Science.gov

Sample records for enhanced mass removal

  1. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction

    PubMed Central

    Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

    2014-01-01

    A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior. PMID:24563557

  2. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction.

    PubMed

    Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

    2013-10-01

    A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior.

  3. Dissolution, Cyclodextrin-Enhanced Solubilization, and Mass Removal of an Ideal Multicomponent Organic Liquid

    PubMed Central

    Carroll, Kenneth C.; Brusseau, Mark L.

    2010-01-01

    Laboratory experiments and mathematical modeling were conducted to examine the influence of a hydroxypropyl-beta-cyclodextrin (HPCD) solution on the dissolution of single- and three-component organic liquids. The results of batch experiments showed that HPCD-enhanced solubilization of the organic-liquid mixtures was ideal (describable using Raoult’s Law), and that solubilization-enhancement factors were independent of mixture composition. Addition of the HPCD solution to columns containing residual saturations of the organic liquid enhanced the dissolution and removal of all three compounds in the mixture. The results of the column experiments and multicomponent rate-limited dissolution modeling suggest that solubilization was ideal for both water and cyclodextrin flushing. Concomitantly, the mass-flux reduction versus mass removal behavior was ideal for all experiments. Mass transfer was increased for HPCD solubilization relative to the water flushing due to solubility and concentration-gradient enhancement. Organic-liquid composition did not significantly impact mass transfer coefficients, and fractional mass removal behavior during HPCD solubilization was nearly identical for each compound whether present as a single component or in a mixture. Additionally, mass transfer coefficients for aqueous and HPCD solubilization for single and multicomponent mixtures were not statistically different upon normalizing by the solubility enhancement factor. PMID:19233508

  4. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-flux reduction

    NASA Astrophysics Data System (ADS)

    Akyol, N. H.; Russo, A. E.; Brusseau, M. L.

    2011-12-01

    A series of flow-cell experiments was conducted to investigate the impact of nonuniform organic-liquid distribution and flow-field heterogeneity on the relationship between source zone mass removal and mass flux reduction under conditions of enhanced-solubilization flushing. Sudan IV dyed trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Natural sand media with different median particle diameters and natural soils were used for these experiments to represent various pyhsically heterogeneous systems. Photographs were obtained throughout the course of the experiments to observe changes in source-zone distributions. The results showed that the heterogeneous systems exhibited multi-step mass-flux reduction/mass-removal behavior. This nonideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all cases, the later stage of mass removal was controlled by the more poorly-accessible mass associated with higher-saturation zones.

  5. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    SciTech Connect

    Yoo, Jong Hyun

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  6. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.

    PubMed

    Zhang, Changyong; Werth, Charles J; Webb, Andrew G

    2008-09-10

    Magnetic resonance imaging (MRI) was used to visualize the NAPL source zone architecture before and after surfactant-enhanced NAPL dissolution in three-dimensional (3D) heterogeneously packed flowcells characterized by different longitudinal correlation lengths: 2.1 cm (aquifer 1) and 1.1 cm (aquifer 2). Surfactant flowpaths were determined by imaging the breakthrough of a paramagnetic tracer (MnCl(2)) analyzed by the method of moments. In both experimental aquifers, preferential flow occurred in high permeability materials with low NAPL saturations, and NAPL was preferentially removed from the top of the aquifers with low saturation. Alternate flushing with water and two surfactant pulses (5-6 pore volumes each) resulted in approximately 63% of NAPL mass removal from both aquifers. However, overall reduction in mass flux (Mass Flux 1) exiting the flowcell was lower in aquifer 2 (68%) than in aquifer 1 (81%), and local effluent concentrations were found to increase by as high as 120 times at local sampling ports from aquifer 2 after surfactant flushing. 3D MRI images of NAPL revealed that NAPL migrated downward and created additional NAPL source zones in previously uncontaminated areas at the bottom of the aquifers. The additional NAPL source zones were created in the direction transverse to flow in aquifer 2, which explains the higher mass flux relative to aquifer 1. Analysis using a total trapping number indicates that mobilization of NAPL trapped in the two coarsest sand fractions is possible when saturation is below 0.5 and 0.4, respectively. Results from this study highlight the potential impacts of porous media heterogeneity and NAPL source zone architecture on advanced in-situ flushing technologies.

  7. IN SITU ENHANCED SOURCE REMOVAL

    EPA Science Inventory

    This html report describes and compares the performance of in situ technologies designed to accelerate the removal of organic contaminants from unconsolidated soils and aquifers. The research was conducted through the Enhanced Source Removal (ESR) Program within the Subsurface Pr...

  8. Enhanced coagulation for arsenic removal

    SciTech Connect

    Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. )

    1994-09-01

    The possible use of enhanced coagulation for arsenic removal was examined at the facilities of a California utility in 1992 and 1993. The tests were conducted at bench, pilot, and demonstration scales, with two source waters. Alum and ferric chloride, with cationic polymer, were investigated at various influence arsenic concentrations. The investigators concluded that for the source waters tested, enhanced coagulation could be effective for arsenic removal and that less ferric chloride than alum, on a weight basis, is needed to achieve the same removal.

  9. Chabazite biofilter for enhanced stormwater nitrogen removal.

    PubMed

    Smith, Daniel P

    2011-04-01

    Enhanced nitrogen removal from stormwater using chabazite, a natural cation exchanger, was evaluated in a pilot-plant biofilter operated for 216 days. A parallel sand filter served as the control. The biofilters were subject to various operating modes including baseline periods of steady flowrate and loading, simulated high flowrate (storm) events following steady flowrates, high flowrates following extended no-flow periods, and with limited influent dissolved oxygen. Under steady-flow operation, chabazite removed 93% of ammonium and sand removed 87%; total inorganic nitrogen was reduced 35% by chabazite versus 15% by sand. In a simulated storm event following steady-flow operation, 97% of cumulative ammonia mass was retained by the chabazite biofilter versus 70% for sand. Following a 40 day no-flow period, the chabazite biofilter retained 98% of influent ammonium in a storm event while sand exhibited high effluent ammonium. Chabazite ammonium retention was high under limited influent dissolved oxygen, verses significant breakthrough by the sand biofilter. Chabazite media provided superior performance resiliency under dynamic conditions that typify stormwater treatment.

  10. Forehead Mass Removal by Endoscopic Approach.

    PubMed

    Jung, Soyeon; Jung, Sung Won; Koh, Sung Hoon; Lim, Hyoseob

    2016-03-01

    Patients with forehead mass have a cosmetic problem because the forehead is an important first impression. Conventional skin approach results in visible scar even though surgeons designed the incision along the relaxed skin tension line1. Since Onishi introduced the technique for endoscopic approach in 1995, endoscopic surgery has become rapidly popular in the field of plastic surgery. Endoscopic approach to the forehead mass by small incision on the scalp behind hair line is big advantageous for leaving less ugly scar on the forehead. All procedures need to be identified under the endoscopic visualization. When it was completed, the mass was pulled out. The authors also used the osteotome or rasp when it was the osteoma. The forehead and scalp were applied compressive dressing to prevent hematoma and swelling for 2 days. The cosmesis was excellent because they have no visible scar on the forehead. Endoscopic approaching technique is getting popular and commonly used during the cosmetic surgery because it has many advantages. This method also, however, has difficulties to remove large-sized mass and to perform caudal dissection, and for increased operative times. Furthermore, there are complication of incomplete removal, hematoma, and swelling. The proper candidate is the patient with smooth forehead, with a mobile and soft mass, with a propensity for keloid formation, or hypertrophic scarring. Endoscopic technique is not only advantageous but also disadvantageous. That is why surgeon's selection is more important.

  11. Enhancing biological phosphorus removal with glycerol.

    PubMed

    Yuan, Q; Sparling, R; Lagasse, P; Lee, Y M; Taniguchi, D; Oleszkiewicz, J A

    2010-01-01

    An enhanced biological phosphorus removal process (EBPR) was successfully operated in presence of acetate. When glycerol was substituted for acetate in the feed the EBPR process failed. Subsequently waste activated sludge (WAS) from the reactor was removed to an off-line fermenter. The same amount of glycerol was added to the WAS fermenter which led to significant volatile fatty acids (VFA) production. By supplying the system with the VFA-enriched supernatant of the fermentate, biological phosphorus removal was enhanced. It was concluded that, if glycerol was to be used as an external carbon source in EBPR, the effective approach was to ferment glycerol with waste activated sludge.

  12. Surfactant-Enhanced DNAPL Removal

    DTIC Science & Technology

    2001-08-24

    DNAPL SOURCE REMEDIATION AT SITE 88, MARINE CORPS BASE CAMP LEJEUNE vii AATDF AFCEE AFB AFP4 AQT B bgs CERCLA CITT em cmc cp cu d de DE&S DNAPL DoD...liquid meter(s) medium, middle Marine Corps Base maximum contaminant level millidarcies micellar-enhanced ultrafiltration unit minute(s) multi-level...present in the subsurface adjacent to a dry-cleaning facility operated by the Marine Corps Base (MCB) Camp Lejeune, North Carolina. The contaminant was

  13. Enzymes Enhance Biofilm Removal Efficiency of Cleaners.

    PubMed

    Stiefel, Philipp; Mauerhofer, Stefan; Schneider, Jana; Maniura-Weber, Katharina; Rosenberg, Urs; Ren, Qun

    2016-06-01

    Efficient removal of biofilms from medical devices is a big challenge in health care to avoid hospital-acquired infections, especially from delicate devices like flexible endoscopes, which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance. In vitro biofilm in a 96-well-plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by crystal violet staining, while the disinfecting properties were evaluated by a BacTiter-Glo assay. The biofilm removal efficacy of the selected cleaner was further tested by using European standard (EN) for endoscope cleaning EN ISO 15883, and removal of artificial blood soil was investigated by treating TOSI (Test Object Surgical Instrument) cleaning indicators. Using the process described here, a novel enzymatic endoscope cleaner was developed, which removed 95% of Staphylococcus aureus and 90% of Pseudomonas aeruginosa biofilms in the 96-well plate system. With a >99% reduction of CFU and a >90% reduction of extracellular polymeric substances, this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced performance significantly.

  14. Fly ash enhanced metal removal process

    SciTech Connect

    Nonavinakere, S.; Reed, B.E.

    1995-12-31

    The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

  15. Enhanced biological phosphorus removal and recovery.

    PubMed

    Machnicka, Alicja; Grubel, Klaudiusz; Suschka, Jan

    2008-07-01

    Activated sludge systems designed for enhanced nutrient removal are based on the principle of altering anaerobic and aerobic conditions for growth of microorganisms with a high capacity of phosphorus accumulation. Most often, filamentous bacteria constitute a component of the activated sludge microflora. The filamentous microorganisms are responsible for foam formation and activated sludge bulking. The results obtained confirm unanimously that the filamentous bacteria have the ability of phosphorus uptake and accumulation as polyphosphates. Hydrodynamic disintegration of the foam microorganisms results in the transfer of phosphorus and metal cations and ammonium-nitrogen into the liquid phase. It was demonstrated that the disintegration of foam permits the removal of a portion of the nutrients in the form of struvite.

  16. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention.

    PubMed

    Liu, Jiayu; Davis, Allen P

    2014-01-01

    This field research investigated the water quality performance of a traditional bioretention cell retrofitted with 5% (by mass) water treatment residual (WTR) for enhanced phosphorus removal. Results indicate that WTR incorporation into the bioretention media does not negatively influence the infiltration mechanism of the bioretention system. Total suspended solids (TSS), total phosphorus (TP), and particulate phosphorus (PP) concentrations in runoff inflow were significantly reduced compared to outflow due to filtration of particulate matter. TP concentrations were significantly reduced by the bioretention cell; before WTR retrofit TP export occurred. Although net removal of soluble reactive phosphorus (SRP) and dissolved organic phosphorus (DOP) from incoming runoff was not found, leaching of dissolved phosphorus (DP) was prevented not only from incoming runoff, but also from the media and captured PP. Near constant outflow SRP and DOP concentrations suggest an equilibrium adsorption treatment mechanism. Both event mean concentrations and mass loads were reduced for TSS and all P species. Pollutant mass removals were higher than the event mean concentration removals due to the attenuation of volume by the bioretention media.

  17. Enhanced nitrogen removal in trickling filter plants.

    PubMed

    Dai, Y; Constantinou, A; Griffiths, P

    2013-01-01

    The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.

  18. RELATIONSHIP BETWEEN MASS FLUX REDUCTION AND SOURCE-ZONE MASS REMOVAL: ANALYSIS OF FIELD DATA

    PubMed Central

    DiFilippo, Erica L.

    2010-01-01

    The magnitude of contaminant mass flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. ~8%) for similar mass removals (~40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass transfer and displacement). Conversely, a significant degree of mass flux reduction was observed for a site wherein mass removal was inefficient

  19. Safe and cost-effective laparoscopic removal of adnexal masses.

    PubMed

    Quinlan, D J; Townsend, D E; Johnson, G H

    1997-02-01

    To evaluate laparoscopic removal of adnexal masses using a plastic bag to avoid peritoneal spillage. An observational study. A university-affiliated private hospital. Thirty-one women (mean age 48.7 yrs) with adnexal masses. Laparoscopic removal of adnexal masses ranging from 3 to 12 cm (18 complex, 5 septated cystic masses, 8 persistent simple cysts). The masses were placed in plastic sandwich bag and removed through the umbilical incision. Hospital costs, length of stay and operating times were compared with those of 24 patients undergoing the removal of similar masses by laparotomy. Three masses were functional cysts, 4 were tubal cysts, 4 were endometriomas, and 20 were benign ovarian neoplasms. There were no malignancies. Peritoneal spillage occurred during one ovarian cystectomy. The only complication was bleeding from the cannula site. Comparing laparoscopy and laparotomy, average operating time was 73.45 minutes (range 34-148 min) and 81 minutes, average length of hospital stay was 17.4 hours (range 6-73 hrs) and 2.92 days, and average hospital cost was $2401 and $3539, respectively. Laparoscopic access provides a cost-effective method of removing adnexal masses with a very small risk of peritoneal spillage. When managed in this manner, rather than laparotomy, the cost reduction was significant.

  20. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  1. Sediment Pond Removal and Enhanced Designs

    EPA Pesticide Factsheets

    Sediment Pond Removal Considerations; Scheduling, Baseflow diversion, Dewatering provisions, Sediment handling, Potential to discharge sediment, Down‐gradient sediment control(s), Erosion control(s), Stream reconstruction, Riparian vegetation.

  2. Nasal mass removal in the koala (Phascolarctos cinereus).

    PubMed

    Bercier, Marjorie; Wynne, Janna; Klause, Stephen; Stadler, Cynthia K; Gorow, April; Pye, Geoffrey W

    2012-12-01

    Nasal masses in the koala (Phascolarctos cinereus) are not uncommon and can be challenging to diagnose and treat. Differential diagnoses for nasal masses in the koala are cryptococcal granulomas, nasal polyps, nasal adenocarcinoma, and osteochondromatosis. This report describes successful surgical approaches for two adult koalas with nasal masses and includes photodocumentation and description of the anatomy of the koala nasal passages from the postmortem transverse sectioning of a normal koala head. Surgical removal of the nasal masses in these koalas resulted in a rapid resolution of clinical signs.

  3. Cepheid masses for models with enhanced opacities

    SciTech Connect

    Morgan, S.M. . Dept. of Astronomy); Cox, A.N. )

    1990-01-01

    Cepheid models with enhanced opacity are constructed and used to determine pulsation constants, Q{sub 0}. These are compared to models without an enhanced opacity. Methods of determining Cepheid masses are investigated using the different models and are compared to results obtained by Gieren. The methods to determine the pulsation and Wesselink masses by ourselves and Gieren differ significantly, due to the use of a Q{sub 0} that varies with mass, radius and luminosity. 14 refs., 1 fig., 1 tab.

  4. Study on contaminant mass removal by soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia

    2015-04-01

    Soil vapor extraction (SVE) is an effective remediation technology for removal of volatile organic compounds (VOCs) in unsaturated zones, particularly for high permeability soils. However, due to the nature of soil heterogeneities in most of the subsurface systems, the performance of SVE systems may be affected. Radius of influence (ROI) is usually evaluated at sites by measuring vacumm pressures of subsurface systems or through judging from the magnitudes of soil permeabilities. Within the area of a ROI, it is usually believed that the vaporized VOCs can be effectively removed from soil pores. Besides, it has been discussed whether continuous or pulsed venting operations is efficient for contaminant mass removal. The purpose of this study is to assess the relationships of subsurface vacuum pressure, pore gas velocity and contaminant mass removal rate from a venting well. A multiphase flow and multicompositional contaminant transport model will be applied to various scenarios of soil heterogeneities with different strategies of venting operation. We are, in an attempt, to find out controlling factors affecting the efficiency of contaminant mass removal from a venting well.

  5. How to Use Removable Mass Storage Memory Devices

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2004-01-01

    Mass storage refers to the variety of ways to keep large amounts of information that are used on a computer. Over the years, the removable storage devices have grown smaller, increased in capacity, and transferred the information to the computer faster. The 8" floppy disk of the 1960s stored 100 kilobytes, or about 60 typewritten, double-spaced…

  6. Removal of the samarium isobaric interference from promethium mass analysis

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-02-01

    Resonance ionization mass spectroscopy (RIMS) is used to eliminate isobaric interference when determining the isotopic abundances of an element. In this application, RIMS is applied to the determination of promethium with the removal of samarium interference. In particular, promethium-147 is separated form samarium-147 and samarium-152.

  7. Classical Cepheids Require Enhanced Mass Loss

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding R.; Langer, Norbert; Engle, Scott G.; Guinan, Ed; Izzard, Robert

    2012-11-01

    Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and δ Cephei must be a ubiquitous property of Classical Cepheids.

  8. CLASSICAL CEPHEIDS REQUIRE ENHANCED MASS LOSS

    SciTech Connect

    Neilson, Hilding R.; Langer, Norbert; Izzard, Robert; Engle, Scott G.; Guinan, Ed

    2012-11-20

    Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and {delta} Cephei must be a ubiquitous property of Classical Cepheids.

  9. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  10. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness.

    PubMed

    Peng, Sheng; Wu, Wei; Chen, Jiajun

    2011-02-01

    PAH removal with surfactant enhanced washing was investigated through a series of laboratory tests to examine the effect of stirring speed, washing time, surfactant concentration, liquid/solid ratio, temperature, and on-and-off mode. The first four factors show significant influence on the PAH removal while the latter two do not. Total removal ratio and a new proposed parameter, solubilization percentage, are used to evaluate the effectiveness quantitatively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Enhanced biological phosphorus removal employing EDTA disodium

    SciTech Connect

    Bojinova, D.; Velkova, R.

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  12. Linking Contaminant Mass Discharge to DNAPL Source Zone Architecture and Mass Removal

    NASA Astrophysics Data System (ADS)

    Pennell, K. D.; Suchomel, E. J.; Amos, B. K.; Loeffler, F. E.; Capiro, N. L.

    2007-05-01

    To evaluate the relationship between partial dense nonaqueous phase (DNAPL) mass removal and plume behavior, laboratory-scale experiments were conducted in a two-dimensional aquifer cell containing a tetrachloroethene (PCE) source zone and a down-gradient plume region. PCE-DNAPL saturation distributions were quantified using a light transmission system and expressed in terms of a ganglia-to-pool (GTP) volume ratio. To achieve incremental mass removal, the aquifer cells were flushed with a 4% Tween 80 surfactant solution that increased the solubility of PCE by more than two orders-of-magnitude with minimal mobilization of entrapped PCE-DNAPL. For a ganglia-dominated source zone (GTP = 1.6) greater than 70% mass removal was required before measurable reductions in mass discharge were realized, while for pool-dominated source zones (GTP < 0.3) reductions in mass discharge versus mass removal approached a 1:1 correlation. Current experiments are designed to evaluate the potential for coupling aggressive mass removal with microbial reductive dechlorination.

  13. Removal of detergents from protein digests for mass spectrometry analysis

    PubMed Central

    Yeung, Yee-Guide; Nieves, Edward; Angeletti, Ruth; Stanley, E. Richard

    2008-01-01

    Detergents are commonly used for the extraction of hydrophobic proteins and must be removed for sensitive detection of peptides by mass spectrometry (MS). We demonstrate that ethyl acetate (EA) is able to extract octylglycoside (OG) from a protease digest without loss of peptides or interference with the MS peptide spectral profile. EA extraction was also found to reduce interference of SDS, NP-40 or Triton X-100 in the MS analysis. PMID:18713617

  14. Enhanced approach to film flicker removal

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Chong, Man N.

    2000-12-01

    Flicker, defined as unnatural temporal fluctuations in perceived image intensity, is a common artifact in old films. Flicker removal is needed due to the high quality requirement of revitalizing old films. In this paper, we propose a least square estimation (LSE) method for eliminating flicker in film archives. The essential point of this method is to estimate flicker parameters for each small region by minimizing the squared error between corrected intensities in previous frames and estimated intensities in current frame. Based on the thresholds of flicker parameters, stationary and motion blocks are detected. For those stationary blocks, a criterion of mean squared error (MSE) is added to strongly restrict the stationary area. These blocks, in which MSEs surpass the threshold, are flagged as motion blocks. Flicker parameters in motion blocks are retrieved by iterative interpolation process. Synthetic and real flicker image sequences are used to evaluate and demonstrate the algorithm's usefulness in terms of average PSNR and visual quality in real-time playback respectively. Moreover, the results gotten from LSE method were compared with those obtained from Roosmalen method. The results of LSE method show an impressive improvement on PSNR in simulated flicker sequence. Meanwhile, no blocky effect and no new artifacts introduced are visible in real-time play back for both synthetic and real sequence.

  15. MASS-REMOVAL AND MASS-FLUX-REDUCTION BEHAVIOR FOR IDEALIZED SOURCE ZONES WITH HYDRAULICALLY POORLY-ACCESSIBLE IMMISCIBLE LIQUID

    SciTech Connect

    Brusseau, M. L.; Difilippo, Erica L.; marble, justin C.; Oostrom, Mart

    2008-04-01

    A series of flow-cell experiments was conducted to investigate aqueous dissolution and mass-removal behavior for systems wherein immiscible liquid was non-uniformly distributed in physically heterogeneous source zones. The study focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems for which immiscible liquid is poorly accessible to flowing water. Two idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. The results showed that significant reductions in mass flux occurred at relatively moderate mass-removal fractions for all systems. Conversely, minimalmass flux reduction occurred until a relatively large fraction of mass (>80%) was removed for the control experiment, which was designed to exhibit ideal mass removal. In general, mass flux reduction was observed to follow an approximately one-to-one relationship with mass removal. Two methods for estimating mass-flux-reduction/mass-removal behavior, one based on system-indicator parameters (ganglia-to-pool ratio) and the other a simple mass-removal function, were used to evaluate the measured data. The results of this study illustrate the impact of poorly accessible immiscible liquid on mass-removal and mass-flux processes, and the difficulties posed for estimating mass-flux-reduction/mass-removal behavior.

  16. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes.

  17. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.

    PubMed

    Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions

  18. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also

  19. Nitrate removal by microbial enhancement in a riparian wetland.

    PubMed

    Pei, Yuansheng; Yang, Zhifeng; Tian, Binghui

    2010-07-01

    A riparian wetland (RW) was constructed in a river bend to study the effect of the addition of Bacillus subtilis FY99-01 on nitrate removal. Nitrate was removed more efficiently in the summer than in the winter owing to integrated hydraulic, microbial and environmental effects. The maximal nitrate removal and the mean nitrate loss rate in the RW were 36.1% and 50.5 g/m(2)/yr, respectively. Statistic analyses indicated that the redox potential was very significant to denitrification while organic matter in the outflow, temperature and nitrate in the inflow significantly affected nitrate removal. These results suggest that an RW can be a cost-effective approach to enhance microbial nitrate removal and can potentially be extended to similar river bends.

  20. Mass Transfer Enhancement in Moving Biofilm Structures

    PubMed Central

    Taherzadeh, Danial; Picioreanu, Cristian; Horn, Harald

    2012-01-01

    Biofilms are layers of microbial cells growing on an interface and they can form highly complex structures adapted to a wide variety of environmental conditions. Biofilm streamers have a small immobile base attached to the support and a flexible tail elongated in the flow direction, which can vibrate in fast flows. Herein we report numerical results for the role of the periodical movement of biofilm streamers on the nutrient uptake and in general on the solute mass transfer enhancement due to flow-induced oscillations. We developed what to our knowledge is a novel two-dimensional fluid-structure interaction model coupled to unsteady solute mass transport and solved the model using the finite element method with a moving mesh. Results demonstrate that the oscillatory movement of the biofilm tail significantly increases the substrate uptake. The mass transfer coefficient is the highest in regions close to the streamer tip. The reason for substrate transfer enhancement is the increase in speed of tip movement relative to the surrounding liquid, thereby reducing the thickness of the mass transfer boundary layer. In addition, we show that the relative mass transfer enhancement in unsteady conditions compared with the rigid static structure is larger at higher flow velocities, and this relative increase favors a more flexible structure. PMID:22500748

  1. Humic substance-enhanced ultrafiltration for removal of cobalt.

    PubMed

    Kim, Ho-Jeong; Baek, Kitae; Kim, Bo-Kyong; Yang, Ji-Won

    2005-06-30

    It is well known that the membrane separation process combined with surfactant micelle (micellar-enhanced ultrafiltration) or polyelectrolyte (polyelectrolyte-enhanced ultrafiltration) can remove heavy metal ions or radionuclides effectively. However, the complexing agent, surfactant or polyelectrolyte remained in effluent is a serious disadvantage of these methods. In this study, humic substances (HS) were used as complexing agents instead of synthetic chemicals. The HS are sorts of natural organic matters and their functional groups such as carboxyl and phenyl groups can bind with the cation and form complexes. The effects of HS concentration and pH on the removal of cobalt were investigated. At the HS concentration of 3g/L and pH of 6, over 95% of cobalt was removed by regenerated cellulose membrane with molecular weight cut-off (MWCO) of 3000. As the HS concentration increased, the removal of cobalt was also enhanced because of the increase in binding sites (functional groups). The removal of cobalt increased from 72.5% to 97.5% as pH increased from 4 to 8 at the HS concentration of 3g/L. It resulted from the more deprotonation of functional groups in humic acid at higher pH.

  2. Nitrate and phosphate removal through enhanced bioretention media: mesocosm study.

    PubMed

    Palmer, Eric T; Poor, Cara J; Hinman, Curtis; Stark, John D

    2013-09-01

    Bioretention is an evolving type of Green Stormwater Infrastructure (GSI) designed to attenuate peak flows, reduce stormwater volume, and treat stormwater. This article examines the capabilities of a bioretention soil mixture of sand and compost enhanced with aluminum-based drinking water treatment residuals to reduce nutrients from stormwater runoff. Columns with and without a saturation zone and vegetation were compared to examine their role in removing nitrate and ortho-phosphate from stormwater. Results show that utilization of a saturation zone can significantly reduce nitrate in effluent water (71% compared to 33% without a saturated zone), even in a newly constructed system. However, ortho-phosphate reduction was significantly better in the columns without a saturated zone (80%) compared to columns with (67%). Plants did not significantly improve removal. This suggests amendments such as aluminum-based water treatment residuals for phosphorus removal and a saturation zone for nitrogen removal are needed during the initial establishment period.

  3. Enhanced Higgs mass in Compact Supersymmetry

    NASA Astrophysics Data System (ADS)

    Tobioka, Kohsaku; Kitano, Ryuichiro; Murayama, Hitoshi

    2016-04-01

    The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with |{A}_t|˜ 2{m}_{tilde{t}} which radiatively raises the Higgs mass. While the zero mode contribution of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed out from the brane, which makes the top mass depend on higher powers in the Higgs field. As a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We also show the whole parameter space is testable at the LHC run II.

  4. Retroauricular hairline incision for removal of upper neck masses.

    PubMed

    Roh, Jong-Lyel

    2005-12-01

    The general population has been increasingly concerned about cosmesis and hopeless about prominent or invisible postoperative scars of the face and neck. The purpose of this study was to evaluate the benefit of a retroauricular hairline incision (RAHI) by comparing it with conventional cervical incision for removal of upper neck masses. Prospective clinical study. Thirty-four patients with upper neck masses were divided into two surgical groups of RAHI (17) and conventional cervical incision (17) matched by age, sex, marital status and size, location, pathology of lesions. The operation time, complications, length of hospital stay, and subjective satisfaction with incision scar checked by visual analogue scale were compared between groups. The lesions of each group were congenital cysts (6), abscesses (2), inflammatory masses (2), and benign (6) or malignant (1) tumors and located in the upper neck. Mean operation time was 51 +/- 17 minute in the RAHI group and 41 +/- 13 minutes in the controls (P = .064). Mean hospital stay and complication rates were comparable between groups. Mean score of patient's satisfaction was 8.9 +/- 0.7 in the RAHI group and 4.5 +/- 2.7 in the controls (P < .001). The degree of incision scarring did not differ between groups, but the scars were less visible in the RAHI group because of hiding by the auricle and hair. The postauricular approach leading to a potentially invisible area of operation has a clear cosmetic benefit compared with conventional cervical incision. This will be helpful for patients with surgically indicated upper neck masses who hope for invisible incision scars.

  5. Nitrogen oxides removal by pulsed corona enhanced wet electrostatics precipitation

    SciTech Connect

    Tseng, C.H.; Keener, T.C.; Khang, S.J.

    1999-07-01

    This paper presents the results of a bench-scale pulsed-corona enhanced wet electrostatic precipitator (wESP) application for removal of nitrogen oxides. This wESP is designed to operate wet/dry, positive/negative, and pulsed/non-pulsed conditions. The applied pulsed voltage is varied from 0 to 60 kV at 70 Hz. Gas flow rate is a nominal 7 m{sup 3}/hr and the collecting electrode area is 0.20 m{sup 2}. A simulated flue gas with NO concentration up to 1,200 ppm{sub v} has been used to determine the feasibility of NO{sub x} removal in the wESP. NO has to be oxidized to N{sub 2} before any removal takes place. NO{sub x} removal efficiency increased with gas residence time, inlet NO concentration and applied corona power. In the air stream with 10 seconds gas residence time, up to 20% of 1,000 ppm NO (or 22% NO{sub x}) was removed from an air stream of 1.9x10{sup {minus}3} m{sup 3}/s with a water flow of 6.3 x 10{sup {minus}5} m{sup 3}/sec and 20 W, 70 Hz pulsed corona. Both ammonia and ozone injections improve the NO{sub x} removal for both the corona and non-corona cases. With the inclusion of NH{sub 3} (NH{sub 3}/NO{sub x} ratio 1.3) and 25 watts corona power, NO removal efficiency was increased from 28% to 57%. The amount of in-situ ozone is not enough to be considered as a major NO{sub x} removal mechanism in this wESP. However, the additional injection of ozone improves the NO removal from 29% to 38% for both the corona and non-corona cases. When the oxygen concentration is dropped to 3% in a simulated flue gas with 12% CO{sub 2} and 800 ppm NO and 70% relative humidity at 11.5 s of gas residence time, the removal efficiency of NO is only 5%. Adding NH{sub 3} (NH{sub 3}/NO{sub x} ratio 1) at 76 watts corona power, NO removal is increased to 13%.

  6. Contaminant Mass Discharge and Mass Removal Behavior for a DNAPL Field Site

    NASA Astrophysics Data System (ADS)

    Brusseau, M. L.; Matthieu, D. E.; Carroll, K. C.; Mainhagu, J.; Morrison, C. N.; Mcmillan, A. L.; Russo, A. E.; Plaschke, M.

    2012-12-01

    The use of contaminant-mass-discharge measurements to characterize site conditions and remediation performance is becoming more widespread. Almost all applications to date have been based on conducting one or two discrete measurements (e.g., collected before and after a remedial action). While this approach provides useful information, additional insight can be gained by measuring time-continuous profiles of contaminant mass discharge (CMD). The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in CMD and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system start-up 5 years ago. The results show a significant reduction in contaminant mass discharge with time, which has decreased from approximately 1 to 0.15 kg/d. Comparison of two sets of core data, collected 3.5 years apart, suggests that a significant reduction in aggregate sediment-phase TCE concentrations, ~80%, occurred between sampling events. These data were used to characterize the relationship between reductions in contaminant mass discharge and reductions in contaminant mass. The curvilinear, convex-upward relationship observed is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer.

  7. Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment.

    PubMed

    Li, Yue; Bland, Garret D; Yan, Weile

    2016-05-01

    Arsenic being a naturally-occurring groundwater contaminant is subject to stringent water quality regulations. Coagulation and adsorption are widely used methods to treat arsenic-contaminated water, however, these treatments have been reported to be less efficient for the removal of arsenite (As(III)) than arsenate (As(V)). In this study, the feasibility of in situ oxidation of As(III) during coagulation was investigated in two systems: Fe(II) or H2O2-assisted oxidative coagulation treatment using ferric chloride as the coagulant. This setup exploits the catalytic property of the fresh formed Fe(III) hydroxide colloids in coagulation suspension to mediate the production of reactive oxidants capable of As(III) oxidation. Fe(II)-assisted coagulation brought about small improvements in As(III) removal compared to treatment with Fe(III) coagulant alone, however, its arsenic removal efficiency is strongly dependent on pH (observed optimal pH = 7-9). Addition of H2O2 together with ferric chloride led to a significant enhancement in arsenic retention at pH 6-8, with final arsenic concentrations well below the U.S.EPA regulatory limit (10 μg/L). H2O2-assisted oxidative coagulation can attain reliable As(III) removal over a broad pH range of 4-9. Radical quenching experiments reveal the participation of superoxide radical in As(III) removal in the oxidative coagulation systems. Phosphate (at > 0.1 mM) strongly suppresses As(III) removal efficiency, whereas carbonate and humic acid pose a minor impact. Overall, the results suggest that a low dose addition of H2O2 along with ferric coagulant is a feasible method for the existing water treatment facilities to achieve improved As(III) removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhanced removal of radioactive particles by fluorocarbon surfactant solutions

    SciTech Connect

    Kaiser, R.; Harling, O.K.

    1993-08-01

    The proposed research addressed the application of ESI`s particle removal process to the non-destructive decontamination of nuclear equipment. The cleaning medium used in this process is a solution of a high molecular weight fluorocarbon surfactant in an inert perfluorinated liquid which results in enhanced particle removal. The perfluorinated liquids of interest, which are recycled in the process, are nontoxic, nonflammable, and environmentally compatible, and do not present a hazard to the ozone layer. The information obtained in the Phase 1 program indicated that the proposed ESI process is technically effective and economically attractive. The fluorocarbon surfactant solutions used as working media in the ESI process survived exposure of up to 10 Mrad doses of gamma rays, and are considered sufficiently radiation resistant for the proposed process. Ultrasonic cleaning in perfluorinated surfactant solutions was found to be an effective method of removing radioactive iron (Fe 59) oxide particles from contaminated test pieces. Radioactive particles suspended in the process liquids could be quantitatively removed by filtration through a 0.1 um membrane filter. Projected economics indicate a pre-tax pay back time of 1 month for a commercial scale system.

  9. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances.

    PubMed

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Zeng, Raymond J; Li, Wen-Wei; Yu, Han-Qing

    2013-10-15

    Phosphorus-accumulating organisms are considered to be the key microorganisms in the enhanced biological phosphorus removal (EBPR) process. A large amount of phosphorus is found in the extracellular polymeric substances (EPS) matrix of these microorganisms. However, the roles of EPS in phosphorus removal have not been fully understood. In this study, the phosphorus in the EBPR sludge was fractionated and further analyzed using quantitative (31)P nuclear magnetic resonance spectroscopy. The amounts and forms of phosphorus in EPS as well as their changes in an anaerobic-aerobic process were also investigated. EPS could act as a reservoir for phosphorus in the anaerobic-aerobic process. About 5-9% of phosphorus in sludge was reserved in the EPS at the end of the aerobic phase and might further contribute to the phosphorus removal. The chain length of the intracellular long-chain polyphosphate (polyP) decreased in the anaerobic phase and then recovered under aerobic conditions. However, the polyP in the EPS had a much shorter chain length than the intracellular polyP in the whole cycle. The migration and transformation of various forms of phosphorus among microbial cells, EPS, and bulk liquid were also explored. On the basis of these results, a model with a consideration of the roles of EPS was proposed, which is beneficial to elucidate the mechanism of phosphorus removal in the EBPR system.

  10. Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank.

    PubMed

    Chai, Xiaoli; Zhao, Xin

    2012-07-01

    Reduction of carbon loss from the effluent is one of the most important aspects of photobioreactors design. In this study, a novel gas sparger of bubble tank was adopted in a photobioreactor to enhance carbon dioxide (CO(2)) mass transfer rate as well as alleviate dissolved oxygen (DO) accumulation. The results showed that low DO level in the culture can be obtained due to the turbulent hydrodynamic condition provided by the bubble tank. The effects of CO(2) concentration, flow rate of influent, and light intensity on CO(2) removal efficiency were investigated. The maximum CO(2) removal efficiency was 94% at flow rate of 30 mL min(-1), light intensity of 179 μmol m(-2) s(-1) and CO(2) concentration of 10%, implying that the novel gas sparger is a promising alternative for CO(2) removal from CO(2)-enriched air by cultivating microalgae in the photobioreactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The fundamentals and futures of removable mass storage alternatives

    NASA Technical Reports Server (NTRS)

    Kempster, Linda

    1993-01-01

    This article reflects my view of how the storage products have been introduced into the marketplace, where they came from, and where others will continue to come from in the future. My corporate goal is to be a resource for those searching for removable solutions to mass storage problems. My introduction to optical storage occurred a few months before signing a non-disclosure agreement with FileNet on 8 Aug. 1983. By 87 or 88, as the optical craze was getting more popular, I started looking for similar or complementary storage technologies. I am still looking and my research is constantly turning up new entrants into this field. Due to the scope of the coverage in this field, this article does not dwell on any single technology. The goal is to provide information that is not compiled in any other single source and focus on facts that are not commonly known. I have provided a few baseline assumptions to ensure the mathematical calculations remain consistent: (1) hard-copy 8.5 in x 11 in documents which are scanned at 200 dots per inch (dpi) and compressed at a ratio of 10:1 result in a document image which requires an average of 50 Kilobytes (KB) of storage; (2) an average ASCII page requires 2 KB of storage; (3) an average flle cabinet drawer can hold 2500 pieces of paper; (4) one GB of storage can hold an average of 20,000 document images (a reel of 6250 tape holds 180 Megabytes (MB)).

  12. The fundamentals and futures of removable mass storage alternatives

    NASA Technical Reports Server (NTRS)

    Kempster, Linda

    1993-01-01

    This article reflects my view of how the storage products have been introduced into the marketplace, where they came from, and where others will continue to come from in the future. My corporate goal is to be a resource for those searching for removable solutions to mass storage problems. My introduction to optical storage occurred a few months before signing a non-disclosure agreement with FileNet on 8 Aug. 1983. By 87 or 88, as the optical craze was getting more popular, I started looking for similar or complementary storage technologies. I am still looking and my research is constantly turning up new entrants into this field. Due to the scope of the coverage in this field, this article does not dwell on any single technology. The goal is to provide information that is not compiled in any other single source and focus on facts that are not commonly known. I have provided a few baseline assumptions to ensure the mathematical calculations remain consistent: (1) hard-copy 8.5 in x 11 in documents which are scanned at 200 dots per inch (dpi) and compressed at a ratio of 10:1 result in a document image which requires an average of 50 Kilobytes (KB) of storage; (2) an average ASCII page requires 2 KB of storage; (3) an average flle cabinet drawer can hold 2500 pieces of paper; (4) one GB of storage can hold an average of 20,000 document images (a reel of 6250 tape holds 180 Megabytes (MB)).

  13. Sparse inversion for water bubble removal and spectral enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang; Gan, Shuwei; Qu, Shan; Zu, Shaohuan

    2015-06-01

    The simple waveform coming from a bubble-free airgun source can significantly simplify the determination and control of the processed wavelet phase function, and thus it will improve stratigraphic reliability of the seismic data. In this paper, we propose a novel approach for simultaneous water bubble removal and spectral enhancement by frequency-wavenumber domain sparse inversion. We use the concept of target source, comparable to the well-known airgun source. The target source is a single-lobe bubble-free airgun source. We formulate an estimation problem in order to invert the seismic data that is acquired as if using the target source. As the basic idea of the approach is by convolution and deconvolution, there will exist random noise in the time-space domain because of the stability factor. We propose to iteratively remove the random noise while doing deconvolution by constraining using frequency-wavenumber (f-k) domain thresholding. Compared with the traditional wiener filtering, the proposed approach can obtain a nearly perfect result, without the extra added noise and artifacts. We use one linear-event synthetic data and the more realistic Marmousi model to demonstrate the performance of the proposed approach. The results show that our approach can successfully remove water bubbles and fill in the spectrum notches.

  14. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  15. Enhancement of Nitrogen Removal in an Intermittent Aeration Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    He, Xiaojuan; Wisniewski, Christelle; Li, Xudong; Zhou, Qi

    2010-11-01

    An intermittent aerated membrane bioreactor was applied in laboratory scale to treat synthetic household wastewater. The system organic load and nitrogen load were 0.34 kgCODṡm-3ṡd-1 and 0.06 kgTNṡm-3ṡd-1, respectively. The hydraulic residence time was equal to 12 h and very long sludge residence times were imposed. Intermittent aeration, with anoxic-aerobic cycle of 30/60 minutes, was employed in the system. The results showed that 100% SS and >90% COD could be removed. The average removal efficiency of NH4-N and TN was 99.7% and 80%, respectively. A linear relationship between the fouling rate and the MLSS, MLVSS concentration was founded. The denitrification seemed to be the rate-limiting step for nitrogen removal. To enhance denitrification, the following strategies could be considered: 1) to select suitable aeration/non-aeration cycle, 2) to control the aeration intensity, 3) to feed the system at the beginning of non-aeration period, 4) to maintain high MLSS concentration.

  16. Uneven illumination removal and image enhancement using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Pei, Soo-Chang; Hsiao, Yu-Zhe; Tzeng, Mary; Chang, Feng Ju

    2013-10-01

    Uneven light distribution problems often arise in poorly scanned text or text-photo images and natural images taken by digital camera. An innovative image-processing technique for uneven illumination removal using empirical mode decomposition (EMD) is proposed. The EMD is local, adaptive, and useful for analyzing nonlinear and nonstationary signals. In this method, we decompose images by EMD and get the background level locally and adaptively. This algorithm can enhance the local reflectance in the image while removing uneven illumination for black/white text images, text-photo images, and natural color/gray-level images. The proposed technique can be very helpful for image and text recognition. The EMD can also be applied to the three color channels (RGB) of color images separately to estimate the reflectances of the three color channels. After we relight these channels using white light and the estimated reflectances, a simple color constancy task can be performed to correct certain poorly lighted color images. Our technique is compared with recently proposed methods for correcting images with uneven illumination and the experimental results demonstrated that the proposed approach can effectively enhance natural color/gray-level images and make text and text-photo images more readable under uneven illumination.

  17. Enhanced removal of sodium salts supported by in-situ catalyst synthesis in a supercritical water oxidation process.

    PubMed

    Takahashi, F; Sun, Z R; Fukushi, K; Oshima, Y; Yamamoto, K

    2012-01-01

    For practical applications of supercritical water oxidation to wastewater treatment, the deposition of inorganic salts in supercritical phase must be controlled to prevent a reactor from clogging. This study investigated enhanced removal of sodium salts with titanium particles, serving as a salt trapper and a catalyst precursor, and sodium recovery by sub-critical water. When Na(2)CO(3) was tested as a model salt, sodium removal efficiency was higher than theoretically maximum efficiency defined by Na(2)CO(3) solubility. The enhanced sodium removal resulted from in-situ synthesis of sodium titanate, which could catalyse acetic acid oxidation. The kinetics of sodium removal was described well by a diffusion mass-transfer model combined with a power law-type rate model of sodium titanate synthesis. Titanium particles showed positive effect on sodium removal in the case of NaOH, Na(2)SO(4) and Na(3)PO(4). However, they had negligible effect for NaCl and negative effect for Na(2)CrO(4), respectively. More than 99% of trapped sodium was recovered by sub-critical water except for Na(2)CrO(4). In contrast, sodium recovery efficiency remained less than 50% in the case of Na(2)CrO(4). Reused titanium particles showed the same performance for enhanced sodium removal. Enhanced salt removal supported by in-situ catalyst synthesis has great potential to enable both salt removal control and catalytic oxidation.

  18. Microtopography enhances nitrogen cycling and removal in created mitigation wetlands

    USGS Publications Warehouse

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Natural wetlands often have a heterogeneous soil surface topography, or microtopography (MT), that creates microsites of variable hydrology, vegetation, and soil biogeochemistry. Created mitigation wetlands are designed to mimic natural wetlands in structure and function, and recent mitigation projects have incorporated MT as one way to attain this goal. Microtopography may influence nitrogen (N) cycling in wetlands by providing adjacent areas of aerobic and anaerobic conditions and by increasing carbon storage, which together facilitate N cycling and removal. This study investigated three created wetlands in the Virginia Piedmont that incorporated disking-induced MT during construction. One site had paired disked and undisked plots, allowing an evaluation of the effects of this design feature on N flux rates. Microtopography was measured using conventional survey equipment along a 1-m circular transect and was described using two indices: tortuosity (T), describing soil surface roughness and relief, and limiting elevation difference (LD), describing soil surface relief. Ammonification, nitrification, and net N mineralization were determined with in situ incubation of modified ion-exchange resin cores and denitrification potential was determined using denitrification enzyme assay (DEA). Results demonstrated that disked plots had significantly greater LD than undisked plots one year after construction. Autogenic sources of MT (e.g. tussock-forming vegetation) in concert with variable hydrology and sedimentation maintained and in some cases enhanced MT in study wetlands. Tortuosity and LD values remained the same in one wetland when compared over a two-year period, suggesting a dynamic equilibrium of MT-forming and -eroding processes at play. Microtopography values also increased when comparing the original induced MT of a one-year old wetland with MT of older created wetlands (five and eight years old) with disking-induced MT, indicating that MT can increase by

  19. Incident Wave Removal for Defect Enhancement in Acoustic Wavefield Imaging

    NASA Astrophysics Data System (ADS)

    Master, Zubin M.; Michaels, Thomas E.; Michaels, Jennifer E.

