quantitative neutron measurement. Development of image processing algorithms can be used to obtain high quality images. In this work, full description of ETRR-2 was introduced with up to date neutron imaging system as well. Tomographic investigation of a clay forged artifact represents CH object was studied by neutron imaging methods in order to obtain some hidden information and highlight some attractive quantitative measurements. Computer software was used for imaging processing and enhancement. Also the Astra Image 3.0 Pro software was employed for high precise measurements and imaging enhancement using advanced algorithms. This work increased the effective utilization of the ETRR-2 Neutron Radiography/Tomography (NR/T) technique in Culture Heritages activities. © 2013 Elsevier Ltd. All rights reserved.

  13. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  14. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  15. Quantum image pseudocolor coding based on the density-stratified method

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  16. Integration of High-resolution Data for Temporal Bone Surgical Simulations

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas

    2016-01-01

    Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105

  17. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    NASA Technical Reports Server (NTRS)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  18. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  19. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Son, J; Arun, B

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a singlemore » acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the potential of making breast MRI more widely accessible to and more tolerable by the patients. JMA is the inventor of United States patents that are owned by the University of Texas Board of Regents and currently licensed to GE Healthcare and Siemens Gmbh.« less

  20. A depth enhancement strategy for kinect depth image

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Li, Hua; Han, Cheng; Xue, Yaohong; Zhang, Chao; Hu, Hanping; Jiang, Zhengang

    2018-03-01

    Kinect is a motion sensing input device which is widely used in computer vision and other related fields. However, there are many inaccurate depth data in Kinect depth images even Kinect v2. In this paper, an algorithm is proposed to enhance Kinect v2 depth images. According to the principle of its depth measuring, the foreground and the background are considered separately. As to the background, the holes are filled according to the depth data in the neighborhood. And as to the foreground, a filling algorithm, based on the color image concerning about both space and color information, is proposed. An adaptive joint bilateral filtering method is used to reduce noise. Experimental results show that the processed depth images have clean background and clear edges. The results are better than ones of traditional Strategies. It can be applied in 3D reconstruction fields to pretreat depth image in real time and obtain accurate results.

  1. Computational analysis of Pelton bucket tip erosion using digital image processing

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Gautam, Bijaya; Bajracharya, Tri Ratna

    2008-03-01

    Erosion of hydro turbine components through sand laden river is one of the biggest problems in Himalayas. Even with sediment trapping systems, complete removal of fine sediment from water is impossible and uneconomical; hence most of the turbine components in Himalayan Rivers are exposed to sand laden water and subject to erode. Pelton bucket which are being wildly used in different hydropower generation plant undergoes erosion on the continuous presence of sand particles in water. The subsequent erosion causes increase in splitter thickness, which is supposed to be theoretically zero. This increase in splitter thickness gives rise to back hitting of water followed by decrease in turbine efficiency. This paper describes the process of measurement of sharp edges like bucket tip using digital image processing. Image of each bucket is captured and allowed to run for 72 hours; sand concentration in water hitting the bucket is closely controlled and monitored. Later, the image of the test bucket is taken in the same condition. The process is repeated for 10 times. In this paper digital image processing which encompasses processes that performs image enhancement in both spatial and frequency domain. In addition, the processes that extract attributes from images, up to and including the measurement of splitter's tip. Processing of image has been done in MATLAB 6.5 platform. The result shows that quantitative measurement of edge erosion of sharp edges could accurately be detected and the erosion profile could be generated using image processing technique.

  2. Correlation of contrast-enhanced MR images with the histopathology of minimally invasive thermal and cryoablation cancer treatments in normal dog prostates

    NASA Astrophysics Data System (ADS)

    Bouley, D. M.; Daniel, B.; Butts Pauly, K.; Liu, E.; Kinsey, A.; Nau, W.; Diederich, C. J.; Sommer, G.

    2007-02-01

    Magnetic Resonance Imaging (MRI) is a promising tool for visualizing the delivery of minimally invasive cancer treatments such as high intensity ultrasound (HUS) and cryoablation. We use an acute dog prostate model to correlate lesion histopathology with contrast-enhanced (CE) T1 weighted MR images, to aid the radiologists in real time interpretation of in vivo lesion boundaries and pre-existing lesions. Following thermal or cryo treatments, prostate glands are removed, sliced, stained with the vital dye triphenyl tetrazolium chloride, photographed, fixed and processed in oversized blocks for routine microscopy. Slides are scanned by Trestle Corporation at .32 microns/pixel resolution, the various lesions traced using annotation software, and digital images compared to CE MR images. Histologically, HUS results in discrete lesions characterized by a "heat-fixed" zone, in which glands subjected to the highest temperatures are minimally altered, surrounded by a rim or "transition zone" composed of severely fragmented, necrotic glands, interstitial edema and vascular congestion. The "heat-fixed" zone is non-enhancing on CE MRI while the "transition zone" appears as a bright, enhancing rim. Likewise, the CE MR images for cryo lesions appear similar to thermally induced lesions, yet the histopathology is significantly different. Glands subjected to prolonged freezing appear totally disrupted, coagulated and hemorrhagic, while less intensely frozen glands along the lesion edge are partially fragmented and contain apoptotic cells. In conclusion, thermal and cryo-induced lesions, as well as certain pre-existing lesions (cystic hyperplasia - non-enhancing, chronic prostatitis - enhancing) have particular MRI profiles, useful for treatment and diagnostic purposes.

  3. Relative Harmony: Achieving Balance in Your Brand Family

    ERIC Educational Resources Information Center

    Collins, Mary Ellen

    2011-01-01

    Educational institutions understand the importance of having a positive image among their target audiences, but the process of creating, enhancing, and managing that image remains challenging to many. Confusion over what branding is only adds to the challenge. Consultants define "brand" as promising an experience and delivering on that…

  4. Higher-Order Optical Modes and Nanostructures for Detection and Imaging Applications

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Levin, Ira W.

    2010-08-01

    Raman spectroscopy offers a label-free, chemically specific, method of detecting molecules; however, the low cross-section attendant to this scattering process has hampered trace detection. The realization that scattering is enhanced at a metallic surface has enabled new techniques for spectroscopic and imaging analysis.

  5. Research in remote sensing of agriculture, earth resources, and man's environment

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1975-01-01

    Progress is reported for several projects involving the utilization of LANDSAT remote sensing capabilities. Areas under study include crop inventory, crop identification, crop yield prediction, forest resources evaluation, land resources evaluation and soil classification. Numerical methods for image processing are discussed, particularly those for image enhancement and analysis.

  6. A learning tool for optical and microwave satellite image processing and analysis

    NASA Astrophysics Data System (ADS)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  7. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service

    PubMed Central

    Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha

    2017-01-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy, and nearly a six-fold improvement over a commonly available network file system (NFS) approach even for relatively small file sets. Moreover, file access latency is lower than network attached storage. PMID:28884169

  8. Targeted and untargeted-metabolite profiling to track the compositional integrity of ginger during processing using digitally-enhanced HPTLC pattern recognition analysis.

    PubMed

    Ibrahim, Reham S; Fathy, Hoda

    2018-03-30

    Tracking the impact of commonly applied post-harvesting and industrial processing practices on the compositional integrity of ginger rhizome was implemented in this work. Untargeted metabolite profiling was performed using digitally-enhanced HPTLC method where the chromatographic fingerprints were extracted using ImageJ software then analysed with multivariate Principal Component Analysis (PCA) for pattern recognition. A targeted approach was applied using a new, validated, simple and fast HPTLC image analysis method for simultaneous quantification of the officially recognized markers 6-, 8-, 10-gingerol and 6-shogaol in conjunction with chemometric Hierarchical Clustering Analysis (HCA). The results of both targeted and untargeted metabolite profiling revealed that peeling, drying in addition to storage employed during processing have a great influence on ginger chemo-profile, the different forms of processed ginger shouldn't be used interchangeably. Moreover, it deemed necessary to consider the holistic metabolic profile for comprehensive evaluation of ginger during processing. Copyright © 2018. Published by Elsevier B.V.

