Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine
2013-01-01
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032
Charlie Byrer
2017-12-09
Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.
Sun, Zhuyu; Zhang, Chaojie; Chen, Pei; Zhou, Qi; Hoffmann, Michael R
2017-12-15
Iodide photolysis under UV illumination affords an effective method to produce hydrated electrons (e aq - ) in aqueous solution. Therefore, UV/Iodide photolysis can be utilized for the reductive degradation of many recalcitrant pollutants. However, the effect of naturally occurring organic matter (NOM) such as humic and fulvic acids (HA/FA), which may impact the efficiency of UV/Iodide photoreduction, is poorly understood. In this study, the UV photoreductive degradation of perfluorooctane sulfonate (PFOS) in the presence of I - and HA is studied. PFOS undergoes a relatively slow direct photoreduction in pure water, a moderate level of degradation via UV/Iodide, but a rapid degradation via UV/Iodide/HA photolysis. After 1.5 h of photolysis, 86.0% of the initial [PFOS] was degraded in the presence of both I - and HA with a corresponding defluorination ratio of 55.6%, whereas only 51.7% of PFOS was degraded with a defluorination ratio of 4.4% via UV/Iodide illumination in the absence of HA. The relative enhancement in the presence of HA in the photodegradation of PFOS can be attributed to several factors: a) HA enhances the effective generation of e aq - due to the reduction of I 2 , HOI, IO 3 - and I 3 - back to I - ; b) certain functional groups of HA (i.e., quinones) enhance the electron transfer efficiency as electron shuttles; c) a weakly-bonded association of I - and PFOS with HA increases the reaction probability; and d) absorption of UV photons by HA itself produces e aq - . The degradation and defluorination efficiency of PFOS by UV/Iodide/HA process is dependent on pH and HA concentration. As pH increases from 7.0 to 10.0, the enhancement effect of HA improves significantly. The optimal HA concentration for the degradation of 0.03 mM PFOS is 1.0 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ibrahim, I. M.; Kassim, E. S. Mohd; Husin, H.; Jai, J.; Daud, M.; Hashim, M. A.
2018-05-01
This paper contains a review on the effect of halide ion with a selected inhibitor which is imidazole derivatives on the efficiency of corrosion inhibition. The paper first describes the mechanism of synergistic inhibition effect among halide ions enhancer with inhibitor on the steel surface. Then the paper describes the measured inhibition efficiency and summarizes the synergistic inhibition condition of imidazoline derivatives inhibitor with iodide ions. The characteristic of synergistic inhibition effect and the relationship between the amount of iodide ion consumption and the amount of organic inhibitor consumption are also discussed. It has been shown that, the synergistic effect between imidazole derivative and iodide ion is an effective method to improve the inhibitive performance in different aqueous media.
Enhancement of photoisomerization of polymethine dyes in complexes with biomacromolecules
NASA Astrophysics Data System (ADS)
Tatikolov, Alexander S.; Akimkin, Timofei M.; Pronkin, Pavel G.; Yarmoluk, Sergiy M.
2013-01-01
Photochemical processes (photoisomerization and generation of the triplet state) of the thiacarbocyanine dyes 3,3',9-trimethylthiacarbocyanine iodide (Cyan 2), 3,3'-diethyl-9-methylthiacarbocyanine iodide (DMTC), and 3,3',9-triethylthiacarbocyanine iodide (TETC) in complexes with biomacromolecules—DNA and chondroitin-4-sulfate—were studied by flash photolysis. It has been shown that, along with generation of the triplet state, enhancement of the photoisomer formation is observed for Cyan 2 and DMTC complexed with the biomolecules. This effect can be explained by the influence of the biopolymer matrix on the potential energy curves of the photoisomerization process.
USDA-ARS?s Scientific Manuscript database
Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...
Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.
Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo
2013-01-02
Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.
Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian McPherson
2010-08-31
A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologicmore » sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.« less
Status and potential of terrestrial carbon sequestration in West Virginia
Benktesh D. Sharma; Jingxin Wang
2011-01-01
Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...
Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs
NASA Astrophysics Data System (ADS)
Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.
2008-12-01
CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.
Sugawara, M; Yamaguchi, D T; Lee, H Y; Yanagisawa, K; Murakami, S; Summer, C N; Johnson, D G; Levin, S R
1990-05-01
This study describes the effects of hydrogen peroxide on the two iodide transport systems, I influx and I efflux, in the cultured FRTL-5 rat thyroid cells. I influx was measured by the amount of I taken up by the cells during incubation with Na125I and NaI for 7 min, and I efflux was measured by calculating the rate of 125I release from the 125I-loaded cells in the presence and absence of 5 mmol/l H2O2. Exposure to greater than 100 mumol/l H2O2 for 40 min caused a significant inhibition of I influx; the inhibition was reversible and non-competitive with iodide. Thyroid Na+K+ ATPase activity, a major mechanism to drive I influx, decreased by 40% after the cells were exposed to 5 mmol/l H2O2 for 10 min. H2O2 enhanced I efflux only when Ca2+ was present in the medium. The mechanism of an enhanced I efflux by H2O2 appears to be mediated through the elevation of free cytosolic Ca2+ concentration. Our data indicate that H2O2 can affect I transport by inhibiting I influx and enhancing I efflux.
Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.
2008-03-21
Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of researchmore » needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.« less
NASA Astrophysics Data System (ADS)
Bouklah, M.; Hammouti, B.; Aouniti, A.; Benkaddour, M.; Bouyanzer, A.
2006-07-01
The effect of addition of 4',4-dihydroxychalcone (P 1), 4-aminochalcone (P 2) and 4-bromo, 4'-methoxychalcone (P 3) on the corrosion of steel in 0.5 M sulphuric acid has been studied by weight loss measurements, potentiodynamic and EIS measurements. We investigate the synergistic effect of iodide ions on the corrosion inhibition of steel in the presence of chalcone derivatives. The corrosion rates of the steel decrease with the increase of the chalcones concentration, while the inhibition efficiencies increase. The addition of iodide ions enhances the inhibition efficiency considerably. The presence of iodide ions increases the degree of surface coverage. The synergism parameters SΘ and SI, calculated from surface coverage and the values of inhibition efficiency, in the case of chalcone derivatives are found to be larger than unity. The enhanced inhibition efficiency in the presence of iodide ions is only due to synergism and there is a definite contribution from the inhibitors molecules. E (%) obtained from the various methods is in good agreement. Polarisation measurements show also that the compounds act as cathodic inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigg, Reid; McPherson, Brian; Lee, Rober
The Southwest Regional Partnership on Carbon Sequestration (SWP) one of seven regional partnerships sponsored by the U.S. Department of Energy (USDOE) carried out five field pilot tests in its Phase II Carbon Sequestration Demonstration effort, to validate the most promising sequestration technologies and infrastructure concepts, including three geologic pilot tests and two terrestrial pilot programs. This field testing demonstrated the efficacy of proposed sequestration technologies to reduce or offset greenhouse gas emissions in the region. Risk mitigation, optimization of monitoring, verification, and accounting (MVA) protocols, and effective outreach and communication were additional critical goals of these field validation tests. Themore » program included geologic pilot tests located in Utah, New Mexico, Texas, and a region-wide terrestrial analysis. Each geologic sequestration test site was intended to include injection of a minimum of ~75,000 tons/year CO{sub 2}, with minimum injection duration of one year. These pilots represent medium- scale validation tests in sinks that host capacity for possible larger-scale sequestration operations in the future. These validation tests also demonstrated a broad variety of carbon sink targets and multiple value-added benefits, including testing of enhanced oil recovery and sequestration, enhanced coalbed methane production and a geologic sequestration test combined with a local terrestrial sequestration pilot. A regional terrestrial sequestration demonstration was also carried out, with a focus on improved terrestrial MVA methods and reporting approaches specific for the Southwest region.« less
Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong
2016-02-02
The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.
Curry, J J; Estupiñán, E G; Henins, A; Lapatovich, W P; Shastri, S D; Hardis, J E
2013-09-28
The vapors in equilibrium with condensates of DyI3, DyI3/InI, TmI3, and TmI3/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI3/InI and TmI3/TlI as compared to the vapors over pure DyI3 and pure TmI3, respectively. An enhancement factor exceeding 10 was observed for Dy at T ≈ 1020 K, decreasing to 0 at T ≈ 1250 K. An enhancement factor exceeding 20 was observed for Tm at T ≈ 1040 K, decreasing to 0 at T ≈ 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI4 and TmTlI4. Numerical simulations of the thermo-chemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results [J. J. Curry et al., Chem. Phys. Lett. 507, 52 (2011); Appl. Phys. Lett. 100, 083505 (2012)].
36 CFR 230.40 - Eligible practices for cost-share assistance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... regeneration or to ensure forest establishment and carbon sequestration. (3) Forest Stand Improvement—Practices to enhance growth and quality of wood fiber, special forest products, and carbon sequestration. (4... carbon sequestration in conjunction with agriculture, forest, and other land uses. (5) Water Quality...
The iodide space in rabbit brain
Ahmed, Nawal; Van Harreveld, A.
1969-01-01
1. The iodide space in rabbit brain varies greatly depending on the conditions under which it is determined. 2. When 131I- only is used the iodide space 4 hr after administration of the marker is of the order of 2%. The iodide content of the cerebrospinal fluid (c.s.f.) is about 1% of that of the serum. 3. Depression of the active iodide transport by perchlorate increases the space to 8·2% and the iodide content of the c.s.f. to 26% of that of the serum. 4. The active iodide transport can also be depressed by saturation with unlabelled iodide. Up to a serum iodide concentration of 5 mM the space determined after 5 hr remained constant at 2·7%. The iodide space grew when the serum iodide content was enhanced from 5 to 20 mM, to become constant at a value of 10·6% on further increase of the serum iodide (up to 50 mM). The iodide content of the c.s.f. increased in a similar manner as the space with the iodide concentration of the serum to about 1/3 of the serum concentration. The iodide space of the muscle was independent of the plasma iodide content. 5. From 4 to 8 hr after administration of 131I- alone or with unlabelled iodide (to a serum concentration of 15 mM) the iodide space remained relatively constant. 6. When 131I- was administered in the fluid with which the ventricles were perfused an iodide space of about 7% was attained after about 5 hr. 7. In experiments in which 131I- was administered intravenously and the sink action of the c.s.f. was eliminated by perfusion of the ventricles with a perfusate containing as much 131I- as the plasma, the iodide space was 10·2%. When in addition active iodide transport was depressed by perchlorate the space increased to 16·8%. 8. Intravenous administration of labelled and unlabelled iodide (to a serum concentration of 20-40 mM) and ventricle perfusion with the same concentration of 131I- and unlabelled iodide as in the plasma yielded an iodide space of 20·8%. In similar experiments the iodide concentration of the perfusate was so adjusted that after 5 hr perfusion its iodide content hardly changed during the passage through the ventricles. Under these conditions the iodide concentration of the extracellular and perfusion fluids can be considered to be near equal. The iodide space computed on the basis of the iodide content of the outflowing fluid was 22·5%. 9. The large iodide space could be equated with the extracellular space if the iodide remained extracellular. This seems to be the case in the muscle where the iodide space is similar to the inulin space. 10. The large effects on the iodide space of perchlorate and saturation with unlabelled iodide in experiments in which the marker was administered intravenously and in the perfusate (7 and 8) suggests the presence of an active iodide transport from the brain extracellular fluid into the blood over the blood—brain barrier. PMID:4310942
Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation
Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.
2014-01-01
The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582
Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.
Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A; Kaplan, Daniel I; Santschi, Peter H; Hansel, Colleen M; Yeager, Chris M
2014-05-01
The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.
Development of w/o microemulsion for transdermal delivery of iodide ions.
Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan
2013-03-01
The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value<0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.
Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers.
Uygun, Murat; Singh, Virendra V; Kaufmann, Kevin; Uygun, Deniz A; de Oliveira, Severina D S; Wang, Joseph
2015-10-26
We describe a mobile CO2 scrubbing platform that offers a greatly accelerated biomimetic sequestration based on a self-propelled carbonic anhydrase (CA) functionalized micromotor. The CO2 hydration capability of CA is coupled with the rapid movement of catalytic micromotors, and along with the corresponding fluid dynamics, results in a highly efficient mobile CO2 scrubbing microsystem. The continuous movement of CA and enhanced mass transport of the CO2 substrate lead to significant improvements in the sequestration efficiency and speed over stationary immobilized or free CA platforms. This system is a promising approach to rapid and enhanced CO2 sequestration platforms for addressing growing concerns over the buildup of greenhouse gas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan
2012-07-01
A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis
West, Tristram O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Wilfred M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2002-01-01
Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil carbon (C) sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 ± 14 g C m–2 yr–1, excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 14 ± 11 g C m–2 yr–1, excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine max L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5-10 yr with SOC reaching a new equilibrium in 15-20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40-60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.
Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests
Patrick T. Moore; R. Justin DeRose; James N. Long; Helga van Miegroet
2012-01-01
Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....
From sink to source: Regional variation in U.S. forest carbon futures
Wear, David N.; Coulston, John W.
2015-01-01
The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength. PMID:26558439
From sink to source: Regional variation in U.S. forest carbon futures.
Wear, David N; Coulston, John W
2015-11-12
The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.
NASA Astrophysics Data System (ADS)
Pitzalis, Emanuela; Onor, Massimo; Spiniello, Roberto; Braz, Carlos Eduardo Mendes; D'Ulivo, Alessandro
2018-07-01
The chemical vapor generation of H2Se has been investigated in the presence and in the absence of either NaI or NaSCN as additives (0.5 mol L-1), in HClO4 media (0.1-5.0 mol L-1) and using a low concentration of NaBH4 (0.02 mol L-1). The enhancement of generation efficiency of H2Se produced by iodide and thiocyanate was measured by a continuous flow reaction system coupled with a miniature argon‑hydrogen diffusion flame and atomic absorption detection. The chemifold of the continuous flow reactor was designed in order to change the mixing sequence and the interaction time of the reagents. By this way it has been possible to evaluate the contribution of additive‑selenium and additive-borane species to the mechanism producing the increase of generation efficiency of H2Se. Both the iodide complexes of selenium and borane contribute to enhance generation efficiency of H2Se, whereas the thiocyanate complexes of selenium rather than thiocyanate-borane complexes play a major role in the enhancement of the efficiency. At elevated acidities (2 < [H+] < 5 mol L-1), only thiocyanate continues to maintain its properties to increase H2Se generation efficiency while iodide causes a marked signal depression unless its addition is performed after the starting of SeIV- [BH4-] reaction with an appropriate time delay. Both iodide and thiocyanate caused marked depression of H2Se generation when NaBH4 was replaced by the amine boranes, NH3-BH3 and tert-ButylNH2-BH3.
Bauer, Brad A.; Ou, Shuching; Patel, Sandeep
2014-01-01
We present results from all-atom molecular dynamics simulations of large-scale hydrophobic plates solvated in NaCl and NaI salt solutions. As observed in studies of ions at the air-water interface, the density of iodide near the water-plate interface is significantly enhanced relative to chloride and in the bulk. This allows for the partial hydration of iodide while chloride remains more fully hydrated. In 1M solutions, iodide directly pushes the hydrophobes together (contributing −2.51 kcal/mol) to the PMF. Chloride, however, strengthens the water-induced contribution to the PMF by ~ −2.84 kcal/mol. These observations are enhanced in 3M solutions, consistent with the increased ion density in the vicinity of the hydrophobes. The different salt solutions influence changes in the critical hydrophobe separation distance and characteristic wetting/dewetting transitions. These differences are largely influenced by the ion-specific expulsion of iodide from bulk water. Results of this study are of general interest to the study of ions at interfaces and may lend insight to the mechanisms underlying the Hofmeister series. PMID:22231014
Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles
NASA Astrophysics Data System (ADS)
Jeon, Young Pyo; Woo, Sung Jun; Kim, Tae Whan
2018-03-01
Transparent and flexible photodetectors (PDs) based on CH3NH3PbI3 perovskite nanoparticles (NPs) were fabricated by using co-evaporation of methyl ammonium iodide and lead iodide. X-ray diffraction patterns and high-resolution transmission electron microscopy images demonstrated the formation of perovskite NPs. The optical transmittance of the perovskite NPs/glass was above 80% over the entire range of visible wavelengths, indicative of high transparency. The PDs based on CH3NH3PbI3 perovskite NPs were sensitive to a broad range of visible light from 450 to 650 nm. The currents in the PDs under exposure to red, green, and blue light-emitting diodes were enhanced to 5, 10, and 20 times that of the PD in the dark, respectively. The rise and the decay times of the PDs were 50 and 120 μs. The current in the perovskite NP PD on a polyethylene terephthalate substrate was enhanced by approximately 69% when the NP PD was exposed to a blue LED emitting at a wavelength of 459 nm. Despite multiple bending, the transparent and flexible PDs based on methyl ammonium iodide and lead iodide NPs showed reproducibility and high stability in performance.
Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films
NASA Astrophysics Data System (ADS)
Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko
2018-06-01
Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.
CARBON SEQUESTRATION AND PLANT COMMUNITY DYNAMICS FOLLOWING REFORESTATION OF TROPICAL PASTURE.
WHENDEE L. SILVER; LARA M. KUEPPERS; ARIEL E. LUGO; REBECCA OSTERTAG; VIRGINIA MATZEK
2004-01-01
Conversion of abandoned cattle pastures to secondary forests and plantations in the tropics has been proposed as a means to increase rates of carbon (C) sequestration from the atmosphere and enhance local biodiversity. We used a long-term tropical reforestation project (55â61 yr) to estimate rates of above- and belowground C sequestration and to investigate the impact...
David Bryan Dail; David Y. Hollinger; Eric A. Davidson; Ivan Fernandez; Herman C. Sievering; Neal A. Scott; Elizabeth Gaige
2009-01-01
In N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition-C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and...
Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
Gervay-Hague, Jacquelyn
2016-01-19
Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive that even highly functionalized aglycon acceptors add. Following the coupling event, the TMS ethers are readily removed by methanolysis, and since all of the byproducts are volatile, multiple reactions can be performed in a single reaction vessel without isolation of intermediates. In this fashion, per-O-TMS monosaccharides can be converted to biologically relevant α-linked glycolipids in one pot. The stereochemical outcome of these reactions can also be switched to β-glycoside formation by addition of silver to chelate the iodide, thus favoring SN2 displacement of the α-iodide. While iodides derived from benzyl and silyl ether-protected oligosaccharides are susceptible to interglycosidic bond cleavage when treated with TMSI, the introduction of a single acetate protecting group prevents this unwanted side reaction. Partial acetylation of armed glycosyl iodides also attenuates HI elimination side reactions. Conversely, fully acetylated glycosyl iodides are deactivated and require metal catalysis in order for glycosidation to occur. Recent findings indicate that I2 activation of per-O-acetylated mono-, di-, and trisaccharides promotes glycosidation of cyclic ethers to give β-linked iodoalkyl glycoconjugates in one step. Products of these reactions have been converted into multivalent carbohydrate displays. With these synthetic pathways elucidated, chemical reactivity can be exquisitely controlled by the judicious selection of protecting groups to achieve high stereocontrol in step-economical processes.
Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K
2017-04-26
Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.
Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.
2013-01-01
SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881
Economic analysis of secondary and enhanced oil recovery techniques in Wyoming
NASA Astrophysics Data System (ADS)
Kara, Erdal
This dissertation primarily aims to theoretically analyze a firm's optimization of enhanced oil recovery (EOR) and carbon dioxide sequestration under different social policies and empirically analyze the firm's optimization of enhanced oil recovery. The final part of the dissertation empirically analyzes how geological factors and water injection management influence oil recovery. The first chapter builds a theoretical model to analyze economic optimization of EOR and geological carbon sequestration under different social policies. Specifically, it analyzes how social policies on sequestration influence the extent of oil operations, optimal oil production and CO2 sequestration. The theoretical results show that the socially optimal policy is a subsidy on the net CO2 sequestration, assuming negative net emissions from EOR. Such a policy is expected to increase a firm's total carbon dioxide sequestration. The second chapter statistically estimates the theoretical oil production model and its different versions. Empirical results are not robust over different estimation techniques and not in line with the theoretical production model. The last part of the second chapter utilizes a simplified version of theoretical model and concludes that EOR via CO2 injection improves oil recovery. The final chapter analyzes how a contemporary oil recovery technology (water flooding of oil reservoirs) and various reservoir-specific geological factors influence oil recovery in Wyoming. The results show that there is a positive concave relationship between cumulative water injection and cumulative oil recovery and also show that certain geological factors affect the oil recovery. Moreover, the curvature of the concave functional relationship between cumulative water injection and oil recovery is reservoir-specific due to heterogeneities among different reservoirs.
Geophysical monitoring technology for CO2 sequestration
NASA Astrophysics Data System (ADS)
Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai
2016-06-01
Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.
Study on the methodology of road carbon sink forest
NASA Astrophysics Data System (ADS)
Wan, Lijuan; Zhang, Yi; Cheng, Dongxiang; Huang, Yanan
2017-01-01
Advanced concepts of forest carbon sink and forestry carbon sequestration are introduced in road carbon sink forest project and the measurement and carbon monitoring of road carbon sink forest are explored. Experience and technology are accumulated and a set of the carbon sequestration forestation and carbon measurement and monitoring technology systems on both sides of road are formed. To update the green concept, improve the forestation quality along road and to enhanced sequestration and ecological efficiency, it is important to realize the traffic low carbon and energy saving and emission reduction. To use scientific planting and monitoring methods, soil properties, carbon sequestration of soil organic carbon pool, and carbon sequestration capacity of different species of trees were studied and monitored. High carbon sequestration species selection, silvicultural management, measurement of carbon sink and carbon monitoring are explored.
Making carbon sequestration a paying proposition
NASA Astrophysics Data System (ADS)
Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji
2007-03-01
Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.
Making carbon sequestration a paying proposition.
Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji
2007-03-01
Atmospheric carbon dioxide (CO(2)) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO(2) emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO(2) requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO(2) is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO(2) hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO(2) loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO(2) in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.
The role of reforestation in carbon sequestration
NASA Astrophysics Data System (ADS)
Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.
2017-12-01
In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among ecoregions, according to current levels of planting, typical forest growth rates, and past land uses (especially cultivation). Altogether, our results suggest that an immediate, but phased and spatially targeted approach to reforestation can enhance C sequestration in forest biomass and soils in the U.S. for decades to centuries to come.
NASA Astrophysics Data System (ADS)
De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.
2013-12-01
Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, S. H.; Spencer, B. B.; Strachan, D. M.
Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to lessmore » than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these was facilitated by the presence of radiolytic decomposition products resulting from radiolysis of tri-n-butyl phosphate and dodecane. Primarily inorganic iodine compounds were expected from waste management processes, including chlorinated species such as ICl. Critical knowledge gaps that must still be addressed include confirmation of the existence and quantification of low-sorbing species in the off-gas of reprocessing facilities. The contributions from penetrating forms of iodine to the plant DF are largely unknown and highly dependent on the magnitude of their presence. These species are likely to be more difficult to remove and it is likely that their sequestration could be improved through the use of different sorbents, through design modifications of the off-gas capture system, or through chemical conversion prior to iodine abatement that would produce more easily captured forms.« less
Lansdell, K A; Kidd, J F; Delaney, S J; Wainwright, B J; Sheppard, D N
1998-01-01
We investigated the effect of protein kinases and phosphatases on murine cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels, expressed in Chinese hamster ovary (CHO) cells, using iodide efflux and the excised inside-out configuration of the patch-clamp technique.The protein kinase C (PKC) activator, phorbol dibutyrate, enhanced cAMP-stimulated iodide efflux. However, PKC did not augment the single-channel activity of either human or murine CFTR Cl− channels that had previously been activated by protein kinase A.Fluoride, a non-specific inhibitor of protein phosphatases, stimulated both human and murine CFTR Cl− channels. However, calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, did not enhance cAMP-stimulated iodide efflux.The alkaline phosphatase inhibitor, (−)-bromotetramisole augmented cAMP-stimulated iodide efflux and, by itself, stimulated a larger efflux than that evoked by cAMP agonists. However, (+)-bromotetramisole, the inactive enantiomer, had the same effect. For murine CFTR, neither enantiomer enhanced single-channel activity. In contrast, both enantiomers increased the open probability (Po) of human CFTR, suggesting that bromotetramisole may promote the opening of human CFTR.As murine CFTR had a low Po and was refractory to stimulation by activators of human CFTR, we investigated whether murine CFTR may open to a subconductance state. When single-channel records were filtered at 50 Hz, a very small subconductance state of murine CFTR was observed that had a Po greater than that of human CFTR. The occupancy of this subconductance state may explain the differences in channel regulation observed between human and murine CFTR. PMID:9769419
NASA Astrophysics Data System (ADS)
Sato, Hiroyasu; Kusumoto, Yoshihumi; Nakashima, Nobuaki; Yoshihara, Keitaro
1980-04-01
The mechanism of enhancement in the energy transfer between rhodamine 6G and 3,3'-diethylthiacarbocyanine iodide by sodium lauryl sulfate in the premicellar region was studied by a picosecond laser technique. The Forster mechanism with an increased local concentration suggesting dye-rich induced micelle formation was concluded from the shape of the decay curve.
Deep horizons: Soil Carbon sequestration and storage potential in grassland soils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel
2016-04-01
Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.
De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M
2014-11-21
We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity.
Enhanced practical photosynthetic CO2 mitigation
Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.
2003-12-23
This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.
Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.
Strand, Stuart E; Benford, Gregory
2009-02-15
For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.
NASA Astrophysics Data System (ADS)
Ju, Weimin; Chen, Jing M.; Black, T. Andrew; Barr, Alan G.; McCaughey, Harry
2010-07-01
The variations of soil water content (SWC) and its influences on the carbon (C) cycle in Canada's forests and wetlands were studied through model simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model. It shows that Canada's forests and wetlands experienced spatially and temporally heterogeneous changes in SWC from 1901 to 2000. SWC changes caused average NPP to decrease 40.8 Tg C yr-1 from 1901 to 2000, whereas the integrated effect of non-disturbance factors (climate change, CO2 fertilization and N deposition) enhanced NPP by 9.9%. During 1981-2000, the reduction of NPP caused by changes in SWC was 58.1 Tg C yr-1 whereas non-disturbance factors together caused NPP to increase by 16.6%. SWC changes resulted in an average increase of 4.1 Tg C yr-1 in the net C uptake during 1901-2000, relatively small compared with the enhancement in C uptake of 50.2 Tg C yr-1 by the integrated effect of non-disturbance factors. During 1981-2000, changes in SWC caused a reduction of 3.8 Tg C yr-1 in net C sequestration whereas the integrated factors increased net C sequestration by 54.1 Tg C yr-1. Increase in SWC enhanced C sequestration in all ecozones.
Solangi, Amber; Bond, Alan M; Burgar, Iko; Hollenkamp, Anthony F; Horne, Michael D; Rüther, Thomas; Zhao, Chuan
2011-06-02
Electrochemical studies in room temperature ionic liquids are often hampered by their relatively high viscosity. However, in some circumstances, fast exchange between participating electroactive species has provided beneficial enhancement of charge transport. The iodide (I¯)/iodine (I(2))/triiodide (I(3)¯) redox system that introduces exchange via the I¯ + I(2) ⇌ I(3)¯ process is a well documented example because it is used as a redox mediator in dye-sensitized solar cells. To provide enhanced understanding of ion movement in RTIL media, a combined electrochemical and NMR study of diffusion in the {SeCN¯-(SeCN)(2)-(SeCN)(3)¯} system has been undertaken in a selection of commonly used RTILs. In this system, each of the Se, C and N nuclei is NMR active. The electrochemical behavior of the pure ionic liquid, [C(4)mim][SeCN], which is synthesized and characterized here for the first time, also has been investigated. Voltammetric studies, which yield readily interpreted diffusion-limited responses under steady-state conditions by means of a Random Assembly of Microdisks (RAM) microelectrode array, have been used to measure electrochemically based diffusion coefficients, while self-diffusion coefficients were measured by pulsed field gradient NMR methods. The diffusivity data, derived from concentration and field gradients respectively, are in good agreement. The NMR data reveal that exchange processes occur between selenocyanate species, but the voltammetric data show the rates of exchange are too slow to enhance charge transfer. Thus, a comparison of the iodide and selenocyanate systems is somewhat paradoxical in that while the latter give RTILs of low viscosity, sluggish exchange kinetics prevent any significant enhancement of charge transfer through direct electron exchange. In contrast, faster exchange between iodide and its oxidation products leads to substantial electron exchange but this effect does not compensate sufficiently for mass transport limitations imposed by the higher viscosity of iodide RTILs.
Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Electro-optical Applications
2010-05-01
samples were dipped in an aqueous solution of iodine (I) and potassium iodide (KI) (25 gm I and 100 gm KI per liter of water [H2O] ) (16). The samples...Satterfield, C. N.; Wentworth, R. L. in Hydrogen Peroxide , Reinhold Publishing, New York, 1955, p. 370. 12 19. Kishioka, K.; Horita, S.; Ohdaria, K...germanium H2O water HBT heterojunction bipolar transistor I iodine IPA isopropal alcohol KI potassium iodide MEE metal enhanced etching
Terrestrial biological carbon sequestration: science for enhancement and implementation
Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg Marland
2009-01-01
The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...
Modeling and Spatially Distributing Forest Net Primary Production at the Regional Scale
R.A. Mickler; T.S. Earnhardt; J.A. Moore
2002-01-01
Abstract - Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that areaâs ability to sequester carbon in terrestrial ecosystems...
Mechanisms of Soil Carbon Sequestration
NASA Astrophysics Data System (ADS)
Lal, Rattan
2015-04-01
Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough understanding of the processes, factors and causes of SOC and SIC dynamics in soils of natural and managed ecosystems.
Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X
2003-04-01
A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.
Besemer, Matthieu; Bloemenkamp, Rob; Ariese, Freek; van Manen, Henk-Jan
2016-02-11
The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable frequency-doubled optical parametric oscillator system were used to achieve excitation wavelengths between 785 and 374 nm. Focusing on NaI solutions, the relative enhancement of the water bending vibration was found to increase strongly with excitation photon energy, in line with a preresonance effect from the iodide-water charge-transfer transition. We used multivariate curve resolution (MCR) to decompose the measured Raman spectra of NaI solutions into three interconverting spectral components assigned to bulk water and water molecules interacting with one (X···H-O-H···O) and two (X···H-O-H···X) iodide ions (X = I(-)). The Raman spectrum of solid sodium iodide dihydrate supports the assignment of the latter. Using the MCR results, relative Raman scattering cross sections of 4.0 ± 0.6 and 14.0 ± 0.1 were calculated for the mono- and di-iodide species, respectively (compared to that of bulk water set to unity). In addition, it was found that at relatively low concentrations each iodide ion affects the Raman spectrum of roughly 22 surrounding water molecules, indicating that the influence of iodide extends beyond the first solvation shell. Our results demonstrate that the Raman bending vibration of water is a sensitive probe, providing new insights into anion solvation in aqueous environments.