    2007-03-01

    The method of Acoustic Wavefield Imaging (AWI) offers many advantages over conventional ultrasonic techniques for nondestructive evaluation, and also provides a means of incorporating fixed ultrasonic sensors used for structural health monitoring into subsequent inspections. AWI utilizes these fixed sensors as wave sources and an externally scanned ultrasonic transducer (or laser interferometer) as a receiver to acquire complete waveform data over the surface. When displayed as time-dependent images, these signals show the propagation of acoustic waves through a structure and subsequent interactions of these waves with both defects and structural geometry. Defect areas appear as stationary scattering sources on these images, but such scattered wave energy is often obscured by the stronger incident acoustic wavefield. The objective of the work presented here is to develop multidimensional signal processing algorithms to enhance the appearance of structural defects on wavefield images via removal of the incident wave. Results are presented for analysis of images from aluminum plate and solid laminate composite specimens.

  20. Removing cadmium ions from water via nanoparticle-enhanced ultrafiltration.

    PubMed

    Jawor, Anna; Hoek, Eric M V

    2010-04-01

    Here we evaluate removal of cadmium ions from water by nanoparticle-enhanced ultrafiltration using polymer and zeolite nanoparticles. This evaluation considered nanoparticle physical-chemical properties, metal-binding kinetics, capacity and reversibility, and ultrafiltration separation for a Linde type A zeolite nanocrystals, poly(acrylic acid), alginic acid, and carboxyl-functionalized PAMAM dendrimers in simple, laboratory prepared ionic solutions. The three synthetic materials exhibited fast binding kinetics and strong affinity for cadmium, with good regeneration capabilities. Only the zeolite nanoparticles were completely rejected by the ultrafiltration membranes tested. Overall, colloidal zeolites performed similar to conventional metal binding polymers, but were more easily recovered using relatively loose filtration membranes (i.e., lower energy consumption). Further, the superhydrophilic colloidal zeolites caused relatively little flux decline even in the presence of divalent cations which caused dense, highly impermeable polymer gels to form over the membranes. These results suggest zeolite nanoparticles may compete with polymeric materials in low-pressure hybrid filtration processes designed to remove toxic metals from water.

  1. Plant traits that enhance pollutant removal from stormwater in biofiltration systems.

    PubMed

    Read, Jennifer; Fletcher, Tim D; Wevill, Tricia; Deletic, Ana

    2010-01-01

    Plants species have been shown to improve the performance of stormwater biofiltration systems, particularly in removal of N and P. Recent research has shown that plants vary in their contribution to pollutant removal but little is known about the type of plant that is best suited to use in biofilters in terms of survival, growth rate, and performance. In this study, growth responses of 20 species to applications of semi-synthetic stormwater were measured, and the roles of key plant traits in removal of N, P, and several metals were investigated. There was no evidence of negative effects of stormwater application on plant growth, and plant traits, particularly root traits, were strongly correlated negatively with N and P concentrations of effluent stormwater. The most common and strong contributors to N and P removal appeared to be the length of the longest root, rooting depth, total root length, and root mass. The plants that made the strongest contribution to pollutant removal, e.g, Carex appressa, combined these traits with high growth rates. Investigation of other plant traits (e.g, physiology), causal mechanisms, and effects of more complex planting environments (e.g, species mixtures) should further guide the selection of plants to enhance performance of biofiltration systems.

  2. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.

    PubMed

    Wu, Guangxue; Rodgers, Michael

    2010-01-01

    Nutrient removal, microbial community and sludge settlement were examined in two 3-litre laboratory-scale anaerobic/aerobic sequencing batch reactors (SBRs). One SBR was operated at 10 degrees C and the other SBR at 20 degrees C. Different from conventional enhanced biological phosphorus removal, most of the soluble sodium acetate was removed in the aerobic phase and no organic carbon uptake or biological phosphorus release occurred in the anaerobic phase. In this type of anaerobic/aerobic SBR, the phosphorus removal and sludge settlement seemed to be unstable, and the dominant microorganism was Zoogloea sp. Although no excess biological phosphorus removal occurred, extracellular phosphorus precipitation contributed a significant proportion to total phosphorus removed. Sludge volume index decreased with increasing phosphorus contents in the biomass under all conditions. The functions of extracellular polymeric substances in sludge settlement and phosphorus removal depended on the environmental conditions applied.

  3. A media maniac's guide to removable mass storage media

    NASA Technical Reports Server (NTRS)

    Kempster, Linda S.

    1996-01-01

    This paper addresses at a high level, the many individual technologies available today in the removable storage arena including removable magnetic tapes, magnetic floppies, optical disks and optical tape. Tape recorders represented below discuss logitudinal, serpantine, logitudinal serpantine,and helical scan technologies. The magnetic floppies discussed will be used for personal electronic in-box applications.Optical disks still fill the role for dense long-term storage. The media capacities quoted are for native data. In some cases, 2 KB ASC2 pages or 50 KB document images will be referenced.

  4. Enhanced Stormwater Contaminant Removal Using Tree Filters And Modified Sorbents

    NASA Astrophysics Data System (ADS)

    Schifman, L. A.; Kasaraneni, V. K.; Boving, T. B.; Oyanedel-Craver, V.

    2012-12-01

    Stormwater runoff, particularly in urban areas, contains several groups of contaminants that negatively impact surface- and groundwater quality if left untreated. Contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat runoff before discharging it. Many BMPs, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff; but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, three materials (red cedar wood chips, expanded shale, and crushed concrete) were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that of the three materials investigated, wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAHs by sorption processes. In case of AgNP amendments to wood, less uptake and more desorption from the wood matrix was observed. Relative to wood, expanded shale and crushed concrete exhibited less affinity for QAS (results for AgNPs are pending). Currently, batch isotherm and unsaturated flow column studies are under way to determine the performance of the amended materials with regard to removal of bacteria, nutrients, heavy metals, and PAH from artificially contaminated runoff. In this presentation, the contaminant removal efficiency of all modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  5. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application.

    PubMed

    Reddy, Krishna R; Saichek, Richard E

    2004-01-01

    Electrokinetically enhanced in-situ flushing using surfactants has the potential to remove polycyclic aromatic hydrocarbons (PAHs) from low permeability clay soils; however, previous research has shown that the applied electric potential produces complex physical, chemical, and electrochemical changes within clay soils that affect mass transfer and overall efficiency. This article presents the results of a laboratory investigation conducted to determine the contaminant mass removal by using a periodic voltage application. The periodic voltage effects were evaluated by performing four different bench-scale electrokinetic tests with the voltage gradient applied continuously or periodically, under relatively low voltage (1.0 VDC/cm) and high anode buffering (0.1 M NaOH) as well as high voltage (2.0 VDC/cm) and low anode buffering (0.01 M NaOH) conditions. For all the tests, kaolin soil was used as a representative clay soil and it was spiked with phenanthrene, a representative PAH, with a target concentration of 500 mg/kg. A nonionic polyoxyethylene surfactant, Igepal CA 720, was used as the flushing solution in all the tests. The voltage was applied according to a cycle of five days of continuous application followed by two days of "down time," when the voltage was not applied. The results of these experiments show that considerable contaminant removal can be achieved by employing a high, 2.0 VDC/cm, voltage gradient along with a periodic mode of voltage application. The increased removal was attributed to increased phenanthrene solubilization and mass transfer due to the reduced flow of the bulk solution during the down time as well as to the pulsed electroosmotic flow that improved flushing action.

  6. Enhanced Polychlorinated Biphenyl Removal in a Switchgrass Rhizosphere by Bioaugmentation with Burkholderia xenovorans LB400

    PubMed Central

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.

    2014-01-01

    Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil. PMID:25246731

  7. Enhancing Rain Garden Design to Promote Nitrate Removal

    EPA Science Inventory

    Rain gardens effectively remove some stressors from stormwater, but in most cases they show much smaller removal rates of nitrate, likely due to the media’s high sand and low organic matter content that inhibit trate removal by denitrification. EPA’s pilot-scale research explores...

  8. Enhancing Rain Garden Design to Promote Nitrate Removal

    EPA Science Inventory

    Rain gardens effectively remove some stressors from stormwater, but in most cases they show much smaller removal rates of nitrate, likely due to the media’s high sand and low organic matter content that inhibit trate removal by denitrification. EPA’s pilot-scale research explores...

  9. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling.

    PubMed

    Lesjean, B; Gnirss, R; Adam, C; Kraume, M; Luck, F

    2003-01-01

    The enhanced biological phosphorus removal (EBPR) process was adapted to membrane bioreactor (MBR) technology. One bench-scale plant (BSP, 200-250 L) and two pilot plants (PPs, 1,000-3,000 L each) were operated under several configurations, including pre-denitrification and post-denitrification without addition of carbon source, and two solid retention times (SRT) of 15 and 26 d. The trials showed that efficient Bio-P removal can be achieved with MBR systems, in both pre- and post-denitrification configurations. EBPR dynamics could be clearly demonstrated through batch-tests, on-line measurements, profile analyses, P-spiking trials, and mass balances. High P-removal performances were achieved even with high SRT of 26 d, as around 9 mgP/L could be reliably removed. After stabilisation, the sludge exhibited phosphorus contents of around 2.4%TS. When spiked with phosphorus (no P-limitation), P-content could increase up to 6%TS. The sludge is therefore well suited to agricultural reuse with important fertilising values. Theoretical calculations showed that increased sludge age should result in a greater P-content. This could not be clearly demonstrated by the trials. This effect should be all the more significant as the influent is low in suspended solids.

  10. Stellar Evolution Models of Classical Cepheids Require Enhanced Mass Loss

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding; Langer, N.; Engle, S. G.; Guinan, E. F.; Izzard, R. G.

    2013-01-01

    Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. In this work, we compare rates of period change measured for about 200 Galactic Cepheids to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates whereas including enhanced mass loss yield predicted rates in better agreement with observations. The results suggest that enhanced mass loss must be a ubiquitous property of Classical Cepheids.

  11. Timing of Bag Application and Removal in Controlled Mass Pollination

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; V.D. Hipkins

    1999-01-01

    Controlled mass pollination (CMP) among outstanding parents is one way to increase genetic gains from traditional wind-pollinated seed orchards, but the economic success of CMP depends on both genetic gains and costs. CMP has been shown. to be cost-effective (Bridgwater et al. 1998) even when costs were adjusted for risk (Byram and Bridgwater 1999, These Proceedings...

  12. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    SciTech Connect

    He, Yong

    2015-03-23

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is an approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.

  13. The Outcome of Supernovae in Massive Binaries; Removed Mass, and its Separation Dependence

    NASA Astrophysics Data System (ADS)

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (~10 M ⊙) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M ubvpropa -4.3 with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as Mub \\propto ρ ej 1.4. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  14. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  15. Significance of nitrogen removal mass in uremic patients on different modalities of dialysis therapy.

    PubMed

    Chen, T W; Huang, T P; Wang, M L

    2000-02-01

    While most nephrologists use Kt/V values for dialysis prescriptions, some researchers are beginning to view the role of solute removal mass as an indicator of adequate dialysis. This study, using nitrogen as a surrogate for solute removal, probed whether solute removal mass can be used as the target of adequate dialysis. Mathematical formulas for easy bedside calculation of nitrogen removal mass were used to avoid the problems associated with direct measurement. The weekly removal mass of urea nitrogen (M) and the urea generation rate (G) of 32 conventional hemodialysis (HD) and 21 continuous ambulatory peritoneal dialysis (CAPD) patients were calculated. All the patients were anuric, clinically stable, and under adequate dialysis pursuant to either the criterion of the urea index, Kt/V, or clinical requirements. The difference in MHD (MHD = 41.9 +/- 9.5 g/week, MCAPD = 38.8 +/- 11.9 g/week) and G (GHD = 3.90 +/- 1.02 mg/min, GCAPD = 3.85 +/- 1.21 mg/min) between the two groups was statistically insignificant (p = 0.119 and p = 0.868, respectively). When protein nitrogen leaking through the peritoneal membrane was considered and added to MCAPD, nitrogen removal in CAPD patients (M'CAPD = 42.3 +/- 13.0 g/week) approached that in HD patients (p = 0.886). There was no correlation between dialysis dosage and urea removal mass in either the CAPD or HD groups. Urea nitrogen removal mass is similar to the protein catabolic rate (PCR) in stable patients. It is meaningful in dialysis evaluation only when it is used simultaneously with blood urea nitrogen measurement. However, because M changes at the inception of dialysis, it more significant than PCR in the evaluation of unstable patients.

  16. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  17. The effects of body mass on dung removal efficiency in dung beetles.

    PubMed

    Nervo, Beatrice; Tocco, Claudia; Caprio, Enrico; Palestrini, Claudia; Rolando, Antonio

    2014-01-01

    Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations.

  18. The Effects of Body Mass on Dung Removal Efficiency in Dung Beetles

    PubMed Central

    Nervo, Beatrice; Tocco, Claudia; Caprio, Enrico; Palestrini, Claudia; Rolando, Antonio

    2014-01-01

    Understanding of the role of body mass in structural-functional relationships is pressing, particularly because species losses often occur non-randomly with respect to body size. Our study examined the effects of dung beetle body mass on dung removal at two levels. First, we used the lab experiment to evaluate the efficiency of eight dung beetle species belonging to two functional groups (tunnelers, dwellers) on dung removal. Second, the same species employed in the lab were used in field mesocosms to examine the effects of the two functional groups on dung removal maintaining realistic differences in the total body mass between tunneler and dweller assemblages. Furthermore, the experimental assemblages contained one and four species within each functional group, so the effect of body mass heterogeneity was examined. We used a statistical approach (offset method) which took into account a priori constraints due to the study design allowing us to analyse the effect of larger species in mesocosm style experiments. Body size played a crucial role in dung removal: large beetles were more efficient than small ones and the percentage of removed dung increased with higher body mass heterogeneity. Tunnelers were more efficient than dwellers over both short and long time periods (one month and one year). Significant effects of dwellers were found only after one year. Moreover, our study showed that not including the body mass as an offset in the model resulted in sometimes different results, as the offset expresses dung removal independently of the body mass. This approach confirmed that body size is likely a pivotal factor controlling dung removal efficiency at multiple levels, from single species to overall dung beetle assemblages. Even though other specific traits should be examined, this study has begun to address the consequences of losing individuals with specific traits that are especially sensitive to perturbations. PMID:25229237

  19. Synergistic, ultrafast mass storage and removal in artificial mixed conductors

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-01

    Mixed conductors—single phases that conduct electronically and ionically—enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the ‘super-ionic’ conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors.

  20. RESTORED STREAMS ENHANCE ABILITY TO REMOVE EXCESS NITROGEN

    EPA Science Inventory

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten human and aquatic ecosystem health. Furthermore, degraded ecosystems like those impacted by urbanization have reduced ability to process and remove excess nitrogen from t...

  1. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads.

    PubMed

    Yamani, Jamila S; Miller, Sarah M; Spaulding, Matthew L; Zimmerman, Julie B

    2012-09-15

    Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al₂O₃ and nanocrystalline TiO₂ were successfully developed. This adsorbent exploits the high capacity of Al₂O₃ for arsenate and the photocatalytic activity of TiO₂ to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO₂ oxidizes arsenite to arsenate which is then removed from solution by Al₂O₃. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO₂-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs.

  2. Enhancing Rain Garden Design to Promote Nitrate Removal via Denitrification

    EPA Science Inventory

    Recommendations for rain garden media design typically specify high sand content and low organic matter content to promote infiltration and avoid excessive ponding. This design is effective at infiltrating stormwater and removing solids, heavy metals, phosphorus, and some specie...

  3. Enhancing Rain Garden Design to Promote Nitrate Removal via Denitrification

    EPA Science Inventory

    Recommendations for rain garden media design typically specify high sand content and low organic matter content to promote infiltration and avoid excessive ponding. This design is effective at infiltrating stormwater and removing solids, heavy metals, phosphorus, and some specie...

  4. RESTORED STREAMS ENHANCE ABILITY TO REMOVE EXCESS NITROGEN

    EPA Science Inventory

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten human and aquatic ecosystem health. Furthermore, degraded ecosystems like those impacted by urbanization have reduced ability to process and remove excess nitrogen from t...

  5. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals.

  6. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The outcome of supernovae in massive binaries; removed mass, and its separation dependence

    SciTech Connect

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (∼10 M {sub ☉}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}∝a {sup –4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}∝ρ{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  8. Bioslurping: Combined vacuum-enhanced free fuel removal and bioventing

    SciTech Connect

    Hoeppel, R.; Goetz, F.; Kittel, J.; Place, M.; Di Julio, S.

    1996-12-31

    Bioslurping is a new in situ technology that teams bioventing with vacuum-assisted free-phase fuel recovery to promote biodegradation in the vadose zone while simultaneously removing light nonaqueous phase liquid (LNAPL) from the water table and capillary fringe soil pores. Bioslurping differs from dual- or multi-phase extraction primarily in the same manner that bioventing differs from soil venting. The primary purpose of multi-phase extraction is to physically remove more volatile compounds from the groundwater, free product zones and vadose zone through use of high vacuum exerted usually below the water table. Bioslurping typically uses lower vacuum and removal of groundwater is minimized by placing a drop tube in the vacuum well near the free fuel-groundwater interface. Bioslurping is designed to accentuate in situ aerobic biodegradation and vapor extraction is an undesirable component. Thus this technology is ideal for the remediation of soils containing low volatility fuels.

  9. Triboelectric Nanogenerator Enhanced Nanofiber Air Filters for Efficient Particulate Matter Removal.

    PubMed

    Gu, Guang Qin; Han, Chang Bao; Lu, Cun Xin; He, Chuan; Jiang, Tao; Gao, Zhen Liang; Li, Cong Ju; Wang, Zhong Lin

    2017-06-27

    We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG) enhanced polyimide (PI) nanofiber air filter for particulate matter (PM) removal in ambient atmosphere. The PI electrospinning nanofiber film exhibited high removal efficiency for the PM particles that have diameters larger than 0.5 μm. When the R-TENG is connected, the removal efficiency of the filter is enhanced, especially when the particle diameters of the PM are smaller than 100 nm. The highest removal efficiency is 90.6% for particles with a diameter of 33.4 nm and the highest efficiency enhancement reaches 207.8% at the diameter of 76.4 nm where the removal efficiency enhanced from 27.1% to 83.6%. This technology with zero ozone release and low pressure drop offers an approach for air cleaning and haze treatment.

  10. The role of mass removal mechanisms in the onset of ns-laser induced plasma formation

    SciTech Connect

    Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.

    2013-07-14

    The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm{sup 2}. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.

  11. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    NASA Technical Reports Server (NTRS)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  12. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    PubMed

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  13. Enhancing of Fe removal in pyrophyllite using magnetite ore susceptor

    NASA Astrophysics Data System (ADS)

    Hack Lim, Dae; Myung, Eun Ji; Kim, Hyun Soo; Choul Choi, Nag; Cho, Kang Hee; Park, Cheon Young

    2016-04-01

    Pyrite and hematite are an impurity that reduces the grade of pyrophyllite in the final products. Because the impurity in pyrophyllite which was associated with hydrothermally altered rocks. Microwave has been extensively explored in various fields of materials processing. This technology exhibits unique characteristics including volumetric and selective heating, which eventually lead to many exceptional advantages over conventional processing methods including both energy and cost savings, improved product quality and faster processing. The aim of this study was to investigate the application possibility of microwave process for Fe removal in pyrophyllite. The pyrite and quartz of the pyrophyllite was determined by reflected light microscopy and XRD. The result of Fe removal experiment in pyrophyllite using microwave susceptor(magnetite ore included ilmenite and magnetite) showed to decrease of Fe content in pyrophyllite. The Fe removal of 93.62% and parameters were obtained under the following conditions by magnetite ore was 20.0 g, the pyrophyllite was 10.0 g, and the microwave heating time was 10.0 min. By means of microwave, Fe removal in pyrophyllite can be rapidly and efficiently pyrolyze. if some of the magnetite ore, which acts as a microwave susceptor, is mixed with the raw material. Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"

  14. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE PAGES

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...

    2017-08-13

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  15. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil.

    PubMed

    Lai, Chin-Chi; Huang, Yi-Chien; Wei, Yu-Hong; Chang, Jo-Shu

    2009-08-15

    A screening method was developed to evaluate the oil removal capability of biosurfactants for oil-contaminated soils collected from a heavy oil-polluted site. The ability of removing total petroleum hydrocarbon (TPH) from soil by two biosurfactants was identified and compared with that of synthetic surfactants. The results show that biosurfactants exhibited much higher TPH removal efficiency than the synthetic ones examined. By using 0.2 mass% of rhamnolipids, surfactin, Tween 80, and Triton X-100, the TPH removal for the soil contaminated with ca. 3,000 mg TPH/kg dry soil was 23%, 14%, 6%, and 4%, respectively, while removal efficiency increased to 63%, 62%, 40%, and 35%, respectively, for the soil contaminated with ca. 9000 mg TPH/kg dry soil. The TPH removal efficiency also increased with an increase in biosurfactant concentration (from 0 to 0.2 mass%) but it did not vary significantly for the contact time of 1 and 7 days.

  16. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  17. Transnasal, Endoscopically Guided Skull-Based Surgery by Pharyngotomy for Mass Removal from the Sphenopalatine Sinus in a Horse.

    PubMed

    Radcliffe, Rolfe M; Messiaen, Yasmine; Irby, Nita L; Divers, Thomas J; Dewey, Curtis W; Mitchell, Katharyn J; Schnabel, Lauren V; Bezuidenhout, Abraham J; Scrivani, Peter V; Ducharme, Norm G

    2016-11-01

    To report a transnasal, endoscopically guided ventral surgical approach for accessing the cranial and caudal segments of the sphenopalatine sinus for mass removal in a horse. Case report. Adult horse with acute onset blindness referable to a soft tissue mass within the sphenopalatine sinus. A 7-year-old Warmblood gelding presented with a history of running into a fence and falling. No neurologic signs were identified at initial examination but acute blindness was noted 3 weeks later. On computed tomography (CT) the sphenopalatine sinus was filled with a large homogeneous mass with poor contrast enhancement that extended dorsally with thinning to the dorsal cortex of the sphenoid bone, just rostral to the entrance of the optic canals into the cranial cavity. Surgical access to the sphenopalatine sinus was achieved using a transnasal, endoscopically guided ventral pharyngotomy approach and the mass lesion was removed. A presumptive diagnosis of chondroma was made based on histopathology. The horse recovered well from surgery, and although it has not regained vision as of 6.5 years postoperatively, the disease has not progressed. Transnasal, endoscopically-guided ventral surgical access to the sphenopalatine sinus is possible in horses and may improve access in horses with disease extending caudally beyond the palatine portion of the sinus. Use of smaller diameter or specialized instruments, such as various endoscopic bone cutting instruments, and CT image guidance may improve sinus access by this route. © Copyright 2016 by The American College of Veterinary Surgeons.

  18. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  20. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  1. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  2. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  3. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.

    PubMed

    Zandi, Omid; Hamann, Thomas W

    2014-05-01

    Hematite (α-Fe2O3) thin film electrodes prepared by atomic layer deposition (ALD) were employed to photocatalytically oxidize water under 1 sun illumination. It was shown that annealing at 800 °C substantially improves the water oxidation efficiency of the ultrathin film hematite electrodes. The effect of high temperature treatment is shown to remove one of two surface states identified, which reduces recombination and Fermi level pinning. Further modification with Co-Pi water oxidation catalyst resulted in unprecedented photocurrent onset potential of ∼0.6 V versus reversible hydrogen electrode (RHE; slightly positive of the flat band potential).

  4. Clutter and anomaly removal for enhanced target detection

    NASA Astrophysics Data System (ADS)

    Basener, William F.

    2010-04-01

    In this paper we investigate the use of anomaly detection to identify pixels to be removed prior to covariance computation. The resulting covariance matrix provides a better model of the image background and is less likely to be tainted by target spectra. In our tests, this method results in robust improvement in target detection performance for quadratic detection algorithms. Tests are conducted using imagery and targets freely available online. The imagery was acquired over Cooke City, Montana, a small town near Yellowstone Park, using the HyMap V/NIR/SWIR sensor with 126 spectral bands. There are three vehicle and four fabric targets located in the town and surrounding area.

  5. Dynamics of microbial community structure and nutrient removal from an innovative side-stream enhanced biological phosphorus removal process.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; Dong, Shimiao; McPhedran, Kerry N; Rashed, Ehab M; El-Shafei, Maha M; Noureldin, Ahmed M; Gamal El-Din, Mohamed

    2017-08-01

    Biological phosphorous (P) and nitrogen (N) removal from municipal wastewater was studied using an innovative anoxic-aerobic-anaerobic side-stream treatment system. The impact of influent water quality including chemical oxygen demand (COD), ammonium and orthophosphate concentrations on the reactor performance was evaluated. The results showed the system was very effective at removing both COD (>88%) and NH4(+)-N (>96%) despite varying influent concentrations of COD, NH4(+)-N, and total PO4(3-)-P. In contrast, it was found that the removal of P was sensitive to influent NH4(+)-N and PO4(3-)-P concentrations. The maximum PO4(3-)-P removal of 79% was achieved with the lowest influent NH4(+)-N and PO4(3-)-P concentration. Quantitative PCR (qPCR) assays showed a high abundance and diversity of phosphate accumulating organisms (PAO), nitrifiers and denitrifiers. The MiSeq microbial community structure analysis showed that the Proteobacteria (especially β-Proteobacteria, and γ-Proteobacteria) were the dominant in all reactors. Further analysis of the bacteria indicated the presence of diverse PAO genera including Candidatus Accumulibacter phosphatis, Tetrasphaera, and Rhodocyclus, and the denitrifying PAO (DPAO) genus Dechloromonas. Interestingly, no glycogen accumulating organisms (GAOs) were detected in any of the reactors, suggesting the advantage of proposed process in term of PAO selection for enhanced P removal compared with conventional main-stream processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhanced fermentation systems with continuous removal of inhibitory products

    SciTech Connect

    Davison, B.H.; Kaufman, E.N.

    1994-06-01

    A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids, and other fermentation products. A major limitation of microbial fermentations is the dilute aqueous product streams that result, largely due to inhibition of the microbes by the desired products. If these inhibitory products can be removed during the ongoing fermentation, the overall rates, yields, and net product formation may be increased. Simultaneous fermentation and separation have been tested with different separation techniques, such as adsorption, liquid extraction, pervaporation, membrane separations, distillation, and others. These separations can occur directly in situ within the fermentor or indirectly using a sidestream separator with recycle of the unused substrate. These approaches are briefly reviewed. At Oak Ridge National Laboratory (ORNL), we have investigated two modified immobilized-cell fluidized-bed bioreactors (FBRs) to remove the inhibitory product directly from the continuous fermentation. One involves the separation by adsorption of tactic acid, and the other uses liquid solvent extraction for the production of butanol. Keywords: extractive fermentation, in situ separation, adsorption, tactic acid, butanol.

  7. Biochar Addition to Stormwater Treatment Media for Enhanced Removal of Nitrogen

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Jin, J.; Tian, J.; Chiu, P.; Guo, M.

    2015-12-01

    Urban stormwater management systems, such as bioretention facilities, require substantial land area and are often ineffective in removing nitrogen. This project seeks to improve nitrogen removal in bioretention media by modifying the hydraulic and treatment characteristics of the infiltration medium with biochar addition. A commercial wood biochar pyrolyzed from Southern Yellow Pine at 500°C was used. Laboratory experiments demonstrated that biochar addition to a typical bioretention medium (soil-mix: 4% saw dust, 88% sand, 8% clay) increased ammonium sorption at typical stormwater concentrations (2 mg/L) by a factor of 6, total porosity by 16.6%, and water retention at most matric potentials. The effect of the biochar-amended medium on nitrate removal was evaluated in pilot-scale experiments. Side-by-side experimental cells (91 cm dia., 1.2 m deep) were constructed to treat stormwater runoff from a parking lot. The control cell contained 100% soil mix while the biochar cell contained 4% biochar and 96% soil-mix by mass. Treatment media were 76.2 cm in depth and overlain by 5.1 cm of wood mulch in both cells, with a water table maintained at the bottom of the treatment zones. Cells were instrumented with TDR moisture sensors, pressure transducers, and redox and temperature sensors. Two pilot-scale experiments were conducted that included a bromide tracer and nitrate with a hydraulic loading of 5.5cm/h for 24 h in early spring and 36 h in summer. Effluent was continuously sampled for nitrogen compounds during these tests. Tracer tests and TDR measurements showed that biochar increased the average volumetric water content of the vadose zone by 14.7% and the mean residence time by 12.6%. For the spring field test at 14°C, nitrate in the control cell effluent increased by 6.1% but decreased by 43.5% for the biochar cell. For the summer field test at 22°C, 30.6% and 84.7% of influent nitrate was removed in the control and biochar cells, respectively. In the summer

  8. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  9. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  10. Effects of mass density enhancements on VLF transmitter signals

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Lammer, Helmut; Al-Haddad, Eimad; Leitzinger, Martin; Krauss, Sandro

    2015-04-01

    We study the variation of the electric field measurements recorded by DEMETER micro-satellite above specific very low frequency (VLF) transmitters. The investigated period starts from August 2004 to December 2010. The VLF signals are combined with the mass density measurements recorded, in the same time interval, by GRACE and CHAMP satellites. Particular enhancements of the mass densities were observed at polar and sub-polar regions by both satellites. Those mass density enhancements are found to propagate from the northern or southern hemisphere to the equator region. We attempt in this study to analyse the VLF signal variations in the time interval where the mass density enhancements are recorded. Such disturbances of the atmosphere can probably affect the Earth's ionosphere. The VLF signal may be attenuated and then not detected by DEMETER. We find that it is the case at some specific occasions. Nevertheless we show that several parameters have to be taken into consideration: (a) the origin of the mass density enhancement in the polar region (e.g. solar particles), (b) its phase speed from the pole to the equator and (c) the satellite (CHAMP, DEMETER, GRACE) local time.

  11. Mass Enhancement Factor and Fermi Surface in YCo 2

    NASA Astrophysics Data System (ADS)

    Tanaka, Shingo; Harima, Hisatomo

    1998-08-01

    An FLAPW electronic structure and Fermi surfaces are calculated for YCo2.Mass enhancement factor is also calculated based on the Fermi liquid theory.Investigations are performed by treating the Fermi energy as a parameteraccording to a previous study.Reasonable mass enhancement is obtained by assuming the Fermi liquidtheory resulting in a reasonable range of values of Udd for Co-d electrons.The same calculation for CeCo2 reveals that CeCo2 is a differentmagnetic system.

  12. Contrast-enhanced ultrasound for imaging of adrenal masses.

    PubMed

    Dietrich, C F; Ignee, A; Barreiros, A P; Schreiber-Dietrich, D; Sienz, M; Bojunga, J; Braden, B

    2010-04-01

    The number of incidentally discovered adrenal masses is growing due to the increased use of modern high-resolution imaging techniques. However, the characterization and differentiation of benign and malignant adrenal lesions is challenging. This study aimed to evaluate contrast-enhanced ultrasound for the characterization of adrenal masses. We studied 58 patients with adrenal masses detected with computed tomography, magnetic resonance imaging, or ultrasound. 7 patients had bilateral adrenal lesions. Contrast-enhanced ultrasound was performed using high-resolution ultrasound (3.5 - 7 MHz) and intravenous injection of 2.4 ml SonoVue. The contrast enhancement pattern of all adrenal lesions was documented. The 18 malignant adrenal tumors were significantly larger at the time of diagnosis compared to the 40 benign lesions (p < 0.03). The majority of benign adrenal lesions (37 / 40) had a nonspecific type of contrast enhancement (24 / 40) or a peripheral to central contrast filling (13 / 40) described as the iris phenomenon. Similar findings were observed in malignant adrenal tumors: most malignant lesions also showed nonspecific (6 / 18) or peripheral to central contrast filling (9 / 18). Peripheral to central contrast filling had 50 % sensitivity (26 - 74 %) and 68 % specificity (51 - 81 %) for indicating malignancy. Contrast-enhanced ultrasound facilitates the visualization of vascularization even in small adrenal masses, but it does not help to distinguish malignant and benign lesions. Georg Thieme Verlag KG Stuttgart . New York.

  13. Chronocoulometry for quantitative control of mass removal in micro-structures and sensors

    NASA Astrophysics Data System (ADS)

    Nowakowski, B. K.; Smith, S. T.; Pratt, J. R.; Shaw, G. A.

    2012-10-01

    In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 μg. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 μg increments up to 120 μg of total removed mass. In general, frequency shifts of 2.8 Hz.μg-1 were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

  14. Chronocoulometry for quantitative control of mass removal in micro-structures and sensors

    SciTech Connect

    Nowakowski, B. K.; Smith, S. T.; Pratt, J. R.; Shaw, G. A.

    2012-10-15

    In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 {mu}g. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 {mu}g increments up to 120 {mu}g of total removed mass. In general, frequency shifts of 2.8 Hz{center_dot}{mu}g{sup -1} were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

  15. Enhanced removal of bilirubin on molecularly imprinted titania film.

    PubMed

    Yang, Zheng-peng; Yan, Jin-long; Zhang, Chun-jing; Luo, Shu-qiong

    2011-10-01

    Titania film imprinted by bilirubin molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted titania film was characterized by FTIR spectra, and the interaction between bilirubin and imprinted film was investigated using quartz crystal microbalance (QCM) technique. Compared with pure titania film, the molecularly imprinted titania film exhibits a much higher adsorption capacity for the target molecule, and the adsorption kinetic parameter estimated from the in situ frequency measurement is about 1.6×10(8) M(-1), which is ten times higher than that obtained on pure titania film. The photocatalytic measurements indicate that the bilirubin adsorbed on molecularly imprinted titania film can be completely removed under UV illumination. Moreover, our study indicates that the molecularly imprinted titania film possesses a better stability and reusability.

  16. Computed tomographic diagnosis of suprasellar masses by intrathecal enhancement.

    PubMed

    Drayer, B P; Rosenbaum, A E; Kennerdell, J S; Robinson, A G; Bank, W O; Deeb, Z L

    1977-05-01

    Ten suspected suprasellar mass lesions were evaluated by CT cisternography (CTC). In each case the cisterns could be defined. Suprasellar mass lesions were found in six. Precise assessment of the anterior, lateral, posterior, and superior extent, made by metrizamide CTC, was verified at surgery. In two masses the intravenously enhanced scan was not diagnostic, while a lesion was visualized by intrathecal (metrizamide) CT. The major diagnostic entity was an enlarged third ventricle. When a chiasmic lesion is suspected and the conventional scan is negative, metrizamide CTC is the examination of choice.

  17. Enhanced nutrient removal in three types of step feeding process from municipal wastewater.

    PubMed

    Peng, Yongzhen; Ge, Shijian

    2011-06-01

    An anoxic/oxic step feeding process was improved to enhance nutrient removal by reconfiguring the process into (1) anaerobic/anoxic/oxic step feeding process or (2) modified University of Capetown (UCT) step feeding process. Enhanced nitrogen and phosphorus removal and optimized organics utilization were obtained simultaneously in the modified UCT type with both internal and sludge recycle ratios of 75% as well as anaerobic/anoxic/oxic volume ratio of 1:3:6. Specifically, the UCT configuration and optimized operational conditions lead to the enrichment of denitrifying phosphorus removal microorganisms and achieved improved anaerobic P-release and anoxic P-uptake activities, which were beneficial to the denitrifying phosphorus removal activities and removal efficiencies. Due to high mixed liquor suspended solid and uneven distributed dissolved oxygen, 35% of total nitrogen was eliminated through simultaneous nitrification and denitrification process in aerobic zones. Moreover, 62 ± 6% of influent chemical oxygen demands was involved in the denitrification or phosphorus release processes.

  18. Enhancement of nitrate removal at the sediment-water interface by carbon addition plus vertical mixing.

    PubMed

    Chen, Xuechu; He, Shengbing; Zhang, Yueping; Huang, Xiaobo; Huang, Yingying; Chen, Danyue; Huang, Xiaochen; Tang, Jianwu

    2015-10-01

    Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal. The results suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can be activated after several days of acclimation. Adding additional carbon plus mixing significantly increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen (NO3(-)-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal performance, with the removal rate of NO3(-)-N and TN reaching 15.0-16.5 g m(-2) d(-1). The feasibility of this enhancement method was further confirmed with a wetland microcosm, and the NO3(-)-N removal rate maintained at 10.0-12.0 g m(-2) d(-1) at a hydraulic loading rate of 0.5 m d(-1).

  19. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis.

    PubMed

    Yeung, Yee-Guide; Stanley, E Richard

    2010-02-01

    Detergents are required for the extraction of hydrophobic proteins and for the maintenance of their solubility in solution. However, the presence of detergents in the peptide samples severely suppresses ionization in mass spectrometry (MS) analysis and decreases chromatographic resolution in LC-MS. Thus, detergents must be removed for sensitive detection of peptides by MS. This unit describes a rapid protocol in which ethyl acetate extraction is used to remove octylglucoside from protease digests without loss of peptides. This procedure can also be used to reduce interference by sodium dodecyl sulfate, Nonidet P-40, or Triton X-100 in peptide samples for MS analysis.

  20. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    PubMed

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge.

  1. Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.

    PubMed

    Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C

    2016-04-01

    As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7

  2. Predator removal enhances waterbird restoration in Chesapeake Bay (Maryland)

    USGS Publications Warehouse

    Erwin, R. Michael; McGowan, Peter C.; Reese, Jan

    2011-01-01

    This report represents an update to an earlier report(Erwin et al. 2007a) on wildlife restoration on the largest dredge material island project in the United States underway in Talbot County, Maryland (Figure 1) in the mid–Chesapeake Bay region, referred to as the Paul Sarbanes Ecosystem Restoration Project at Poplar Island (www.nab.usace.army.mil/projects/Maryland/PoplarIsland/documents.html). An important component of this largescale restoration effort focused on water birds, as many of these species have undergone significant declines in the Chesapeake region over the past 30 years (Erwin et al. 2007b). The priority waterbird species include common terns (Sterna hirundo), least terns (S. antillarum), snowy egrets (Egretta thula), and ospreys (Pandion haliaetus). Although significant numbers of common terns (more than 800 pairs in 2003), least terns (62 pairs in 2003), snowy egrets (50 or more pairs by 2005), and ospreys (7 to 10 pairs) have nested on Poplar Island since early 2000, tern productivity especially had been strongly limited by a combination of red fox (Vulpes vulpes) and great horned owl (Bubo virginianus) predation. Fox trapping began in 2004, and four were removed that year; no more evidence of fox presence was found in 2005 or subsequently. The owls proved to be more problematic.

  3. [Effect of thermal enhanced soil vapor extraction on benzene removal in different soil textures].

    PubMed

    Li, Peng; Liao, Xiao-Yong; Yan, Xiu-Lan; Cui, Xiao-Yong; Ma, Dong

    2014-10-01

    Experiments were carried out to investigate the effect of thermal enhanced soil vapor extraction (SVE) on benzene removal from sand, loam and clay and the mechanism. Compared to the routine control treatment, the benzene removal rates were improved by 13. 1% and 12. 3% and the remediation periods were reduced by 75% and 14%, from sand and loam respectively using thermal enhanced SVE. Thermal enhancement decreased the moisture content and increased the soil permeability of clay. On the surface of clay particles, absorption peaks of carboxyl and ethyl disappeared and the content of soil organic substances decreased significantly. Compared to the conventional SVE, the benzene removal rate was improved by 34% in clay soil treated by thermal enhanced SVE. For sand and loam, thermal enhancement could increase the removal rate by promoting the diffusion of benzene in the soil and achieve substantial removal of pollutants in a relatively short period of time. For clay, it could enhance the effect of SVE by reducing the absorption capacity between soil particle surface and contaminant and improving the performance of the gas diffusion in soil by decreasing the moisture content and increasing the soil permeability.

  4. Numerical study on passive convective mass transfer enhancement

    NASA Astrophysics Data System (ADS)

    Aravind, G. P.; Muhammed Rafi, K. M.; Deepu, M.

    2017-04-01

    Passive mixing mechanisms are widely used for heat and mass transfer enhancement. Vortices generated in flowfield lead to gradients that favour convective mass transfer. Computations on enhancement of convective mass transfer of sublimating solid fuel by baroclinic torque generated vortices in the wake of a swept ramp placed in high speed flow is presented here. Advection Upstream Splitting Method (AUSM) based computational scheme employed in the present study, to solve compressible turbulent flow field involving species transport, could capture the complex flow features resulted by vortex boundary layer and shock boundary layer interactions. Convective mass transfer is found to get improved in regions near boundary layer by horseshoe vortex and further transported to other regions by counter rotating vortex pair. Vortices resulted by flow expansion near aft wall of wedge and recompression wave-boundary layer interactions also promotes convective mass transport. Extensive computations have been carried out to reveal the role of vortices dominance at various lateral sweep angles in promotion of convective mass transfer in turbulent boundary layer.

  5. Enhanced protein folding by removal of kinetic traps

    NASA Astrophysics Data System (ADS)

    Liu, Yanxin; Chapagain, Prem; Parra, Jose; Gerstman, Bernard

    2007-03-01

    The presence of non-native kinetic traps along the free energy landscape of a protein may significantly lengthen the overall folding time so that the folding process becomes unreliable. We used a computational 3-D lattice model to investigate the free energy landscape of a model alpha helical hairpin peptide. We used two slightly different sequences and show that strategic substitutions of only a few amino acid residues greatly enhance the folding process. These strategic substitutions prevent the formation of long-lived misfolded configurations which not only lengthen the folding time but also may cause unwanted aggregation. Detailed kinetic and thermodynamic analysis was carried out for the folding of these two sequences and the results are consistent with the experimental and molecular dynamics simulations of small helical bundle proteins.

  6. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage.

    PubMed

    Guan, Xiao-Hong; Chen, Guang-Hao; Shang, Chii

    2005-09-01

    This paper attempted to study the feasibility of reusing water treatment works sludge ("alum sludge") to improve particulate pollutant removal from sewage. The main issues focused upon were: (1) the appropriate dosage of the alum sludge, (2) the appropriate operating conditions, and (3) the possible mechanisms for enhancement by adding alum sludge. Actual alum sludge and sewage were applied to a series of jar tests conducted under various conditions. It has been found that both the SS and COD removal efficiencies could be improved by the addition of the alum sludge, which was mainly attributed to the removal of relatively fine particles with a size of 48-200 microm. The appropriate dosage of the alum sludge was determined to be 18-20 mg of Al/L. Increasing the mixing speed or reducing the floc size of the alum sludge enhanced the SS and COD removal and the dispersed alum sludge could remove particulate contaminants with smaller size than the raw sewage. ToF-SIMS evidence revealed that the aluminum species at the surface of the alum sludge were effectively utilized for improving the SS and COD removal. It was postulated that the sweep flocculation and/or the physical adsorption might play key roles in the enhancement of particulate pollutant removal from sewage.

  7. [Algae removal of high algae raw water by coagulation enhanced by ozonation].

    PubMed

    Liu, Hai-Long; Yang, Dong; Zhao, Zhi-Yong; Li, Zheng-Jian; Cheng, Fang-Qin

    2009-07-15

    Apparent molecular weight distribution (AMWD) and resin fractionation were used to characterize organic matters of the raw water. Removal of algae, change and removal of dissolved organic carbon (DOC), disinfection by products (DBPs) control during the preozonation enhanced coagulation treatments in the jar-scale and pilot-scale experiment were studied. Algae activity (AA) was measured and used to elucidate the mechanisms of algae removal by above treatments. Results show that algae removal can be improved distinctively by proper preozonation, as the ozone dose 1.0 mg x L(-1), for instance. Algae removal could be increased from 55%-85% by traditional coagulation to 95% by enhanced coagulation after preozonation; and the best removal achieved 99.3% with ozone 1.0 mg x L(-1) and PACl 3.0 mg x L(-1); the residual THMFP (Trihalomethanes formation potential) was lowered from 117 microg x L(-1) by traditional coagulation to 46 microg x L(-1). But higher dose of ozone (as > or = 2.0 mg x L(-1)) impairs organic matter removal, although it decreases algae activity further. Significant differences were found in algae removal by AA detection between ozonation and traditional coagulation. Traditional coagulation had little effect on AA no matter the different PAC1 doses; while AA decreased clearly after ozonation. AA was lowered below 12 under 0.5-2.0 mg x L(-1) ozonation; and it kept decreasing with increase of ozone dosage. During the following coagulation, coagulant or some of its hydrolysised components enhanced the AA decrease by ozonation. Compared to the method of normal microscopy counting, AA test expresses the influence of algae living state by water treatment processes more clearly; which would provide treatment process designer with more distinct information about algae removal mechanisms and how to arrange the treatment processes to improve algae removal.

