Sample records for enhanced oral bioavailability

  1. Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis.

    PubMed

    Fong, Sophia Yui Kau; Brandl, Martin; Bauer-Brandl, Annette

    2015-12-01

    Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be used to identify the best candidates for oral solid PL formulation. In addition to scientific literature, 13 solid PL formulation-related patents that addressed the issue of low oral bioavailability have been identified and summarized; whereas no clinical study was identified from the current search. By providing systematic information and meta-analysis on studies that applied the principle of 'proliposomes' for oral bioavailability enhancement, the current review should be insightful for formulation scientists who wish to adopt the PL based approach to overcome the solubility, permeability and bioavailability issues of orally delivered drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system.

    PubMed

    Kalam, Mohd Abul; Raish, Mohammad; Ahmed, Ajaz; Alkharfy, Khalid M; Mohsin, Kazi; Alshamsan, Aws; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Shakeel, Faiyaz

    2017-07-01

    Thymoquinone (TQ) is a poorly water soluble bioactive compound which shows poor oral bioavailability upon oral administration. Due to poor aqueous solubility and bioavailability of TQ, various self-nanoemulsifying drug delivery systems (SNEDDS) of TQ were developed and evaluated for enhancement of its hepatoprotective effects and oral bioavailability. Hepatoprotective and pharmacokinetic studies of TQ suspension and TQ-SNEDDS were carried out in rat models. Different SNEDDS formulations of TQ were developed and thermodynamically stable TQ-SNEDDS were characterized for physicochemical parameters and evaluated for drug release studies via dialysis membrane. Optimized SNEDDS formulation of TQ was selected for further evaluation of in vivo evaluation. In vivo hepatoprotective investigations showed significant hepatoprotective effects for optimized TQ-SNEDDS in comparison with TQ suspension. The oral administration of optimized SNEDDS showed significant improvement in in vivo absorption of TQ in comparison with TQ suspension. The relatively bioavailability of TQ was enhanced 3.87-fold by optimized SNEDDS in comparison with TQ suspension. The results of this research work indicated the potential of SNEDDS in enhancing relative bioavailability and therapeutic effects of natural bioactive compounds such as TQ. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin.

    PubMed

    Shukla, Mahendra; Jaiswal, Swati; Sharma, Abhisheak; Srivastava, Pradeep Kumar; Arya, Abhishek; Dwivedi, Anil Kumar; Lal, Jawahar

    2017-05-01

    Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability. In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin. As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague-Dawley rats, the optimized SNEDDS of curcumin-phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS. The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.

  4. Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.

    PubMed

    Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin

    2018-02-01

    The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.

  5. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: In situ and in vivo evidences.

    PubMed

    Hao, Tianyun; Ling, Yunni; Wu, Meijuan; Shen, Yajing; Gao, Yu; Liang, Shujun; Gao, Yuan; Qian, Shuai

    2017-04-01

    The purpose of this study was to investigate the effect of myricetin on the pharmacokinetics of docetaxel in rats. In comparison to oral docetaxel alone (40mg/kg), the bioavailability of docetaxel could be significantly enhanced by 1.6-2.4-fold via oral co-administration with various flavonoids (apigenin, naringenin, baicalein, quercetin and myricetin) at a dosage of 10mg/kg, and myricetin showed the highest bioavailability improvement. Further pharmacokinetic studies demonstrated that the presence of myricetin (5-20mg/kg) enhanced both C max and AUC of docetaxel with the highest C max (162ng/mL, 2.3-fold) and relative bioavailability (244%) achieved at 10mg/kg of myricetin, while t 1/2 was not influenced. In order to explore the reasons for such bioavailability enhancement of docetaxel, rat in situ single-pass intestinal perfusion model and intravenous docetaxel co-administrated with oral myricetin were carried out. After combining with myricetin, the permeability coefficient (P blood ) of docetaxel based on its appearance in mesenteric blood was significantly increased up to 3.5-fold in comparison to that of docetaxel alone. Different from oral docetaxel, the intravenous pharmacokinetics of docetaxel was not affected by co-administration of myricetin, indicating the limited effect of myricetin on the elimination of docetaxel. The above findings suggested that the oral bioavailability enhancement of docetaxel via co-administration with myricetin might be mainly attributed to the enhanced absorption in gastrointestinal tract rather than modulating the elimination of docetaxel. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bioavailability enhancement of atovaquone using hot melt extrusion technology.

    PubMed

    Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2016-04-30

    Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A

    PubMed Central

    Qi, Jianping; Zhuang, Jie; Wu, Wei; Lu, Yi; Song, Yunmei; Zhang, Zhetao; Jia, Jia; Ping, Qineng

    2011-01-01

    Background: A microemulsion is an effective formulation for improving the oral bioavailability of poorly soluble drugs. In this paper, a water-in-oil (w/o) microemulsion was investigated as a system for enhancing the oral bioavailability of Biopharmaceutic Classification System (BCS) III drugs. Methods: The microemulsion formulation was optimized using a pseudoternary phase diagram, comprising propylene glycol dicaprylocaprate (PG), Cremophor® RH40, and water (30/46/24 w/w). Results: The microemulsion increased the oral bioavailability of hydroxysafflor yellow A which was highly water-soluble but very poorly permeable. The relative bioavailability of hydroxysafflor yellow A microemulsion was about 1937% compared with a control solution in bile duct-nonligated rats. However, the microemulsion showed lower enhanced absorption ability in bile duct-ligated rats, and the relative bioavailability was only 181%. In vitro experiments were further employed to study the mechanism of the enhanced effect of the microemulsion. In vitro lipolysis showed that the microemulsion was digested very quickly by pancreatic lipase. About 60% of the microemulsion was digested within 1 hour. Furthermore, the particle size of the microemulsion after digestion was very small (53.3 nm) and the digested microemulsion had high physical stability. An everted gut sac model demonstrated that cumulative transport of the digested microemulsion was significantly higher than that of the diluted microemulsion. Conclusion: These results suggested that digestion of the microemulsion by pancreatic lipase plays an important role in enhancing oral bioavailability of water-soluble drugs. PMID:21720510

  8. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation.