Impact of enhanced ozone deposition and halogen chemistry on model performance
In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...
NASA Astrophysics Data System (ADS)
Mourya, Punita; Singh, Praveen; Rastogi, R. B.; Singh, M. M.
2016-09-01
The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H2SO4 was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.
Changsheng Li; Jianbo Cui
2004-01-01
A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...
Bertrand F. Nero; Richard P. Maiers; Janet C. Dewey; Andrew J. Londo
2010-01-01
Increasing abandonment of marginal agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) and rising global atmospheric carbon dioxide (CO2) levels create a need for better options of achieving rapid afforestation and enhancing both below and aboveground carbon sequestration. This study examines the responses of six mixtures of bottomland hardwood species...
NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies
Hirose, Tetsuro; Virnicchi, Giorgio; Tanigawa, Akie; Naganuma, Takao; Li, Ruohan; Kimura, Hiroshi; Yokoi, Takahide; Nakagawa, Shinichi; Bénard, Marianne; Fox, Archa H.; Pierron, Gérard
2014-01-01
Paraspeckles are subnuclear structures formed around nuclear paraspeckle assembly transcript 1 (NEAT1)/MENε/β long noncoding RNA (lncRNA). Here we show that paraspeckles become dramatically enlarged after proteasome inhibition. This enlargement is mainly caused by NEAT1 transcriptional up-regulation rather than accumulation of undegraded paraspeckle proteins. Of interest, however, using immuno–electron microscopy, we find that key paraspeckle proteins become effectively depleted from the nucleoplasm by 50% when paraspeckle assembly is enhanced, suggesting a sequestration mechanism. We also perform microarrays from NEAT1-knockdown cells and find that NEAT1 represses transcription of several genes, including the RNA-specific adenosine deaminase B2 (ADARB2) gene. In contrast, the NEAT1-binding paraspeckle protein splicing factor proline/glutamine-rich (SFPQ) is required for ADARB2 transcription. This leads us to hypothesize that ADARB2 expression is controlled by NEAT1-dependent sequestration of SFPQ. Accordingly, we find that ADARB2 expression is strongly reduced upon enhanced SFPQ sequestration by proteasome inhibition, with concomitant reduction in SFPQ binding to the ADARB2 promoter. Finally, NEAT1−/− fibroblasts are more sensitive to proteasome inhibition, which triggers cell death, suggesting that paraspeckles/NEAT1 attenuates the cell death pathway. These data further confirm that paraspeckles are stress-responsive nuclear bodies and provide a model in which induced NEAT1 controls target gene transcription by protein sequestration into paraspeckles. PMID:24173718
Enhanced convective dissolution of CO2 in reactive systems
NASA Astrophysics Data System (ADS)
de Wit, Anne; Thomas, Carelle; Loodts, Vanessa; Knaepen, Bernard; Rongy, Laurence
2017-11-01
To decrease the atmospheric concentration of CO2, sequestration techniques whereby this greenhouse gas is injected in saline aquifers present in soils are considered. Upon contact with the aquifer, the CO2 can dissolve in it and subsequently be mineralized via reactions with minerals like carbonates for instance. We investigate both experimentally and theoretically the influence of such reactions on the convective dissolution of CO2. Experiments analyze convective patterns developing when gaseous CO2 is put in contact with aqueous solutions of reactants in a confined vertical Hele-Shaw geometry. We show that the reactions can enhance convection and modify the nonlinear dynamics of density fingering. Numerical simulations further show that reactions can increase the flux of dissolving CO2, inducing a more efficient sequestration. Emphasis will be put on the control of the convective pattern properties by varying the very nature of the chemicals. Implications on the choice of optimal sequestration sites will be discussed.
To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd
2010-09-08
Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.
Lack of enhanced photocatalytic formation of iodine on particulate semiconductor mixtures.
Karunakaran, C; Anilkumar, P; Vinayagamoorthy, P
2012-12-01
Under UV-A light illumination, formation of iodine from iodide ion on the surfaces of anatase TiO(2), ZnO, Fe(2)O(3), CeO(2), MoO(3), Bi(2)O(3), and Nb(2)O(5) increases with the concentration of iodide ion, airflow rate and light intensity and conform to the Langmuir-Hinshelwood kinetic model. Measurement of the particle size of the semiconductor oxides by light scattering method and deduction of the same from the determined specific surface area show that the oxide particles agglomerate in suspension. However, mixtures of any two listed particulate semiconductors do not show enhanced photocatalytic formation of iodine indicating absence of interparticle charge transfer. The results are rationalized. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Russell, Thomas
We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R. Zhu (Peking University) and was supported by the Office of Naval Research under contract N00014-15-1-2244xx.
Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.
Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J
2015-08-01
It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.
TRPM7 is regulated by halides through its kinase domain
Yu, Haijie; Zhang, Zheng; Lis, Annette; Penner, Reinhold; Fleig, Andrea
2013-01-01
Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells. PMID:23471296
NASA Astrophysics Data System (ADS)
Walker, A. P.; Zaehle, S.; Medlyn, B. E.; De Kauwe, M. G.; Asao, S.; Hickler, T.; Lomas, M. R.; Pak, B. C.; Parton, W. J.; Quegan, S.; Ricciuto, D. M.; Wang, Y.; Warlind, D.; Norby, R. J.
2013-12-01
Predicting forest carbon (C) sequestration requires understanding the processes leading to rates of biomass C accrual (net primary productivity; NPP) and loss (turnover). In temperate forest ecosystems, experiments and models have shown that feedback via progressive nitrogen limitation (PNL) is a key driver of NPP responses to elevated CO[2]. In this analysis we show that while still important, PNL may not be as severe a constraint on NPP as indicated by some studies and that the response of turnover to elevated CO[2] could be as important, especially in the near to medium term. Seven terrestrial ecosystem and biosphere models that couple C and N cycles with varying assumptions and complexity were used to simulate responses over 300 years to a step change in CO[2] to 550 ppmv. Simulations were run for the evergreen needleleaf Duke forest and the deciduous broadleaf Oak Ridge forest FACE experiments. Whether or not a model simulated PNL under elevated CO[2] depended on model structure and the timescale of observation. Avoiding PNL depended on mechanisms that reduced ecosystem N losses. The two key assumptions that reduced N losses were whether plant N uptake was based on plant N demand and whether ecosystem N losses (volatisation and leaching) were dependent on the concentration of N in the soil solution. Assumptions on allocation and turnover resulted in very different responses of turnover to elevated CO[2], which had profound implications for C sequestration. For example, at equilibrium CABLE2.0 predicted an increase in vegetation C sequestration despite decreased NPP, while O-CN predicted much less vegetation C sequestration than would be expected from predicted NPP increases alone. Generally elevated CO[2] favoured a shift in C partitioning towards longer lived wood biomass, which increased vegetation turnover and enhanced C sequestration. Enhanced wood partitioning was overlaid by increases or decreases in self-thinning depended on whether self-thinning was simply a function of forest structure, or structure and NPP. Self-thinning assumptions altered equilibrium C sequestration and were extremely important for the immediate transient response and near-term prediction of C sequestration.
Use of the thyrocyte sodium iodide symporter as the basis for a perchlorate cell-based assay.
MacAllister, Irene E; Jakoby, Michael G; Geryk, Bruce; Schneider, Roger L; Cropek, Donald M
2009-02-01
Perchlorates are strong oxidants widely employed in military and civilian energetic materials and recently have been scrutinized as persistent environmental pollutants. The perchlorate anion, ClO(4)(-), is a well-known and potent competitive inhibitor of iodide transport by the sodium iodide symporter (NIS) expressed in the basolateral membranes of thyroid follicular cells (thyrocytes). Iodide uptake by thyroid follicular cells is rapid and reproducible. The competitive radiotransporter assay in this study shows promise as a rapid and convenient method to assay for ClO(4)(-) in water samples at the nM level. This work describes the initial efforts to define the assay conditions that enhance NIS selectivity for ClO(4)(-). Experiments of 10 min co-incubation of ClO(4)(-) and (125)I(-) demonstrate a more significant effect on (125)I(-) transport, with a quantifiable ClO(4)(-) concentration range of 50 nM (5 ppb) to 2 microM (200 ppb), and IC(50) of 180 nM (18 ppb), nearly three-fold lower than previous reports. Since the IC(50) in our assay for other known competitor anions (SCN(-), ClO(3)(-), NO(3)(-)) remains unchanged from previous research, the increased sensitivity for ClO(4)(-) also produces a three-fold enhancement in selectivity. In addition to the possible applicability of the thyrocyte to the development of a cellular perchlorate biosensor, we propose that the high affinity of the NIS for ClO(4)(-) also creates the potential for exploiting this membrane protein as a selective, sensitive, and broadly applicable biomechanical mechanism for controlled movement and concentration of perchlorate.
The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships
Carr, T.R.; Rich, P.M.; Bartley, J.D.
2007-01-01
The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.
Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks
NASA Astrophysics Data System (ADS)
Murrell, G. R.; Thyne, G. D.
2007-12-01
Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.
A Multi-Level Approach to Outreach for Geologic Sequestration Projects
Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.
2009-01-01
Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.
Ziros, Panos G; Habeos, Ioannis G; Chartoumpekis, Dionysios V; Ntalampyra, Eleni; Somm, Emmanuel; Renaud, Cédric O; Bongiovanni, Massimo; Trougakos, Ioannis P; Yamamoto, Masayuki; Kensler, Thomas W; Santisteban, Pilar; Carrasco, Nancy; Ris-Stalpers, Carrie; Amendola, Elena; Liao, Xiao-Hui; Rossich, Luciano; Thomasz, Lisa; Juvenal, Guillermo J; Refetoff, Samuel; Sykiotis, Gerasimos P
2018-06-01
The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.
Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery
Verma, Mahendra K.
2017-07-17
PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.
Chen, J M; Thomas, S C; Yin, Y; Maclaren, V; Liu, J; Pan, J; Liu, G; Tian, Q; Zhu, Q; Pan, J-J; Shi, X; Xue, J; Kang, E
2007-11-01
This article serves as an introduction to this special issue, "China's Forest Carbon Sequestration", representing major results of a project sponsored by the Canadian International Development Agency and the Chinese Academy of Sciences. China occupies a pivotal position globally as a principle emitter of carbon dioxide, as host to some of the world's largest reforestation efforts, and as a key player in international negotiations aimed at reducing global greenhouse gas emission. The goals of this project are to develop remote sensing approaches for quantifying forest carbon balance in China in a transparent manner, and information and tools to support land-use decisions for enhanced carbon sequestration (CS) that are science based and economically and socially viable. The project consists of three components: (i) remote sensing and carbon modeling, (ii) forest and soil assessment, and (iii) integrated assessment of the socio-economic implications of CS via forest management. Articles included in this special issue are highlights of the results of each of these components.
Okyay, Tugba Onal; Rodrigues, Debora F
2015-03-01
In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kroeger, Kevin D.; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu
2017-01-01
Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as “Blue Carbon”), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.
NASA Astrophysics Data System (ADS)
Wu, X.-L.; Wu, H.; Wang, Z.-M.; Aizawa, H.; Guo, J.; Chu, Y.-H.
2017-04-01
Herein, debris particulates of nanoporous silver (np-Ag) were synthesised by a dealloying method, and their integration behaviour and surface-enhanced Raman scattering (SERS) properties during iodine functionalisation were examined. It was found that the dealloyed np-Ag debris particulates gradually assembled to form rigid nanoporous microspheres comprising Ag nano-ligaments due to mechanical collisions during iodine treatment. High-resolution transmission electron microscopy and X-ray photoelectron microscopy clearly showed the iodide surface of np-Ag, which was dotted with iodine or iodide ‘nanoislands’. The exceptional, and unexpected, integration and surface structures result in a highly enhanced localised surface plasmon resonance. Furthermore, the robust nanoporous microspheres can be employed individually as as-produced miniaturised electrodes to electrically enrich target molecules at parts-per-trillion levels, so as to achieve charge selectivity and superior detectability compared with the ordinary SERS effect.
Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Yang, Yi; Ma, Jun; Yu, Jing; Zhao, Xi
2018-06-04
Our recent study has demonstrated that iodide (I - ) can be easily and almost entirely oxidized to hypoiodous acid (HOI) but not to iodate by nonradical activation of peroxydisulfate (PDS) in the presence of a commercial carbon nanotube (CNT). In this work, the oxidation kinetics of phenolic compounds by the PDS/CNT system in the presence of I - were examined and potential formation of iodinated aromatic products was explored. Experimental results suggested that I - enhanced the transformation of six selected substituted phenols, primarily attributed to the generation of HOI that was considerably reactive toward these phenolic compounds. More significant enhancement was obtained at higher I - concentrations or lower pH values, while the change of PDS or CNT dosages exhibited a slight impact on the enhancing effect of I - . Product analyses with liquid chromatography tandem mass spectrometry clearly revealed the production of iodinated aromatic products when p-hydroxybenzoic acid (p-HBA, a model phenol) was treated by the PDS/CNT/I - system in both synthetic and real waters. Their formation pathways probably involved the substitution of HOI on aromatic ring of p-HBA, as well as the generation of iodinated p-HBA phenoxyl radicals and subsequent coupling of these radicals. Given the considerable toxicity and harmful effects of these iodinated aromatic products, particular attention should be paid when the novel PDS/CNT oxidation technology is applied for treatment of phenolic contaminants in iodide-containing waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Xiao; Gu, Huaimin; Liu, Fang
2011-01-01
The surface enhanced Raman scattering (SERS) spectrum of methylene blue (MB) was studied when adding a range of halideions to borohydride-reduced silver colloid. The halideions such as chloride, bromide and iodide were added as aggregating agents to study the effects of halideions on SERS spectroscopy of MB and observe which halideion gives the greatest enhancement for borohydride-reduced silver colloids. The SERS spectra of MB were also detected over a wide range of concentrations of halideions to find the optimum concentration of halideions for SERS enhancement. From the results of this study, the intensity of SERS signal of MB was enhanced significantly when adding halideions to the colloid. Among the three kinds of halideions, chloride gives the greatest enhancement on SERS signal. The enhancement factors for MB with optimal concentration of chloride, bromide and iodide are 3.44×104, 2.04×104, and 1.0×104, respectively. The differences of the SERS spectra of MB when adding different kinds and concentrations of halideions to the colloid may be attributed to the both effects of extent of aggregation of the colloid and the modification of silver surface chemistry. The purpose of this study is to further investigate the effect of halideions on borohydride-reduced silver colloid and to make the experimental conditions suitable for detecting some analytes in high efficiency on rational principles.
LAW, ROYAL K.; SCHIER, JOSH G.; MARTIN, COLLEEN A.; OLIVARES, DAGNY E.; THOMAS, RICHARD G.; BRONSTEIN, ALVIN C.; CHANG, ARTHUR S.
2015-01-01
Background In March of 2011, an earthquake struck Japan causing a tsunami that resulted in a radiological release from the damaged Fukushima Daiichi nuclear power plant. Surveillance for potential radiological and any iodine/iodide product exposures was initiated on the National Poison Data System (NPDS) to target public health messaging needs within the United States (US). Our objectives are to describe self-reported exposures to radiation, potassium iodide (KI) and other iodine/iodide products which occurred during the US federal response and discuss its public health impact. Methods All calls to poison centers associated with the Japan incident were identified from March 11, 2011 to April 18, 2011 in NPDS. Exposure, demographic and health outcome information were collected. Calls about reported radiation exposures and KI or other iodine/iodide product ingestions were then categorized with regard to exposure likelihood based on follow-up information obtained from the PC where each call originated. Reported exposures were subsequently classified as probable exposures (high likelihood of exposure), probable non-exposures (low likelihood of exposure), and suspect exposure (unknown likelihood of exposure). Results We identified 400 calls to PCs associated with the incident, with 340 information requests (no exposure reported) and 60 reported exposures. The majority (n = 194; 57%) of the information requests mentioned one or more substances. Radiation was inquired about most frequently (n = 88; 45%), followed by KI (n = 86; 44%) and other iodine/iodide products (n = 47; 24%). Of the 60 reported exposures, KI was reported most frequently (n = 25; 42%), followed by radiation (n = 22; 37%) and other iodine/iodide products (n = 13; 22%). Among reported KI exposures, most were classified as probable exposures (n = 24; 96%); one was a probable non-exposure. Among reported other iodine/iodide product exposures, most were probable exposures (n = 10, 77%) and the rest were suspect exposures (n = 3; 23%). The reported radiation exposures were classified as suspect exposures (n = 16, 73%) or probable non-exposures (n = 6; 27%). No radiation exposures were classified as probable exposures. A small number of the probable exposures to KI and other iodide/iodine products reported adverse signs or symptoms (n = 9; 26%). The majority of probable exposures had no adverse outcomes (n = 28; 82%). These data identified a potential public health information gap regarding KI and other iodine/iodide products which was then addressed through public health messaging activities. Conclusion During the Japan incident response, surveillance activities using NPDS identified KI and other iodine/iodide products as potential public health concerns within the US, which guided CDC’s public health messaging and communication activities. Regional PCs can provide timely and additional information during a public health emergency to enhance data collected from surveillance activities, which in turn can be used to inform public health decision-making. PMID:23043524
Law, Royal K; Schier, Josh G; Martin, Colleen A; Olivares, Dagny E; Thomas, Richard G; Bronstein, Alvin C; Chang, Arthur S
2013-01-01
In March of 2011, an earthquake struck Japan causing a tsunami that resulted in a radiological release from the damaged Fukushima Daiichi nuclear power plant. Surveillance for potential radiological and any iodine/iodide product exposures was initiated on the National Poison Data System (NPDS) to target public health messaging needs within the United States (US). Our objectives are to describe self-reported exposures to radiation, potassium iodide (KI) and other iodine/iodide products which occurred during the US federal response and discuss its public health impact. All calls to poison centers associated with the Japan incident were identified from March 11, 2011 to April 18, 2011 in NPDS. Exposure, demographic and health outcome information were collected. Calls about reported radiation exposures and KI or other iodine/iodide product ingestions were then categorized with regard to exposure likelihood based on follow-up information obtained from the PC where each call originated. Reported exposures were subsequently classified as probable exposures (high likelihood of exposure), probable non-exposures (low likelihood of exposure), and suspect exposure (unknown likelihood of exposure). We identified 400 calls to PCs associated with the incident, with 340 information requests (no exposure reported) and 60 reported exposures. The majority (n = 194; 57%) of the information requests mentioned one or more substances. Radiation was inquired about most frequently (n = 88; 45%), followed by KI (n = 86; 44%) and other iodine/iodide products (n = 47; 24%). Of the 60 reported exposures, KI was reported most frequently (n = 25; 42%), followed by radiation (n = 22; 37%) and other iodine/iodide products (n = 13; 22%). Among reported KI exposures, most were classified as probable exposures (n = 24; 96%); one was a probable non-exposure. Among reported other iodine/iodide product exposures, most were probable exposures (n = 10, 77%) and the rest were suspect exposures (n = 3; 23%). The reported radiation exposures were classified as suspect exposures (n = 16, 73%) or probable non-exposures (n = 6; 27%). No radiation exposures were classified as probable exposures. A small number of the probable exposures to KI and other iodide/iodine products reported adverse signs or symptoms (n = 9; 26%). The majority of probable exposures had no adverse outcomes (n = 28; 82%). These data identified a potential public health information gap regarding KI and other iodine/iodide products which was then addressed through public health messaging activities. During the Japan incident response, surveillance activities using NPDS identified KI and other iodine/iodide products as potential public health concerns within the US, which guided CDC's public health messaging and communication activities. Regional PCs can provide timely and additional information during a public health emergency to enhance data collected from surveillance activities, which in turn can be used to inform public health decision-making.
Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing
2016-01-01
Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene–conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions. PMID:27386541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen
Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less
Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin
2017-10-18
The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH 3 NH 3 I; MAI), formamidinium iodide (CH(NH 2 ) 2 I; FAI), and cesium iodide (CsI)) in CH 3 NH 3 PbI 3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH 3 NH 3 PbI 3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI 3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI 3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm 2 ).
Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems
USDA-ARS?s Scientific Manuscript database
Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...
Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.
Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis
2014-12-01
This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Walker, William Andrew
In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.
Islam, Akand; Sun, Alexander Y.; Yang, Changbing
2016-04-20
We study the convection and mixing of CO 2 in a brine aquifer, where the spread of dissolved CO 2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO 2 saturation volume of the storage formation. Our results suggestmore » that the density increase of resident species causes significant enhancement in CO 2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO 2 sequestration.« less
Islam, Akand; Sun, Alexander Y; Yang, Changbing
2016-04-20
We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.
USDA-ARS?s Scientific Manuscript database
Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...
Hydrogen Peroxide-Dependent Uptake of Iodine by Marine Flavobacteriaceae Bacterium Strain C-21▿
Amachi, Seigo; Kimura, Koh; Muramatsu, Yasuyuki; Shinoyama, Hirofumi; Fujii, Takaaki
2007-01-01
The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I−). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I−. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae. PMID:17933915
2012-01-01
Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade’s kinase-phosphatase interaction design. PMID:22748295
2017-01-01
Metal halide perovskites such as methylammonium lead iodide (MAPbI3) are highly promising materials for photovoltaics. However, the relationship between the organic nature of the cation and the optoelectronic quality remains debated. In this work, we investigate the optoelectronic properties of fully inorganic vapour-deposited and spin-coated black-phase CsPbI3 thin films. Using the time-resolved microwave conductivity technique, we measure charge carrier mobilities up to 25 cm2/(V s) and impressively long charge carrier lifetimes exceeding 10 μs for vapour-deposited CsPbI3, while the carrier lifetime reaches less than 0.2 μs in the spin-coated samples. Finally, we show that these improved lifetimes result in enhanced device performance with power conversion efficiencies close to 9%. Altogether, these results suggest that the charge carrier mobility and recombination lifetime are mainly dictated by the inorganic framework rather than the organic nature of the cation. PMID:28852710
Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen
2017-10-19
In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.
NASA Astrophysics Data System (ADS)
Goodale, C. L.; Weiss, M.; Tonitto, C.; Stone, M.
2010-12-01
Atmospheric nitrogen has long been expected to increase forest carbon sequestration, by means of enhanced productivity and litter production. More recently, N deposition has received attention for its potential for inducing soil C sequestration by suppressing microbial decomposition. Here, we present a range of measurements and model projections of the effects of N additions on soil C dynamics in forest soils of the northeastern U.S. A review of field-scale measurements of soil C stocks suggests modest enhancements of soil C storage in long-term N addition studies. Measurements of forest floor material from six long-term N addition studies showed that N additions suppressed microbial biomass and oxidative enzyme activity across sites. Additional analyses on soils from two of these sites are exploring the interactive effects of temperature and N addition on the activity of a range of extracellular enzymes used for decomposition of a range of organic matter. Incubations of forest floor material from four of these sites showed inhibition of heterotrophic respiration by an average of 28% during the first week of incubation, although this inhibition disappeared after 2 to 11 months. Nitrogen additions had no significant effect on DOC loss or on the partitioning of soil C into light or heavy (mineral-associated) organic matter. Last, we have adapted a new model of soil organic matter decomposition for the PnET-CN model to assess the long-term impact of suppressed decomposition on C sequestration in various soil C pools.
NASA Astrophysics Data System (ADS)
Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi
2017-07-01
Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.
A novel role of topical iodine in skin: Activation of the Nrf2 pathway.
Ben-Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben-Sasson, Shmuel; Bianco-Peled, Havazelet; Kohen, Ron
2017-03-01
For a long time iodine has been used as an active dermal agent in the treatment of inflammatory, immune-mediated and infectious diseases. Moreover, topical iodine application has been reported to provide protection against sulfur-mustard-induced skin lesions, heat-induced and acid-induced skin burns in both haired guinea-pigs and mouse ear swelling models. However, the exact mechanism of action underlying these benefits of iodine has not yet been elucidated. In the current study, a novel mechanism of action by which iodine provides skin protection and relief, based on its electrophilic nature, is suggested. This study demonstrates that both iodine and iodide are capable of activating the Nrf2 pathway in human skin. As a result, skin protection against UVB-induced damage was acquired and the secretion of pro-inflammatory cytokines (IL-6, IL-8) from LPS-challenged skin was reduced. Iodide role in the enhanced activation of this pathway is demonstrated. The mode of action by which iodine and iodide activate the Nrf2 pathway is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Enhanced dissolved lipid production as a response to the sea surface warming
NASA Astrophysics Data System (ADS)
Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka
2018-04-01
The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.
Kelkar, Sharad; Carey, J. William; Dempsey, David; ...
2014-12-31
Assessment of potential CO 2 and brine leakage from wellbores is central to any consideration of the viability of geological CO 2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance.more » This study focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO 2 injection operations. The majority of the operational scenarios for CO 2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi-phase fluid flow and deformation in fractured porous media. FEHM has been developed extensively under projects on conventional/unconventional energy extraction (geothermal, oil, and gas), radionuclide and contaminant transport, watershed management, and CO 2 sequestration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, K.H. Jr.; Fehr, D.M.; Gelarden, R.T.
Salt intake is restricted under clinical conditions for which thiazide diuretics are customarily used. Dietary iodide intake offsets any effect of thiazide on iodide loss. However, our correlation coefficients relating Na+ to Cl- to I- excretion indicate that as thiazide administration or sodium chloride intake increases renal Na+ and Cl- excretion, I- reabsorption by the nephron coordinately decreases. Increased sodium chloride and water intake by the dog doubled I-excretion rates. Hydrochlorothiazide increased the sodium chloride and water enhanced I-excretion rate as much as eight-fold. Without added NaCl, hydrochlorothiazide increased the excretion rate of 131I by three- to eightfold, acutely. Withinmore » five to seven days after 131I oral administration, hydrochlorothiazide (1 or 2 mg/kg twice daily) doubled the rate of 131I disappearance from plasma, reduced the fecal output of 131I, and increased its rate of renal excretion. When hydrochlorothiazide was administered, as much 131I was excreted in the first 24 hours as occurred in 48 hours when sodium chloride and water were given without hydrochlorothiazide. Thiazide administration in customary clinical dosage twice a day with substantial sodium chloride and water for the first two days after exposure to 131I, should therefore facilitate the safe excretion of 131I. This accelerated removal of 131I might be enhanced even more if thyroid uptake of 131I is blocked by administration of potassium iodide, as judged by the greater 131I recovery from thyroidectomized dogs.« less
Potentized Mercuric chloride and Mercuric iodide enhance alpha-amylase activity in vitro.
Sukul, N C; De, A; Sukul, A; Sinhababu, S P
2002-10-01
Mercuric chloride 30c and Mercuric iodide 30c were prepared by successive dilution in 30 steps of 1:100 followed by sonication at 20KHz for 30s at each step. Both were prepared in two media: 90% ethanol and distilled water. Three preparations of Mercuric chloride 30 in water were used: 12-month old, 1-month old and 4-day old. The controls for the water and ethanol-water preparations were pure water 30c and 90% ethanol 30c, respectively. For the three water preparations there were three matched controls of water 30c of the same ages. Each potentized substance or its control was mixed with distilled water 1:100 before testing. Hydrolysis of starch by alpha-amylase was measured by the standard procedure after incubation for 15 min at 27 degrees C. Mercuric chloride 30c and Mercuric iodide 30c in both water and aqueous ethanol media, enhanced enzyme activity significantly, compared to their respective controls. Mercuric chloride 30c, prepared in water 12 months previously, produced no significant change in the enzyme activity compared to its control. We hypothesize that the structure of the active molecule imprinted on water polymers during the process of dynamization. The specifically structured water interacts with the active sites of alpha-amylase, modifying its activity. Ethanol molecules have large non-polar part stabilizing the water structure and thus retaining activity for a longer time.
Technical note: Examining ozone deposition over seawater
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Kang, Daiwen; Foley, Kristen; Schwede, Donna; Gantt, Brett; Mathur, Rohit
2016-09-01
Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic carbon, and bromide in seawater on ozone deposition. We perform a series of simulations using the hemispheric Community Multiscale Air Quality model for summer months in the Northern Hemisphere. Our results suggest that each chemical interaction enhances the ozone deposition velocity and decreases the atmospheric ozone mixing ratio over seawater. Iodide enhances the median deposition velocity over seawater by 0.023 cm s-1, dissolved organic carbon by 0.021 cm s-1, dimethylsulfide by 0.002 cm s-1, and bromide by ∼0.0006 cm s-1. Consequently, iodide decreases the median atmospheric ozone mixing ratio over seawater by 0.7 ppb, dissolved organic carbon by 0.8 ppb, dimethylsulfide by 0.1 ppb, and bromide by 0.02 ppb. In a separate model simulation, we account for the effect of dissolved salts in seawater on the Henry's law constant for ozone and find that it reduces the median deposition velocity by 0.007 cm s-1 and increases surface ozone mixing ratio by 0.2 ppb. The combined effect of these processes increases the median ozone deposition velocity over seawater by 0.040 cm s-1, lowers the atmospheric ozone mixing ratio by 5%, and slightly improves model performance relative to observations.
NASA Astrophysics Data System (ADS)
Kracher, Daniela
2017-11-01
Increase of forest areas has the potential to increase the terrestrial carbon (C) sink. However, the efficiency for C sequestration depends on the availability of nutrients such as nitrogen (N), which is affected by climatic conditions and management practices. In this study, I analyze how N limitation affects C sequestration of afforestation and how it is influenced by individual climate variables, increased harvest, and fertilizer application. To this end, JSBACH, the land component of the Earth system model of the Max Planck Institute for Meteorology is applied in idealized simulation experiments. In those simulations, large-scale afforestation increases the terrestrial C sink in the 21st century by around 100 Pg C compared to a business as usual land-use scenario. N limitation reduces C sequestration roughly by the same amount. The relevance of compensating effects of uptake and release of carbon dioxide by plant productivity and soil decomposition, respectively, gets obvious from the simulations. N limitation of both fluxes compensates particularly in the tropics. Increased mineralization under global warming triggers forest expansion, which otherwise is restricted by N availability. Due to compensating higher plant productivity and soil respiration, the global net effect of warming for C sequestration is however rather small. Fertilizer application and increased harvest enhance C sequestration as well as boreal expansion. The additional C sequestration achieved by fertilizer application is offset to a large part by additional emissions of nitrous oxide.