  8. Enhancing Salt-and-Pepper Noise Removal in Binary Images of Engineering Drawing

    NASA Astrophysics Data System (ADS)

    Al-Khaffaf, Hasan S. M.; Talib, Abdullah Z.; Salam, Rosalina Abdul

    Noise removal in engineering drawing is an important operation performed before other image analysis tasks. Many algorithms have been developed to remove salt-and-pepper noise from document images. Cleaning algorithms should remove noise while keeping the real part of the image unchanged. Some algorithms have disadvantages in cleaning operation that leads to removing of weak features such as short thin lines. Others leave the image with hairy noise attached to image objects. In this article a noise removal procedure called TrackAndMayDel (TAMD) is developed to enhance the noise removal of salt-and-pepper noise in binary images of engineering drawings. The procedure could be integrated with third party algorithms' logic to enhance their ability to remove noise by investigating the structure of pixels that are part of weak features. It can be integrated with other algorithms as a post-processing step to remove noise remaining in the image such as hairy noise attached with graphical elements. An algorithm is proposed by incorporating TAMD in a third party algorithm. Real scanned images from GREC'03 contest are used in the experiment. The images are corrupted by salt-and-pepper noise at 10%, 15%, and 20% levels. An objective performance measure that correlates with human vision as well as MSE and PSNR are used in this experiment. Performance evaluation of the introduced algorithm shows better-quality images compared to other algorithms.

  9. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate.

    PubMed

    Butchart, N; Scaife, A A

    2001-04-12

    Chlorofluorocarbons (CFCs), along with bromine compounds, have been unequivocally identified as being responsible for most of the anthropogenic destruction of stratospheric ozone. With curbs on emissions of these substances, the recovery of the ozone layer will depend on their removal from the atmosphere. As CFCs have no significant tropospheric removal process, but are rapidly photolysed above the lower stratosphere, the timescale for their removal is set mainly by the rate at which air is transported from the troposphere into the stratosphere. Using a global climate model we predict that, in response to the projected changes in greenhouse-gas concentrations during the first half of the twenty-first century, this rate of mass exchange will increase by 3% per decade. This increase is due to more vigorous extra-tropical planetary waves emanating from the troposphere. We estimate that this increase in mass exchange will accelerate the removal of CFCs to an extent that recovery to levels currently predicted for 2050 and 2080 will occur 5 and 10 years earlier, respectively.

  10. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enhancement of carbon and nitrogen removal by helophytes along subsurface water flowpaths receiving treated wastewater.

    PubMed

    Ribot, Miquel; Bernal, Susana; Nikolakopoulou, Myrto; Vaessen, Timothy N; Cochero, Joaquín; Gacia, Esperança; Sorolla, Albert; Argerich, Alba; Sabater, Francesc; Isnard, Manel; Martí, Eugènia

    2017-12-01

    Wastewater treatment plant (WWTP) effluents are sources of dissolved organic carbon (DOC) and inorganic nitrogen (DIN) to receiving streams, which can eventually become saturated by excess of DIN. Aquatic plants (i.e., helophytes) can modify subsurface water flowpaths as well as assimilate nutrients and enhance microbial activity in the rhizosphere, yet their ability to increase DIN transformation and removal in WWTP-influenced streams is poorly understood. We examined the influence of helophytes on DIN removal along subsurface water flowpaths and how this was associated with DOC removal and labile C availability. To do so, we used a set of 12 flow-through flumes fed with water from a WWTP effluent. The flumes contained solely sediments or sediments with helophytes. Presence of helophytes in the flumes enhanced both DIN and DOC removal. Experimental addition of a labile C source into the flumes resulted in a high removal of the added C within the first meter of the flumes. Yet, no concomitant increases in DIN removal were observed. Moreover, results from laboratory assays showed significant increases in the potential denitrifying enzyme activity of sediment biofilms from the flumes when labile C was added; suggesting denitrification was limited by C quality. Together these results suggest that lack of DIN removal response to the labile C addition in flumes was likely because potential increases in denitrification by biofilms from sediments were counterbalanced by high rates of mineralization of dissolved organic matter. Our results highlight that helophytes can enhance DIN removal in streams receiving inputs from WWTP effluents; and thus, they can become a relevant bioremediation tool in WWTP-influenced streams. However, results also suggest that the quality of DOC from the WWTP effluent can influence the N removal capacity of these systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    PubMed

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO2) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca(2+) decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO2. Humic acid could largely low Tl removal efficiency during nMnO2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO2 and then removed accompanying with nMnO2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl.

  13. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes.

    PubMed

    Zuthi, M F R; Guo, W S; Ngo, H H; Nghiem, L D; Hai, F I

    2013-07-01

    A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal in ASPs and MBRs while discussing the inhibitory process requirements for other nutrients' removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. An automatic ocular artifacts removal method based on wavelet-enhanced canonical correlation analysis.

    PubMed

    Zhao, Chunyu; Qiu, Tianshuang

    2011-01-01

    In this paper, a new method for automatic ocular artifacts (OA) removal in EEG recordings is proposed based on wavelet-enhanced canonical correlation analysis (wCCA). Compared to three popular ocular artifacts removal methods, wCCA owns two advantages. First, there is no need to identify the artifact components by subjective visual inspection, because the first canonical components found by CCA for each dataset, also the most common component between the left and right hemisphere, are definitely related to artifacts. Second, quantitative evaluation of the corrected EEG signals demonstrates that wCCA removed the most ocular artifacts with minimal cerebral information loss.

  15. Removal of easily biodegradable organic compounds by drinking water biofilms: analysis of kinetics and mass transfer.

    PubMed

    Gagnon, G A; Huck, P M

    2001-07-01

    This paper evaluates the rate of utilization of easily biodegradable organic compounds by drinking water biofilms. Tap water, which had been filtered through biologically active granular activated carbon, was used as an innoculum for biofilm growth in annular reactors (ARs). Synthetic cocktails of easily biodegradable material in the concentration range of 50-2,000 mgC/m3 were used as substrate for biofilm growth. Influent and effluent aggregate concentrations of biodegradable organic matter (BOM) were calculated by adding the measurable BOM components on a mass carbon basis. The aggregate BOM values were used for calculating the observed Damköhler number and Theile modulus (based on a reaction rate per unit surface area), which were used to determine whether external or internal mass transfer limited BOM removal. For all of the experimental trials, it was shown that neither external nor internal mass transfer limited BOM removal. Because the biofilms in this research are thin and the fact that mass transfer is not limiting, it was assumed that the bulk BOM concentration was approximately equal to the average BOM concentration in the biofilm. A linear model was obtained for the aggregate BOM flux and the product of the effluent BOM concentration and the biofilm density. The slope or the areal biodegradation rate (ka) for the aggregate BOM was 0.033 m/h, as determined through a linear regression.

  16. Removal of caffeine from green tea by microwave-enhanced vacuum ice water extraction.

    PubMed

    Lou, Zaixiang; Er, Chaojuan; Li, Jing; Wang, Hongxin; Zhu, Song; Sun, Juntao

    2012-02-24

    In order to selectively remove caffeine from green tea, a microwave-enhanced vacuum ice water extraction (MVIE) method was proposed. The effects of MVIE variables including extraction time, microwave power, and solvent to solid radio on the removal yield of caffeine and the loss of total phenolics (TP) from green tea were investigated. The optimized conditions were as follows: solvent (mL) to solid (g) ratio was 10:1, microwave extraction time was 6 min, microwave power was 350 W and 2.5 h of vacuum ice water extraction. The removal yield of caffeine by MVIE was 87.6%, which was significantly higher than that by hot water extraction, indicating a significant improvement of removal efficiency. Moreover, the loss of TP of green tea in the proposed method was much lower than that in the hot water extraction. After decaffeination by MVIE, the removal yield of TP tea was 36.2%, and the content of TP in green tea was still higher than 170 mg g(-1). Therefore, the proposed microwave-enhanced vacuum ice water extraction was selective, more efficient for the removal of caffeine. The main phenolic compounds of green tea were also determined, and the results indicated that the contents of several catechins were almost not changed in MVIE. This study suggests that MVIE is a new and good alternative for the removal of caffeine from green tea, with a great potential for industrial application. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands.

    PubMed

    Liu, Chuan-Kun; Li, Chi-Wang; Lin, Ching-Yu

    2004-11-01

    The effects of the type and concentration of ligands on the removal of Cu by micellar-enhanced ultrafiltration (MEUF) with the help of either anionic or cationic surfactants were investigated. The removal efficiency of copper by anionic surfactant-(SDS-) MEUF depends on the ligand-to-Cu ratio and the ligand-to-Cu complexation constant. At fixed ligand-to-Cu ratio, the Cu removal efficiency decreases in the order of citric acid>NTA>EDTA, which is the reverse order of Cu-ligand complexation constants for these ligands. Increasing SDS-ligand ratios from 12 to 60 at fixed ligand concentration did not improve copper removal efficiency. The cationic surfactant, CPC, enhances Cu removal efficiency in systems with condition of ligand-copper ratios higher than 1.0, where Cu removal is not very efficient using SDS-MEUF process. The Cu removal efficiency with CPC-MEUF depends on both the ligand-to-Cu ratio and the type of ligands.

  18. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  20. Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron.

    PubMed

    Jiang, Xiao; Qiao, Junlian; Lo, Irene M C; Wang, Lei; Guan, Xiaohong; Lu, Zhanpeng; Zhou, Gongming; Xu, Chunhua

    2015-01-01

    A weak magnetic field (WMF) was proposed to enhance paramagnetic Cu(2+) ions removal by zero valent iron (ZVI). The rate constants of Cu(2+) removal by ZVI with WMF at pH 3.0-6.0 were -10.8 to -383.7 fold greater than those without WMF. XRD and XPS analyses revealed that applying a WMF enhanced both the Cu(2+) adsorption to the ZVI surface and the transformation of Cu(2+) to Cu(0) by ZVI. The enhanced Cu(2+) sequestration by ZVI with WMF was accompanied with expedited ZVI corrosion and solution ORP drop. The uneven distribution of paramagnetic Cu(2+) along an iron wire in an inhomogeneous MF verified that the magnetic field gradient force would accelerate the paramagnetic Cu(2+) transportation toward the ZVI surface due to the WMF-induced sharp decay of magnetic flux intensity from ZVI surface to bulk Cu(2+) solution. The paramagnetic Fe(2+) ions generated by ZVI corrosion would also accumulate at the position with the highest magnetic flux intensity on the ZVI surface, causing uneven distribution of Fe(2+), and facilitate the local galvanic corrosion of ZVI, and thus, Cu(2+) reduction by ZVI. The electrochemical analysis verified that the accelerated ZVI corrosion in the presence of WMF partly arose from the Lorentz force-enhanced mass transfer.

  1. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  2. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  3. Mass removal by oxidation and sublimation of porous graphite during fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Phillips, Grady T.; Bauer, William A.; Fox, Charles D.; Gonzales, Ashley E.; Herr, Nicholas C.; Gosse, Ryan C.; Perram, Glen P.

    2017-01-01

    The various effects of laser heating of carbon materials are key to assessing laser weapon effectiveness. Porous graphite plates, cylinders, and cones with densities of 1.55 to 1.82 g/cm3 were irradiated by a 10-kW fiber laser at 0.075 to 3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 to 838 mm3, and penetration times for 12.7-mm-thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be redeposited on the graphite surface. Dramatic graphite crystalline structures are also produced at higher laser irradiances. Significantly increased porosity of the sample is observed even outside the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. At ˜3.5 kW/cm2, the fractions of the mass removed from the cylindrical samples in the crater, surrounding trench, and outer region of decreased porosity are 38%, 47%, and 15%, respectively. Graphite is particularly resistant to damage by high power lasers. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  4. On the mass enhancement of black body background fluctuations

    NASA Astrophysics Data System (ADS)

    Van Hoa, Nguyen; Van Xuan, Le; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Motivated by the mass enhancement in the toy model of moving particle in Boltzmann and Gaussian background fluctuations, the contribution of black body background fluctuation to the eflective mass of massless and massive particles is considered in this work. As the black body radiation depends only on its temperature, the dependence of the eflective mass on the temperature is obtained. The results, therefore, provide several physical insights for the research of complex systems where the interaction and equilibrium of a system and its surroundings are still not clear. By interpreting a characteristic parameter of the environmental contribution as its “eflective temperature”, “the thermal equilibrium” condition for complex systems would be discussed in the context of a thermodynamic theory.

  5. Selenium removal and mass balance in a constructed flow-through wetland system.

    PubMed

    Gao, S; Tanji, K K; Lin, Z Q; Terry, N; Peters, D W

    2003-01-01

    A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. Löve & D. Löve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the

  6. Enhanced bone mass and physical fitness in prepubescent footballers.

    PubMed

    Vicente-Rodriguez, G; Jimenez-Ramirez, J; Ara, I; Serrano-Sanchez, J A; Dorado, C; Calbet, J A L

    2003-11-01

    Not much is known about the osteogenic effects of sport activities before puberty. We tested the hypothesis that football (soccer) participation is associated with enhanced bone mineral content (BMC) and areal density (BMD) in prepubertal boys. One hundred four healthy white boys (9.3 +/- 0.2 years, Tanner stages I-II) participated in this study: 53 footballers and 51 controls. The footballers devoted at least 3 h per week to participation in football, while the controls did not perform in any kind of regular physical activity other than that programmed during the compulsory physical education courses. Bone variables were measured by dual-energy X-ray absorptiometry. The maximal leg extension isometric force in the squat position with knees bent at 90 degrees and the peak force, mean power, and height jumped during vertical jumps were assed with a force plate. Additionally, 30-m running speed, 300-m run (anaerobic capacity), and 20-m shuttle-run tests (maximal aerobic power) were also performed. Compared to the controls, the footballers attained better results in the physical fitness test and had lower body mass (-10%, P < 0.05) due to a reduced percentage of body fat (4% less, P < 0.05). The footballers exhibit enhanced trochanteric BMC (+17%, P < 0.001). Likewise, femoral and lumbar spine BMD were also greater in the football players (P mass and the whole body lean mass. Interestingly, among all physical fitness variables, the maximal isometric force showed the highest correlation with total and regional BMC and BMD. Multiple regression analysis indicated that the 30-m running speed test, combined with the height and body mass, has predictive value for whole-body BMC (r = 0.92, P < 0.001) and BMD (r = 0.69, P < 0.001) in prepubescent boys. In summary, football participation is associated with improved physical fitness, reduced fat mass, increased lean

  7. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D.

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5 h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2 h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  8. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.

    PubMed

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  9. Enhancement of plaque removal by baking soda toothpastes from less accessible areas in the dentition.

    PubMed

    Thong, S; Hooper, W; Xu, Y; Ghassemi, A; Winston, A

    2011-01-01

    To determine if baking soda toothpastes are relatively more effective than non-baking soda toothpastes in promoting plaque removal from less accessible sites in the dentition. Several single-brushing comparisons of baking soda and non-baking soda toothpastes for their overall ability to remove plaque have been published. In this study, individual comparisons of these published data, comparing the plaque removal performance of baking soda and non-baking soda toothpastes at various sites in the dentition, were examined to see if there were any site-dependant performance trends. The site-specific single-brushing data were then combined and analyzed in two ways. Meta-analyses of the clinical studies were performed to compare baking soda's relative plaque removal advantage at various sites in the mouth using paired t-testing at p <0.05. Also, plaque index reductions at various sites due to brushing with baking soda toothpastes were graphically compared with plaque index reductions due to brushing with non-baking soda dentifrices. The percent relative plaque removal advantage for baking soda toothpastes at various sites were plotted against the reduction in plaque index due to brushing with non-baking soda toothpastes. Individual comparisons showed that brushing with the toothpastes containing baking soda generally removed significantly more plaque from each site than brushing with toothpastes without baking soda. The relative efficacy advantage for baking soda toothpastes was consistently higher at sites where the non-baking soda toothpastes removed less plaque. Meta-analytical comparisons confirmed baking soda toothpastes to be relatively more effective in enhancing plaque removal from sites where less plaque was removed compared to brushing with non-baking soda toothpastes (p < 0.05). Graphically, the baking soda toothpastes' relative plaque removal advantage could be seen to increase hyperbolically with decreasing plaque removal by the non-baking soda toothpastes

  10. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    PubMed

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity.

  11. Removal of nonthyroidal neck masses with improved cosmetic outcomes in skin-lifting surgery.

    PubMed

    Roh, Jong-Lyel; Yoon, Yeo-Hoon; Park, Chan Il

    2006-09-01

    To evaluate the cosmetic benefit of neck skin-lifting surgery for the removal of nonthyroidal neck masses. Fifty patients with neck masses were divided into the following 2 surgical groups that were matched in age, sex, and the size, location, and pathology of lesions: skin lifting (n = 25) and conventional (n = 25). The operation time, hospital stay, complications, and subjective satisfaction with the incision scar as assessed on a visual analogue scale (VAS) were compared between the 2 groups. All but 2 lesions (lymphomas) were benign and were removed completely, drained, or biopsied. The surgery time, hospital stay, and complication rates did not differ significantly between the groups. The mean satisfaction score of the patients was 8.2 +/- 1.1 in the skin-lifting surgery group and 4.8 +/- 2.5 in the controls (P < 0.001). The incision scars were commonly hidden by natural hair or collars in the patients who received skin-lifting surgery. This surgical technique can be safely applied to most benign masses in the entire neck excluding the thyroid region, especially in patients who prefer neck scars to be invisible. B-2b.

  12. Enhanced coagulation for turbidity and Total Organic Carbon (TOC) removal from river Kansawati water.

    PubMed

    Narayan, Sumit; Goel, Sudha

    2011-01-01

    The objective of this study was to determine optimum coagulant doses for turbidity and Total Organic Carbon (TOC) removal and evaluate the extent to which TOC can be removed by enhanced coagulation. Jar tests were conducted in the laboratory to determine optimum doses of alum for the removal of turbidity and Natural Organic Matter (NOM) from river water. Various other water quality parameters were measured before and after thejar tests and included: UV Absorbance (UVA) at 254 nm, microbial concentrations, TDS, conductivity, hardness, alkalinity, and pH. The optimum alum dose for removal of turbidity and TOC was 20 mg/L for the sample collected in November 2009 and 100 mg/L for the sample collected in March 2010. In both cases, the dose for enhanced coagulation was significantly higher than that for conventional coagulation. The gain in TOC removal was insignificant compared to the increase in coagulant dose required. This is usual for low TOC (< 2 mg/L)--high alkalinity water. Other water samples with higher TOC need to be tested to demonstrate the effectiveness of enhanced coagulation.

  13. Enhancing nitrogen and phosphorus removal in the BUCT-IFAS process by bypass flow strategy.

    PubMed

    Bai, Yang; Quan, Xie; Zhang, Yaobin; Chen, Shuo

    2015-01-01

    A University of Cape Town process coupled with integrated fixed biofilm and activated sludge system was modified by bypass flow strategy (BUCT-IFAS) to enhance nitrogen and phosphorus removal from the wastewater containing insufficient carbon source. This process was operated under different bypass flow ratios (λ were 0, 0.4, 0.5, 0.6 and 0.7, respectively) to investigate the effect of different operational modes on the nitrogen (N) and phosphorus (P) removal efficiency (λ=0 was noted as common mode, other λ were noted as bypass flow mode), and optimizing the N and P removal efficiency by altering the λ. Results showed that the best total nitrogen (TN) and total phosphorus (TP) removal performances were achieved at λ of 0.6, the effluent TN and TP averaged 14.0 and 0.4 mg/L meeting discharge standard (TN<15 mg/L, TP<0.5 mg/L). Correspondingly, the TN and TP removal efficiencies were 70% and 94%, respectively, which were 24 and 41% higher than those at λ of 0. In addition, the denitrification and anoxic P-uptake rates were increased by 23% and 23%, respectively, compared with those at λ of 0. These results demonstrated that the BUCT-IFAS process was an attractive method for enhancing nitrogen and phosphorus removal from wastewater containing insufficient carbon source.

  14. Monolithic supports with unique geometries and enhanced mass transfer.

    SciTech Connect

    Stuecker, John Nicholas; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-01-01

    The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

  15. Elevated pCO2 enhances bacterioplankton removal of organic carbon

    PubMed Central

    James, Anna K.; Passow, Uta; Brzezinski, Mark A.; Parsons, Rachel J.; Trapani, Jennifer N.; Carlson, Craig A.

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean. PMID:28257422

  16. ENHANCED ENZYMATIC REMOVAL OF CHLOROPHENOLS IN THE PRESENCE OF CO-SUBSTRATES. (R823847)

    EPA Science Inventory

    The effect of reactive co-substrates such as guaiacol and 2,6-dimethoxyphenol on the removal of chlorinated phenols by horseradish peroxidase (HRP) and a
    laccase from the fungus Trametes versicolor was investigated. Addition of 50 mM guaiacol enhanced the precipitation of 4-ch...

  17. SERDP AND NRMRL SPONSOR FIELD TEST OF COSOLVENT-ENHANCED DNAPL REMOVAL

    EPA Science Inventory

    A field test of multicomponent cosolvent flooding for in-situ remediation of DNAPL source zones was conducted at the Dover National Test Site (DNTS) at Dover Air Force Base, Delaware, in July, 2001. The test was part of an Enhanced Source Removal (ESR) demonstration project fund...

  18. Elevated pCO2 enhances bacterioplankton removal of organic carbon.

    PubMed

    James, Anna K; Passow, Uta; Brzezinski, Mark A; Parsons, Rachel J; Trapani, Jennifer N; Carlson, Craig A

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000-1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 -~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean.

  19. ENHANCED ENZYMATIC REMOVAL OF CHLOROPHENOLS IN THE PRESENCE OF CO-SUBSTRATES. (R823847)

    EPA Science Inventory

    The effect of reactive co-substrates such as guaiacol and 2,6-dimethoxyphenol on the removal of chlorinated phenols by horseradish peroxidase (HRP) and a
    laccase from the fungus Trametes versicolor was investigated. Addition of 50 mM guaiacol enhanced the precipitation of 4-ch...

  20. SERDP AND NRMRL SPONSOR FIELD TEST OF COSOLVENT-ENHANCED DNAPL REMOVAL

    EPA Science Inventory

    A field test of multicomponent cosolvent flooding for in-situ remediation of DNAPL source zones was conducted at the Dover National Test Site (DNTS) at Dover Air Force Base, Delaware, in July, 2001. The test was part of an Enhanced Source Removal (ESR) demonstration project fund...

  1. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing.

    PubMed

    Zhang, Weihua; Tsang, Daniel C W; Lo, Irene M C

    2007-02-01

    Heavy metal- and organic-contaminated sites are ubiquitous, but few studies have been conducted to address such an issue. EDTA- and SDS-enhanced washing was studied for remediation of Pb- and/or marine diesel fuel (MDF)-contaminated soils. The feasibility of recovery and reuse of EDTA and SDS, as well as the physicochemical interactions among the chemical agents, contaminants and soils were extensively investigated using batch experiments. The optimal washing sequence was then determined. The experimental results showed that EDTA could be recovered and reused for four cycles without significant loss of its chelating capacity, while the extraction capability of SDS was noticeably reduced after each reuse cycle. The free phase of marine diesel fuel (MDF) in soils physically isolated the sorbed Pb on soils and thus reducing its extraction by EDTA. The presence of SDS alone or together with low concentration of EDTA was found to enhance Pb removal probably via electrostatic interaction and dissolution of soil organic matter. However, it hindered Pb extraction by high concentration of EDTA, because of the potential formation of complexes between some strongly-bound Pb and SDS, that are more resistant to desorption. Therefore, EDTA washing followed by SDS achieved the highest Pb removal efficiency. On the other hand, MDF removal by SDS was significantly hindered by coexisting Pb in soils, probably because the formation of Pb-dodecyl sulfate (DS) complex would decrease the effective amount of SDS available for forming micelles in solution and enhance MDF sorption. EDTA alone or together with SDS could enhance MDF removal, but the residual MDF after EDTA-washing became more resistant to SDS removal. Consequently, SDS washing followed by EDTA is considered as the optimal washing sequence for MDF removal.

  2. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea

    2017-01-01

    Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    SciTech Connect

    Das, Kallol Johnson, Harley T.; Freund, Jonathan B.

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  4. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron.

    PubMed

    Liang, Liping; Sun, Wu; Guan, Xiaohong; Huang, Yuying; Choi, Wonyong; Bao, Hongliang; Li, Lina; Jiang, Zheng

    2014-02-01

    The effect of weak magnetic field (WMF) on Se(IV) removal by zero valent iron (ZVI) was investigated as functions of pH and initial Se(IV) concentrations. The presence of WMF significantly accelerated Se(IV) removal and extended the working pH range of ZVI from 4.0-6.0 to 4.0-7.2. The WMF induced greater enhancement in Se(IV) removal by ZVI at lower initial Se(IV) concentrations. The influence of WMF on Se(IV) removal by ZVI was associated with a more dramatic drop in ORP and a more rapid release of Fe(2+) compared to the case without WMF. SEM and XRD analysis revealed that WMF accelerated the corrosion of ZVI and the transformation of amorphous iron (hdyr)oxides to lepidocrocite. XANES analyses showed that WMF expedited the reduction of Se(IV) to Se(0) by ZVI at pH 6.0 when its initial concentration was ≤20.0 mg L(-1). Se(IV) dosed at 40.0 mg L(-1) was removed by ZVI via adsorption followed by reduction to Se(0) at pH 7.0 but via adsorption at 7.2 in the presence of WMF. Regardless of WMF, Se(IV) applied at 40.0 mg L(-1) was removed by reduction at pH 4.0-6.0. The WMF-induced improvement in Se(IV) removal by ZVI may be mainly attributable to the Lorentz force and magnetic field gradient force. Employing WMF to enhance Se(IV) removal by ZVI is a promising and environmental-friendly method since it does not need extra energy and costly reagents.

  5. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-12-01

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology for nitrogen removal from surface waters. In this study, a sediment-type MFC based on two pieces of bioelectrodes was employed as a novel in situ applicable approach for nitrogen removal, as well as electricity production from eutrophic lakes. Maximum power density of 42 and 36 mW/m(2) was produced respectively from nitrate- and nitrite-rich synthetic lake waters at initial concentration of 10 mg-N/L. Along with the electricity production a total nitrogen removal of 62% and 77% was accomplished, for nitrate and nitrite, respectively. The nitrogen removal was almost 4 times higher under close-circuit condition with biocathode, compared to either the open-circuit operation or with abiotic cathode. The mass balance on nitrogen indicates that most of the removed nitrate and nitrite (84.7 ± 0.1% and 81.8 ± 0.1%, respectively) was reduced to nitrogen gas. The nitrogen removal and power generation was limited by the dissolved oxygen (DO) level in the water and acetate level injected to the sediment. Excessive oxygen resulted in dramatically decrease of nitrogen removal efficiency and only 7.8% removal was obtained at DO level of 7.8 mg/l. The power generation and nitrogen removal increased with acetate level and was nearly saturated at 0.84 mg/g-sediment. This bioelectrode-based in situ approach is attractive not only due to the electricity production, but also due to no need of extra reactor construction, which may broaden the application possibilities of sediment MFC technology.

  6. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  7. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 1

    SciTech Connect

    Smith, K.; Lani, B.; Berisko, D.; Schultz, C.; Carlson, W.; Benson, L.B.

    1992-12-01

    Successful pilot plant tests of simultaneous removal of S0{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The tests, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7, a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for S0{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 NW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 95% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology.

  8. MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    SciTech Connect

    Looney, B; Karen Vangelas, K; Karen-M Adams, K; Francis H. Chappelle; Tom O. Early; Claire H. Sink

    2006-06-30

    removal is needed or when to turn off active remediation and transition to MNA. It cannot be used to evaluate potential enhancement options (unless a long period of post enhancement monitoring is planned). It provides only indirect information about process and treats the plume as a ''black box''. The empirical approach has the advantage that, when sufficient monitoring data are available, the attenuation capacity can be defined inexpensively and with a high degree of certainty. Alternatively, a deterministic approach can be used to assess mass balance and plume stability. In this approach, the physical, chemical, and biological attenuation processes are used to assess contaminant loading and attenuation. The deterministic approach has the advantage that, when sufficient hydrologic, geochemical, and microbiological data are available, it is possible to project how a system will respond to contaminant removal actions or enhancements of natural attenuation processes. The ''black box'' of the plume is taken apart, quantified, and put back together again. The disadvantage of the deterministic approach is that it is difficult to measure all or most of the relevant hydrologic, geochemical, and biological parameters with any certainty. Case studies over the past decade demonstrate that empirical and deterministic approaches to MNA/EA are not mutually exclusive. These studies document that improved decision support and efficiency result by combining these methods based on the individual challenges presented by a given site. Whenever possible, the empirical approach is used to quantify mass loading and attenuation capacity (mass of contaminant/unit time) at particular sites. This is the most effective way to demonstrate the efficiency of ongoing natural attenuation processes in accordance with current regulatory guidance. But in addition, the monitoring well networks needed to apply the empirical approach can also yield estimates of the hydrologic, geochemical, and biological

  9. Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration.

    PubMed

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Zhou, Jian; Jiang, Jin; Wang, Yaan

    2017-09-12

    Thallium (Tl) has drawn wide concern due to its high toxicity even at extremely low concentrations, as well as its tendency for significant accumulation in the human body and other organisms. The need to develop effective strategies for trace Tl removal from drinking water is urgent. In this study, the removal of trace Tl (0.5 μg L(-1)) by conventional quartz sand filtration enhanced by nanosized manganese dioxide (nMnO2) has been investigated using typical surface water obtained from northeast China. The results indicate that nMnO2 enhanced quartz sand filtration could remove trace Tl(I) and Tl(III) efficiently through the adsorption of Tl onto nMnO2 added to a water matrix and onto nMnO2 attached on quartz sand surfaces. Tl(III)-HA complexes might be responsible for higher residual Tl(III) in the effluent compared to residual Tl(I). Competitive Ca(2+) cations inhibit Tl removal to a certain extent because the Ca(2+) ions will occupy the Tl adsorption site on nMnO2. Moreover, high concentrations of HA (10 mgTOC L(-1)), which notably complexes with and dissolves nMnO2 (more than 78%), resulted in higher residual Tl(I) and Tl(III). Tl(III)-HA complexes might also enhance Tl(III) penetration to a certain extent. Additionally, a higher pH level could enhance the removal of trace Tl from surface water. Finally, a slight increase of residual Tl was observed after backwash, followed by the reduction of the Tl concentration in the effluent to a "steady" state again. The knowledge obtained here may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2017. Published by Elsevier Ltd.

  10. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed.

  11. Renal Masses With Equivocal Enhancement at CT: Characterization With Contrast-Enhanced Ultrasound.

    PubMed

    Bertolotto, Michele; Cicero, Calogero; Perrone, Rosaria; Degrassi, Ferruccio; Cacciato, Francesca; Cova, Maria A

    2015-05-01

    The purpose of this article is to retrospectively investigate in two radiology centers the role of contrast-enhanced ultrasound in the characterization of renal masses with equivocal enhancement at CT (i.e., with a density increase of 10-20 HU between unenhanced and contrast-enhanced scans) not characterized with conventional ultrasound modes. Forty-seven renal lesions (range, 0.8-7.7 cm; average, 2.6 cm) with equivocal enhancement at CT underwent contrast-enhanced ultrasound using sulfur hexafluoride-filled microbubbles. Examinations were digitally recorded for retrospective blinded evaluation by two radiologists with 20 and 10 years' experience in urologic imaging. Histologic results were available for 30 of 47 (64%) lesions (25 primary malignant tumors, two metastases, and three primary benign lesions). Two lesions increased in size and complexity during the follow-up and were considered malignant. One Bosniak category III and 14 category IIF cysts were stable after a follow-up of at least 3 years and were considered benign. ROC curve analysis was used to assess the capability of contrast-enhanced ultrasound to differentiate benign from malignant lesions. Twelve likely complex cystic lesions at gray-scale ultrasound were cystic also on contrast-enhanced ultrasound and reference procedures. Eleven of 34 lesions that appeared solid at gray-scale ultrasound were cystic on contrast-enhanced ultrasound and reference procedures. One lesion considered likely solid by one radiologist and possibly cystic by the other was a solid tumor at contrast-enhanced ultrasound and histologic analysis. The diagnostic performance of contrast-enhanced ultrasound to characterize the lesions as benign or malignant was high for both readers (AUC, 0.958 and 0.966, respectively). Contrast-enhanced ultrasound is effective for characterizing renal lesions presenting with equivocal enhancement at CT.

  12. Mass-transfer limitations for nitrate removal in a uranium-contaminated aquifer.

    PubMed

    Luo, Jian; Cirpka, Olaf A; Wu, Weimin; Fienen, Michael N; Jardine, Philip M; Mehlhorn, Tonia L; Watson, David B; Criddle, Craig S; Kitanidis, Peter K

    2005-11-01

    A field test on in situ subsurface bioremediation of uranium(VI) is underway at the Y-12 National Security Complex in the Oak Ridge Reservation, Oak Ridge, TN. Nitrate has a high concentration at the site, which prevents U(VI) reduction, and thus must be removed. An acidic-flush strategy for nitrate removal was proposed to create a treatment zone with low levels of accessible nitrate. The subsurface at the site contains highly interconnected fractures surrounded by matrix blocks of low permeability and high porosity and is therefore subject to preferential flow and matrix diffusion. To identify the heterogeneous mass transfer properties, we performed a novel forced-gradient tracer test, which involved the addition of bromide, the displacement of nitrate, and the rebound of nitrate after completion of pumping. The simplest conceptualization consistent with the data is that the pore-space consists of a single mobile domain, as well as a fast and a slowly reacting immobile domain. The slowly reacting immobile domain (shale matrix) constitutes over 80% of the pore volume and acts as a long-term reservoir of nitrate. According to simulations, the nitrate stored in the slowly interacting immobile domain in the fast flow layer, at depths of about 12.2-13.7 m, will be reduced by an order of magnitude over a period of about a year. By contrast, the mobile domain rapidly responds to flushing, and a low average nitrate concentration can be maintained if the nitrate is removed as soon as it enters the mobile domain. A field-scale experiment in which the aquifer was flushed with acidic solution confirmed our understanding of the system. For the ongoing experiments on microbial U(VI) reduction, nitrate concentrations must be low in the mobile domain to ensure U(VI) reducing conditions. We therefore conclude that the nitrate leaching out of the immobile pore space must continuously be removed by in situ denitrification to maintain favorable conditions.

  13. [Mechanism of natural organic matter removal by potassium permanganate composite enhanced coagulation].

    PubMed

    Zhang, Yong-Ji; Zhou, Ling-Ling; Li, Wei-Ying; Li, Xing; Li, De-Qiang; Li, Gui-Bai

    2009-03-15

    Streaming current technique, fluctuation of transmitted light technique, molecular weight distribution and XAD resin adsorption technique were used to study the mechanism of natural organic matter removal by potassium permanganate composite (PPC) enhanced coagulation. Results showed that natural organic matter removal efficiency increased 13% by 0.75 mg/L potassium permanganate composite enhanced coagulation compared with that of alum coagulation alone. Streaming current indicated that potassium permanganate composite decreased the organic matter stability by reducing the surface negative charge, and the SC value increased from 55.2 to 61.4, 69.6 and 87.0 by addition of 0.50, 0.75 and 1.0 mg/L PPC. Coagulation index R indicated both nascent manganese dioxide and subsidiaries played an important role in potassium permanganate composite enhanced coagulation process. Potassium permanganate composite enhanced coagulation increased the removal efficiency of lower molecular weight and hydrophilic organic matter compared with alum coagulation, and hydrophilic organic matter can be reduced from 1.9 mg/L to 1.32 mg/L by the addition of 0.75 mg/L potassium permanganate composite.

  14. Enhancing zero valent iron based natural organic matter removal by mixing with dispersed carbon cathodes.

    PubMed

    Liu, Peng; Keller, Jurg; Gernjak, Wolfgang

    2016-04-15

    Former studies have shown that adding granular activated carbon (GAC) cathodes could enhance the overall performance of the zero valent iron (ZVI) process for organics removal. The present study evaluates for the first time the performance of such an enhanced ZVI process to remove natural organic matter (NOM), an important water quality parameter in drinking water. Lab-scale batch tests were conducted with surface reservoir feed water from a drinking water plant. In the GAC enhanced ZVI process dissolved organic carbon (DOC) and UV254 were reduced by 61±3% and 70±2%, respectively, during 24h treatment corresponding to 1.8min empty bed contact time. The process was superior to ZVI alone, particularly during the earlier stages of the process due to the synergistically increased iron dissolution rate. Besides GAC, graphite and anthracite also prove to be suitable and potentially more cost-effective options as cathode materials for the enhanced ZVI process, whereby electrically conductive graphite clearly outperformed anthracite. The dominant mechanisms in terms of NOM removal from surface water were found to be coagulation following iron dissolution and adsorption in the case of employing GAC. Oxidation was also occurring to a lesser degree, converting some non-biodegradable into biodegradable DOC.

  15. Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics.

    PubMed

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Gernaey, Krist V; Smets, Barth F; Sin, Gürkan

    2012-11-01

    A comprehensive and global sensitivity analysis was conducted under a range of operating conditions. The relative importance of mass transfer resistance versus kinetic parameters was studied and found to depend on the operating regime as follows: Operating under the optimal loading ratio of 1.90(gO(2)/m(3)/d)/(gN/m(3)/d), the system was influenced by mass transfer (10% impact on nitrogen removal) and performance was limited by AOB activity (75% impact on nitrogen removal), while operating above, AnAOB activity was limiting (68% impact on nitrogen removal). The negative effect of oxygen mass transfer had an impact of 15% on nitrogen removal. Summarizing such quantitative analyses led to formulation of an optimal operation window, which serves a valuable tool for diagnosis of performance problems and identification of optimal solutions in nitritation/anammox applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Enhanced biological nutrient removal in sequencing batch reactors operated as static/oxic/anoxic (SOA) process.

    PubMed

    Xu, Dechao; Chen, Hongbo; Li, Xiaoming; Yang, Qi; Zeng, Tianjing; Luo, Kun; Zeng, Guangming

    2013-09-01

    An innovative static/oxic/anoxic (SOA) activated sludge process characterized by static phase as a substitute for conventional anaerobic stage was developed to enhance biological nutrient removal (BNR) with influent ammonia of 20 and 40 mg/L in R1 and R2 reactors, respectively. The results demonstrated that static phase could function as conventional anaerobic stage. In R1 lower influent ammonia concentration facilitated more polyphosphate accumulating organisms (PAOs) growth, but secondary phosphorus release occurred due to NOx(-) depletion during post-anoxic period. In R2, however, denitrifying phosphorus removal proceeded with sufficient NOx(-). Both R1 and R2 saw simultaneous nitrification-denitrification. Glycogen was utilized to drive post-denitrification with denitrification rates in excess of typical endogenous decay rates. The anoxic stirring duration could be shortened from 3 to 1.5h to avoid secondary phosphorus release in R1 and little adverse impact was found on nutrients removal in R2.

  17. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.

    PubMed

    López-Bernabeu, S; Ruiz-Rosas, R; Quijada, C; Montilla, F; Morallón, E

    2016-02-01

    The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Estimation of mass transfer and kinetics in operating biofilters for removal of VOCs

    SciTech Connect

    Barton, J.W.; Davison, B.H.; Gable, C.C.

    1997-11-18

    Long-term, stable operation of trickle-bed bioreactors remains desirable, but is difficult to achieve for industrial processes, which generate continuous streams of dilute gaseous hydrocarbons. Mass transfer and kinetic parameters are difficult to measure, complicating predictive estimates. Two methods are presented which were used to predict the importance of mass transfer versus kinetics limitations in operating trickle-bed biofilters. Both methods altered the overall kinetic activity of the biofilter and estimated the effective mass transfer coefficient (K{sub 1}a) by varying the VOC (volatile organic contaminant) loading rate and concentration. The first method, used with developing biofilters possessing low biomass, involved addition of cultured biomass to the recirculating liquid to effect an overall change in VOC removal capacity. The second method altered the total bed temperature of a well-established biofilter to effect a change. Results and modeling from these experiments are presented for a mixed culture biofilter which is capable of consuming sparingly soluble alkanes, such as pentane and isobutane. Methods to control overgrowth are discussed which were used to operate one reactor continuously for over 24 months with sustained degradation of VOC alkanes with a rate of 50 g/h/m{sup 3}.

  19. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes

    SciTech Connect

    Jozewicz, W. . Environmental Systems Div.); Rochelle, G.T. . Dept. of Chemical Engineering)

    1992-01-29

    Removal of sulfur dioxide (SO{sub 2}) from the flue gas of coal- burning power plants can be achieved by duct spray drying using calcium hydroxide (Ca(OH){sub 2}) slurries. A primary objective of this research was to discover the aspects of mass transfer into Ca(OH){sub 2} slurries which limit SO{sub 2} absorption. A bench- scale stirred tank reactor with a flat gas/liquid interface was used to simulate SO{sub 2} absorption in a slurry droplet. The absorption rate of SO{sub 2} from gas concentrations of 500 to 5000 ppm was measured at 55{degrees}C in clear solutions and slurries of Ca(OH){sub 2} up to 1.0 M (7 wt percent). Results are reported in terms of the enhancement factor, {O}. This research will allow prediction of conditions where the absorption of SO{sub 2} in Ca(OH){sub 2} slurries can be enhanced by changes to liquid phase constituents (under which SO{sub 2} absorption is controlled by liquid film mass transfer). Experiments in the stirred tank have shown that SO{sub 2} absorption in a 1.0 M Ca(OH){sub 2} slurry was completely dominated by gas film mass transfer with a large excess of Ca(OH){sub 2} but becomes controlled by liquid film resistance at greater than 50 percent Ca(OH){sub 2} utilization. (VC)

  20. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 2

    SciTech Connect

    1992-12-01

    Successful pilot plant tests of simultaneous removal of SO{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The test, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot plant facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7 a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for SO{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 MW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 96% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangeably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology. Volume 2 covers: description and results of NO{sub x} removal tests; and description and results of waste characterization studies.

  1. Active removal of ibuprofen by Money plant enhanced by ferrous ions.

    PubMed

    Chehrenegar, Behdad; Hu, Jiangyong; Ong, Say Leong

    2016-02-01

    In this study, the removal of ibuprofen (IBP), a pharmaceutical compound, from aqueous media by Money plant (Epipremnum aureum) was investigated. The effect of ferrous iron (Fe(2+)) on enhancing the IBP removal rate was also analyzed. The first-order removal rate constants showed higher values for lower IBP initial concentrations in the range of 0.20-0.28 d(-1) for an initial concentration of 125 μg L(-1) to 0.03-0.13 d(-1) for an initial concentration of 1000 μg L(-1). Introducing ferrous iron to the aqueous media enhanced the first-order removal rate constant up to 6.5 times in a 3 d time period. Along with the removal of IBP from the media, the endogenous concentration of H2O2 also decreased presumably by the production of hydroxyl radical (·OH). Reduction in the endogenous H2O2 concentration was recorded to be 38% and 98% in the absence and presence of Fe(2+) respectively in the first day and the H2O2 level remained considerably low until day 7 which then gradually increased slightly. Simultaneous reduction of IBP and endogenous H2O2 concentration could be due to the reaction of IBP with ·OH and presumably ·OH production itself accelerated via Fenton reaction. In addition, presence of sodium bicarbonate (NaHCO3) as ·OH scavenger in the system showed reduction of first-order removal rate constant from 1.30 d(-1) to 0.07 d(-1) which could be a possible evidence of biological advanced oxidation process which is believed to play an important role in phytoremediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Zheng, Jie

    2015-09-01

    An environmentally benign and efficient hydrothermal reduction method was applied for the preparation of three-dimensional (3D) porous graphene hydrogel (GH) adsorbents. The physicochemical properties of GH granules were systematically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and Brunauer-Emmett-Teller (BET) method. GH granules showed an excellent adsorption capacity (235.6 mg/g) for ciprofloxacin via combined adsorption interaction mechanisms (e.g. π-π EDA interaction, hydrogen bonding, and hydrophobic interaction). Moreover, reducing the size of the hydrogels can significantly accelerate the adsorption process and enhance the removal efficiency of pollutants from aqueous solution. Water (more than 99 wt%) within hydrogels played a key role in enhancing adsorption performance. The GO hydrogels exhibited an excellent adaptability to environmental factors. These findings demonstrate that GH granules are promising adsorbents for the removal of antibiotic pollutants from aqueous solutions.

  3. Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel.

    PubMed

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Zheng, Jie

    2015-09-04

    An environmentally benign and efficient hydrothermal reduction method was applied for the preparation of three-dimensional (3D) porous graphene hydrogel (GH) adsorbents. The physicochemical properties of GH granules were systematically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and Brunauer-Emmett-Teller (BET) method. GH granules showed an excellent adsorption capacity (235.6 mg/g) for ciprofloxacin via combined adsorption interaction mechanisms (e.g. π-π EDA interaction, hydrogen bonding, and hydrophobic interaction). Moreover, reducing the size of the hydrogels can significantly accelerate the adsorption process and enhance the removal efficiency of pollutants from aqueous solution. Water (more than 99 wt%) within hydrogels played a key role in enhancing adsorption performance. The GO hydrogels exhibited an excellent adaptability to environmental factors. These findings demonstrate that GH granules are promising adsorbents for the removal of antibiotic pollutants from aqueous solutions.

  4. Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel

    PubMed Central

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Zheng, Jie

    2015-01-01

    An environmentally benign and efficient hydrothermal reduction method was applied for the preparation of three-dimensional (3D) porous graphene hydrogel (GH) adsorbents. The physicochemical properties of GH granules were systematically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and Brunauer-Emmett-Teller (BET) method. GH granules showed an excellent adsorption capacity (235.6 mg/g) for ciprofloxacin via combined adsorption interaction mechanisms (e.g. π-π EDA interaction, hydrogen bonding, and hydrophobic interaction). Moreover, reducing the size of the hydrogels can significantly accelerate the adsorption process and enhance the removal efficiency of pollutants from aqueous solution. Water (more than 99 wt%) within hydrogels played a key role in enhancing adsorption performance. The GO hydrogels exhibited an excellent adaptability to environmental factors. These findings demonstrate that GH granules are promising adsorbents for the removal of antibiotic pollutants from aqueous solutions. PMID:26336922

  5. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  6. Detection and prevention of enhanced biological phosphorus removal deterioration caused by Zoogloea overabundance.