  9. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  10. Resolution enhancement in integral microscopy by physical interpolation.

    PubMed

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-08-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens.

  11. Resolution enhancement in integral microscopy by physical interpolation

    PubMed Central

    Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

    2015-01-01

    Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens. PMID:26309749

  12. Patterned mask inspection technology with Projection Electron Microscope (PEM) technique for 11 nm half-pitch (hp) generation EUV masks

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Yoshikawa, Shoji; Suematsu, Kenichi; Terao, Kenji

    2015-07-01

    High-sensitivity EUV mask pattern defect detection is one of the major issues in order to realize the device fabrication by using the EUV lithography. We have already designed a novel Projection Electron Microscope (PEM) optics that has been integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code), and which seems to be quite promising for 16 nm hp generation EUVL Patterned mask Inspection (PI). Defect inspection sensitivity was evaluated by capturing an electron image generated at the mask by focusing onto an image sensor. The progress of the novel PEM optics performance is not only about making an image sensor with higher resolution but also about doing a better image processing to enhance the defect signal. In this paper, we describe the experimental results of EUV patterned mask inspection using the above-mentioned system. The performance of the system is measured in terms of defect detectability for 11 nm hp generation EUV mask. To improve the inspection throughput for 11 nm hp generation defect detection, it would require a data processing rate of greater than 1.5 Giga- Pixel-Per-Second (GPPS) that would realize less than eight hours of inspection time including the step-and-scan motion associated with the process. The aims of the development program are to attain a higher throughput, and enhance the defect detection sensitivity by using an adequate pixel size with sophisticated image processing resulting in a higher processing rate.

  13. A Rare Case of Malignant Melanoma of the Mandible: 
CT and MRI Findings.

    PubMed

    Ogura, Ichiro; Sasaki, Yoshihiko; Kameta, Ayako; Sue, Mikiko; Oda, Takaaki

    Malignant melanoma of the mandibular gingiva is extremely rare. It is a malignant tumour of melanocytes or their precursor cells, and often misinterpreted as a benign pigmented process. A few reports have described computed tomography (CT) and magnetic resonance imaging (MRI) findings of malignant melanoma in the oral cavity. We report a rare case of malignant melanoma of the mandible and the related CT and MRI findings. Soft tissue algorithm contrast-enhanced CT showed an expansile mass and irregular destruction of alveolar bone in the right side of the mandibular molar area. MR images showed an enhancing mass and the tumour had a low to intermediate signal intensity and a high-signal intensity. Soft tissue algorithm contrast-enhanced CT and MR images showed lymphadenopathy involving the submandibular lymph nodes. Histopathological examination confirmed the diagnosis of malignant melanoma.

  14. Physics of fractional imaging in biomedicine.

    PubMed

    Sohail, Ayesha; Bég, O A; Li, Zhiwu; Celik, Sebahattin

    2018-03-12

    The mathematics of imaging is a growing field of research and is evolving rapidly parallel to evolution in the field of imaging. Imaging, which is a sub-field of biomedical engineering, considers novel approaches to visualize biological tissues with the general goal of improving health. "Medical imaging research provides improved diagnostic tools in clinical settings and supports the development of drugs and other therapies. The data acquisition and diagnostic interpretation with minimum error are the important technical aspects of medical imaging. The image quality and resolution are really important in portraying the internal aspects of patient's body. Although there are several user friendly resources for processing image features, such as enhancement, colour manipulation and compression, the development of new processing methods is still worthy of efforts. In this article we aim to present the role of fractional calculus in imaging with the aid of practical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  16. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging

    PubMed Central

    Gaffney, K.; Cookson, J.; Blades, S.; Coumbe, A.; Blake, D.

    1998-01-01

    OBJECTIVE—To examine the relation between rate of synovial membrane enhancement, intra-articular pressure (IAP), and histologically determined synovial vascularity in rheumatoid arthritis, using gadolinium-DTPA enhanced magnetic resonance imaging (MRI).
METHODS—Dynamic gadolinium-DTPA enhanced MRI was performed in 31 patients with knee synovitis (10 patients IAP study, 21 patients vascular morphometry study). Rate of synovial membrane enhancement was quantified by line profile analysis using the image processing package ANALYZE. IAP was measured using an intra-compartmental pressure monitor system. Multiple synovial biopsy specimens were obtained by a blind biopsy technique. Blood vessels were identified immunohistochemically using the endothelial cell marker QBend30 and quantified (blood vessel numerical density and fractional area).
RESULTS—Median blood vessel numerical density and fractional area were 77.5/mm2 (IQR; 69.3-110.7) and 5.6% (IQR; 3.4-8.5) respectively. The rate of synovial membrane enhancement (median 2.74 signal intensity units/s, IQR 2.0-3.8) correlated with both blood vessel numerical density (r = 0.46, p < 0.05) and blood vessel fractional area (r = 0.55, p < 0.02). IAP did not influence the rate of enhancement.
CONCLUSIONS—Gadolinium-DTPA enhanced MRI may prove to be a valuable technique for evaluating drugs that influence angiogenesis.

 Keywords: magnetic resonance imaging; rheumatoid arthritis; synovitis; vascularity PMID:9640130

  17. Investigation of self-adaptive LED surgical lighting based on entropy contrast enhancing method

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Huihui; Zhang, Yaqin; Shen, Junfei; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-05-01

    Investigation was performed to explore the possibility of enhancing contrast by varying the spectral distribution (SPD) of the surgical lighting. The illumination scenes with different SPDs were generated by the combination of a self-adaptive white light optimization method and the LED ceiling system, the images of biological sample are taken by a CCD camera and then processed by an 'Entropy' based contrast evaluation model which is proposed specific for surgery occasion. Compared with the neutral white LED based and traditional algorithm based image enhancing methods, the illumination based enhancing method turns out a better performance in contrast enhancing and improves the average contrast value about 9% and 6%, respectively. This low cost method is simple, practicable, and thus may provide an alternative solution for the expensive visual facility medical instruments.

  18. Regionally adaptive histogram equalization of the chest.

    PubMed

    Sherrier, R H; Johnson, G A

    1987-01-01

    Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.

  19. Observations on the effects of image processing functions on fingermark data in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Bramble, Simon K.; Fabrizi, Paola M.

    1995-09-01

    One of the image processing functions used for the enhancement of laten fingermark images is the Fourier transform. This paper describes some effects of spatial resolution, zero-filling and windowing on fingermark data in the Fourier domain. It is shown that with an understanding of the fingermark structure it is possible to determine the approximate prosition of the frequency data in the Fourier domain corresponding to the fingermark image detail. The effect of attenuation of frequency data on a zero-filled image is shown to be different to the same attenuation on a non-zero-filled image. The effects of windowing spatial data on the frequency data are also highlighted and compared with the same data after the application of a Hanning window.

  20. Modular Scanning Confocal Microscope with Digital Image Processing

    PubMed Central

    McCluskey, Matthew D.

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052

  1. Document Examination: Applications of Image Processing Systems.

    PubMed

    Kopainsky, B

    1989-12-01

    Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.