Cook, Seth L; Ma, Zhao
2014-02-15
Rangelands can be managed to increase soil carbon and help mitigate emissions of carbon dioxide. This study assessed Utah rangeland owner's environmental values, beliefs about climate change, and awareness of and attitudes towards carbon sequestration, as well as their perceptions of potential policy strategies for promoting carbon sequestration on private rangelands. Data were collected from semi-structured interviews and a statewide survey of Utah rangeland owners, and were analyzed using descriptive and bivariate statistics. Over two-thirds of respondents reported some level of awareness of carbon sequestration and a generally positive attitude towards it, contrasting to their lack of interest in participating in a relevant program in the future. Having a positive attitude was statistically significantly associated with having more "biocentric" environmental values, believing the climate had been changing over the past 30 years, and having a stronger belief of human activities influencing the climate. Respondents valued the potential ecological benefits of carbon sequestration more than the potential financial or climate change benefits. Additionally, respondents indicated a preference for educational approaches over financial incentives. They also preferred to work with a private agricultural entity over a non-profit or government entity on improving land management practices to sequester carbon. These results suggest potential challenges for developing technically sound and socially acceptable policies and programs for promoting carbon sequestration on private rangelands. Potential strategies for overcoming these challenges include emphasizing the ecological benefits associated with sequestering carbon to appeal to landowners with ecologically oriented management objectives, enhancing the cooperation between private agricultural organizations and government agencies, and funneling resources for promoting carbon sequestration into existing land management and conservation programs that may produce carbon benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E
2014-04-08
Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO 2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H 2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H 2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO 2 absorbed and 4 mg of CO 2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO 2 fixed as insoluble carbonates. Considering the additional economic benefits of H 2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO 2 sequestration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, G.K.
ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.
Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration
NASA Astrophysics Data System (ADS)
McNulty, S.; Treasure, E.
2017-12-01
The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).
Saouma, F O; Stoumpos, C C; Wong, J; Kanatzidis, M G; Jang, J I
2017-11-23
In the PDF version of this article, Eq. 5 is missing all elements after the equals sign. The correct version of Eq. 5 is given below. The HTML version of the paper was correct from the time of publication.[Formula: see text].
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, M.; Son, Y.; Lee, W. K.
2017-12-01
Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported by Korean Ministry of Environment (2014001310008).
21 CFR 520.763a - Dithiazanine iodide tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide tablets. 520.763a Section 520... iodide tablets. (a) Chemical name. 3-Ethyl-2-[5-(3-ethyl - 2 - benzothiazolinylidene) - 1,3 - pentadienyl]-benzothiazolium iodide. (b) Specifications. Dithiazanine iodide tablets contain 10 milligrams, 50 milligrams, 100...
21 CFR 172.375 - Potassium iodide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely...
Zhao, Yongcun; Wang, Meiyan; Hu, Shuijin; Zhang, Xudong; Ouyang, Zhu; Zhang, Ganlin; Huang, Biao; Zhao, Shiwei; Wu, Jinshui; Xie, Deti; Zhu, Bo; Yu, Dongsheng; Pan, Xianzhang; Xu, Shengxiang; Shi, Xuezheng
2018-04-17
China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha -1 in 1980 to 32.9 Mg C ha -1 in 2011, representing a net increase of 140 kg C ha -1 year -1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.
Verma, Mahendra K.; Warwick, Peter D.
2011-01-01
The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.
NASA Astrophysics Data System (ADS)
Steiner, Bruce; van den Berg, Lodewijk; Laor, Uri
1999-10-01
Wafers from mercuric iodide crystals grown in microgravity on two occasions have previously been found to be characterized by a higher hole mobility-lifetime product, which enables energy dispersive radiation detectors with superior resolution. In the present work, we have identified the specific structural modifications that are responsible for this enhanced performance. As a result of this study, the performance of terrestrial wafers also has been improved but not yet to the level of wafers grown in microgravity. High resolution synchrotron x-ray diffraction images of a series of wafers, including those grown both in microgravity and on the ground, reveal two principal types of structural changes that are interrelated. One of these, arrays of inclusions, affects performance far more strongly than the other, variation in lattice orientation. Inclusions can be formed either from residual impurities or in response to deviations from ideal stoichiometry. The formation of both types is facilitated by gravity-driven convection during growth. As the level of inclusions is reduced, through growth from material of higher purity, through the achievement of balanced stoichiometry, or by suppression of convection mixing during crystal growth, the hole mobility-lifetime product is enhanced in spite of an accompanying decreased uniformity in lattice orientation. Sixfold enhancement in the performance of x- and γ-ray detectors has been accomplished to date. Further augmentation in performance appears likely.
Erosion of soil organic carbon: implications for carbon sequestration
Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.
2009-01-01
Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.
GRACEnet: addressing policy needs through coordinated cross-location research
Jawson, Michael D.; Walthall, Charles W.; Shafer, Steven R.; Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.
2012-01-01
GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) was conceived to build upon ongoing USDA Agricultural Research Service (ARS) research to improve soil productivity, while addressing the challenges and opportunities of interest in C sequestration from a climate change perspective. The vision for GRACEnet was and remains: Knowledge and information used to implement scientifically based agricultural management practices from the field to national policy scales on C sequestration, greenhouse gas (GHG) emissions, and environmental benefits. The national focus of GRACEnet uses a standardized approach by ARS laboratories and university and land manager (e.g. farmer and rancher) cooperators to assess C sequestration and GHG emission from different crop and grassland systems. Since 2002, GRACEnet has significantly expanded GHG mitigation science and delivered usable information to agricultural research and policy organizations. Recent developments suggest GRACEnet will have international impact by contributing leadership and technical guidance for the Global Research Alliance on Agricultural Greenhouse Gases.
Fisher, W.; Wang, Jian; George, Nysia I.; Gearhart, Jeffery M.; McLanahan, Eva D.
2016-01-01
The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency. PMID:26930410
Fisher, W; Wang, Jian; George, Nysia I; Gearhart, Jeffery M; McLanahan, Eva D
2016-01-01
The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children's Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150-180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29-32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.
Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor
2010-01-15
An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.
Doi, Hisashi
2015-03-01
Prof. Bengt Långström is a pioneer in the field of chemistry-driven positron emission tomography (PET) imaging. He has developed a variety of excellent radiolabeling methodologies using the methods of organic chemistry, with the aim of widening the potential of PET in the study of life. Among his groundbreaking achievements in (11) C radiochemistry, there is the discovery of the Pd-mediated rapid cross-coupling reaction using [(11) C]methyl iodide. It was first reported by his Uppsala group in 1994-1995 and was further investigated by his and other groups with a view of enhancing its generality and practicability. This reaction is currently considered one of the basic methods for (11) C-labeling of low-weight organic compounds. This paper presents a short summary of the background and the development of Pd-mediated rapid cross-couplings of [(11) C]methyl iodide, with a focus not only on organostannanes, but also on organoboranes, organozincs, and terminal acetylene compounds. All these reactions have proven to be dependable (11) C-labeling methodologies that use chemically reliable carbon-carbon bond formation reactions. Copyright © 2015 John Wiley & Sons, Ltd.
Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans
2014-11-12
A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.
Sari Palmroth; Ram Oren; Heather R. McCarthy; Kurt H. Johnsen; Adrien C. Finzi; John R. Butnor; Michael G. Ryan; William H. Schlesinger
2006-01-01
The partitioning among carbon (C) pools of the extra C captured under elevated atmospheric CO2 concentration ([CO2]) determines the enhancement in C sequestration, yet no clear partitioning rules exist. Here, we used first principles and published data from four free-air CO2 enrichment (FACE)...
NASA Astrophysics Data System (ADS)
Yu, Tingting; Qi, Yisong; Wang, Jianru; Feng, Wei; Xu, Jianyi; Zhu, Jingtan; Yao, Yingtao; Gong, Hui; Luo, Qingming; Zhu, Dan
2016-08-01
The developed optical clearing methods show great potential for imaging of large-volume tissues, but these methods present some nonnegligible limitations such as complexity of implementation and long incubation times. In this study, we tried to screen out rapid optical clearing agents by means of molecular dynamical simulation and experimental demonstration. According to the optical clearing potential of sugar and sugar-alcohol, we further evaluated the improvement in the optical clearing efficacy of mouse brain samples, imaging depth, fluorescence preservation, and linear deformation. The results showed that drops of sorbitol, sucrose, and fructose could quickly make the mouse brain sample transparent within 1 to 2 min, and induce about threefold enhancement in imaging depth. The former two could evidently enhance the fluorescence intensity of green fluorescent protein (GFP) and prodium iodide (PI) nuclear dye. Fructose could significantly increase the fluorescence intensity of PI, but slightly decrease the fluorescence intensity of GFP. Even though the three agents caused some shrinkage in samples, the contraction in horizontal and longitudinal directions are almost the same.
Dadachova, E; Bouzahzah, B; Zuckier, L S; Pestell, R G
2002-01-01
The sodium-iodide symporter (NIS), which transports iodine into the cell, is expressed in thyroid tissue and was recently found to be expressed in approximately 80% of human breast cancers but not in healthy breast tissue. These findings raised the possibility that therapeutics targeting uptake by NIS may be used for breast cancer treatment. To increase the efficacy of such therapy it would be ideal to identify a radioactive therapy with enhanced local emission. The feasibility of using the powerful beta-emitting radiometal (188)Re in the form of (188)Re-perrhenate was therefore compared with 131I for treatment of NIS-expressing mammary tumors. In the current studies, using a xenografted breast cancer model induced by the ErbB2 oncogene in nude mice, (188)Re-perrhenate exhibited NIS-dependent uptake into the mammary tumor. Dosimetry calculations in the mammary tumor demonstrate that (188)Re-perrhenate is able to deliver a dose 4.5 times higher than (131)I suggesting it may provide enhanced therapeutic efficacy.
Asmussen, R. Matthew; Matyas, Josef; Qafoku, Nikolla P.; ...
2018-05-01
Here, one of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t 1/2 = 1.57 × 10 7 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (Imore » –) or iodate (IO 3 –). Also tested was the selectivity of AgAero towards I – in the presence of other halide anions. AgAero exhibited fast and complete removal of I – from DIW, slower but complete removal of I – from WTP off-gas simulants, preferred removal of I – over Br – and Cl –, and it demonstrated ability to remove IO 3 – through reduction to I –.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmussen, R. Matthew; Matyas, Josef; Qafoku, Nikolla P.
Here, one of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t 1/2 = 1.57 × 10 7 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (Imore » –) or iodate (IO 3 –). Also tested was the selectivity of AgAero towards I – in the presence of other halide anions. AgAero exhibited fast and complete removal of I – from DIW, slower but complete removal of I – from WTP off-gas simulants, preferred removal of I – over Br – and Cl –, and it demonstrated ability to remove IO 3 – through reduction to I –.« less
Asmussen, R Matthew; Matyáš, Josef; Qafoku, Nikolla P; Kruger, Albert A
2018-05-01
One of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t 1/2 = 1.57 × 10 7 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (I - ) or iodate (IO 3 - ). Also tested was the selectivity of AgAero towards I - in the presence of other halide anions. AgAero exhibited fast and complete removal of I - from DIW, slower but complete removal of I - from WTP off-gas simulants, preferred removal of I - over Br - and Cl - , and it demonstrated ability to remove IO 3 - through reduction to I - . Copyright © 2018 Elsevier B.V. All rights reserved.
Carulli, G; Lazzeri, E; Lagomarsini, G; Zucca, A; Cannizzo, E; Riccioni, R; Petrini, M
2007-01-01
A 55-year-old female was admitted with fever which followed an episode of pseudomembranous colitis. Despite an accurate clinical investigation, there was no evidence for specific sites of infection. Remission of fever was not obtained with antibiotic therapy (gentamycin plus carbepenem) and progressive neutropenia was observed. Neutrophils fell to 0.3 x 10(9)/1. The diagnostic approach, including a bone marrow aspirate, excluded mechanisms leading to impaired neutrophil production, and in the suspect of increased neutrophil sequestration/destruction, whole-body scintigraphy with (99m)technetium-hexamethylpropyleneamineoxime ((99m)Tc-HMPAO)-labeled autologous leukocytes was performed. As a result, a site of leukocyte sequestration localized at the medium lobe of the right lung was detected. In an attempt to enhance neutrophil functions and achieve remission of infection, recombinant human granulocyte colony-stimulating factor (Filgrastim, Granulokine 30, Roche) at the dosage of 300 microg/day, subcutaneously, was added. As a results, fever disappeared in three days, but neutrophil recovery was slower, and normalization of the absolute neutrophil count (ANC) was obtained on day +7. The results obtained in this peculiar case of neutropenia, and the kinetics of both fever and ANC, suggest the possible combination of neutrophil function enhancement and an anti-inflammatory effect of rhG-CSF.
Mitigation potential of soil carbon management overestimated by neglecting N2O emissions
NASA Astrophysics Data System (ADS)
Lugato, Emanuele; Leip, Adrian; Jones, Arwyn
2018-03-01
International initiatives such as the `4 per 1000' are promoting enhanced carbon (C) sequestration in agricultural soils as a way to mitigate greenhouse gas emissions1. However, changes in soil organic C turnover feed back into the nitrogen (N) cycle2, meaning that variation in soil nitrous oxide (N2O) emissions may offset or enhance C sequestration actions3. Here we use a biogeochemistry model on approximately 8,000 soil sampling locations in the European Union4 to quantify the net CO2 equivalent (CO2e) fluxes associated with representative C-mitigating agricultural practices. Practices based on integrated crop residue retention and lower soil disturbance are found to not increase N2O emissions as long as C accumulation continues (until around 2040), thereafter leading to a moderate C sequestration offset mostly below 47% by 2100. The introduction of N-fixing cover crops allowed higher C accumulation over the initial 20 years, but this gain was progressively offset by higher N2O emissions over time. By 2060, around half of the sites became a net source of greenhouse gases. We conclude that significant CO2 mitigation can be achieved in the initial 20-30 years of any C management scheme, but after that N inputs should be controlled through appropriate management.
Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine
2018-05-04
The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.
Pelzl, Lisann; Elsir, Bhaeldin; Sahu, Itishri; Bissinger, Rosi; Singh, Yogesh; Sukkar, Basma; Honisch, Sabina; Schoels, Ludger; Jemaà, Mohamed; Lang, Elisabeth; Storch, Alexander; Hermann, Andreas; Stournaras, Christos; Lang, Florian
2017-01-01
The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, David A.; Harrison, William B.
The Michigan Geological Repository for Research and Education (MGRRE), part of the Department of Geosciences at Western Michigan University (WMU) at Kalamazoo, Michigan, established MichCarb—a geological carbon sequestration resource center by: • Archiving and maintaining a current reference collection of carbon sequestration published literature • Developing statewide and site-specific digital research databases for Michigan’s deep geological formations relevant to CO2 storage, containment and potential for enhanced oil recovery • Producing maps and tables of physical properties as components of these databases • Compiling all information into a digital atlas • Conducting geologic and fluid flow modeling to address specific predictivemore » uses of CO2 storage and enhanced oil recovery, including compiling data for geological and fluid flow models, formulating models, integrating data, and running the models; applying models to specific predictive uses of CO2 storage and enhanced oil recovery • Conducting technical research on CO2 sequestration and enhanced oil recovery through basic and applied research of characterizing Michigan oil and gas and saline reservoirs for CO2 storage potential volume, injectivity and containment. Based on our research, we have concluded that the Michigan Basin has excellent saline aquifer (residual entrapment) and CO2/Enhanced oil recovery related (CO2/EOR; buoyant entrapment) geological carbon sequestration potential with substantial, associated incremental oil production potential. These storage reservoirs possess at least satisfactory injectivity and reliable, permanent containment resulting from associated, thick, low permeability confining layers. Saline aquifer storage resource estimates in the two major residual entrapment, reservoir target zones (Lower Paleozoic Sandstone and Middle Paleozoic carbonate and sandstone reservoirs) are in excess of 70-80 Gmt (at an overall 10% storage efficiency factor; an approximately P50 probability range for all formations using DOE-NETL, 2010, storage resource estimation methodology). Incremental oil production resulting from successful implementation of CO2/EOR for the highest potential Middle Paleozoic reef reservoirs (Silurian, Northern Niagaran Reef trend) in Michigan is estimated at 130 to over 200 MMBO (22-33 Mm3). In addition, between 200 and 400 Mmt of CO2 could be sequestered in the course of successful deployment of CO2/EOR in the northern reef trend’s largest depleted (primary production) oil fields (those that have produced in excess of 500,000 BO; 80,000 m3of oil). • Effecting technology transfer to members of industry and governmental agencies by establishing an Internet Website at which all data, reports and results are accessible; publishing results in relevant journals; conducting technology transfer workshops as part of our role as the Michigan Center of the Petroleum Technology Transfer Council or any successor organization.« less
Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J
2016-01-01
Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist.
Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J
2016-01-01
Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3′-diethylthiatricarbocyanine iodide] and DTDC [3,3′-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist. PMID:26730189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advanced Resources International
2010-01-31
Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.« less
Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin
2013-12-01
Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid
2014-02-01
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.
Fukayama, H; Murakami, S; Nasu, M; Sugawara, M
1991-01-01
We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.
Iodide uptake by negatively charged clay interlayers?
Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng
2015-09-01
Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lysosomes as mediators of drug resistance in cancer.
Zhitomirsky, Benny; Assaraf, Yehuda G
2016-01-01
Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug resistance as well as novel modalities to overcome this chemoresistance. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.
2008-12-01
In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.
Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E
2015-03-01
The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.
Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)
NASA Astrophysics Data System (ADS)
Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.
2016-09-01
Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.
2006 SME annual meeting & 7th ICARD, March 26-29, 2006, St. Louis, Missouri. Pre-prints
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-07-01
Subjects covered by the papers include: enhanced coalbed methane through carbon sequestration, application of laser surface coatings for raw coal screen wear resistance enhancement, application of cross-flow teeter-bed separator in the US coal industry, arsenic removal from drinking water, modelling of fire spread along combustibles in a mine entry, coal's role in sustaining society, real time characterisation of frother bubble thin films, diesel emissions, overcoming stress measurements form underground coal amines, dry jigging coal, estimation of roof strata strength, improving screen bowl centrifuge performance, installation of ventilation shaft at a New Mexico coal mine, evaluation of feasibility of CO{sub 2}more » sequestration in deep coal, robot-human control interaction in mining operations, small mine and contractor safety, coal dust explosibility meter, US coal mine fatalities versus age of mine, and water and slurry bulkheads in underground coal mines.« less
40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...
The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency...
Use of an iodide-specific electrode to study lactoperoxidase-catalyzed iodination of l-tyrosine.
Threatte, R M; Fregly, M J; Field, F P; Jones, P K
1979-12-01
An in vitro method employing an iodide-specific electrode for monitoring lactoperoxidase-catalyzed iodination is described. The method utilized lactoperoxidase, potassium iodide, and a glucose--glucose oxidase system for the generation of hydrogen peroxide and l-tyrosine. As iodination of l-tyrosine proceeded, the free iodide concentration in solution decreased and was monitored by an iodide-specific electrode. The iodide electrode was reliable when compared to a 131I-method for measuring free iodide changes in solution. Increasing concentrations of resorcinol, a well-known inhibitor of thyroid peroxidase-catalyzed iodination, in the reaction mixture resulted in graded inhibition of the initial rate of lactoperoxidase-catalyzed l-tyrosine iodination. This in vitro system can be used to assess inhibitory activity of various antithyroid substances.
Phase 2 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-09-01
Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Revis, N W; McCauley, P; Holdsworth, G
1986-01-01
The importance of dietary iodide on the reported hypothyroid effect of drinking water disinfectants on thyroid function was investigated. Previous studies have also showed differences in the relative sensitivity of pigeons and rabbits to chlorinated water. Pigeons and rabbits were exposed for 3 months to diets containing high (950 ppb) or low (300 ppb) levels of iodide and to drinking water containing two levels of chlorine. Results showed that the high-iodide diet prevented the hypothyroid effect observed in pigeons given the low-iodide diet and chlorinated drinking water. Similar trends were observed in rabbits exposed to the same treatment; however, significant hypothyroid effects were not observed in this animal model. The factor associated with the observed effect of dietary iodide on the chlorine-induced change in thyroid function is unknown, as is the relative sensitivity of rabbits and pigeons to the effect of chlorine. Several factors may explain the importance of dietary iodide and the relative sensitivity of these species. For example, the iodine formed by the known reaction of chlorine with iodide could result in a decrease in the plasma level of iodide because of the relative absorption rates of iodide and iodine in the intestinal tract, and the various types and concentrations of chloroorganics (metabolites) formed in the diet following the exposure of various dietary constituents to chlorine could affect the thyroid function. The former factor was investigated in the present studies. Results do not confirm a consistent, significant reduction in the plasma level of iodide in rabbits and pigeons exposed to chlorinated water and the low-iodide diet. The latter factor is being investigated. PMID:3816728
2017-01-01
Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750
Poromechanical response of naturally fractured sorbing media
NASA Astrophysics Data System (ADS)
Kumar, Hemant
The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).
Atomic force microscopy of lead iodide crystal surfaces
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.
1994-03-01
Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.
Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine
Skinner, Nathan L.
1990-01-01
A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.
Iodide handling by the thyroid epithelial cell.
Nilsson, M
2001-01-01
Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.
Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew
1973-01-01
Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998
Zhang, Shuiqing; Huang, Shaomin; Li, Jianwei; Guo, Doudou; Lin, Shan; Lu, Guoan
2017-06-01
The carbon sequestration potential is affected by cropping system and management practices, but soil organic carbon (SOC) sequestration potential under fertilizations remains unclear in north China. This study examined SOC change, total C input to soil and, via integration of these estimates over years, carbon sequestration efficiency (CSE, the ratio of SOC change over C input) under no fertilization (control), chemical nitrogen fertilizer alone (N) or combined with phosphorus and potassium fertilizers (NP, NK, PK and NPK), or chemical fertilizers combined with low or high (1.5×) manure input (NPKM and 1.5NPKM). Results showed that, as compared with the initial condition, SOC content increased by 0.03, 0.06, 0.05, 0.09, 0.16, 0.26, 0.47 and 0.68 Mg C ha -1 year -1 under control, N, NK, PK, NP, NPK, NPKM and 1.5NPKM treatments respectively. Correspondingly, the C inputs of wheat and maize were 1.24, 1.34, 1.55, 1.33, 2.72, 2.96, 2.97 and 3.15 Mg ha -1 year -1 respectively. The long-term fertilization-induced CSE showed that about 11% of the gross C input was transformed into SOC pool. Overall, this study demonstrated that decade-long manure input combined with chemical fertilizers can maintain high crop yield and lead to SOC sequestration in north China. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Potential soil carbon sequestration in overgrazed grassland ecosystems
NASA Astrophysics Data System (ADS)
Conant, Richard T.; Paustian, Keith
2002-12-01
Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr-1), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr-1, most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.
Linking loss of sodium-iodide symporter expression to DNA damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyckesvärd, Madeleine Nordén; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg; Kapoor, Nirmal
Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression andmore » transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.« less
21 CFR 582.5634 - Potassium iodide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...
21 CFR 184.1634 - Potassium iodide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets the...
21 CFR 582.5634 - Potassium iodide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...
Can greening of aquaculture sequester blue carbon?
Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S
2017-05-01
Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.
Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E
2014-05-01
The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Verma, Mahendra K.
2015-01-01
The objective of this report is to provide basic technical information regarding the CO2-EOR process, which is at the core of the assessment methodology, to estimate the technically recoverable oil within the fields of the identified sedimentary basins of the United States. Emphasis is on CO2-EOR because this is currently one technology being considered as an ultimate long-term geologic storage solution for CO2 owing to its economic profitability from incremental oil production offsetting the cost of carbon sequestration.
Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin
Berger, P.M.; Roy, W.R.; Mehnert, E.
2009-01-01
The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.
Lakshmanan, Aparna; Doseff, Andrea I.; Ringel, Matthew D.; Saji, Motoyasu; Rousset, Bernard; Zhang, Xiaoli
2014-01-01
Background: Selectively increased radioiodine accumulation in thyroid cells by thyrotropin (TSH) allows targeted treatment of thyroid cancer. However, the extent of TSH-stimulated radioiodine accumulation in some thyroid tumors is not sufficient to confer therapeutic efficacy. Hence, it is of clinical importance to identify novel strategies to selectively further enhance TSH-stimulated thyroidal radioiodine accumulation. Methods: PCCl3 rat thyroid cells, PCCl3 cells overexpressing BRAFV600E, or primary cultured tumor cells from a thyroid cancer mouse model, under TSH stimulation were treated with various reagents for 24 hours. Cells were then subjected to radioactive iodide uptake, kinetics, efflux assays, and protein extraction followed by Western blotting against selected antibodies. Results: We previously reported that Akt inhibition increased radioiodine accumulation in thyroid cells under chronic TSH stimulation. Here, we identified Apigenin, a plant-derived flavonoid, as a reagent to further enhance the iodide influx rate increased by Akt inhibition in thyroid cells under acute TSH stimulation. Akt inhibition is permissive for Apigenin's action, as Apigenin alone had little effect. This action of Apigenin requires p38 MAPK activity but not PKC-δ. The increase in radioiodide accumulation by Apigenin with Akt inhibition was also observed in thyroid cells expressing BRAFV600E and in primary cultured thyroid tumor cells from TRβPV/PV mice. Conclusion: Taken together, Apigenin may serve as a dietary supplement in combination with Akt inhibitors to enhance therapeutic efficacy of radioiodine for thyroid cancer. PMID:24400871
Carbon Capture and Sequestration (CCS)
2009-06-19
tons of CO2 underground each year to help recover oil and gas resources (enhanced oil recovery , or EOR).1 Also, potentially large amounts of CO2 ... CO2 will be used for enhanced gas recovery at a nearby natural gas field. See http://www.vattenfall.com/www/co2_en/ co2_en/Gemeinsame_Inhalte...for enhanced oil recovery (EOR).18 Transporting CO2 in pipelines is similar to transporting petroleum products like natural gas and oil; it requires
Albero, R.; Cerdan, A.; Sanchez Franco, F.
1987-01-01
Hypothyroidism from iodide transport deficiency is a rare disease, especially when found in two affected siblings. Treatment with high doses of iodide has been recommended, but no long term results have been reported. Two siblings with congenital hypothyroidism due to total failure to transport iodide have been followed up during twelve and a half years of treatment with oral potassium iodide. Iodine doses varied between 10.3 and 22 mg/day, and serum total iodine concentrations between 100 and 210 micrograms/dl. Total triiodothyronine (T3), thyroxine (T4) and free T4 were in the normal range during the time of study. Basal thyroid stimulating hormones (TSH) and maximum TSH response to thyrotrophin releasing hormone (TRH) were also in the range of normal values. These data along with clinical findings confirmed the potential usefulness of iodine in hypothyroidism due to complete iodide transport defect. PMID:3451231
Perchlorate (ClO4-) competitively inhibits uptake of iodide by the sodium-iodide symporter (NIS) in laboratory animals and humans. NIS is found in many tissues, but is primarily responsible for sequestering iodide into the thyroid, enabling biosynthesis of thyroid hormones. The N...
21 CFR 184.1634 - Potassium iodide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...
21 CFR 184.1634 - Potassium iodide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...
21 CFR 184.1634 - Potassium iodide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...
21 CFR 184.1634 - Potassium iodide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...
Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok
2014-08-04
Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of themore » SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.« less
Effects of Excess Fluoride and Iodide on Thyroid Function and Morphology.
Jiang, Yaqiu; Guo, Xiujuan; Sun, Qiuyan; Shan, Zhongyan; Teng, Weiping
2016-04-01
Exposure to high levels of iodide in Cangzhou, Shandong Province, China has been associated with increased incidence of thyroid disease; however, whether fluoride can affect the thyroid remains controversial. To investigate the effects of excess fluoride, we evaluated thyroid gland structure and function in rats exposed to fluoride and iodide, either alone or in combination. Five-week-old Wistar rats (n = 160 total) were randomly divided into eight groups: three groups that were given excess fluoride (15, 30, or 60 ppm F); one group given excess iodide (1200 μg/L I); three groups given excess iodide plus fluoride (1200 μg/L I plus 15, 30, or 60 ppm F); and one control group. The serum concentrations of the thyroid hormones TT3 and TT4 on day 150 were significantly reduced for certain fluoride groups; however, no significant differences were observed in concentrations for the pituitary hormone TSH among any groups. Hematoxylin and eosin staining revealed that iodide causes an increase in the areas of the colloid lumens and a decrease in the diameters of epithelial cells and nuclei; however, fluoride causes an increase in nuclear diameters. The damage to follicular epithelial cells upon fluoride or iodide treatment was easily observed by transmission electron microscopy, but the effects were most dramatic upon treatment with both fluoride and iodide. These results suggest that iodide causes the most damage but that fluoride can promote specific changes in the function and morphology of the thyroid, either alone or in combination with iodide.
Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G
2014-08-21
Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, F.Y.; Rani, C.S.; Field, J.B.
Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide.more » Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or (1-14C)glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition.« less
Hilp, M; Senjuk, S
2001-06-01
USP 1995 (The United States Pharmacopeia, 23rd Edit., (1995), potassium iodide p. 1265, sodium iodide p. 1424), PH. EUR. 1997 (European Pharmacopoeia, third ed., Council of Europe, Strasbourg, (1997), potassium iodide p. 1367, sodium iodide p. 1493) and JAP 1996 (The Japanes Pharmacopoeia, 13th ed. (1996), potassium iodide p. 578, sodium iodide p. 630) determine iodide with the ICl-method (J. Am. Chem. Soc. 25 (1903) 756-761; Z. Anorg. Chem. 36 (1903) 76-83; Fresenius Z. Anal. Chem. 106 (1936) 12-23; Arzneibuch-Kommentar, Wissenschaftliche Erläuterungen zum Europäischen Arzneibuch, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Govi-Verlag - Pharmazeutischer Verlag GmbH, Eschborn, 12th suppl. (1999), K10 p. 2), using chloroform, which is toxic and hazardous to environment. Without the application of chlorinated hydrocarbons USP 2000 (The United State Pharmacopeia, 24th ed. (2000), potassium iodide p. 1368, sodium iodide p. 1535) and Brit 1999 (British Pharmacopoeia London, (1999), Appendix VIII C, p. A162) titrate iodide with the redox indicator amaranth. A titration with potentiometric indication giving two end-points at the step of I(2) and [ICl(2)](-) is described. Due to the high concentration of hydrochloric acid required for the ICl-method, the determination with DBH (1,3-dibromo-5,5-dimethylhydantoin; 1,3-dibromo-5,5-dimethyl-2,4-imidazolidinedione) can be recommended and is performed easily. Similarly, the iodide content of gallamine triethiodide may be analyzed with DBH by application of a visual two-phase titration in water and ethyl acetate or with potentiometric indication in a mixture of 2-propanol and water. During the removal of the excess of DBH 4-bromo-triethylgallamine (2,2',2"-[1-bromo-benzene-2,3,4-triyltris(oxy)]N,N,N-triethylethanium) is formed.