    PubMed

    Zainuddin, Rana; Zaheer, Zahid; Sangshetti, Jaiprakash N; Momin, Mufassir

    2017-12-01

    To synthesize β cyclodextrin nanosponges using a novel and efficient microwave mediated method for enhancing bioavailability of Rilpivirine HCl (RLP). Belonging to BCS class II RLP has pH dependent solubility and poor oral bioavailability. However, a fatty meal enhances its absorption hence the therapy indicates that the dosage form be consumed with a meal. But then it becomes tedious and inconvenient to continue the therapy for years with having to face the associated gastric side effects such as nausea. Microwave synthesizer was used to mediate the poly-condensation reaction between β-cyclodextrin and cross-linker diphenylcarbonate. Critical parameters selected were polymer to cross-linker ratio, Watt power, reaction time and solvent volume. Characterization studies were performed using FTIR, DSC, SEM, 1 H-NMR and PXRD. Molecular modeling was applied to confirm the possibility of drug entrapment. In vitro drug dissolution followed by oral bioavailability studies was performed in Sprawley rats. Samples were analyzed using HPLC. Microwave synthesis yields para-crystalline, porous nanosponges (∼205 nm). Drug entrapment led to enhancement of solubility and a two-fold increase in drug dissolution (P < 0.001) following Higuchi release model. Enhanced oral bioavailability was observed in fasted Sprawley rats where C max and AUC 0-∞ increases significantly (C max of NS∼ 586 ± 5.91 ng/mL; plain RLP ∼310 ± 5. 74 ng/mL). The approach offers a comfortable dosing zone for AIDs patients, negating the requirement of consuming the formulation in a fed state due to enhancement in drugs' oral bioavailability.

  9. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability.

    PubMed

    Kim, Dong Shik; Kim, Dong Wuk; Kim, Kyeong Soo; Choi, Jong Seo; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Jin, Sung Giu; Choi, Han-Gon

    2016-11-01

    The aim of this study was to assess the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on the physicochemical characterization and oral bioavailability of a novel l-sulpiride-loaded quaternary microcapsule (QMC). The effect of carriers on drug solubility was investigated. Among the carriers tested, polyvinyl pyrrolidone (PVP), sodium lauryl sulphate (SLS) and TPGS were selected as polymer, surfactant and absorption enhancer, respectively, due to their high drug solubility. Using the solvent evaporation method, numerous QMCs with different ratios of l-sulpiride, PVP, SLS and TPGS were prepared, and their physicochemical properties, solubility and release were evaluated. In addition, the influence of TPGS concentration on the oral bioavailability of various drug doses was evaluated. All QMCs converted the crystalline drug to the amorphous form and remarkably improved the solubility, release and oral bioavailability of the drug. Furthermore, the TPGS concentration in the QMCs hardly affected the crystallinity, particle size and release, but considerably increased the solubility and oral bioavailability of the drug. In particular, as the dose of administered drug was increased, TPGS provided a greater improvement in oral drug bioavailability. Thus, TPGS played an important role in improving the oral bioavailability of l-sulpiride. Moreover, the QMC with a drug/PVP/SLS/TPGS weight ratio of 5:12:1 :20 with approximately 3.3-fold improved oral bioavailability would be recommended as a commercial pharmaceutical product for oral administration of l-sulpiride. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Research progress on berberine with a special focus on its oral bioavailability.

    PubMed

    Liu, Chang-Shun; Zheng, Yu-Rong; Zhang, Ying-Feng; Long, Xiao-Ying

    2016-03-01

    The natural product berberine (BBR) has become a potential drug in the treatment of diabetes, hyperlipidemia, and cancer. However, the oral delivery of BBR is challenged by its poor bioavailability. It is necessary to improve the oral bioavailability of BBR before it can be used in many clinical applications. Understanding the pharmacokinetic characteristics of BBR will enable the development of suitable formulas that have improved oral bioavailability. The key considerations for BBR are how to enhance the drug absorption and to avoid the intestinal first-pass effect. This review summarizes the pharmacological activities of BBR and analyzes the factors that lead to its poor oral bioavailability. In particular, the therapeutic potential of BBR in new indications from the aspect of oral bioavailability is discussed. In conclusion, BBR is a promising drug candidate for metabolic disorders and cancer but faces considerable challenges due to its poor oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

    PubMed

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-08-01

    Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced bioavailability of opiates after intratracheal administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-03-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities (codeine (84%), ethylmorphine (100%), and morphine (87%)) of drugs with poor oral availabilities were allmore » markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability.« less

  13. Enhanced Oral Bioavailability of Diltiazem by the Influence of Gallic Acid and Ellagic Acid in Male Wistar Rats: Involvement of CYP3A and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-09-01

    The oral bioavailability of diltiazem is very low due to rapid first pass metabolism in liver and intestine. The purpose of the study was to investigate the effect of gallic acid and ellagic acid on intestinal transport and oral bioavailability of diltiazem in rats. The intestinal transport and permeability of diltiazem was evaluated by in vitro non-everted sac method and in situ single pass intestinal perfusion study. The oral pharmacokinetics was evaluated by conducting oral bioavailability study. The intestinal transport and apparent permeability of diltiazem were significantly enhanced in duodenum, jejunum, and ileum of gallic and ellagic acid-treated groups. The effective permeability of diltiazem was significantly enhanced in ileum part of gallic and ellagic acid-treated groups. When compared with control group, the presence of these two phytochemicals significantly enhanced the area under plasma concentration-time curve and the peak plasma concentration of diltiazem (C max ). Gallic acid and ellagic acid significantly increased the bioavailability of diltiazem due to the inhibition of both CYP3A-mediated metabolism and P-glycoprotein-mediated efflux in the intestine and/or liver. Based on these results, the clinical experiments are warranted for the confirmation to reduce the dose of diltiazem when concomitantly administered with these phytochemicals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin.