  2. Using superconducting undulator for enhanced imaging capabilities of MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yampolsky, Nikolai

    MaRIE x-ray free electron laser (FEL) is envisioned to deliver a burst of closely spaced in time pulses for enabling the capability of studying the dynamic processes in a sample. MaRIE capability can be largely enhanced using the superconducting undulator, which has the capability of doubling its period. This technology will allow reaching the photon energy as low as ~200-500 eV. As a result, the MaRIE facility will have a broader photon energy range enabling a larger variety of experiments. The soft x-ray capability is more likely to achieve the 3D imaging of dynamic processes in noncrystal materials than themore » hard x-ray capability alone.« less

  3. How color enhances visual memory for natural scenes.

    PubMed

    Spence, Ian; Wong, Patrick; Rusan, Maria; Rastegar, Naghmeh

    2006-01-01

    We offer a framework for understanding how color operates to improve visual memory for images of the natural environment, and we present an extensive data set that quantifies the contribution of color in the encoding and recognition phases. Using a continuous recognition task with colored and monochrome gray-scale images of natural scenes at short exposure durations, we found that color enhances recognition memory by conferring an advantage during encoding and by strengthening the encoding-specificity effect. Furthermore, because the pattern of performance was similar at all exposure durations, and because form and color are processed in different areas of cortex, the results imply that color must be bound as an integral part of the representation at the earliest stages of processing.

  4. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  5. Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.

    2018-04-01

    Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.

  6. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  7. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  8. A micropixelated ion-imaging detector for mass resolution enhancement of a QMS instrument.

    PubMed

    Syed, Sarfaraz U A H; Eijkel, Gert B; Maher, Simon; Kistemaker, Piet; Taylor, Stephen; Heeren, Ron M A

    2015-03-01

    An in-vacuum position-sensitive micropixelated detector (Timepix) is used to investigate the time-dependent spatial distribution of different charge state (and hence different mass-to-charge (m/z)) ions exiting an electrospray ionization (ESI)-based quadrupole mass spectrometer (QMS) instrument. Ion images obtained from the Timepix detector provide a detailed insight into the positions of stable and unstable ions of the mass peak as they exit the QMS. With the help of image processing algorithms and by selecting areas on the ion images where more stable ions impact the detector, an improvement in mass resolution by a factor of 5 was obtained for certain operating conditions. Moreover, our experimental approach of mass resolution enhancement was confirmed by in-house-developed novel QMS instrument simulation software. Utilizing the imaging-based mass resolution enhancement approach, the software predicts instrument mass resolution of ∼1,0000 for a single-filter QMS instrument with a 210-mm long mass filter and a low operating frequency (880 kHz) of the radio frequency (RF) voltage.

  9. Research on autonomous identification of airport targets based on Gabor filtering and Radon transform

    NASA Astrophysics Data System (ADS)

    Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei

    2017-11-01

    Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.

  10. Awake, Offline Processing during Associative Learning

    PubMed Central

    Nestor, Adrian; Tarr, Michael J.; Creswell, J. David

    2016-01-01

    Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations. PMID:27119345

  11. Awake, Offline Processing during Associative Learning.

    PubMed

    Bursley, James K; Nestor, Adrian; Tarr, Michael J; Creswell, J David

    2016-01-01

    Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.

  12. Mars Orbiter Camera Views the 'Face on Mars' - Calibrated, contrast enhanced, filtered,

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.

    The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long. Processing Image processing has been applied to the images in order to improve the visibility of features. This processing included the following steps:

    The image was processed to remove the sensitivity differences between adjacent picture elements (calibrated). This removes the vertical streaking.

    The contrast and brightness of the image was adjusted, and 'filters' were applied to enhance detail at several scales.

    The image was then geometrically warped to meet the computed position information for a mercator-type map. This corrected for the left-right flip, and the non-vertical viewing angle (about 45o from vertical), but also introduced some vertical 'elongation' of the image for the same reason Greenland looks larger than Africa on a mercator map of the Earth.

    A section of the image, containing the 'Face' and a couple of nearly impact craters and hills, was 'cut' out of the full image and reproduced separately.

    See PIA01440-1442 for additional processing steps. Also see PIA01236 for the raw image.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  13. Mars Orbiter Camera Views the 'Face on Mars' - Calibrated, contrast enhanced, filtered

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.

    The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long. Processing Image processing has been applied to the images in order to improve the visibility of features. This processing included the following steps:

    The image was processed to remove the sensitivity differences between adjacent picture elements (calibrated). This removes the vertical streaking.

    The contrast and brightness of the image was adjusted, and 'filters' were applied to enhance detail at several scales.

    The image was then geometrically warped to meet the computed position information for a mercator-type map. This corrected for the left-right flip, and the non-vertical viewing angle (about 45o from vertical), but also introduced some vertical 'elongation' of the image for the same reason Greenland looks larger than Africa on a mercator map of the Earth.

    A section of the image, containing the 'Face' and a couple of nearly impact craters and hills, was 'cut' out of the full image and reproduced separately.

    See PIA01441-1442 for additional processing steps. Also see PIA01236 for the raw image.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  14. Acoustical holographic recording with coherent optical read-out and image processing

    NASA Astrophysics Data System (ADS)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  15. AFM feature definition for neural cells on nanofibrillar tissue scaffolds.

    PubMed

    Tiryaki, Volkan M; Khan, Adeel A; Ayres, Virginia M

    2012-01-01

    A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low-frequency component suppression enhances feature definition is shown to be correct and to lead to clear-featured images that could change previously held assumptions about the cell-cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. © Wiley Periodicals, Inc.

  16. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  18. Imaging angiogenesis.

    PubMed

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  19. LANDSAT-4 image data quality analysis for energy related applications. [nuclear power plant sites

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E. (Principal Investigator)

    1983-01-01

    No useable LANDSAT 4 TM data were obtained for the Hanford site in the Columbia Plateau region, but TM simulator data for a Virginia Electric Company nuclear power plant was used to test image processing algorithms. Principal component analyses of this data set clearly indicated that thermal plumes in surface waters used for reactor cooling would be discrenible. Image processing and analysis programs were successfully testing using the 7 band Arkansas test scene and preliminary analysis of TM data for the Savanah River Plant shows that current interactive, image enhancement, analysis and integration techniques can be effectively used for LANDSAT 4 data. Thermal band data appear adequate for gross estimates of thermal changes occurring near operating nuclear facilities especially in surface water bodies being used for reactor cooling purposes. Additional image processing software was written and tested which provides for more rapid and effective analysis of the 7 band TM data.

  20. [Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram].

    PubMed

    Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat

    2015-06-01

    Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.

  1. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  2. Statistical Techniques for Efficient Indexing and Retrieval of Document Images

    ERIC Educational Resources Information Center

    Bhardwaj, Anurag

    2010-01-01

    We have developed statistical techniques to improve the performance of document image search systems where the intermediate step of OCR based transcription is not used. Previous research in this area has largely focused on challenges pertaining to generation of small lexicons for processing handwritten documents and enhancement of poor quality…

  3. Sharp-Focus Composite Microscope Imaging by Computer

    NASA Technical Reports Server (NTRS)

    Wall, R. J.

    1983-01-01

    Enhanced depth of focus aids medical analysis. Computer image-processing system synthesizes sharply-focused composite picture from series of photomicrographs of same object taken at different depths. Computer rejects blured parts of each photomicrograph. Remaining in focus portions form focused composite. System used to study alveolar lung tissue and has applications in medicine and physical sciences.