Sequestration of Martian CO2 by mineral carbonation
Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.
2013-01-01
Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2. PMID:24149494
Kell, Douglas B
2012-06-05
The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water.
Habitat characteristics provide insights of carbon storage in seagrass meadows.
Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge
2018-02-16
Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.
CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.
Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark
2016-07-19
Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.
Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.
Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H
2012-09-13
Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.
Nogueira, Marilise; Mora, Leticia; Enfissi, Eugenia M.A.; Bramley, Peter M.; Fraser, Paul D.
2013-01-01
Metabolic engineering of the carotenoid pathway in recent years has successfully enhanced the carotenoid contents of crop plants. It is now clear that only increasing biosynthesis is restrictive, as mechanisms to sequestrate these increased levels in the cell or organelle should be exploited. In this study, biosynthetic pathway genes were overexpressed in tomato (Solanum lycopersicum) lines and the effects on carotenoid formation and sequestration revealed. The bacterial Crt carotenogenic genes, independently or in combination, and their zygosity affect the production of carotenoids. Transcription of the pathway genes was perturbed, whereby the tissue specificity of transcripts was altered. Changes in the steady state levels of metabolites in unrelated sectors of metabolism were found. Of particular interest was a concurrent increase of the plastid-localized lipid monogalactodiacylglycerol with carotenoids along with membranous subcellular structures. The carotenoids, proteins, and lipids in the subchromoplast fractions of the transgenic tomato fruit with increased carotenoid content suggest that cellular structures can adapt to facilitate the sequestration of the newly formed products. Moreover, phytoene, the precursor of the pathway, was identified in the plastoglobule, whereas the biosynthetic enzymes were in the membranes. The implications of these findings with respect to novel pathway regulation mechanisms are discussed. PMID:24249831
Harden, R. McG.; Alexander, W. D.; Shimmins, J.; Chisholm, D.
1969-01-01
The concentration of iodide (I−) and pertechnetate (TcO4−) and bromide (Br−) has been measured simultaneously in gastric juice and parotid saliva. The combined gastric and salivary clearance for iodide and pertechnetate is more than twice the clearance of these ions by the thyroid gland. The concentration of the ions was in the order I−>TcO4−>Br− in both gastric juice and saliva. Differences exist between the secretion of iodide, pertechnetate, and bromide. Bromide, in contrast to iodide and pertechnetate, was found to be more concentrated in gastric juice than in saliva. The ratio of the iodide to pertechnetate clearance was greater in gastric juice than in saliva. PMID:5358585
Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the U.S. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting the iodide uptake, thus hindering the synt...
Essays on carbon policy and enhanced oil recovery
NASA Astrophysics Data System (ADS)
Cook, Benjamin R.
The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil operators for enhanced oil recovery. The second essay extends the CO2--EOR economic model described in a recent Energy Journal article by Klaas van 't Veld and Owen R. Phillips (2010). This essay takes a Monte Carlo approach to the economic scoping model which focuses more directly on the probabilistic outcomes for each individual oil field-reservoir combination (FRC). Using data on Wyoming oil fields the essay analyzes 197 FRCs in order to identify oil units with robust CO2--EOR profit potential over a wide range of uncertainty regarding future oil prices and reservoir characteristics. Of the 197 FRCs considered, 93 of them are found to meet an industry threshold IRR of 20 percent in at least half of scenarios with limited chance of actually taking losses. The third essay continues to employ the CO2--EOR economic scoping model, but focuses on Wyoming's aggregate EOR potential and attendant CO2 requirements. A similar Monte Carlo analysis is used to construct incremental oil "supply" and cumulative CO2 purchase "demand" curve estimates. Finally, the study uses a resampling technique similar to bootstrapping in order to create probabilistic distributions of Wyoming's aggregate EOR potential by assigning probabilities to individual oil prices. Although the data only covers oil fields with at least 5 MMbo of production, the analysis suggests around 768 MMbo of additional oil is likely to be recovered with CO2--EOR utilizing roughly 5.5 Tcf of injectable CO2.
Gong, Tingting; Zhang, Xiangru
2013-11-01
The dissolved iodine species that dominate aquatic systems are iodide, iodate and organo-iodine. These species may undergo transformation to one another and thus affect the formation of iodinated disinfection byproducts during disinfection of drinking waters or wastewater effluents. In this study, a fast, sensitive and accurate method for determining these iodine species in waters was developed by derivatizing iodide and iodate to organic iodine and measuring organic iodine with a total organic iodine (TOI) measurement approach. Within this method, organo-iodine was determined directly by TOI measurement; iodide was oxidized by monochloramine to hypoiodous acid and then hypoiodous acid reacted with phenol to form organic iodine, which was determined by TOI measurement; iodate was reduced by ascorbic acid to iodide and then determined as iodide. The quantitation limit of organo-iodine or sum of organo-iodine and iodide or sum of organo-iodine, iodide and iodate was 5 μg/L as I for a 40 mL water sample (or 2.5 μg/L as I for an 80 mL water sample, or 1.25 μg/L as I for a 160 mL water sample). This method was successfully applied to the determination of iodide, iodate and organo-iodine in a variety of water samples, including tap water, seawater, urine and wastewater. The recoveries of iodide, iodate and organo-iodine were 91-109%, 90-108% and 91-108%, respectively. The concentrations and distributions of iodine species in different water samples were obtained and compared. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.
2002-05-01
Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now extending this capability to address CO2-flood EOR/sequestration in oil reservoirs. We have also developed a suite of innovative geophysical and geochemical techniques for monitoring sequestration performance in both settings. These include electromagnetic induction imaging and electrical resistance tomography for tracking migration of immiscible CO2, noble gas isotopes for assessing trace CO2 leakage through the cap rock, and integrated geochemical sampling, analytical, and experimental methods for determining sequestration partitioning among solubility and mineral trapping mechanisms. We have proposed to demonstrate feasibility of the co-optimized EOR/sequestration concept and utility of our modeling and monitoring technologies to design and evaluate its implementation by conducting a demonstration project in the Livermore Oil Field. This small, mature, shallow field, located less than a mile east of Lawrence Livermore National Laboratory, is representative of many potential EOR/sequestration sites in California. In approach, this proposed demonstration is analogous to the Weyburn EOR/CO2 monitoring project, to which it will provide an important complement by virtue of its contrasting depth (immiscible versus Weyburn's miscible CO2 flood) and geologic setting (clay-capped sand versus Weyburn's anhydrite-capped carbonate reservoir).
Xu, Zhaofa; Luo, Jintao; Li, Yu; Ma, Long
2014-01-01
Iodine is an essential trace element for life. Iodide deficiency can lead to defective biosynthesis of thyroid hormones and is a major cause of hypothyroidism and mental retardation. Excess iodide intake, however, has been linked to different thyroidal diseases. How excess iodide causes harmful effects is not well understood. Here, we found that the nematode Caenorhabditis elegans exhibits developmental arrest and other pleiotropic defects when exposed to excess iodide. To identify the responsible genes, we performed a forward genetic screen and isolated 12 mutants that can survive in excess iodide. These mutants define at least four genes, two of which we identified as bli-3 and tsp-15. bli-3 encodes the C. elegans ortholog of the mammalian dual oxidase DUOX1 and tsp-15 encodes the tetraspanin protein TSP-15, which was previously shown to interact with BLI-3. The C. elegans dual oxidase maturation factor DOXA-1 is also required for the arresting effect of excess iodide. Finally, we detected a dramatically increased biogenesis of reactive oxygen species in animals treated with excess iodide, and this effect can be partially suppressed by bli-3 and tsp-15 mutations. We propose that the BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for the toxic pleiotropic effects of excess iodide. PMID:25480962
Uptake mechanism for iodine species to black carbon.
Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu
2013-09-17
Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.
Iodide-ion-induced oscillations of the ferroin-catalyzed Belousov—Zhabotinskii reaction
NASA Astrophysics Data System (ADS)
Melicherčík, Milan; Treindl, Ľudovít
1992-08-01
Contrary to "classical" Belousov—Zhabotinskii (BZ) oscillatory systems, consisting of malonic acid, Ce(IV)—Ce(III) or Mn(III)—Mn(II) redox catalyst and KBrO 3 in solutions of H 2SO 4, where in an interval of added iodide initial concentrations 10 -4 mol dm -3 < [I -] 0 < 10 -3 mol dm -3 the oscillations have the same frequency and amplitude as in the absence of iodide, the effect of added iodide on the ferroin-catalyzed BZ system with methyl ester of 3-oxobutanoic acid leads to an increase in the number of oscillations and in the time of their duration. The dependence of this effect on substrate, bromate, iodide, sulfuric acid and ferroin concentrations has been studied. The observations may be explained by a mechanism involving direct reduction of ferroin by iodide, oxidation of iodide to iodate by bromate with a bromide production and eventual faster bromination and iodination of methyl ester of 3-oxobutanoic acid in relation to malonic acid.
Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS
Adamic, M. L.; Lister, T. E.; Dufek, E. J.; ...
2015-03-25
This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powdermore » prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.
2012-03-30
The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO 2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO 2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO 2 flooding.
Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing
2015-01-01
Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629
NASA Astrophysics Data System (ADS)
Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing
2015-10-01
Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.
Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing
2015-10-27
Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.
Palladium-Catalyzed Direct C–H Arylation of Cyclic Enaminones with Aryl Iodides
Yu, Yi-Yun; Bi, Lei
2013-01-01
A ligand-free method for the Pd-catalyzed direct arylation of cyclic enaminones using aryl iodides was developed. This method can be applied to a wide range of cyclic enaminones and aryl iodides with excellent C5-regioselectivity. Using widely available aryl iodides, the generality of this transformation provides easy access to a variety of 3-arylpiperidine structural motifs. PMID:23750615
Development of a mercuric iodide solid state spectrometer for X-ray astronomy
NASA Technical Reports Server (NTRS)
Vallerga, J.
1983-01-01
Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.
Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats
Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia
2013-01-01
Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911
Lumen, Annie; Mattie, David R; Fisher, Jeffrey W
2013-06-01
A biologically based dose-response model (BBDR) for the hypothalamic pituitary thyroid (HPT) axis was developed in the near-term pregnant mother and fetus. This model was calibrated to predict serum levels of iodide, total thyroxine (T4), free thyroxine (fT4), and total triiodothyronine (T3) in the mother and fetus for a range of dietary iodide intake. The model was extended to describe perchlorate, an environmental and food contaminant, that competes with the sodium iodide symporter protein for thyroidal uptake of iodide. Using this mode-of-action framework, simulations were performed to determine the daily ingestion rates of perchlorate that would be associated with hypothyroxinemia or onset of hypothyroidism for varying iodide intake. Model simulations suggested that a maternal iodide intake of 75 to 250 µg/day and an environmentally relevant exposure of perchlorate (~0.1 µg/kg/day) did not result in hypothyroxinemia or hypothyroidism. For a daily iodide-sufficient intake of 200 µg/day, the dose of perchlorate required to reduce maternal fT4 levels to a hypothyroxinemic state was estimated at 32.2 µg/kg/day. As iodide intake was lowered to 75 µg/day, the model simulated daily perchlorate dose required to cause hypothyroxinemia was reduced by eightfold. Similarly, the perchlorate intake rates associated with the onset of subclinical hypothyroidism ranged from 54.8 to 21.5 µg/kg/day for daily iodide intake of 250-75 µg/day. This BBDR-HPT axis model for pregnancy provides an example of a novel public health assessment tool that may be expanded to address other endocrine-active chemicals found in food and the environment.
EnviroTech: Enhancing Environmental Literacy and Technology Assessment Skills
ERIC Educational Resources Information Center
Rose, Mary Annette
2010-01-01
It is no coincidence that many of the "Grand Challenges for Engineering" (National Academy of Engineering, 2007-2010)--such as carbon sequestration--address environmental problems that were precipitated by human inventiveness and engineering achievements. Although people recognize their dependence upon environmental processes to provide…
Dorman, James W; Steinberg, Spencer M
2010-02-01
We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate.
NASA Astrophysics Data System (ADS)
Kong, Weimin; Li, Guohui; Liang, Qiangbing; Ji, Xingqi; Li, Gang; Ji, Ting; Che, Tao; Hao, Yuying; Cui, Yanxia
2018-03-01
In this work, the synthesis of regular single crystalline lead iodide nanoplatelets are carried out based on the physical vapor phase deposition method. Different lead iodide nanoplatelets are obtained by tuning the location of the mica substrate along with the temperature of the tube furnace. The rules of size, thickness, density of the lead iodide nanoplatelets at varied deposition conditions are analyzed according to the crystal growth principles. It was claimed in literature that the photoluminescence of lead iodide could be obtained only at a low temperature (lower than 200 K). Here, at room temperature, we successfully obtained the photoluminescence spectra of the prepared lead iodide nanoplatelets, which possess two apparent peaks due to the biexcitons and the inelastic scattering of excitons, respectively. Our present study contributes to the development of nanoscaled high performance optoelectronic devices.
Reduced carbon sequestration potential of biochar in acidic soil.
Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong
2016-12-01
Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.
Sahle, Mesfin; Saito, Osamu; Fürst, Christine; Yeshitela, Kumelachew
2018-05-15
In this study, the supply of and demand for carbon storage and sequestration of woody biomass in the socio-ecological environment of the Wabe River catchment in Gurage Mountains, Ethiopia, were estimated. This information was subsequently integrated into a map that showed the balance between supply capacities and demand in a spatially explicit manner to inform planners and decision makers on methods used to manage local climate change. Field data for wood biomass and soil were collected, satellite images for land use and land cover (LULC) were classified, and secondary data from statistics and studies for estimation were obtained. Carbon storage, the rate of carbon sequestration and the rate of greenhouse gas (GHG) emissions from diverse sources at different LULCs, was estimated accordingly by several methods. Even though a large amount of carbon was stored in the catchment, the current yearly sequestration was less than the CO 2 -eq. GHG emissions. Forest and Enset-based agroforestry emissions exhibited the highest amount of woody biomass, and cereal crop and wetland exhibited the highest decrease in soil carbon sequestration. CO 2 -eq. GHG emissions are mainly caused by livestock, nitrogenous fertilizer consumption, and urban activities. The net negative emissions were estimated for the LULC classes of cereal crop, grazing land, and urban areas. In conclusion, without any high-emission industries, GHG emissions can be greater than the regulatory capacity of ecosystems in the socio-ecological environment. This quantification approach can provide information to policy and decision makers to enable them to tackle climate change at the root level. Thus, measures to decrease emission levels and enhance the sequestration capacity are crucial to mitigate the globally delivered service in a specific area. Further studies on the effects of land use alternatives on net emissions are recommended to obtain in-depth knowledge on sustainable land use planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of Potential Sodium Iodide Symporter (NIS) Inhibitors in ToxCast Phase1_v2 Chemical Library Using in vitro Radioactive Iodide Uptake (RAIU) Assay Jun Wang1,2, Daniel R. Hallinger2, Ashley S. Murr2, Angela R. Buckalew1, Tammy E. Stoker2, Susan C. Laws21Oak Ridge In...
Testing iodized activated carbon filters with non-radioactive methyl iodide. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deitz, V.R.; Romans, J.B.
1980-05-30
Iodized carbons, impregnated with KIx(KI + xI2), were evaluated for trapping methyl iodide-127. In this method the complete effluent of the carbon is sampled and analyzed continuously. In contrast, the RDT-M16 test procedure counts the carbon and the back-up beds for the accumulated 131 species and no information is obtained for the interaction of the large amount of carrier methyl iodide-127 with the iodized charcoal. The test apparatus to measure the penetration of methyl iodide-127 is described and the calibration procedures are detailed. Results are given for the penetration of methyl iodide-127 through new activated carbons, carbons in service, andmore » exhausted carbons withdrawn from service. The reduction in trapping efficiency with service is accompanied by the development of a maximum in the concentration of methyl iodide-127 during the air purge after the dose period. This behavior has escaped notice with methyl iodide-131 due to the way that test is made. The chromatographic holdup of methyl iodide-127 by carbons in service, together with the subsequent slow desorption step, could result in a dilution of the penetration iodine to acceptable levels under some conditions encountered in plant filter operations.« less
Fors, Brett P.; Davis, Nicole R.; Buchwald, Stephen L.
2009-01-01
An investigation into Pd-catalyzed C–N cross-coupling reactions of aryl iodides is described. NaI is shown to have a significant inhibitory effect on these processes. By switching to a solvent system in which the iodide byproduct was insoluble, reactions of aryl iodides were accomplished with the same efficiencies as aryl chlorides and bromides. Using catalyst systems based on certain biarylphosphine ligands, aryl iodides were successfully reacted with an array of primary and secondary amines in high yields. Lastly, reactions of heteroarylamines and heteroaryliodides were also conducted in high yields. PMID:19348431
... iodide you should take or give to your child depends on your age or your child's age. If potassium iodide is taken by a ... you should take yourself or give to your child. Ask your doctor, pharmacist, or public official if ...
Kaykhaii, Massoud; Sargazi, Mona
2014-01-01
Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert Bock; Richard Rhudy; Howard Herzog
2003-02-01
This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.
Chloropicrin emission reduction by soil amendment with biochar
USDA-ARS?s Scientific Manuscript database
Biochar is the carbon-enriched and porous material produced by heating organic material under conditions of limited or no oxygen. As biochar has a large surface area and strong sorption capacity, it can enhance the sequestration of organic contaminants such as pesticides in soil. Chloropicrin (CP) i...
Effect of biochar amendments on microbial transport through soils
USDA-ARS?s Scientific Manuscript database
The incorporation of biochar into soils had been shown to improve soil fertility, enhance soil sequestration of carbon and decrease the mobility of agrochemicals and heavy metals. Our series of column experiments have shown that in addition to these benefits, biochar amendments can limit bacterial t...
Soil carbon change in reconstructed tallgrass prairies
USDA-ARS?s Scientific Manuscript database
Reconstructing former cropland to tallgrass prairie can increase soil carbon (C) and enhance C sequestration to mitigate increases in atmospheric CO2. This large-scale study was conducted at Neal Smith National Wildlife Refuge (NSNWR) in Jasper County, south-central IA. Tracts of cropped land at NSN...
Management opportunities for enhancing terrestrial CO2 sinks
USDA-ARS?s Scientific Manuscript database
To address climate change and the implications of a global mean temperature increase of more than two degrees Celsius over current levels will require terrestrial carbon (C) management along with reductions in fossil fuel emissions. To achieve all or part of the global terrestrial C sequestration p...
IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT
ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...
New iodide-based molten salt systems for high temperature molten salt batteries
NASA Astrophysics Data System (ADS)
Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa
Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.
Barium iodide and strontium iodide crystals andd scintillators implementing the same
Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold
2013-11-12
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.
A fluorescence turn-on sensor for iodide based on a thymine-Hg(II)-thymine complex.
Ma, Boling; Zeng, Fang; Zheng, Fangyuan; Wu, Shuizhu
2011-12-23
Iodide plays a vital role in many biological processes, including neurological activity and thyroid function. Due to its physiological relevance, a method for the rapid, sensitive, and selective detection of iodide in food, pharmaceutical products, and biological samples such as urine is of great importance. Herein, we demonstrate a novel and facile strategy for constructing a fluorescence turn-on sensor for iodide based on a T-Hg(II)-T complex (T=thymine). A fluorescent anthracene-thymine dyad (An-T) was synthesized, the binding of which to a mercury(II) ion lead to the formation of a An-T-Hg(II)-T-An complex, thereby quenching the fluorescent emission of this dyad. In this respect, the dyad An-T constituted a fluorescence turn-off sensor for mercury(II) ions in aqueous media. More importantly, it was found that upon addition of iodide, the mercury(II) ion was extracted from the complex due to the even stronger binding between mercury(II) ions and iodide, leading to the release of the free dyad and restoration of the fluorescence. By virtue of this fluorescence quenching and recovery process, the An-T-Hg(II)-T-An complex constitutes a fluorescence turn-on sensor for iodide with a detection limit of 126 nM. Moreover, this sensor is highly selective for iodide over other common anions, and can be used in the determination of iodide in drinking water and biological samples such as urine. This strategy may provide a new approach for sensing some other anions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Permeation of iodide from iodine-enriched yeast through porcine intestine.
Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew
2013-01-01
Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.
Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.
Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan
2016-01-14
Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.
Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide.
Fischer, Anthony J; Lennemann, Nicholas J; Krishnamurthy, Sateesh; Pócza, Péter; Durairaj, Lakshmi; Launspach, Janice L; Rhein, Bethany A; Wohlford-Lenane, Christine; Lorentzen, Daniel; Bánfi, Botond; McCray, Paul B
2011-10-01
Recent reports postulate that the dual oxidase (DUOX) proteins function as part of a multicomponent oxidative pathway used by the respiratory mucosa to kill bacteria. The other components include epithelial ion transporters, which mediate the secretion of the oxidizable anion thiocyanate (SCN(-)) into airway surface liquid, and lactoperoxidase (LPO), which catalyzes the H(2)O(2)-dependent oxidation of the pseudohalide SCN(-) to yield the antimicrobial molecule hypothiocyanite (OSCN(-)). We hypothesized that this oxidative host defense system is also active against respiratory viruses. We evaluated the activity of oxidized LPO substrates against encapsidated and enveloped viruses. When tested for antiviral properties, the LPO-dependent production of OSCN(-) did not inactivate adenovirus or respiratory syncytial virus (RSV). However, substituting SCN(-) with the alternative LPO substrate iodide (I(-)) resulted in a marked reduction of both adenovirus transduction and RSV titer. Importantly, well-differentiated primary airway epithelia generated sufficient H(2)O(2) to inactivate adenovirus or RSV when LPO and I(-) were supplied. The administration of a single dose of 130 mg of oral potassium iodide to human subjects increased serum I(-) concentrations, and resulted in the accumulation of I(-) in upper airway secretions. These results suggest that the LPO/I(-)/H(2)O(2) system can contribute to airway antiviral defenses. Furthermore, the delivery of I(-) to the airway mucosa may augment innate antiviral immunity.
Modulation of Sodium Iodide Symporter in Thyroid Cancer
Lakshmanan, Aparna; Scarberry, Daniel
2015-01-01
Radioactive iodine (RAI) is a key therapeutic modality for thyroid cancer. Loss of RAI uptake in thyroid cancer inversely correlates with patient’s survival. In this review, we focus on the challenges encountered in delivering sufficient doses of I-131 to eradicate metastatic lesions without increasing the risk of unwanted side effects. Sodium iodide symporter (NIS) mediates iodide influx, and NIS expression and function can be selectively enhanced in thyroid cells by thyroid-stimulating hormone. We summarize our current knowledge of NIS modulation in normal and cancer thyroid cells, and we propose that several reagents evaluated in clinical trials for other diseases can be used to restore or further increase RAI accumulation in thyroid cancer. Once validated in preclinical mouse models and clinical trials, these reagents, mostly small-molecule inhibitors, can be readily translated into clinical practice. We review available genetically engineered mouse models of thyroid cancer in terms of their tumor development and progression as well as their thyroid function. These mice will not only provide important insights into the mechanisms underlying the loss of RAI uptake in thyroid tumors but will also serve as preclinical animal models to evaluate the efficacy of candidate reagents to selectively increase RAI uptake in thyroid cancers. Taken together, we anticipate that the optimal use of RAI in the clinical management of thyroid cancer is yet to come in the near future. PMID:25234361
NASA Astrophysics Data System (ADS)
Ibrom, A.
2012-04-01
Nitrogen (N) fertilization, both intended and unintended, interacts with carbon cycling in terrestrial ecosystems, because the major processes of carbon (C) turnover depend on enzymes and thus on N availability. Comparisons between annual carbon dioxide flux (CO2) budgets and wet N deposition in forests showed a very strong linear increase of CO2 sequestration with increased N deposition. After considering total rather than only wet N deposition the ratios between increased carbon uptake and atmospheric N input were closer to C/N that can be found in wood. This suggested that the observed ecosystems responses to enhanced N inputs were mainly driven by plant responses. Finally, looking at changes in soil organic matter changes indicated even lower sensitivities of carbon sequestration to N addition. The objective of this study is to describe the mechanisms of the responses and the fate of the N in the ecosystem based on results from intensively investigated forest sites. Within the European NitroEuope-IP project the annual fluxes and pool sizes of C and N were estimated in four so-called forest supersites, including temperate coniferous forests in Southern Germany (Höglwald) and in the Netherlands (Speulderbos), one temperate beech forest close to Sorø on Zealand in Denmark and a boreal pine forest (Hyytiälä, Southern Finland). Due to differences in vegetation, bedrock and climate history, soils differed in acidity, organic matter content and biological activity; the levels of atmospheric N deposition varied from very low (Hyytiälä) to high (the other sites). Comparisons of N and C budgets of plants and soils confirmed a simple and stoichiometric effect dCuptake/dNdep = constant and in the order of magnitude of (C/N)wood for plants but not for soils and thus not for the forest ecosystems as a whole. Differences in soil processes as indicated by the differing C/N of SOM, differing amounts of N stored in the soil and considerable differences in N leaching rates even at comparable N deposition levels, showed clearly that the diversity of soils play a large role in the N use for C sequestration and thus for the beneficial effects of additional N loads on climate change mitigation effects in forests. An important conclusion of the study for intended forest fertilization is to consider N leaching to the ground water, which might even enhance the greenhouse effect through increased N2O emissions from streams, estuaries and coasts rather than mitigating it via increased CO2 sequestration at the forest site. Acknowledgements This work has been funded by the European Commission via the NitroEurope and CarboEurope integrated projects.
Kim, H.E.; Moorhead, A.J.
1992-12-15
A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.
Soil carbon sequestration and biochar as negative emission technologies.
Smith, Pete
2016-03-01
Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.
Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J
2006-06-01
Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility andmore » sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.« less
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.
1993-04-01
Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.
Multiple forms of Spire-actin complexes and their functional consequences.
Chen, Christine K; Sawaya, Michael R; Phillips, Martin L; Reisler, Emil; Quinlan, Margot E
2012-03-23
Spire is a WH2 domain-containing actin nucleator essential for establishing an actin mesh during oogenesis. In vitro, in addition to nucleating filaments, Spire can sever them and sequester actin monomers. Understanding how Spire is capable of these disparate functions and which are physiologically relevant is an important goal. To study severing, we examined the effect of Drosophila Spire on preformed filaments in bulk and single filament assays. We observed rapid depolymerization of actin filaments by Spire, which we conclude is largely due to its sequestration activity and enhanced by its weak severing activity. We also studied the solution and crystal structures of Spire-actin complexes. We find structural and functional differences between constructs containing four WH2 domains (Spir-ABCD) and two WH2 domains (Spir-CD) that may provide insight into the mechanisms of nucleation and sequestration. Intriguingly, we observed lateral interactions between actin monomers associated with Spir-ABCD, suggesting that the structures built by these four tandem WH2 domains are more complex than originally imagined. Finally, we propose that Spire-actin mixtures contain both nuclei and sequestration structures.
Rosenbauer, R.; Koksalan, T.
2004-01-01
The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.
Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Circe A; O'Connor, William K.; Ideker, J.H.
2012-10-28
The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Classmore » H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.« less
NASA Technical Reports Server (NTRS)
Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.
1984-01-01
Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.
Alayoubi, Alaadin; Sullivan, Ryan D; Lou, Hao; Patel, Hemlata; Mandrell, Timothy; Helms, Richard; Almoazen, Hassan
2016-06-01
The objective of this study was to evaluate the transdermal efficiency of iodide microemulsion in treating iodine deficiency using rats as an animal model. Animals were fed either iodine-deficient diet (20 μg/kg iodide) or control diet (200 μg/kg iodide) over a 17-month period. At month 14, iodide microemulsion was applied topically in iodine-deficient group and physiological evaluations of thyroid gland functions were characterized by monitoring the thyroid hormones (T3, T4), thyroid-stimulating hormone (TSH), iodide ion excretion in urine, and the overall rat body weights in both groups. Moreover, morphological evaluations of thyroid gland before and after treatment were performed by ultrasound imaging and through histological assessment. Prior to microemulsion treatment, the levels of T3, T4, and TSH in iodine-deficient group were statistically significant as compared to that in the control group. The levels of T3 and T4 increased while TSH level decreased significantly in iodine-deficient group within the first 4 weeks of treatment. After treatment, iodide concentration in urine increased significantly. There was no statistical difference in weight between the two groups. Ultrasound imaging and histological evaluations showed evidence of hyperplasia in iodine-deficient group. Topical iodide microemulsion has shown a promising potential as a novel delivery system to treat iodine deficiency.
Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China.
Zhang, Tao; Wu, Qian; Sun, Hong Wen; Rao, Jia; Kannan, Kurunthachalam
2010-09-15
Perchlorate, ClO(4)(-), interferes with iodide (I(-)) uptake by the sodium-iodide symporter (NIS) and thereby affects thyroid hormone production in the body. Studies have reported human exposures to perchlorate based on measurements in urine, but little is known about the levels in blood. In this study, we determined concentrations of perchlorate, iodide, and other anions (e.g., chlorate [ClO(3)(-)], bromate [BrO(3)(-)], bromide [Br(-)]) in 131 whole blood samples collected from Chinese donors aged 0.4 to 90 yr, in Nanchang, China. Perchlorate, iodide, and bromide were detected in all of the samples analyzed, whereas chlorate was found in only 27% of the samples and bromate was found in only 2%. The mean (range) concentrations of perchlorate, iodide, and bromide were 2.68 (0.51-10.5), 42.6 (1.58-812), and 2120 (1050-4850) ng/mL, respectively. Perchlorate levels in blood from Nanchang adults were 10-fold greater than levels that have been previously reported for U.S. adults. The iodide/perchlorate molar ratio ranged from 3.05 to 15.3 for all age groups, and the ratio increased with age (r = 0.732, p < 0.01). Perchlorate and bromide concentrations decreased significantly with age, whereas iodide concentrations increased with age. No significant gender-related differences in blood perchlorate, iodide, or bromide levels were found. A significant negative correlation was found between the concentrations of perchlorate and iodide in blood. Exposure doses of perchlorate were estimated for infants, toddlers, children, adolescents, and adults based on the measured concentrations in blood, using a simple pharmacokinetic model. The mean exposure doses of perchlorate for our age groups ranged from 1.12 (adults) to 2.22 μg/kg bw/day (infants), values higher than the United States Environmental Protection Agency's (USEPA) reference dose (RfD: 0.7 μg/kg bw/day). This is the first study on perchlorate and iodide levels in whole blood from infants, toddlers, children, adolescents, and adults from a city in China with known high perchlorate levels.