    PubMed

    Chaurasia, Sundeep; Patel, Ravi R; Chaubey, Pramila; Kumar, Nagendra; Khan, Gayasuddin; Mishra, Brahmeshwar

    2015-10-05

    Soluthin MD(®), a unique phosphatidylcholine-maltodextrin based hydrophilic lipopolysaccharide, which exhibits superior biocompatibility and bioavailability enhancer properties for poorly water soluble drug(s). Curcumin (CUR) is a potential natural anticancer drug with low bioavailability due to poor aqueous solubility. The study aims at formulation and optimization of CUR loaded lipopolysaccharide nanocarriers (C-LPNCs) to enhance oral bioavailability and anticancer efficacy in colon-26 tumor-bearing mice in vitro and in vivo. The Optimized C-LPNCs demonstrated favorable mean particle size (108 ± 3.4 nm) and percent entrapment efficiency (65.29 ± 1.0%). Pharmacokinetic parameters revealed ∼130-fold increase in oral bioavailability and cytotoxicity studies demonstrated ∼23-fold reduction in 50% cell growth inhibition when treated with optimized C-LPNCs as compared to pure CUR. In vivo anticancer study performed with optimized C-LPNCs showed significant increase in efficacy compared with pure CUR. Thus, lipopolysaccharide nanocarriers show potential delivery strategy to improve oral bioavailability and anticancer efficacy of CUR in the treatment of colorectal cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models.

    PubMed

    Ting, Yuwen; Jiang, Yike; Lan, Yaqi; Xia, Chunxin; Lin, Zhenyu; Rogers, Michael A; Huang, Qingrong

    2015-07-06

    The oral bioavailability of hydrophobic compound is usually limited by the poor aqueous solubility in the gastrointestinal (GI) tract. Various oral formulations were developed to enhance the systemic concentration of such molecules. Moreover, compounds with high melting temperature that appear as insoluble crystals imposed a great challenge to the development of oral vehicle. Polymethoxyflavone, an emerging category of bioactive compounds with potent therapeutic efficacies, were characterized as having a hydrophobic and highly crystalline chemical structure. To enhance the oral dosing efficiency of polymethoxyflavone, a viscoelastic emulsion system with a high static viscosity was developed and optimized using tangeretin, one of the most abundant polymethoxyflavones found in natural sources, as a modeling compound. In the present study, different in vitro and in vivo models were used to mechanistically evaluate the effect of emulsification on oral bioavailability of tangeretin. In vitro lipolysis revealed that emulsified tangeretin was digested and became bioaccessible much faster than unprocessed tangeretin oil suspension. By simulating the entire human GI tract, TNO's gastrointestinal model (TIM-1) is a valuable tool to mechanistically study the effect of emulsification on the digestion events that lead to a better oral bioavailability of tangeretin. TIM-1 result indicated that tangeretin was absorbed in the upper GI tract. Thus, a higher oral bioavailability can be expected if the compound becomes bioaccessible in the intestinal lumen soon after dosing. In vivo pharmacokinetics analysis on mice again confirmed that the oral bioavailability of tangeretin increased 2.3 fold when incorporated in the viscoelastic emulsion than unformulated oil suspension. By using the combination of in vitro and in vivo models introduced in this work, the mechanism that underlie the effect of viscoelastic emulsion on the oral bioavailability of tangeretin was well-elucidated.

  16. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge.

    PubMed

    Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin

    2015-01-01

    Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway significantly reduced oral bioavailability of CRV niosomes. Overall twofold enhancement in bioavailability in comparison with drug suspension confers the potential of niosomes as suitable carriers for improved oral delivery of CRV.

  17. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol.

    PubMed

    Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling

    2013-09-15

    The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability

    PubMed Central

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues. PMID:28435268

  19. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability.

    PubMed

    Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao

    2017-01-01

    Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.

  20. Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect

    PubMed Central

    Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip

    2015-01-01

    Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262

  1. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.

    PubMed

    Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh

    2016-10-01

    Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.

  2. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  3. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption.

    PubMed

    Zhou, Xiaotong; Zhang, Xingwang; Ye, Yanghuan; Zhang, Tianpeng; Wang, Huan; Ma, Zhiguo; Wu, Baojian

    2015-02-20

    Oridonin (Ori) is a natural compound with notable anti-inflammation and anti-cancer activities. However, therapeutic use of this compound is limited by its poor solubility and low bioavailability. Here a novel biotin-modified nanostructured lipid carrier (NLC) was developed to enhance the bioavailability of Ori. The effect of ligand (biotin) modification on oral absorption of Ori encapsulated in NLCs was also explored. Ori-loaded NLCs (Ori-NLCs) were prepared by the melt dispersion-high pressure homogenization method. Biotin modification of Ori-NLCs was achieved by EDC and NHS in aqueous phase. The obtained biotin-decorated Ori-NLCs (Bio-Ori-NLCs) were 144.9nm in size with an entrapment efficiency of 49.54% and a drug load of 4.81%. Oral bioavailability was enhanced by use of Bio-Ori-NLCs with a relative bioavailability of 171.01%, while the value of non-modified Ori-NLCs was improved to 143.48%. Intestinal perfusion showed that Ori solution unexpectedly exhibited a moderate permeability, indicating that permeability was not a limiting factor of Ori absorption. Ori could be rapidly metabolized that was the main cause of low bioavailability. However, there was a difference in the enhancement of bioavailability between Bio-Ori-NLCs and conventional NLCs. Although severe lipolyses happened both on Bio-Ori-NLCs and non-modified NLCs, the performance of Bio-Ori-NLCs in the bioavailability improvement was more significant. Overall, Bio-Ori-NLCs can further promote the oral absorption of Ori by a ligand-mediated active transport. It may be a promising carrier for the oral delivery of Ori. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    NASA Astrophysics Data System (ADS)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  5. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability.