  4. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  5. Autonomous control systems: applications to remote sensing and image processing

    NASA Astrophysics Data System (ADS)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  6. A Robust and Fast Computation Touchless Palm Print Recognition System Using LHEAT and the IFkNCN Classifier

    PubMed Central

    Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar

    2015-01-01

    Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861

  7. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  8. Improving waveform inversion using modified interferometric imaging condition

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2017-12-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  9. Improving waveform inversion using modified interferometric imaging condition

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  10. Engineering workstation: Sensor modeling

    NASA Technical Reports Server (NTRS)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  11. Computing the scatter component of mammographic images.

    PubMed

    Highnam, R P; Brady, J M; Shepstone, B J

    1994-01-01

    The authors build upon a technical report (Tech. Report OUEL 2009/93, Engng. Sci., Oxford Uni., Oxford, UK, 1993) in which they proposed a model of the mammographic imaging process for which scattered radiation is a key degrading factor. Here, the authors propose a way of estimating the scatter component of the signal at any pixel within a mammographic image, and they use this estimate for model-based image enhancement. The first step is to extend the authors' previous model to divide breast tissue into "interesting" (fibrous/glandular/cancerous) tissue and fat. The scatter model is then based on the idea that the amount of scattered radiation reaching a point is related to the energy imparted to the surrounding neighbourhood. This complex relationship is approximated using published empirical data, and it varies with the size of the breast being imaged. The approximation is further complicated by needing to take account of extra-focal radiation and breast edge effects. The approximation takes the form of a weighting mask which is convolved with the total signal (primary and scatter) to give a value which is input to a "scatter function", approximated using three reference cases, and which returns a scatter estimate. Given a scatter estimate, the more important primary component can be calculated and used to create an image recognizable by a radiologist. The images resulting from this process are clearly enhanced, and model verification tests based on an estimate of the thickness of interesting tissue present proved to be very successful. A good scatter model opens the was for further processing to remove the effects of other degrading factors, such as beam hardening.

  12. New method for detection of gastric cancer by hyperspectral imaging: a pilot study

    NASA Astrophysics Data System (ADS)

    Kiyotoki, Shu; Nishikawa, Jun; Okamoto, Takeshi; Hamabe, Kouichi; Saito, Mari; Goto, Atsushi; Fujita, Yusuke; Hamamoto, Yoshihiko; Takeuchi, Yusuke; Satori, Shin; Sakaida, Isao

    2013-02-01

    We developed a new, easy, and objective method to detect gastric cancer using hyperspectral imaging (HSI) technology combining spectroscopy and imaging A total of 16 gastroduodenal tumors removed by endoscopic resection or surgery from 14 patients at Yamaguchi University Hospital, Japan, were recorded using a hyperspectral camera (HSC) equipped with HSI technology Corrected spectral reflectance was obtained from 10 samples of normal mucosa and 10 samples of tumors for each case The 16 cases were divided into eight training cases (160 training samples) and eight test cases (160 test samples) We established a diagnostic algorithm with training samples and evaluated it with test samples Diagnostic capability of the algorithm for each tumor was validated, and enhancement of tumors by image processing using the HSC was evaluated The diagnostic algorithm used the 726-nm wavelength, with a cutoff point established from training samples The sensitivity, specificity, and accuracy rates of the algorithm's diagnostic capability in the test samples were 78.8% (63/80), 92.5% (74/80), and 85.6% (137/160), respectively Tumors in HSC images of 13 (81.3%) cases were well enhanced by image processing Differences in spectral reflectance between tumors and normal mucosa suggested that tumors can be clearly distinguished from background mucosa with HSI technology.

  13. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.

    PubMed

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-06-13

    The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.

  14. Re-engineering the process of medical imaging physics and technology education and training.

    PubMed

    Sprawls, Perry

    2005-09-01

    The extensive availability of digital technology provides an opportunity for enhancing both the effectiveness and efficiency of virtually all functions in the process of medical imaging physics and technology education and training. This includes degree granting academic programs within institutions and a wide spectrum of continuing education lifelong learning activities. Full achievement of the advantages of technology-enhanced education (e-learning, etc.) requires an analysis of specific educational activities with respect to desired outcomes and learning objectives. This is followed by the development of strategies and resources that are based on established educational principles. The impact of contemporary technology comes from its ability to place learners into enriched learning environments. The full advantage of a re-engineered and implemented educational process involves changing attitudes and functions of learning facilitators (teachers) and resource allocation and sharing both within and among institutions.

  15. Principles of computer processing of Landsat data for geologic applications

    USGS Publications Warehouse

    Taranik, James V.

    1978-01-01

    The main objectives of computer processing of Landsat data for geologic applications are to improve display of image data to the analyst or to facilitate evaluation of the multispectral characteristics of the data. Interpretations of the data are made from enhanced and classified data by an analyst trained in geology. Image enhancements involve adjustments of brightness values for individual picture elements. Image classification involves determination of the brightness values of picture elements for a particular cover type. Histograms are used to display the range and frequency of occurrence of brightness values. Landsat-1 and -2 data are preprocessed at Goddard Space Flight Center (GSFC) to adjust for the detector response of the multispectral scanner (MSS). Adjustments are applied to minimize the effects of striping, adjust for bad-data lines and line segments and lost individual pixel data. Because illumination conditions and landscape characteristics vary considerably and detector response changes with time, the radiometric adjustments applied at GSFC are seldom perfect and some detector striping remain in Landsat data. Rotation of the Earth under the satellite and movements of the satellite platform introduce geometric distortions in the data that must also be compensated for if image data are to be correctly displayed to the data analyst. Adjustments to Landsat data are made to compensate for variable solar illumination and for atmospheric effects. GeoMetric registration of Landsat data involves determination of the spatial location of a pixel in. the output image and the determination of a new value for the pixel. The general objective of image enhancement is to optimize display of the data to the analyst. Contrast enhancements are employed to expand the range of brightness values in Landsat data so that the data can be efficiently recorded in a manner desired by the analyst. Spatial frequency enhancements are designed to enhance boundaries between features which have subtle differences in brightness values. Ratioing tends to reduce the effects due to topography and it tends to emphasize changes in brightness values between two Landsat bands. Simulated natural color is produced for geologists so that the colors of materials on images appear similar to colors of actual materials in the field. Image classification of Landsat data involves both machine assisted delineation of multispectral patterns in four-dimensional spectral space and identification of machine delineated multispectral patterns that represent particular cover conditions. The geological information derived from an analysis of a multispectral classification is usually related to lithology.

  16. Image processing can cause some malignant soft-tissue lesions to be missed in digital mammography images.

    PubMed

    Warren, L M; Halling-Brown, M D; Looney, P T; Dance, D R; Wallis, M G; Given-Wilson, R M; Wilkinson, L; McAvinchey, R; Young, K C

    2017-09-01

    To investigate the effect of image processing on cancer detection in mammography. An observer study was performed using 349 digital mammography images of women with normal breasts, calcification clusters, or soft-tissue lesions including 191 subtle cancers. Images underwent two types of processing: FlavourA (standard) and FlavourB (added enhancement). Six observers located features in the breast they suspected to be cancerous (4,188 observations). Data were analysed using jackknife alternative free-response receiver operating characteristic (JAFROC) analysis. Characteristics of the cancers detected with each image processing type were investigated. For calcifications, the JAFROC figure of merit (FOM) was equal to 0.86 for both types of image processing. For soft-tissue lesions, the JAFROC FOM were better for FlavourA (0.81) than FlavourB (0.78); this difference was significant (p=0.001). Using FlavourA a greater number of cancers of all grades and sizes were detected than with FlavourB. FlavourA improved soft-tissue lesion detection in denser breasts (p=0.04 when volumetric density was over 7.5%) CONCLUSIONS: The detection of malignant soft-tissue lesions (which were primarily invasive) was significantly better with FlavourA than FlavourB image processing. This is despite FlavourB having a higher contrast appearance often preferred by radiologists. It is important that clinical choice of image processing is based on objective measures. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation of MR scanning, image registration, and image processing methods to visualize cortical veins for neurosurgery

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; Rutten, G. J. M.; Willems, Peter W. A.; Viergever, Max A.