Sequestration Options for the West Coast States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myer, Larry
The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost ofmore » $31/tonne (t), $35/t, or $$50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $$20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.« less
Climate control: United States weather modification in the cold war and beyond.
Harper, Kristine C
2008-03-01
Rainmaking, hail busting, fog lifting, snowpack enhancing, lightning suppressing, hurricane snuffing...weather control. At the lunatic fringe of scientific discussion in the early twentieth century--and the subject of newspaper articles with tones ranging from skeptical titters to awestruck wonder--weather modification research became more serious after World War II. In the United States, the 'seeds' of silver iodide and dry ice purported to enhance rainfall and bust hailstorms soon became seeds of controversy from which sprouted attempts by federal, state and local government to control the controllers and exploit 'designer weather' for their own purposes.
Environmental drivers of deadwood dynamics in woodlands and forests
M. Garbarino; R. Marzano; John Shaw; J. N. Long
2015-01-01
Deadwood dynamics play a key role in many forest ecosystems. Understanding the mechanisms involved in the accumulation and depletion of deadwood can enhance our understanding of fundamental processes such as carbon sequestration and disturbance regimes, allowing better predictions of future changes related to alternative management and climate scenarios. A...
USDA-ARS?s Scientific Manuscript database
Soil microbes dominate processes that regulate soil trace gas emissions and soil C and N dynamics. Intensive management in agroecosystems provides unique opportunities to assess the effectiveness of microbial manipulations to enhance soil C retention and reduce trace gas emissions. While reduced til...
Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation
Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...
A perchlorate sensitive iodide transporter in frogs
Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.
2008-01-01
Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962
A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-02-04
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.
A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-01-01
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412
Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko
2008-04-03
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.
21 CFR 172.375 - Potassium iodide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...
Iron-catalyzed 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes.
Xu, Tao; Cheung, Chi Wai; Hu, Xile
2014-05-05
Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3 I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.
McMahon, Caitlin M; Alexanian, Erik J
2014-06-02
A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence for environmentally enhanced forest growth
Fang, Jingyun; Kato, Tomomichi; Guo, Zhaodi; Yang, Yuanhe; Hu, Huifeng; Shen, Haihua; Zhao, Xia; Kishimoto-Mo, Ayaka W.; Tang, Yanhong; Houghton, Richard A.
2014-01-01
Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan’s forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha−1 from 1980 to 2005, being 8.4–21.6% of biomass C sequestration per hectare and 4.1–35.5% of the country's total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate. PMID:24979781
21 CFR 582.5634 - Potassium iodide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...
21 CFR 582.5634 - Potassium iodide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...
21 CFR 582.5634 - Potassium iodide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...
21 CFR 172.375 - Potassium iodide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the...
Hijacking membrane transporters for arsenic phytoextraction
LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.
2012-01-01
Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027
An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.
Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit
2016-06-01
In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien
2017-03-15
Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.
Phase 1 Methyl Iodide Deep-Bed Adsorption Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nick; Watson, Tony
2014-08-22
Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Liu, Hongliang; Zeng, Qiang; Cui, Yushan; Zhao, Liang; Zhang, Lei; Fu, Gang; Hou, Changchun; Zhang, Shun; Yu, Linyu; Jiang, Chunyang; Wang, Zhenglun; Chen, Xuemin; Wang, Aiguo
2014-01-30
Excessive iodide and fluoride coexist in the groundwater in many regions, causing a potential risk to the human thyroid. To investigate the mechanism of iodide- and fluoride-induced thyroid cytotoxicity, human thyroid follicular epithelial cells (Nthy-ori 3-1) were treated with different concentrations of potassium iodide (KI), with or without sodium fluoride (NaF). Cell morphology, viability, lactate dehydrogenase (LDH) leakage, apoptosis, and expression of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were assessed. Results showed 50 mM of KI, 1 mM of NaF, and 50 mM of KI +1 mM of NaF changed cellular morphology, decreased viability, and increased LDH leakage and apoptosis. Elevated expression of binding protein (BiP), IRE1, and C/EBP homologous protein (CHOP) mRNA and protein, as well as spliced X-box-binding protein-1 (sXBP-1) mRNA, were observed in the 1 mM NaF and 50 mM KI +1 mM NaF groups. Collectively, excessive iodide and/or fluoride is cytotoxic to the human thyroid. Although these data do not manifest iodide could induce the IRE1 pathway, the cytotoxicity followed by exposure to fluoride alone or in combination with iodide may be related to IRE1 pathway-induced apoptosis. Furthermore, exposure to the combination of excessive iodide and fluoride may cause interactive effects on thyroid cytotoxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...
Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept
NASA Technical Reports Server (NTRS)
Javet, P.
1970-01-01
Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.
Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer
2016-10-26
The effect of potassium iodide (KI) and sodium nitrite (NaNO₂ inhibitor on the corrosion inhibition of mild steel in chloride bicarbonate solution has been studied using electrochemical techniques. Potentiodynamic polarisation data suggest that, when used in combination, KI and NaNO₂ function together to inhibit reactions at both the anode and the cathode, but predominantly anodic. KI/NO₂ - concentration ratios varied from 2:1 to 2:5; inhibition efficiency was optimized for a ratio of 1:1. The surface morphology and corrosion products were analysed using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The latter shows that the addition of I - to NO₂ facilitates the formation of a passivating oxide (γ-Fe₂O₃) as compared to NO₂ - alone, decreasing the rate of metal dissolution observed in electrochemical testing. The synergistic effect of KI/NO₂ - inhibition was enhanced under the dynamic conditions associated with testing in a rotating disc electrode.
NASA Astrophysics Data System (ADS)
Arsene, Cristian G.; Schulze, Dirk; Kratzsch, Jürgen; Henrion, André
2012-12-01
Amphiphilic peptide conjugation affords a significant increase in sensitivity with protein quantification by electrospray-ionization mass spectrometry. This has been demonstrated here for human growth hormone in serum using N-(3-iodopropyl)-N,N,N-dimethyloctylammonium iodide (IPDOA-iodide) as derivatizing reagent. The signal enhancement achieved in comparison to the method without derivatization enables extension of the applicable concentration range down to the very low concentrations as encountered with clinical glucose suppression tests for patients with acromegaly. The method has been validated using a set of serum samples spiked with known amounts of recombinant 22 kDa growth hormone in the range of 0.48 to 7.65 \\mug/L. The coefficient of variation (CV) calculated, based on the deviation of results from the expected concentrations, was 3.5% and the limit of quantification (LoQ) was determined as 0.4 \\mug/L. The potential of the method as a tool in clinical practice has been demonstrated with patient samples of about 1 \\mug/L.
An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene).
Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO(2)/P3HT) heterojuction. In this solar cell, TiO(2) is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm(-2), the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells.
Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells.
Cui, Jin; Chen, Cheng; Han, Junbo; Cao, Kun; Zhang, Wenjun; Shen, Yan; Wang, Mingkui
2016-03-01
This work reports on incorporation of spectrally tuned gold/silica (Au/SiO 2 ) core/shell nanospheres and nanorods into the inverted perovskite solar cells (PVSC). The band gap of hybrid lead halide iodide (CH 3 NH 3 PbI 3 ) can be gradually increased by replacing iodide with increasing amounts of bromide, which can not only offer an appreciate solar radiation window for the surface plasmon resonance effect utilization, but also potentially result in a large open circuit voltage. The introduction of localized surface plasmons in CH 3 NH 3 PbI 2.85 Br 0.15 -based photovoltaic system, which occur in response to electromagnetic radiation, has shown dramatic enhancement of exciton dissociation. The synchronized improvement in photovoltage and photocurrent leads to an inverted CH 3 NH 3 PbI 2.85 Br 0.15 planar PVSC device with power conversion efficiency of 13.7%. The spectral response characterization, time resolved photoluminescence, and transient photovoltage decay measurements highlight the efficient and simple method for perovskite devices.
Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers
Chen, Hsin-Wei; Huang, Tzu-Yen; Chang, Ting-Hsiang; Sanehira, Yoshitaka; Kung, Chung-Wei; Chu, Chih-Wei; Ikegami, Masashi; Miyasaka, Tsutomu; Ho, Kuo-Chuan
2016-01-01
In this study, hybrid perovskite solar cells are fabricated using poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as dopant-free hole-transporting materials (HTMs), and two solution processes (one- and two-step methods, respectively) for preparing methylammonium lead iodide perovskite. By optimizing the concentrations and solvents of MEH-PPV solutions, a power conversion efficiency of 9.65% with hysteresis-less performance is achieved, while the device with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′spirobifluorene (Spiro-OMeTAD) doped with lithium salts and tert-butylpyridine (TBP) exhibits an efficiency of 13.38%. This result shows that non-doped MEH-PPV is a suitable, low-cost HTM for efficient polymer-based perovskite solar cells. The effect of different morphologies of methylammonium lead iodide perovskite on conversion efficiency is also investigated by incident photon-to-electron conversion efficiency (IPCE) curves and electrochemical impedance spectroscopy (EIS). PMID:27698464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pan; Guan, Jiwen; Galeschuk, Draven T. K.
2017-04-28
Formamidinium lead iodide (FAPbI3) perovskite as a superior solar cell material was investigated in two polymorphs at high pressures using in situ synchrotron X-ray diffraction, FTIR spectroscopy, photoluminescence (PL) spectroscopy, electrical conductivity (EC) measurements, and ab initio calculations. We identified two new structures (i.e., Imm2 and Immm) for α-FAPbI3 but only a structural distortion (in C2/c) for δ-FAPbI3 upon compression. A pressure-enhanced hydrogen bond plays a prominent role in structural modifications, as corroborated by FTIR spectroscopy. PL measurements and calculations consistently show the structure and pressure dependences of the band gap energies. Finally, EC measurements reveal drastically different transport propertiesmore » of α- and δ-FAPbI3 at low pressures but a common trend to metallic states at high pressures. All of these observations suggest strongly contrasting structural stabilities and pressure-tuned optoelectric properties of the two FAPbI3 polymorphs.« less
An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)
Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470
Thyroid hormone synthesis requires active iodide uptake mediated by the sodium/iodide symporter (NIS). Monovalent anions, such as the environmental contaminant perchlorate, have been well characterized as competitive inhibitors of NIS, yet limited information exists for more stru...
21 CFR 172.375 - Potassium iodide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...
21 CFR 172.375 - Potassium iodide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...
McC. Hogg, D.; Jago, G. R.
1970-01-01
Lactoperoxidase (EC 1.11.1.7) catalysed the oxidation of NADH by hydrogen peroxide in the presence of either thiocyanate, iodide or bromide. In the presence of thiocyanate, net oxidation of thiocyanate occurred simultaneously with the oxidation of NADH, but in the presence of iodide or bromide, only the oxidation of NADH occurred to a significant extent. In the presence of thiocyanate or bromide, NADH was oxidized to NAD+ but in the presence of iodide, an oxidation product with spectral and chemical properties distinct from NAD+ was formed. Thiocyanate, iodide and bromide appeared to function in the oxidation of NADH by themselves being oxidized to products which in turn oxidized NADH, rather than by activating the enzyme. Iodine, which oxidized NADH non-enzymically, appeared to be an intermediate in the oxidation of NADH in the presence of iodide. NADPH was oxidized similarly under the same conditions. An assessment was made of the rates of these oxidation reactions, together with the rates of other lactoperoxidase-catalysed reactions, at physiological concentrations of thiocyanate, iodide and bromide. The results indicated that in milk and saliva the oxidation of thiocyanate to a bacterial inhibitor was likely to predominate over the oxidation of NADH. PMID:4317722
Kataoka, M; Nishimura, K; Kambara, T
1983-12-01
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 muM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.
Activation of the Nrf2-Keap 1 Pathway in Short-Term Iodide Excess in Thyroid in Rats
Liang, Xue
2017-01-01
Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high iodide on Days 7, 14, and 28. Insignificant changes were observed in thyroid hormone levels (p > 0.05). Urinary iodine concentration and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100 HI (p < 0.05). The urinary iodine concentration of the 100 HI group on Days 7, 14, and 28 was 60–80 times that of the NI group. The mitochondrial superoxide production and expressions of Nrf2, Srx, and Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI group when compared to the NI or 10 HI group on Days 7, 14, and 28 (p < 0.05). Immunofluorescence staining results showed that Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10 HI and 100 HI groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats. PMID:28133506
Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer—A Review
Gonçalves, Carlos F. L.; de Freitas, Mariana L.; Ferreira, Andrea C. F.
2017-01-01
Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer. PMID:28604619
Potential water yield reduction due to forestation across China
Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose
2006-01-01
It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...
Biophysical risks to carbon sequestration and storage in Australian drylands.
Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel
2018-02-15
Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite.
Zhao, Zhixi; Wang, Shaofeng; Jia, Yongfeng
2017-10-01
The sulfide-induced change in arsenic speciation is often coupled to iron geochemical processes, including redox reaction, adsorption/desorption and precipitation/dissolution. Knowledge about how sulfide influenced the coupled geochemistry of iron and arsenic was not explored well up to now. In this work, retention and mobilization of As(III) and As(V) on ferrihydrite in sulfide-rich environment was studied. The initial oxidation states of arsenic and the contact order of sulfide notably influenced arsenic sequestration on ferrihydrite. For As(III) systems, pre-sulfidation of As(III) decreased arsenic sequestration mostly. The arsenic adsorption capacity decreased about 50% in comparison with the system without sulfide addition. For As(V) systems, pre-sulfidation of ferrihydrite decreased 30% sequestration of arsenic on ferrihydrite. Reduction of ferrihydrite by sulfide in As(V) system was higher than that in As(III) system. Geochemical modeling calculations identified formation of thioarsenite in the pre-sulfidation of As(III) system. Formation of arsenic thioanions enhanced As solubility in the pre-sulfidation of As(III) system. The high concentration of sulfide and Fe(II) in pre-sulfidation of ferrihydrite system contributed to saturation of FeS. This supplied new solid phase to immobilize soluble arsenic in aqueous phase. X-ray absorption near edge spectroscopy (XANES) of sulfur K-edge, arsenic K-edge and iron L-edge analysis gave the consistent evidence for the sulfidation reaction of arsenic and ferrihydrite under specific geochemical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, W.; Pan, F.; McPherson, B. J. O. L.
2015-12-01
Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.
NASA Astrophysics Data System (ADS)
Zhu, J.; He, N.; Zhang, J.; Wang, Q.; Zhao, N.; Jia, Y.; Ge, J.; Yu, G.
2017-12-01
The worldwide development of industry and agriculture has generated noticeable increases in atmospheric nitrogen (N) deposition, significantly altering the global N cycle. These changes might affect the global carbon (C) cycle by enhancing forest C sequestration. Here, we measured a series of datasets from eight typical forests along the north-south transect of eastern China (NSTEC). These datasets contained information on community structure, C and N concentrations in the soil and different organs of 877 plant species (leaf, branch, stem, and fine-root), and atmospheric N deposition. Using the biomass weighting method, we scaled up the C:N ratios from the organ level to the ecosystem level, and evaluated the C sequestration rate (CSRN) in response to N deposition and N use efficiency (NUE) in China's forests on the principles of ecological stoichiometry. Our results showed that atmospheric N deposition had a modest impact on forest C storage. Specifically, CSRN was estimated as 231 kg C ha-1 yr-1 (range: 32.7-507.1 kg C ha-1 yr-1), accounting for 2.1% of NPP and 4.6% of NEP at the ecosystem level. The NUE (NUEeco) of atmospheric N deposition ranged from 9.6 to 27.7 kg C kg-1 N, and increased with increasing latitude from subtropical to cold-temperate forests in China (P < 0.05). This study provides a new approach for estimating the effect of atmospheric deposition on forest C sequestration based on the principle of ecological stoichiometry.
Finley, R.J.; Greenberg, S.E.; Frailey, S.M.; Krapac, I.G.; Leetaru, H.E.; Marsteller, S.
2011-01-01
The development of the Illinois Basin-Decatur USA test site for a 1 million tonne injection of CO2 into the Mount Simon Sandstone saline reservoir beginning in 2011 has been a multiphase process requiring a wide array of personnel and resources that began in 2003. The process of regional characterization took two years as part of a Phase I effort focused on the entire Illinois Basin, located in Illinois, Indiana, and Kentucky, USA. Seeking the cooperation of an industrial source of CO2 and site selection within the Basin took place during Phase II while most of the concurrent research emphasis was on a set of small-scale tests of Enhanced Oil Recovery (EOR) and CO2 injection into a coal seam. Phase III began the commitment to the 1 million-tonne test site development through the collaboration of the Archer Daniels Midland Company (ADM) who is providing a site, the CO2, and developing a compression facility, of Schlumberger Carbon Services who is providing expertise for operations, drilling, geophysics, risk assessment, and reservoir modelling, and of the Illinois State Geological Survey (ISGS) whose geologists and engineers lead the Midwest Geological Sequestration Consortium (MGSC). Communications and outreach has been a collaborative effort of ADM, ISGS and Schlumberger Carbon Services. The Consortium is one of the seven Regional Carbon Sequestration Partnerships, a carbon sequestration research program supported by the National Energy Technology Laboratory of the U.S. Department of Energy. ?? 2011 Published by Elsevier Ltd.
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization
NASA Astrophysics Data System (ADS)
Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.
2015-12-01
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.
Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing
2008-06-01
A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.
Dash, P K; Tian, L M; Moore, A N
1998-07-07
Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.
Crustal permeability: Introduction to the special issue
Ingebritsen, Steven E.; Gleeson, Tom
2015-01-01
The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.
Reversing Breast Cancer-Induced Immune Suppression
2014-09-01
Species MDSC: Myeloid-Derived Suppressor Cells PI: Propidium iodide xC-: System xC- xCT: Cystine/Glutamate Antiporter Project Summary Aim 1- In...animals may live longer due to enhanced resistance to metastasis. Resistance to metastasis requires a competent immune system [27]. Since Nrf2...Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD, Mandik-Nayak L, Metz R, Ostrand
NASA Astrophysics Data System (ADS)
Almagro, María; de Vente, Joris; Boix-Fayós, Carolina; García-Franco, Noelia; Melgares de Aguilar, Javier; González, David; Solé-Benet, Albert; Martínez-Mena, María
2015-04-01
Little is known about the multiple impacts of sustainable land management practices on soil and water conservation, carbon sequestration, mitigation of global warming, and crop yield productivity in semiarid Mediterranean agroecosystems. We hypothesized that a shift from intensive tillage to more conservative tillage management practices (reduced tillage optionally combined with green manure) leads to an improvement in soil structure and quality and will reduce soil erosion and enhance carbon sequestration in semiarid Mediterranean rainfed agroecosystems. To test the hypothesis, we assessed the effects of different tillage treatments (conventional (CT), reduced (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil structure and soil water content, runoff and erosion control, soil CO2 emissions, crop yield and carbon sequestration in two semiarid agroecosystems with organic rainfed almond in the Murcia Region southeast Spain). It was found that reduction and suppression of tillage under almonds led to an increase in soil water content in both agroecosystems. Crop yields ranged from 775 to 1766 kg ha-1 between tillage 18 treatments, but we did not find a clear relation between soil water content and crop yield. RT and RTG treatments showed lower soil erosion rates and higher crop yields of almonds than under CT treatment. Overall, higher soil organic carbon contents and aggregate stability were observed under RTG treatment than under RT or CT treatment. It is concluded that conversion from CT to RTG is suitable to increase carbon inputs without enhancing soil CO2 emissions in semiarid Mediterranean agroecosystems.
Halogens in oil and gas production-associated wastewater.
NASA Astrophysics Data System (ADS)
Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.
2014-12-01
Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.
Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China
Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.
2011-01-01
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.
Catalytic spectrophotometric determination of iodide in pharmaceutical preparations and edible salt.
El-Ries, M A; Khaled, Elmorsy; Zidane, F I; Ibrahim, S A; Abd-Elmonem, M S
2012-02-01
The catalytic effect of iodide on the oxidation of four dyes: viz. variamine blue (VB), methylene blue (MB), rhodamine B (RB), and malachite green (MG) with different oxidizing agents was investigated for the kinetic spectrophotometric determination of iodide. The above catalyzed reactions were monitored spectrophotometrically by following the change in dye absorbances at 544, 558, 660, or 617 nm for the VB, RB, MB, or MG catalyzed reactions, respectively. Under optimum conditions, iodide can be determined within the concentration levels 0.064-1.27 µg mL(-1) for VB method, 3.20-9.54 µg mL(-1) for RB method, 5.00-19.00 µg mL(-1) for the MB method, and 6.4-19.0 µg mL(-1) for the MG one, with detection limit reaching 0.004 µg mL(-1) iodide. The reported methods were highly sensitive, selective, and free from most interference. Applying the proposed procedures, trace amounts of iodide in pharmaceutical and edible salt samples were successfully determined without separation or pretreatment steps. Copyright © 2011 John Wiley & Sons, Ltd.
The value of iodide as a parameter in the chemical characterisation of groundwaters
NASA Astrophysics Data System (ADS)
Lloyd, J. W.; Howard, K. W. F.; Pacey, N. R.; Tellam, J. H.
1982-06-01
Brackish and saline groundwaters can severely constrain the use of fresh groundwaters. Their chemical characterisation is important in understanding the hydraulic conditions controlling their presence in an aquifer. Major ions are frequently of limited value but minor ions can be used. Iodide in groundwater is particularly significant in many environments due to the presence of soluble iodine in aquifer matrix materials. Iodide is found in groundwaters in parts of the English Chalk aquifer in concentrations higher than are present in modern seawater. Its presence is considered as a indication of groundwater residence and is of use in the characterisation of fresh as well as saline waters. Under certain circumstances modern seawater intrusion into aquifers along English estuaries produces groundwaters which are easily identified due to iodide enrichment from estuarine muds. In other environments iodide concentrations are of value in distinguishing between groundwaters in limestones and shaly gypsiferous rocks as shown by a study in Qatar, while in an alluvial aquifer study in Peru iodide has been used to identify groundwaters entering the aquifer from adjacent granodiorites.
Li, Qian; Li, Shuaihua; Chen, Xiu; Bian, Liujiao
2017-09-01
A basket-type G-quadruplex (GQ) fluorescent oligonucleotide (OND) probe is designed to detect iodides dependent on thymine-Hg(II)-thymine (T-Hg(II)-T) base pairs and the intrinsic fluorescence quenching capacity of GQ. In the presence of Hg(II) ions (Hg 2+ ), the two hexachloro-fluorescein-labeled ONDs form a hairpin structure and the fluorophores are dragged close to the GQ, leading to fluorescence quenching of the probe due to photoinduced electron transfer. Upon addition of iodide anions, Hg 2+ are extracted from T-Hg(II)-T complexes which attributes to the stronger binding with iodide anions, resulting in the fluorescence recovery. Through performing the fluorescence quenching and recovery processes, this probe developed a fluorescence turn-on sensor for iodide anions determination over a linear range of 20-200nmol/L with a limit of detection of 5nmol/L. The practical use of the turn-on technology was demonstrated by its application in determination of iodides in water, food, pharmaceutical products and biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Komar, Nemanja; Zeebe, Richard E.
2017-12-01
Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination phase of the PETM.
Yuliana, Tri; Nakajima, Nobuyoshi; Yamamura, Shigeki; Tomita, Masaru; Suzuki, Haruo; Amachi, Seigo
2017-01-01
Roseovarius sp. A-2 is a heterotrophic iodide (I - )-oxidizing bacterium isolated from iodide-rich natural gas brine water in Chiba, Japan. This strain oxidizes iodide to molecular iodine (I 2 ) by means of an extracellular multicopper oxidase. Here we report the draft genome sequence of strain A-2. The draft genome contained 46 tRNA genes, 1 copy of a 16S-23S-5S rRNA operon, and 4,514 protein coding DNA sequences, of which 1,207 (27%) were hypothetical proteins. The genome contained a gene encoding IoxA, a multicopper oxidase previously found to catalyze the oxidation of iodide in Iodidimonas sp. Q-1. This draft genome provides detailed insights into the metabolism and potential application of Roseovarius sp. A-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst, E-mail: agust@hi.is
2014-06-28
Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.
Lithological control on phytolith carbon sequestration in moso bamboo forests
Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo
2014-01-01
Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg−1) > granite (1.6 g kg−1) > basalt (1.3 g kg−1) > shale (0.7 g kg−1). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO2 ha−1 yr−1, thus a net 4.7 × 106 –310.8 × 106 kg CO2 yr−1 would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants. PMID:24918576
Iodide transport: implications for health and disease
2014-01-01
Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573
Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua
2018-05-02
A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.
The pathogenesis of iodide mumps: A case report.
Zhang, Guilian; Li, Tao; Wang, Heying; Liu, Jiao
2017-11-01
Iodide mumps is an uncommon condition, induced by iodide-containing contrast, and is characterized by a rapid, painless enlargement of the bilateral or unilateral salivary gland. At present, the pathogenesis of iodide mumps is not yet clear. It may be related to an idiosyncratic reaction, a toxic accumulation of iodine in the gland duct, or renal function damage leading to an iodine excretion disorder. This paper reports the clinical manifestations and magnetic resonance imaging results of one case of iodide mumps, which occurred after digital subtraction angiography. A 66-year-old Chinese man presented to our department with a 1-month speech barrier and 1 day of vomiting. He had the history of high blood sugar, the history of high blood pressure and the history of Vitiligo. He had no history of allergies and had never previously received iodide-containing contrast. His renal function and other laboratory examinations were normal. During the digital subtraction angiography (DSA), the patient received approximately 130 mL of nonionic contrast agent (iodixanol). Five hours postsurgery, the patient experienced bilateral parotid enlargement with no other discomfort, such as pain, fever, skin redness, itching, hives, nausea, vomiting, or respiratory abnormalities. We thought the diagnosis was iodide mumps. Intravenous dexamethasone (5 mg) was administered. 20 hours post-DSA, after which the bilateral parotid shrunk. By 4 days postsurgery, the patient's bilateral parotid had recovered completely. We found no obvious abnormal sequence signal in diffusion magnetic resonance imaging or the corresponding apparent diffusion coefficient. Our findings suggest that vasogenic edema may play an important role in the pathogenesis of iodide mumps. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants.
French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C
2016-07-01
Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity dip versus barrier dip, and application method (dip vs. spray) to ensure safe iodine levels in dairy milk when these products are used. The iodine exposure study was performed during a 2-wk period. The trial farm was purged of all iodine-based disinfection products for 21 d during a prestudy "washout period," which resulted in baseline milk iodide range of 145 to 182 ppb. During the experiment, iodine-based teat dips were used as post-milking teat disinfectants and compared to a non-iodine control disinfectant. Milk iodide residue levels for each treatment was evaluated from composited group samples. Introduction of different iodine-based teat disinfectants increased iodide residue content in milk relative to the control by between 8 and 29 μg/L when averaged across the full trial period. However, residues levels for any treatment remained well below the consumable limit of 500 μg/L. The 0.5% iodine disinfectant increased milk iodide levels by 20 μg/L more compared to the 0.25% iodine. Compared to dip-cup application, spray application significantly increased milk iodide residue by 21 μg/L and utilized approximately 23% more teat dip. This carefully controlled study demonstrated an increase in milk iodide concentrations from iodine disinfectants, but increases were small and within acceptable limits. © 2016 Institute of Food Technologists®
Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A
2012-03-01
Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect is provided on the challenges of enhancing carbon assimilation of C3 plants using transgenic engineering in the face of global warming, and the trends of the most promising approaches to improving the photosynthetic performance of C3 plants.
Potassium iodide capsule treatment of feline sporotrichosis.
Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P
2012-06-01
Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.
Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel
NASA Astrophysics Data System (ADS)
Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.
2016-12-01
Radioactive iodine is the Achilles' heel in the design for the safe geological disposal of spent uranium oxide (UO2) nuclear fuel. Furthermore, iodine's high volatility and aqueous solubility were mainly responsible for the high early doses released during the accident at Fukushima Daiichi in 2011. Studies Kienzler et al., however, have indicated that the instant release fraction (IRF) of radioiodine (131/129I) does not correlate directly with increasing fuel burn-up. In fact, there is a peak in the release of iodine at around 50-60 MW d/kgU, and with increasing burn-up, the IRF of 131/129I decreases. The reasons for this decrease have not fully been understood. We have performed microscopic analysis of chemically processed high burn-up UO2 fuel (80 MW d/kgU) and have found recalcitrant nano-particles containing, Pd, Ag, I, and Br, possibly consistent with a high pressure phase of silver iodide in the undissolved residue. It is likely that increased levels of Ag and Pd from 239Pu fission in high burnup fuels leads to the formation of these metal halides. The occurrence of these phases in UO2 nuclear fuels may reduce the impact of long-lived 129I on the repository performance assessment calculations.
Regional impacts of a program for private forest carbon offset sales
Darius M. Adams; Ralph Alig; Greg Latta; Eric M. White
2011-01-01
Policymakers are examining wide range of alternatives for climate change mitigation, including carbon offset sales programs, to enhance sequestration in the forest sector. Under an offset sales program, on-the-ground forestry could change as result of both afforestation and modifications in the management of existing forests. These effects could vary markedly by region...
Arjan de Bruijn; Eric J. Gustafson; Daniel M. Kashian; Harmony J. Dalgleish; Brian R. Sturtevant; Douglass F. Jacobs
2014-01-01
Observations of the rapid growth and slow decomposition of American chestnut (Castanea dentata (Marsh.) Borkh.) suggest that its reintroduction could enhance terrestrial carbon (C) sequestration. A suite of decomposition models was fit with decomposition data from coarse woody debris (CWD) sampled in Wisconsin and Virginia, U.S. The optimal (two-...
Hannah Gosnell; Nicole Robinson-Maness; Susan Charnley
2011-01-01
Unsustainable rangeland management and land conversion are significant sources of greenhouse gas emissions and global warming; however, rangelands also can be managed to mitigate climate change by enhancing carbon uptake through increased plant production and biological sequestration. According to a 2000 USFS General Technical Report, there are opportunities to make...