    PubMed

    Shuai, Shuping; Yue, Shanlan; Huang, Qingting; Wang, Wei; Yang, Junyi; Lan, Ke; Ye, Liming

    2016-08-01

    The purpose of this study was to develop and evaluate a novel amorphous solid dispersion system for tectorigenin (TG). TG is one of isoflavone aglycones extracted from Iris tectorum and flowers of Pueraria thunbergiana, but its poor water solubility and low membrane permeability have severely restricted the clinical application. To increase the aqueous solubility and oral bioavailability of TG, we prepared the solid dispersions of tectorigenin (TG-SD) using a simple solvent evaporation process with TG, polyvinylpyrrolidone (PVP) and PEG4000 at weight ratio of 7:54:9 after tested in several ratios. The prepared solid dispersions of tectorigenin are duly characterized for drug morphological conversion, in vitro dissolution and in vivo bioavailability. The X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) studies have indicated the morphological conversion of tectorigenin to amorphous form. In vitro release profiles revealed that the % release of TG-SD was achieved 4.35-fold higher than that of the pure drug after 150 min. The oral bioavailability of the solid dispersion in rats was also increased based on AUC0-t and C max of TG-SD, which were 4.8- and 13.1-fold higher than that of TG crystal, respectively. It is worth noting that physical mixture containing TG, PEG4000 and PVP produced a similar level of oral exposure as TG-SD, suggesting that PEG4000 and PVP were able to enhance bioavailability of TG in rats. However, with the reduction of particle size, TG-SD provided the fastest oral absorption compared to physical mixture and pure drug. These results demonstrated that the efficacy of solid dispersions for the enhancement of TG oral bioavailability was by increasing its aqueous solubility and the solid dispersion formulation could be a viable option for enhancing the oral bioavailability of TG.

  6. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement.

    PubMed

    Huang, Yu; Li, Jin-Mei; Lai, Zhi-Hui; Wu, Jun; Lu, Tong-Bu; Chen, Jia-Mei

    2017-11-15

    Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in C max and oral bioavailability (AUC 0-∞ ) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gastric retention pellets of edaravone with enhanced oral bioavailability: Absorption mechanism, development, and in vitro/in vivo evaluation.

    PubMed

    Li, Qingguo; Huang, Wenhai; Yang, Juan; Wang, Jianfeng; Hu, Min; Mo, Jianmei; Cheng, Yuzhu; Ou, Zhanlun; Zhang, Zhenyu Jason; Guan, Shixia

    2018-07-01

    Absorption mechanism of edaravone (EDR) was studied to inform the preparation of gastric retention pellets with the aim to enhance its oral bioavailability. Three different models, namely, Caco-2 cells model, in situ single-pass intestinal perfusion model, and everted gut sac model in rats, were employed to characterize the gastrointestinal absorption kinetics of EDR. And it was found that passive transfer plays a vital role for the transport of EDR, and acidic condition is preferable for EDR absorption. Further, it is likely that EDR acts as a substrate for P-glycoprotein and multidrug-resistance protein. And hence, an orally available gastric retention pellets were developed accordingly. Pharmacokinetic experiments performed with rats and beagles showed that the absolute bioavailability of EDR solution and enteric-coated pellets following oral administration were 33.85% ± 2.45% and 7.64% ± 1.03%, indicating that stomach absorption is better than intestinal adsorption for EDR. However, the gastric retention pellets resulted in 68.96% absolute bioavailability and about 200% relative bioavailability in comparison to EDR solution, which was 9 times that of enteric-coated pellets. The present work demonstrates that gastric retention pellets has excellent potential as oral administration route for EDR. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Formulation, optimization, and in vitro/in vivo evaluation of furosemide nanosuspension for enhancement of its oral bioavailability

    NASA Astrophysics Data System (ADS)

    Sahu, Bhanu P.; Das, Malay K.

    2014-04-01

    Furosemide is a poorly soluble diuretic used for treatment of hypertension and edema. It has very poor or variable oral bioavailability due to its reduced solubility in gastric fluid and reduced permeability in intestinal fluid. The aim of this study was to prepare nanosuspension of furosemide to enhance its oral bioavailability by increasing its dissolution in stomach where it has better permeability. Full factorial design was used for a systematic approach of formulation and optimization. The nanosuspensions were prepared by precipitation with ultrasonication method. Polyvinyl acetate was used for sterically stabilizing the nanosuspensions. The diffusing drug concentration and stabilizer were used as the factors and the particle size, polydispersity index, and drug release were selected as dependent variables and characterized. The effect of nanoprecipitation on enhancement of oral bioavailability of furosemide nanosuspension was studied by in vitro dissolution and in vivo absorption studies in rats and compared to pure drug. Quality by design using full factorial design provided a systematic approach in optimizing nanosuspensions to produce products with desired quality. Stable nanosuspension were obtained with average size range of the precipitated nanoparticles between 150 and 300 nm and were found to be homogenous showing a narrow polydispersity index of 0.3 ± 0.1. The in vivo studies on rats revealed a significant increase in the oral absorbtion of furosemide in the nanosuspension compared to pure drug. The AUC0→24 and C max values of nanosuspension were approximately 1.38- and 1.68-fold greater than that of pure drug, respectively. Furosemide nanosuspension showed 20.06 ± 0.02 % decrease in systolic blood pressure compared to 13.37 + 0.02 % in plain furosemide suspension, respectively. The improved oral bioavailability and pharmacodynamic effect of furosemide may be due to the improved dissolution of furosemide in simulated gastric fluid which results in enhanced oral systemic absorption of furosemide from stomach region where it has better permeability.

  9. Improved oral bioavailability of probucol by dry media-milling.

    PubMed

    Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning

    2017-09-01

    The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fabrication and Optimization of Self-Microemulsions to Improve the Oral Bioavailability of Total Flavones of Hippophaë rhamnoides L.