    2000-04-01

    The visualization of brain vessels on the cortex helps the neurosurgeon in two ways: to avoid blood vessels when specifying the trepanation entry, and to overcome errors in the surgical navigation system due to brain shift. We compared 3D T1, MR, 3D T1 MR with gadolinium contrast, MR venography as scanning techniques, mutual information as registration technique, and thresholding and multi-vessel enhancement as image processing techniques. We evaluated the volume rendered results based on their quality and correspondence with photos took during surgery. It appears that with 3D T1 MR scans, gadolinium is required to show cortical veins. The visibility of small cortical veins is strongly enhanced by subtracting a 3D T1 MR baseline scan, which should be registered to the scan with gadolinium contrast, even when the scans are made during the same session. Multi-vessel enhancement helps to clarify the view on small vessels by reducing noise level, but strikingly does not reveal more. MR venography does show intracerebral veins with high detail, but is, as is, unsuited to show cortical veins due to the low contrast with CSF.

  18. A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising.

    PubMed

    Khan, Khan Bahadar; Khaliq, Amir A; Jalil, Abdul; Shahid, Muhammad

    2018-01-01

    The exploration of retinal vessel structure is colossally important on account of numerous diseases including stroke, Diabetic Retinopathy (DR) and coronary heart diseases, which can damage the retinal vessel structure. The retinal vascular network is very hard to be extracted due to its spreading and diminishing geometry and contrast variation in an image. The proposed technique consists of unique parallel processes for denoising and extraction of blood vessels in retinal images. In the preprocessing section, an adaptive histogram equalization enhances dissimilarity between the vessels and the background and morphological top-hat filters are employed to eliminate macula and optic disc, etc. To remove local noise, the difference of images is computed from the top-hat filtered image and the high-boost filtered image. Frangi filter is applied at multi scale for the enhancement of vessels possessing diverse widths. Segmentation is performed by using improved Otsu thresholding on the high-boost filtered image and Frangi's enhanced image, separately. In the postprocessing steps, a Vessel Location Map (VLM) is extracted by using raster to vector transformation. Postprocessing steps are employed in a novel way to reject misclassified vessel pixels. The final segmented image is obtained by using pixel-by-pixel AND operation between VLM and Frangi output image. The method has been rigorously analyzed on the STARE, DRIVE and HRF datasets.

  19. Enhancing English Learners' Language Development Using Wordless Picture Books

    ERIC Educational Resources Information Center

    Louie, Belinda; Sierschynski, Jarek

    2015-01-01

    This article presents an approach to use wordless picture books to enhance the language development of English language learners. This approach is grounded in best practices to teach ELLs. The process starts with viewing and analyzing the visual images, engaging ELLs in discussion, and ending with students' self-authored texts. The wordless…

  20. A Comparison of the Use of Text Summaries, Plain Thumbnails, and Enhanced Thumbnails for Web Search Tasks.

    ERIC Educational Resources Information Center

    Woodruff, Allison; Rosenholtz, Ruth; Morrison, Julie B.; Faulring, Andrew; Pirolli, Peter

    2002-01-01

    Discussion of Web search strategies focuses on a comparative study of textual and graphical summarization mechanisms applied to search engine results. Suggests that thumbnail images (graphical summaries) can increase efficiency in processing results, and that enhanced thumbnails (augmented with readable textual elements) had more consistent…

  1. Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process.

    PubMed

    Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok

    2017-01-13

    We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760.

  2. An Approach to Improve the Quality of Infrared Images of Vein-Patterns

    PubMed Central

    Lin, Chih-Lung

    2011-01-01

    This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images. PMID:22247674

  3. An approach to improve the quality of infrared images of vein-patterns.

    PubMed

    Lin, Chih-Lung

    2011-01-01

    This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images.

  4. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    PubMed

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Image enhancement using the hypothesis selection filter: theory and application to JPEG decoding.

    PubMed

    Wong, Tak-Shing; Bouman, Charles A; Pollak, Ilya

    2013-03-01

    We introduce the hypothesis selection filter (HSF) as a new approach for image quality enhancement. We assume that a set of filters has been selected a priori to improve the quality of a distorted image containing regions with different characteristics. At each pixel, HSF uses a locally computed feature vector to predict the relative performance of the filters in estimating the corresponding pixel intensity in the original undistorted image. The prediction result then determines the proportion of each filter used to obtain the final processed output. In this way, the HSF serves as a framework for combining the outputs of a number of different user selected filters, each best suited for a different region of an image. We formulate our scheme in a probabilistic framework where the HSF output is obtained as the Bayesian minimum mean square error estimate of the original image. Maximum likelihood estimates of the model parameters are determined from an offline fully unsupervised training procedure that is derived from the expectation-maximization algorithm. To illustrate how to apply the HSF and to demonstrate its potential, we apply our scheme as a post-processing step to improve the decoding quality of JPEG-encoded document images. The scheme consistently improves the quality of the decoded image over a variety of image content with different characteristics. We show that our scheme results in quantitative improvements over several other state-of-the-art JPEG decoding methods.

  6. Spatial super-resolution of colored images by micro mirrors

    NASA Astrophysics Data System (ADS)

    Dahan, Daniel; Yaacobi, Ami; Pinsky, Ephraim; Zalevsky, Zeev

    2018-06-01

    In this paper, we present two methods of dealing with the geometric resolution limit of color imaging sensors. It is possible to overcome the pixel size limit by adding a digital micro-mirror device component on the intermediate image plane of an optical system, and adapting its pattern in a computerized manner before sampling each frame. The full RGB image can be reconstructed from the Bayer camera by building a dedicated optical design, or by adjusting the demosaicing process to the special format of the enhanced image.

  7. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  8. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  9. Pathfinder on Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner Rover deploys the -proton x-ray spectrometer onto the rock named Moe within the rock garden in this 75- image, color-enhanced mosaic taken by the imager on the lander. (Image of the rover in the rock garden was taken on a different day than the terrain image.) The view is to the southwest, with the Carl Sagan Memorial Station in the foreground and South Twin Peak on the horizon about 1 km from the lander. [Image processed at Jet Propulsion Laboratory, Pasadena, CA]

    NOTE: original caption as published in Science Magazine

  10. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  11. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.