Julia I. Burton; Adrian Ares; Sara E. Mulford; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Concerns about climate change have generated worldwide interest in managing forests for the uptake and storage of carbon (C). Simultaneously, preserving and enhancing structural, functional, and species diversity in forests remains an important objective. Therefore, understanding tradeoffs and synergies among C storage and sequestration and diversity in managed forests...
M. D. Petrie; S. L. Collins; A. M. Swann; P. L. Ford; M. E. Litvak
2015-01-01
The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be...
Can Climate Change Enhance Biology Lessons? A Quasi-Experiment
ERIC Educational Resources Information Center
Monroe, Martha C.; Hall, Stephanie; Li, Christine Jie
2016-01-01
Climate change is a highly charged topic that some adults prefer to ignore. If the same holds true for secondary students, teachers could be challenged to teach about climate change. We structured one activity about the biological concepts of carbon cycle and carbon sequestration in two ways: with and without mention of climate change. Results…
Modeling stress/strain-dependent permeability changes for deep geoenergy applications
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio Pio; Rutqvist, Jonny
2016-04-01
Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.
Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun; ...
2017-01-30
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C. (Inventor)
1983-01-01
Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred.
Mercuric iodide light detector and related method
Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.
1986-01-01
Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.
Mercuric iodide light detector and related method
Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.
1986-09-23
Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.
Iodide Protects Heart Tissue from Reperfusion Injury
Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.
2014-01-01
Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708
Process for the thermochemical production of hydrogen
Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert
1978-01-01
Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.
NASA Astrophysics Data System (ADS)
Wang, G.; Qafoku, N. P.; Truex, M. J.; Strickland, C. E.; Freedman, V. L.
2017-12-01
Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy (DOE) Hanford Site. The long half-life 129I generated during reactor operations has been released into the subsurface, resulting in several large plumes at the Hanford subsurface. We studied the interaction of iodate (IO3-) and iodide (I-) with Fe oxides. A series of batch experiments were conducted to investigate adsorption and co-precipitation of iodine species in the presence of a variety of Fe oxides, such as ferrihydrite, goethite, hematite and magnetite. In the sorption experiments, each Fe oxide was added to an artificial groundwater containing either iodate or iodide, and reacted at room temperature. The sorption batch experiments for each mineral were conducted at varied initial iodate or iodide concentrations under 3 different pH conditions (pH 5, 7, and 9). In the co-precipitation batch experiments, the initial Fe-mineral-forming solutions were prepared in artificial groundwater containing iodate or iodide. Our results indicate that both sorption and co-precipitation are viable mechanisms of the attenuation of the liquid phase iodine. Species Fe oxides could serve as hosts of iodate and iodide that are present at the Hanford subsurface.
NASA Astrophysics Data System (ADS)
Zhu, Jianxing; He, Nianpeng; Zhang, Jiahui; Wang, Qiufeng; Zhao, Ning; Jia, Yanlong; Ge, Jianping; Yu, Guirui
2017-11-01
The worldwide development of industry and agriculture has generated noticeable increases in atmospheric nitrogen (N) deposition, significantly altering the global N cycle. These changes might affect the global carbon (C) cycle by enhancing forest C sequestration. Here, we used a series of datasets from eight typical forests along the north-south transect of eastern China (NSTEC). These datasets contained information on community structure, C and N concentrations in the soil and the organs (leaf, branch, stem, and fine-root) of 877 plant species, and atmospheric wet N deposition. Using the biomass weighting method, we scaled up the C:N ratios from the organ level to the ecosystem level, and evaluated the C sequestration rate (CSRN) in response to wet N deposition and N use efficiency (NUE) in China’s forests based on the principles of ecological stoichiometry. Our results showed that atmospheric wet N deposition had a modest impact on forest C storage. Specifically, mean CSRN was estimated as 231 kg C ha-1 yr-1 (range: 32.7-507.1 kg C ha-1 yr-1), accounting for 2.1% of NPP and 4.6% of NEP at the ecosystem level. The NUEeco of atmospheric N deposition ranged from 9.6-27.7 kg C kg-1 N, and increased with increasing latitude from subtropical to cold-temperate forests in China (P < 0.05). This study provides a new approach for estimating the effect of atmospheric deposition on forest C sequestration based on the principles of ecological stoichiometry.
Malekzadeh, Elham; Aliasgharzad, Nasser; Majidi, Jafar; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal
2016-10-01
Glomalin is a specific fungal glycoprotein produced by arbuscular mycorrhizal (AM) fungi belonging to the Glomerales which could efficiently sequestrate heavy metals. The glomalin has been introduced as a heat shock protein and there are evidences that increasing levels of heavy metals could enhance its production. We examined the influence of Cd concentrations on glomalin production by AM fungus, as well as its contribution to the sequestration of Cd in both pot and in vitro culture conditions. Pot experiment was carried out using pure sand with Trifolium repens L. as host plant, mycorrhized by Rhizophagus irregularis and treated with Cd levels of 0, 15, 30, and 45 μM. In vitro experiment was performed in two-compartment plates containing the transformed carrot roots mycorrhized with the same fungus and treated with Cd levels of 0, 0.001, 0.01, and 0.1 mM. The immunoreactive and Bradford reactive glomalin contents in both experiments increased as so raising Cd concentration. Total Cd sequestrated by hyphal glomalin in both cultures was significantly increased as the levels of Cd increased. The highest contents of Cd sequestration in pot (75.78 μg Cd/mg glomalin) and in vitro (11.44 μg Cd/mg glomalin) cultures were recorded at the uppermost levels of Cd, which significantly differed with other levels. Our results suggested that under Cd-induced stress, stimulated production of glomalin by AM fungus may be a protective mechanism against the toxic effect of Cd.
NASA Astrophysics Data System (ADS)
Sheng, M.; Yang, D.; Tang, J.; Lei, H.
2017-12-01
Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?
Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune.
Kirtzel, Julia; Scherwietes, Eric Leon; Merten, Dirk; Krause, Katrin; Kothe, Erika
2018-06-25
Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.
NASA Astrophysics Data System (ADS)
Klusman, R. W.
2002-12-01
Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.
NASA Astrophysics Data System (ADS)
Moortgat, J.
2015-12-01
Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.
Uncertainty Quantification for CO2-Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.
2013-12-01
CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.
NASA Astrophysics Data System (ADS)
Winans, K. S.
2013-12-01
Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.
ERIC Educational Resources Information Center
Wahab, M. Farooq
2009-01-01
The history of the discovery of iodine is retold using brown-colored seaweed found commonly along the ocean shore. The seaweed is ashed at a low temperature and the iodides are extracted into boiling water. The iodides are oxidized in acidic medium. Solvent extraction of iodine by oxidation of iodides as well as simple aqueous extraction of iodide…
ERIC Educational Resources Information Center
Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna
2016-01-01
A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…
NASA Astrophysics Data System (ADS)
Truesdale, Victor W.
2008-06-01
Toward assessing the biogeochemical significance of seaweeds in relation to dissolved iodine in seawater, the effect of whole seaweeds ( Laminaria digitata and Fucus serratus) upon iodide and iodate, at essentially natural concentrations, has been studied. The weeds were carefully removed from the sub-littoral zone of the Menai Straits and exposed to iodide and iodate at their natural temperature (6 °C), but under continuous illumination. Laminaria digitata was found to decrease the concentration of iodate with an exponential rate constant of 0.008-0.24 h -1. This is a newly discovered process which, if substantiated, will require an entirely new mechanism. Generally, apparent iodide concentration increased except in a run with seawater augmented with iodide, where it first decreased. The rate constant for loss of iodide was 0.014-0.16 h -1. Meanwhile, F. serratus was found not to decrease iodate concentrations, as did L. digitata. Indeed, after ˜30 h iodate concentrations increased, suggesting that the weed may take in iodide before oxidising and releasing it. If substantiated, this finding may offer a way into one of the most elusive of processes within the iodine cycle - iodide oxidation. With both seaweeds sustained long-term increases of apparent iodide concentration are most easily explained as a secretion by the weeds of organic matter which is capable of reducing the Ce(IV) reagent used in determination of total iodine. Modelling of the catalytic method used is provided to support this contention. The possibility of developing this to measure the strain that seaweeds endure in this kind of biogeochemical flux experiment is discussed. A Chemical Oxygen Demand type of approach is applied using Ce(IV) as oxidant. The results of the iodine experiments are contrasted with the several investigations of 131I interaction with seaweeds, which have routinely used discs of weed cut from the frond. It is argued that experiments conducted with stable iodine may measure a different variable to that measured in radio-iodine experiments.
Hiraki, Sakiko; Okada, Yohei; Arai, Yusuke; Ishii, Wataru; Iiduka, Ryoji
2017-08-01
Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma.
Li, Tianyang; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B
2018-06-29
Lead-free antimony-based mixed sulfide and iodide perovskite phases have recently been reported to be synthesized experimentally and to exhibit reasonable photovoltaic performance. Through a combination of experimental validation and computational analysis, we show no evidence of the formation of the mixed sulfide and iodide perovskite phase, MASbSI 2 (MA = CH 3 NH 3 + ), and instead that the main products are a mixture of the binary and ternary compounds (Sb 2 S 3 and MA 3 Sb 2 I 9 ). Density functional theory calculations also indicate that such a mixed sulfide and iodide perovskite phase should be thermodynamically less stable compared with binary/ternary anion-segregated secondary phases and less likely to be synthesized under equilibrium conditions. Additionally, band structure calculations show that this mixed sulfide and iodide phase, if possible to synthesize (e.g., under nonequilibrium conditions), should have a suitable direct band gap for photovoltaic application.
The Purity of Radioiodide-I131 Assessed by in Vivo and in Vitro Methods
Fawcett, D. M.; Olde, G. L.; McLeod, L. E.
1962-01-01
Between 41 and 94% of the radioactivity of 24 preparations of I131 supplied without cysteine preservative was non-iodide on chromatographic analysis. Extraneous radio-activity was essentially absent from I131 supplied with cysteine. It was converted to iodide-I131 by 10-3 M cysteine or iodide but not by incubation at pH 2. The average thyroid uptake of I131 containing extraneous radioactivity was significantly lower than the uptake of I131 free from non-iodide impurity in 16 human subjects measured under controlled conditions and in a random group of 669 patients. Incubation of samples of I131 containing non-iodide radioactivity with tyrosine and cupric chloride resulted in the non-enzymatic formation of monoiodotyrosine-I131 either in the presence or absence of thyroid homogenate. Enzymatic formation of monoiodotyrosine-I131 by thyroid homogenates could be demonstrated only when I131 free from extraneous activity was used. ImagesFig. 1Fig. 2 PMID:13891874
Basis of the Massachusetts reference dose and drinking water standard for perchlorate.
Zewdie, Tsedash; Smith, C Mark; Hutcheson, Michael; West, Carol Rowan
2010-01-01
Perchlorate inhibits the uptake of iodide in the thyroid. Iodide is required to synthesize hormones critical to fetal and neonatal development. Many water supplies and foods are contaminated with perchlorate. Exposure standards are needed but controversial. Here we summarize the basis of the Massachusetts (MA) perchlorate reference dose (RfD) and drinking water standard (DWS), which are considerably lower and more health protective than related values derived by several other agencies. We also review information regarding perchlorate risk assessment and policy. MA Department of Environmental Protection (DEP) scientists, with input from a science advisory committee, assessed a wide range of perchlorate risk and exposure information. Health outcomes associated with iodine insufficiency were considered, as were data on perchlorate in drinking water disinfectants. We used a weight-of-the-evidence approach to evaluate perchlorate risks, paying particular attention to sensitive life stages. A health protective RfD (0.07 microg/kg/day) was derived using an uncertainty factor approach with perchlorate-induced iodide uptake inhibition as the point of departure. The MA DWS (2 microg/L) was based on risk management decisions weighing information on perchlorate health risks and its presence in certain disinfectant solutions used to treat drinking water for pathogens. Current data indicate that perchlorate exposures attributable to drinking water in individuals at sensitive life stages should be minimized and support the MA DEP perchlorate RfD and DWS. Widespread exposure to perchlorate and other thyroid toxicants in drinking water and foods suggests that more comprehensive policies to reduce overall exposures and enhance iodine nutrition are needed.
Lee, Lucia M; Corless, Victoria B; Tran, Michael; Jenkins, Hilary; Britten, James F; Vargas-Baca, Ignacio
2016-02-28
Despite their versatility, the application of telluradiazoles as supramolecular building blocks is considerably constrained by their sensitivity to moisture. Albeit more robust, their selenium analogues form weaker supramolecular interactions. These, however, are enhanced when one nitrogen atom is bonded to an alkyl group. Here we investigate general methods for the synthesis of such derivatives. Methyl, iso-propyl and tert-butyl benzo-2,1,3-selenadiazolium cations were prepared by direct alkylation or cyclo-condensation of the alkyl-phenylenediamine with selenous acid. While the former reaction only proceeds with the primary and tertiary alkyl iodides, the latter is very efficient. Difficulties reported in earlier literature are attributable to the formation of adducts of benzoselenadiazole with its alkylated cations and side reactions initiated by aerobic oxidation of iodide. However, the cations themselves are resilient to oxidation and stable in acidic to neutral aqueous medium. X-ray crystallography was used in the identification and characterization of the following compounds: [C6H4N2(R)Se](+)X(-), (R = CH(CH3)2, C(CH3)3; X = I(-), I3(-)], [C6H4N2(CH3)Se](+)I(-), and [C6H4N2Se][C6H4N2(CH3)Se]2I2. Formation of SeN secondary bonding interactions (chalcogen bonds) was only observed in the last structure as anion binding to selenium is a strong competitor. The relative strengths of those forces and the structural preferences they enforce were assessed with DFT-D3 calculations supplemented by AIM analysis of the electron density.
Gomez-Mendoza, M; Marin, M Luisa; Miranda, Miguel A
2014-11-14
The aim of the present work is to develop two-channel emitters to probe local hydrophobicity by means of fluorescence quenching within different biomimetic supramolecular environments. To achieve this goal, the dansyl (Dns) and tryptophan (Trp) fluorophores have been covalently attached to cholic acid (CA) in order to ensure simultaneous incorporation of the two emitting units into the same compartment. In principle, the two fluorophores of the synthesized Dns-CA-Trp probes could either exhibit an orthogonal behavior or display excited state interactions. The fluorescence spectra of 3β-Dns-CA-Trp showed a residual Trp emission band at ca. 350 nm and an enhanced Dns maximum in the 500-550 nm region. This reveals a partial intramolecular energy transfer, which is consistent with the Dns and Trp singlet energies. Thus, the two photoactive units are not orthogonal; nevertheless, 3β-Dns-CA-Trp seems appropriate as a two-channel reporter for the supramolecular systems of interest. Fluorescence quenching of 3β-Dns-CA-Trp by iodide (which remains essentially in bulk water) was examined within sodium cholate, sodium taurocholate, sodium deoxycholate and mixed micelles. Interestingly, a decrease in the emission intensity of the two bands was observed with increasing iodide concentrations. The most remarkable effect was observed for mixed micelles, where the quenching rate constants were one order of magnitude lower than in solution. As anticipated, the quenching efficiency by iodide decreased with increasing hydrophobicity of the microenvironment, a trend that can be correlated with the relative accessibility of the probe to the ionic quencher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, David; Golomb, Dan; Shi, Guang
2011-09-30
This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequentlymore » changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. The term globule refers to the water or liquid carbon dioxide droplets sheathed with ultrafine particles dispersed in the continuous external medium, liquid CO{sub 2} or H{sub 2}O, respectively. The key to obtaining very small globules is the shear force acting on the two intermixing fluids, and the use of ultrafine stabilizing particles or nanoparticles. We found that using Kenics-type static mixers with a shear rate in the range of 2700 to 9800 s{sup -1} and nanoparticles between 100-300 nm produced globule sizes in the 10 to 20 μm range. Particle stabilized emulsions with that kind of globule size should easily penetrate oil-bearing formations or saline aquifers where the pore and throat size can be on the order of 50 μm or larger. Subsequent research focused on creating particle stabilized emulsions that are deemed particularly suitable for Permanent Sequestration of Carbon Dioxide. Based on a survey of the literature an emulsion consisting of 70% by volume of water, 30% by volume of liquid or supercritical carbon dioxide, and 2% by weight of finely pulverized limestone (CaCO{sub 3}) was selected as the most promising agent for permanent sequestration of CO{sub 2}. In order to assure penetration of the emulsion into tight formations of sandstone or other silicate rocks and carbonate or dolomite rock, it is necessary to use an emulsion consisting of the smallest possible globule size. In previous reports we described a high shear static mixer that can create such small globules. In addition to the high shear mixer, it is also necessary that the emulsion stabilizing particles be in the submicron size, preferably in the range of 0.1 to 0.2 μm (100 to 200 nm) size. We found a commercial source of such pulverized limestone particles, in addition we purchased under this DOE Project a particle grinding apparatus that can provide particles in the desired size range. Additional work focused on attempts to generate particle stabilized emulsions with a flow through, static mixer based apparatus under a variety of conditions that are suitable for permanent sequestration of carbon dioxide. A variety of mixtures of water, CO{sub 2} and particles may also provide suitable emulsions capable of PS. In addition, it is necessary to test the robustness of PSE formation as composition changes to be certain that emulsions of appropriate size and stability form under conditions that might vary during actual large scale EOR and sequestration operations. The goal was to lay the groundwork for an apparatus and formulation that would produce homogenous microemulsions of CO{sub 2}-in-water capable of readily mixing with the waters of deep saline aquifers and allow a safer and more permanent sequestration of carbon dioxide. In addition, as a beneficial use, we hoped to produce homogenous microemulsions of water-in-CO{sub 2} capable of readily mixing with pure liquid or supercritical CO{sub 2} for use in Enhanced Oil Recovery (EOR). However, true homogeneous microemulsions have proven very difficult to produce and efforts have not yielded either a formulation or a mixing strategy that gives emulsions that do not settle out or that can be diluted with the continuous phase in varying proportions. Other mixtures of water, CO{sub 2} and particles, that are not technically homogeneous microemulsions, may also provide suitable emulsions capable of PS and EOR. For example, a homogeneous emulsion that is not a microemulsion might also provide all of the necessary characteristics desired. These characteristics would include easy formation, stability over time, appropriate size and the potential for mineralization under conditions that would be encountered under actual large scale sequestration operations. This report also describes work with surrogate systems in order to test conditions.« less
D. A. Sampson; R. H. Waring; C. A. Maier; C. M. Gough; M. J. Ducey; K. H. Johnsen
2006-01-01
A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H
D.A. Sampson; R.H. Waring; C.A. Maier; C.M. Gough; M.J. Ducey; K.H. Kohnsen
2006-01-01
A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H
USDA-ARS?s Scientific Manuscript database
Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...
Growing the urban forest: tree performance in response to biotic and abiotic land management
Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford
2015-01-01
Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Wang, Yifeng; Xiong, Yongliang
Methane (CH 4) and carbon dioxide (CO 2), the two major components generated from kerogen maturation, are stored dominantly in nanometer-sized pores in shale matrix as (1) a compressed gas, (2) an adsorbed surface species and/or (3) a species dissolved in pore water (H 2O). In addition, supercritical CO 2 has been proposed as a fracturing fluid for simultaneous enhanced oil/gas recovery (EOR) and carbon sequestration. A mechanistic understanding of CH 4-CO 2-H 2O interactions in shale nanopores is critical for designing effective operational processes. Using molecular simulations, we show that kerogen preferentially retains CO 2 over CH 4 andmore » that the majority of CO 2 either generated during kerogen maturation or injected in EOR will remain trapped in the kerogen matrix. The trapped CO 2 may be released only if the reservoir pressure drops below the supercritical CO 2 pressure. When water is present in the kerogen matrix, it may block CH 4 release. Furthermore, the addition of CO 2 may enhance CH 4 release because CO 2 can diffuse through water and exchange for adsorbed methane in the kerogen nanopores.« less
Ho, Tuan Anh; Wang, Yifeng; Xiong, Yongliang; ...
2018-02-06
Methane (CH 4) and carbon dioxide (CO 2), the two major components generated from kerogen maturation, are stored dominantly in nanometer-sized pores in shale matrix as (1) a compressed gas, (2) an adsorbed surface species and/or (3) a species dissolved in pore water (H 2O). In addition, supercritical CO 2 has been proposed as a fracturing fluid for simultaneous enhanced oil/gas recovery (EOR) and carbon sequestration. A mechanistic understanding of CH 4-CO 2-H 2O interactions in shale nanopores is critical for designing effective operational processes. Using molecular simulations, we show that kerogen preferentially retains CO 2 over CH 4 andmore » that the majority of CO 2 either generated during kerogen maturation or injected in EOR will remain trapped in the kerogen matrix. The trapped CO 2 may be released only if the reservoir pressure drops below the supercritical CO 2 pressure. When water is present in the kerogen matrix, it may block CH 4 release. Furthermore, the addition of CO 2 may enhance CH 4 release because CO 2 can diffuse through water and exchange for adsorbed methane in the kerogen nanopores.« less
Application of direct thermometric analysis in iodometry.
Marik-Korda, P; Erdey, L
1970-12-01
Elementary chlorine was determined by a thermometric method using potassium iodide as reagent. The temperature rise corresponding to the heat of reaction was proportional to the chlorine content. Iodine formed in the reaction was also determined with sodium thiosulphate. The heat of the chlorine-iodide reaction is about five times that of the iodine-thiosulphate reaction. Direct determination with potassium iodide is simpler and more rapid than the indirect one.
Passivation Of High-Temperature Superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P.
1991-01-01
Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.
1992-03-06
coupling reactions of perfluoroalkyl iodides with certain aryl iodides have been studied. Simple trial tests were carried out between perfluorooctyl iodide...omega Difunctional Perfluoroaliphatic Compounds for Low Dielectric Constant Resins by Robert L. Soulen Department of Chemistry Southwestern University...Difunctional Perfluoroaliphatic Compounds for Low Dielectric Resins 12 PERSONAL AUTHOR(S) Robert L. Soulen 1Ja TYPE OF REPORT 73b TIME COVERED FI DATE OF
NASA Astrophysics Data System (ADS)
Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun
2015-05-01
Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.
NASA Astrophysics Data System (ADS)
Annapureddy, Harsha V. R.; Dang, Liem X.
2012-12-01
To enhance our understanding of the molecular mechanism of ion adsorption to the interface of mixtures, we systematically carried out a free energy calculations study involving the transport of an iodide anion across the interface of a water-methanol mixture. Many body affects are taken into account to describe the interactions among the species. The surface propensities of I- at interfaces of pure water and methanol are well understood. In contrast, detailed knowledge of the molecular level adsorption process of I- at aqueous mixture interfaces has not been reported. In this paper, we explore how this phenomenon will be affected for mixed solvents with varying compositions of water and methanol. Our potential of mean force study as function of varying compositions indicated that I- adsorption free energies decrease from pure water to pure methanol but not linearly with the concentration of methanol. We analyze the computed density profiles and hydration numbers as a function of concentrations and ion positions with respect to the interface to further explain the observed phenomenon.
Bercz, J P; Jones, L L; Harrington, R M; Bawa, R; Condie, L
1986-01-01
Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decrease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrients, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c PMID:3816729
Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward
NASA Astrophysics Data System (ADS)
Daley, T. M.
2012-12-01
The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.
He, Qin; Mohaghegh, Shahab D.; Gholami, Vida
2013-01-01
CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches for bothmore » CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less
Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.
Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang
2015-05-05
Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.
Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration
NASA Astrophysics Data System (ADS)
Zhang, R.; Zhu, S.
2015-12-01
Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Shengke; Xie, Ruohan; Wang, Haixin
Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cdmore » sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.« less
pH-Responsive Micelle Sequestrant Polymers Inhibit Fat Absorption.
Qian, Jian; Sullivan, Bradley P; Berkland, Cory
2015-08-10
Current antiobesity therapeutics are associated with side effects and/or poor long-term patient compliance, necessitating development of more efficacious and safer alternatives. Herein, we designed and engineered a new class of orally acting pharmaceutical agents, or micelle sequestrant polymers (MSPs), that could respond to the pH change in the gastrointestinal (GI) tract and potentially sequester lipid micelles; inhibiting lipid absorption through a pH-triggered flocculation process. These MSPs, derived from poly(2-(diisopropylamino)ethyl methacrylate) and poly(2-(dibutylamino)ethyl methacrylate), were soluble in acidic media, but they transitioned to become insoluble around pH 7.2 and 6.1, respectively. MSPs showed substantial bile acid and triglyceride sequestration capacity with fast pH response tested in vitro. In vivo study showed that orally dosed MSPs significantly enhanced fecal elimination of triglycerides and bile acids. Several MSPs increased fecal elimination of triglycerides by 9-10 times compared with that of the control. In contrast, fecal concentration of bile acids, but not triglycerides, was increased by cholestyramine or Welchol. Importantly, fecal elimination of bile acids and triglycerides was unaltered by addition of control dietary fibers. MSPs may serve as a novel approach to weight loss that inhibits excess caloric intake by preventing absorption of excess dietary triglycerides.
Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil
Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang
2015-01-01
Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542
Standard free energy of formation of iron iodide
NASA Technical Reports Server (NTRS)
Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.
1983-01-01
An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.
Study on gold concentrate leaching by iodine-iodide
NASA Astrophysics Data System (ADS)
Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing
2013-04-01
Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.
DOT National Transportation Integrated Search
2010-05-01
The Federal Highway Administration (FHWA) established the Carbon Sequestration Pilot Program (CSPP) in 2008 to assess whether a roadside carbon sequestration effort through modified maintenance and management practices is appropriate and feasible for...
NASA Technical Reports Server (NTRS)
Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid
2010-01-01
We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.
NASA Technical Reports Server (NTRS)
Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary
2010-01-01
We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.
Micro-PIV Study of Supercritical CO2-Water Interactions in Porous Micromodels
NASA Astrophysics Data System (ADS)
Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth T.
2015-11-01
Multiphase flow of immiscible fluids in porous media is encountered in numerous natural systems and engineering applications such as enhanced oil recovery (EOR), and CO2 sequestration among others. Geological sequestration of CO2 in saline aquifers has emerged as a viable option for reducing CO2 emissions, and thus it has been the subject of numerous studies in recent years. A key objective is improving the accuracy of numerical models used for field-scale simulations by incorporation/better representation of the pore-scale flow physics. This necessitates experimental data for developing, testing and validating such models. We have studied drainage and imbibition processes in a homogeneous, two-dimensional porous micromodel with CO2 and water at reservoir-relevant conditions. Microscopic particle image velocimetry (micro-PIV) technique was applied to obtain spatially- and temporally-resolved velocity vector fields in the aqueous phase. The results provide new insight into the flow processes at the pore scale.
Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.
Swords, Wesley B; Li, Guocan; Meyer, Gerald J
2015-05-04
A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 < 2 < 3 with K = 4000, 4400, and 7000 M(-1). (1)H NMR studies in CD3CN also revealed evidence for iodide ion pairs and indicated that they occur predominantly with iodide localization near the tmam ligand(s). The diastereotopic H atoms on the methylene carbon that link the amine to the bipyridine ring were uniquely sensitive to the presence of iodide; analysis revealed that an iodide "binding pocket" exists wherein iodide forms an adduct with the 3 and 3' bipyridyl H atoms and the quaternized amine. The MLCT excited states were efficiently quenched by iodide. Time-resolved photoluminescence measurements of 1 revealed a static component consistent with rapid electron transfer from iodide in the "binding pocket" to the Ru metal center in the excited state, ket > 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.
NASA Astrophysics Data System (ADS)
Dong, Xiao; Gu, Huaimin; Kang, Jian; Yuan, Xiaojuan; Wu, Jiwei
2010-12-01
The paper further investigated the relationship between the modification of the surface chemistry and the enhancement mechanisms of borohydride-reduced silver particles (BRSC). The bands of residual ions die down while the anomalous bands increase gradually with the increasing of the concentration of Cl - and Br -. It means the residual ions are displaced gradually by the added Cl - or Br - and the two halides can lead to the aggregation of the BRSC to a certain extent. However, the most strongly binding anions - I -, cannot cause any aggregation of silver particles. From the detection of methylene blue (MB), the relationship between the modification of silver surface chemistry and the enhancement mechanisms was discussed. Chloride gives the greatest enhancement while the iodide gives the lowest enhancement among the different kinds of anions. There are also some anomalous bands in the SERS spectra of MB, and these anomalous bands were given rational explanation in this paper.
Soil Carbon Sequestration and Land-Use Change: Processes and Potential
Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kwon, K. C. [Tuskeegee University, Tuskeegee, AL (United States)
2005-01-01
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature that reports changes in soil organic carbon after changes in land-use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100g C m–2 y–1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m–2 y–1 and 33.2 g C m–2 y–1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.
Coal bed sequestration of carbon dioxide
Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.
2001-01-01
Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.
Enhanced top soil carbon stocks under organic farming.
Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs
2012-10-30
It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.
Enhanced top soil carbon stocks under organic farming
Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs
2012-01-01
It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha−1 for stocks, and 0.45 ± 0.21 Mg C ha−1 y−1 for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha−1), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha−1 y−1). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha−1, respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha−1 y−1). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon. PMID:23071312
Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.
2009-01-01
The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of CO2 capture and storage, including public perception and regulatory aspects. NatCarb online access has been modified to address the broad needs of a spectrum of users. NatCarb includes not only GIS and database query tools for high-end user, but simplified display for the general public using readily available web tools such as Google Earth???and Google Maps???. Not only is NatCarb connected to all the RCSPs, but data are also pulled from public servers including the U.S. Geological Survey-EROS Data Center and from the Geography Network. Data for major CO2 sources have been obtained from U.S. Environmental Protection Agency (EPA) databases, and data on major coal basins and coalbed methane wells were obtained from the Energy Information Administration (EIA). ?? 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singare, P. U.
2014-07-01
Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.
Duan, Qi; Wang, Tingting; Zhang, Na; Perera, Vern; Liang, Xue; Abeysekera, Iruni Roshanie
2016-01-01
Background Increased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs) are regarded as scavengers of reactive oxygen species (ROS) in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU), a thyroid peroxidase inhibitor, perchlorate (KClO4), a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH) on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO) mice. Methods Eight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO) mice and background-matched wild type (WT) mice were used. Results By using a mitochondrial superoxide indicator (MitoSOX Red), lactate dehydrogenase (LDH) release, and methyl thiazolyl tetrazolium (MTT) assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM) can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05). Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05). Conclusion We concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid. PMID:26754589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.
The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less
Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity
Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael
2014-01-01
Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755
Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts.