    PubMed

    Guo, Ruixue; Guo, Xinbo; Hu, Xiaodan; Abbasi, Arshad Mehmood; Zhou, Lin; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-12-01

    The purpose of this work was to improve the oral bioavailability of a poorly soluble functional food ingredient, the total flavones of Hippophaë rhamnoides L. (TFH). A self-microemulsion drug delivery system (SMEDDS) was developed to overcome the problems of poor absorption of TFH in vivo. The optimal SMEDDS significantly enhanced the solubility of TFH up to 530 times compared to that in water. The mean droplet size was 61.76 nm with uniform distribution. And the loaded system was stable at 25 °C for 3 mo with transparent appearance. The in vitro release of TFH from SMEDDS was faster and more complete than that from suspension. After oral administration of TFH-SMEDDS in rats, the relative bioavailability of TFH was dramatically improved for 3.09 times compared with the unencapsulated form. The investigation indicated the potential application of SMEDDS as a vehicle to improve the oral bioavailability of TFH. The lipid-based nanotechnology, namely self-microemulsion drug delivery system (SMEDDS) was used to improve the bioavailability and oral delivery of total flavones of Hippophaë rhamnoides L. (TFH). The relevant bioavailability of TFH could be remarkably 3-fold improved by the optimized SMEDDS. The SMEDDS produced via a simple one-step process for poorly soluble TFH to achieve a significant improvement in the bioavailability, may endorse the promising utilization of TFH in functional foods as well as pharmaceutical fields with an enhanced absorption in vivo. © 2017 Institute of Food Technologists®.

  11. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle.

    PubMed

    Hu, Liandong; Jia, Yanhong; Niu, Feng; Jia, Zheng; Yang, Xun; Jiao, Kuiliang

    2012-07-25

    A new microemulsions system of curcumin (CUR-MEs) was successfully developed to improve the solubility and bioavailability of curcumin. Several formulations of the microemulsions system were prepared and evaluated using different ratios of oils, surfactants, and co-surfactants (S&CoS). The optimal formulation, which consists of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol P aqueous solution (co-surfactant), could enhance the solubility of curcumin up to 32.5 mg/mL. The pharmacokinetic study of microemulsions was performed in rats compared to the corresponding suspension. The stability of microemulsions after dilution was excellence. Microemulsions have significantly increased the C(max) and area under the curve (AUC) in comparison to that in suspension (p < 0.05). The relative bioavailability of curcumin in microemulsions was 22.6-fold higher than that in suspension. The results indicated that the CUR-MEs could be used as an effective formulation for enhancing the oral bioavailability of curcumin.

  12. Porous aerosil loading probucol using supercritical carbon dioxide: preparation, in vitro and in vivo characteristics.

    PubMed

    Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong

    2014-06-01

    The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.

  13. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles.

    PubMed

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion-diffusion-evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.

  14. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles

    PubMed Central

    Mady, Fatma M; Shaker, Mohamed A

    2017-01-01

    Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity. PMID:29066891

  15. Preparation and evaluation of self-microemulsifying drug delivery system containing vinpocetine.

    PubMed

    Cui, Shu-Xia; Nie, Shu-Fang; Li, Li; Wang, Chang-Guang; Pan, Wei-San; Sun, Jian-Ping

    2009-05-01

    The main purpose of current investigation is to prepare a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vinpocetine, a poorly water-soluble drug. Suitable vehicles were screened by determining the solubility of vinpocetine in them. Certain surfactants were selected according to their emulsifying ability with different oils. Ternary phase diagrams were used to identify the efficient self-microemulsifying region and to screen the effect of surfactant/cosurfactant ratio (K(m)). The optimized formulation for in vitro dissolution and bioavailability assessment was oil (ethyl oleate, 15%), surfactant (Solutol HS 15, 50%), and cosurfactant (Transcutol P, 35%). The release rate of vinpocetine from SMEDDS was significantly higher than that of the commercial tablet. Pharmacokinetics and bioavailability of SMEDDS were evaluated. It was found that the oral bioavailability of vinpocetine of SMEDDS was 1.72-fold higher as compared with that of the commercial tablet. These results obtained demonstrated that vinpocetine absorption was enhanced significantly by employing SMEDDS. Therefore, SMEDDS might provide an efficient way of improving oral bioavailability of poorly water-soluble drugs.

  16. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  17. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation.

    PubMed

    Mohsen, Amira Mohamed; AbouSamra, Mona Mahmoud; ElShebiney, Shaimaa Ahmed

    2017-08-01

    This study was designed to investigate the potency of niosomes, for glimepiride (GLM) encapsulation, aiming at enhancing its oral bioavailability and hypoglycemic efficacy. Niosomes containing nonionic surfactants (NIS) were prepared by thin film hydration technique and characterized. In-vitro release study was performed using a dialysis technique. In-vivo pharmacodynamic studies, as well as pharmacokinetic evaluation were performed on alloxan-induced diabetic rats. GLM niosomes exhibited high-entrapment efficiency percentages (E.E. %) up to 98.70% and a particle size diameter ranging from 186.8 ± 18.69 to 797.7 ± 12.45 nm, with negatively charged zeta potential (ZP). Different GLM niosomal formulation showed retarded in vitro release, compared to free drug. In-vivo studies revealed the superiority of GLM niosomes in lowering blood glucose level (BGL) and in maintaining a therapeutic level of GLM for a longer period of time, as compared to free drug and market product. There was no significant difference between mean plasma AUC 0-48 hr of GLM-loaded niosomes and that of market product. GLM-loaded niosomes exhibited seven-fold enhancement in relative bioavailability in comparison with free drug. These findings reinforce the potential use of niosomes for enhancing the oral bioavailability and prolonged delivery of GLM via oral administration.

  18. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability.

    PubMed

    Parikh, Ankit; Kathawala, Krishna; Song, Yunmei; Zhou, Xin-Fu; Garg, Sanjay

    2018-05-29

    Curcumin (CUR) is considered as one of the most bioactive molecules ever discovered from nature due to its proven anti-inflammatory and antioxidant in both preclinical and clinical studies. Despite its proven safety and efficacy, the clinical translation of CUR into a useful therapeutic agent is still limited due to its poor oral bioavailability. To overcome its limitation and enhance oral bioavailability by improving its aqueous solubility, stability, and intestinal permeability, a novel CUR formulation (NCF) was developed using the self-nanomicellizing solid dispersion strategy. From the initial screening of polymers for their potential to improve the solubility and stability, Soluplus (SOL) was selected. The optimized NCF demonstrated over 20,000-fold improvement in aqueous solubility as a result of amorphization, hydrogen bonding interaction, and micellization determined using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, dynamic light scattering, and transmission electron microscopy. Moreover, the greater stabilizing effect in alkaline pH and light was observed. Furthermore, significant enhancement of dissolution and permeability of CUR across everted sacs of rat small intestine were noticed. Pharmacokinetic studies demonstrated that the oral bioavailability of CUR was increased 117 and 17-fold in case of NCF and physical mixture of CUR and SOL compared to CUR suspension. These results suggest NCF identified as a promising new approach for repositioning of CUR for pharmaceutical application by enhancing the oral bioavailability of CUR. The findings herein stimulate further in vivo evaluations and clinical tests of NCF.