    PubMed Central

    Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B

    1995-01-01

    The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258

  12. SU-F-P-06: Moving From Computed Radiography to Digital Radiography: A Collaborative Approach to Improve Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, D; Mlady, G; Selwyn, R

    Purpose: To bring together radiologists, technologists, and physicists to utilize post-processing techniques in digital radiography (DR) in order to optimize image acquisition and improve image quality. Methods: Sub-optimal images acquired on a new General Electric (GE) DR system were flagged for follow-up by radiologists and reviewed by technologists and medical physicists. Various exam types from adult musculoskeletal (n=35), adult chest (n=4), and pediatric (n=7) were chosen for review. 673 total images were reviewed. These images were processed using five customized algorithms provided by GE. An image score sheet was created allowing the radiologist to assign a numeric score to eachmore » of the processed images, this allowed for objective comparison to the original images. Each image was scored based on seven properties: 1) overall image look, 2) soft tissue contrast, 3) high contrast, 4) latitude, 5) tissue equalization, 6) edge enhancement, 7) visualization of structures. Additional space allowed for additional comments not captured in scoring categories. Radiologists scored the images from 1 – 10 with 1 being non-diagnostic quality and 10 being superior diagnostic quality. Scores for each custom algorithm for each image set were summed. The algorithm with the highest score for each image set was then set as the default processing. Results: Images placed into the PACS “QC folder” for image processing reasons decreased. Feedback from radiologists was, overall, that image quality for these studies had improved. All default processing for these image types was changed to the new algorithm. Conclusion: This work is an example of the collaboration between radiologists, technologists, and physicists at the University of New Mexico to add value to the radiology department. The significant amount of work required to prepare the processing algorithms, reprocessing and scoring of the images was eagerly taken on by all team members in order to produce better quality images and improve patient care.« less

  13. Comparative study of protoporphyrin IX fluorescence image enhancement methods to improve an optical imaging system for oral cancer detection

    NASA Astrophysics Data System (ADS)

    Jiang, Ching-Fen; Wang, Chih-Yu; Chiang, Chun-Ping

    2011-07-01

    Optoelectronics techniques to induce protoporphyrin IX fluorescence with topically applied 5-aminolevulinic acid on the oral mucosa have been developed to noninvasively detect oral cancer. Fluorescence imaging enables wide-area screening for oral premalignancy, but the lack of an adequate fluorescence enhancement method restricts the clinical imaging application of these techniques. This study aimed to develop a reliable fluorescence enhancement method to improve PpIX fluorescence imaging systems for oral cancer detection. Three contrast features, red-green-blue reflectance difference, R/B ratio, and R/G ratio, were developed first based on the optical properties of the fluorescence images. A comparative study was then carried out with one negative control and four biopsy confirmed clinical cases to validate the optimal image processing method for the detection of the distribution of malignancy. The results showed the superiority of the R/G ratio in terms of yielding a better contrast between normal and neoplastic tissue, and this method was less prone to errors in detection. Quantitative comparison with the clinical diagnoses in the four neoplastic cases showed that the regions of premalignancy obtained using the proposed method accorded with the expert's determination, suggesting the potential clinical application of this method for the detection of oral cancer.

  14. Improving the recognition of fingerprint biometric system using enhanced image fusion

    NASA Astrophysics Data System (ADS)

    Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma

    2010-04-01

    Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.

  15. Pc-Based Floating Point Imaging Workstation

    NASA Astrophysics Data System (ADS)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  16. Online image classification under monotonic decision boundary constraint

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Allebach, Jan; Wagner, Jerry; Pitta, Brandi; Larson, David; Guo, Yandong

    2015-01-01

    Image classification is a prerequisite for copy quality enhancement in all-in-one (AIO) device that comprises a printer and scanner, and which can be used to scan, copy and print. Different processing pipelines are provided in an AIO printer. Each of the processing pipelines is designed specifically for one type of input image to achieve the optimal output image quality. A typical approach to this problem is to apply Support Vector Machine to classify the input image and feed it to its corresponding processing pipeline. The online training SVM can help users to improve the performance of classification as input images accumulate. At the same time, we want to make quick decision on the input image to speed up the classification which means sometimes the AIO device does not need to scan the entire image to make a final decision. These two constraints, online SVM and quick decision, raise questions regarding: 1) what features are suitable for classification; 2) how we should control the decision boundary in online SVM training. This paper will discuss the compatibility of online SVM and quick decision capability.

  17. Atmospheric and Oceanographic Information Processing System (AOIPS) system description

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Billingsley, J. B.; Quann, J. J.

    1977-01-01

    The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future.

  18. Miss-distance indicator for tank main guns

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan A.; Hillis, David B.

    1996-06-01

    Tank main gun systems must possess extremely high levels of accuracy to perform successfully in battle. Under some circumstances, the first round fired in an engagement may miss the intended target, and it becomes necessary to rapidly correct fire. A breadboard automatic miss-distance indicator system was previously developed to assist in this process. The system, which would be mounted on a 'wingman' tank, consists of a charged-coupled device (CCD) camera and computer-based image-processing system, coupled with a separate infrared sensor to detect muzzle flash. For the system to be successfully employed with current generation tanks, it must be reliable, be relatively low cost, and respond rapidly maintaining current firing rates. Recently, the original indicator system was developed further in an effort to assist in achieving these goals. Efforts have focused primarily upon enhanced image-processing algorithms, both to improve system reliability and to reduce processing requirements. Intelligent application of newly refined trajectory models has permitted examination of reduced areas of interest and enhanced rejection of false alarms, significantly improving system performance.

  19. Recent developments at JPL in the application of digital image processing techniques to astronomical images

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Lynn, D. J.; Benton, W. D.

    1976-01-01

    Several techniques of a digital image-processing nature are illustrated which have proved useful in visual analysis of astronomical pictorial data. Processed digital scans of photographic plates of Stephans Quintet and NGC 4151 are used as examples to show how faint nebulosity is enhanced by high-pass filtering, how foreground stars are suppressed by linear interpolation, and how relative color differences between two images recorded on plates with different spectral sensitivities can be revealed by generating ratio images. Analyses are outlined which are intended to compensate partially for the blurring effects of the atmosphere on images of Stephans Quintet and to obtain more detailed information about Saturn's ring structure from low- and high-resolution scans of the planet and its ring system. The employment of a correlation picture to determine the tilt angle of an average spectral line in a low-quality spectrum is demonstrated for a section of the spectrum of Uranus.

  20. Processing Infrared Images For Fire Management Applications

    NASA Astrophysics Data System (ADS)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  1. Bio-inspired color image enhancement

    NASA Astrophysics Data System (ADS)

    Meylan, Laurence; Susstrunk, Sabine

    2004-06-01

    Capturing and rendering an image that fulfills the observer's expectations is a difficult task. This is due to the fact that the signal reaching the eye is processed by a complex mechanism before forming a percept, whereas a capturing device only retains the physical value of light intensities. It is especially difficult to render complex scenes with highly varying luminances. For example, a picture taken inside a room where objects are visible through the windows will not be rendered correctly by a global technique. Either details in the dim room will be hidden in shadow or the objects viewed through the window will be too bright. The image has to be treated locally to resemble more closely to what the observer remembers. The purpose of this work is to develop a technique for rendering images based on human local adaptation. We take inspiration from a model of color vision called Retinex. This model determines the perceived color given spatial relationships of the captured signals. Retinex has been used as a computational model for image rendering. In this article, we propose a new solution inspired by Retinex that is based on a single filter applied to the luminance channel. All parameters are image-dependent so that the process requires no parameter tuning. That makes the method more flexible than other existing ones. The presented results show that our method suitably enhances high dynamic range images.

  2. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Electronic Photography at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Holm, Jack; Judge, Nancianne

    1995-01-01

    An electronic photography facility has been established in the Imaging & Photographic Technology Section, Visual Imaging Branch, at the NASA Langley Research Center (LaRC). The purpose of this facility is to provide the LaRC community with access to digital imaging technology. In particular, capabilities have been established for image scanning, direct image capture, optimized image processing for storage, image enhancement, and optimized device dependent image processing for output. Unique approaches include: evaluation and extraction of the entire film information content through scanning; standardization of image file tone reproduction characteristics for optimal bit utilization and viewing; education of digital imaging personnel on the effects of sampling and quantization to minimize image processing related information loss; investigation of the use of small kernel optimal filters for image restoration; characterization of a large array of output devices and development of image processing protocols for standardized output. Currently, the laboratory has a large collection of digital image files which contain essentially all the information present on the original films. These files are stored at 8-bits per color, but the initial image processing was done at higher bit depths and/or resolutions so that the full 8-bits are used in the stored files. The tone reproduction of these files has also been optimized so the available levels are distributed according to visual perceptibility. Look up tables are available which modify these files for standardized output on various devices, although color reproduction has been allowed to float to some extent to allow for full utilization of output device gamut.