Guino-O, Marites A; Talbot, Meghan O; Slitts, Michael M; Pham, Theresa N; Audi, Maya C; Janzen, Daron E
2015-06-01
The asymmetric units for the salts 4-(4-fluoro-phen-yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 (+)·I(-), (1), 1-isopropyl-4-(4-methyl-phen-yl)-1,2,4-triazol-1-ium iodide, C12H16N3 (+)·I(-), (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 (+)·I(-), (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 (+)·I(-), (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 (+)·Br(-)·H2O, (5), there is an additional single water mol-ecule. There is a predominant C-H⋯X(halide) inter-action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π-anion inter-action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π-π inter-actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.
USDA-ARS?s Scientific Manuscript database
This study uses an experimental pedology approach to examine (i) how the conversion of native C4 grassland to C3 woody shrubs then to irrigated C4 turfgrass affects both soil organic C (SOC) and soil inorganic C (SIC) and (ii) whether SIC can be enhanced by microbial biomineralization. Three sites w...
Reforestation can sequester two petagrams of carbon in US topsoils in a century
Lucas E. Nave; Grant M. Domke; Kathryn L. Hofmeister; Umakant Mishra; Charles H. Perry; Brian F. Walters; Christopher W. Swanston
2018-01-01
Soils are Earthâs largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from...
Kristin McElligott; Debbie Dumroese; Mark Coleman
2011-01-01
Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...
USDA-ARS?s Scientific Manuscript database
There is a question concerning the role of agricultural practices on carbon sequestration enhancement. By producing biomass with agricultural crops and adding this residue to soil, it should act on the mitigation process of the greenhouse effect, especially CO2. The objectives of this study were to ...
ERIC Educational Resources Information Center
Hunter, C. Bruce
1978-01-01
This experiment, mixing solutions of potassium iodide and lead nitrate to give a bright yellow lead iodide precipitate, often leads students into other topics such as making paint from the precipitate. (BB)
Watson, K; Farré, M J; Knight, N
2012-11-15
The presence of bromide (Br(-)) and iodide (I(-)) in source waters leads to the formation of brominated and iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The increasing scarcity of water resources in Australia is leading to use of impaired and alternative water supplies with high bromide and iodide levels, which may result in the production of more brominated and iodinated DBPs. This review aims to provide a summary of research into bromide and iodide removal from drinking water sources. Bromide and iodide removal techniques have been broadly classified into three categories, namely; membrane, electrochemical and adsorptive techniques. Reverse osmosis, nanofiltration and electrodialysis membrane techniques are reviewed. The electrochemical techniques discussed are electrolysis, capacitive deionization and membrane capacitive deionization. Studies on bromide and iodide removal using adsorptive techniques including; layered double hydroxides, impregnated activated carbons, carbon aerogels, ion exchange resins, aluminium coagulation and soils are also assessed. Halide removal techniques have been compared, and areas for future research have been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.
Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry
Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.
2008-01-01
Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346
Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo
2016-09-01
Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil
2014-03-01
The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.
Barium iodide and strontium iodide crystals and scintillators implementing the same
Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold
2016-11-29
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.
78 FR 10003 - Proposed Collection; Comment Request for Notice 2009-XX (NOT-151370-08)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... comments concerning Notice 2009-XX, Credit for Carbon Dioxide Sequestration under Section 45Q. [email protected] . SUPPLEMENTARY INFORMATION: Title: Credit for Carbon Dioxide Sequestration under Section... carbon dioxide sequestration (CO 2 sequestration credit) under Sec. 45Q of the Internal Revenue Code...
Effects of Perchlorate on Thyroidal Uptake of Iodide with Corresponding Hormonal Changes
2000-07-01
with iodide for uptake at this iodide-concentrating step (Goldman and Stanbury, 1973), potentially leading to hypothyroidism . As a result perchlorate...TSH can result in increased thyroid weight, goiter and hypothyroidism (Fukuda et al., 1975; Gerber et al., 1981). The objective of this study was to...2000) "• Canine T3 kits ( canine T3 calibrators batch # C3D3-8, expired July 31, 1999; 1251 canine T 3 batch #, TC32, expired July 31, 1999; canine T3
1992-02-21
Vapor Crystal Growth System developed in IML-1, Mercuric Iodide Crystal grown in microgravity FES/VCGS (Fluids Experiment System/Vapor Crystal Growth Facility). During the mission, mercury iodide source material was heated, vaporized, and transported to a seed crystal where the vapor condensed. Mercury iodide crystals have practical uses as sensitive X-ray and gamma-ray detectors. In addition to their excellent optical properties, these crystals can operate at room temperature, which makes them useful for portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications, and astronomical observing.
Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal
NASA Astrophysics Data System (ADS)
Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.
2018-05-01
Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.
Zhao, Xia; Wei, Aoqi; Lu, Xiaoyu; Lu, Kui
2017-08-01
3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the more reactive sulfenyl iodides. Moreover, the thiolation of 3-aryloxindoles was facilitated by bases. The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions make this protocol more practical for preparing 3-sulfanyloxindoles than traditional methods.
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
NASA Astrophysics Data System (ADS)
Hays, D. B.; Delgado, A.; Bruton, R.; Dobreva, I. D.; Teare, B.; Jessup, R.; Rajan, N.; Bishop, M. P.; Lacey, R.; Neely, H.; Hons, F.; Novo, A.
2016-12-01
Selection of the ideal high biomass energy feedstock and crop cultivars for our national energy and production needs should consider not only the value of the harvested above ground feedstock, but also the local and global environmental services it provides in terms of terrestrial carbon (C) phyto-sequestration and improved soil organic matter enrichment. Selection of ideal crops cultivars is mature, while biofuel feedstock is well under way. What is lacking, however, is high throughput phenotyping (HTP) and integrated real-time data analysis technologies for selecting ideal genotypes within these crops that also confer recalcitrant high biomass or perennial root systems not only for C phyto-sequestration, but also for adaptation to conservation agro-ecosystems, increasing soil organic matter and soil water holding capacity. In no-till systems, significant studies have shown that increasing soil organic carbon is derived primarily from root and not above ground biomass. As such, efforts to increase plant soil phyto-sequestration will require a focus on developing optimal root systems within cultivated crops. We propose to achieve a significant advancement in the use of ground penetrating radar (GPR) as one approach to phenotype root biomass and 3D architecture, and to quantify soil carbon sequestration. In this context, GPR can be used for genotypic selection in breeding nurseries and unadapted germplasm with favorable root architectures, and for assessing management and nutrient practices that promote root growth. GPR has been used for over a decade to successfully map coarse woody roots. Only few have evaluated its efficacy for imaging finer fibrous roots found in grasses, or tap root species. The objectives of this project is to: i) Empirically define the optimal ground penetrating radar (GPR)-antenna array for 3D root and soil organic carbon imaging and quantification in high biomass grass systems; and ii) Develop novel 3- and 4-dimensional data analysis methodologies for using GPR for non-invasive crop root and soil C phyto-sequestration 3-D imaging and quantification within a spatially variable soil matrix. Current results and future directions will be presented and discussed.
Zhang, Xubo; Sun, Nan; Wu, Lianhai; Xu, Minggang; Bingham, Ian J; Li, Zhongfang
2016-08-15
Although organic carbon sequestration in agricultural soils has been recommended as a 'win-win strategy' for mitigating climate change and ensuring food security, great uncertainty still remains in identifying the relationships between soil organic carbon (SOC) sequestration and crop productivity. Using data from 17 long-term experiments in China we determined the effects of fertilization strategies on SOC stocks at 0-20cm depth in the North, North East, North West and South. The impacts of changes in topsoil SOC stocks on the yield and yield stability of winter wheat (Triticum aestivum L.) and maize (Zea mays L.) were determined. Results showed that application of inorganic fertilizers (NPK) plus animal manure over 20-30years significantly increased SOC stocks to 20-cm depth by 32-87% whilst NPK plus wheat/maize straw application increased it by 26-38% compared to controls. The efficiency of SOC sequestration differed between regions with 7.4-13.1% of annual C input into the topsoil being retained as SOC over the study periods. In the northern regions, application of manure had little additional effect on yield compared to NPK over a wide range of topsoil SOC stocks (18->50MgCha(-1)). In the South, average yield from manure applied treatments was 2.5 times greater than that from NPK treatments. Moreover, the yield with NPK plus manure increased until SOC stocks (20-cm depth) increased to ~35MgCha(-1). In the northern regions, yield stability was not increased by application of NPK plus manure compared to NPK, whereas in the South there was a significant improvement. We conclude that manure application and straw incorporation could potentially lead to SOC sequestration in topsoil in China, but beneficial effects of this increase in SOC stocks to 20-cm depth on crop yield and yield stability may only be achieved in the South. Copyright © 2016 Elsevier B.V. All rights reserved.
Reaction mechanisms for enhancing carbon dioxide mineral sequestration
NASA Astrophysics Data System (ADS)
Jarvis, Karalee Ann
Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel corrosion led to nickel precipitation in the carbonate particles and the lack of an amorphous silica reaction layer on the olivine. It was concluded that nickel ions destabilized the silica passivation layer and led to faster growth of carbonate precipitates. Overall, nickel ions increased the reaction rate of mineral sequestration of carbon dioxide.
Shah, Punit P.; Etukala, Jagan Reddy; Vemuri, Adithi; Singh, Mandip
2013-01-01
In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150–200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP. PMID:24349315
Derscheid, Rachel J; van Geelen, Albert; Berkebile, Abigail R; Gallup, Jack M; Hostetter, Shannon J; Banfi, Botond; McCray, Paul B; Ackermann, Mark R
2014-02-01
Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.
Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun
2017-06-01
Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and k f -iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in k f -iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, k f -iodate value increases in several H 2 O 2 -treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest k f -iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.
Basis of the Massachusetts Reference Dose and Drinking Water Standard for Perchlorate
Zewdie, Tsedash; Smith, C. Mark; Hutcheson, Michael; West, Carol Rowan
2010-01-01
Objective Perchlorate inhibits the uptake of iodide in the thyroid. Iodide is required to synthesize hormones critical to fetal and neonatal development. Many water supplies and foods are contaminated with perchlorate. Exposure standards are needed but controversial. Here we summarize the basis of the Massachusetts (MA) perchlorate reference dose (RfD) and drinking water standard (DWS), which are considerably lower and more health protective than related values derived by several other agencies. We also review information regarding perchlorate risk assessment and policy. Data sources MA Department of Environmental Protection (DEP) scientists, with input from a science advisory committee, assessed a wide range of perchlorate risk and exposure information. Health outcomes associated with iodine insufficiency were considered, as were data on perchlorate in drinking water disinfectants. Data synthesis We used a weight-of-the-evidence approach to evaluate perchlorate risks, paying particular attention to sensitive life stages. A health protective RfD (0.07 μg/kg/day) was derived using an uncertainty factor approach with perchlorate-induced iodide uptake inhibition as the point of departure. The MA DWS (2 μg/L) was based on risk management decisions weighing information on perchlorate health risks and its presence in certain disinfectant solutions used to treat drinking water for pathogens. Conclusions Current data indicate that perchlorate exposures attributable to drinking water in individuals at sensitive life stages should be minimized and support the MA DEP perchlorate RfD and DWS. Widespread exposure to perchlorate and other thyroid toxicants in drinking water and foods suggests that more comprehensive policies to reduce overall exposures and enhance iodine nutrition are needed. PMID:20056583
Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd
2017-12-01
Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Junxia; Zhou, Hailing; Wang, Yanxin; Xie, Xianjun; Qian, Kun
2017-06-01
Characterizing the properties of main host of iodine in soil/sediment and the geochemical behaviors of iodine species are critical to understand the mechanisms of iodine mobilization in groundwater systems. Four surface soil and six subsurface sediment samples were collected from the iodine-affected area of Datong basin in northern China to conduct batch experiments and to evaluate the effects of NOM and/or organic-mineral complexes on iodide/iodate geochemical behaviors. The results showed that both iodine contents and kf-iodate values had positive correlations with solid TOC contents, implying the potential host of NOM for iodine in soil/sediment samples. The results of chemical removal of easily extracted NOM indicated that the NOM of surface soils is mainly composed of surface embedded organic matter, while sediment NOM mainly occurs in the form of organic-mineral complexes. After the removal of surface sorbed NOM, the decrease in kf-iodate value of treated surface soils indicates that surface sorbed NOM enhances iodate adsorption onto surface soil. By contrast, kf-iodate value increases in several H2O2-treated sediment samples, which was considered to result from exposed rod-like minerals rich in Fe/Al oxyhydroxide/oxides. After chemical removal of organic-mineral complexes, the lowest kf-iodate value for both treated surface soils and sediments suggests the dominant role of organic-mineral complexes on controlling the iodate geochemical behavior. In comparison with iodate, iodide exhibited lower affinities on all (un)treated soil/sediment samples. The understanding of different geochemical behaviors of iodine species helps to explain the occurrence of high iodine groundwater with iodate and iodide as the main species in shallow (oxidizing conditions) and deep (reducing conditions) groundwater.
Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran
NASA Astrophysics Data System (ADS)
Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin
2018-06-01
Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index
. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.
Oliver, Edward R; DeBari, Suzanne E; Giannone, Mariann M; Pogoriler, Jennifer E; Johnson, Ann M; Horii, Steven C; Gebb, Juliana S; Howell, Lori J; Adzick, N Scott; Coleman, Beverly G
2018-02-01
To assess the ability of prenatal ultrasound (US) in identifying systemic feeding arteries in bronchopulmonary sequestrations and hybrid lesions and report the ability of US in classifying bronchopulmonary sequestrations as intralobar or extralobar. Institutional Review Board-approved radiology and clinical database searches from 2008 to 2015 were performed for prenatal lung lesions with final diagnoses of bronchopulmonary sequestrations or hybrid lesions. All patients had detailed US examinations, and most patients had ultrafast magnetic resonance imaging (MRI). Lesion location, size, and identification of systemic feeding arteries and draining veins were assessed with US. The study consisted of 102 bronchopulmonary sequestrations and 86 hybrid lesions. The median maternal age was 30 years. The median gestational age was 22 weeks 5 days. Of bronchopulmonary sequestrations, 66 had surgical pathologic confirmation, and 100 had postnatal imaging. Bronchopulmonary sequestration locations were intrathoracic (n = 77), intra-abdominal (n = 19), and transdiaphragmatic (n = 6). Of hybrid lesions, 84 had surgical pathologic confirmation, and 83 had postnatal imaging. Hybrid lesion locations were intrathoracic (n = 84) and transdiaphragmatic (n = 2). Ultrasound correctly identified systemic feeding arteries in 86 of 102 bronchopulmonary sequestrations and 79 of 86 hybrid lesions. Of patients who underwent MRI, systemic feeding arteries were reported in 62 of 92 bronchopulmonary sequestrations and 56 of 81 hybrid lesions. Ultrasound identified more systemic feeding arteries than MRI in both bronchopulmonary sequestrations and hybrid lesions (P < .01). Magnetic resonance imaging identified systemic feeding arteries that US did not in only 2 cases. In cases in which both systemic feeding arteries and draining veins were identified, US could correctly predict intrathoracic lesions as intralobar or extralobar in 44 of 49 bronchopulmonary sequestrations and 68 of 73 hybrid lesions. Ultrasound is most accurate for systemic feeding artery detection in bronchopulmonary sequestrations and hybrid lesions and can also type the lesions as intralobar or extralobar when draining veins are evaluated. © 2017 by the American Institute of Ultrasound in Medicine.
Cesium iodide crystals fused to vacuum tube faceplates
NASA Technical Reports Server (NTRS)
Fleck, H. G.
1964-01-01
A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.
Iodine addition using triiodide solutions
NASA Technical Reports Server (NTRS)
Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.
1992-01-01
The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.
NASA Technical Reports Server (NTRS)
Shiner, C. S.
1985-01-01
This work is directed toward the design and chemical synthesis of new media for solar-pumped I* lasers. In view of the desirability of preparing a perfluoroalkyl iodide absorbing strongly at 300 nm, the relationship betwen perfluoroalkyl iodide structure and the corresponding absorption wavelength was reexamined. Analysis of existing data suggests that, in this family of compounds, the absorption maximum shifts to longer wavelength, as desired, as the C-I bond in the lasant is progressively weakened. Weakening of the C-I bond correlates, in turn, with increasing stability of the perfluoroalkyl radical formed upon photodissociation of the iodide. The extremely promising absorption characteristics of perfluoro-tert-butyl iodide can be accounted for on this basis. A new technique of diode laser probing to obtain precise yields of I* atoms in photodissociation was also developed.
Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts
Guino-o, Marites A.; Talbot, Meghan O.; Slitts, Michael M.; Pham, Theresa N.; Audi, Maya C.; Janzen, Daron E.
2015-01-01
The asymmetric units for the salts 4-(4-fluorophenyl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 +·I−, (1), 1-isopropyl-4-(4-methylphenyl)-1,2,4-triazol-1-ium iodide, C12H16N3 +·I−, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 +·I−, (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 +·I−, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 +·Br−·H2O, (5), there is an additional single water molecule. There is a predominant C—H⋯X(halide) interaction for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion interaction between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π interactions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects. PMID:26090137
Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.
Guo, Wanhong; Shan, Yingchun; Yang, Xin
2014-01-15
Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.
Total Force Restructuring Under Sequestration and Austere Budget Reductions
2013-03-01
jointly released guidance on January 16, 2013 that addresses near-term expenditure reductions in an attempt to mitigate future risks .9 Guidance...implication for the Army is that the 6 force structure decisions are still forthcoming and will bear much risk directly related to future levels of...their benefits and risks . The alternatives are also underpinned by assumptions that are designed to enhance their scope and not provide limitations
Hasan, Md. Kamrul; Ahammed, Golam Jalal; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie
2015-01-01
Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H+-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production. PMID:26322055
100% Solids Polyurethane Sequestration Coating
2014-04-11
Distribution Unlimited 100% Solids Polyurethane Sequestration Coating The views, opinions and/or findings contained in this report are those of the...Papers published in non peer-reviewed journals: 100% Solids Polyurethane Sequestration Coating Report Title Report developed under Topic #CBD13-101...Final Technical Report Contract #: W911NF-13-P-0010 Proposal #: 63958CHSB1 Project: 100% Solids Polyurethane Sequestration Coating
Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila
Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less
Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil
2014-01-01
The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.
Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions
Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila; ...
2017-02-02
Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less
Barnaby, C. F.; Davidson, Ailsa M.; Plaskett, L. G.
1965-01-01
1. Ratios of mono[131I]iodotyrosine and di[131I]iodotyrosine (R values) and the incorporation of 131I into iodothyronines have been estimated in rat thyroid glands from 30min. to 38hr. after the administration of [131I]iodide. 2. In rats receiving a powdered low-iodine diet the R values were close to unity and did not change with time after the administration of [131I]iodide. In rats receiving a commercial pellet diet the R values fell from a mean of 0·8 at 30min. after [131I]iodide administration to 0·49 at 38hr. 3. Administration of 0·5–2·0i.u. of thyroid-stimulating hormone before giving the injection of [131I]iodide caused a small diminution in the R value when the time between injecting [131I]iodide and killing the animal was 16hr. or more. 4. Iodothyronines represented a greater percentage of the total thyroid-gland radioactivity in the iodine-deficient animals than in animals fed on the pellet diet. Thyroid-stimulating hormone had little effect, if any, on the iodothyronine contents. PMID:14342520
Homology of pendrin, sodium-iodide symporter and apical iodide transporter.
Benvenga, Salvatore; Guarneri, Fabrizio
2018-06-01
We observed local homology between human pendrin and sodium/iodide symporter (NIS), that was absent in the NIS-homologous sodium/monocarboxylate transporter or apical iodide transporter (AIT) which, however, does not transport iodide. Thus, we analyzed the full proteins. They shared 63 identical and 66 similar residues (overall homology 14.4%, but 21% when omitting intervening sequences of 15 or more residues). Pendrin was more homologous to NIS (25%) than AIT (20%), particularly in the STAS domain (sulfate transporter and antisigma factor antagonist). Homology was concentrated in 11 segments, with 3/11 involving the STAS domain. In 9/11, homology was greater with NIS (45-58.3%) than with AIT (8.3-42.3%); in 4 of these 9 segments, homology was comparable to or greater than that between NIS and AIT (8.3-52.6%). Pendrin residues which are mutated in Pendred's syndrome are identical to those in the aligned position of NIS and AIT. Hypothyroidism-associated pendrin mutations almost always fall within 4/11 segments. These are the first data that show homology between pendrin and NIS, and topographic relationships between pendrin mutations and the hypothyroid phenotype of PDS.
Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine
Nagarajah, James; Le, Mina; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Larson, Steven M.; Ho, Alan L.; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A.; Fagin, James A.
2016-01-01
Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer. PMID:27669459
Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine.
Nagarajah, James; Le, Mina; Knauf, Jeffrey A; Ferrandino, Giuseppe; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Saqcena, Mahesh; Larson, Steven M; Ho, Alan L; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A; Fagin, James A
2016-11-01
Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.
Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium Iodide)
This is a PPRTV for Rubidium Compounds submitted to the Superfund Program.This assessment supports multiple isomers (see related links) and this page is about the chemical rubidium iodide, CASRN 7790-29-6.
Sheng, Guodong; Hu, Jun; Li, Hui; Li, Jiaxing; Huang, Yuying
2016-04-01
Herein, the reduction of nanoscale zero-valent iron (NZVI) and adsorption of layered double hydroxides (LDH) to sequester Cr(VI) were well combined by the immobilization of NZVI onto LDH surface (NZVI/LDH). The characterization results revealed that LDH decreased NZVI aggregation and thus increased Cr(VI) sequestration. The batch results indicated that Cr(VI) sequestration by NZVI/LDH was higher than that of NZVI, and superior to the sum of reduction and adsorption. The LDH with good anion exchange property allowed the adsorption of Cr(VI), facilitating interfacial reaction by increasing the local concentration of Cr(VI) in the NZVI vicinity. X-ray absorption near edge structure (XANES) results indicated that Cr(VI) was almost completely reduced to Cr(III) by NZVI/LDH, but Cr(VI) was partly reduced to Cr(III) by NZVI with a trace of Cr(VI) adsorbed on corrosion products. The coordination environment of Cr from extended X-ray absorption fine structure (EXAFS) analysis revealed that LDH could be a good scavenger for the insoluble products produced during reaction. So, the insoluble products on NZVI could be reduced, and its reactivity could be maintained. These results demonstrated that NZVI/LDH exhibits multiple functionalities relevant to the remediation of Cr(VI)-contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Protecting terrestrial ecosystems and the climate through a global carbon market.
Bonnie, Robert; Carey, Melissa; Petsonk, Annie
2002-08-15
Protecting terrestrial ecosystems through international environmental laws requires the development of economic mechanisms that value the Earth's natural systems. The major international treaties to address ecosystem protection lack meaningful binding obligations and the requisite financial instruments to affect large-scale conservation. The Kyoto Protocol's emissions-trading framework creates economic incentives for nations to reduce greenhouse-gas (GHG) emissions cost effectively. Incorporating GHG impacts from land-use activities into this system would create a market for an important ecosystem service provided by forests and agricultural lands: sequestration of atmospheric carbon. This would spur conservation efforts while reducing the 20% of anthropogenic CO(2) emissions produced by land-use change, particularly tropical deforestation. The Kyoto negotiations surrounding land-use activities have been hampered by a lack of robust carbon inventory data. Moreover, the Protocol's provisions agreed to in Kyoto made it difficult to incorporate carbon-sequestering land-use activities into the emissions-trading framework without undermining the atmospheric GHG reductions contemplated in the treaty. Subsequent negotiations since 1997 failed to produce a crediting system that provides meaningful incentives for enhanced carbon sequestration. Notably, credit for reducing rates of tropical deforestation was explicitly excluded from the Protocol. Ultimately, an effective GHG emissions-trading framework will require full carbon accounting for all emissions and sequestration from terrestrial ecosystems. Improved inventory systems and capacity building for developing nations will, therefore, be necessary.
Enhanced absorption in a reverse saturable absorbing dye blended with carbon nanotubes.
Webster, Scott; Reyes-Reyes, Marisol; Williams, Richard; Carroll, David L
2008-12-01
Using nonlinear absorption at 532 nm in the nanosecond temporal regime, we have measured the low fluence nonlinear transmittance properties of the reverse saturable absorbing carbocyanine dye, 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HITCI), blended with well dispersed carbon nanotubes. The nonlinear optical properties of the blends are strongly dependent on the ratio of dye to nanotubes in solution. In the case where the nanotubes per dye molecule ratio is large, we see a distinctive enhancement in optical fluence limiting properties of the system, suggesting enhanced absorption of the excited states. However, when the nanotube to dye ratio decreases, the system's response is dominated by the behavior of the dye. We suggest that this can be understood as a two component system in which sensitized dye molecules associated with the nanotubes have an effectively different optical cross-section from the dye molecules far from the nanotubes. From classical antennae considerations, this is expected.
Luo, Zhi-Bin; He, Jiali; Polle, Andrea; Rennenberg, Heinz
2016-11-01
Heavy metal (HM)-accumulating herbaceous and woody plants are employed for phytoremediation. To develop improved strategies for enhancing phytoremediation efficiency, knowledge of the microstructural, physiological and molecular responses underlying HM-accumulation is required. Here we review the progress in understanding the structural, physiological and molecular mechanisms underlying HM uptake, transport, sequestration and detoxification, as well as the regulation of these processes by signal transduction in response to HM exposure. The significance of genetic engineering for enhancing phytoremediation efficiency is also discussed. In herbaceous plants, HMs are taken up by roots and transported into the root cells via transmembrane carriers for nutritional ions. The HMs absorbed by root cells can be further translocated to the xylem vessels and unloaded into the xylem sap, thereby reaching the aerial parts of plants. HMs can be sequestered in the cell walls, vacuoles and the Golgi apparatuses. Plant roots initially perceive HM stress and trigger the signal transduction, thereby mediating changes at the molecular, physiological, and microstructural level. Signaling molecules such as phytohormones, reactive oxygen species (ROS) and nitric oxide (NO), modulate plant responses to HMs via differentially expressed genes, activation of the antioxidative system and coordinated cross talk among different signaling molecules. A number of genes participated in HM uptake, transport, sequestration and detoxification have been functionally characterized and transformed to target plants for enhancing phytoremediation efficiency. Fast growing woody plants hold an advantage over herbaceous plants for phytoremediation in terms of accumulation of high HM-amounts in their large biomass. Presumably, woody plants accumulate HMs using similar mechanisms as herbaceous counterparts, but the processes of HM accumulation and signal transduction can be more complex in woody plants. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardy, A.; Comet, M.; Coornaert, S.
1984-10-09
A process is claimed for the preparation of a fatty acid tagged with radioactive iodine, where a brominated or iodized fatty acid is reacted, preferably in the omega position, with radioactive iodide in the dry state or with an aqueous solution of radioactive iodide, in the presence of vehicling iodide, to exchange the bromine or iodine of the fatty acid for radioactive iodine. Application to use as radio-pharmaceutical products for studying cardiac metabolism troubles in human beings by scintigraphy is mentioned.
Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E
2015-09-02
The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.
Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke
2014-07-01
Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.
Liang, Xue; Feng, Yanni; Lin, Laixiang; Abeysekera, Iruni Roshanie; Iqbal, Umar; Wang, Tingting; Wang, Ying; Yao, Xiaomei
2018-05-01
Our aim was to investigate thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring. Depending on their iodide intake, the pregnant rats were randomly divided into three groups: normal iodide intake (NI), 10 times high iodide intake (10 HI) and 100 times high iodide intake (100 HI) groups. Iodine concentration in the urine and maternal milk; iodine content and mitochondrial superoxide production; expression of TRα1, TRβ1, NIS and Dio1 in both the thyroid and mammary glands were all measured. The offspring were exposed to different iodide-containing water (NI, 10 HI and 100 HI) from weaning to postnatal day 180 (PN180). Serum thyroid hormone levels were measured in both maternal rats and their offspring. Iodine concentration in the urine and maternal milk, as well as iodine content in the thyroid and mammary glands was significantly increased in both the 10 HI and 100 HI groups (p < .05). In the 100 HI group of maternal rats, low FT3 levels, high FT4, TPOAb and TgAb levels were detected. In addition, an increased mitochondrial superoxide production and decreased expression of TRα1, TRβ1, NIS and Dio1 in the thyroid and mammary glands was found (p < .05). A positive staining of CD4 + that co-localized with TRβ1 in the infiltrated cells within the thyroid follicles was observed. At PN180 in the offspring, the FT3 and FT4 levels showed a significant decrease, while the levels of serum TSH, TPOAb and TgAb were significantly increased in both 10 HI and 100 HI groups (p < .05). In maternal rats, although normal thyroid function can be maintained following 10 HI, thyroiditis can be induced following 100 HI on lactation days 7, 14, and 21. In the offspring at PN180, hypothyroidism complicated with thyroiditis can occur in both the 10 HI and 100 HI groups. Copyright © 2018 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, M.T.; Broome, M.R.; Turrel, J.M.
A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in themore » euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4.« less
Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.
Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J
2015-05-01
Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wafelman, A R; Suchi, R; Hoefnagel, C A; Beijnen, J H
1993-07-01
Iodine-131 labelled metaiodobenzylguanidine ([131I]MIBG) has a diagnostic and therapeutic role in the management of neural crest tumours, particularly neuroblastoma, malignant phaeochromocytoma and paraganglioma. With therapeutic amounts of [131I]MIBG it is essential that the amount of free [131I]iodide, the most important impurity, is known. In clinical practice the percentage of free [131I]iodide seen in a [131I]MIBG infusion concentrate increased from 2.2% +/- 0.67% to 3.6% +/- 0.39% (mean +/- SD; n = 23) 1 day after production. At the time of use the percentage of free [131I]iodide was always below our upper limit of acceptance of 5%. Since 5% of free [131I]iodide is within practical reach in our environment, a higher percentage at the time of preadministration quality control is not accepted in the Netherlands Cancer Institute.
Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M
2012-06-01
Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Antifungal effects of peroxidase systems.
Lehrer, R I
1969-08-01
In the presence of hydrogen peroxide and either potassium iodide, sodium chloride, or potassium bromide, purified human myeloperoxidase was rapidly lethal to several species of Candida. Its candidacidal activity was inhibited by cyanide, fluoride, and azide, and by heat inactivation of the enzyme. A hydrogen peroxidegenerating system consisting of d-amino acid oxidase, flavine-adenine dinucleotide, and d-alanine could replace hydrogen peroxide in the candidacidal system. Horseradish peroxidase and human eosinophil granules also exerted candidacidal activity in the presence of iodide and hydrogen peroxide; however, unlike myeloperoxidase or neutrophil granules, these peroxidase sources were inactive when chloride replaced iodide. Cells of Saccharomyces, Geotrichum, and Rhodotorula species, and spores of Aspergillus fumigatus and A. niger were also killed by the combination of myeloperoxidase, iodide, and hydrogen peroxide. Peroxidases, functionally linked to hydrogen peroxide-generating systems, could provide phagocytic cells with the ability to kill many fungal species.