  19. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability.

    PubMed

    Wang, Yutong; Wang, Changyuan; Zhao, Jing; Ding, Yanfang; Li, Lei

    2017-01-01

    Nanosuspension is one of the most promising strategies to improve the oral bioavailability of insoluble drugs. The existing techniques applied to produce nanosuspensions are classified as "bottom-up" or "top-down" methods, or a combination of both. Curcumin (CUR), a Biopharmaceutics Classification System (BCS) class IV substance, is a promising drug candidate in view of its good bioactivity, but its use is limited due to its poor solubility and permeability. In the present study, CUR nanosuspensions were developed to enhance CUR oral bioavailability using a cost-effective method different from conventional techniques. The physicochemical properties of CUR nanosuspensions were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The crystalline state of CUR in different nanosuspensions analyzed using differential scanning calorimeter (DSC) and X-ray diffraction analysis (PXRD) confirmed its amorphous state. In vitro dissolution degree of the prepared CUR nanosuspensions using TPGS or Brij78 as stabilizer was greatly increased. Pharmacokinetic studies demonstrated that the oral bioavailability of CUR was increased 3.18 and 3.7 times after administration of CUR/TPGS nanosuspensions or CUR/Brij78 nanosuspensions, when compared with the administration of CUR suspension. CUR nanosuspensions produced by our cost-effective method could improve its oral bioavailability. In addition, the low-cost and time-saving method reported here is highly suitable for a fast and inexpensive preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Oral bioavailability of curcumin: problems and advancements.

    PubMed

    Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi

    2016-09-01

    Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions.

  1. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins

    PubMed Central

    Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai HS.; Mitra, Ashim K

    2013-01-01

    Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1–2%). An ideal oral drug delivery system should be capable of a) maintaining the integrity of protein molecules until it reaches the site of absorption, b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules. PMID:23428883

  2. Polyamidoamine (PAMAM) dendrimers as potential release modulators and oral bioavailability enhancers of vardenafil hydrochloride.

    PubMed

    Tawfik, Mai Ahmed; Tadros, Mina Ibrahim; Mohamed, Magdy Ibrahim

    2018-05-21

    Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q 2h ) and 24 h (Q 24h ). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra ® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q 2 h (41.45%) and Q 24 h (74.05%). Compared to Levitra ® tablets, the significantly (p < 0.01) delayed T max , prolonged MRT (0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.

  3. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    PubMed Central

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471

  4. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    PubMed

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.

  5. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    PubMed

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Enhanced Oral Bioavailability of Domperidone with Piperine in Male Wistar Rats: Involvement of CYP3A1 and P-gp Inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2017-01-01

    Domperidone is a commonly used antiemetic drug. The oral bioavailability of domperidone is very low due to its rapid first pass metabolism in the intestine and liver. Piperine, the main alkaloid present in black pepper has been reported to show inhibitory effects on Cytochrome P-450 (CYP-450) enzymes and P-glycoprotein (P-gp). In the present study we investigated the effect of piperine pretreatment on the intestinal transport and oral bioavailability of domperidone in male Wistar rats. The intestinal transport of domperidone was evaluated by an in-vitro non-everted sac method and in-situ single pass intestinal perfusion (SPIP) study. The oral pharmacokinetics of domperidone was evaluated by conducting oral bioavailability study in rats. A statistically significant improvement in apparent permeability (Papp) was observed in rats pretreated with piperine compared to the respective control group. The effective permeability (Peff) of domperidone was increased in the ileum of the piperine treated group. Following pretreatment with piperine, the peak plasma concentration (Cmax) and area under the concentration- time curve (AUC) were significantly increased. A significant decrease in time to reach maximum plasma concentration (Tmax), clearance and elimination rate constant (Kel) was observed in rats pretreated with piperine. Piperine enhanced the oral bioavailability of domperidone by inhibiting CYP3A1 and P-gp in rats. This observation suggests the possibility that the combination of piperine with other CYP3A4 and P-gp dual substrates may also improve bioavailability. Further clinical studies are recommended to verify this drug interaction in human volunteers and patients. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  7. In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability.

    PubMed

    Zhu, Yuan; Zhang, Jiajia; Zheng, Qianfeng; Wang, Miaomiao; Deng, Wenwen; Li, Qiang; Firempong, Caleb Kesse; Wang, Shengli; Tong, Shanshan; Xu, Ximing; Yu, Jiangnan

    2015-10-01

    Capsaicin, as a food additive, has attracted worldwide concern owing to its pungency and multiple pharmacological effects. However, poor water solubility and low bioavailability have limited its application. This study aims to develop a capsaicin-loaded microemulsion to enhance the oral bioavailability of the anti-neuropathic-pain component, capsaicin, which is poorly water soluble. In this study, the microemulsion consisting of Cremophor EL, ethanol, medium-chain triglycerides (oil phase) and water (external phase) was prepared and characterized (particle size, morphology, stability and encapsulation efficiency). The gastric mucosa irritation test of formulated capsaicin was performed in rats to evaluate its oral feasibility, followed by the pharmacokinetic study in vivo. Under these conditions, the encapsulated capsaicin revealed a faster capsaicin release in vitro coupled with a greater absorption in vivo when compared to the free capsaicin. The oral bioavailability of the formulated capsaicin-loaded microemulsions was 2.64-fold faster than that of free capsaicin. No significant irritation was observed on the mucosa from the pathological section of capsaicin-loaded microemulsion treated stomach. These results indicate that the developed microemulsion represents a safe and orally effective carrier for poorly soluble substances. The formulation could be used for clinical trials and expand the application of capsaicin. © 2014 Society of Chemical Industry.