    PubMed

    Montoya, T; Borrás, L; Aguado, D; Ferrer, J; Seco, A

    2008-01-01

    A sequencing batch reactor was operated in the conventional anaerobic-aerobic mode for enhanced biological phosphorus removal using acetate as the sole substrate. Despite the nutrients concentrations in the influent being high enough to satisfy the biological requirements, Zoogloea ramigera managed to grow in the system until it had negative effects on the process performance. The excess of exocellular polymeric material produced by this microorganism contributed to a viscous bulking phenomenon and caused important settling problems. The examination of the sludge under the microscope was a valuable tool to diagnose the cause of the imbalance in the process. The strategy adopted to avoid the deterioration of the process (changing key operational factors affecting the Z. ramigera development) allowed the successful recovery the enhanced biological phosphorus removal system. The effectiveness of this approach was confirmed by analyzing several parameters along the operational period (SVI, Y(PO4), TSS, %VSS...) together with microbiological examinations of the sludge.

  7. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  8. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Microcystin safety study during Cyanobacteria removal by pressure enhanced coagulation process].

    PubMed

    Jiang, Xin-Yue; Luan, Qing; Cong, Hai-Bing; Xu, Si-Tao; Liu, Yu-Jiao; Zhu, Xue-Yuan

    2014-11-01

    Pressure enhanced coagulation and sedimentation technique is an effective way for blue algae treatment. It is not clear whether Cyanobacteria balloon rupture will cause Cyanobacteria cells rupture, resulting in high intracellular concentrations of microcystin LR leak into the water, affecting drinking water safety. Therefore, in this study experimental comparative study of pressure and pre-oxidation of water containing Cyanobacteria was carried out to examine the microcystin LR concentration changes and Cyanobacteria removal efficiency. The results showed that microcystin concentration increase was not significant by the pre-treatment with Cyanobacteria water pressure, while the pre-oxidation process caused a significant increase in the concentration of microcystin. After 0.5-0.8 MPa pressure coagulation and sedimentation, removal of Cyanobacteria basically was over 90%, up to 93.5%, while the removal rate by pre-oxidation was low and unstable. Effluent turbidity is also significantly better in the pre-pressure method than the pre-oxidation. The results indicated that pressure enhanced coagulation is a safe and reliable method for Cyanobacteria removal.

  10. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  11. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex.

    PubMed

    Happel, Max F K; Niekisch, Hartmut; Castiblanco Rivera, Laura L; Ohl, Frank W; Deliano, Matthias; Frischknecht, Renato

    2014-02-18

    During brain maturation, the occurrence of the extracellular matrix (ECM) terminates juvenile plasticity by mediating structural stability. Interestingly, enzymatic removal of the ECM restores juvenile forms of plasticity, as for instance demonstrated by topographical reconnectivity in sensory pathways. However, to which degree the mature ECM is a compromise between stability and flexibility in the adult brain impacting synaptic plasticity as a fundamental basis for learning, lifelong memory formation, and higher cognitive functions is largely unknown. In this study, we removed the ECM in the auditory cortex of adult Mongolian gerbils during specific phases of cortex-dependent auditory relearning, which was induced by the contingency reversal of a frequency-modulated tone discrimination, a task requiring high behavioral flexibility. We found that ECM removal promoted a significant increase in relearning performance, without erasing already established-that is, learned-capacities when continuing discrimination training. The cognitive flexibility required for reversal learning of previously acquired behavioral habits, commonly understood to mainly rely on frontostriatal circuits, was enhanced by promoting synaptic plasticity via ECM removal within the sensory cortex. Our findings further suggest experimental modulation of the cortical ECM as a tool to open short-term windows of enhanced activity-dependent reorganization allowing for guided neuroplasticity.

  12. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex

    PubMed Central

    Happel, Max F. K.; Niekisch, Hartmut; Castiblanco Rivera, Laura L.; Ohl, Frank W.; Deliano, Matthias; Frischknecht, Renato

    2014-01-01

    During brain maturation, the occurrence of the extracellular matrix (ECM) terminates juvenile plasticity by mediating structural stability. Interestingly, enzymatic removal of the ECM restores juvenile forms of plasticity, as for instance demonstrated by topographical reconnectivity in sensory pathways. However, to which degree the mature ECM is a compromise between stability and flexibility in the adult brain impacting synaptic plasticity as a fundamental basis for learning, lifelong memory formation, and higher cognitive functions is largely unknown. In this study, we removed the ECM in the auditory cortex of adult Mongolian gerbils during specific phases of cortex-dependent auditory relearning, which was induced by the contingency reversal of a frequency-modulated tone discrimination, a task requiring high behavioral flexibility. We found that ECM removal promoted a significant increase in relearning performance, without erasing already established—that is, learned—capacities when continuing discrimination training. The cognitive flexibility required for reversal learning of previously acquired behavioral habits, commonly understood to mainly rely on frontostriatal circuits, was enhanced by promoting synaptic plasticity via ECM removal within the sensory cortex. Our findings further suggest experimental modulation of the cortical ECM as a tool to open short-term windows of enhanced activity-dependent reorganization allowing for guided neuroplasticity. PMID:24550310

  13. Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process.

    PubMed

    Xie, Hong-Bin; Elm, Jonas; Halonen, Roope; Myllys, Nanna; Kurtén, Theo; Kulmala, Markku; Vehkamäki, Hanna

    2017-08-01

    Monoethanolamine (MEA), a potential atmospheric pollutant from the capture unit of a leading CO2 capture technology, could be removed by participating H2SO4-based new particle formation (NPF) as simple amines. Here we evaluated the enhancing potential of MEA on H2SO4-based NPF by examining the formation of molecular clusters of MEA and H2SO4 using combined quantum chemistry calculations and kinetics modeling. The results indicate that MEA at the parts per trillion (ppt) level can enhance H2SO4-based NPF. The enhancing potential of MEA is less than that of dimethylamine (DMA), one of the strongest enhancing agents, and much greater than methylamine (MA), in contrast to the order suggested solely by their basicity (MEA < MA < DMA). The unexpectedly high enhancing potential is attributed to the role of -OH of MEA in increasing cluster binding free energies by acting as both a hydrogen bond donor and acceptor. After the initial formation of one H2SO4 and one MEA cluster, the cluster growth mainly proceeds by first adding one H2SO4, and then one MEA, which differs from growth pathways in H2SO4-DMA and H2SO4-MA systems. Importantly, the effective removal rate of MEA due to participation in NPF is comparable to that of oxidation by hydroxyl radicals at 278.15 K, indicating NPF as an important sink for MEA.

  14. Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments.

    PubMed

    Saeed, Tanveer; Sun, Guangzhi

    2011-01-01

    This study investigated three lab-scale hybrid wetland systems with traditional (gravel) and alternative substrates (wood mulch and zeolite) for removing organic, inorganic pollutants and coliforms from a synthetic wastewater, in order to investigate the efficiency of alternative substrates, and monitor the stability of system performance. The hybrid systems were operated under controlled variations of hydraulic load (q, 0.3-0.9 m3/m2 d), influent ammoniacal nitrogen (NH4-N, 22.0-80.0 mg/L), total nitrogen (TN, 24.0-84.0 mg/L) and biodegradable organics concentration (BOD5, 14.5-102.0 mg/L). Overall, mulch and zeolite showed promising prospect as wetland substrates, as both media enhanced the removal of nitrogen and organics. Average NH4-N, TN and BOD5 removal percentages were over 99%, 72% and 97%, respectively, across all three systems, indicating stable removal performances regardless of variable operating conditions. Higher Escherichia coli removal efficiencies (99.9%) were observed across the three systems, probably due to dominancy of aerobic conditions in vertical wetland columns of the hybrid systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    PubMed

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  16. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  17. Enhancement of Directional Ambiguity Removal Skill in Scatterometer Data Processing Using Planetary Boundary Layer Models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Pak, Kyung S.; Dunbar, R. Scott; Hsiao, S. Vincent; Callahan, Philip S.

    2000-01-01

    Planetary boundary layer (PBL) models are utilized to enhance directional ambiguity removal skill in scatterometer data processing. The ambiguity in wind direction retrieved from scatterometer measurements is removed with the aid of physical directional information obtained from PBL models. This technique is based on the observation that sea level pressure is scalar and its field is more coherent than the corresponding wind. An initial wind field obtained from the scatterometer measurements is used to derive a pressure field with a PBL model. After filtering small-scale noise in the derived pressure field, a wind field is generated with an inverted PBL model. This derived wind information is then used to remove wind vector ambiguities in the scatterometer data. It is found that the ambiguity removal skill can be improved when the new technique is used properly in conjunction with the median filter being used for scatterometer wind dealiasing at JPL. The new technique is applied to regions of cyclone systems which are important for accurate weather prediction but where the errors of ambiguity removal are often large.

  18. Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions.

    PubMed

    Zhao, Yanmei; Xiao, Feng; Wang, Dongsheng; Yan, Mingquan; Bi, Zhe

    2013-11-01

    Raw water from the Songhua River was treated by four types of coagulants, ferric chloride (FeCI3), aluminum sulfate (AI2(SO4)3), polyaluminum chloride (PACI) and composite polyaluminum (HPAC), in order to remove dissolved organic matter (DOM). Considering the disinfection byproduct (DBP) precursor treatability, DOM was divided into five chemical fractions based on resin adsorption. Trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP) were measured for each fraction. The results showed that hydrophobic acids (HoA), hydrophilic matter (HiM) and hydrophobic neutral (HoN) were the dominant fractions. Although both HoN and HoA were the main THM precursors, the contribution for THMFP changed after coagulation. Additionally, HoA and HiM were the main HAA precursors, while the contribution of HoN to HAAFP significantly increased after coagulation. HoM was more easily removed than HiM, no matter which coagulant was used, especially under enhanced coagulation conditions. DOC removal was highest for enhanced coagulation using FeCI3 while DBPFP was lowest using PACI. This could indicate that not all DOC fractions contained the precursors of DBPs. Reduction of THMFP and HAAFP by PACI under enhanced coagulation could reach 51% and 59% respectively.

  19. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination.

    PubMed

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-09

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  20. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent.

    PubMed

    Gao, Lei; Zhou, Weili; Huang, Jungchen; He, Shengbing; Yan, Yijia; Zhu, Wenying; Wu, Suqing; Zhang, Xu

    2017-06-01

    Three novel floating treatment wetlands, including autotrophic enhanced floating treatment wetland (AEFTW), heterotrophic enhanced floating treatment wetland (HEFTW) and enhanced floating treatment wetland (EFTW) were developed to remove nitrogen from the secondary effluent. Results showed that the analogously excellent nitrogen removal performance was achieved in AEFTW and HEFTW. About 89.4% of the total nitrogen (TN) was removed from AEFTW at a low S/N of 0.9 and 88.5% from HEFTW at a low C/N of 3.5 when the hydraulic retention time (HRT) was 1d in summer. Higher nitrification and denitrification performance were achieved in AEFTW. Addition of electron donors effectively reduced the N2O emission, especially in summer and autumn. High-throughput sequencing analysis revealed that the electron donors distinctly induced the microbial shifts. Dechloromonas, Thiobacillus and Nitrospira became the most predominant genus in HEFTW, AEFTW and EFTW. And autotrophic and heterotrophic denitrification could simultaneously occur in HEFTW and AEFTW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite.

    PubMed

    Song, S; Lopez-Valdivieso, A; Hernandez-Campos, D J; Peng, C; Monroy-Fernandez, M G; Razo-Soto, I

    2006-01-01

    Arsenic removal from high-arsenic water in a mine drainage system has been studied through an enhanced coagulation process with ferric ions and coarse calcite (38-74 microm) in this work. The experimental results have shown that arsenic-borne coagulates produced by coagulation with ferric ions alone were very fine, so micro-filtration (membrane as filter medium) was needed to remove the coagulates from water. In the presence of coarse calcite, small arsenic-borne coagulates coated on coarse calcite surfaces, leading the settling rate of the coagulates to considerably increase. The enhanced coagulation followed by conventional filtration (filter paper as filter medium) achieved a very high arsenic removal (over 99%) from high-arsenic water (5mg/l arsenic concentration), producing a cleaned water with the residual arsenic concentration of 13 microg/l. It has been found that the mechanism by which coarse calcite enhanced the coagulation of high-arsenic water might be due to attractive electrical double layer interaction between small arsenic-borne coagulates and calcite particles, which leads to non-existence of a potential energy barrier between the heterogeneous particles.

  2. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    PubMed Central

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl− = 2.03[10−9m2s−1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D− − D+)/(D− + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  3. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-01

    Chloride ion, the majority salt in nature, is ˜52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10-9m2s-1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ˜(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ˜50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  4. The Impact of Well-Field Configuration and Permeability Heterogeneity on Contaminant Mass Removal and Plume Persistence

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Brusseau, M. L.

    2015-12-01

    The purpose of this study is to investigate the effects of well-field hydraulics and permeability heterogeneity on mass-removal efficiency for systems comprising large groundwater contaminant plumes. A three-dimensional (3D) numerical model was used to simulate the impact of different well-field configurations on pump-and-treat mass removal for heterogeneous domains. The relationship between reduction in contaminant mass discharge (CMDR) and mass removal (MR) was used as the metric to examine remediation efficiency. The impacts of well-field configuration on mass removal behavior is attributed to mass-transfer constraints associated with regions of low flow, which can be muted by the influence of permeability heterogeneity. These impacts are reflected in the associated CMDR-MR profiles. Systems whose CDMR-MR profiles are below the 1:1 relationship line are associated with more efficient well-field configurations. The impact of domain heterogeneity on mass-removal effectiveness was investigated in terms of both variance and correlation scale of the random permeability distributions and indexed by the CMDR-MR relationship. Data collected from pump-and-treat operations conducted in a section of the Tucson International Airport Area (TIAA) federal Superfund site were used as a case study. The comparison between simulated and measured site data supports the general validity of the numerical model, and results from the case study are consistent with the conclusions of the theoretical study. These results illustrate that the CMDR-MR relationship can be an effective way to quantify the impacts of different factors on mass-removal efficiency.

  5. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  6. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    DOE PAGES

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; ...

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts andmore » noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.« less

  7. A gas chromatography-mass spectrometry method to monitor detergents removal from a membrane protein sample.

    PubMed

    Shi, Chaowei; Han, Fang; Xiong, Ying; Tian, Changlin

    2009-12-01

    In membrane protein biochemical and structural studies, detergents are used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. Here, a gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM) method was developed to quantify four detergents which are frequently used in membrane protein structural studies. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. A membrane protein Ig-Beta fragment in four different detergent micelles was exemplified. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. The results were very consistent to basic properties of detergent micelles in aqueous solvents. Therefore, coupling of GC-MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies.

  8. A Comparative Study of Mass Removal Loads for a Range of Stormwater Treatment Strategies

    NASA Astrophysics Data System (ADS)

    Avellaneda, P. M.; Houle, J. J.; Roseen, R. M.; Ballestero, T. P.

    2005-05-01

    When evaluating performance efficiencies for stormwater BMPs, there are significant challenges with regards to normalizing the variations in design, and hydraulic and hydrological conditions. There can be significant variations that must be considered such as rainfall intensity and duration, influent quality, watershed characteristics, loading functions, antecedent dry period, and maintenance. This study assessed mass removal loads for different stormwater management measures, all located in the same facility. The research facility is unique because it enables monitoring of 12 different treatment devices in parallel. For this purpose, a 9-acre commuter parking lot at the University of New Hampshire was chosen to provide runoff. There are three classes of devices examined at the site, conventional structural Best Management Practices (BMP), Low Impact Development (LID) designs, and manufactured devices. These include a subsurface gravel wetland, a detention pond, a sand filter, a bioretention system, a vegetated swale, and 7 different manufactured devices. Flow was evenly distributed and piped to each stormwater treatment. An on-site rain gauge provided rainfall data and samples of stormwater influent and effluent (for each stormwater treatment) were collected during monitoring rainfall events between August (2004) and April (2005). Temperature, dissolved oxygen and conductivity were measured continuously. Runoff constituents such as TSS, TP, TN, Cu, metals, nutrients and bacteria were measured in temporal water samples for each monitoring rainfall event. Results are presented as both concentration and Event Mean Concentrations (EMCs) to evaluate mass load removal. The watershed rainfall-runoff pattern was investigated as well as a statistical analysis to determine whether or not the differences between inflow and effluent water quality parameters were statistically significant. Earlier results have shown significant differences in the effluent water quality

  9. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.

    PubMed

    Kantar, Cetin; Ari, Cihan; Keskin, Selda

    2015-06-01

    New technologies involving in-situ chemical hexavalent chromium [Cr(VI)] reduction to trivalent chromium [Cr(III)] with natural Fe(II)-containing minerals can offer viable solutions to the treatment of wastewater and subsurface systems contaminated with Cr(VI). Here, the effects of five different chelating agents including citrate, EDTA, oxalate, tartrate and salicylate on reductive Cr(VI) removal from aqueous systems by pyrite were investigated in batch reactors. The Cr(VI) removal was highly dependent on the type of ligand used and chemical conditions (e.g., ligand concentration). While salicylate and EDTA had no or little effect on Cr(VI) removal, the ligands including citrate, tartrate and oxalate significantly enhanced Cr(VI) removal at pH < 7 relative to non-ligand systems. In general, the efficiency of organic ligands on Cr(VI) removal decreased in the order: citrate ≥ oxalate ≈ tartrate > EDTA > salicylate ≈ non-ligand system. Organic ligands enhanced Cr(VI) removal by 1) removing surface oxide layer via the formation of soluble Fe-Cr-ligand complexes, and 2) enhancing the reductive iron redox cycling for the regeneration of new surface sites. While citrate, oxalate and tartrate eliminated the formation of surface Cr (III)-Fe(III)-oxides, the surface phase Cr (III) species was observed in the presence of EDTA and salicylate indicating that Cr(III) complexed with EDTA and salicylate sorbed or precipitated onto pyrite surface, thereby blocking the access of CrO4(2-) to pyrite surface. The binding of Fe(III) with the disulfide reactive sites (≡Fe-S-S-Fe(III)) was essential for the regeneration of new surface sites through pyrite oxidation. Although Fe(III)-S species was detected at the pyrite surface in the presence of citrate, oxalate and tartrate, Fe(III) complexed with EDTA and salicylate did not strongly interact with the disulfide reactive sites due to the formation of non-sorbing Fe(III)-ligand complexes. The absence of surface Fe

  10. Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Jia; Jiu, Hongfang; Ni, Changhui; Zhang, Xia; Xu, Meiling

    2015-11-01

    Catalytically active graphene-based hollow TiO2 composites(TiO2/RGO) were successfully synthesized via the solvothermal method. Hollow TiO2 microspheres are uniformly dispersed on RGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) were used for the characterization of prepared photocatalysts. The mass of GO was optimized in the photocatalytic removal of rhodamine B (RhB) as a model dye pollutants. The results showed that graphene-based hollow TiO2 composites exhibit a significantly enhanced photocatalytic activity in degradation of RhB under either UV or visible light irradiation. The formation of the graphene-based hollow TiO2 composites and the photocatalytic mechanisms under UV and visible light were also discussed.

  11. Acoustic Streaming and Heat and Mass Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Gopinath, A.

    1996-01-01

    A second order effect associated with high intensity sound field, acoustic streaming has been historically investigated to gain a fundamental understanding of its controlling mechanisms and to apply it to practical aspects of heat and mass transfer enhancement. The objectives of this new research project are to utilize a unique experimental technique implementing ultrasonic standing waves in closed cavities to study the details of the generation of the steady-state convective streaming flows and of their interaction with the boundary of ultrasonically levitated near-spherical solid objects. The goals are to further extend the existing theoretical studies of streaming flows and sample interactions to higher streaming Reynolds number values, for larger sample size relative to the wavelength, and for a Prandtl and Nusselt numbers parameter range characteristic of both gaseous and liquid host media. Experimental studies will be conducted in support to the theoretical developments, and the crucial impact of microgravity will be to allow the neglect of natural thermal buoyancy. The direct application to heat and mass transfer in the absence of gravity will be emphasized in order to investigate a space-based experiment, but both existing and novel ground-based scientific and technological relevance will also be pursued.

  12. Modeling the enhanced removal of emerging organic contaminants during MAR through a reactive barrier.

    NASA Astrophysics Data System (ADS)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias

    2014-05-01

    Artificial recharge of reclaimed water is often proposed as a way of increasing water resources while improving quality. However, it is also feared that recalcitrant organic contaminants (i.e., those that are not completely removed during wastewater treatment) may reach the aquifer. Specifically, emerging organic contaminants (EOCs) have been increasingly detected in surface and ground waters and are becoming a worldwide problem. Most EOCs exhibit higher concentrations in reclaimed water used for artificial recharge than in produced groundwater, indicating that these compounds are retained and/or degraded during infiltration. Removal may be the result of sorption, which depends on organic matter and inorganic surfaces contained in the sediments, and degradation, which depends on redox conditions (some EOCs are preferentially removed under specific redox conditions). To enhance removal and retention processes, we designed a reactive barrier, which consists of compost, sand, clay and is covered by iron oxide. The role of compost is to favor sorption of neutral compounds and to release easily degradable organic carbon, so as to generate diverse redox condition, thus increasing the range of degraded EOCs. The role of iron oxides and clay is to favor sorption of anionic and cationic compounds, respectively. The barrier has been tested in the field proving its ability in promoting diverse redox conditions and indeed improving EOCs removal. However, experimental data do not allow separating sorption from degradation. To do so, we have built a flow and transport model representing the infiltration system and the aquifer beneath. The model has been calibrated against head data, collected during three years that include recharge and natural flow periods, and concentration, collected during a conservative tracer test. The calibrated model was then used to predict the fate of EOCs using sorption and half-lives from the literature. Results confirm that retention and degradation

  13. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration.

    PubMed

    Arnaldos, Marina; Pagilla, Krishna

    2010-10-01

    Plants aiming to achieve very low effluent nutrient levels (<3 mg N/L for N, and <0.1 mg P/L for P) need to consider removal of effluent fractions hitherto not taken into account. Two of these fractions are dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) (mainly composed of organic phosphorus). In this research, enhanced coagulation using alum (at doses commonly employed in tertiary phosphorus removal) followed by microfiltration (using 0.22 μm pore size filters) was investigated for simultaneous effluent DON and dissolved phosphorus (DP) fractions removal. At an approximate dose of 3.2 mg Al(III)/L, corresponding to 1.5 Al(III)/initial DON-N and 3.8 Al(III)/initial DP-P molar ratios, maximum simultaneous removal of DON and DP was achieved (69% for DON and 72% for DP). At this dose, residual DON and DP concentrations were found to be 0.3 mg N/L and 0.25 mg P/L, respectively. Analysis of the trends of removal revealed that the DNRP removal pattern was similar to that commonly reported for dissolved reactive phosphorus. Since this study involved intensive analytical work, a secondary objective was to develop a simple and accurate measurement protocol for determining dissolved N and P species at very low levels in wastewater effluents. The protocol developed in this study, involving simultaneous digestion for DON and DNRP species, was found to be very reliable and accurate based on the results.

  14. TESTING OF A FULL-SCALE ROTARY MICROFILTER FOR THE ENHANCED PROCESS FOR RADIONUCLIDES REMOVAL

    SciTech Connect

    Herman, D; David Stefanko, D; Michael Poirier, M; Samuel Fink, S

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications in the Department of Energy (DOE) complex. One application involves use in the Enhanced Processes for Radionuclide Removal (EPRR) at the Savannah River Site (SRS). To assess this application, the authors performed rotary filter testing with a full-scale, 25-disk unit manufactured by SpinTek Filtration with 0.5 micron filter media manufactured by Pall Corporation. The filter includes proprietary enhancements by SRNL. The most recent enhancement is replacement of the filter's main shaft seal with a John Crane Type 28LD gas-cooled seal. The feed material was SRS Tank 8F simulated sludge blended with monosodium titanate (MST). Testing examined total insoluble solids concentrations of 0.06 wt % (126 hours of testing) and 5 wt % (82 hours of testing). The following are conclusions from this testing.

  15. Effects of solution environment on mammalian cell fermentation broth properties: enhanced impurity removal and clarification performance.

    PubMed

    Westoby, Matthew; Chrostowski, James; de Vilmorin, Philippe; Smelko, John Paul; Romero, Jonathan K

    2011-01-01

    The processing of recombinant proteins from high cell density, high product titer cell cultures containing mammalian cells is commonly performed using tangential flow microfiltration (MF). However, the increased cellular debris present in these complex feed streams can prematurely foul the membrane, adversely impacting MF capacity and throughput. In addition, high cell density cell culture streams introduce elevated levels of process-related impurities, which increase the burden on subsequent purification operations to remove these complex media components and impurities. To address this challenge, an evaluation of mammalian cell culture broth buffer properties was examined to determine if enhanced impurity removal and clarification performance could be achieved. A framework is presented here for establishing optimized mammalian cell culture buffer conditions, involving trade-offs between product recovery and purification and improved clarification at manufacturing-scale production. A reduction in cell culture broth pH to 4.7-5.0 induced flocculation and impurity precipitation which increased the average feed particle-size. These conditions led to enhanced impurity removal and improved MF throughput and filter capacity for several mammalian systems. Feed conditions were further optimized by controlling ionic composition along with pH to improve product recovery from high cell density/high product titer cell cultures. © 2010 Wiley Periodicals, Inc.

  16. Exploring the potential of membrane bioreactors to enhance metals removal from wastewater: pilot experiences.

    PubMed

    Fatone, F; Eusebi, A L; Pavan, P; Battistoni, P

    2008-01-01

    The potential of membrane bioreactors to enhance the removal of selected metals from low loaded sewages has been explored. A 1400 litre pilot plant, equipped with an industrial submerged module of hollow fibre membranes, has been used in three different configurations: membrane bioreactor, operating in sequencing batch modality, for the treatment of real mixed municipal/industrial wastewater; membrane-assisted biosorption reactor, for the treatment of real leachate from municipal landfills; continuously fed membrane bioreactor, for the treatment of water charged with cadmium and nickel ions. The results show that: (a) in treating wastewaters with low levels of heavy metals (< one milligram per litre concentration), operating high sludge ages is not an effective strategy to significantly enhance the metals removal; (b) Hg and Cd are effectively removed already in conventional systems with gravitational final clarifiers, while Cu, Cr, Ni can rely on a additional performance in membrane bioreactors; (c) the further membrane effect is remarkable for Cu and Cr, while it is less significant for Ni. Basically, similar membrane effects recur in three different experimental applications that let us estimate the potential of membrane system to retain selected metal complexes. The future development of the research will investigate the relations between the membrane effect and the manipulable filtration parameters (i.e., permeate flux, solids content, filtration cycle).

  17. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.

    PubMed

    Huang, Shu-Yun; Fan, Chen-Shiuan; Hou, Chia-Hung

    2014-08-15

    This study was performed to determine the feasibility of electrosorptive removal of copper ions from aqueous solutions using a capacitive deionization process. The electrosorptive potential of copper ions was determined using cyclic voltammetry measurements, and copper electrodeposition could be suppressed at a voltage less than 0.8 V. Importantly, the experimental results demonstrated a significant enhancement of electrosorption capability of copper ions using the activated carbon electrodes under electro-assistance, associated with electrical double-layer charging. At 0.8 V, the equilibrium electrosorption capacity was enhanced to 24.57 mg/g based on the Langmuir model, and the electrosorption constant rate was increased to 0.038 min(-1) simulated by a first-order kinetics model. Moreover, the activated carbon electrode showed great regeneration performance for the removal of low level copper ions. Additional experiments regarding electrosorption selectivity were performed in the presence of sodium chloride, natural organic matter, or dissolved silica. Copper ions that were preferentially electroadsorbed on the electrode surface can be effectively removed in a competitive environment. Therefore, the electrosorption process using activated carbon electrodes can be recommended to treat copper solutions at low concentrations for wastewater treatment and water purification.

  18. Simultaneous enhancement of organics and nitrogen removal in drinking water biofilm pretreatment system with reed addition.

    PubMed

    Feng, Li-Juan; Zhu, Liang; Yang, Qi; Yang, Guang-Feng; Xu, Jian; Xu, Xiang-Yang

    2013-02-01

    A novel drinking water biofilm pretreatment process with reed addition was established for enhancement of simultaneously organics and nitrogen removal. Results showed that nitrate removal efficiency was positively related with the influent C/N ratio, reaching to 87.8±2.8% at the C/N ratio of 4.7. However, the predicted trichloromethane (THM) levels based on total organic carbon (TOC) and UV254 were high with the increase of influent C/N ratio. Combined with the pollutants removal performance and microbial community variation, an appropriate C/N ratio via reed addition was determined at 2.2 for the continuous biofilm reactor. With adjustment of hydraulic retention time (HRT), the highest of nitrate removal efficiency (74.2±1.4%) and organics utilization efficiency (0.63 mg NO3--N mg(-1)TOC) were achieved at an optimum HRT of 18 h, with both low effluent NO3--N (0.88±0.03 mg l(-1)) and TOC (2.86±0.67 mg l(-1)). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    PubMed

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg(-1)), Ni (1135 mg kg(-1)) and zinc (1200 mg kg(-1)). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  20. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs.

  1. A Comparative Study of the Bacterial Community in Denitrifying and Traditional Enhanced Biological Phosphorus Removal Processes

    PubMed Central

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-lei; Sun, Fei-Yun

    2014-01-01

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus “Accumulibacter” clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus “Accumulibacter” dominated in A-O sludge. PMID:24964811

  2. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge.

  3. Enhancement of chemical-oxygen demand and color removal of distillery spent-wash by ozonation.

    PubMed

    Srivastava, S; Bose, P; Tare, V

    2006-04-01

    Distillery spent-wash has very high organic content (75,000 to 125,000 mg/L chemical-oxygen demand [COD]), color, and contains difficult-to-biodegrade organic compounds. For example, anaerobic treatment of the distillery spent-wash used in this study resulted in 60% COD reduction and low color removal. Subsequent aerobic treatment of the anaerobic effluent resulted in enhancement of COD removal to 66%. In this paper, the effect of ozonation on various properties of the anaerobically treated distillery effluent, including the effect on its subsequent aerobic biodegradation, was investigated. Ozonation of the anaerobically treated distillery effluent at various ozone doses resulted in the reduction of total-organic carbon (TOC), COD, COD/TOC ratio, absorbance, color, and increase in the biochemical-oxygen demand (BOD)/COD ratio of the effluent. Further, ozonation of the anaerobically treated distillery effluent at an ozone dose of 2.08 mg/mg initial TOC and subsequent aerobic biodegradation resulted in 87.4% COD removal, as compared to 66% removal when ozonation was not used.

  4. Enhanced magneto-optical imaging of internal stresses in the removed surface layer

    NASA Astrophysics Data System (ADS)

    Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy

    2015-10-01

    The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.

  5. EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT

    SciTech Connect

    Riha, B

    2005-10-31

    The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a

  6. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  7. An observation on sludge granulation in an enhanced biological phosphorus removal process.

    PubMed

    Ong, Ying Hui; Chua, Adeline Seak May; Lee, Boon Pin; Ngoh, Gek Cheng; Hashim, Mohd Ali

    2012-01-01

    A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.

  8. Performance enhancement and background removal to improve dynamic phase imaging of biological organisms

    PubMed Central

    Creath, Katherine; Goldstein, Goldie

    2014-01-01

    This paper describes recent advances in enhancing optical imaging performance and removal of background shape for a new, novel interference dynamic microscope system. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for labels or contrast agents. This instrument utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns. It incorporates the polarization properties of light to capture phase image movies in real time at video rates enabling tracking of dynamic motions and volumetric changes. Optical thickness data are obtained from phase images after processing to remove the background surface shape to quantify changes in cell position and volume. Data from a number of different biological organisms will be presented. These data highlight examples of the optical image quality and image processing. PMID:23366597

  9. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. pH modeling for maximum dissolved organic matter removal by enhanced coagulation.

    PubMed

    Xie, Jiankun; Wang, Dongsheng; van Leeuwen, John; Zhao, Yanmei; Xing, Linan; Chow, Christopher W K

    2012-01-01

    Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter (DOM) removal using four typical coagulants (FeCl3, Al2(SO4)3, polyaluminum chloride (PACl) and high performance polyaluminum chloride (HPAC)) without pH control were investigated. These correlations were analyzed on the basis of the raw water quality and the chemical and physical fractionations of DOM of thirteen Chinese source waters over three seasons. It was found that the final pH after enhanced coagulation for each of the four coagulants was influenced by the content of removable DOM (i.e. hydrophobic and higher apparent molecular weight (AMW) DOM), the alkalinity and the initial pH of raw water. A set of feed-forward semi-empirical models relating the final pH after enhanced coagulation for each of the four coagulants with the raw water characteristics were developed and optimized based on correlation analysis. The established models were preliminarily validated for prediction purposes, and it was found that the deviation between the predicted data and actual data was low. This result demonstrated the potential for the application of these models in practical operation of drinking water treatment plants.

  11. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal.

    PubMed

    Marques, Ricardo; Santos, Jorge; Nguyen, Hien; Carvalho, Gilda; Noronha, J P; Nielsen, Per Halkjær; Reis, Maria A M; Oehmen, Adrian

    2017-10-01

    Tetrasphaera and Candidatus Accumulibacter are two abundant polyphosphate accumulating organisms in full-scale enhanced biological phosphorus removal (EBPR) systems. However, little is known about the metabolic behaviour and ecological niche that each organism exhibits in mixed communities. In this study, an enriched culture of Tetrasphaera and Ca. Accumulibacter was obtained using casein hydrolysate as sole carbon source. This culture was able to achieve a high phosphorus removal efficiency (>99%), storing polyphosphate while consuming amino acids anaerobically. Microautoradiography and fluorescence in situ hybridisation confirmed that more than 90% Tetrasphaera cells were responsible for amino acid consumption while Ca. Accumulibacter likely survived on fermentation products. Tetrasphaera performed the majority of the P removal (approximately 80%) in this culture, and batch tests showed that the metabolism of some carbon sources could actually lead to anaerobic orthophosphate (Pi) uptake (9.0 ± 2.1 mg-P/L) through energy generated by fermentation of glucose and amino acids. This anaerobic Pi uptake may lead to lower net Pi release to C uptake ratios and reduce the Pi needed to be removed aerobically in WWTPs. Intracellular metabolites such as amino acids, sugars, volatile fatty acids and small amines were observed as potential storage products, which may serve as energy sources in the aerobic phase. Evidence of the urea cycle was found, which could be involved in reducing the intracellular nitrogen content. This study improves our understanding of how phosphorus is removed in EBPR systems and can enable novel process optimisation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell.

    PubMed

    De Gusseme, Bart; Hennebel, Tom; Vanhaecke, Lynn; Soetaert, Maarten; Desloover, Joachim; Wille, Klaas; Verbeken, Kim; Verstraete, Willy; Boon, Nico

    2011-07-01

    To decrease the load of pharmaceuticals to the environment, decentralized wastewater treatment has been proposed for important point-sources such as hospitals. In this study, a microbial electrolysis cell (MEC) was used for the dehalogenation of the iodinated X-ray contrast medium diatrizoate. The presence of biogenic palladium nanoparticles (bio-Pd) in the cathode significantly enhanced diatrizoate removal by direct electrochemical reduction and by reductive catalysis using the H(2) gas produced at the cathode of the MEC. Complete deiodination of 3.3 μM (2 mg L(-1)) diatrizoate from a synthetic medium was achieved after 24 h of recirculation at an applied voltage of -0.4 V. An equimolar amount of the deiodinated metabolite 3,5-diacetamidobenzoate (DAB) was detected. Higher cell voltages increased the dehalogenation rates, resulting in a complete removal after 2 h at -0.8 V. At this cell voltage, the MEC was also able to remove 85% of diatrizoate from hospital effluent containing 0.5 μM (292 μg L(-1)), after 24 h of recirculation. Complete removal was obtained when the effluent was continuously fed at a volumetric loading rate of 204 mg diatrizoate m(-3) total cathodic compartment (TCC) day(-1) to the MEC with a hydraulic retention time of 8 h. At -0.8 V, the MEC system could also eliminate 54% of diatrizoate from spiked urine during a 24 h recirculation experiment. The final product DAB was demonstrated to be removable by nitrifying biomass, which suggests that the combination of a MEC and bio-Pd in its cathode offers potential to dehalogenate pharmaceuticals, and to significantly lower the environmental burden of hospital waste streams.

  13. Plant experience using hydrogen peroxide for enhanced fat flotation and BOD removal

    SciTech Connect

    Steiner, N.; Gec, R. )

    1992-11-01

    Hydrogen peroxide (H[sub 2]O[sub 2]), is known in the food processing industry to reduce COD, BOD, to prevent anaerobic conditions in pipes, tanks and lagoons and to remove malodorous sulfides in effluents from anaerobic wastewater treatment. It has recently been shown to also provide effective solids removal from food processing wastewater. The wastewater of food processing plants often contains a very high loading of organic material consisting of fat, oil and grease (FOG), resulting in unacceptable BOD and COD levels. Since many wastewater treatment systems are being pushed to the limit of their capacity or are already overloaded, the high FOG loading cannot be removed well by the conventional means of treating the wastewater with dissolved air flotation or grease traps. As a result, many food processors are paying surcharges for not being in compliance with the tight discharge limits. To overcome these problems, a process has been developed using H[sub 2]O[sub 2] for enhanced FOG recovery and BOD removal. The process is based on the formation of microbubbles which attach themselves to the FOG particles and float them to the surface where they can be easily skimmed off. In addition to meeting effluent standards, the process has been able to yield a material that is very renderable and suitable for reuse. Technical and operational data of several industrial applications in the US and Canada are presented, together with process costs. H[sub 2]O[sub 2] treatment will generally be most applicable when improvement of solids removal is required without major investment costs, e.g. emergency situations, during seasonal peaks or increased production. 12 refs., 5 figs., 3 tabs.

  14. Removing Cross-Linked Telopeptides Enhances the Production of Low-Molecular-Weight Collagen Peptides from Spent Hens.

    PubMed

    Hong, Hui; Chaplot, Shreyak; Chalamaiah, Meram; Roy, Bimol C; Bruce, Heather L; Wu, Jianping

    2017-08-30

    The low-molecular-weight (LMW) peptides derived from collagen have shown a potential for various nutritional and pharmaceutical applications. However, production of LMW peptides from vertebrate collagen remains a challenge. Herein, we report a new method to produce LMW collagen peptides using pepsin pretreatment that removed cross-linked telopeptides in collagen molecules. After the pretreatment, the proportion of LMW collagen peptides (<1.4 kDa) that were obtained from pepsin-soluble collagen increased to 32.59% compared to heat-soluble collagen peptides (16.10%). Fourier transform infrared spectroscopy results indicated that telopeptide cleavage retained the triple-helical conformation of collagen. Liquid chromatography-tandem mass spectrometry analysis suggested that Gly-X-Y (X is often proline, while Y is either hydroxyproline or hydroxylysine) repeats were not the main factors that hindered the enzymatic hydrolysis of collagen molecules. However, cross-link quantification demonstrated that trivalent cross-links that included pyridinolines and pyrroles were the primary obstacles to producing small peptides from collagen of spent hens. This study demonstrated for the first time that removing cross-linked telopeptides could enhance the production of LMW peptides from spent hen collagen, which is also of interest to manufacturers who produce LMW collagen peptides from other vertebrate animals, such as bovids and porcids.

  15. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms.

    PubMed

    Zhang, Longlong; Yue, Qinyan; Yang, Kunlun; Zhao, Pin; Gao, Baoyu

    2017-09-08

    A modified biological aerated filter (BAF) system configured Fe-C micro electrolysis was applied to enhance phosphorus and ciprofloxacin (CIP) removal. A novel sludge ceramic and sintering ferric-carbon ceramic (SFC) were separately packed into a lab-scale BAF and Fe-C micro electrolysis reactor. The BAF and Fe-C micro electrolysis coupled system was operated about 230days. The enhancement of phosphorus and ciprofloxacin removals by Fe-C micro electrolysis, the degradation mechanisms of CIP and the variations of microbial population were investigated. The removal efficiencies of chemical oxygen demand (CODcr), ammonia (NH4-N), total phosphorus (TP) and CIP reached about 95%, 95%, 80% and 85% in the combined process, respectively. Configuring Fe-C micro electrolysis significantly enhanced phosphorus and CIP removal, whereas had no promotion on N removal. Four main degradation pathways were proposed according to the LC-MS analysis. More than 12 degradation products were detected through the treatment of Fe-C micro electrolysis and only 3 biodegraded products with low concentration were identified in BAF effluent. The high-throughput sequencing analysis showed that the microbial community changed a lot under CIP pressure. The relative abundance of Sphingomonadaceae, Xanthomonadaceae, Bradyrhizobium, Helicobacter and Pseudomonas increased with CIP influent. This study provides a promising process in CIP wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hamular frenum modification: a removable denture prosthesis retention and stability enhancement.

    PubMed

    Massad, J J; Anderson, J F

    2001-04-01

    A removable denture prosthesis, whether partial or complete, often requires preprosthetic surgery to achieve optimum stabilization and retention. While the hamular frenum may produce significant dynamic dislodging forces, a literature review did not reveal any reports dealing with this problem. A hamular frenum reduction surgical procedure using the free autogenous gingival graft procedure is described. Prosthetic function may be enhanced by eliminating the dynamic disrupting force of the hamular frenum along with improving posterior maxillary tuberosity contour and, as necessary, premaxillary form, allowing these contours to work in concert to develop a "cupping" stabilizing and retentive complex.

  17. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  18. Prediction of intracellular storage polymers using quantitative image analysis in enhanced biological phosphorus removal systems.

    PubMed

    Mesquita, Daniela P; Leal, Cristiano; Cunha, Jorge R; Oehmen, Adrian; Amaral, A Luís; Reis, Maria A M; Ferreira, Eugénio C

    2013-04-03

    The present study focuses on predicting the concentration of intracellular storage polymers in enhanced biological phosphorus removal (EBPR) systems. For that purpose, quantitative image analysis techniques were developed for determining the intracellular concentrations of PHA (PHB and PHV) with Nile blue and glycogen with aniline blue staining. Partial least squares (PLS) were used to predict the standard analytical values of these polymers by the proposed methodology. Identification of the aerobic and anaerobic stages proved to be crucial for improving the assessment of PHA, PHB and PHV intracellular concentrations. Current Nile blue based methodology can be seen as a feasible starting point for further enhancement. Glycogen detection based on the developed aniline blue staining methodology combined with the image analysis data proved to be a promising technique, toward the elimination of the need for analytical off-line measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interaction between common antibiotics and a Shewanella strain isolated from an enhanced biological phosphorus removal activated sludge system.

    PubMed

    Liu, Hang; Yang, Yongkui; Ge, Yanhui; Zhao, Lin; Long, Sha; Zhang, Ruochun

    2016-12-01

    With increasing production and consumption, more antibiotics are discharged into wastewater treatment plants and generally cannot be sufficiently removed. Because of the complexities of biological treatment processes, the fates of antibiotics and their effects on microorganisms, particularly those involved in the phosphorus removal system, are still unclear. Here, a Shewanella strain was isolated from an enhanced biological phosphorus removal (EBPR) system and was found to have the ability to remove phosphorus (P) and chemical oxygen demand (CODcr). Antibiotics affected the Shewanella strain through metabolism of the three main intracellular polymers, altering the ability of the strain to remove P and CODcr. These effects varied with the structure and concentration of the antibiotics. The Shewanella strain removed cefalexin and amoxicillin by degradation or adsorption, producing 2-hydroxy-3-phenyl pyrazine from cefalexin. This study enabled the recognition of the effect and removal of antibiotics during wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nitrate removal under different ecological remediation measures in Taihu Lake: a 15N mass-balance approach.

    PubMed

    Liu, Dandan; Li, Zhengkui; Zhang, Wanguang

    2014-12-01

    Ecological remediation is an important measure for the protection of lake water quality in removing nutrients, such as nitrate (NO3 (-)). In this study, four bioremediation processes (bare sediment, immobilized nitrogen cycling bacteria (INCB) added, Elodea nuttallii added, E. nuttallii-INCB assemblage) were operated at a lab to elucidate the effect of macrophyte appearance and INCB addition on NO3 (-) removal and achieve the optimal processes for biomediation. (15) N-NO3 solution was added to microcosms to identify the key nitrogen transformation processes responsible for NO3 (-) removal. Results showed that nitrate removal was significantly enhanced after the addition of INCB and E. nuttallii. In the treatments with INCB added, E. nuttallii added, and INCB and E. nuttallii-INCB assemblage, nitrate removal ratio achieved 94.74, 98.76, and 99.15 %, respectively. In contrast, only 23.47 % added nitrate was removed in the control. Plant uptake and denitrification played an important role in nitrogen removal. The water quality was substantially improved by the addition of INCB and macrophyte that can accelerate denitrification and promote nitrogen assimilation of plants. The results indicated that plant uptake and microbial denitrification were key processes for nitrate removal.