  4. Interoceptive signals impact visual processing: Cardiac modulation of visual body perception.

    PubMed

    Ronchi, Roberta; Bernasconi, Fosco; Pfeiffer, Christian; Bello-Ruiz, Javier; Kaliuzhna, Mariia; Blanke, Olaf

    2017-09-01

    Multisensory perception research has largely focused on exteroceptive signals, but recent evidence has revealed the integration of interoceptive signals with exteroceptive information. Such research revealed that heartbeat signals affect sensory (e.g., visual) processing: however, it is unknown how they impact the perception of body images. Here we linked our participants' heartbeat to visual stimuli and investigated the spatio-temporal brain dynamics of cardio-visual stimulation on the processing of human body images. We recorded visual evoked potentials with 64-channel electroencephalography while showing a body or a scrambled-body (control) that appeared at the frequency of the on-line recorded participants' heartbeat or not (not-synchronous, control). Extending earlier studies, we found a body-independent effect, with cardiac signals enhancing visual processing during two time periods (77-130 ms and 145-246 ms). Within the second (later) time-window we detected a second effect characterised by enhanced activity in parietal, temporo-occipital, inferior frontal, and right basal ganglia-insula regions, but only when non-scrambled body images were flashed synchronously with the heartbeat (208-224 ms). In conclusion, our results highlight the role of interoceptive information for the visual processing of human body pictures within a network integrating cardio-visual signals of relevance for perceptual and cognitive aspects of visual body processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Automatic grade classification of Barretts Esophagus through feature enhancement

    NASA Astrophysics Data System (ADS)

    Ghatwary, Noha; Ahmed, Amr; Ye, Xujiong; Jalab, Hamid

    2017-03-01

    Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.

  6. SU-F-J-71: Improving CT Quality for Radiation Therapy Planning and Delivery Guidance Using a Non-Linear Contrast Enhancement Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noid, G; Tai, A; Li, X

    2016-06-15

    Purpose: Advanced image post-processing techniques which enhance soft-tissue contrast in CT have not been widely employed for RT planning or delivery guidance. The purpose of this work is to assess the soft-tissue contrast enhancement from non-linear contrast enhancing filters and its impact in RT. The contrast enhancement reduces patient alignment uncertainties. Methods: Non-linear contrast enhancing methods, such as Best Contrast (Siemens), amplify small differences in X-ray attenuation between two adjacent structure without significantly increasing noise. Best Contrast (BC) separates a CT into two frequency bands. The low frequency band is modified by a non-linear scaling function before recombination with themore » high frequency band. CT data collected using a CT-on-rails (Definition AS Open, Siemens) during daily CT-guided RT for 6 prostate cancer patients and an image quality phantom (The Phantom Laboratory) were analyzed. Images acquired with a standard protocol (120 kVp, 0.6 pitch, 18 mGy CTDIvol) were processed before comparison to the unaltered images. Contrast and noise were measured in the the phantom. Inter-observer variation was assessed by placing prostate contours on the 12 CT study sets, 6 enhanced and 6 unaltered, in a blinded study involving 8 observers. Results: The phantom data demonstrate that BC increased the contrast between the 1.0% supra-slice element and the background substrate by 46.5 HU while noise increased by only 2.3 HU. Thus the contrast to noise ratio increased from 1.28 to 6.71. Furthermore, the variation in centroid position of the prostate contours was decreased from 1.3±0.4 mm to 0.8±0.3 mm. Thus the CTV-to-PTV margin was reduced by 1.1 mm. The uncertainty in delineation of the prostate/rectum edge decreased by 0.5 mm. Conclusion: As demonstrated in phantom and patient scans the BC filter accentuates soft-tissue contrast. This enhancement leads to reduced inter-observer variation, which should improve RT planning and delivery. Supported by Siemens.« less

  7. Image enhancement of real-time television to benefit the visually impaired.

    PubMed

    Wolffsohn, James S; Mukhopadhyay, Ditipriya; Rubinstein, Martin

    2007-09-01

    To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Prospective, clinical experimental study. One hundred and two sequential visually impaired (average age 73.8 +/- 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 +/- 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired.

  8. Standardized processing of MALDI imaging raw data for enhancement of weak analyte signals in mouse models of gastric cancer and Alzheimer's disease.

    PubMed

    Schwartz, Matthias; Meyer, Björn; Wirnitzer, Bernhard; Hopf, Carsten

    2015-03-01

    Conventional mass spectrometry image preprocessing methods used for denoising, such as the Savitzky-Golay smoothing or discrete wavelet transformation, typically do not only remove noise but also weak signals. Recently, memory-efficient principal component analysis (PCA) in conjunction with random projections (RP) has been proposed for reversible compression and analysis of large mass spectrometry imaging datasets. It considers single-pixel spectra in their local context and consequently offers the prospect of using information from the spectra of adjacent pixels for denoising or signal enhancement. However, little systematic analysis of key RP-PCA parameters has been reported so far, and the utility and validity of this method for context-dependent enhancement of known medically or pharmacologically relevant weak analyte signals in linear-mode matrix-assisted laser desorption/ionization (MALDI) mass spectra has not been explored yet. Here, we investigate MALDI imaging datasets from mouse models of Alzheimer's disease and gastric cancer to systematically assess the importance of selecting the right number of random projections k and of principal components (PCs) L for reconstructing reproducibly denoised images after compression. We provide detailed quantitative data for comparison of RP-PCA-denoising with the Savitzky-Golay and wavelet-based denoising in these mouse models as a resource for the mass spectrometry imaging community. Most importantly, we demonstrate that RP-PCA preprocessing can enhance signals of low-intensity amyloid-β peptide isoforms such as Aβ1-26 even in sparsely distributed Alzheimer's β-amyloid plaques and that it enables enhanced imaging of multiply acetylated histone H4 isoforms in response to pharmacological histone deacetylase inhibition in vivo. We conclude that RP-PCA denoising may be a useful preprocessing step in biomarker discovery workflows.

  9. Image jitter enhances visual performance when spatial resolution is impaired.

    PubMed

    Watson, Lynne M; Strang, Niall C; Scobie, Fraser; Love, Gordon D; Seidel, Dirk; Manahilov, Velitchko

    2012-09-06

    Visibility of low-spatial frequency stimuli improves when their contrast is modulated at 5 to 10 Hz compared with stationary stimuli. Therefore, temporal modulations of visual objects could enhance the performance of low vision patients who primarily perceive images of low-spatial frequency content. We investigated the effect of retinal-image jitter on word recognition speed and facial emotion recognition in subjects with central visual impairment. Word recognition speed and accuracy of facial emotion discrimination were measured in volunteers with AMD under stationary and jittering conditions. Computer-driven and optoelectronic approaches were used to induce retinal-image jitter with duration of 100 or 166 ms and amplitude within the range of 0.5 to 2.6° visual angle. Word recognition speed was also measured for participants with simulated (Bangerter filters) visual impairment. Text jittering markedly enhanced word recognition speed for people with severe visual loss (101 ± 25%), while for those with moderate visual impairment, this effect was weaker (19 ± 9%). The ability of low vision patients to discriminate the facial emotions of jittering images improved by a factor of 2. A prototype of optoelectronic jitter goggles produced similar improvement in facial emotion discrimination. Word recognition speed in participants with simulated visual impairment was enhanced for interjitter intervals over 100 ms and reduced for shorter intervals. Results suggest that retinal-image jitter with optimal frequency and amplitude is an effective strategy for enhancing visual information processing in the absence of spatial detail. These findings will enable the development of novel tools to improve the quality of life of low vision patients.