  8. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations.

    PubMed

    Vyas, Tushar K; Shahiwala, Aliasgar; Amiji, Mansoor M

    2008-01-22

    The aim of this investigation was to develop novel oil-in-water (o/w) nanoemulsions containing Saquinavir (SQV), an anti-HIV protease inhibitor, for enhanced oral bioavailability and brain disposition. SQV was dissolved in different types of edible oils rich in essential polyunsaturated fatty acids (PUFA) to constitute the internal oil phase of the nanoemulsions. The external phase consisted of surfactants Lipoid-80 and deoxycholic acid dissolved in water. The nanoemulsions with an average oil droplet size of 100-200 nm, containing tritiated [(3)H]-SQV, were administered orally and intravenously to male Balb/c mice. The SQV bioavailability as well as distribution in different organ systems was examined. SQV concentrations in the systemic circulation administered in flax-seed oil nanoemulsions were threefold higher as compared to the control aqueous suspension. The oral bioavailability and distribution to the brain, a potential sanctuary site for HIV, were significantly enhanced with SQV delivered in nanoemulsion formulations. In comparing SQV in flax-seed oil nanoemulsion with aqueous suspension, the maximum concentration (C(max)) and the area-under-the-curve (AUC) values were found to be five- and threefold higher in the brain, respectively, suggesting enhanced rate and extent of SQV absorption following oral administration of nanoemulsions. The results of this study show that oil-in-water nanoemulsions made with PUFA-rich oils may be very promising for HIV/AIDS therapy, in particular, for reducing the viral load in important anatomical reservoir sites.

  9. Enhanced oral bioavailability of docetaxel in rats by four consecutive days of pre-treatment with curcumin.

    PubMed

    Yan, Yi-Dong; Kim, Dae Hwan; Sung, Jun Ho; Yong, Chul Soon; Choi, Han Gon

    2010-10-31

    As with many other anti-cancer agents, docetaxel is a substrate for ATP-binding cassette transporters such as P-glycoprotein and its metabolism is mainly catalysed by CYP3A. In order to improve the oral bioavailability of docetaxel, a component of turmeric, curcumin, which can down-regulate the intestinal P-glycoprotein and CYP3A protein levels, was used for the pre-treatment of rats before the oral administration of docetaxel. Curcumin (100 mg/kg) did not significantly modify the pharmacokinetics of docetaxel when given orally 30 min before the administration of docetaxel. However, the C(max) of docetaxel in rats pre-treated with curcumin for four consecutive days was significantly increased (p<0.01) by about 10 times compared to that of the docetaxel control, and the area under the plasma concentration-time curve (AUC) was about eight times higher than that of the control. Consequently, the absolute bioavailability of docetaxel in the treatment group (four days of curcumin at 100 mg/kg) was about 40%, which was a significant increase of about eightfold in comparison to the control value. Thus, the oral bioavailability of docetaxel was enhanced by the co-administration of regular curcumin. It could be possible to administer docetaxel orally, besides the established i.v. route. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  10. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles.

    PubMed

    Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong

    2014-03-01

    Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.

  11. Creatinine-based non-phospholipid vesicular carrier for improved oral bioavailability of Azithromycin.

    PubMed

    Ullah, Shafi; Shah, Muhammad Raza; Shoaib, Mohammad; Imran, Muhammad; Shah, Syed Wadood Ali; Ali, Imdad; Ahmed, Farid

    2017-06-01

    Novel, safe, efficient and cost effective nano-carriers from renewable resources have got greater interest for enhancing solubility and bioavailability of hydrophobic dugs. This study reports the synthesis of a novel biocompatible non-phospholipid human metabolite "Creatinine" based niosomal delivery system for Azithromycin improved oral bioavailability. Synthesized surfactant was characterized through spectroscopic and spectrometric techniques and then the potential for niosomal vesicle formation was evaluated using Azithromycin as model drug. Drug loaded vesicles were characterized for size, polydispersity index (PDI), shape, drug encapsulation efficiency (EE), in vitro release and drug-excipient interaction using zetasizer, atomic force microscope (AFM), LC-MS/MS and FTIR. The biocompatibility of surfactant was investigated through cells cytotoxicity, blood hemolysis and acute toxicity. Azithromycin encapsulated in niosomes was investigated for in vivo bioavailability in rabbits. The vesicles were spherical with 247 ± 4.67 nm diameter hosting 73.29 ± 3.51% of the drug. Surfactant was nontoxic against cell cultures and caused 5.80 ± 0.51% hemolysis at 1000 µg/mL. It was also found safe in mice up to 2.5 g/kg body weight. Synthesized surfactant based niosomal vesicles revealed enhanced oral bioavailability of Azithromycin in rabbits. The results of the present study confirm that the novel surfactant is highly biocompatible and the niosomal vesicles can be efficiently used for improving the oral bioavailability of poor water soluble drugs.

  12. Enhanced bioavailability of tripterine through lipid nanoparticles using broccoli-derived lipids as a carrier material.

    PubMed

    Li, Wan; Zhang, Tianpeng; Ye, Yanghuan; Zhang, Xingwang; Wu, Baojian

    2015-11-30

    Chemotherapy via the oral route remains a considerable challenge due to poor water-solubility and permeability of anticancer agents. This study aimed to construct lipid nanoparticles using broccoli-derived lipids for oral delivery of tripterine (Tri), a natural anticancer candidate, and to enhance its oral bioavailability. Tri-loaded broccoli lipid nanoparticles (Tri-BLNs) were prepared by a solvent-diffusion method. The resulting Tri-BLNs were 75±10 nm in particle size with entrapment efficiency over 98%. In vitro release study indicated that Tri was almost not released from Tri-BLNs (<2%), whereas the lipolytic experiment showed that Tri-BLNs possessed a relatively strong anti-enzymatic degradation ability to Tri-CLNs (Tri-loaded common lipid nanoparticles). In situ single-pass intestinal perfusion manifested that the effective permeability of Tri-BLNs were significantly higher than that of Tri-CLNs. Further, Tri-BLNs exhibited more efficient cellular uptake in MDCK-II cells as evidenced by flow cytometry and confocal microscopy. The relative bioavailability of Tri-BLNs and Tri-CLNs was 494.13% and 281.95% compared with Tri suspensions, respectively. Depending on the ability in enhancement of biomembrane permeability, broccoli-derived lipids as an alternative source should be useful to construct lipid nanoparticles for bettering oral delivery of drugs with low bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Microemulsions containing long-chain oil ethyl oleate improve the oral bioavailability of piroxicam by increasing drug solubility and lymphatic transportation simultaneously.