  1. Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2012-05-01

    The microbial selection on an enhanced biological phosphorus removal (EBPR) system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with glucose as the carbon source. Fluorescence In Situ Hybridization analysis was performed to target two polyphosphate accumulating organisms (PAOs) (i.e., Candidatus Accumulibacter phosphatis and Microlunatus phosphovorus) and two glycogen accumulating organisms (GAOs) (i.e., Candidatus Competibacter phosphatis and Micropruina glycogenica). The results show that glucose might not select for Candidatus Accumulibacter phosphatis. However, Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica might be selected. The highest percent relative abundance (% RA) of Candidatus Accumulibacter phosphatis was about 42%; this occurred at the beginning of the experimental period when phosphorus removal was efficient. However, the % RA of these bacteria decreased, reaching below 4% at the end of the run. The maximum % RA of Microlunatus phosphovorus, Candidatus Competibacter phosphatis, and Micropruina glycogenica was about 21, 37, 17%, respectively. It appears that a higher glucose concentration might be detrimental for Microlunatus phosphovorus and Micropruina glycogenica. Results also indicate a dominance of GAOs over PAOs when EBPR systems are fed with glucose. It is possible that the GAOs outcompete the PAOs at low pH values; it has been reported that at low pH, GAOs use glycogen as the energy source to uptake glucose. As a result, P-removal deteriorated. Therefore, glucose is not a strong candidate as a carbon source to supplement EBPR systems that do not contain sufficient volatile fatty acids.

  2. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    PubMed

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Performance of phosphorus removal by simulated riparian zone enhanced with red mud treating reclaimed water].

    PubMed

    Liu, Ping; Qin, Jing; Wang, Chao

    2011-04-01

    The effect of red mud and the role of plants on the phosphorus removal of the reclaimed water were studied by lab-scale simulated riparian zone, which made well use of sintered red mud with well adsorption capacity for phosphorous due to its high contents of Ca, Al and Fe oxides. The results show that the suitable ratio range of adding red mud is 2.5%-5.0%, and correspondingly, the removal of phosphorus is as high as 82%-76%, resulting in 0.22-0. 29 mg/L of effluent TP concentration and 74%-75% of SRP/TP. When the percentage of adding red mud is 2.5%, comparing with the system without plants, the performance of the system with plants improves by 4%, reaching to 86% and 0. 17 mg/L of effluent TP concentration. Obviously, red mud can be directly used in the riparian zone to enhance the phosphorus removal as a new and cheap material.

  4. Could nitrite/free nitrous acid favour GAOs over PAOs in enhanced biological phosphorus removal systems?

    PubMed

    Pijuan, M; Ye, L; Yuan, Z

    2011-01-01

    Enhanced biological phosphorus removal (EBPR) normally occurs together with nitrogen removal in wastewater treatment plants (WWTPs). In recent years, efforts have been devoted to remove nitrogen via the nitrite pathway (oxidation of ammonia to nitrite and reduction of nitrite to nitrogen gas without going through nitrate), reducing the requirement for carbon and oxygen in the plant. However nitrite and free nitrous acid (FNA), the protonated species of nitrite, have been shown to cause EBPR deterioration under certain concentrations. This study provides a direct comparison between the different levels of FNA inhibition in the aerobic processes of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) by reviewing the studies published in this area. Also, new data is presented assessing the FNA effect on the anaerobic metabolism of these two groups of bacteria. Overall, FNA has shown inhibitory effects on most of the processes involved in the metabolism of PAOs and GAOs. However, the inhibition-initiation levels are different between different processes and, even more importantly between the two groups. In general, PAOs appear to be more affected than GAOs at the same level of FNA, thus giving GAOs competitive advantage over PAOs in EBPR systems when nitrite is present.

  5. Advances in enhanced biological phosphorus removal: from micro to macro scale.

    PubMed

    Oehmen, Adrian; Lemos, Paulo C; Carvalho, Gilda; Yuan, Zhiguo; Keller, Jürg; Blackall, Linda L; Reis, Maria A M

    2007-06-01

    The enhanced biological phosphorus removal (EBPR) process has been implemented in many wastewater treatment plants worldwide. While the EBPR process is indeed capable of efficient phosphorus (P) removal performance, disturbances and prolonged periods of insufficient P removal have been observed at full-scale plants on numerous occasions under conditions that are seemingly favourable for EBPR. Recent studies in this field have utilised a wide range of approaches to address this problem, from studying the microorganisms that are primarily responsible for or detrimental to this process, to determining their biochemical pathways and developing mathematical models that facilitate better prediction of process performance. The overall goal of each of these studies is to obtain a more detailed insight into how the EBPR process works, where the best way of achieving this objective is through linking together the information obtained using these different approaches. This review paper critically assesses the recent advances that have been achieved in this field, particularly relating to the areas of EBPR microbiology, biochemistry, process operation and process modelling. Potential areas for future research are also proposed. Although previous research in this field has undoubtedly improved our level of understanding, it is clear that much remains to be learned about the process, as many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  6. Suspected bilateral phrenic nerve damage following a mediastinal mass removal in a 17-week-old pug.

    PubMed

    Raillard, Mathieu; Murison, Pamela J; Doran, Ivan P

    2017-03-01

    The anesthetic management of a pediatric pug for removal of a mediastinal mass is described. During recovery from anesthesia, the dog's respiratory pattern was compatible with bilateral diaphragmatic paralysis. Incidence, complications, possible treatments of phrenic nerve injury, problems of long-term mechanical ventilation, and alternative case management are discussed.

  7. Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands.

    PubMed

    Singhakant, Chatchawal; Koottatep, Thammarat; Satayavivad, Jutamaad

    2009-02-01

    Arsenic (As) removal in pilot-scale subsurface-flow constructed wetlands (CWs) was investigated by comparing between CW units with vetiver grasses (CWplanted) and CW units without vetiver grasses (CWunplanted) in order to determine the roles of vetiver grasses affecting As removal. Based on the data obtained from 147 days of experiment, it is apparent that CWplanted units could remove As significantly higher than those of CWunplanted units with approximately 7-14%. Although analysis of As mass balance in CW units revealed that only 0.5-1.0% of total As was found in vetiver grasses, the As retained within bed of the CWplanted units (23.6-29.7 g) was higher than those in the CWunplanted units (21.3-26.8 g) at the end of the experiment, illustrating the effect of vetiver grasses on As accumulation in the CW units. Determination of As in different fractions in the CW bed suggested that the main mechanism of As retention was due mainly to As entrapment into the porous of bed materials (50-57% of total fraction), this mechanism is likely not affected by the presence of vetiver grasses. However, fraction of As-bound in organic matters that could be released from plant roots decomposition indicated the increase adsorption capacity of CW bed. In addition, organic sulfides produced from their root decomposition could help remove As through the precipitation/co-precipitation process. Under reducing condition in those CWplanted units, As could be leached out in the form of iron and manganese-bound complexes.

  8. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Antiscalant removal in accelerated desupersaturation of RO concentrate via chemically-enhanced seeded precipitation (CESP).

    PubMed

    McCool, Brian C; Rahardianto, Anditya; Cohen, Yoram

    2012-09-01

    An experimental study was carried out to demonstrate and quantify the feasibility of antiscalant (AS) removal from brackish water RO concentrate of high gypsum scaling propensity via lime treatment prior to seeded gypsum precipitation. Based on studies with model solutions, it was shown that sufficient AS removal (up to ∼90%) from RO concentrate is feasible via a lime treatment step (at a dose significantly lower than that required for conventional lime softening) to enable effective subsequent seeded gypsum precipitation. This two-step chemically-enhanced seeded precipitation (CESP) treatment of primary RO concentrate is suitable as an intermediate concentrate demineralization (ICD) stage for high recovery desalting employing secondary RO desalination. Analysis of gypsum precipitation and lime treatment kinetic data suggests that, after adequate CaCO(3) precipitation has been induced for effective AS scavenging, CaSO(4) desupersaturation can be achieved via seeded gypsum precipitation without retardation due to seed poisoning by AS. Also, the lime dose required to prevent seed poisoning during subsequent gypsum desupersaturation via seeded gypsum precipitation can be adequately assessed with a precipitation kinetics model that considers AS seed poisoning based on a Langmuir adsorption isotherm. The degree of AS removal after lime treatment increased linearly with the logarithm of the single lime dose additions. Staged lime dosing (i.e., multiple lime additions), however, removed a higher degree of AS relative to an equivalent single lime dose addition since a higher driving force for CaCO(3) precipitation could be maintained over the course of the lime treatment period.

  10. Regional blood acidification enhances extracorporeal carbon dioxide removal: a 48-hour animal study.

    PubMed

    Zanella, Alberto; Mangili, Paolo; Redaelli, Sara; Scaravilli, Vittorio; Giani, Marco; Ferlicca, Daniela; Scaccabarozzi, Diletta; Pirrone, Federica; Albertini, Mariangela; Patroniti, Nicolò; Pesenti, Antonio

    2014-02-01

    Extracorporeal carbon dioxide removal has been proposed to achieve protective ventilation in patients at risk for ventilator-induced lung injury. In an acute study, the authors previously described an extracorporeal carbon dioxide removal technique enhanced by regional extracorporeal blood acidification. The current study evaluates efficacy and feasibility of such technology applied for 48 h. Ten pigs were connected to a low-flow veno-venous extracorporeal circuit (blood flow rate, 0.25 l/min) including a membrane lung. Blood acidification was achieved in eight pigs by continuous infusion of 2.5 mEq/min of lactic acid at the membrane lung inlet. The acid infusion was interrupted for 1 h at the 24 and 48 h. Two control pigs did not receive acidification. At baseline and every 8 h thereafter, the authors measured blood lactate, gases, chemistry, and the amount of carbon dioxide removed by the membrane lung (VCO2ML). The authors also measured erythrocyte metabolites and selected cytokines. Histological and metalloproteinases analyses were performed on selected organs. Blood acidification consistently increased VCO2ML by 62 to 78%, from 79 ± 13 to 128 ± 22 ml/min at baseline, from 60 ± 8 to 101 ± 16 ml/min at 24 h, and from 54 ± 6 to 96 ± 16 ml/min at 48 h. During regional acidification, arterial pH decreased slightly (average reduction, 0.04), whereas arterial lactate remained lower than 4 mEq/l. No sign of organ and erythrocyte damage was recorded. Infusion of lactic acid at the membrane lung inlet consistently increased VCO2ML providing a safe removal of carbon dioxide from only 250 ml/min extracorporeal blood flow in amounts equivalent to 50% production of an adult man.

  11. Novel Strategies for Enhanced Removal of Persistent Bacillus anthracis Surrogates and Clostridium difficile Spores from Skin

    PubMed Central

    Nerandzic, Michelle M.; Rackaityte, Elze; Jury, Lucy A.; Eckart, Kevin; Donskey, Curtis J.

    2013-01-01

    Background Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe®) would reduce the burden of spores on skin. Methods Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. Results Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P <0.05) and Vashe wipes versus alcohol wipes (P <0.01). A combined approach of soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P <0.01 compared to washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. Conclusions Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin. PMID:23844234

  12. Removal of seminal plasma enhances membrane stability on fresh and cooled stallion spermatozoa.

    PubMed

    Barrier-Battut, I; Bonnet, C; Giraudo, A; Dubois, C; Caillaud, M; Vidament, M

    2013-02-01

    Fertility is reduced after semen cooling for a considerable number of stallions. The main hypotheses include alterations in plasma membrane following cooling and deleterious influence of seminal plasma. However, interindividual variability is controversial. We hypothesized that the removal of seminal plasma could enhance motility in some 'poor cooler' stallions, but could also affect, negatively or positively, membrane quality in some stallions. This study examined the effect of centrifugation, followed or not by removal of seminal plasma, on parameters indicating semen quality after 48 h at 4 °C: motility, plasma membrane integrity as evaluated by hypo-osmotic swelling test, acrosome integrity and response to a pharmacological induction of acrosome reaction using ionophore A23187. Sixty-six ejaculates from 14 stallions were used, including stallions showing high or low sperm motility after cooled storage. Centrifugation without removal of seminal plasma did not affect sperm parameters. Removal of seminal plasma did not affect motility, but significantly stabilized sperm membranes, as demonstrated by a higher response to the osmotic challenge, and a reduced reactivity of the acrosome. Moreover, for the same semen sample, the response to an induction of acrosome reaction was significantly higher when the induction was performed in the presence of seminal plasma, compared with the induction in the absence of seminal plasma. This was observed both for fresh and cooled semen. When the induction of acrosome reaction with ionophore A23187 is used to evaluate sperm quality, care must therefore be taken to standardize the proportion of seminal plasma between samples. For the 10 stallions serving at least 25 mares, the only variable significantly correlated with fertility was motility. The influence of membrane stabilization regarding fertility requires further investigations.

  13. NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance.

    PubMed

    Yu, Jiaguo; Li, Xinyang; Xu, Zhihua; Xiao, Wei

    2013-09-03

    NaOH-modified ceramic honeycombs (Na-CH) were simply prepared by impregnating ceramic honeycombs (CH) into NaOH aqueous solution. It was clearly shown that the surface modification incurs higher specific surface area and smaller grain sizes of the CH without destruction of their integrity. Moreover, the introduced surface NaOH can trigger Cannizzaro disproportionation of surface-absorbed formaldehyde (HCHO) on Na-CH, resulting in catalytic transformation of HCHO into less-toxic formate and methoxy salts. The NaOH concentration during impregnating treatment has a great influence on HCHO adsorption and removal efficiency, while the impregnation time and temperature have little influence on the efficiency. When the CH was impregnated in 1 M NaOH aqueous solution for 0.5 h at room temperature, the HCHO removal efficiency at ambient temperature can reach about 80% with an initial HCHO concentration of 250 ppm. Moreover, the used Na-CH can be facilely regenerated via 1 min blow using a common electric hair dryer, with the generation of less toxic HCOOH and CH3OH and recovery of NaOH. Using such a mild, fast, and practical regeneration method, the regenerated Na-CH showed slight degradation in adsorption and removal capability toward HCHO. The enhanced performance of Na-CH obtained was attributed to the presence of NaOH and increase of specific surface area and surface hydroxyl groups. Considering no demand of noble metal for HCHO removal at ambient temperature and practical reusable capability of Na-CH under mild conditions, this work may provide some new insights into the design and fabrication of advanced catalysts for indoor air purification.

  14. Novel strategies for enhanced removal of persistent Bacillus anthracis surrogates and Clostridium difficile spores from skin.

    PubMed

    Nerandzic, Michelle M; Rackaityte, Elze; Jury, Lucy A; Eckart, Kevin; Donskey, Curtis J

    2013-01-01

    Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe(®)) would reduce the burden of spores on skin. Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P<0.05) and Vashe wipes versus alcohol wipes (P<0.01). A combined approach of soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P<0.01 compared to washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin.

  15. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source.

    PubMed

    Zhang, Liang; Zhang, Shujun; Wang, Shuying; Wu, Chengcheng; Chen, Yinguang; Wang, Yayi; Peng, Yongzhen

    2013-04-01

    The production of volatile fatty acids (VFAs) from primary sludge and the subsequent application to improve biological nutrient removal has drawn much attention. In this study, a novel approach of using primary sludge as an additional carbon source was conducted in batch tests. The nitritation effluent was directly injected into the sludge fermentation reactor to achieve nitrogen removal. Complete denitrification could be realized in the combined reactor. Moreover, injecting nitrite not only promoted the sludge stabilization process, but also reduced the release of phosphate and ammonium during sludge stabilization. The novel process was further evaluated in a continuous system by treating sludge dewatering liquors. Under optimum conditions, 85% removal of ammonium and 75% of total nitrogen could be obtained using primary sludge, resulting in the suitable effluent for recycling into the inlet of the wastewater treatment plant.

  16. Treatability of U.S. Environmental Protection Agency contaminant candidate list viruses: removal of coxsackievirus and echovirus using enhanced coagulation.

    PubMed

    Mayer, Brooke K; Ryu, Hodon; Abbaszadegan, Morteza

    2008-09-15

    Enhanced coagulation was evaluated for removal efficacy of coxsackievirus and echovirus (Contaminant Candidate List [CCL] enteroviruses), poliovirus, four potential surrogate bacteriophages, and dissolved organic carbon (DOC). Viruses and DOC were effectively removed using enhanced coagulation, with removals generally improving as dose increased and pH decreased. Optimal enhanced coagulation conditions of 40 mg/L FeCl3 and pH between 5 and 6.5 resulted in a maximum removal of 3.0 logs of coxsackievirus B6, 1.75 logs of echovirus 12, 2.5 logs of poliovirus 1, 1.8 logs of fr, 1.3 logs of phi-X174, 0.36 logs of MS2, 0.29 logs of PRD1, and 41% DOC. Bacteriophages fr and phi-X174 appear to be the most representative surrogates for the physical removal of coxsackievirus, while MS2 and PRD1 are more conservative. For echovirus, MS2 and PRD1 appearto bethe most appropriate surrogates. The relative removal profiles of the enteroviruses (greatest removal of coxsackievirus followed by poliovirus and then echovirus) suggest that studies of the physical removal of poliovirus may be extended to the CCL enteroviruses. These results contribute to evaluations of the CCL and regulatory status of coxsackievirus and echovirus and aid in building a database of the treatment efficiencies of enteroviruses and their surrogates.

  17. In situ oxidation and associated mass-flux-reduction/mass-removal behavior for systems with organic liquid located in lower-permeability sediments.

    PubMed

    Marble, Justin C; Carroll, Kenneth C; Janousek, Hilary; Brusseau, Mark L

    2010-09-20

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.

  18. In Situ Oxidation and Associated Mass-Flux-Reduction/Mass-Removal Behavior for Systems with Organic Liquid Located in Lower-Permeability Sediments

    SciTech Connect

    Marble, justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, M. L.

    2010-07-21

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.

  19. Streambed Hydraulic Conductivity Structures: Enhanced Hyporheic Exchange and Contaminant Removal in Model and Constructed Stream

    NASA Astrophysics Data System (ADS)

    Herzog, S.; Higgins, C. P.; McCray, J. E.

    2014-12-01

    Urban- and agriculturally-impacted streams face widespread water quality challenges from excess nutrients, metals, and pathogens from nonpoint sources, which the hyporheic zone (HZ) can capture and treat. However, flow through the HZ is typically small relative to stream flow and thus water quality contributions from the HZ are practically insignificant. Hyporheic exchange is a prominent topic in stream biogeochemistry, but growing understanding of HZ processes has not been translated into practical applications. In particular, existing HZ restoration structures (i.e. cross-vanes) do not exchange water efficiently nor control the residence time (RT) of downwelling streamwater. Here we present subsurface modifications to streambed hydraulic conductivity (K) to drive efficient hyporheic exchange and control RT, thereby enhancing the effectiveness of the HZ. Coordinated high K (i.e. gravel) and low K (i.e. concrete, clay) modifications are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST can simply use native sediments or may also incorporate reactive geomedia to enhance reactions. The contaminant mitigation potentials of BEST were estimated based on hyporheic flow and RT outputs from MODFLOW and MODPATH models and reported nutrient, metal, and pathogen removal rate constants from literature for specific porous media. Reactions of interest include denitrification and removal of phosphate, metals, and E. coli. Simulations showed that BEST structures in series can substantially improve water quality in small streams along reaches of tens of meters. The model results are compared to observed data in tank and constructed stream experiments. Preliminary results with BEST incorporating woodchip geomedia demonstrate rapid denitrification exceeding model predictions. These experiments should establish BEST as a novel stream restoration structure or Best Management Practice (BMP) option to help practitioners achieve stormwater compliance.

  20. Removal performance of nitrogen and endocrine-disrupting pesticides simultaneously in the enhanced biofilm system for polluted source water pretreatment.

    PubMed

    Feng, Li-Juan; Yang, Guang-Feng; Zhu, Liang; Xu, Xiang-Yang

    2014-10-01

    The removal performances of nitrogen and trace levels of endocrine-disrupting pesticides (cypermethrin and chlorpyrifos) were studied in the enhanced biofilm pretreatment system at various substrates concentrations and dissolve oxygen (DO) niches. No significant change of EDPs removal occurred with the increased feed of ammonia nitrogen in aerobic batch tests or nitrate in anaerobic batch reactors, but significantly enhanced via reed addition both in aerobic and anaerobic conditions. Simultaneously enhanced denitrification and EDPs removal were achieved in the anoxic niche with reed addition. The results of denaturing gradient gel electrophoresis (DGGE) indicated that new bands appeared, and some bands became more intense with the reed addition. Sequences analysis showed that the dominant species belonged to Methylophilaceae, Hyphomicrobium, Bacillus and Thauera, which were related to the nitrogen or EDPs removals. In addition, the growth of functional heterotrophic microbes may be promoted via reed addition.

  1. Tip-enhanced laser ablation sample transfer for biomolecule mass spectrometry.

    PubMed

    Ghorai, Suman; Seneviratne, Chinthaka A; Murray, Kermit K

    2015-01-01

    Atomic force microscope (AFM) tip-enhanced laser ablation was used to transfer molecules from thin films to a suspended silver wire for off-line mass spectrometry using laser desorption ionization (LDI) and matrix-assisted laser desorption ionization (MALDI). An AFM with a 30 nm radius gold-coated silicon tip was used to image the sample and to hold the tip 15 nm from the surface for material removal using a 355 nm Nd:YAG laser. The ablated material was captured on a silver wire that was held 300 μm vertically and 100 μm horizontally from the tip. For the small molecules anthracene and rhodamine 6G, the wire was cut and affixed to a metal target using double-sided conductive tape and analyzed by LDI using a commercial laser desorption time-of-flight mass spectrometer. Approximately 100 fg of material was ablated from each of the 1 μm ablation spots and transferred with approximately 3% efficiency. For larger polypeptide molecules angiotensin II and bovine insulin, the captured material was dissolved in saturated matrix solution and deposited on a target for MALDI analysis.

  2. Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry.

    PubMed

    Kim, Ki Hun; Compton, Philip D; Tran, John C; Kelleher, Neil L

    2015-05-01

    A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics.

  3. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays.

    PubMed

    Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J

    2002-01-01

    Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (enhanced resolution was demonstrated in the case of mometasone with polypropylene glycol (PPG) interference. At unit mass resolution, the transmitted precursor ion from the first quadrupole contained not only protonated molecules from mometasone, but also PPG interference. At enhanced resolution only selected mometasone peaks were transmitted, and no interference from PPG was detected. Sensitivity of the instrument was demonstrated with 10 femtograms of descarboethoxyloratadine injected on-column, for which a signal-to-noise (S/N) ratio of 24 was obtained for MRM chromatograms at both unit and enhanced resolution. Absolute signals obtained at enhanced resolution were about one-third those obtained at unit mass resolution. However, S/N was maintained at enhanced resolution due to the proportional decrease in noise level. Finally, the stability of the instrument operating at enhanced resolution was demonstrated during an overnight 17 h period that was used to validate a liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay for

  4. Electrically enhanced MBR system for total nutrient removal in remote northern applications.

    PubMed

    Wei, V; Elektorowicz, M; Oleszkiewicz, J A

    2012-01-01

    Thousands of sparsely populated communities scatter in the remote areas of northern Canada. It is economically preferable to adopt the decentralized systems to treat the domestic wastewater because of the vast human inhabitant distribution and cold climatic conditions. Electro-technologies such as electrofiltration, elctrofloatation, electrocoagulation and electrokinetic separation have been applied in water and conventional wastewater treatment for decades due to the minimum requirements of chemicals as well as ease of operation. The membrane bioreactor (MBR) is gaining popularity in recent years as an alternative water/wastewater treatment technology. However, few studies have been conducted to hyphenate these two technologies. The purpose of this work is to design a novel electrically enhanced membrane bioreactor (EMBR) as an alternative decentralized wastewater treatment system with improved nutrient removal and reduced membrane fouling. Two identical submerged membranes (GE ZW-1 hollow fiber module) were used for the experiment, with one as a control. The EMBR and control MBR were operated for 4 months at room temperature (20 ± 2 °C) with synthetic feed and 2 months at 10 °C with real sewage. The following results were observed: (1) the transmembrane pressure (TMP) increased significantly more slowly in the EMBR and the interval between the cleaning cycles of the EMBR increased at least twice; (2) the dissolved chemical oxygen demand (COD) or total organic carbon (TOC) in the EMBR biomass was reduced from 30 to 51%, correspondingly, concentrations of the extracellular polymeric substances (EPS), the major suspicious membrane foulants, decreased by 26-46% in the EMBR; (3) both control and EMBR removed >99% of ammonium-N and >95% of dissolved COD, in addition, ortho-P removal in the EMBR was >90%, compared with 47-61% of ortho-P removal in the MBR; and (4) the advantage of the EMBR over the conventional MBR in terms of membrane fouling retardation and

  5. Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment

    PubMed Central

    Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.

    2005-01-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838

  6. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.

    PubMed

    Keshavarz, Alireza; Zilouei, Hamid; Abdolmaleki, Amir; Asadinezhad, Ahmad

    2015-07-01

    A surface modification method was carried out to enhance the light crude oil sorption capacity of polyurethane foam (PUF) through immobilization of multi-walled carbon nanotube (MWCNT) on the foam surface at various concentrations. The developed sorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile elongation test. The results obtained from thermogravimetric and tensile elongation tests showed the improvement of thermal and mechanical resistance of surface-modified foam. The experimental data also revealed that the immobilization of MWCNT on PUF surface enhanced the sorption capacity of light crude oil and reduced water sorption. The highest oil removal capacity was obtained for 1 wt% MWCNT on PUF surface which was 21.44% enhancement in light crude oil sorption compared to the blank PUF. The reusability of surface modified PUF was determined through four cycles of chemical regeneration using petroleum ether. The adsorption of light crude oil with 30 g initial mass showed that 85.45% of the initial oil sorption capacity of this modified sorbent was remained after four regeneration cycles. Equilibrium isotherms for adsorption of oil were analyzed by the Freundlich, Langmuir, Temkin, and Redlich-Peterson models through linear and non-linear regression methods. Results of equilibrium revealed that Langmuir isotherm is the best fitting model and non-linear method is a more accurate way to predict the parameters involved in the isotherms. The overall findings suggested the promising potentials of the developed sorbent in order to be efficiently used in large-scale oil spill cleanup. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    PubMed Central

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity. PMID:22170425

  8. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal.

    PubMed

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-06-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of 'Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.

  10. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.

    PubMed

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu; Marzorati, Massimo; Lockington, Robin; Naidu, Ravi

    2016-01-01

    Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800mgl(-1) and which now showed complete removal of this concentration of diesel within 30days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81mW/m(2) and 15.04mW/m(2) respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000mgl(-1)) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs.

  11. Removal of natural organic matter in a typical south-China source water during enhanced coagulation with IPF-PACl.

    PubMed

    Liu, Hai-long; Wang, Dong-sheng; Xia, Zhong-huani; Tang, Hong-xiao; Zhang, Jin-song

    2005-01-01

    Systematic investigation on enhancing removal of natural organic matter (NOM) using inorganic polymer flocculant (IPF), polyaluminum chloride (PACl) and polyacrylamide (PAM) was performed in a typical south-China source water. Enhanced coagulation and applying polymer flocculant-aid were compared through jar tests and pilot tests. Raw water and settled water were characterized and fractionated by resin adsorption. The results show that DOC composes major part of TOC. The DOC distribution keeps relatively stable all around the year with typical high amounts of the hydrophilic matter around 50%. The distribution between HoB, HoA and HoN varies and undergoes fluctuation with the year round. During the summer season, the HoN becomes gradually the major part in hydrophobic parts. PACI with the species being tailor-made shows little pH effect during coagulation. The enhanced coagulation dosage for PACI could be 4.5 mg/L for the typical source water. The highest TOC removal achieved 31%. To be economically, 3 mg/L dose is the optimum dosage. Although hydrophilic fractions of NOM of both treatment strategies are removed about 30%, NOM causing UV254. absorbance were well removed(about 90%). Hydrophobic bases and acids fractions are much more removed under enhanced conditions. The hydrophilic fraction could be better removed using PAM, the polymer coagulant aid.

  12. Enhanced removal of organic dyes from porous channel-like SnO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Haitao; Guo, Anqi; Huang, Shuhui; Zhu, Jun; Cheng, Liwen

    2017-05-01

    Porous SnO2 nanostructures with nanochannels are synthesized through anodic oxidation of tin foils in oxalic acid solution. The effect of varying the applied potentials on the morphologies and photocatalytic activities of the porous channel-like SnO2 are investigated. The enhancement of photocatalytic efficiency is exhibited with increasing the pore diameter and the complete removal of MO molecules is possible in 120 min under the irradiation. Photocatalytic efficiency of the porous channel-like SnO2 nanostructure for the photo-reduction of MO pollutants is much faster than that of simple SnO2 nanoparticles, which mainly attribute to the efficient anti-recombination of photogenerated electron-hole pairs for the introducing of porous nanochannel-like nanostructures. The structure would significantly extend its application not only in waste water remediation but also in other fields, such as supercapacitors and gas sensors.

  13. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.

    PubMed

    Xing, Lizhen; Ren, Li; Tang, Bo; Wu, Guangxue; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  14. The effect of free nitrous acid on key anaerobic processes in enhanced biological phosphorus removal systems.

    PubMed

    Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2013-02-01

    In this study, the effect of nitrite/FNA on the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) is investigated. The results clearly show that FNA has a detrimental effect on the acetate uptake rate by both PAOs and GAOs, but this adverse effect is much stronger on PAOs than on GAOs. Also, when FNA was increased, phosphate release to acetate uptake ratio by PAOs increased substantially (250-300% compared to control), which was accompanied by decreases (40-60%) in glycogen degradation and PHA production to VFA uptake. In contrast, these ratios for GAOs remained constant or increased slightly towards the highest FNA concentration applied. These results indicate that the anaerobic metabolism of PAOs is more adversely affected than that of GAOs when FNA is present. This might provide a competitive advantage to GAOs over PAOs in enhanced biological phosphorus removal systems when nitrite is present. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    PubMed Central

    Xing, Lizhen; Ren, Li; Tang, Bo; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate. PMID:24381942

  16. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes.

  17. Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction.

    PubMed

    Amrate, S; Akretche, D E; Innocent, C; Seta, P

    2005-10-15

    Electrokinetic extraction has been tested to remove lead from an Algerian contaminated soil ([Pb] = 4.432 +/- 0.275 mg g(-1)) sited near a battery plant. The effect of EDTA at various concentrations (0.05-0.20 M) on the enhancement of lead transport has been studied by applying a constant voltage corresponding to a nominal electric field strength of 1 V cm(-1) (duration: 240 h). Results of contaminant distribution across the experimental cell have shown efficient transport of lead toward the anode despite the presence of calcite (25%) and the high acid/base buffer capacity of the soil. To avoid ligand loss, which would be anodically oxidized, the cell was modified by adding extra compartments and inserting cation exchange membranes (Neosepta CMX). Thus, simultaneous recovery of EDTA and lead from their chelated solutions has been made possible using the same set-up and by controlling fluids chemistry.

  18. Enhanced removal of nitrate from water using amine-grafted agricultural wastes.

    PubMed

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Shim, W G; Kandasamy, Jaya; Ngo, H H; Vigneswaran, Saravanamuthu

    2016-09-15

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mgN/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH6.5 and ionic strength 1×10(-3)M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mgN/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20mg N/L at a flow velocity 5m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system.

  20. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants.

    PubMed

    Nielsen, Per Halkjaer; Mielczarek, Artur Tomasz; Kragelund, Caroline; Nielsen, Jeppe Lund; Saunders, Aaron Marc; Kong, Yunhong; Hansen, Aviaja Anna; Vollertsen, Jes

    2010-09-01

    The microbial populations in 25 full-scale activated sludge wastewater treatment plants with enhanced biological phosphorus removal (EBPR plants) have been intensively studied over several years. Most of the important bacterial groups involved in nitrification, denitrification, biological P removal, fermentation, and hydrolysis have been identified and quantified using quantitative culture-independent molecular methods. Surprisingly, a limited number of core species was present in all plants, constituting on average approx. 80% of the entire communities in the plants, showing that the microbial populations in EBPR plants are rather similar and not very diverse, as sometimes suggested. By focusing on these organisms it is possible to make a comprehensive ecosystem model, where many important aspects in relation to microbial ecosystems and wastewater treatment can be investigated. We have reviewed the current knowledge about these microorganisms with focus on key ecophysiological factors and combined this into a conceptual ecosystem model for EBPR plants. It includes the major pathways of carbon flow with specific organic substances, the dominant populations involved in the transformations, interspecies interactions, and the key factors controlling their presence and activity. We believe that the EBPR process is a perfect model system for studies of microbial ecology in water engineering systems and that this conceptual model can be used for proposing and testing theories based on microbial ecosystem theories, for the development of new and improved quantitative ecosystem models and is beneficial for future design and management of wastewater treatment systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  2. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-05-19

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  3. Methanol-driven enhanced biological phosphorus removal with a syntrophic consortium.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Vanneste, Gianni; Guisasola, Albert; Baeza, Juan A

    2013-02-01

    The presence of suitable carbon sources for enhanced biological phosphorus removal (EBPR) plays a key role in phosphorus removal from wastewater in urban WWTP. For wastewaters with low volatile fatty acids (VFAs) content, an external carbon addition is necessary. As methanol is the most commonly external carbon source used for denitrification it could be a priori a promising alternative, but previous attempts to use it for EBPR have failed. This study is the first successful report of methanol utilization as external carbon source for EBPR. Since a direct replacement strategy (i.e., supply of methanol as a sole carbon source to a propionic-fed PAO-enriched sludge) failed, a novel process was designed and implemented successfully: development of a consortium with anaerobic biomass and polyphosphate accumulating organisms (PAOs). Methanol-degrading acetogens were (i) selected against other anaerobic methanol degraders from an anaerobic sludge; (ii) subjected to conventional EBPR conditions (anaerobic + aerobic); and (iii) bioaugmented with PAOs. EBPR with methanol as a sole carbon source was sustained in a mid-term basis with this procedure. Copyright © 2012 Wiley Periodicals, Inc.

  4. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  5. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems.

    PubMed

    Lawson, Christopher E; Strachan, Blake J; Hanson, Niels W; Hahn, Aria S; Hall, Eric R; Rabinowitz, Barry; Mavinic, Donald S; Ramey, William D; Hallam, Steven J

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Enhanced Cleaning of Genesis Solar Wind Sample 61348 for Film Residue Removal

    NASA Technical Reports Server (NTRS)

    Allums, K. K.; Gonzalez, C. P.; Kuhlman, K. R.; Allton, J. H.

    2015-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a nonnominal reentry. During the recovery of the collector materials from the capsule, many of the collector fragments were placed on the adhesive protion of post-it notes to prevent the fragments from moving during transport back to Johnson Space Center. This unknowingly provided an additional contaminate that would prove difficult to remove with the limited chemistries allowed in the Genesis Curation Laboratory. Generally when collector material samples are prepared for allocation to PIs, the samples are cleaned front side only with Ultra-Pure Water (UPW) via megasonic dispersion to the collector surface to remove crash debris and contamination. While this cleaning method works well on samples that were not placed on post-its during recovery, it has caused movement of the residue on the back of the sample to be deposited on the front in at least two examples. Therefore, samples placed on the adhesive portion on post-it note, require enhanced cleaning methods since post-it residue has proved resistant to UPW cleaning.

  8. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    NASA Astrophysics Data System (ADS)

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL- and Cu2L22-) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  9. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control.

    PubMed

    Lambadi, Paramesh Ramulu; Sharma, Tarun Kumar; Kumar, Piyush; Vasnani, Priyanka; Thalluri, Sitaramanjaneya Mouli; Bisht, Neha; Pathania, Ranjana; Navani, Naveen Kumar

    2015-01-01

    Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host's immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections.

  10. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin.

    PubMed

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-12

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu(2+) and CuHL(0)) coordinated with neutral amine sites and anionic complex species (CuL(-) and Cu2L2(2-)) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  11. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control

    PubMed Central

    Lambadi, Paramesh Ramulu; Sharma, Tarun Kumar; Kumar, Piyush; Vasnani, Priyanka; Thalluri, Sitaramanjaneya Mouli; Bisht, Neha; Pathania, Ranjana; Navani, Naveen Kumar

    2015-01-01

    Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host’s immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections. PMID:25834431

  12. Photocatalytically Enhanced Cationic Dye Removal with Zn-Al Layered Double Hydroxides

    NASA Astrophysics Data System (ADS)

    Starukh, G.

    2017-06-01

    Calcined and organo-modified Zn-Al layered double hydroxides (LDHs) were studied as adsorbents and photocatalysts for removal of cationic dye, as namely methylene blue (MB) . Zn-Al LDHs with a cationic ratio of 2:4 were obtained by the coprecipitation method. As-synthesized samples were calcined at different temperatures and the phase transformations were investigated by XRD, TG/DTG, and UV-vis-DR methods. The activity of as-synthesized and calcined Zn-Al LDHs under UV light was attributed to the presence of ZnO phase. The amount of ZnO in LDHs can be regulated by varying of Zn/Al ratio and heating temperature. The impact of Zn/Al ratio on photocatalytic activity of LDHs was observed predominant. The calcined Zn-Al LDHs demonstrated low adsorption of MB. The modification of ZnAl LDHs by sodium dodecyl sulfate was performed using a reconstruction method. The organo/LDH nanohybrids demonstrated high adsorption capacity to MB. The removal of MB from solutions with organo/Zn-Al LDHs was enhanced by using UV light due to MB photodestruction.

  13. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    PubMed Central

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-01-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970

  14. Extracorporeal Carbon Dioxide Removal Enhanced by Lactic Acid Infusion in Spontaneously Breathing Conscious Sheep.

    PubMed

    Scaravilli, Vittorio; Kreyer, Stefan; Belenkiy, Slava; Linden, Katharina; Zanella, Alberto; Li, Yansong; Dubick, Michael A; Cancio, Leopoldo C; Pesenti, Antonio; Batchinsky, Andriy I

    2016-03-01

    The authors studied the effects on membrane lung carbon dioxide extraction (VCO2ML), spontaneous ventilation, and energy expenditure (EE) of an innovative extracorporeal carbon dioxide removal (ECCO2R) technique enhanced by acidification (acid load carbon dioxide removal [ALCO2R]) via lactic acid. Six spontaneously breathing healthy ewes were connected to an extracorporeal circuit with blood flow 250 ml/min and gas flow 10 l/min. Sheep underwent two randomly ordered experimental sequences, each consisting of two 12-h alternating phases of ALCO2R and ECCO2R. During ALCO2R, lactic acid (1.5 mEq/min) was infused before the membrane lung. Caloric intake was not controlled, and animals were freely fed. VCO2ML, natural lung carbon dioxide extraction, total carbon dioxide production, and minute ventilation were recorded. Oxygen consumption and EE were calculated. ALCO2R enhanced VCO2ML by 48% relative to ECCO2R (55.3 ± 3.1 vs. 37.2 ± 3.2 ml/min; P less than 0.001). During ALCO2R, minute ventilation and natural lung carbon dioxide extraction were not affected (7.88 ± 2.00 vs. 7.51 ± 1.89 l/min, P = 0.146; 167.9 ± 41.6 vs. 159.6 ± 51.8 ml/min, P = 0.063), whereas total carbon dioxide production, oxygen consumption, and EE rose by 12% each (223.53 ± 42.68 vs. 196.64 ± 50.92 ml/min, 215.3 ± 96.9 vs. 189.1 ± 89.0 ml/min, 67.5 ± 24.0 vs. 60.3 ± 20.1 kcal/h; P less than 0.001). ALCO2R was effective in enhancing VCO2ML. However, lactic acid caused a rise in EE that made ALCO2R no different from standard ECCO2R with respect to ventilation. The authors suggest coupling lactic acid-enhanced ALCO2R with active measures to control metabolism.

  15. Enhanced effect of in-situ generated ammonium salts aerosols on the removal of NOx from simulated flue gas.

    PubMed

    Tseng, C H; Keener, T C; Lee, J Y; Khang, S J

    2001-08-01

    The combined removal of sulfur dioxide (SO2, up to 3,000 ppm) and nitrogen oxides (NO and NO2, up to 1,200 ppm) has been investigated in a bench-scale pulsed-corona enhanced wet electrostatic precipitator (wESP) with the optional injection of ammonia and/or ozone. The reaction of ammonia with SO2 produces submicron aerosols under certain conditions. Experiments have shown the feasibility of combined SO2 and NOx removal from simulated flue gases by the action of these in-situ generated aerosols. The mechanisms for NOx removal include oxidation of NO to NO2 and subsequent absorption of NO2 into the water wall of the wESP. The results have shown that injecting NH3 (NH3/NOx molar ratio 1) resulted in NOx removal of approximately 13% in a simulated combustion flue gas. Injecting 200 ppm ozone (no ammonia) increased NO conversion to 35% by oxidation, but total NOx removal increased to only 17%. Without the formation of ammonium salts aerosols (e.g., without SO2 in the gas), co-injection of ammonia and ozone increased NO conversion to 60% and NOx removal to 40%. However, high NOx removals were measured in simulated flue gas that contained NH3, SO2, and ozone. The total NOx removal efficiency was 79% when the ammonium salts aerosols were formed in the presence of 2400 ppm SO2, 312 ppm O3, and 2,900 ppm NH3. The energy efficiency of collection improved by approximately 250% for SO2 removal and more than 4700% for NOx removal under these conditions. It was determined that the ammonium salts aerosols produced from the reaction of ammonia and sulfur dioxide substantially enhanced total NOx removal.

  16. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution.

    PubMed

    Ji, Qingqing; Li, Jun; Xiong, Zhaokun; Lai, Bo

    2017-04-01

    In this study, batch experiments were conducted to examine the enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution. The key operating parameters (i.e., theoretical Cu mass loadings (TMLCu), mFe/Cu dosage, PS dose, initial pH and temperature) were optimized by the batch experiments, respectively. The experimental data were followed well the pseudo-first-order kinetic model. Result reveals that refractory PNP (500 mg L(-1)) was effectively degraded by mFe/Cu-PS system with removal of 98.4% and kobs of 1.91 min(-1) after only 3 min treatment under the optimal operating conditions. Moreover, compared with control experiments (i.e., mFe/Cu, microscale Fe(0) with PS (mFe(0)-PS), and PS alone), mFe/Cu-PS system exerted better performance for PNP removal due to the strong synergistic effect between PS and mFe/Cu. According to the analysis results of degradation kinetics of PNP, COD (chemical oxygen demand) removal, UV-vis absorption spectra and the intermediates formed, the results reveal that the PNP removal by mFe/Cu-PS system was mainly attributed to reduction accompanied slight oxidation. And based on the analysis of surface characteristics of mFe/Cu particles, it is further demonstrated that PS could enhance the reactivity of mFe/Cu through rapid corrosion of iron surface and decrease of surface passivation of mFe/Cu surface when the low molar ratio of PS to mFe/Cu (i.e., 1:43) was used in this study. These results also illustrates mFe/Cu-PS can be as a high efficient pretreatment technology for the removal of toxic refractory PNP from wastewater.

  17. Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism.

    PubMed

    Fang, Jing; Sun, Pei-de; Xu, Shao-juan; Luo, Tao; Lou, Ju-qing; Han, Jing-yi; Song, Ying-qi

    2012-10-01

    Influence of Cr(VI) on P removal in enhanced biological phosphorus removal (EBPR) system was investigated with respect to the composition of poly-phosphate-accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), the transformation of poly-β-hydroxyalkanoates (PHA) and glycogen, enzymes' activities, and the intracellular Cr. Whether EBPR system could revive after Cr(VI) shock was also explored. Results showed P removal performance was completely inhibited by Cr(VI) with the concentration more than 5 mg L(-1). PAOs were more sensitive to Cr(VI) than GAOs and the other bacteria were. PHA consumption, glycogen synthesis and adenylate kinase's activity had been inhibited by 5 mg L(-1) Cr(VI). Both adenylate kinase's activity and P removal efficiency were negatively correlated with the intracellular Cr. Recovery experiments revealed that P removal performance with 5 mg L(-1) Cr(VI) shock could revive after a 2-day recovery treatment, while systems with high level Cr(VI) (20 and 60 mg L(-1)) shock could not. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  19. Removal of pollutants by enhanced coagulation combined PAC with variable charge soils: flocs' properties and effect of pH.

    PubMed

    Wang, Yu-Jie; Wu, Chun-De; Duan, Yan; Zhang, Zhi-Lin

    2016-09-01

    This study investigated the properties of flocs and effects of the solution pH on removal of representative pollutants by enhanced coagulation with variable charge soils of South China and polyaluminum chloride (PAC). The results demonstrated that the removal efficiency of turbidity was larger and the aggregated flocs had a faster growth rate, bigger size, denser structure and faster settling rate than those generated by PAC alone, when variable charge soil was used in conjunction with PAC. Additionally, initial solutions pH had meaningful effects on removal of pollutants. With the increase in the pH of the solution, the removal efficiencies of turbidity, algae and heavy metal ions significantly increased. Besides, charge neutralization together with physical entrapment of colloids was the dominant mechanism in enhanced coagulation, and variable charge soil displayed a great adsorption effect.

  20. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production.

    PubMed

    Ma, Xiaochen; Zheng, Hongli; Addy, Min; Anderson, Erik; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-05-01

    To improve nutrients removal from wastewater and enhance lipid production, cultivation of Chlorella vulgaris in wastewater with waste glycerol generated from biodiesel production using scum derived oil as feedstock was studied. The results showed that nutrients removal was improved and lipid production of C. vulgaris was enhanced with the addition of waste glycerol into wastewater to balance its C/N ratio. The optimal concentration of the pretreated glycerol for C. vulgaris was 10gL(-1) with biomass concentration of 2.92gL(-1), lipid productivity of 163mgL(-1)d(-1), and the removal of 100% ammonia and 95% of total nitrogen. Alkaline conditions prompted cell growth and lipid accumulation of C. vulgaris while stimulating nutrients removal. The application of the integration process can lower both wastewater treatment and biofuel feedstock costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Improved isotope ratio measurement performance in liquid chromatography/isotope ratio mass spectrometry by removing excess oxygen.