  10. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  11. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    NASA Astrophysics Data System (ADS)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  12. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  13. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA criteria for value added products, which are not copyrighted, according to the ALOS end-user license agreement. The selection criteria for the satellite imagery used in our mosaics were images having (1) the highest solar-elevation angles (near summer solstice) and (2) the least cloud, cloud-shadow, and snow cover. The multispectral and panchromatic data were orthorectified with ALOS satellite ephemeris data, a process which is not as accurate as orthorectification using digital elevation models (DEMs); however, the ALOS processing center did not have a precise DEM. As a result, the multispectral and panchromatic image pairs were generally not well registered to the surface and not coregistered well enough to perform resolution enhancement on the multispectral data. Therefore, it was necessary to (1) register the 10-m AVNIR multispectral imagery to a well-controlled Landsat image base, (2) mosaic the individual multispectral images into a single image of the entire area of interest, (3) register each panchromatic image to the registered multispectral image base, and (4) mosaic the individual panchromatic images into a single image of the entire area of interest. The two image-registration steps were facilitated using an automated control-point algorithm developed by the USGS that allows image coregistration to within one picture element. Before rectification, the multispectral and panchromatic images were converted to radiance values and then to relative-reflectance values using the methods described in Davis (2006). Mosaicking the multispectral or panchromatic images started with the image with the highest sun-elevation angle and the least atmospheric scattering, which was treated as the standard image. The band-reflectance values of all other multispectral or panchromatic images within the area were sequentially adjusted to that of the standard image by determining band-reflectance correspondence between overlapping images using linear least-squares analysis. The resolution of the multispectral image mosaic was then increased to that of the panchromatic image mosaic using the SPARKLE logic, which is described in Davis (2006). Each of the four-band images within the resolution-enhanced image mosaic was individually subjected to a local-area histogram stretch algorithm (described in Davis, 2007), which stretches each band's picture element based on the digital values of all picture elements within a 315-m radius. The final databases, which are provided in this DS, are three-band, color-composite images of the local-area-enhanced, natural-color data (the blue, green, and red wavelength bands) and color-infrared data (the green, red, and near-infrared wavelength bands). All image data were initially projected and maintained in Universal Transverse Mercator (UTM) map projection using the target area's local zone (42 for Balkhab) and the WGS84 datum. The final image mosaics were subdivided into two overlapping tiles or quadrants because of the large size of the target area. The two image tiles (or quadrants) for the Balkhab area are provided as embedded geotiff images, which can be read and used by most geographic information system (GIS) and image-processing software. The tiff world files (tfw) are provided, even though they are generally not needed for most software to read an embedded geotiff image. Within the Balkhab study area, one subarea was designated for detailed field investigations (that is, the Balkhab Prospect subarea); this subarea was extracted from the area's image mosaic and is provided as separate embedded geotiff images.

  15. IfA Catalogs of Solar Data Products

    NASA Astrophysics Data System (ADS)

    Habbal, Shadia R.; Scholl, I.; Morgan, H.

    2009-05-01

    This paper presents a new set of online catalogs of solar data products. The IfA Catalogs of Solar Data Products were developed to enhance the scientific output of coronal images acquired from ground and space, starting with the SoHO era. Image processing tools have played a significant role in the production of these catalogs [Morgan et al. 2006, 2008, Scholl and Habbal 2008]. Two catalogs are currently available at http://alshamess.ifa.hawaii.edu/ : 1) Catalog of daily coronal images: One coronal image per day from EIT, MLSO and LASCO/C2 and C3 have been processed using the Normalizing Radial-Graded-Filter (NRGF) image processing tool. These images are available individually or as composite images. 2) Catalog of LASCO data: The whole LASCO dataset has been re-processed using the same method. The user can search files by dates and instruments, and images can be retrieved as JPEG or FITS files. An option to make on-line GIF movies from selected images is also available. In addition, the LASCO data set can be searched from existing CME catalogs (CDAW and Cactus). By browsing one of the two CME catalogs, the user can refine the query and access LASCO data covering the time frame of a CME. The catalogs will be continually updated as more data become publicly available.

  16. Enhancing the imaging quality and fabrication efficiency of bionic compound eyes using a sandwich structure

    NASA Astrophysics Data System (ADS)

    Luo, Jiasai; Guo, Yongcai; Wang, Xin

    2018-06-01

    This paper puts forward a novel method for fabrication of sandwich-structured BCE using a detachable micro-hole array (MHA) prepared by 3D printing. Compared with most traditional methods, 3D printing enables effective implementation of direct micro-fabrication for curved BCE without the pattern transfer and substrate reshaping process. This 3D fabrication method allows rapid fabrication of the curved BCE and automatic assembly of the detachable MHA using a custom-built mold under negative pressure. The formation of a multi-focusing micro-lens array (MLA) was realized by adjusting the parameters of the curved detachable MHA. The imaging performance was effectively enhanced by the sandwich structure that consist of the multi-focusing MLA, the outer detachable MHA and the inner solidified MHA. This method is suitable for mass production due to its advantages as a time-saving, cost-effective and simple process. Optical design software was used to analyze the optical properties, and an imaging simulation was performed.

  17. Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation

    NASA Astrophysics Data System (ADS)

    Cao, Binfang; Li, Xiaoqin; Liu, Changqing; Li, Jianqi

    2017-08-01

    With the further applied transformation of local colleges, teachers are urgently needed to make corresponding changes in the teaching content and methods from different courses. The article discusses practice teaching reform of the Photoelectric Image Processing course in the Optoelectronic Information Science and Engineering major. The Digital Signal Processing (DSP) platform is introduced to the experimental teaching. It will mobilize and inspire students and also enhance their learning motivation and innovation through specific examples. The course via teaching practice process has become the most popular course among students, which will further drive students' enthusiasm and confidence to participate in all kinds of electronic competitions.

  18. Effective low-level processing for interferometric image enhancement

    NASA Astrophysics Data System (ADS)

    Joo, Wonjong; Cha, Soyoung S.

    1995-09-01

    The hybrid operation of digital image processing and a knowledge-based AI system has been recognized as a desirable approach of the automated evaluation of noise-ridden interferogram. Early noise/data reduction before phase is extracted is essential for the success of the knowledge- based processing. In this paper, new concepts of effective, interactive low-level processing operators: that is, a background-matched filter and a directional-smoothing filter, are developed and tested with transonic aerodynamic interferograms. The results indicate that these new operators have promising advantages in noise/data reduction over the conventional ones, leading success of the high-level, intelligent phase extraction.

  19. Medical Devices; General Hospital and Personal Use Devices; Classification of the Image Processing Device for Estimation of External Blood Loss. Final order.

    PubMed

    2017-12-20

    The Food and Drug Administration (FDA or we) is classifying the image processing device for estimation of external blood loss into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the image processing device for estimation of external blood loss' classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  20. Evaluation of solar angle variation over digital processing of LANDSAT imagery. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1984-01-01

    The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Original images are transformed by means of digital filtering to enhance their spatial features. The resulting images are used to obtain an unsupervised classification of relief units. After defining relief classes, which are supposed to be spectrally different, topographic variables (declivity, altitude, relief range and slope length) are used to identify the true relief units existing on the ground. The samples are also clustered by means of an unsupervised classification option. The results obtained for each LANDSAT overpass are compared. Digital processing is highly affected by illumination geometry. There is no correspondence between relief units as defined by spectral features and those resulting from topographic features.

Top