Zhang, Yunsong; Dai, Tianhong; Wang, Min; Vecchio, Daniela; Chiang, Long Y; Hamblin, Michael R
2016-01-01
Background Antimicrobial photodynamic inactivation with fullerenes bearing cationic charges may overcome resistant microbes. Methods & results We synthesized C60-fullerene (LC16) bearing decaquaternary chain and deca-tertiary-amino groups that facilitates electron-transfer reactions via the photoexcited fullerene. Addition of the harmless salt, potassium iodide (10 mM) potentiated the ultraviolet A (UVA) or white light-mediated killing of Gram-negative bacteria Acinetobacter baumannii, Gram-positive methicillin-resistant Staphylococcus aureus and fungal yeast Candida albicans by 1–2+ logs. Mouse model infected with bioluminescent Acinetobacter baumannii gave increased loss of bioluminescence when iodide (10 mM) was combined with LC16 and UVA/white light. Conclusion The mechanism may involve photoinduced electron reduction of 1(C60>)* or 3(C60>)* by iodide producing I· or I2 followed by subsequent intermolecular electron-transfer events of (C60>)−· to produce reactive radicals. PMID:25723093
Simultaneous detection of iodine and iodide on boron doped diamond electrodes.
Fierro, Stéphane; Comninellis, Christos; Einaga, Yasuaki
2013-01-15
Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intensities as a function of the concentration. A lower detection limit of about 20 μM was obtained for iodide and 10 μM for iodine. Based on the comparison between the peak current intensities reported during the oxidation of KI, it is probable that iodide (I(-)) is first oxidized in a single step to yield iodine (I(2)). The latter is further oxidized to obtain IO(3)(-). This technique, however, did not allow for a reasonably accurate detection of iodate (IO(3)(-)) on a BDD electrode. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin
2009-01-01
An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.
Thyroid effects of iodine and iodide in potable water
NASA Technical Reports Server (NTRS)
Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.
1991-01-01
Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.
Time-Lapse Acoustic Impedance Inversion in CO2 Sequestration Study (Weyburn Field, Canada)
NASA Astrophysics Data System (ADS)
Wang, Y.; Morozov, I. B.
2016-12-01
Acoustic-impedance (AI) pseudo-logs are useful for characterising subtle variations of fluid content during seismic monitoring of reservoirs undergoing enhanced oil recovery and/or geologic CO2 sequestration. However, highly accurate AI images are required for time-lapse analysis, which may be difficult to achieve with conventional inversion approaches. In this study, two enhancements of time-lapse AI analysis are proposed. First, a well-known uncertainty of AI inversion is caused by the lack of low-frequency signal in reflection seismic data. To resolve this difficulty, we utilize an integrated AI inversion approach combining seismic data, acoustic well logs and seismic-processing velocities. The use of well logs helps stabilizing the recursive AI inverse, and seismic-processing velocities are used to complement the low-frequency information in seismic records. To derive the low-frequency AI from seismic-processing velocity data, an empirical relation is determined by using the available acoustic logs. This method is simple and does not require subjective choices of parameters and regularization schemes as in the more sophisticated joint inversion methods. The second improvement to accurate time-lapse AI imaging consists in time-variant calibration of reflectivity. Calibration corrections consist of time shifts, amplitude corrections, spectral shaping and phase rotations. Following the calibration, average and differential reflection amplitudes are calculated, from which the average and differential AI are obtained. The approaches are applied to a time-lapse 3-D 3-C dataset from Weyburn CO2 sequestration project in southern Saskatchewan, Canada. High quality time-lapse AI volumes are obtained. Comparisons with traditional recursive and colored AI inversions (obtained without using seismic-processing velocities) show that the new method gives a better representation of spatial AI variations. Although only early stages of monitoring seismic data are available, time-lapse AI variations mapped within and near the reservoir zone suggest correlations with CO2 injection. By extending this procedure to elastic impedances, additional constraints on the variations of physical properties within the reservoir can be obtained.
Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.
Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori
2013-03-01
Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).
Regulation of Iodide Uptake in Placental Primary Cultures
Burns, R.; O'Herlihy, C.; Smyth, P.P.A.
2013-01-01
Background Maintenance of adequate iodide supply to the developing fetus is dependent not only on maternal dietary iodine intake but also on placental iodide transport. The objective of this study was to examine the effects of different pregnancy-associated hormones on the uptake of radioiodide by the placenta and to determine if iodide transporter expression is affected by hormone incubation. Methods Primary cultures of placental trophoblast cells were established from placentas obtained at term from pre-labor caesarean sections. They were pre-incubated with 17β-estradiol, prolactin, oxytocin, human chorionic gonadotropin (hCG) and progesterone either singly or in combination over 12 h with 125I uptake being measured after 6 h. RNA was isolated from placental trophoblasts and real-time RT-PCR performed using sodium iodide symporter (NIS) and pendrin (PDS) probes. Results Significant dose response increments in 125I uptake by trophoblast cells (p < 0.01) were observed following incubation with hCG (60% increase), oxytocin (45% increase) and prolactin (32% increase). Although progesterone (50-200 ng/ml) and 17β-estradiol (1,000-15,000 pg/ml) alone produced no significant differences in uptake, they facilitated increased uptake when combined with prolactin or oxytocin, with a combination of all four hormones producing the greatest increase (82%). Increased 125I uptake was accompanied by corresponding increments in NIS mRNA (ratio 1.52) compared to untreated control cells. No significantly increased expression levels of PDS were observed. Conclusions Pregnancy-associated hormones, particularly oxytocin and hCG, have a role in promoting placental iodide uptake which may protect the fetus against iodine deficiency. PMID:24783055
Genetic Factors That Might Lead to Different Responses in Individuals Exposed to Perchlorate
Scinicariello, Franco; Murray, H. Edward; Smith, Lester; Wilbur, Sharon; Fowler, Bruce A.
2005-01-01
Perchlorate has been detected in groundwater in many parts of the United States, and recent detection in vegetable and dairy food products indicates that contamination by perchlorate is more widespread than previously thought. Perchlorate is a competitive inhibitor of the sodium iodide symporter, the thyroid cell–surface protein responsible for transporting iodide from the plasma into the thyroid. An estimated 4.3% of the U.S. population is subclinically hypothyroid, and 6.9% of pregnant women may have low iodine intake. Congenital hypothyroidism affects 1 in 3,000 to 1 in 4,000 infants, and 15% of these cases have been attributed to genetic defects. Our objective in this review is to identify genetic biomarkers that would help define subpopulations sensitive to environmental perchlorate exposure. We review the literature to identify genetic defects involved in the iodination process of the thyroid hormone synthesis, particularly defects in iodide transport from circulation into the thyroid cell, defects in iodide transport from the thyroid cell to the follicular lumen (Pendred syndrome), and defects of iodide organification. Furthermore, we summarize relevant studies of perchlorate in humans. Because of perchlorate inhibition of iodide uptake, it is biologically plausible that chronic ingestion of perchlorate through contaminated sources may cause some degree of iodine discharge in populations that are genetically susceptible to defects in the iodination process of the thyroid hormone synthesis, thus deteriorating their conditions. We conclude that future studies linking human disease and environmental perchlorate exposure should consider the genetic makeup of the participants, actual perchlorate exposure levels, and individual iodine intake/excretion levels. PMID:16263499
Qin, Xiaolei; Zhang, Tao; Gan, Zhiwei; Sun, Hongwen
2014-09-01
Although China is the largest producer of fireworks (perchlorate-containing products) in the world, the pathways through which perchlorate enters the environment have not been characterized completely in this country. In this study, perchlorate, iodide and thiocyanate were measured in 101 water samples, including waste water, surface water, sea water and paired samples of rain water and surface runoff collected in Tianjin, China. The concentrations of the target anions were generally on the order of rain>surface water≈waste water treatment plant (WWTP) influent>WWTP effluent. High concentrations of perchlorate, iodide and thiocyanate were detected in rain samples, ranging from 0.35 to 27.3 (median: 4.05), 0.51 to 8.33 (2.92), and 1.31 to 107 (5.62) ngmL(-)(1), respectively. Furthermore, the concentrations of the target anions in rain samples were significantly (r=0.596-0.750, p<0.01) positively correlated with the concentrations obtained in the paired surface runoff samples. The anions tested showed a clear spatial distribution, and higher concentrations were observed in the upper reaches of rivers, sea waters near the coast, and rain-surface runoff pairs sampled in urban areas. Our results revealed that precipitation may act as an important source of perchlorate, iodide and thiocyanate in surface water. Moreover, iodide concentrations in the Haihe River and Dagu Drainage Canal showed a good correlation with an ideal marker (acesulfame) of domestic waste water, indicating that input from domestic waste water was an important source of iodide in the surface waters of Tianjin. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sherwen, T.; Evans, M. J.; Chance, R.; Tinel, L.; Carpenter, L.
2017-12-01
Halogens (Cl, Br, I) in the troposphere have been shown to play a profound role in determining the concentrations of ozone and OH. Iodine, which is essentially oceanic in source, exerts its largest impacts on composition in both the marine boundary layer, and in the upper troposphere. This chemistry has only recently been implemented into global models and significant uncertainties remain, particularly regarding the magnitude of iodine emissions. Iodine emissions are dominated by the inorganic oxidation of iodide in the sea surface by ozone, which leads to release of gaseous inorganic iodine (HOI, I2). Critical for calculation of these fluxes is the sea-surface concentration of iodide, which is poorly constrained by observations. Previous parameterizations for sea-surface iodide concentration have focused on simple regressive relationships with sea surface temperature and another single oceanographic variables. This leads to differences in iodine fluxes of approximately a factor of two, and leads to substantial differences in the modelled impact of iodine on atmospheric composition. Here we use an expanded dataset of oceanic iodide observations, which incorporates new data that has been targeted at areas with poor coverage previously. A novel approach of multivariate machine learning techniques is applied to this expanded dataset to generate a model that yields improved estimates of the global sea surface iodide distribution. We then use a global chemical transport model (GEOS-Chem) to explore the impact of this new parameterisation on the atmospheric budget of iodine and its impact on tropospheric composition.
Alvarez, Alejandro; Borgia, Francesco; Guccione, Paolo
2010-02-01
We describe an infant of 8 months who presented with left ventricular dilation due to an extensive intralobar sequestration of the right lung. The pulmonary sequestration was associated with a patent arterial duct and a right aortic arch. Percutaneous closure of the anomalous aberrant artery feeding the sequestrated lung resulted in prompt regression of the left ventricular enlargement.
Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young
2017-12-06
We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.
Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A
2014-03-03
Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (D<10 nm) SPIONs into large assemblies can considerably enhance their relaxivity. However, this assembly process is difficult to control and can easily result in unwanted aggregation and precipitation, which might further lead to lower contrast agent performance. Herein, we present highly stable protein-polymer double-stabilized SPIONs for improving contrast in MRI. We used a cationic-neutral double hydrophilic poly(N-methyl-2-vinyl pyridinium iodide-block-poly(ethylene oxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated Risk Information System (IRIS)
Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe
27 CFR 21.78 - Formula No. 42.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...
27 CFR 21.78 - Formula No. 42.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...
27 CFR 21.78 - Formula No. 42.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...
27 CFR 21.78 - Formula No. 42.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...
27 CFR 21.78 - Formula No. 42.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...
27 CFR 21.50 - Formula No. 25.
Code of Federal Regulations, 2011 CFR
2011-04-01
... pounds of iodine, U.S.P., and 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine. 249.Miscellaneous external pharmaceuticals, U.S.P...
27 CFR 21.50 - Formula No. 25.
Code of Federal Regulations, 2010 CFR
2010-04-01
... pounds of iodine, U.S.P., and 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine. 249.Miscellaneous external pharmaceuticals, U.S.P...
G.A. Bauer; F.A. Bazzaz; R. Minocha; S. Long; A. Magill; J. Aber; G.M. Berntson
2004-01-01
Temperate forests are predicted to play a key role as important sinks for atmospheric carbon dioxide, which could be enhanced by nitrogen (N) deposition. However, experimental evidence suggests that the impact of N deposition on temperate forest productivity may not be as great as originally assumed. We investigated how chronic N addition affects needle morphology,...
Si, Yong; Wang, Lihong; Huang, Xiaohua
2018-01-01
REEs in the environment can be absorbed by plants and sequestered by plant phytoliths. Acid rain can directly or indirectly affect plant physiological functions. Currently, the effects of REEs and acid rain on phytolith-REEs complex in plants are not yet fully understood. In this study, a high-silicon accumulation crop, rice (Oryza sativa L.), was selected as a representative of plants, and orthogonal experiments were conducted under various levels of lanthanum [La(III)] and pH. The results showed that various La(III) concentrations could significantly improve the efficiency and sequestration of phytolith La(III) in germinated rice seeds. A pH of 4.5 promoted phytolith La(III) sequestration, while a pH of 3.5 inhibited sequestration. Compared with the single treatment with La(III), the combination of La(III) and acid rain inhibited the efficiency and sequestration of phytolith La(III). Correlation analysis showed that the efficiency of phytolith La(III) sequestration had no correlation with the production of phytolith but was closely correlated with the sequestration of phytolith La(III) and the physiological changes of germinated rice seeds. Phytolith morphology was an important factor affecting phytolith La(III) sequestration in germinated rice seeds, and the effect of tubes on sequestration was more significant than that of dumbbells. This study demonstrated that the formation of the phytolith and La(III) complex could be affected by exogenous La(III) and acid rain in germinated rice seeds. PMID:29763463
A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2
NASA Astrophysics Data System (ADS)
Kithil, P. W.
2007-12-01
Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources, sequestration is the only way to achieve near and medium-term reductions in atmospheric CO2 levels. To finance massive-scale sequestration of CO2, we propose the World Trade Organization (WTO) become an active player in the sequestration market. Given the WTO's role as overseer of international trade agreements annually representing 30 trillion in imports and exports of goods and services, it is by far the largest global economic force and therefore offers the broadest economic base. Absent a real solution to CO2 emissions, the global economy - and world trade - will shrink dramatically. The WTO can jumpstart the market for CO2 sequestration by issuing long term contracts to purchase bona fide sequestration-derived CO2 credits. Under this proposal, an initial price of 100 per ton which steps-down by 5% per year could bring forth the sequestration investment needed to achieve upwards of 10 billion tons sequestered CO2 per year by 2025 (seven billion tons from biological ocean sequestration and at least three billion tons from geologic and terrestrial sequestration). Assuming a contract term of 40 years, and a parallel commodity market continues to develop for CO2 credits, at some time in the future the WTO's contractual price will be less than the commodity market price - and the WTO begins to recover its investment. Under one set of assumptions, the net WTO annual subsidy would peak at $86 billion by 2022, equal to an across-the-board WTO tariff on imports and exports of about 1.01%, then become positive a few years later as the market price climbed above WTO's contracted price. Under this proposal, the WTO effectively subsidizes CO2 sequestration in the near to medium term and then recoups its investment and reaps large profits over the long term.
An Overview of Geologic Carbon Sequestration Potential in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron Downey; John Clinkenbeard
2005-10-01
As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide mapsmore » showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.« less
Forests and ozone: productivity, carbon storage, and feedbacks.
Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T
2016-02-22
Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.
Nitrogen Deposition to and Cycling in a Deciduous Forest
Pryor, Sara C.; Barthelmie, Rebecca J.; Carreiro, Margaret; ...
2001-01-01
The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m -2 day -1 during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH 3 ), nitric acid (HNO 3 ), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH 4 +) at the site,more » leading to a net canopy exchange (NCE) of –6 kg-N ha -1 for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site.« less
Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Tellinghuisen, Joel
1981-01-01
Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)
21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...
21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...
21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...
ERIC Educational Resources Information Center
Ramette, R. W.
2007-01-01
The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.
27 CFR 21.51 - Formula No. 25-A.
Code of Federal Regulations, 2010 CFR
2010-04-01
... solution composed of 20 pounds of iodine, U.S.P.; 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P.; and 15 pounds of water. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine...
A review of recent measurements of optical and thermal properties of α-mercuric iodide
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.
1992-11-01
The band gap energy of α-mercuric iodide was measured recently at elevated temperatures using optical absorption and reflection methods. In addition, reflection spectral measurements indicate that the temperature dependence of the exciton peak can provide a means of measuring, in a nondisturbing and remote manner, the local surface temperature of an α-mercuric iodide crystal during its growth from the vapor. Recent measurements of the thermal diffusivity and thermal expansion tensors have confirmed the anisotropy of this material and have implications for growth morphology and the generation of lattice defects.
Du, Hongyan; Ruan, Qing; Qi, Minghao; Han, Wei
2015-08-07
A general Pd-catalyzed double carbonylation of aryl iodides with secondary or primary amines to produce α-ketoamides at atmospheric CO pressure has been developed. This transformation proceeds successfully even at room temperature and in the absence of any ligand and additive. A wide range of aryl iodides and amines can be coupled to the desired α-ketoamides in high yields with excellent chemoselectivities. Importantly, the current methodology has been demonstrated to be applied in the synthesis of bioactive molecules and chiral α-ketoamides.
Chow, Shiao Y; Stevens, Marc Y; Åkerbladh, Linda; Bergman, Sara; Odell, Luke R
2016-06-27
A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac-Ir(ppy)3 -catalyzed radical aminocarbonylation protocol has been developed. Using a two-chambered system, alkyl iodides, fac-Ir(ppy)3 , amines, reductants, and CO gas (released ex situ from Mo(CO)6 ), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process.
Sun, Zhuyu; Zhang, Chaojie; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi
2017-05-05
N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k 1 ) of 0.60±0.03min -1 . Hydrated electrons (e aq - ) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO 2 - ) were formed as the main intermediate products, which completely converted to formate (HCOO - ), ammonium (NH 4 + ) and nitrogen (N 2 ). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of NNO bond under the attack of e aq - . The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO 2 - , thus effectively reducing the secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Layered structures of organic/inorganic hybrid halide perovskites
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Tuoc, Vu Ngoc; Minh, Nguyen Viet
2016-03-01
Organic-inorganic hybrid halide perovskites, in which the A cations of an ABX3 perovskite are replaced by organic cations, may be used for photovoltaic and solar thermoelectric applications. In this contribution, we systematically study three lead-free hybrid perovskites, i.e., methylammonium tin iodide CH3NH3SnI3 , ammonium tin iodide NH4SnI3 , and formamidnium tin iodide HC (NH2)2SnI3 by first-principles calculations. We find that in addition to the commonly known motif in which the corner-shared SnI6 octahedra form a three-dimensional network, these materials may also favor a two-dimensional (layered) motif formed by alternating layers of the SnI6 octahedra and the organic cations. These two motifs are nearly equal in free energy and are separated by low barriers. These layered structures features many flat electronic bands near the band edges, making their electronic structures significantly different from those of the structural phases composed of three-dimension networks of SnI6 octahedra. Furthermore, because the electronic structures of HC (NH2)2SnI3 are found to be rather similar to those of CH3NH3SnI3 , formamidnium tin iodide may also be promising for the applications of methylammonium tin iodide.
Potentiation of antimicrobial photodynamic inactivation by inorganic salts.
Hamblin, Michael R
2017-11-01
Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.
Effect of Excess Iodide Intake on Salivary Glands in a Swiss Albino Mice Model
Ross, Gloria Romina; Fabersani, Emanuel; Russo, Matías; Gómez, Alba; Japaze, Hugo; González, Silvia Nelina
2017-01-01
Iodine is an important micronutrient required for nutrition. Excess iodine has adverse effects on thyroid, but there is not enough information regarding its effect on salivary glands. In addition to food and iodized salt, skin disinfectants and maternal nutritional supplements contain iodide, so its intake could be excessive during pregnancy, lactation, and infancy. The aim of this work was to evaluate the effect of excess iodide ingestion on salivary glands during mating, gestation, lactation, and postweaning period in mouse. During assay, mice were allocated into groups: control and treatment groups (received distilled water with NaI 1 mg/mL). Water intake, glandular weight, and histology were analyzed. Treatment groups showed an increase in glandular weight and a significantly (p < 0.05) higher water intake than control groups. Lymphocyte infiltration was observed in animals of treatment groups, while there was no infiltration in glandular sections of control groups. Results demonstrated that a negative relationship could exist between iodide excess and salivary glands. This work is novel evidence that high levels of iodide intake could induce mononuclear infiltration in salivary glands. These results should be considered, especially in pregnant/lactating women, to whom a higher iodine intake is usually recommended. PMID:29250546
Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.
Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé
2009-08-01
The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH <5 iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...
Big Sky Carbon Sequestration Partnership
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan Capalbo
2005-12-31
The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessmentmore » framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration reflect this concern. Research in Phase I has identified and validated best management practices for soil C in the Partnership region, and outlined a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. This is the basis for the integrative analysis that will be undertaken in Phase II to work with industry, state and local governments and with the pilot demonstration projects to quantify the economic costs and risks associated with all opportunities for carbon storage in the Big Sky region. Scientifically sound MMV is critical for public acceptance of these technologies.« less
Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.
2008-01-01
We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leib, Thomas; Cole, Dan
In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture andmore » Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO 2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO 2 generated in a large industrial gasification process and sequester the CO 2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO 2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO 2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO 2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO 2 per year as an integral component of commercial operations.« less
Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen
2015-07-01
Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.
FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soelberg, Nicholas Ray; Watson, Tony Leroy
2015-09-30
Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less
Liu, Liejun; Li, Xiuwei; Wang, Haiyan; Cao, Xiaoxiao; Ma, Wei
2017-04-01
Iodate is a strong oxidant, and some animal studies indicate that iodate intake may cause adverse effects. A key focus of the safety assessment of potassium iodate as a salt additive is determining whether iodate is safely reduced to iodide in food. To study the reduction of iodate in table salt to iodide and molecular iodine during cooking. Fifteen food samples cooked with and without iodated salt were prepared in duplicate. The iodine in the cooked food was extracted with deionized water. The iodine species in the extracts were determined by using an improved high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). The cooking temperature and the pH of the food were determined. The conversion rate of iodate in iodated salt to iodide and molecular iodine was 96.4%±14.7% during cooking, with 86.8%±14.5% of the iodate converted to iodide ions and 9.6% ±6.2% converted to molecular iodine to lose. The limit of detection, limit of quantification, relative standard deviation and recovery rate of the method HPLC/ICP-MS were 0.70 μg/L for I - (0.69 μg/L for IO 3 - ), 2.10 μg/L for I - (2.06 μg/L for IO 3 - ), 2.6% and 101.6%±2.6%, respectively. Almost all iodate added to food was converted into iodide and molecular iodine during cooking. The improved HPLC/ICP-MS was reliable in the determination of iodine species in food extracts. Copyright © 2017 Elsevier Inc. All rights reserved.
Iodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms
NASA Astrophysics Data System (ADS)
Luther, George W.; Ferdelman, Timothy; Culberson, Charles H.; Kostka, Joel; Wu, Jingfeng
1991-03-01
During the summer of 1987, we collected and analysed Chesapeake Bay water samples for the inorganic iodine species: iodide (by cathodic-stripping squarewave voltammetry) and iodate (by differential pulse polarography); and total iodine (by hypochlorite oxidation of the seawater sample to iodate). The difference between the sum of the inorganic iodine species and the total iodine was significant for about one-third of the samples collected from the Bay. Thus, in these samples, a third (or more) 'new' form(s) of iodine was present. These samples were primarily from oxygen-saturated surface waters of high biological activity (primary productivity and bacterial processes). This 'new' form can make up as much as 70% of the total iodine. Waters containing low oxygen concentrations showed less of this 'new' form of iodine whereas anoxic and sulphidic bottom waters contained only iodide. This 'new' form of iodine is organic in nature and probably non-volatile. It may reside in the peptide and humic fractions. Only reduced iodine (iodide and organic iodine) was detected in waters from the northern section of the Bay, whereas only iodide and iodate were detected in the southern section of the Bay. In only two samples were iodide, iodate and the 'new' form of iodine found to coexist. Iodide and organic iodine are probably cycled in the surface waters of the northern section of the Bay via a combination of biogeochemical and photochemical processes which produce the reactive intermediates, molecular iodine and hypoiodous acid. These react quickly with reduced inorganic and organic compounds to maintain the reduced forms of iodine in the water column. Only total iodine is conservative throughout the estuary. The inorganic iodine forms can be used as geochemical tracers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trentham, R. C.; Stoudt, E. L.
CO{sub 2} Enhanced Oil Recovery, Sequestration, & Monitoring Measuring & Verification are topics that are not typically covered in Geoscience, Land Management, and Petroleum Engineering curriculum. Students are not typically exposed to the level of training that would prepare them for CO{sub 2} reservoir and aquifer sequestration related projects when they begin assignments in industry. As a result, industry training, schools & conferences are essential training venues for new & experienced personnel working on CO{sub 2} projects for the first time. This project collected and/or generated industry level CO{sub 2} training to create modules which faculties can utilize as presentations,more » projects, field trips and site visits for undergrad and grad students and prepare them to "hit the ground running" & be contributing participants in CO{sub 2} projects with minimal additional training. In order to create the modules, UTPB/CEED utilized a variety of sources. Data & presentations from industry CO{sub 2} Flooding Schools & Conferences, Carbon Management Workshops, UTPB Classes, and other venues was tailored to provide introductory reservoir & aquifer training, state-of-the-art methodologies, field seminars and road logs, site visits, and case studies for students. After discussions with faculty at UTPB, Sul Ross, Midland College, other universities, and petroleum industry professionals, it was decided to base the module sets on a series of road logs from Midland to, and through, a number of Permian Basin CO{sub 2} Enhanced Oil Recovery (EOR) projects, CO{sub 2} Carbon Capture and Storage (CCUS) projects and outcrop equivalents of the formations where CO{sub 2} is being utilized or will be utilized, in EOR projects in the Permian Basin. Although road logs to and through these projects exist, none of them included CO{sub 2} specific information. Over 1400 miles of road logs were created, or revised specifically to highlight CO{sub 2} EOR projects. After testing a number of different entry points into the data set with students and faculty form a number of different universities, it was clear that a standard website presentation with a list of available power point presentations, excel spreadsheets, word documents and pdf's would not entice faculty, staff, and students at universities to delve deeper into the website http://www.utpb.edu/ceed/student modules.« less
NASA Astrophysics Data System (ADS)
Zhou, Y.; Boutton, T. W.; Wu, X. B.
2016-12-01
Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, A.W.; Diehl, J.R.; Bromhal, G.S.
Geological sequestration of CO2 in depleted oil reservoirs is a potentially useful strategy for greenhouse gas management and can be combined with enhanced oil recovery. Development of methods to estimate CO2 leakage rates is essential to assure that storage objectives are being met at sequestration facilities. Perfluorocarbon tracers (PFTs) were added as three 12 h slugs at about one week intervals during the injection of 2090 tons of CO2 into the West Pearl Queen (WPQ) depleted oil formation, sequestration pilot study site located in SE New Mexico. The CO2 was injected into the Permian Queen Formation. Leakage was monitored inmore » soil–gas using a matrix of 40 capillary adsorbent tubes (CATs) left in the soil for periods ranging from days to months. The tracers, perfluoro-1,2-dimethylcyclohexane (PDCH), perfluorotrimethylcyclohexane (PTCH) and perfluorodimethylcyclobutane (PDCB), were analyzed using thermal desorption, and gas chromatography with electron capture detection. Monitoring was designed to look for immediate leakage, such as at the injection well bore and at nearby wells, and to develop the technology to estimate overall CO2 leak rates based on the use of PFTs. Tracers were detected in soil–gas at the monitoring sites 50 m from the injection well within days of injection. Tracers continued to escape over the following years. Leakage appears to have emanated from the vicinity of the injection well in a radial pattern to about 100 m and in directional patterns to 300 m. Leakage rates were estimated for the 3 tracers from each of the 4 sets of CATs in place following the start of CO2 injection. Leakage was fairly uniform during this period. As a first approximation, the CO2 leak rate was estimated at about 0.0085% of the total CO2 sequestered per annum.« less
NASA Astrophysics Data System (ADS)
Jiang, Chong; Zhang, Haiyan; Zhang, Zhidong
2018-02-01
Human demands for natural resources have significantly changed the natural landscape and induced ecological degradation and associated ecosystem services. An understanding of the patterns, interactions, and drivers of ecosystem services is essential for the ecosystem management and guiding targeted land use policy-making. The Losses Plateau (LP) provides ecosystem services including the carbon sequestration and soil retention, and exerts tremendous impacts on the midstream and downstream of the Yellow River. Three dominant ecosystem services between 2000 and 2012 within the LP were presented based on multiple source datasets and biophysical models. In addition, paired ecosystem services interactions were quantified using the correlation analysis and constraint line approach. The main conclusions are as follows. It was observed that the warming and wetting climate and ecological program jointly promoted the vegetation growth and carbon sequestration. The increasing precipitation throughout 2000-2012 was related to the soil retention and hydrological regulation fluctuations. The vegetation restoration played a positive role in the soil retention enhancement, thus substantially reduced water and sediment yields. The relationships between ecosystem services were not only correlations (tradeoffs or synergies), but rather constraint effects. The constraint effects between the three paired ecosystem services could be classified as the negative convex (carbon sequestration vs. hydrological regulation) and hump-shaped (soil retention vs. carbon sequestration and soil retention vs. hydrological regulation), and the coefficients of determination for the entire LP were 0.78, 0.84, and 0.65, respectively. In the LP, the rainfall (water availability) was the key constraint factor that affected the relationships between the paired ecosystem services. The spatially explicit mapping of ecosystem services and interaction analyses utilizing constraint line approach enriched the understanding of connections between ecosystem services and the potential drivers, which had important implications for the land use planning and landscapes services optimizing.
DOT National Transportation Integrated Search
2012-05-01
Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...
Krupke, W.F.
1975-10-31
A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.
Pashin, J.C.; McIntyre, M.R.
2003-01-01
Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.
Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3
Rosenbauer, Robert J.; Thomas, Burt
2010-01-01
Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.
Screening the ToxCast Phase 1 chemical library for inhibition of deiodinase type 1 activity
Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active a...
The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces thyroid hormone synthesis, which leads to insufficiency in tissues and subsequent ne...