    PubMed

    Hettmann, Elena; Brand, Willi A; Gleixner, Gerd

    2007-01-01

    A low dead volume oxygen scrubbing system was introduced in a commercially available liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) interface to enhance the analytical capability of the system. In the LC/IRMS interface carbon from organic samples is converted into CO(2) inside the mobile phase by wet chemical oxidation using peroxodisulfate (Na(2)S(2)O(8)). After passing the hot reaction zone, surplus oxygen (O(2)) remains dissolved in the liquid phase. Both CO(2) and O(2) diffuse through a transfer membrane into the helium carrier and are transferred to the mass spectrometer. The presence of O(2) in the ion source may have detrimental effects on measurement accuracy and precision as well as on filament lifetime. As a remedy, a new on-line O(2)-removing device has been incorporated into the system. The new O(2) scrubber consists of two parallel hot copper reduction reactors (0.8 mm i.d., active length 120 mm) and a switch-over valve between them. One reactor is regenerated using He/H(2) while the other is actively scavenging O(2) from the gas stream. The capacity of each reduction reactor, expressed as usage time, is between 40 and 50 min. This is sufficient for a single LC run for sugars and organic acids. A further increase of the reduction capacity is accompanied by a peak broadening of about 100%. After switching to a freshly reduced reactor the oxygen background and the delta(13)C values of the reference gas need up to 500 s to stabilize. For repeated injections the delta(13)C values of sucrose remain constant (+/-0.1 per thousand) for about 3000 s. The long-term stability for measurements of sucrose was 0.11 per thousand without the reduction oven and improved slightly to 0.08 per thousand with the reduction oven. The filament lifetime improved by more than 600%, thereby improving the long-term system stability and analytical efficiency. In addition the costs per analysis were reduced considerably.

  2. Combination of powdered activated carbon and powdered zeolite for enhancing ammonium removal in micro-polluted raw water.

    PubMed

    Liao, Zhen-Liang; Chen, Hao; Zhu, Bai-Rong; Li, Huai-Zheng

    2015-09-01

    Even zeolite is promising in ammonia pollution disposing, its removal efficiency is frequently interfered by organics. As activated carbon has good removal efficiency on organic contaminants, combination of two adsorbents may allow their respective adsorption characteristics into full play. This paper provides a performance assessment of the combination for enhancing ammonium removal in micro-polluted raw water. Gel-filtration chromatography (GFC) was carried out to quantify the molecular weight (MW) range of organic contaminants that powdered activated carbon (PAC) and powdered zeolite (PZ) can remove. The polydispersity difference which also calculated from GFC may indicate the wider organic contaminants removal range of PAC and the relatively centralized removal range of PZ. The jar tests of combination dosing confirm a synergistic effect which promotes ammonium removing. Nevertheless, it also shows an antagonism hindering the due removal performance of the two adsorbents on CODMn, while it is not much evident on UV254. Furthermore, a comparison study with simulated coagulation-sedimentation process was conducted to evaluate the optimum dosing points (spatial and temporal) of PAC and PZ among follows: suction well, pipeline mixer, early and middle phase of flocculation. We suggest to dose both two adsorbents into the early phase of flocculation to maximize the versatile removal efficiency on turbidity, ammonium and organic contaminants.

  3. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    NASA Astrophysics Data System (ADS)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  4. Grazer removal and nutrient enrichment as recovery enhancers for overexploited rocky subtidal habitats.

    PubMed

    Guarnieri, Giuseppe; Bevilacqua, Stanislao; Vignes, Fabio; Fraschetti, Simonetta

    2014-07-01

    Increasing anthropogenic pressures are causing long-lasting regime shifts from high-diversity ecosystems to low-diversity degraded ones. Understanding the effects of multiple threats on ecosystems, and identifying processes allowing for the recovery of biodiversity, are the current major challenges in ecology. In several temperate marine areas, large parts of rocky subtidal habitats characterised by high diversity have been completely degraded to barren grounds by overfishing, including illegal date mussel fishing. Bare areas are characterized by the dominance of sea urchins whose grazing perpetuates the impact of overfishing. We investigated experimentally the separate and combined effects of nutrient enrichment and sea urchin exclusion on the recovery of barren grounds. Our results indicate that the two factors have a synergistic effect leading to the re-establishment of erect macroalgal canopies, enhancing the structural complexity of subtidal assemblages. In particular, in the overfished system considered here, the recovery of disturbed assemblages could occur only if sea urchins are removed. However, the recolonization of barren grounds by erect macroalgae is further enhanced under enriched conditions. This study demonstrates that the recovery of dramatically depleted marine habitats is possible, and provides useful indications for specific management actions, which at present are totally lacking, to achieve the restoration of barren grounds caused by human activity.

  5. Enhanced removal of nitrate from water using surface modification of adsorbents--a review.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya

    2013-12-15

    Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents.

  6. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar.

    PubMed

    Rajapaksha, Anushka Upamali; Vithanage, Meththika; Ahmad, Mahtab; Seo, Dong-Cheol; Cho, Ju-Sik; Lee, Sung-Eun; Lee, Sang Soo; Ok, Yong Sik

    2015-06-15

    Recent investigations have shown frequent detection of pharmaceuticals in soils and waters posing potential risks to human and ecological health. Here, we report the enhanced removal of sulfamethazine (SMT) from water by physically activated biochar. Specifically, we investigated the effects of steam-activated biochars synthesized from an invasive plant (Sicyos angulatus L.) on the sorption of SMT in water. The properties and sorption capacities of steam-activated biochars were compared with those of conventional non-activated slow pyrolyzed biochars. Sorption exhibited pronounced pH dependence, which was consistent with SMT speciation and biochar charge properties. A linear relationship was observed between sorption parameters and biochar properties such as molar elemental ratios, surface area, and pore volumes. The isotherms data were well described by the Freundlich and Temkin models suggesting favorable chemisorption processes and electrostatic interactions between SMT and biochar. The steam-activated biochar produced at 700 °C showed the highest sorption capacity (37.7 mg g(-1)) at pH 3, with a 55% increase in sorption capacity compared to that of non-activated biochar produced at the same temperature. Therefore, steam activation could potentially enhance the sorption capacities of biochars compared to conventional pyrolysis.

  7. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal.

    PubMed

    Wang, Dong; Wang, Guowen; Zhang, Guoquan; Xu, Xiaochen; Yang, Fenglin

    2013-03-01

    Graphene oxide (GO) was applied in this study to enhance the activity of anaerobic ammonium oxidation (anammox) bacteria for nitrogen removal. A GO dose-dependent effect on anammox bacteria was observed through batch tests. The results showed that the activity increased as the GO dose was varied within 0.05-0.1gL(-1). A maximum 10.26% increase of anaerobic ammonium oxidizing activity was achieved at 0.1gL(-1) GO. Analysis of extracellular polymeric substances (EPS) indicated that the highest carbohydrate, protein, and total EPS contents (42.5, 125.7, and 168.2mg (g volatile suspended solids)(-1), respectively) were obtained with 0.1gL(-1) GO. Appropriate GO dose stimulated EPS production to promote the activity of anammox bacteria. Transmission electron microscopy showed the large surface area of GO benefited cell attachment. These findings proved that the application of GO was an effective approach to enhancing the activity of anammox bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system.

    PubMed

    Sun, Guangzhi; Zhao, Yaqian; Allen, Stephen

    2005-01-26

    A tidal flow constructed wetland system was investigated for the removal of organic matter and ammoniacal-nitrogen from diluted piggery wastewater. The results demonstrated that the operation of tidal flow enhanced the transfer of oxygen into wetland matrices. The supply of oxygen by the operation (473 gO2/m2d) matched the demand for wastewater treatment. The overall oxygen consumption rate in the system was considerably higher than the typical rate obtainable in conventional wetlands; most oxygen being used for the decomposition of organic matter. Compared with conventional systems, the tidal flow system demonstrated greater efficiency in the removal of organic matter. Significant nitrification did not take place, although 27-48% ammonia was removed from the wastewater. Immobilization by microbial cells and adsorption were the likely routes to remove ammonia under the specific experiment conditions. Percentage removals of BOD5, NH4-N and SS increased after effluent recirculation at a ratio of 1:1 was employed.

  9. Bio-enhanced activated carbon filter with immobilized microorganisms for removing organic pollutants in the Songhua River.

    PubMed

    Gao, Yu-Nan; Li, Wei-Guang; Zhang, Duo-Ying; Wang, Guang-Zhi

    2010-01-01

    Five dominant microorganisms including four kinds of Pseudomonas and one kind of Bacillus were isolated from the Songhua River. The organic pollutants removal potential and community composition of these five dominant microorganisms immobilized on activated carbon filter, which is called the bio-enhanced activated carbon filter (BEAC), were investigated to compare with the naturally formed biological activated carbon (BAC) filter. Songhua River was used as the raw water. The pilot scale test results showed the biomass in the BEAC filter increased initially and then stabilized after 45 d of operation with an average value of 192 nmolPO(4)/g carbon. The corresponding biological activity reached 1,368 ng ATP/g carbon. The gas chromatography-mass spectrometry (GC-MS) results showed that the BEAC filter degraded the toxic organic substances more effectively than the BAC filter, especially for halogenated hydrocarbons and PAHs (polycyclic aromatic hydrocarbons). Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analysis revealed the eco-system of five dominant microorganisms did not change in the BEAC filter even on 180 d of operation. Two of the five dominant microorganisms, Bacillus subtilis and Pseudomonas balearica, had high biological activity and were more adaptable to the surface of the carbon media than the other three dominant microorganisms. The scanning electron microscope (SEM) photograph showed a large quantity of microorganisms developed on the BEAC filter. The toxicity test using Deltatox Bioassay Technology Analyzer indicated that the dominant microorganisms were safe to be applied in drinking water treatment process.

  10. Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater.

    PubMed

    Yan, Lilong; Zhang, Shaoliang; Hao, Guoxin; Zhang, Xiaolei; Ren, Yuan; Wen, Yan; Guo, Yihan; Zhang, Ying

    2016-02-01

    In this study, role of extracellular polymeric substances (EPSs) in enhancing nitrogen-removal from ammonium-nitrogen-rich wastewater using aerobic granular sludge (AGS) technology were analyzed. AGS enabled ammonium oxidation and denitrification to occur simultaneously. Air stripping and simultaneous nitrification-denitrification contributed to total-nitrogen removal. Clone-library analysis revealed that close relatives of Nitrosomonas eutropha and heterotrophic denitrifiers were dominant in the AGS, whereas anammox bacteria were not detected. EPSs adsorption of ammonium, nitrite, and nitrate nitrogen results in improved removal of nitrogen in batch experiments.

  11. Mn(VII)-Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: simultaneous enhanced cyanobacterium removal and residual coagulant control.

    PubMed

    Ma, Min; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2014-11-15

    A novel Mn(VII)-Fe(II) pre-treatment was proposed to simultaneously enhance the removal of Microcystis aeruginosa by aluminum chloride (AlCl3) coagulation and enabled lowering the dose of Al as effective coagulation can be achieved only by Al, however, at higher doses. In this process, permanganate [Mn(VII)] and ferrous sulfate [Fe(II)] were dosed sequentially prior to Al. The application of Fe(II) not only avoids the extensive oxidation of M. aeruginosa by Mn(VII) but also introduces Fe(III) formed in situ into the system. Results show that, at Al doses of 83.3-108.3 μM, Mn(VII)-Fe(II) pretreatment (Mn(VII) dose: 8.3-16.7 μM; Fe(II) dose: 39.5 μM) is capable of enhancing M. aeruginosa removal by 73.4-81.4%. In contrast, only 0-65.4% and 2.7-8.2% increase in M. aeruginosa removal is achieved by Mn(VII) and Fe(II) pre-treatment, respectively. The ESI-MS spectrum shows that the freshly formed Fe(III) hydrolyzes much more slowly than pre-formed Fe(III) does, and this effect results in its higher efficiency towards the removal of M. aeruginosa. Moreover, in the co-existing system, Fe tends to hydrolyze preferentially and the presence of Fe salts improves the precipitation of Al and vice versa. Thus, the use of Fe and Al as dual-coagulants is practically valuable to control the residual level of coagulant(s) besides its improvement on the removal of M. aeruginosa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    PubMed

    Bin, Hu; Yang, Yi; Cai, Liang; Linjun, Yang; Roszak, Szczepan

    2017-09-15

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. It had been studied that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and a wet flue gas desulfurization (WFGD) in coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature, and chlorine ion concentration on Hg oxidation were studied as well. The Hg(0) oxidation efficiency improved significantly over SCR after improving the flue gas temperature and concentration of chlorine ion in the wastewater. The Hg(0) oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg(0) oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve Hg oxidized and removed efficiency in APCDs. The function of WFGD wastewater evaporation on Hg oxidation is due to reasons: active chlorine species generated through the evaporation process and promoted the Hg oxidation. Because Hg(2+) can be easily removed in ACPDs and chlorine ion is enriched in WFGD wastewater in power plants, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  13. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism.

    PubMed

    Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2012-11-30

    We perform classical molecular dynamics simulations to investigate the enhancement of the mass sensitivity and resonant frequency of graphene nanomechanical resonators that is achieved by driving them into the nonlinear oscillation regime. The mass sensitivity as measured by the resonant frequency shift is found to triple if the actuation energy is about 2.5 times the initial kinetic energy of the nanoresonator. The mechanism underlying the enhanced mass sensitivity is found to be the effective strain that is induced in the nanoresonator due to the nonlinear oscillations, where we obtain an analytic relationship between the induced effective strain and the actuation energy that is applied to the graphene nanoresonator. An important implication of this work is that there is no need for experimentalists to apply tensile strain to the resonators before actuation in order to enhance the mass sensitivity. Instead, enhanced mass sensitivity can be obtained by the far simpler technique of actuating nonlinear oscillations of an existing graphene nanoresonator.

  14. Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene.

    PubMed

    Yu, Fei; Ma, Jie; Bi, Dongsu

    2015-03-01

    Activated graphene adsorbents (G-KOH) were synthesized by a one-step alkali-activated method, with a high specific surface area (SSA) and a large number of micropores. As a result, the SSA of the final product greatly increases to ∼512.6 m(2)/g from ∼138.20 m(2)/g. The resulting G-KOH was used firstly as an adsorbent for the removal of ciprofloxacin (CIP) in aqueous solutions. Experimental results indicated that G-KOH has excellent adsorption capacity (∼194.6 mg/g). The alkali-activation treatment introduced oxygen-containing functional groups on the surface of G-KOH, which would be beneficial to improving the adsorption affinity of G-KOH for the removal of CIP. Kinetic regression results showed that the adsorption kinetic was more accurately represented by a pseudo-second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. A Langmuir isotherm model showed a better fit with adsorption data than a Freundlich isotherm model for the adsorption of CIP on G-KOH. The remarkable adsorption capacity of CIP onto G-KOH can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron donor-acceptor interactions, and electrostatic interactions). Results of this work are of great significance for environmental applications of activated graphene with higher SSA as a promising adsorbent for organic pollutants from aqueous solutions.

  15. Improving hexane removal by enhancing fungal development in a microbial consortium biofilter.

    PubMed

    Arriaga, Sonia; Revah, Sergio

    2005-04-05

    The removal of hydrophobic pollutants in biofilters is often limited by gas liquid mass transfer to the biotic aqueous phase where biodegradation occurs. It has been proposed that the use of fungi may improve their removal efficiency. To confirm this, the uptake of hexane vapors was investigated in 2.6-L perlite-packed biofilters, inoculated with a mixed culture containing bacteria and fungi, which were operated under neutral or acid conditions. For a hexane inlet load of around 140 g.m-3.h-1, elimination capacities (EC) of 60 and 100 g.m-3.h-1 were respectively reached with the neutral and acid systems. Increasing the inlet hexane load showed that the maximum EC obtained in the acid biofilter (150 g.m-3.h-1) was twice greater than in the neutral filter. The addition of bacterial inhibitors had no significant effect on EC in the acid system. The biomass in the acid biofilter was 187 mg.g-1 (dry perlite) without an important pressure drop (26.5 mm of water.m-1reactor). The greater efficiency obtained with the acid biofilter can be related to the hydrophobic aerial hyphae which are in direct contact with the gas and can absorb the hydrophobic compounds faster than the flat bacterial biofilms. Two fungi were isolated from the acid biofilter and were identified as Cladosporium and Fusarium spp. Hexane EC of 40 g.m-3.h-1 for Cladosporium sp. and 50 g.m-3.h-1 for Fusarium sp. were obtained in short time experiments in small biofilters (0.230 L). A biomass content around 30 mg.g-1 (dry perlite) showed the potential for hexane biofiltration of the strains.

  16. Bisphenol-A removal in various wastewater treatment processes: operational conditions, mass balance, and optimization.

    PubMed

    Guerra, P; Kim, M; Teslic, S; Alaee, M; Smyth, S A

    2015-04-01

    Bisphenol-A (BPA) was analyzed in 499 liquid and 347 solid samples collected from twenty-five wastewater treatment plants (WWTPs) to investigate parameters affecting BPA occurrence, removal, and fate. Lagoons, chemically-assisted primary treatment, secondary treatment, and advanced treatment processes were included. Median BPA concentrations in influent and final effluent were 400 ng/L and 150 ng/L, respectively. Median removal efficiencies ranged from 1 to 77%. Respective median BPA levels in primary sludge, secondary biological sludge, and biosolids were 230, 260, and 460 ng/g with digested biosolids having the highest concentrations. The biological aerated filter and membrane bioreactor processes showed the best performance, while chemically-assisted primary treatment achieved the lowest removal. Biodegradation and sorption contributing to BPA removal were influenced by operational conditions: hydraulic retention time (HRT), solids retention time (SRT), and mixed liquor suspended solids (MLSS). The influence of HRT, SRT, and MLSS in the bioreactor was stronger during cold temperatures. In order to achieve above 80% removal, the required conditions for HRT, SRT, and MLSS were 13 h, 7 days, and 1600 mg/L during summer (median temperature 19 °C) and 13 h, 17 days, and 5300 mg/L during winter (median temperature 10 °C); indicating that longer SRT and higher MLSS were needed during winter. BPA's sorption tendency to sludge was strongly influenced by the degree of nitrification and HRT.

  17. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    NASA Astrophysics Data System (ADS)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, As<0.1 mg/L). As the contribution of the acidic stream increased, the concentration of Fe and Al in the solid phase reached a peak at different pHs. Although the optimal pH for As sorption was ~3, the overall maximum removal of As at the confluence, ocurred for pH~4. This is produced because optimal As sorption does not occur necessarily for the highest concentrations of particles being formed. We propose that fluvial confluences could be engineered to enhance the natural attenuation of contaminants. An analogy between confluences and coagulation-flocculation-sedimentation drinking water plants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  18. Enhanced Stormwater Contaminant Removal and Improved Runoff Quality Using Modified Sorbents in Tree Filters

    NASA Astrophysics Data System (ADS)

    Schifman, L. A.; Kasaraneni, V.; Boving, T. B.; Oyanedel-Craver, V.

    2013-12-01

    Stormwater runoff, particularly in urban areas, contains high concentrations of pathogens that are often cited as one of the main reasons for beach closings and other water quality issues in coastal areas. Commonly found contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat the runoff before discharging it. Many BMP, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff, but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, the contaminant retention of an alternative sorption material was compared to expanded shale that is usually used in tree filters. Red cedar wood chips were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that the wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAH by sorption processes. In the case of AgNP amendment to wood, less AgNP uptake and more desorption from the wood matrix was observed, making this amendment less favorable for bacteria deactivation. Batch experiments show that wood chips modified with QAS can remove up to 3 orders of magnitude of bacteria and retain up to 0.1 mg/g of PAH compared to shale, which has very limited bacteria deactivation (less than one order of magnitude) a PAH retention capacity of 0.04 mg/g. In this talk, the contaminant removal efficiency of the modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  19. Enhanced Stormwater Contaminant Removal and Improved Runoff Quality Using Modified Sorbents in Tree Filters

    NASA Astrophysics Data System (ADS)

    Schifman, L. A.; Kasaraneni, V.; Boving, T. B.; Oyanedel-Craver, V.

    2011-12-01

    Stormwater runoff, particularly in urban areas, contains high concentrations of pathogens that are often cited as one of the main reasons for beach closings and other water quality issues in coastal areas. Commonly found contaminants in runoff are often addressed by structural best management practices (BMP) that capture and treat the runoff before discharging it. Many BMP, such as tree filters, act as primary filtration devices that attenuate total suspended solids, nutrients, and heavy metals from runoff, but typically these BMPs are not designed to treat bacteria and have only minor petroleum hydrocarbon (PH) treatment capabilities. To address this shortcoming, the contaminant retention of an alternative sorption material was compared to expanded shale that is usually used in tree filters. Red cedar wood chips were modified with either Quaternary Ammonium Silane (QAS) or Silver Nanoparticles (AgNPs) to provide antimicrobial properties to the matrix and/or exploit their affinity to sorb PH, particularly polycyclic aromatic hydrocarbons (PAH). Results show that the wood chips exhibit the highest sorption capacity for QAS, making this material favorable for treating bacteria, while at the same time attenuating PAH by sorption processes. In the case of AgNP amendment to wood, less AgNP uptake and more desorption from the wood matrix was observed, making this amendment less favorable for bacteria deactivation. Batch experiments show that wood chips modified with QAS can remove up to 3 orders of magnitude of bacteria and retain up to 0.1 mg/g of PAH compared to shale, which has very limited bacteria deactivation (less than one order of magnitude) a PAH retention capacity of 0.04 mg/g. In this talk, the contaminant removal efficiency of the modified and unmodified materials will be discussed on the background of how these materials may find use in enhanced treatment of stormwater in tree filter BMPs.

  20. Surfactant enhanced removal of PCE in a nominally two-dimensional, saturated, stratified porous medium

    NASA Astrophysics Data System (ADS)

    Walker, R. C.; Hofstee, C.; Dane, J. H.; Hill, W. E.

    1998-10-01

    Although surfactant enhanced remediation of nonaqueous phase liquids (NAPLs) by pump-and-treat technology has been studied extensively in the laboratory with one-dimensional columns, very few multi-dimensional investigations have been reported. In this study we focus on the removal of perchloroethylene (PCE) from a two-dimensional, saturated porous medium containing a low permeability sand layer situated in an otherwise high permeability sand. A PCE spill was applied at the surface of the porous medium and allowed to redistribute until static equilibrium was achieved. The porous medium was then flushed with various surfactant and co-solvent formulations injected at the PCE source location and extracted at the bottom of the porous medium using a configuration similar to that of Abdul and Ang [Abdul, S.A., Ang, C.C., 1994. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: Phase II. Pilot study. Ground Water 32, 727-734]. Effluent samples were analyzed for dissolved PCE concentrations. Volumetric water and PCE content values were determined at a number of locations by means of dual-energy gamma radiation measurements. Once surfactant flushing had started, PCE moved as a distinct separate phase ahead of the surfactant front. Most of this downward moving PCE accumulated on top of the low permeability sand layer. Some PCE, however, passed quickly through this layer and subsequently through the high permeability sand below it. Movement of some of the PCE into and through the low permeability sand layer was attributed to local heterogeneities combined with reduced interfacial tensions associated with the surfactant formulation. Clean-up of PCE in most of the high permeability sand was considered to be effective. PCE accumulated on top of the fine layer, however, posed a significant challenge to remediation and required several pumping configurations and surfactant/co-solvent formulations before most of it was removed.

  1. Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent.

    PubMed

    Bhaumik, Madhumita; Agarwal, Shilpi; Gupta, Vinod Kumar; Maity, Arjun

    2016-05-15

    Polypyrrole wrapped oxidized multiwalled carbon nanotubes nanocomposites (PPy/OMWCNTs NCs) were prepared via in situ chemical polymerization of pyrrole (Py) monomer in the presence of OMWCNTs using FeCl3 as oxidant for the effective removal of hexavalent chromium [Cr(VI)]. The as-prepared PPy/OMWCNTs NCs were characterized by FE-SEM, HR-TEM, ATR-FTIR, XRD, XPS and BET method. Characterization results suggested that PPy was uniformly covered on the OMWCNTs surface and resulted in enhanced specific surface area. Adsorption experiments were carried out in batch sorption mode to investigate the effect of pH, dose of adsorbent, contact time, concentration of Cr(VI) and temperature. The adsorption of Cr(VI) on the nanocomposite surface was highly pH dependent and the kinetics of the adsorption followed the pseudo-second-order model. The adsorption isotherm data were in good conformity with the Langmuir isothermal model. The maximum adsorption capacity of the PPy/OMWCNTs NCs for Cr(VI) was 294mg/g at 25°C. The calculated values of the thermodynamic parameters such as ΔG(0) (-0.237kJ/mol), ΔH(0) (13.237kJ/mol) and ΔS(0) (0.0452kJ/mol/K) revealed that the adsorption process is spontaneous, endothermic and marked with an increase in randomness at the solid-liquid interface. The presence of co-existing ions slightly affected the Cr(VI) removal efficiency of the PPy/OMWCNTs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Can enhanced weathering remove carbon dioxide from the atmosphere to prevent climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Renforth, P.; Pogge von Strandmann, P.; Henderson, G. M.

    2013-12-01

    On long timescales, silicate weathering provides the ultimate sink for CO2 released by volcanic degassing and, because the rate of such weathering is temperature dependant, this sink is thought to respond to climate change to provide a strong negative feedback stabilising Earth's climate. An increase of global weathering rates is expected in response to anthropogenic warming and this increased weathering will ultimately (on the timescale of hundreds of thousands of years) serve to remove additional CO2 and return the climate system to lower temperatures. Some have proposed that accelerating this natural process by adding ground minerals to the land surface may help to prevent climate change. However, a major challenge in assessing such a proposal is the lack of experimental kinetic data for minerals added to the environment. Here we will present results from an experiment in which a forsterite rich olivine (Mg2SiO4) was added to the top of a soil column extracted from an agricultural field. A solution was passed through the columns over a period of 5 months and the drainage waters were collected and analysed. The greater flux of Mg measured eluting from the treated soil can be used to constrain the weathering rate of the olivine. A weathering rate can be determined by normalising the rate of magnesium flux to the surface area of olivine in the soil. By combining this information with a simple shrinking core model, we can estimate that an average particle size less than 1 μm would be required in order for the olivine to completely dissolve in a year. Therefore, the energy requirements for enhanced weathering are large >2 GJ(electrical) per net tonne of CO2 sequestered, but it is at least comparable to direct air capture technologies. These preliminary results suggest limited carbon capture potential for enhanced weathering in temperate agricultural soils. However, some environments may be better suited (e.g. humid tropical agricultural soils) and additional

  3. Removing Biases in Resolved Stellar Mass Maps of Galaxy Disks through Successive Bayesian Marginalization

    NASA Astrophysics Data System (ADS)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.; Magris C., Gladis; Bruzual A., Gustavo

    2017-01-01

    Stellar masses of galaxies are frequently obtained by fitting stellar population synthesis models to galaxy photometry or spectra. The state of the art method resolves spatial structures within a galaxy to assess the total stellar mass content. In comparison to unresolved studies, resolved methods yield, on average, higher fractions of stellar mass for galaxies. In this work we improve the current method in order to mitigate a bias related to the resolved spatial distribution derived for the mass. The bias consists in an apparent filamentary mass distribution and a spatial coincidence between mass structures and dust lanes near spiral arms. The improved method is based on iterative Bayesian marginalization, through a new algorithm we have named Bayesian Successive Priors (BSP). We have applied BSP to M51 and to a pilot sample of 90 spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. By quantitatively comparing both methods, we find that the average fraction of stellar mass missed by unresolved studies is only half what previously thought. In contrast with the previous method, the output BSP mass maps bear a better resemblance to near-infrared images.

  4. The roles of a pillared bentonite on enhancing Se(VI) removal by ZVI and the influence of co-existing solutes in groundwater.

    PubMed

    Dong, Huaping; Chen, Ya; Sheng, Guodong; Li, Jianfa; Cao, Jie; Li, Zhanfeng; Li, Yimin

    2016-03-05

    The zero-valent iron permeable reactive barrier (ZVI-PRB) is a promising technology for in-situ groundwater remediation. However, its long-term performance often declined due to the blocked reactive sites by corrosion products and by interference of co-existing solutes. In order to address these issues, a pillared bentonite (Al-bent) was homogeneously mixed with ZVI for removing selenate (Se(VI)) from simulated groundwater in column experiments. The Se(VI) removal was enhanced because first Al-bent could facilitate the mass transfer of Se(VI) from solution to iron surface and accelerate Se(VI) reduction. XANES analysis indicated that Se(VI) was almost completely reduced to Se(0) and Se(-II) of less toxicity and solubility by the ZVI/Al-bent mixture, and the buffering effect of Al-bent could maintain the pH at a lower level that favored the Se(VI) removal. Besides, Al-bent could transfer the corrosion products away from iron surface, leading to the enhanced reactivity and longevity of ZVI. The inhibition on reactivity towards Se(VI) in both the single ZVI and the ZVI/Al-bent systems increased in the order of Cl(-)removal efficiency decreased with the increasing HA concentration. However, the lower decrease of Se(VI) removal in the ZVI/Al-bent system indicates its resistance to the interference of these co-existing solutes in groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. DVP parametric imaging for characterizing ovarian masses in contrast-enhanced ultrasound.

    PubMed

    Sha-sha, H; Li, H; Jie, M; Gui, F; Wen-jun, G; Ming, H; Yang, Z; Qing, Y

    2015-01-01

    To evaluate whether parametric imaging with contrast-enhanced ultrasound is an approach capable of for the differential diagnosis of ovarian masses. The authors analysed 50 cases of ovarian masses by routine ultrasound and contrast-enhanced ultrasound with a new dedicated parametric image processing software-Sonoliver. The angiogenesis and blood perfusion mode on a digital video recorder were recorded and the morphological characteristics of time-intensity curve (TIC) and dynamic vascular pattern (DVP) curve were subsequently described. The quantity factor, including time to peak (TTP), maximum intensity (IMAX), rise time, (RT), mean transit time (mTT), generated by Sonoliver software were compared in both histological gradings. There were 24 cases (86%) displaying mainly hypo-enhanced with blue imaging in those with benign masses and 15 cases (68%) displaying mainly hyper-enhanced imaging with red in those with malignant masses. The difference was statistically significant (p < 0.05). DVP curves were unipolar below the baseline in 23 cases (82%) of benign masses and unipolar above the baseline in 15 cases (68%) of malignant masses. IMAX, TTP, and mTT were all significantly higher in those with malignant masses than those with benign ones (all p < 0.05), but, no statistical difference in the RT between the two groups was found (p > 0.05). According to the results, DVP parametric imaging is a new approach capable of differential diagnoses of overian masses with contrast-enhanced ultrasound.

  6. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    PubMed Central

    Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.

    2012-01-01

    Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157

  7. Enhanced Extracorporeal CO2 Removal by Regional Blood Acidification: Effect of Infusion of Three Metabolizable Acids.

    PubMed

    Scaravilli, Vittorio; Kreyer, Stefan; Linden, Katharina; Belenkiy, Slava; Pesenti, Antonio; Zanella, Alberto; Cancio, Leopoldo C; Batchinsky, Andriy I

    2015-01-01

    Acidification of blood entering a membrane lung (ML) with lactic acid enhances CO2 removal (VCO2ML). We compared the effects of infusion of acetic, citric, and lactic acids on VCO2ML. Three sheep were connected to a custom-made circuit, consisting of a Hemolung device (Alung Technologies, Pittsburgh, PA), a hemofilter (NxStage, NxStage Medical, Lawrence, MA), and a peristaltic pump recirculating ultrafiltrate before the ML. Blood flow was set at 250 ml/min, gas flow (GF) at 10 L/min, and recirculating ultrafiltrate flow at 100 ml/min. Acetic (4.4 M), citric (0.4 M), or lactic (4.4 M) acids were infused in the ultrafiltrate at 1.5 mEq/min, for 2 hours each, in randomized fashion. VCO2ML was measured by the Hemolung built-in capnometer. Circuit and arterial blood gas samples were collected at baseline and during acid infusion. Hemodynamics and ventilation were monitored. Acetic, citric, or lactic acids similarly enhanced VCO2ML (+35%), from 37.4 ± 3.6 to 50.6 ± 7.4, 49.8 ± 5.6, and 52.0 ± 8.2 ml/min, respectively. Acids similarly decreased pH, increased pCO2, and reduced HCO3 of the post-acid extracorporeal blood sample. No significant effects on arterial gas values, ventilation, or hemodynamics were observed. In conclusion, it is possible to increase VCO2ML by more than one-third using any one of the three metabolizable acids.

  8. Metatranscriptomic array analysis of 'Candidatus Accumulibacter phosphatis'-enriched enhanced biological phosphorus removal sludge.

    PubMed

    He, Shaomei; Kunin, Victor; Haynes, Matthew; Martin, Hector Garcia; Ivanova, Natalia; Rohwer, Forest; Hugenholtz, Philip; McMahon, Katherine D

    2010-05-01

    Here we report the first metatranscriptomic analysis of gene expression and regulation of 'Candidatus Accumulibacter'-enriched lab-scale sludge during enhanced biological phosphorus removal (EBPR). Medium density oligonucleotide microarrays were generated with probes targeting most predicted genes hypothesized to be important for the EBPR phenotype. RNA samples were collected at the early stage of anaerobic and aerobic phases (15 min after acetate addition and switching to aeration respectively). We detected the expression of a number of genes involved in the carbon and phosphate metabolisms, as proposed by EBPR models (e.g. polyhydroxyalkanoate synthesis, a split TCA cycle through methylmalonyl-CoA pathway, and polyphosphate formation), as well as novel genes discovered through metagenomic analysis. The comparison between the early stage anaerobic and aerobic gene expression profiles showed that expression levels of most genes were not significantly different between the two stages. The majority of upregulated genes in the aerobic sample are predicted to encode functions such as transcription, translation and protein translocation, reflecting the rapid growth phase of Accumulibacter shortly after being switched to aerobic conditions. Components of the TCA cycle and machinery involved in ATP synthesis were also upregulated during the early aerobic phase. These findings support the predictions of EBPR metabolic models that the oxidation of intracellularly stored carbon polymers through the TCA cycle provides ATP for cell growth when oxygen becomes available. Nitrous oxide reductase was among the very few Accumulibacter genes upregulated in the anaerobic sample, suggesting that its expression is likely induced by the deprivation of oxygen.

  9. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration.

    PubMed

    Zhang, Yu; Zhang, Sui; Chung, Tai-Shung

    2015-08-18

    A novel dual-modification strategy, including (1) the cross-linking and construction of a GO framework by ethylenediamine (EDA) and (2) the amine-enrichment modification by hyperbranched polyethylenimine (HPEI), has been proposed to design stable and highly charged GO framework membranes with the GO selective layer thickness of 70 nm for effective heave metal removal via nanofiltration (NF). Results from sonication experiments and positron annihilation spectroscopy confirmed that EDA cross-linking not only enhanced structural stability but also enlarged the nanochannels among the laminated GO nanosheets for higher water permeability. HPEI 60K was found to be the most effective post-treatment agent that resulted in GO framework membranes with a higher surface charge and lower transport resistance. The newly developed membrane exhibited a high pure water permeability of 5.01 L m(-2) h(-1) bar(-1) and comparably high rejections toward Mg(2+), Pb(2+), Ni(2+), Cd(2+), and Zn(2+). These results have demonstrated the great potential of GO framework materials in wastewater treatment and may provide insights for the design and fabrication of the next generation two-dimensional (2D)-based NF membranes.

  10. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way.

  11. High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants.

    PubMed

    Kindaichi, Tomonori; Nierychlo, Marta; Kragelund, Caroline; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2013-06-01

    Microbial communities are typically characterized by conditions of nutrient limitation so the availability of the resources is likely a key factor in the niche differentiation across all species and in the regulation of the community structure. In this study we have investigated whether four species exhibit any in situ short-term changes in substrate uptake pattern when exposed to variations in substrate and growth conditions. Microautoradiography was combined with fluorescence in situ hybridization to investigate in situ cell-specific substrate uptake profiles of four probe-defined coexisting species in a wastewater treatment plant with enhanced biological phosphorus removal. These were the filamentous 'Candidatus Microthrix' and Caldilinea (type 0803), the polyphosphate-accumulating organism 'Candidatus Accumulibacter', and the denitrifying Azoarcus. The experimental conditions mimicked the conditions potentially encountered in the respective environment (starvation, high/low substrate concentration, induction with specific substrates, and single/multiple substrates). The results showed that each probe-defined species exhibited very distinct and constant substrate uptake profile in time and space, which hardly changed under any of the conditions tested. Such niche partitioning implies that a significant change in substrate composition will be reflected in a changed community structure rather than the substrate uptake response from the different species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal.

    PubMed

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc; Nielsen, Jeppe Lund; Wimmer, Reinhard; Le, Vang Quy; McIlroy, Simon Jon; Petrovski, Steve; Seviour, Robert J; Calteau, Alexandra; Nielsen, Kåre Lehmann; Nielsen, Per Halkjær

    2013-03-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to 'Candidatus Accumulibacter phosphatis' is unclear, although they may occupy different ecological niches in EBPR communities. The genomes of four Tetrasphaera isolates (T. australiensis, T. japonica, T. elongata and T. jenkinsii) were sequenced and annotated, and the data used to construct metabolic models. These models incorporate central aspects of carbon and phosphorus metabolism critical to understanding their behavior under the alternating anaerobic/aerobic conditions encountered in EBPR systems. Key features of these metabolic pathways were investigated in pure cultures, although poor growth limited their analyses to T. japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaera-related PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate and substrate fermentation. During the aerobic phase, the stored glycogen is catabolized to provide energy for growth and to replenish the intracellular polyphosphate reserves needed for subsequent anaerobic metabolism. They are also able to denitrify. This physiology is markedly different to that displayed by 'Candidatus Accumulibacter phosphatis', and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation.

  13. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal

    PubMed Central

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc; Nielsen, Jeppe Lund; Wimmer, Reinhard; Le, Vang Quy; McIlroy, Simon Jon; Petrovski, Steve; Seviour, Robert J; Calteau, Alexandra; Nielsen, Kåre Lehmann; Nielsen, Per Halkjær

    2013-01-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to ‘Candidatus Accumulibacter phosphatis' is unclear, although they may occupy different ecological niches in EBPR communities. The genomes of four Tetrasphaera isolates (T. australiensis, T. japonica, T. elongata and T. jenkinsii) were sequenced and annotated, and the data used to construct metabolic models. These models incorporate central aspects of carbon and phosphorus metabolism critical to understanding their behavior under the alternating anaerobic/aerobic conditions encountered in EBPR systems. Key features of these metabolic pathways were investigated in pure cultures, although poor growth limited their analyses to T. japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaera-related PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate and substrate fermentation. During the aerobic phase, the stored glycogen is catabolized to provide energy for growth and to replenish the intracellular polyphosphate reserves needed for subsequent anaerobic metabolism. They are also able to denitrify. This physiology is markedly different to that displayed by ‘Candidatus Accumulibacter phosphatis', and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation. PMID:23178666

  15. Metagenomes obtained by 'deep sequencing' - what do they tell about the enhanced biological phosphorus removal communities?

    PubMed

    Albertsen, Mads; Saunders, Aaron M; Nielsen, Kåre L; Nielsen, Per H

    2013-01-01

    Metagenomics enables studies of the genomic potential of complex microbial communities by sequencing bulk genomic DNA directly from the environment. Knowledge of the genetic potential of a community can be used to formulate and test ecological hypotheses about stability and performance. In this study deep metagenomics and fluorescence in situ hybridization (FISH) were used to study a full-scale wastewater treatment plant with enhanced biological phosphorus removal (EBPR), and the results were compared to an existing EBPR metagenome. EBPR is a widely used process that relies on a complex community of microorganisms to function properly. Insight into community and species level stability and dynamics is valuable for knowledge-driven optimization of the EBPR process. The metagenomes of the EBPR communities were distinct compared to metagenomes of communities from a wide range of other environments, which could be attributed to selection pressures of the EBPR process. The metabolic potential of one of the key microorganisms in the EPBR process, Accumulibacter, was investigated in more detail in the two plants, revealing a potential importance of phage predation on the dynamics of Accumulibacter populations. The results demonstrate that metagenomics can be used as a powerful tool for system wide characterization of the EBPR community as well as for a deeper understanding of the function of specific community members. Furthermore, we discuss and illustrate some of the general pitfalls in metagenomics and stress the need of additional DNA extraction independent information in metagenome studies.

  16. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mechanism of enhanced removal of quinonic intermediates during electrochemical oxidation of Orange II under ultraviolet irradiation.

    PubMed

    Li, Fazhan; Li, Guoting; Zhang, Xiwang

    2014-03-01

    The effect of ultraviolet irradiation on generation of radicals and formation of intermediates was investigated in electrochemical oxidation of the azo-dye Orange II using a TiO2-modified β-PbO2 electrode. It was found that a characteristic absorbance of quinonic compounds at 255 nm, which is responsible for the rate-determining step during aromatics degradation, was formed only in electrocatalytic oxidation. The dye can be oxidized by either HO radicals or direct electron transfer. Quinonic compounds were produced concurrently. The removal of TOC by photo-assisted electrocatalytic oxidation was 1.56 times that of the sum of the other two processes, indicating a significant synergetic effect. In addition, once the ultraviolet irradiation was introduced into the process of electrocatalytic oxidation, the degradation rate of quinonic compounds was enhanced by as much as a factor of two. The more efficient generation of HO radicals resulted from the introduction of ultraviolet irradiation in electrocatalytic oxidation led to the significant synergetic effect as well as the inhibiting effect on the accumulation of quinonic compounds.

  18. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    PubMed Central

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  19. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants.

    PubMed

    Blackall, Linda L; Crocetti, Gregory R; Saunders, Aaron M; Bond, Philip L

    2002-08-01

    Enhanced biological phosphorus removal (EBPR) from wastewater can be more-or-less practically achieved but the microbiological and biochemical components are not completely understood. EBPR involves cycling microbial biomass and influent wastewater through anaerobic and aerobic zones to achieve a selection of microorganisms with high capacity to accumulate polyphosphate intracellularly in the aerobic period. Biochemical or metabolic modelling of the process has been used to explain the types of carbon and phosphorus transformations in sludge biomass. There are essentially two broad-groupings of microorganisms involved in EBPR. They are polyphosphate accumulating organisms (PAOs) and their supposed carbon-competitors called glycogen accumulating organisms (GAOs). The morphological appearance of microorganisms in EBPR sludges has attracted attention. For example, GAOs as tetrad-arranged cocci and clusters of coccobacillus-shaped PAOs have been much commented upon and the use of simple cellular staining methods has contributed to EBPR knowledge. Acinetobacter and other bacteria were regularly isolated in pure culture from EBPR sludges and were initially thought to be PAOs. However, when contemporary molecular microbial ecology methods in concert with detailed process performance data and simple intracellular polymer staining methods were used, a betaproteobacteria called 'Candidatus Accumulibacter phosphatis' was confirmed as a PAO and organisms from a novel gammaproteobacteria lineage were GAOs. To preclude making the mistakes of previous researchers, it is recommended that the sludge 'biography' be well understood--i.e. details of phenotype (process performance and biochemistry) and microbial community structure should be linked.

  20. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness

    PubMed Central

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-01-01

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor. PMID:26837600

  1. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.

    PubMed

    Zheng, Guanyu; Zhou, Lixiang

    2011-10-15

    Four inorganic mineral nutrients including NH4+, K+, Mg2+ and soluble inorganic phosphate (Pi) were investigated to reveal the potential limiting nutrients for tannery sludge bioleaching process driven by Acidithiobacillus species, and the feasibility of supplementing the limiting nutrients to accelerate tannery sludge bioleaching was studied in the present study. It was found that the concentration of Pi was lower than 3.5 mg/L throughout the whole bioleaching process, which is the most probable restricting nutrient for tannery sludge bioleaching. Further experiments revealed that the deficiency of Pi could seriously influence the growth of Acidithiobacillus thiooxidans and lower its oxidization capacity for S0, and the limiting concentration of Pi for the growth of A. thiooxidans was 6 mg/L. The low concentration of soluble Pi in sludge matrix was resulted from the extremely strong sorbing/binding capacity of tannery sludge for phosphate. The supplementation of more than 1.6 g/L KH2PO4 into tannery sludge bioleaching system could effectively stimulate the growth of Acidithiobacillus species, enhance Cr removal rate and further shorten tannery sludge bioleaching period from 10 days to 7 days. Therefore, inorganic phosphate supplementation is an effective and feasible method to accelerate tannery sludge bioleaching process, and the optimum dosage of KH2PO4 was 1.6 g/L for tannery sludge with 5.1% of total solids.

  2. Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine.

    PubMed

    Gopi, Sreerag; Balakrishnan, Preetha; Pius, Anitha; Thomas, Sabu

    2017-06-01

    In this study, an active functional adsorbent membrane developed by combining both hydrophilic bio polymer filler such as chitin nanowhiskers (ChNW) which contains two functional groups and a hydrophobic polymer matrix such as polyvinylidene fluoride (PVDF) using electrospinning technique. Here ChNW were successfully extracted by excluding proteins and mineral and well characterized using FTIR, XRD, SEM and TEM. The optimized combination of PVDF/ChNW (15%:1%) membrane was fabricated and well characterized using SEM, water contact angle and FTIR spectroscopy. There was a remarkable difference in contact angle observed for PVDF/ChNW (22.72°) compared to neat PVDF (93.1°) membrane. Ultimately the membrane used for indigo carmine (IC) adsorption and an enhanced removal efficiency (88.9%) and adsorption capacity (72.6mgg(-1)) were observed compared to neat PVDF. In the future, the overall idea can make leads to various applications such as proteins, virus and hormones adsorption from the contaminated sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.

    PubMed

    Rogowska, Jadwiga; Brezinski, Mark E

    2002-02-21

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  4. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness.

    PubMed

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-02-03

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor.

  5. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  6. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    NASA Astrophysics Data System (ADS)

    Palan, Vikrant; Shepard, W. Steve

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2 mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250 g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength.

  7. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, J.W.; Fuller, C.C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheicflow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/??(s), of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/??(h) = 2.6 hours), and in laboratory batch experiments using streambed sediment (1/?? = 2.7 hours). The modeled depths of subsurface storage zones (d(s) = 4-17 cm) and modeled residence times of water in storage zones (t(s) = 3-12 min) were both consistent with direct measurements in hyporheic flow paths (d(h) = 0-15 cm, and t(h) = 1-25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (f(s) = 8.9%, and f(h) = 9.3%). Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The

  8. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration.

    PubMed

    Vera, I; Araya, F; Andrés, E; Sáez, K; Vidal, G

    2014-08-01

    Phosphorus (P) contained in sewage maybe removed by mesocosm-scale constructed wetlands (MCW), although removal efficiency is only between 20% and 60%. P removal can be enhanced by increasing wetland adsorption capacity using special media, like natural zeolite, operating under aerobic conditions (oxidation-reduction potential (ORP) above +300 mV). The objective of this study was to evaluate P removal in sewage treated by MCW with artificial aeration and natural zeolite as support medium for the plants. The study compared two parallel lines of MCW: gravel and zeolite. Each line consisted in two MCW in series, where the first MCW of each line has artificial aeration. Additionally, four aeration strategies were evaluated. During the operation, the following parameters were measured in each MCW: pH, temperature, dissolved oxygen and ORP. Phosphate (PO4(-3) - P) and chemical oxygen demand (COD), five-day biological oxygen demand (BOD5), total suspended solids (TSS) and ammonium. (NH4(+) - N) were evaluated in influents and effluents. Plant growth (biomass) and proximate analysis for P content into Schoenoplectus californicus were also performed. The results showed that PO4(-3) - P removal efficiency was 70% in the zeolite medium, presenting significant differences (p < .05) with the results obtained by the gravel medium. Additionally, aeration was found to have a significant effect (p < .05) only in the gravel medium with an increase in up to 30% for PO43 - P removal. Thus, S. californicus contributed to 10-20% of P removal efficiency.

  9. Enhanced azo dye removal through anode biofilm acclimation to toxicity in single-chamber biocatalyzed electrolysis system.

    PubMed

    Wang, You-Zhao; Wang, Ai-Jie; Liu, Wen-Zong; Sun, Qian

    2013-08-01

    Azo dye is widely used in printing and dyeing process as one of refractory wastewaters for its high chroma, stable chemical property and toxicity for aquatic organism. Biocatalyzed electrolysis system (BES) is a new developed technology to degrade organic waste in bioanode and recover recalcitrant contaminants in cathode with effective decoloration. The ion exchange membrane (IEM) separate anode and cathode for biofilm formation protection. Azo removal efficiency was up to 60.8%, but decreased to 20.5% when IEM was removed. However, expensive ion exchange membrane (IEM) not suitable for further practical application, bioelectrochemical activity of bioanode is sensitive to the toxicity of azo dye. A gradient increase of azo dye concentration was used to acclimate anode biofilm to pollutant toxicity. The azo removal efficiency can be enhanced to 73.3% in 10h reaction period after acclimation. The highest removal efficiency reached 83.7% and removal rates were increased to 8.37 from 3.04 g/h/L of dual-chamber. That indicated the feasibility for azo dye removal by single-chamber BES. The IEM cancellation not only decreased the internal resistance, but increased the current density and azo dye removal.

  10. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration.

    PubMed

    Huang, Jinhui; Yuan, Fang; Zeng, Guangming; Li, Xue; Gu, Yanling; Shi, Lixiu; Liu, Wenchu; Shi, Yahui

    2017-04-01

    pH plays an important role in heavy metal removal during micellar-enhanced ultrafiltration (MEUF). In the present work, the influence of pH on heavy metal speciation and removal from wastewater by MEUF was investigated using an anionic surfactant (sodium dodecyl sulfate, SDS) and a hydrophilic membrane (polyether sulfone). Experiments were performed with pH values in the range of 1-12. Metal ion removal efficiency (R) was used to assess the effects of the MEUF process. Results showed that better removal rate of copper and cadmium was achieved at high pH values (pH > 3) with SDS feed concentration of 8 mM, while the optimal pH range was 3-10 for zinc and lead. The corresponding efficiencies for heavy metal removal decreased with the increasing feed concentration of metal ions under the pH conditions of 1-12. Furthermore, the heavy metal ion removal rate (50 mg/L) followed the order of Pb(2+) > Cd(2+) > Zn(2+) > Cu(2+). These results showed that pH is a key parameter in metal ion speciation and removal during MEUF.

  11. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    PubMed

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    PubMed

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for

  13. Prospective Pilot Investigation: Presurgical Depressive Symptom Severity and Anesthesia Response in Women Undergoing Surgery for Gynecologic Mass Removal

    PubMed Central

    Pereira, Deidre B.; Andre, Rachel; Garvan, Cynthia Wilson; Nguyen, Peter; Herman, Mary; Seubert, Christoph

    2014-01-01

    Background Anesthesia depth has been associated with mortality. The association between anesthesia depth and presurgery physical and health status, however, is currently debated. Depression is one comorbid condition that warrants investigation given its association to reduced frontal lobe activity and high prevalence in known surgery samples (e.g., gynecologic mass removal). Purpose This pilot study examined the hypothesis that severity of acute depressive symptoms would associate with greater sensitivity to anesthesia as measured by a frontal lobe electroencephalogram (EEG)-based monitor during the anesthesia induction phase among women undergoing gynecologic mass removal. Method This was a prospective and surgery anesthesia-controlled pilot investigation with 31 women undergoing surgery for removal of pelvic/gynecologic masses. Participants completed the Millon Behavioral Medicine Diagnostic (MBMD) inventory to assess depressive-related symptomatology. A Bispectral Index Score (BIS™) monitor (Aspect Medical Systems Inc., MA) was placed on the left frontal region to measure change in response from a set pre-anesthesia baseline point throughout the induction phase (6.5 min of the anesthetic). BIS™ change was calculated using a modified “area under the curve with respect to ground” formula. Results Greater sensitivity to anesthesia during induction was significantly associated with higher MBMD future pessimism scores and marginally associated with higher MBMD depression scores. Depressive personality, anxiety severity, tumor type, age, medication use, and comorbidity scores were not found to be predictors of BIS score change. Conclusion These pilot findings suggest that preoperative psychological health and anesthesia response are not independent. Acute presurgery depression and anesthesia response warrant closer empirical examination. PMID:25421878

  14. Matrix-enhanced secondary ion mass spectrometry: The Alchemist's solution?

    NASA Astrophysics Data System (ADS)

    Delcorte, Arnaud

    2006-07-01

    Because of the requirements of large molecule characterization and high-lateral resolution SIMS imaging, the possibility of improving molecular ion yields by the use of specific sample preparation procedures has recently generated a renewed interest in the static SIMS community. In comparison with polyatomic projectiles, however, signal enhancement by a matrix might appear to some as the alchemist's versus the scientist's solution to the current problems of organic SIMS. In this contribution, I would like to discuss critically the pros and cons of matrix-enhanced SIMS procedures, in the new framework that includes polyatomic ion bombardment. This discussion is based on a short review of the experimental and theoretical developments achieved in the last decade with respect to the three following approaches: (i) blending the analyte with a low-molecular weight organic matrix (MALDI-type preparation procedure); (ii) mixing alkali/noble metal salts with the analyte; (iii) evaporating a noble metal layer on the analyte sample surface (organic molecules, polymers).

  15. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  16. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  17. Electron-phonon interaction and charge carrier mass enhancement in SrTiO3.

    PubMed

    van Mechelen, J L M; van der Marel, D; Grimaldi, C; Kuzmenko, A B; Armitage, N P; Reyren, N; Hagemann, H; Mazin, I I

    2008-06-06

    We report a comprehensive THz, infrared and optical study of Nb-doped SrTiO3 as well as dc conductivity and Hall effect measurements. Our THz spectra at 7 K show the presence of an unusually narrow (<2 meV) Drude peak. For all carrier concentrations the Drude spectral weight shows a factor of three mass enhancement relative to the effective mass in the local density approximation, whereas the spectral weight contained in the incoherent midinfrared response indicates that the mass enhancement is at least a factor two. We find no evidence of a particularly large electron-phonon coupling that would result in small polaron formation.

  18. Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide.

    PubMed

    Tonegawa, Masami; Dec, Jerzy; Bollag, Jean-Marc

    2003-01-01

    Use of additives, such as polyethylene glycol (PEG), selected surfactants, chitosan gel, or activated carbon, has been shown to enhance enzymatic treatment of water polluted with organic compounds. In this study, additives were used to facilitate the removal of 2,4-dichlorophenol (2,4-DCP) from water using minced horseradish (Armoracia rusticana P. Gaertn. et al.) as a carrier of peroxidase activity. The specific objectives of the study were to (i) enhance the pollutant removal activity of minced horseradish by the addition of PEG and other additives (e.g., Tween 20, Triton X-100, and rhamnolipid); (ii) eliminate colored reaction products by the addition of chitosan; and (iii) eliminate color by amending treated water with activated carbon. The disappearance of 2,4-DCP in horseradish-treated water samples amended with PEG or various surfactants (75-90%) was greatly increased over that observed in nonamended samples (29%). The effect of PEG depended on its average molecular weight. As indicated by visible spectrophotometry, enclosing horseradish pieces between two sealed chitosan films completely eliminated colored reaction products; however, the decolorization was accompanied by a reduction in 2,4-DCP removal (from 95 to 60%). On the other hand, commercially available activated carbon completely removed colored reaction products from the treated water without reducing the removal efficiency. Based on the results obtained, it can be concluded that the use of additives may considerably improve the quality of wastewater treated by plant materials.

  19. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    PubMed

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of selected wastewater constituents on the removal of sulfonamide antibiotics via ultrafiltration and micellar enhanced ultrafiltration.

    PubMed

    Exall, Kirsten; Balakrishnan, Vimal K; Toito, John; McFadyen, Renée

    2013-09-01

    To better understand the environmental mobility of sulfonamide antibiotics and develop improved processes for their removal during wastewater treatment, stirred cell ultrafiltration (UF) experiments were conducted using both synthetic and real wastewater effluent. The interactions between selected sulfonamides (sulfaguanidine, sulfathiazole and sulfamerazine), solids and dissolved organic matter were systematically explored. The further impact of micellar enhanced ultrafiltration (MEUF), a process in which surfactants are added at micellar concentrations to enhance removal of various trace contaminants from aqueous streams, was then explored by using a cationic surfactant, cetyltrimethylammonium bromide (CTAB). Ultrafiltration of sulfonamides in the absence of other materials generally removed only 15-20% of the antibiotics. The presence of micellar solutions of CTAB generally improved removal of sulfonamides over UF alone, with rejections ranging from 20 to 74%. Environmental solids (sediment) further increased retention of sulfonamides using both UF and MEUF, but the presence of DOM did not influence rejection. Similar trends were observed on UF and MEUF of real effluent samples that had been spiked with the sulfonamides, confirming the environmental relevance of the observed interactions between sulfonamides, surfactant, and wastewater constituents. The results demonstrate that MEUF processes can be designed for the selective removal of such trace contaminants as sulfonamide antibiotics.

  1. Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment.

    PubMed

    Bocos, Elvira; Fernández-Costas, Carmen; Pazos, Marta; Sanromán, M Ángeles

    2015-04-01

    In this study, electrokinetic-Fenton treatment was used to remediate a soil polluted with PAHs and the pesticide pyrimethanil. Recently, this treatment has emerged as an interesting alternative to conventional soil treatments due to its peculiar advantages, namely the capability of treating fine and low-permeability materials, as well as that of achieving a high yield in the removals of salt content and inorganic and organic pollutants. In a standard electrokinetic-Fenton treatment, the maximum degradation of the pollutant load achieved was 67%, due to the precipitation of the metals near the cathode chamber that reduces the electro-osmotic flow of the system and thus the efficiency of the treatment. To overcome this problem, different complexing agents and pH control in the cathode chamber were evaluated to increase the electro-osmotic flux as well as to render easier the solubilization of the metal species present in the soil. Four complexing agents (ascorbic acid, citric acid, oxalic acid and ethylenediaminetetraacetic acid) in the Fenton-like treatment were evaluated. Results revealed the citric acid as the most suitable complexing agent. Thereby its efficiency was tested as pH controller by flushing it in the cathode chamber (pH 2 and 5). For the latter treatments, near total degradation was achieved after 27 d. Finally, phytotoxicity tests for polluted and treated samples were carried out. The high germination levels of the soil treated under enhanced conditions concluded that nearly complete restoration was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Transfer of energy pathway genes in microbial enhanced biological phosphorus removal communities.

    PubMed

    Wong, Dennis H-J; Beiko, Robert G

    2015-07-16

    Lateral gene transfer (LGT) is an important evolutionary process in microbial evolution. In sewage treatment plants, LGT of antibiotic resistance and xenobiotic degradation-related proteins has been suggested, but the role of LGT outside these processes is unknown. Microbial communities involved in Enhanced Biological Phosphorus Removal (EBPR) have been used to treat wastewater in the last 50 years and may provide insights into adaptation to an engineered environment. We introduce two different types of analysis to identify LGT in EBPR sewage communities, based on identifying assembled sequences with more than one strong taxonomic match, and on unusual phylogenetic patterns. We applied these methods to investigate the role of LGT in six energy-related metabolic pathways. The analyses identified overlapping but non-identical sets of transferred enzymes. All of these were homologous with sequences from known mobile genetic elements, and many were also in close proximity to transposases and integrases in the EBPR data set. The taxonomic method had higher sensitivity than the phylogenetic method, identifying more potential LGTs. Both analyses identified the putative transfer of five enzymes within an Australian community, two in a Danish community, and none in a US-derived culture. Our methods were able to identify sequences with unusual phylogenetic or compositional properties as candidate LGT events. The association of these candidates with known mobile elements supports the hypothesis of transfer. The results of our analysis strongly suggest that LGT has influenced the development of functionally important energy-related pathways in EBPR systems, but transfers may be unique to each community due to different operating conditions or taxonomic composition.

  3. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.

    PubMed

    Bucci, Vanni; Majed, Nehreen; Hellweger, Ferdi L; Gu, April Z

    2012-03-20

    A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect

  4. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. Copyright © 2014 Elsevier Ltd. All

  5. Contributions to Pliocene Arctic warmth from removal of anthropogenic aerosol and enhanced forest fire emissions

    NASA Astrophysics Data System (ADS)

    Feng, R.; Otto-Bliesner, B. L.; Fletcher, T.; Ballantyne, A.; Brady, E. C.

    2016-12-01

    Changing atmosphere chemistry in the past has been hypothesized to have altered the earth's radiation budget, and hence the climate. Here, we use an advanced climate model to test whether this hypothesis can help explain the amplified warming in the northern high latitudes during the mid-Pliocene warm period (mPWP, 3.0 - 3.3 Ma). The amplified warming, suggested by terrestrial proxy records of northern high latitudes, is underestimated in previous climate simulations. This mismatch between observations and models may be partially due to proxy uncertainties, but also to insufficient model sensitivity, or incomplete knowledge of mPWP climate forcings. To explore the latter aspect, we conducted three coupled simulations using the same mPWP geography and topography, vegetation and CO2 level according to the PRISM3 reconstructions, but alternating emission scenarios among clean, polluted, and clean plus forest fire case. In the clean and polluted case, year-1850 emission and year-1850 natural plus year-2000 industrial emission are prescribed respectively. For the clean-plus-forest fire simulation, emissions from mPWP forest fire are constrained with a process-based prognostic fire model using fixed proxy SSTs. Preliminary results suggest that mPWP Arctic warmth is largely attributable to the removal of anthropogenic aerosols and enhanced deposition of the black carbon on snow and ice emitted from northern high latitude forest fires. Cloud radiative responses are shown to accelerate the summer sea ice melting from the continental margins, triggering the positive surface albedo and water vapor feedback that maintain a low perennial sea ice state in the Arctic Ocean. These results identify the important role that changes in aerosol chemistry may play in amplifying arctic surface temperatures of mPWP and insights on the role that aerosols may play in amplifying future Arctic temperatures.

  6. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal.

    PubMed

    Burow, Luke C; Mabbett, Amanda N; McEwan, Alastair G; Bond, Philip L; Blackall, Linda L

    2008-01-01

    Most of our understanding of the physiology of microorganisms is the result of investigations in pure culture. However, in order to understand complex environmental processes, there is a need to investigate mixed microbial communities. This is true for enhanced biological phosphorus removal (EBPR), an environmental process that results in the enrichment of the polyphosphate-accumulating organism Accumulibacter spp. and the glycogen non-polyphosphate accumulating organism Defluviicoccus spp. We investigated acetate and inorganic phosphate (P(i)) uptake in enrichments of Accumulibacter spp. and acetate uptake in enrichments of Defluviicoccus spp. For both enrichments, anaerobic acetate uptake assays in the presence of the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the membrane potential (Delta psi) uncoupler valinomycin, indicated that acetate is likely to be taken up by a permease-mediated process driven by the Delta psi. Further investigation with the sodium ionophore monensin suggested that anaerobic acetate uptake by Defluviicoccus spp. may in part be dependent on a sodium potential. Results of this study also suggest that Accumulibacter spp. generate a proton motive force (pmf or Delta p) for anaerobic acetate uptake by efflux of protons in symport with P(i) through an inorganic phosphate transport (Pit) system. In contrast, we suggest that the anaerobic Delta p in Defluviicoccus spp. is generated by an efflux of protons across the cell membrane by the fumarate respiratory system, or by extrusion of sodium ions via decarboxylation of methylmalonyl-CoA. Aerobic P(i) uptake by the Accumulibacter spp. enrichment was strongly inhibited in the presence of an ATPase inhibitor, suggesting that the phosphate-specific transport (Pst) system is important even under relatively high concentrations of P(i). Acetate permease activity in these microorganisms may play an important role in the competition for acetate in the often acetate-limited EBPR

  7. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels.

    PubMed

    Scallan, Joshua P; Davis, Michael J

    2013-04-15

    The role of nitric oxide (NO) in regulating lymphatic contractile function and, consequently, lymph flow has been the subject of intense study. Despite this, the precise effects of NO on lymphatic contractile activity remain unclear. Recent hypotheses posit that basal levels of endogenous NO increase lymphatic contraction strength as a consequence of lowering frequency (i.e. positive lusitropy), whereas higher agonist-evoked concentrations of NO exert purely inhibitory effects on contractile function. We tested both hypotheses directly by isolating and cannulating collecting lymphatic vessels from genetically modified mice for ex vivo study. The effects of basal NO and agonist-evoked NO were evaluated, respectively, by exposing wild-type (WT), endothelial NO synthase (eNOS)(-/-) and inducible NO synthase (iNOS)(-/-) lymphatic vessels to controlled pressure steps followed by ACh doses. To compare with pharmacological inhibition of eNOS, we repeated both tests in the presence of l-NAME. Surprisingly, genetic removal of basal NO enhanced contraction amplitude significantly without increasing contraction frequency. Higher levels of NO production stimulated by ACh evoked dilation, decreased tone, slowed contraction frequency and reduced fractional pump flow. We conclude that basal NO specifically depresses contraction amplitude, and that greater NO production then inhibits all other aspects of contractile function. Further, this work demonstrates definitively that mouse collecting lymphatic vessels exhibit autonomous, large-amplitude contractions that respond to pressure similarly to collecting lymphatics of other mammalian species. At least in the peripheral lymphatic vasculature, NO production depresses contractile function, which influences lymph flow needed for fluid regulation, humoral immunity and cancer metastasis.

  8. Enhanced Removal of Biogenic Hydrocarbons in Power Plant Plumes Constrains the Dependence of Atmospheric Hydroxyl Concentrations on Nitrogen Oxides

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; Trainer, M.; Parrish, D. D.; Brown, S. S.; Edwards, P.; Gilman, J.; Graus, M.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Kim, S. W.; Lerner, B. M.; Neuman, J. A.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Veres, P. R.; Warneke, C.; Wolfe, G.

    2015-12-01

    Hydroxyl (OH) radicals in the atmosphere provide one of the main chemical mechanisms for the removal of trace gases. OH plays a central role in determining the atmospheric lifetime and radiative forcing of greenhouse gases like methane. OH also plays a major role in the oxidation of organic trace gases, which can lead to formation of secondary pollutants such as ozone and PM2.5. Due to its very short atmospheric lifetime of seconds or less, OH concentrations are extremely variable in space and time, which makes measurements and their interpretation very challenging. Several recent measurements have yielded higher than expected OH concentrations. To explain these would require the existence of unidentified, radical recycling processes, but issues with the measurements themselves are also still being discussed. During the NOAA airborne SENEX study in the Southeast U.S., the biogenic hydrocarbons isoprene and monoterpenes were consistently found to have lower mixing ratios in air masses with enhanced nitrogen oxides from power plants. We attribute this to faster oxidation rates of biogenic hydrocarbons due to increased concentrations of OH in the power plant plumes. Measurements at different downwind distances from the Scherer and Harllee Branch coal-fired power plants near Atlanta are used to constrain the dependence of OH on nitrogen oxides. It is found that OH concentrations were highest at nitrogen dioxide concentrations of 1-2 ppbv and decreased at higher and at lower concentrations. These findings agree with the expected dependence of OH on nitrogen oxide concentrations, but do not appear to be consistent with the reports in the literature that have shown high OH concentrations in regions of the atmosphere with high biogenic emissions and low NOx concentrations that would require unidentified radical recycling processes to be explained.

  9. IN-SITU THERMAL TREATMENT SYSTEM PERFORMANCE AND MASS REMOVAL METRICS AT FORT LEWIS

    EPA Science Inventory

    The EGDY is the source of a potentially expanding three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This is...

  10. IN-SITU THERMAL TREATMENT SYSTEM PERFORMANCE AND MASS REMOVAL METRICS AT FORT LEWIS

    EPA Science Inventory

    The EGDY is the source of a potentially expanding three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This is...

  11. Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under intermittent operation mode.

    PubMed

    Li, Yinghua; Li, Haibo; Sun, Tieheng; Wang, Xin

    2011-05-15

    Subsurface wastewater infiltration system is an efficient and economic technology in treating small scattered sewage. The removal rates are generally satisfactory in terms of COD, BOD(5), TP and SS removal; while nitrogen removal is deficient in most of the present operating SWIS due to the different requirements for the presence of oxygen for nitrification and denitrification processes. To study the enhanced nitrogen removal technologies, two pilot subsurface wastewater infiltration systems were constructed in a village in Shenyang, China. The filled matrix was a mixture of 5% activated sludge, 65% brown soil and 30% coal slag in volume ratio for both systems. Intermittent operation mode was applied in to supply sufficient oxygen to accomplish the nitrification; meanwhile sewage was supplemented as the carbon source to the lower part in to denitrify. The constructed subsurface wastewater infiltration systems worked successfully under wetting-drying ratio of 1:1 with hydraulic loading of 0.081 m(3)/(m(2)d) for over 4 months. Carbon source was supplemented with shunt ratio of 1:1 and shunt position at the depth of 0.5m. The experimental results showed that intermittent operation mode and carbon source supplementation could significantly enhance the nitrogen removal efficiency with little influence on COD and TP removal. The average removal efficiencies for NH(3)-N and TN were 87.7 ± 1.4 and 70.1 ± 1.0%, increased by 12.5 ± 1.0 and 8.6 ± 0.7%, respectively.

  12. Enhancing nitrogen removal from low carbon to nitrogen ratio wastewater by using a novel sequencing batch biofilm reactor.

    PubMed

    Zou, Jinte; Li, Jun; Ni, Yongjiong; Wei, Su

    2016-12-01

    Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxic unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low COD/TN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice. Copyright © 2016. Published by Elsevier B.V.

  13. Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents.

    PubMed

    Cao, Yaru; Zhang, Shirong; Wang, Guiyin; Li, Ting; Xu, Xiaoxun; Deng, Ouping; Zhang, Yanzong; Pu, Yulin

    2017-10-05

    Plant washing agents-water-extracted from Coriaria nepalensis (CN), Clematis brevicaudata (CB), Pistacia weinmannifolia (PW) and Ricinus communis (RC)-are feasible and eco-friendly for soil heavy metal removal, but their single application has limited removal efficiency. To improve their metal removal efficiencies, two biodegradable assistant agents, hydrolytic polymaleic anhydride (HPMA) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), were investigated in combination with plant washing agents through batch soil washing experiments. Results showed that the addition of HPMA or PBTCA with plant agents greatly enhanced the removal efficiencies of soil heavy metals (p<0.05). Under acidic conditions, the maximum improvements in soil heavy metal removal reached 18.69% and 18.00% for soil Cd and Zn by PW+HPMA, respectively, and 12.89% for soil Pb by CN+HPMA. Under neutral or alkaline conditions, the largest improvements in soil Cd, Pb and Zn were 24.18%, 54.38% and 25.47% by PW+PBTCA, respectively. When compared with EDTA, the loss rates of soil nitrogen, phosphorus and potassium significantly decreased (p<0.05) and the soil organic carbon significantly increased (p<0.05) after washing with the combinations. Hence, the addition of HPMA or PBTCA with the plant agents could improve the removal of soil heavy metals. Copyright © 2017. Published by Elsevier B.V.

  14. Enhanced phosphorus removal in the DAF process by flotation scum recycling for advanced treatment of municipal wastewater.

    PubMed

    Kwak, Dong-Heui; Lee, Ki-Cheol

    2015-01-01

    To remove phosphorus (P) from municipal wastewater, various types of advanced treatment processes are being actively applied. However, there is commonly a space limit in municipal wastewater treatment plants (MWTPs). For that reason, the dissolved air flotation (DAF), which is well known for small space and flexible application process, is preferred as an additive process to enhance the removal of P. A series of experiments were conducted to investigate the feasibility of flotation scum recycling for effective P removal from a MWTP using a DAF pilot plant over 1 year. The average increases in the removal efficiencies due to flotation scum recycling were 22.6% for total phosphorus (T-P) and 18.3% for PO4-P. A higher removal efficiency of T-P was induced by recycling the flotation scum because a significant amount of Al components remained in the flotation scum. The increase in T-P removal efficiency, due to the recycling of flotation scum, shifted from the boundary of the stoichiometric precipitate to the equilibrium control region. Flotation scum recycling may contribute to improving the quality of treated water and reducing treatment costs by minimizing the coagulant dosage required.

  15. Enhanced Cr(VI) removal from groundwater by Fe(0)-H2O system with bio-amended iron corrosion.

    PubMed

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua; Chen, Guocai; Jiang, Gangbiao; Li, Ping; Gu, Jingjing; Liang, Hao; Liu, Chuansheng

    2017-02-27

    A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than in the Fe(0)-H2O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe(0)-H2O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe(0) in the bio-iron system was 12.4 times higher than that in the Fe(0)-H2O system. A 62days of life-span could be achieved in the bio-iron system, while the Fe(0)-H2O system lost its efficacy after 30days. Enhanced effects of extra Fe(2+) on Cr(VI) removal was observed, largely contributed to the adsorbed Fe(2+) on iron surface, which could function as an extra reductant for Cr(VI) and promote the electron transfer on the solid phase. The results also showed that the reduction of Cr(VI) by microorganisms was insignificant, indicating the adsorption/co-precipitation of Cr by iron oxides on iron surface was responsible for the overall Cr(VI) removal. Our study demonstrated that the bio-amended iron corrosion could improve the performance of Fe(0) for Cr(VI) removal from groundwater.

  16. Management of incidental renal masses: Time to consider contrast-enhanced ultrasonography.

    PubMed

    Di Vece, Francesca; Tombesi, Paola; Ermili, Francesca; Sartori, Sergio

    2016-02-01

    Proliferation of imaging studies for different clinical purposes and continuous improvement of imaging technology have led to an increasing number of incidental findings of renal masses. It is estimated that over 50% of patients older than 50 years have at least one renal mass. The majority of incidental renal masses are simple cysts that can be easily diagnosed by conventional ultrasonography. However, some incidental renal masses are not simple cysts, and differentiation between benign and malignant entities requires further imaging modalities. In the past, multiphase contrast-enhanced computed tomography and magnetic resonance imaging were considered the primary imaging modalities used to characterize and stage complex cystic and solid renal lesions. Currently, contrast-enhanced ultrasonography represents a novel alternative to contrast-enhanced computed tomography and magnetic resonance imaging. Contrast-enhanced ultrasonography employs microbubble contrast agents that allow the study of different enhancement phases of the kidney without risk of nephrotoxicity and radiation exposure. The diagnostic accuracy of contrast-enhanced ultrasonography in the characterization of complex renal cysts is comparable to that of computed tomography and magnetic resonance imaging, and several studies have demonstrated its reliability also in identifying solid lesions such as pseudotumors, typical angiomyolipomas, and clear cell renal carcinomas. Considering the high incidence of incidental renal masses and the need for rapid and reliable diagnosis, contrast-enhanced ultrasonography could be proposed as the first step in the diagnostic work-up of renal masses because of its safety and cost effectiveness. In this paper, we propose a diagnostic algorithm for the characterization of cystic and solid renal masses.

  17. Enhancing rain garden design to promote nitrate removal: testing a media carbon amendment.

    EPA Science Inventory

    Rain gardens effectively remove some stressors from stormwater, in particular heavy metals, phosphorus, and oil and grease, but in most cases they show much smaller removal rates of nitrate. This is likely due to the high sand and low organic matter content specified for rain ga...

  18. Enhancing Rain Garden Design to Promote Nitrate Removal: Testing a media carbon amendment

    EPA Science Inventory

    Rain gardens effectively remove some stressors from stormwater, in particular heavy metals, phosphorus, and oil and grease, but in most cases they show much smaller removal rates of nitrate. This is likely due to the high sand and low organic matter content specified for rain ga...

  19. Enhancing Rain Garden Design to Promote Nitrate Removal: Testing a media carbon amendment

    EPA Science Inventory

    Rain gardens effectively remove some stressors from stormwater, in particular heavy metals, phosphorus, and oil and grease, but in most cases they show much smaller removal rates of nitrate. This is likely due to the high sand and low organic matter content specified for rain ga...

  20. Enhancing rain garden design to promote nitrate removal: testing a media carbon amendment.

    EPA Science Inventory

    Rain gardens effectively remove some stressors from stormwater, in particular heavy metals, phosphorus, and oil and grease, but in most cases they show much smaller removal rates of nitrate. This is likely due to the high sand and low organic matter content specified for rain ga...

  1. Simultaneous sample preconcentration and matrix removal using field-flow fractionation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Assad; Siripinyanond, Atitaya; Barnes, Ramon M.

    2001-10-01

    An on-channel sample preconcentration-matrix removal arrangement, based on coupling field-flow fractionation (FFF) to inductively coupled plasma mass spectrometry (ICP-MS), has been constructed for on-line sample pretreatment ICP-MS trace element determination. A commercial FFF system is modified to incorporate an on-channel preconcentration procedure allowing injection of up to 50 ml of sample, which could be preconcentrated by 50-1400 fold. A high molecular weight complexing agent added to the sample forms strong complexes with the measured trace analytes but not with the sample matrix. When the sample-complexing agent mixture is introduced to the FFF unit, the uncomplexed matrix element is removed by permeation through a membrane that separates the FFF sample compartment. The trace analytes remain in the FFF channel, because their high molecular weight complexes do not permeate through the membrane. Preconcentration and matrix elimination occur simultaneously. The matrix-free, preconcentrated sample is introduced directly to the ICP-MS nebulizer. The method was tested using 10-ml sample aliquots that contain As, Cd, Cu, Mo, Pb, Re, Sn, Te, Tl, Y, Zn and Zr analytes and 5000 mg l -1 Ca or Na matrices and ethylene imine polymer complexing agent. Copper and Re isotopic ratio values in reference standards also were determined after preconcentration and matrix element removal.

  2. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes

    SciTech Connect

    1989-08-21

    Mass transfer investigation experiments were performed to determine the controlling physical and chemical processes that limit Ca(OH){sub 2} sorbent utilization in flue gas desulfurization. A computer model has been established to estimate the relative contribution of gas- and liquid-phase mass transfer and inherent sorbent reactivity. Currently, the mass transfer investigation tests are on schedule and will be continued next year. More pilot-plant tests are planned to support field tests and mass transfer enhancement evaluations. 48 figs., 7 tabs.

  3. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria.

    PubMed

    Qin, Wen; Li, Wei-Guang; Zhang, Duo-Ying; Huang, Xiao-Fei; Song, Yang

    2016-03-01

    We sought to confirm whether use of Acinetobacter strains Y7 and Y16, both strains of heterotrophic nitrifying bacteria, was practical for removing ammonium (NH4 (+)-N) from drinking water at low temperatures. To test this, ammonium-containing drinking water was treated with strains Y7 and Y16 at 8 and 2 °C. Continuous ammonium treatment was conducted in order to evaluate the performance of three biologically enhanced activated carbon (BEAC) filters in removing ammonium. The three BEAC filters were inoculated with strain Y7, strain Y16, and a mixture of strains Y7 and Y16, respectively. A granular activated carbon (GAC) filter, without inoculation by any strains, was tested in parallel with the BEAC filters as control. The results indicated that NH4 (+)-N removal was significant when a BEAC filter was inoculated with the mixture of strains Y7 and Y16 (BEAC-III filter). Amounts of 0.44 ± 0.05 and 0.25 ± 0.05 mg L(-1) NH4 (+)-N were removed using the BEAC-III filter at 8 and 2 °C, respectively. These values were 2.8-4.0-fold higher than the values of ammonium removal acquired using the GAC filter. The synergistic effect of using strains Y7 and Y16 in concert was the cause of the high-ammonium removal efficiency achieved by using the BEAC-III filter at low temperatures. In addition, a high C/N ratio may promote NH4 (+)-N removal efficiency by improving biomass and microbial activity. This study provides new insight into the use of biofilters to achieve biological removal of ammonium at low temperature.

  4. Simulation modeling for nitrogen removal and experimental estimation of mass fractions of microbial groups in single-sludge system.

    PubMed

    Huang, J S; Tsai, C C; Chou, H H; Ting, W H

    2006-01-01

    Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.

  5. Forearc Mass Removal and the Effects of Subduction Erosion off the Nicoya Peninsula of Costa Rica

    NASA Astrophysics Data System (ADS)

    Vannucchi, P.; Ranero, C. R.; Scholl, D. W.

    2001-12-01

    Since early-middle Miocene subduction erosion has been the dominant process controlling the tectonics off northern Costa Rica. Leg 170's Site 1042, located 7 km landward of the Middle America Trench (MAT), reached the acoustically defined Base Of Slope Sediment (BOSS) horizon at a depth of ~ 3900 mbsl and yielded a carbonate-cemented breccia, 16.5 myr-old, formed in a nearshore setting. The overlain Pleistocene to Miocene slope sequence shows a benthic foraminifera record implying the subsidence of the margin from the upper bathyal to the abyssal depth. The breccia rests unconformably above an older breccia composed of Nicoya basement rocks attesting that the coastal exposed basement of the Nicoya Peninsula extends seaward below Miocene and younger slope sediment to near the inner trench wall. Here a ~16.5 myr-old shoreline has subsided ~4 km, and that since this time at least 10-12 km of crustal thinning has occurred beneath the BOSS horizon implying that the trench axis has migrated landward at ~3 km/myr. Seismic images show that normal faulting is widespread across the overriding plate. However, measured extension by normal faulting can only account for a minor amount of the subsidence of the upper plate. Thus, removal of material by basal tectonic erosion has to be invoked to the explain the thinning and long term margin subsidence. Along this segment of the MAT the rate of crust removal approaches 35 km3/myr/km of trench. Basal erosion of older forearc material allows low concentrations of 10Be in the arc. The 10Be output in the arc increase toward Nicaragua where seismic data suggest lower rates of recent subduction erosion.

  6. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009-2015: constraining wet removal rates and emission strengths from East Asia

    NASA Astrophysics Data System (ADS)

    Kanaya, Yugo; Pan, Xiaole; Miyakawa, Takuma; Komazaki, Yuichi; Taketani, Fumikazu; Uno, Itsushi; Kondo, Yutaka

    2016-08-01

    Long-term (2009-2015) observations of atmospheric black carbon (BC) mass concentrations were performed using a continuous soot-monitoring system (COSMOS) at Fukue Island, western Japan, to provide information on wet removal rate constraints and the emission strengths of important source regions in East Asia (China and others). The annual average mass concentration was 0.36 µg m-3, with distinct seasonality; high concentrations were recorded during autumn, winter, and spring and were caused by Asian continental outflows, which reached Fukue Island in 6-46 h. The observed data were categorized into two classes, i.e., with and without a wet removal effect, using the accumulated precipitation along a backward trajectory (APT) for the last 3 days as an index. Statistical analysis of the observed ΔBC / ΔCO ratios was performed to obtain information on the emission ratios (from data with zero APT only) and wet removal rates (including data with nonzero APTs). The estimated emission ratios (5.2-6.9 ng m-3 ppb-1) varied over the six air mass origin areas; the higher ratios for south-central East China (30-35° N) than for north-central East China (35-40° N) indicated the relative importance of domestic emissions and/or biomass burning sectors. The significantly higher BC / CO emission ratios adopted in the bottom-up Regional Emission inventory in Asia (REAS) version 2 (8.3-23 ng m-3 ppb-1) over central East China and Korea needed to be reduced at least by factors of 1.3 and 2.8 for central East China and Korea, respectively, but the ratio for Japan was reasonable. The wintertime enhancement of the BC emission from China, predicted by REAS2, was verified for air masses from south-central East China but not for those from north-central East China. Wet removal of BC was clearly identified as a decrease in the ΔBC / ΔCO ratio against APT. The transport efficiency (TE), defined as the ratio of the ΔBC / ΔCO ratio with precipitation to that without precipitation, was

  7. Nitrogen removal in Myriophyllum aquaticum wetland microcosms for swine wastewater treatment: (15) N-labelled nitrogen mass balance analysis.

    PubMed

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; He, Yang; Wu, Jinshui

    2017-01-01

    Ecological treatments are effective for treating agricultural wastewater. In this study, wetland microcosms vegetated with Myriophyllum aquaticum were designed for nitrogen (N) removal from two strengths of swine wastewater, and (15) N-labelled ammonium (NH4(+) -N) was added to evaluate the dominant NH4(+) -N removal pathway. The results showed that 98.8% of NH4(+) -N and 88.3% of TN (TN: 248.6 mg L(-1) ) were removed from low-strength swine wastewater (SW1) after an incubation of 21 days, with corresponding values for high-strength swine wastewater (SW2) being 99.2% of NH4(+) -N and 87.8% of TN (TN: 494.9 mg L(-1) ). Plant uptake and soil adsorption respectively accounted for 24.0% and 15.6% of the added (15) N. Meanwhile, above-ground tissues of M. aquaticum had significantly higher biomass and TN content than below-ground (P < 0.05). (15) N mass balance analysis indicated that gas losses contributed 52.0% to the added (15) N, but the N2 O flux constituted only 7.5% of total gas losses. The dynamics of NO3(-) -N and N2 O flux revealed that strong nitrification and denitrification occurred in M. aquaticum microcosms, which was a dominant N removal pathway. These findings demonstrated that M. aquaticum could feasibly be used to construct wetlands for high N-loaded animal wastewater treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    PubMed

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    PubMed

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future.

  10. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process.

    PubMed

    Wei, Yun Xia; Ye, Zheng Fang; Wang, Yao Long; Ma, Ming Guang; Li, Yan Feng

    2011-01-01

    Utilizing preferential ion exchange of the modified zeolite, the zeo-sequencing batch reactor (SBR) is recommended for a new nitrogen removal process. In this study, natural zeolite was modified by sodium chloride to enhance sorption capacity for ammoniacal nitrogen. The untreated and treated zeolite was characterized by XPS and XRD techniques. The sorption isotherm tests showed that equilibrium sorption data were better represented by the Langmuir model than by the Freundlich model. Treatment of natural zeolite by sodium chloride increased the sorption capacity for ammoniacal nitrogen removal from aqueous solutions. As a result of the continuous bioregeneration of ammonium saturated zeolite-floc in the SBR, the nitrogen removal efficiency of the zeo-SBR was relatively ideal. Scanning electron microscopy results showed that microbes were abundant in the zeo-SBR process.

  12. Computer-aided detection of bladder mass within contrast-enhanced region of CTU

    NASA Astrophysics Data System (ADS)

    Cha, Kenny; Hadjiiski, Lubomir; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Zhou, Chuan

    2015-03-01

    We are developing a computer-aided detection system for bladder cancer on CTU. The bladder was automatically segmented with our Conjoint Level set Analysis and Segmentation System (CLASS). In this preliminary study, we developed a system for detecting mass within the contrast-enhanced (C) region of the bladder. The C region was delineated from the segmented bladders using a method based on maximum intensity projection. The bladder wall of the C region was extracted using thresholding to remove the contrast material. The wall on each slice was transformed into a wall profile. Morphology and voxel intensity along the profile were analyzed and suspicious locations were labeled as lesion candidates. The candidates were segmented and 20 morphological features were extracted from each candidate. A data set of 35 patients with 45 biopsy-proven bladder lesions within the C region was used for system evaluation. Stepwise feature selection with simplex optimization and leave-one-case-out method was used for training and validation. For each partition in the leave-one-case-out method, features were selected from the training cases and a linear discriminant (LDA) classifier was designed to merge the selected features into a single score for classification of the lesion candidates into bladder lesions and normal findings in the left-out case. A single score was generated for each lesion candidate. The performance of the CAD system was evaluated by FROC analysis. At an FP rate of 2.5 FPs/case, the system achieved a sensitivity of 82%, while at 1.7 FPs/case, a sensitivity of 71%.

  13. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    PubMed Central

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera. PMID:26983801

  14. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR).

    PubMed

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-17

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10-50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  15. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  16. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  17. Removing costs from the health care supply chain: lessons from mass retail.

    PubMed

    Agwunobi, John; London, Paul A

    2009-01-01

    Improved supply-chain management and high-volume purchasing have benefited other industries. This same approach could also reduce health care costs. Streamlining layers in the supply chain and using purchasing volume to reduce prices can save money and may improve care. Providing access to in-store health clinics and low-cost generic drugs are examples of how this approach is being tested by mass retailers. We examine lessons learned from these and similar initiatives and identify opportunities to cut the costs of generic and name-brand drugs, medical supplies, over-the-counter remedies, and vision care.

  18. Atypical choroid plexus papilloma: spontaneous resolution of diffuse leptomeningeal contrast enhancement after primary tumor removal in 2 pediatric cases.

    PubMed

    Scala, Marcello; Morana, Giovanni; Milanaccio, Claudia; Pavanello, Marco; Nozza, Paolo; Garrè, Maria Luisa

    2017-09-01

    Atypical choroid plexus papillomas can metastasize in the form of leptomeningeal seeding. Postoperative chemotherapy is the recommended first-line treatment when gross-total removal is not achieved or in cases of disseminated disease. Here the authors report on 2 children with atypical choroid plexus papillomas and MRI findings of diffuse leptomeningeal enhancement at diagnosis, later presenting with spontaneous resolution of the leptomeningeal involvement after removal of the primary lesions. Observations in this report expand our knowledge about the natural history and biological behavior of these tumors and highlight the role of close neuroimaging surveillance in the management of atypical choroid plexus papillomas in cases with MRI evidence of diffuse leptomeningeal enhancement at presentation.

  19. Effects of carbon-nitrogen ratio on nitrogen removal in a sequencing batch reactor enhanced with low-intensity ultrasound.

    PubMed

    Jin, Ruofei; Liu, Guangfei; Li, Chunling; Xu, Rongjuan; Li, Hongyang; Zhang, Lunxiang; Zhou, Jiti

    2013-11-01

    A sequencing batch reactor (SBR) enhanced with low-intensity ultrasound was designed to study the removal of nitrogen under different carbon-nitrogen (C/N) ratios. The results showed that the removal efficiencies of CODCr and nitrogen were inversely proportional to C/N ratios. The CODCr of the effluent in the control reactor (CR) and the low-intensity ultrasound-enhanced reactor (UER) were lower than 40 mg L(-1). With a decrease in C/N ratio, the NH4(+)-N removal load of the CR showed little change, while the NH4(+)-N removal load of UER increased from 21.2 to 56.1mg NH4(+)-N/g mixed liquid suspended solids per day. To further understand effects of low-intensity ultrasound, the denaturing gel gradient electrophoresis (DGGE) analysis showed that the similar coefficients of the community structures in the UER and CR were 86%, 52% and 29% when the C/N ratios were 15:1, 10:1, 5:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Enhanced mercury removal from fix-bed reactor by lamella manganese oxide sorbents

    NASA Astrophysics Data System (ADS)

    Cheng, H. W.; Yu, C. T.

    2015-12-01

    Mercury (Hg) is an extremely hazardous metal and attracted more concern because of its high toxicity and bioaccumulation. Several manganese-oxide-containing sorbents prepared by co-precipitation method could exhibit the mercury removal activities toward Hg0. The mercury removal test at the temperature of 300°C has the highest removal efficiency. Under this temperature, the maximum absorption equivalent of Mg-Al-Mn and Mn-Al were up to 90.9 and 247 μg/g, then gradually decreased at 400°C. The mercury removal efficiency declined in the following sequence: Mn-Al > Mg-Al-Mn > Mg-Al-Mn/ACA = Mn/AC(p)> Mn/AC(g), due to the manganese-oxide content formed on the sorbents.

  1. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration.

    PubMed

    Yang, Zhongchen; Yang, Luhua; Wei, Caijie; Wu, Weizhong; Zhao, Xufei; Lu, Ting

    2017-08-04

    In this study, the performances of nitrogen removal in constructed wetlands using solid carbon source with limited aeration were investigated. The blends of poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polyacetic acid (PLA) were used as the carbon source and biofilm support. The performances of nitrogen removal, microbial abundance and microbial community structure in the biofilm attached on PHBV/PLA were investigated. Higher ammonia removal efficiency (91.00%) and total nitrogen removal efficiency (97.03%) than non-aerated constructed wetland (System NA) were achieved in constructed wetland with limited aeration (System A). The limited aeration decreased the average concentrations of COD in effluent. And, System A had higher microbial abundance than System NA. Pyrosequencing analysis showed that denitrifying bacteria Brevinema (41.85%) and Thiothrix (12.33%) were the predominant genus in the biofilm attached on the carbon source in System NA and System A, respectively. Copyright © 2017. Published by Elsevier Ltd.

  2. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.

    PubMed

    Li, Xueqing; Hai, Faisal I; Nghiem, Long D

    2011-05-01

    Significant adsorption of sulfamethoxazole and carbamazepine to powdered activated carbon (PAC) was confirmed by a series of adsorption tests. In contrast, adsorption of these micropollutants to the sludge was negligible. The removal of these compounds in membrane bioreactor (MBR) was dependent on their hydrophobicity and loading as well as the PAC dosage. Sulfamethoxazole exhibited better removal rate during operation under no or low (0.1g/L) PAC dosage. When the PAC concentration in MBR was raised to 1.0 g/L, a sustainable and significantly improved performance in the removal of both compounds was observed - the removal efficiencies of sulfamethoxazole and carbamazepine increased to 82 ± 11% and 92 ± 15% from the levels of 64 ± 7%, and negligible removal, respectively. The higher removal efficiency of carbamazepine at high (1.0 g/L) PAC dosage could be attributed to the fact that carbamazepine is relatively more hydrophobic than sulfamethoxazole, which subsequently resulted in its higher adsorption affinity toward PAC.

  3. Addition of a Magnetite Layer onto a Polysulfone Water Treatment Membrane to Enhance Virus Removal

    NASA Astrophysics Data System (ADS)

    Raciny, Isabel

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with Polysulfone (PSf) membranes coated with nano-Fe3O 4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about colored water. Further research is needed to reduce the loss of water flux caused by coating.

  4. Addition of a magnetite layer onto a polysulfone water treatment membrane to enhance virus removal.

    PubMed

    Raciny, I; Zodrow, K R; Li, D; Li, Q; Alvarez, P J J

    2011-01-01

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with polysulfone membranes coated with nano-Fe3O4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about coloured water. Further research is needed to reduce the loss of water flux caused by coating.

  5. Enhanced adsorption and regeneration with lignocellulose-based phosphorus removal media using molecular coating nanotechnology.

    PubMed

    Kim, Juyoung; Mann, Justin D; Kwon, Soonjo

    2006-01-01

    The removal of phosphorus in point and non-point-source pollution has become one of the leading problems in water quality since the beginning of the 21st century. Several natural, domestic, and industrial treatment systems already exist, but with very limited efficiencies and serious procedural defects. Lignocellulose-based Anion Removal Media (LAM) was developed in association with iron nanocoating technology as means of phosphorus adsorption from various concentrations of contaminated water. Results revealed that trivalent iron coated lignocellulose pellets can be used to effectively remove phosphorus contaminants from point and non-point-source polluted water. Removal capacities of pelletized cotton media surpass existing materials for phosphorus removal by at least 22 times, while remaining both efficient and cost effective. The materials were also investigated for regeneration, yielding high removal capacities even after the fifth regeneration. Treatment methodology and outlines are proposed, and procedural mechanisms are explored in this study. An economic evaluation of this technology is also assessed for a practical application of LAM to point/non-point-source polluted water.

  6. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  7. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation.

    PubMed

    Li, Miao; Wu, Yue-Jin; Yu, Zeng-Liang; Sheng, Guo-Ping; Yu, Han-Qing

    2009-03-01

    Ipomoea aquatica with low-energy N+ ion implantation was used for the removal of both nitrogen and phosphorus from the eutrophic Chaohu Lake, China. The biomass growth, nitrate reductase and peroxidase activities of the implanted I. aquatica were found to be higher than those of I. aquatica without ion implantation. Higher NO3-N and PO4-P removal efficiencies were obtained for the I. aquatica irradiation at 25 keV, 3.9 x 10(16) N+ ions/cm(2) and 20 keV 5.2 x 10(16) N+ ions/cm(2), respectively (p < 0.05). Moreover, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those of the controls. I. aquatica with ion implantation was directly responsible for 51-68% N removal and 54-71% P removal in the three experiments. The results further confirm that the ion implantation could enhance the growth potential of I. aquatica in real eutrophic water and increase its nutrient removal efficiency. Thus, the low-energy ion implantation for aquatic plants could be considered as an approach for in situ phytoremediation and bioremediation of eutrophic waters.

  8. Enhanced removal of bisphenol-AF onto chitosan-modified zeolite by sodium cholate in aqueous solutions.

    PubMed

    Peng, Sha; Hao, Kunyan; Han, Feng; Tang, Zheng; Niu, Beibei; Zhang, Xu; Wang, Zhen; Hong, Song

    2015-10-05

    The removal of bisphenol-AF (BPAF) from aqueous solutions onto chitosan-modified zeolite (Ch-Z) in the absence and presence of sodium cholate (NaC) was investigated. It was found that NaC significantly increased the adsorption capacity of Ch-Z for BPAF. At an initial concentration of 100 μmol/L, the removal of BPAF by adsorption onto Ch-Z with NaC was more than ninefold higher than without NaC, and the maximum removal was achieved at a Ch-Z dosage of 1g/L with a NaC concentration of 1.68 mmol/L. Besides, batch studies were performed to evaluate the effects of various experimental parameters on the removal of BPAF. Kinetic studies and adsorption isotherms indicated that the adsorption process of BPAF onto Ch-Z with NaC could be expressed by a pseudo second-order model and the Freundlich isotherm model, respectively. For the enhanced removal, an interaction mechanism was proposed involving the co-effect of BPAF and NaC adsorbed onto Ch-Z.

  9. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.

    PubMed

    Yang, Y; Wang, Z M; Liu, C; Guo, X C

    2012-01-01

    Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.

  11. Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system.

    PubMed

    Xie, Ting; Mo, Chuangrong; Li, Xiaoming; Zhang, Jian; An, Hongxue; Yang, Qi; Wang, Dongbo; Zhao, Jianwei; Zhong, Yu; Zeng, Guangming

    2017-02-01

    In this study, the effects of different ratios of glucose to acetate on enhanced biological phosphorus removal (EBPR) were investigated with regard to the changes of intercellular polyhydroxyalkanoates (PHAs) and glycogen, as well as microbial community. The experiments were carried out in five sequencing batch reactors (SBRs) fed with glucose and/or acetate as carbon sources at the ratios of 0:100 %, 25:75 %, 50:50 %, 75:25 %, and 100:0 %. The experimental results showed that a highest phosphorus removal efficiency of 96.3 % was obtained with a mixture of glucose and acetate at the ratio of 50:50 %, which should be attributed to more glycogen and polyhydroxyvalerate (PHV) transformation in this reactor during the anaerobic condition. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of sludge samples taken from different anaerobic/aerobic (A/O) SBRs revealed that microbial community structures were distinctively different with a low similarity between each other.

  12. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa

    PubMed Central

    2014-01-01

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively. PMID:24406158

  13. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa.

    PubMed

    Baneshi, Mohammad Mehdi; Rezaei Kalantary, Roshanak; Jonidi Jafari, Ahmad; Nasseri, Simin; Jaafarzadeh, Nemat; Esrafili, Ali

    2014-01-09

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively.

  14. Enhancing Nitrate Removal from Freshwater Pond by Regulating Carbon/Nitrogen Ratio

    PubMed Central

    Chen, Rong; Deng, Min; He, Xugang; Hou, Jie

    2017-01-01

    Nitrogen accumulation is a serious environmental problem in freshwater ponds, which can lead to massive death of fish and shrimps as well as the eutrophication. The removal of nitrate by regulating the carbon to nitrogen (C/N) ratio and the underlying mechanisms were investigated. The nitrate removal system comprised 530-mL medium containing 5 mg/L NO3−-N and 0–66.6 mg/L COD (i.e., C/N ratio of 0–13.3) and 20 g ponds sediments. When the C/N ratio was higher than 8, the nitrate removal efficiency nearly reached 100% during the incubation period and the accumulation of nitrite was negligible. When the C/N ratio was below 8, the nitrate removal efficiency was lower and significant nitrite accumulation occurred. The nitrate removal rate increased with the C/N ratio increased, which was ascribed to the increase in the absolute abundance of denitrifiers (nirS, nirK, and nosZ). Although both nirS-type and nirK-type denitrifiers were found in the sediments of freshwater pond, nirS-type denitrifiers were predominant. Dechloromonas was the major nirS-type denitrifier for nitrate removal in nirS-type with the C/N ratios above 5.33, while the majority of the nirK-type denitrifiers were unclassified. Thus, this study implied that the appropriate C/N ratio played an important role on the removal of excess nitrate from freshwater ponds. PMID:28943869

  15. Large {sigma} Channel Low-Mass Enhancement in Exclusively Measured Double Pionic Fusion to 3He

    SciTech Connect

    Bashkanov, M.; Skorodko, T.; Clement, H.; Khakimova, O.; Kren, F.; Wagner, G. J.

    2006-07-11

    The pd {yields} 3He {pi}0{pi}0 and pd {yields} 3He {pi}+{pi}- reactions have been measured exclusively at CELSIUS using the WASA 4{pi} detector with pellet target system. For the double-pionic fusion to 3He data have been taken at Tp = 0.893 GeV, where the maximum of the socalled ABC effect is expected. A very large low-mass enhancement is observed in the {pi}0{pi}0 invariant mass spectrum M{pi}0{pi}0, whereas only a moderate low-mass enhancement is seen in M{pi}+{pi}- raising thus the question of isospin invariance in this region. With both channels summed up the data agree well to previous inclusive measurements regarding the low-mass enhancement. However, they do not exhibit the high-mass enhancement seen in the inclusive measurements and predicted by theoretical calculations based on a {delta}{delta} process, which produces a double-hump structure in the M{pi}{pi} spectra.

  16. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes.

    PubMed

    Shi, Xia; Fan, Jinlin; Zhang, Jian; Shen, Youhao

    2017-08-13

    Phosphorus (P) loss by various pathways in constructed wetlands (CWs) is often variable. The effects of intermittent aeration and different construction waste substrates (gravel, red brick, fly-ash brick) on P processing using six batch-operated vertical flow constructed wetlands (VFCWs) were studied for decentralized domestic wastewater treatment. Average removal of total phosphorus (TP) in three aerated CWs was markedly higher (21.06, 24.83, and 27.02 mg m(-2) day(-1), respectively) than non-aerated CWs (10.64, 18.16, and 25.09 mg m(-2) day(-1), respectively). Fly-ash brick offered superior TP removal efficiency in both aerated and non-aerated batch-operated VFCWs, suggesting its promising application for P removal in CWs. Aeration greatly promoted plant growth and thusly increased plant uptake of P by 0.57-1.45 times. Substance storage was still the main P sink accounting for 23.92-59.47% of TP removal. Other process including microbial uptake was revealed to be a very important P removal pathway (accounting for 14.86-34.84%). The contribution of microbial uptake was also indicated by microbial analysis. Long-term results suggested that the contribution of microbial P uptake could be always ignored and underestimated in most CWs. A combination of intermittent aeration and suitable substrates is effective to intensify P transformation in CWs.

  17. Effect of Sludge Type on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactors

    NASA Astrophysics Data System (ADS)

    Li, Xing; Gao, Dawen; Zhang, Baihui

    2010-11-01

    Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the study of distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in EBPR. Two SBRs were concurrently operated to investigate the different phosphorus removal characteristics between granules (R1) and flocculate sludge (R2). Results indicated that R2 had a faster progress for enriching phosphorus-accumulating organisms compared with R1, and the phosphorus removal reached the steady state after 40 days in R1 but only 30 days in R2. The moisture content of granules (85.63%) was smaller than that (91.36%) in R2, and the granules had a higher removal efficiency of NH4+-N. However, flocculent sludge could release and take up more phosphorus. The special phosphorus release rate (SPRR) and special phosphorus uptake rate (SPUR) were 8.818 mg/gVSSṡh and 9.921 mg/gVSSṡh in R2 which were consistently larger than that (0.999 mg/gVSSṡh and 0.754 mg/gVSSṡh) in R1. The results of DGGE of PCR-amplified 16SrDNA fragments revealed that the diversity and the amount of phosphorus accumulating microbial of bacteria in flocculent sludge were much more than that in the granules. It can be concluded that the flocculent sludge showed a better phosphorus removal.

  18. Effect of particulate biodegradable COD in a post-denitrification enhanced biological phosphorus removal system.

    PubMed

    Torrico, Vladimir; Kuba, Takahiro; Kusuda, Tetsuya

    2006-01-01

    This research studied the effects of the particulate biodegradable fraction (X(S)) of chemical oxygen demand (COD) in a post-denitrification configuration. Denitrifying polyphosphate-accumulating organisms (DN-PAOs) and nitrifiers were completely separated in a system also known as Dephanox. It was composed by an anaerobic-anoxic (A(2)) process coupled with a parallel Nitrification biofilm tank. The results of a long-term operation of the Dephanox continuous-flow lab-scale system as well as results of sludge characterization assays showed that raw wastewater feeding promoted complete phosphorus (P) removal by double via (i) providing complementary volatile fatty acids (VFAs) for a complete P removal by prefermentation of the X(S) fraction of COD under a long anaerobic SRT, and (ii) assisting the metabolic accumulation and selection of DN-PAOs. Complete P removal was accomplished only when the system was fed with raw wastewater (high XS concentration). When primary effluent was used as influent, lack of VFAs in the anaerobic stage led to an incomplete and instable P removal, suggesting that the use of primary treatment is not only unnecessary but detrimental for simultaneous nutrient removal in a post-denitrification configuration.

  19. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream.

    PubMed

    Roley, Sarah S; Tank, Jennifer L; Stephen, Mia L; Johnson, Laura T; Beaulieu, Jake J; Witter, Jonathan D

    2012-01-01

    Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.

  20. Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding.

    PubMed

    Li, Fengmin; Lu, Lun; Zheng, Xiang; Ngo, Huu Hao; Liang, Shuang; Guo, Wenshan; Zhang, Xiuwen

    2014-10-01

    Four horizontal subsurface flow constructed wetlands (HSFCWs), named HSFCW1 (three-stage, without step-feeding), HSFCW2 (three-stage, with step-feeding), HSFCW3 (five-stage, without step-feeding) and HSFCW4 (five-stage, with step-feeding) were designed to investigate the effects of dissolved oxygen (DO) and step-feeding on nitrogen removal. High removal of 90.9% COD, 99.1% ammonium nitrogen and 88.1% total nitrogen (TN) were obtained simultaneously in HSFCW4 compared with HSFCW1-3. The excellent TN removal of HSFCW4 was due to artificial aeration provided sufficient DO for nitrification and the favorable anoxic environment created for denitrification. Step-feeding was a crucial factor because it provided sufficient carbon source (high COD: nitrate ratio of 14.3) for the denitrification process. Microbial activities and microbial abundance in HSFCW4 was found to be influenced by DO distribution and step-feeding, and thus improve TN removal. These results suggest that artificial aeration combined with step-feeding could achieve high nitrogen removal in HSFCWs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.

    PubMed

    Yoon, Hongkyu; Werth, Charles J; Valocchi, Albert J; Oostrom, Mart

    2008-08-20

    An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.

  2. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction

    SciTech Connect

    Yoon, Hongkyu; Werth, Charlie; Valocchi, Albert J.; Oostrom, Martinus

    2008-09-26

    An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impact of water and NAPL saturation distribution, NAPL type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at late time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.

  3. Herbivores alter plant-wind interactions by acting as a point mass on leaves and by removing leaf tissue.

    PubMed

    Kothari, Adit R; Burnett, Nicholas P

    2017-09-01

    In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera, and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high-speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant-wind interactions, and vice versa.

  4. Removal of Endobronchial Malignant Mass by Cryotherapy Improved Performance Status to Receive Chemotherapy

    PubMed Central

    Hsieh, Meng-Heng; Wang, Tsai-Yu; Yu, Chih-Teng; Chou, Chun-Liang; Lin, Shu-Min; Kuo, Chih-Hsi; Chung, Fu-Tsai

    2014-01-01

    Although malignant endobronchial mass (MEM) has poor prognosis, cryotherapy is reportedly a palliative treatment. Clinical data on postcryotherapy MEM patients in a university-affiliated hospital between 2007 and 2011 were evaluated. Survival curve with or without postcryotherapy chemotherapy and performance status (PS) improvement of these subjects were analyzed using the Kaplan-Meier method. There were 59 patients (42 males), with median age of 64 years (range, 51–76, and median performance status of 2 (interquartile range [IQR], 2-3). Postcryotherapy complications included minor bleeding (n = 12) and need for multiple procedures (n = 10), while outcomes were relief of symptoms (n = 51), improved PS (n = 45), and ability to receive chemotherapy (n = 40). The survival of patients with chemotherapy postcryotherapy was longer than that of patients without such chemotherapy (median, 534 versus 106 days; log-rank test, P = 0.007; hazard ratio, 0.25; 95% confidence interval, 0.10–0.69). The survival of patients with PS improvement postcryotherapy was longer than that of patients without PS improvement (median, 406 versus 106 days; log-rank test, P = 0.02; hazard ratio, 0.28; 95% confidence interval, 0.10–0.81). Cryotherapy is a feasible treatment for MEM. With better PS after cryotherapy, further chemotherapy becomes possible for patients to improve survival when MEM caused dyspnea and poor PS. PMID:25383370

  5. Normalization Approaches for Removing Systematic Biases Associated with Mass Spectrometry and Label-Free Proteomics

    SciTech Connect

    Callister, Stephen J.; Barry, Richard C.; Adkins, Joshua N.; Johnson, Ethan T.; Qian, Weijun; Webb-Robertson, Bobbie-Jo M.; Smith, Richard D.; Lipton, Mary S.

    2006-02-01

    Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample set were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias, assigned ranks among the techniques revealed significant trends. For most LC-FTICR MS analyses, linear regression normalization ranked either first or second among the four techniques, suggesting that this technique was more generally suitable for reducing systematic biases.

  6. A Steady-State Mass Transfer Model of Removing CPAs from Cryopreserved Blood with Hollow Fiber Modules

    PubMed Central

    Ding, Weiping; Zhou, Xiaoming; Heimfeld, Shelly; Reems, Jo-Anna; Gao, Dayong

    2010-01-01

    Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model which was presented in our previous study. As the steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells (RBCs) can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates or decreasing dialysate flow rates. PMID:20524740

  7. Enhancing our Search for Missing Intermediate Mass Black Holes Using Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Jani, Karan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration

    2017-01-01

    The current generation of ground-based gravitational-wave detectors are most sensitive to mergers of intermediate-mass black holes (IMBH), with search volume of cosmological distances of redshift 1 and detectable total-mass up to 1000M⊙ . Two independent searches for binary black holes, matched-filtering and transient burst, are specifically configured to look for IMBH binaries in Advanced LIGO. I summarize the results from both these searches during the first observing run of Advanced LIGO and narrate our plans to enhance detection volume and detectable total-mass.

  8. Removal of Residual Cavitation Nuclei to Enhance Histotripsy Erosion of Model Urinary Stones

    PubMed Central

    Duryea, Alexander P.; Roberts, William W.; Cain, Charles A.; Hall, Timothy L.

    2015-01-01

    Histotripsy has been shown to be an effective treatment for model kidney stones, eroding their surface to tiny particulate debris via a cavitational bubble cloud. However, similar to shock wave lithotripsy, histotripsy stone treatments display a rate-dependent efficacy with pulses applied at low rate generating more efficient stone erosion in comparison to those applied at high rate. This is hypothesized to be the result of residual cavitation bubble nuclei generated by bubble cloud collapse. While the histotripsy bubble cloud only lasts on the order of 100 µs, these microscopic remnant bubbles can persist on the order of 1 second—inducing direct attenuation of subsequent histotripsy pulses and influencing bubble cloud dynamics. In an effort to mitigate these effects, we have developed a novel strategy to actively remove residual cavitation nuclei from the field using low-amplitude ultrasound pulses. Previous work has demonstrated that with selection of the appropriate acoustic parameters these bubble removal pulses can stimulate the aggregation and subsequent coalescence of microscopic bubble nuclei—effectively deleting them from the target volume. Here, we incorporate bubble removal pulses in histotripsy treatment of model kidney stones. It was found that when histotripsy is applied at low rate (1 Hz), bubble removal does not produce a statistically significant change in erosion. At higher pulse rates of 10, 100, and 500 Hz, incorporating bubble removal results in 3.7-, 7.5-, and 2.7-fold increases in stone erosion, respectively. High speed imaging indicates that the introduction of bubble removal pulses allows bubble cloud dynamics resulting from high pulse rates to more closely approximate those generated at the low rate of 1 Hz. These results corroborate previous work in the field of shock wave lithotripsy regarding the ill-effects of residual bubble nuclei, and suggest that high treatment efficiency can be recovered at high pulse rates through

  9. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.

    PubMed

    Duryea, Alexander P; Roberts, William W; Cain, Charles A; Hall, Timothy L

    2015-05-01

    Histotripsy has been shown to be an effective treatment for model kidney stones, eroding their surface to tiny particulate debris via a cavitational bubble cloud. However, similar to shock wave lithotripsy, histotripsy stone treatments display a rate-dependent efficacy, with pulses applied at a low rate generating more efficient stone erosion in comparison with those applied at a high rate. This is hypothesized to be the result of residual cavitation bubble nuclei generated by bubble cloud collapse. Although the histotripsy bubble cloud only lasts on the order of 100 μs, these microscopic remnant bubbles can persist on the order of 1 s, inducing direct attenuation of subsequent histotripsy pulses and influencing bubble cloud dynamics. In an effort to mitigate these effects, we have developed a novel strategy to actively remove residual cavitation nuclei from the field using low-amplitude ultrasound pulses. Previous work has demonstrated that with selection of the appropriate acoustic parameters these bubble removal pulses can stimulate the aggregation and subsequent coalescence of microscopic bubble nuclei, effectively deleting them from the target volume. Here, we incorporate bubble removal pulses in histotripsy treatment of model kidney stones. It was found that when histotripsy is applied at low rate (1 Hz), bubble removal does not produce a statistically significant change in erosion. At higher pulse rates of 10, 100, and 500 Hz, incorporating bubble removal results in 3.7-, 7.5-, and 2.7-fold increases in stone erosion, respectively. High-speed imaging indicates that the introduction of bubble removal pulses allows bubble cloud dynamics resulting from high pulse rates to more closely approximate those generated at the low rate of 1 Hz. These results corroborate previous work in the field of shock wave lithotripsy regarding the ill effects of residual bubble nuclei, and suggest that high treatment efficiency can be recovered at high pulse rates through

  10. Enhanced removal of Exxon Valdez spilled oil Alaskan gravel by a microbial surfactant

    SciTech Connect

    Harvey, S.; Elashvili, I.; Valdes, J.J.; Kamely, D.; Chakrabarty, A.M. )

    1990-03-01

    Remediation efforts for the oil spill from the Exxon Valdez tanker in Alaska have focused on the use of pressurized water at high temperature to remove oil from the beaches. We have tested a biological surfactant from Pseudomonas aeruginosa for its ability to remove oil from contaminated Alaskan gravel samples under various conditions, including concentration of the surfactant, time of contact, temperature of the wash, and presence or absence of xanthan gum. The results demonstrate the ability of the microbial surfactant to release oil to a significantly greater extent (2 to 3 times) than water alone, particularly at temperatures of 30{degree}C and above.

  11. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant.

    PubMed

    Harvey, S; Elashvili, I; Valdes, J J; Kamely, D; Chakrabarty, A M

    1990-03-01

    Remediation efforts for the oil spill from the Exxon Valdez tanker in Alaska have focused on the use of pressurized water at high temperature to remove oil from the beaches. We have tested a biological surfactant from Pseudomonas aeruginosa for its ability to remove oil from contaminated Alaskan gravel samples under various conditions, including concentration of the surfactant, time of contact, temperature of the wash, and presence or absence of xanthan gum. The results demonstrate the ability of the microbial surfactant to release oil to a significantly greater extent (2 to 3 times) than water alone, particularly at temperatures of 30 degrees C and above.

  12. Multi-site and multi-depth in vivo cancer localization enhancement after autofluorescence removal

    NASA Astrophysics Data System (ADS)

    Montcuquet, Anne-Sophie; Hervé, Lionel; Navarro, Fabrice; Dinten, Jean-Marc; Mars, Jérôme I.

    2011-02-01

    Fluorescence imaging in diffusive media locates tumors tagged by injected fluorescent markers in NIR wave-lengths. For deep embedded markers, natural autofluorescence of tissues comes to be a limiting factor to tumor detection and accurate FDOT reconstructions. A spectroscopic approach coupled with Non-negative Matrix Factorization source separation method is explored to discriminate fluorescence sources according to their fluorescence spectra and remove unwanted autofluorescence. We successfully removed autofluorescence from acquisitions on living mice with a single subcutaneous tumor or two capillary tubes inserted at different depths.

  13. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  14. [Removal of NO and Hg0 in flue gas using alkaline absorption enhanced by non-thermal plasma].

    PubMed

    Luo, Hong-Jing; Zhu, Tian-Le; Wang, Mei-Yan

    2010-06-01

    Non-thermal plasma (NTP) induced by positive corona discharge was utilized to oxidize NO and Hg0 to more water-soluble NO2 and Hg2+ under the conditions of simulated flue gas. The effects of discharge voltage and inlet SO2 and NO concentrations on NO and Hg0 oxidation and their removals by alkaline absorption were investigated. The results show that the oxidation and removal of NO and Hg0 are enhanced with the increase of discharge voltage. The concentrations of NO and NO2 at the outlet of absorption tower are 0 and 69 mg/m3 with an inlet NO concentration of 134 mg/m3 and a discharge voltage of 12. 8 kV while the outlet concentrations of Hg0 and Hg2+ are 22 microg/m3 and 11 microg/m3 with an inlet Hg0 concentration of 110 microg/m3 and a discharge voltage of 13.1 kV. The presence of SO2 slightly improves the oxidation and removal of Hg0 while it has almost no effect on NO oxidation and its removal. The oxidation and removal of Hg0 are significantly inhibited with the increase of inlet NO concentration. In the coexistence of 800 mg/m3 SO2, 134 mg/m3 NO and 110 microg/m3 Hg0, the removal efficiencies are 57% for NO and 31% for Hg0 with an energy input of 77 J/L.

  15. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.

    PubMed

    Huang, R; Agranovski, I; Pyankov, O; Grinshpun, S

    2008-04-01

    Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in

  16. Enhanced nitrogen removal with an onsite aerobic cyclic biological treatment unit.

    PubMed

    Babcock, Roger W; Senthill, Atiim; Lamichhane, Krishna M; Agsalda, Jessica; Lindbo, Glen D

    2015-01-01

    Coastal Zone Act Reauthorization Amendments (CZARA, Section 6217) necessitate the requirement that onsite wastewater disposal units located near impaired surface waters or groundwater to provide at least 50% nitrogen removal. Approximately 38% of Hawaii households use onsite systems including septic tanks and cesspools that cannot meet this requirement. Upgrades to aerobic treatment units (ATUs) are a possible compliance solution. In Hawaii, ATUs must meet National Sanitation Foundation Standard 40 (NSF40) Class I effluent criteria. Previously, a multi-chamber, flow-through, combined attached/suspended growth type ATU (OESIS-750) and presently, a sequencing batch type ATU (CBT 0.8KF-210) were evaluated for NSF40 compliance, nutrient removal capability (NSF245), and adaptability for water reuse (NSF350). Both units easily achieved the NSF40 Class I effluent criteria. While the OESIS-750 achieved only 19% nitrogen removal, the CBT unit achieved 81% nitrogen removal, meeting the NSF245 criteria and CZARA requirements for applications in critical wastewater disposal areas. In addition, the CBT consistently produced effluent with turbidity less than 2 NTU (NSF350) and UVT254 greater than 70%, facilitating the production of unrestricted-use recycled water.

  17. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    PubMed

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris.

    PubMed

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming

    2016-01-01

    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process.

  19. Enhancing water removal from whole stillage by enzyme addition during fermentation

    USDA-ARS?s Scientific Manuscript database

    The removal of water from coproducts in the fuel ethanol process requires a significant energy input. In this study, the addition of cell-wall-degrading enzymes was investigated to determine whether or not the enzymes could reduce the amount of water bound within the wet grains. This would have the ...

  20. Impacts of carbon source addition on denitrification and phosphorus uptake in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2013-01-01

    In this study, simultaneous denitrification and phosphorus (P) removal were investigated in batch tests using nitrified mixed liquor and secondary wastewater influent from a full-scale treatment plant and different levels of acetate and propionate as supplemental carbon sources. Without supplemental carbon source, denitrification occurred at low rate and P release and P uptake was negatively affected (i.e., P removal of only 59.7%). When acetate and propionate were supplied, denitrification and P release occurred simultaneously under anoxic conditions. For acetate and propionate at a C/N stoichiometric ratio of 7.6, P release was negatively affected by denitrification. For acetate, the percent P removal and denitrification were very similar for C/N ratios of 22 (5X stoichiometric) and 59 (10X stoichiometric). For propionate, both percent P removal and denitrification deteriorated for C/N ratios of 22 (5X stoichiometric) and 45 (10X stoichiometric). It was observed that carbon source added in excess to stoichiometric ratio was consumed in the aerobic zone, but P was not taken up. This implies that PAO bacteria may utilize the excess carbon source in the aerobic zone rather than their polyhydroxyalkanoate (PHA) reserves, thereby promoting deterioration of the system.

  1. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    PubMed

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. An enhanced neighborhood similar pixel interpolator approach for removing thick clouds in landsat images

    USDA-ARS?s Scientific Manuscript database

    Thick cloud contaminations in Landsat images limit their regular usage for land applications. A few methods have been developed to remove thick clouds using additional cloud-free images. Unfortunately, the cloud-free composition image produced by existing methods commonly lacks from the desired spat...

  3. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal

    USDA-ARS?s Scientific Manuscript database

    Riparian buffers are a proven practice for removing NO3 from both overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage most of the subsurface flow leaving fields is passed through the buffers in drainage pipes leaving little opportunity for NO3 rem...

  4. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.

    PubMed

    Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J

    2011-09-01

    Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Removal of Radioactive Cations and Anions from Polluted Water Using Ligand-Modified Colloid-Enhanced Ultrafiltration

    SciTech Connect

    Scamehorn, John F.; Palmer, Cynthia E.; Taylor, Richard W.

    1999-06-01

    The objectives of this project are to determine the feasibility of and develop optimum conditions for the use of colloid-enhanced ultrafiltration (CEUF) methods to remove and recover radionuclides and associated toxic nonradioactive contaminants from polluted water. The target metal ions are uranium, plutonium, thorium, strontium and lead along with chromium (as chromate). Anionic or amphiphilic chelating agents, used in conjunction with polyelectrolyte colloids, provide a means to confer selectivity required for removal of the target cations. This project entails a comprehensive study of the effects of solution composition and filtration unit operating parameters on the separation efficiency and selectivity of ligand modified colloid-enhanced ultrafiltration (LM-CEUF) processes. Problem areas identified by the Office of Environmental Management addressed by this project include removal of hazardous ionic materials from ground water, mixed waste, and aqueous waste solutions produced during decontamination and decommissioning operations. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage.

  6. Removal of Radioactive Cations Anions from Polluted Water Using Ligand-Modified Colloid-Enhanced Ultrafiltration (60041-OK)

    SciTech Connect

    Scamehorn,John F.; Taylor, Richard W.; Palmer, Cynthia E.

    2000-06-01

    The objectives of this project are to determine the feasibility of and develop optimum conditions for the use of colloid-enhanced ultrafiltration (CEUF) methods to remove and recover radionuclides and associated toxic non-radioactive contaminants from polluted water. The target metal ions are uranium, plutonium, thorium, strontium, cadmium, and lead along with chromium (as chromate). Anionic or amphiphilic chelating agents, used in conjunction with polyelectrolyte colloids, provide a means to confer selectivity required for removal of the target cations. This project entails a comprehensive study of the effects of solution composition and filtration unit operating parameters on the separation efficiency and selectivity of ligand modified colloid-enhanced ultrafiltration (LM-CEUF) processes. Problem areas identified by the Office of Environmental Management addressed by this project include removal of hazardous ionic materials from ground water, mixed waste, and aqueous waste solutions produced during decontamination and decommissioning operations. Separation and concentration of the target ions will result in a substantial reduction in the volume of material requiring disposal or long-term storage.

  7. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    PubMed

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  8. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal.

    PubMed

    Huang, Pei; Li, Liang; Kotay, Shireen Meher; Goel, Ramesh

    2014-04-15

    Solids reduction in activated sludge processes (ASP) at source using process manipulation has been researched widely over the last two-decades. However, the absence of nutrient removal component, lack of understanding on the organic carbon, and limited information on key microbial community in solids minimizing ASP preclude the widespread acceptance of sludge minimizing processes. In this manuscript, we report simultaneous solids reduction through anaerobiosis along with nitrogen and phosphorus removals. The manuscript also reports carbon mass balance using stable isotope of carbon, microbial ecology of nitrifiers and polyphosphate accumulating organisms (PAOs). Two laboratory scale reactors were operated in anaerobic-aerobic-anoxic (A(2)O) mode. One reactor was run in the standard mode (hereafter called the control-SBR) simulating conventional A(2)O type of activated sludge process and the second reactor was run in the sludge minimizing mode (called the modified-SBR). Unlike other research efforts where the sludge minimizing reactor was maintained at nearly infinite solids retention time (SRT). To sustain the efficient nutrient removal, the modified-SBR in this research was operated at a very small solids yield rather than at infinite SRT. Both reactors showed consistent NH3-N, phosphorus and COD removals over a period of 263 days. Both reactors also showed active denitrification during the anoxic phase even if there was no organic carbon source available during this phase, suggesting the presence of denitrifying PAOs (DNPAOs). The observed solids yield in the modified-SBR was 60% less than the observed solids yield in the control-SBR. Specific oxygen uptake rate (SOUR) for the modified-SBR was almost 44% more than the control-SBR under identical feeding conditions, but was nearly the same for both reactors under fasting conditions. The modified-SBR showed greater diversity of ammonia oxidizing bacteria and PAOs compared to the control-SBR. The diversity of PAOs

  9. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.

    PubMed

    Jaynes, D B; Isenhart, T M

    2014-03-01

    Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Removal of Residual Cavitation Nuclei to Enhance Histotripsy Fractionation of Soft Tissue

    PubMed Central

    Duryea, Alexander P.; Cain, Charles A.; Roberts, William W.; Hall, Timothy L.

    2015-01-01

    Remnant bubble nuclei generated by primary cavitation collapse can limit the efficiency of histotripsy soft tissue fractionation. When these residual bubbles persist from one histotripsy pulse to the next, they can seed the repetitive nucleation of cavitation bubbles at a discrete set of sites within the focal volume. This effect—referred to as cavitation memory—manifests in inefficient lesion formation, as certain sites within the focal volume are overtreated while others remain undertreated. While the cavitation memory effect can be passively mitigated by using a low pulse repetition frequency (PRF) that affords remnant nuclei sufficient time for dissolution between successive pulses, this low PRF also results in slow lesion production. As such, it would be highly desirable to maintain the high per-pulse efficiency associated with low pulse rates when much higher PRFs are utilized. In this vein we have developed a strategy for the active removal of the remnant bubble nuclei following primary cavitation collapse, using low amplitude ultrasound sequences (termed bubble removal sequences) to stimulate the aggregation and subsequent coalescence of these bubbles. In this study, bubble removal sequences were incorporated in high-PRF histotripsy treatment (100 Hz) of a red blood cell tissue-mimicking phantom that allows for the visualization of lesion development in real-time. A series of reference treatments were also conducted at the low PRF of 1 Hz in order to provide a point of comparison when cavitation memory effects are minimal. It was found that bubble removal sequences as short as 1 ms are capable of maintaining the efficacious lesion development characteristics associated with the low PRF of 1 Hz when the much higher pulse rate of 100 Hz is used. These results were then extended to the treatment of a large volume within the tissue phantom, and optimal bubble removal sequences identified for the single-focal-spot case were utilized to homogenize a 10 × 10

  11. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants.

    PubMed

    Alvarino, T; Komesli, O; Suarez, S; Lema, J M; Omil, F

    2016-05-05

    SeMPAC is an innovative process based on a membrane sequential batch reactor to which powdered activated carbon (PAC) is directly added. It was developed with the aim of obtaining a high quality effluent in terms of conventional pollutants and organic micropollutants (OMPs). High COD removal and nitrification efficiencies (>95%) were obtained already during the operation without PAC, although denitrification was enhanced by PAC addition. OMPs were followed in the solid and liquid matrixes so that biotransformation, sorption onto the sludge and adsorption onto the PAC could be assessed. Recalcitrant compounds, such as carbamazepine and diazepam, were readily removed only after PAC addition (>99%). Progressive saturation of PAC was observed, with increasing concentrations of OMPs in the solid phase. Removal efficiencies for recalcitrant compounds were used as indicators for new additions of PAC. An improvement in the moderately biodegradable OMPs removal was observed after PAC addition (e.g. fluoxetine, trimethoprim) which was attributed to the biofilm that grew onto the sorbent, as well as to adsorption onto PAC. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  13. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).

    PubMed

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Goel, Ramesh

    2015-09-15

    Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems.

  14. Lignin removal enhancement from prehydrolysis liquor of kraft-based dissolving pulp production by laccase-induced polymerization.

    PubMed

    Wang, Qiang; Jahan, M Sarwar; Liu, Shanshan; Miao, Qingxian; Ni, Yonghao

    2014-07-01

    Lignin removal is essential for value-added utilization of hemicelluloses and acetic acid present in the prehydrolysis liquor (PHL) of a kraft-based hardwood dissolving pulp production. In this paper, a novel process concept, consisting of laccase-induced lignin polymerization, followed by filtration/flocculation, was developed to enhance the lignin removal. The results showed that the lignin removal increased from 11% to 46-61% at laccase concentration of 1-4 U mL(-1). The GPC results showed that the molecular weight of the lignin from the laccase treated PHL was increased by 160% in comparison with the original one. The subsequent flocculation using singular Poly-DADMAC system or dual polymer system of Poly-DADMAC/CPAM can further remove 10-15% lignin. The concentrations of hemicelluloses and acetic acid were negligibly affected during the laccase treatment, while flocculation caused 12-15% of total sugar loss. Additionally, the process incorporates this new concept into the kraft-based dissolving pulp production process was proposed.

  15. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  16. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter.

    PubMed

    Park, Hak-Soon; Koduru, Janardhan Reddy; Choo, Kwang-Ho; Lee, Byungwhan

    2015-04-09

    The removal of bisphenol A (BPA) is important for the provision of safe drinking water, but its removal in the presence of natural organic matter (NOM) is challenging. Thus, the present study involved the fabrication and characterization of powdered activated carbons impregnated with iron oxide nanoparticles (IONPACs) with respect to the simultaneous removal of BPA and NOM. The number of Fe ions loaded into the PAC pores was optimized in terms of exposure time. Impregnation with iron oxide reduced the surface area and pore volume, but the pore size was maintained. IONPAC adsorbents had considerably greater sorption capabilities for BPA and NOM compared to native, bare PAC particles. The adsorption capacities of BPA and NOM were in the following sequence: bare PACenhanced removal by IONPACs was attributable to the surface coordination between the functional groups in the iron oxides (e.g., hydroxyl groups) and organics (e.g., phenolic/carboxyl groups). Iron oxide impregnation enabled the BPA uptake to be maintained in the presence of NOM, indicating that the hybrid adsorbent provided synergistic adsorption characteristics for BPA and NOM. Although the solution pH had a negligible impact on BPA uptake, the ionic strength showed a significant effect, particularly in the presence of divalent Ca ions.

  17. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.

    PubMed

    Li, Jianzheng; Jin, Yu; Guo, Yaqiong; He, Junguo

    2013-01-01

    An anaerobic phosphorus release tank was introduced to an anaerobic-anoxic-aerobic (A(2)/O) process treating domestic sewage to enhance the phosphorus removal at low temperature. Phosphorus release of the activated sludge from the second sedimentation tank was evaluated at 14 °C by batch cultures, and the nutrient removal in the modified low temperature A(2)/O process was further investigated at the same temperature. The results showed that the feasible sludge retention time was 14 h for sequencing batch reaction and 12 h for continuous flow operation. The ratio of raw sewage to activated sludge from the second sedimentation tank was 1:1 in volume to meet the demand of carbon resource for the growth of phosphorus release microbes. The feasible chemical oxygen demand (COD) loading rate of the activated sludge in the phosphorus release tank was 0.015-0.02 g COD/g MLSS (mixed liquor suspended solids) and the nitrate concentration should be less than 5 mg/L. The phosphorus release was doubled when the sludge was blended intermittently and gently. The anaerobic phosphorus release of the activated sludge improved the phosphate removal remarkably, as well as the removal of NH4(+)-N and total nitrogen (TN) in the modified low temperature A(2)/O process. The effluent COD, NH4(+)-N, TN and total phosphorus could meet a stricter discharge standard.

  18. Retinal Fundus Image Enhancement Using the Normalized Convolution and Noise Removing.

    PubMed

    Dai, Peishan; Sheng, Hanwei; Zhang, Jianmei; Li, Ling; Wu, Jing; Fan, Min

    2016-01-01

    Retinal fundus image plays an important role in the diagnosis of retinal related diseases. The detailed information of the retinal fundus image such as small vessels, microaneurysms, and exudates may be in low contrast, and retinal image enhancement usually gives help to analyze diseases related to retinal fundus image. Current image enhancement methods may lead to artificial boundaries, abrupt changes in color levels, and the loss of image detail. In order to avoid these side effects, a new retinal fundus image enhancement method is proposed. First, the original retinal fundus image was processed by the normalized convolution algorithm with a domain transform to obtain an image with the basic information of the background. Then, the image with the basic information of the background was fused with the original retinal fundus image to obtain an enhanced fundus image. Lastly, the fused image was denoised by a two-stage denoising method including the fourth order PDEs and the relaxed median filter. The retinal image databases, including the DRIVE database, the STARE database, and the DIARETDB1 database, were used to evaluate image enhancement effects. The results show that the method can enhance the retinal fundus image prominently. And, different from some other fundus image enhancement methods, the proposed method can directly enhance color images.

  19. Retinal Fundus Image Enhancement Using the Normalized Convolution and Noise Removing

    PubMed Central

    2016-01-01

    Retinal fundus image plays an important role in the diagnosis of retinal related diseases. The detailed information of the retinal fundus image such as small vessels, microaneurysms, and exudates may be in low contrast, and retinal image enhancement usually gives help to analyze diseases related to retinal fundus image. Current image enhancement methods may lead to artificial boundaries, abrupt changes in color levels, and the loss of image detail. In order to avoid these side effects, a new retinal fundus image enhancement method is proposed. First, the original retinal fundus image was processed by the normalized convolution algorithm with a domain transform to obtain an image with the basic information of the background. Then, the image with the basic information of the background was fused with the original retinal fundus image to obtain an enhanced fundus image. Lastly, the fused image was denoised by a two-stage denoising method including the fourth order PDEs and the relaxed median filter. The retinal image databases, including the DRIVE database, the STARE database, and the DIARETDB1 database, were used to evaluate image enhancement effects. The results show that the method can enhance the retinal fundus image prominently. And, different from some other fundus image enhancement methods, the proposed method can directly enhance color images. PMID:27688745

  20. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  1. Superconductivity. Quasiparticle mass enhancement approaching optimal doping in a high-T(c) superconductor.

    PubMed

    Ramshaw, B J; Sebastian, S E; McDonald, R D; Day, James; Tan, B S; Zhu, Z; Betts, J B; Liang, Ruixing; Bonn, D A; Hardy, W N; Harrison, N

    2015-04-17

    In the quest for superconductors with higher transition temperatures (T(c)), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. Recent experiments have suggested the existence of the requisite broken-symmetry phase in the high-T(c) cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. We used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O(6+δ) over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. This mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p(crit) ≈ 0.18. Copyright © 2015, American Association for the Advancement of Science.

  2. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor

    DOE PAGES

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; ...

    2015-03-26

    In the quest for superconductors with higher transition temperatures (Tc), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-Tc cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effectivemore » mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of pcrit ≈ 0.18.« less

  3. Ozonolysate of excess sludge as a carbon source in an enhanced biological phosphorus removal for low strength wastewater.

    PubMed

    Park, K Y; Lee, J W; Song, K G; Ahn, K H

    2011-02-01

    Potential use of the municipal sludge ozonolysate as a carbon source was examined for phosphorus removal from low strength wastewater in a modified intermittently decanted extended aeration (IDEA) process. At ozone dosage of 0.2 g O(3)/g solids, readily biodegradable COD accounted for about 36% of COD from sludge ozonolysate. The denitrification potential of ozonolysate as a carbon source was comparable to that of acetate. Although, the first order constant for phosphorus release with the ozonolysate was half that of acetate, it was much higher than that of wastewater. Continuous operation of the modified IDEA process showed that the removals of nitrogen and phosphorus were simultaneously enhanced by addition of the ozonolysate. Phosphorus release was significantly induced after complete denitrification indicating that phosphorus release was strongly depended on nitrate concentration. Effectiveness of the ozonolysate as a carbon source for EBPR was also confirmed in a track study of the modified IDEA.

  4. Enhanced removal of soluble Cr(VI) by using zero-valent iron comp