    PubMed

    Xing, Qiao; Song, Jia; You, Xiuhua; Xu, Dongling; Wang, Kexin; Song, Jiaqi; Guo, Qin; Li, Pengyu; Wu, Chuanbin; Hu, Haiyan

    2016-09-25

    Drug solubility and lymphatic transport enhancements are two main pathways to improve drug oral bioavailability for microemulsions. However, it is not easy to have both achieved simultaneously because excipients used for improving lymphatic transport were usually insufficient in forming microemulsions and solubilizing drugs. Our research is to explore whether ethyl oleate, an oil effective in developing microemulsions with desired solubilizing capability, could increase bioavailability to a higher extent by enhancing lymphatic transport. As a long-chain oil, ethyl oleate won larger microemulsion area than short-chain tributyrin and medium-chain GTCC. In contrast, long-chain soybean oil failed to prepare microemulsions. The solubility of piroxicam in ethyl oleate microemulsions (ME-C) increased by about 30 times than in water. ME-C also won significantly higher AUC0-t compared with tributyrin microemulsions (ME-A) and GTCC microemulsions (ME-B). Oral bioavailability in ME-C decreased by 38% after lymphatic transport was blocked by cycloheximide, severer than those in ME-A and ME-B (8% and 34%). These results suggest that improving lymphatic transport and solubility simultaneously might be a novel strategy to increase drug oral bioavailability to a higher extent than increasing solubility only. Ethyl oleate is a preferred oil candidate due to its integrated advantages of high solubilizing capability, large microemulsion area and effective lymphatic transport. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bioavailability and pharmacokinetics of oral and injectable formulations of methadone after intravenous, oral, and intragastric administration in horses.

    PubMed

    Linardi, Renata L; Stokes, Ashley M; Keowen, Michael L; Barker, Steven A; Hosgood, Giselle L; Short, Charles R

    2012-02-01

    To characterize the bioavailability and pharmacokinetics of oral and injectable formulations of methadone after IV, oral, and intragastric administration in horses. 6 healthy adult horses. Horses received single doses (each 0.15 mg/kg) of an oral formulation of methadone hydrochloride orally or intragastrically or an injectable formulation of the drug orally, intragastrically, or IV (5 experimental treatments/horse; 2-week washout period between each experimental treatment). A blood sample was collected from each horse before and at predetermined time points over a 360-minute period after each administration of the drug to determine serum drug concentration by use of gas chromatography-mass spectrometry analysis and to estimate pharmacokinetic parameters by use of a noncompartmental model. Horses were monitored for adverse effects. In treated horses, serum methadone concentrations were equivalent to or higher than the effective concentration range reported for humans, without induction of adverse effects. Oral pharmacokinetics in horses included a short half-life (approx 1 hour), high total body clearance corrected for bioavailability (5 to 8 mL/min/kg), and small apparent volume of distribution corrected for bioavailability (0.6 to 0.9 L/kg). The bioavailability of methadone administered orally was approximately 3 times that associated with intragastric administration. Absorption of methadone in the small intestine in horses appeared to be limited owing to the low bioavailability after intragastric administration. Better understanding of drug disposition, including absorption, could lead to a more appropriate choice of administration route that would enhance analgesia and minimize adverse effects in horses.

  15. Improving dissolution and oral bioavailability of pranlukast hemihydrate by particle surface modification with surfactants and homogenization

    PubMed Central

    Ha, Eun-Sol; Baek, In-hwan; Yoo, Jin-Wook; Jung, Yunjin; Kim, Min-Soo

    2015-01-01

    The present study was carried out to develop an oral formulation of pranlukast hemihydrate with improved dissolution and oral bioavailability using a surface-modified microparticle. Based on solubility measurements, surface-modified pranlukast hemihydrate microparticles were manufactured using the spray-drying method with hydroxypropylmethyl cellulose, sucrose laurate, and water and without the use of an organic solvent. The hydrophilicity of the surface-modified pranlukast hemihydrate microparticle increased, leading to enhanced dissolution and oral bioavailability of pranlukast hemihydrate without a change in crystallinity. The surface-modified microparticles with an hydroxypropylmethyl cellulose/sucrose laurate ratio of 1:2 showed rapid dissolution of up to 85% within 30 minutes in dissolution medium (pH 6.8) and oral bioavailability higher than that of the commercial product, with approximately 2.5-fold and 3.9-fold increases in area under the curve (AUC0→12 h) and peak plasma concentration, respectively. Therefore, the surface-modified microparticle is an effective oral drug delivery system for the poorly water-soluble therapeutic pranlukast hemihydrate. PMID:26150699

  16. Enhanced oral bioavailability of vinpocetine through mechanochemical salt formation: physico-chemical characterization and in vivo studies.

    PubMed

    Hasa, Dritan; Voinovich, Dario; Perissutti, Beatrice; Grassi, Mario; Bonifacio, Alois; Sergo, Valter; Cepek, Cinzia; Chierotti, Michele R; Gobetto, Roberto; Dall'Acqua, Stefano; Invernizzi, Sergio

    2011-08-01

    Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.

  17. Development of coated nifedipine dry elixir as a long acting oral delivery with bioavailability enhancement.

    PubMed

    Choi, Jae-Yoon; Jin, Su-Eon; Park, Youmie; Lee, Hyo-Jong; Park, Yohan; Maeng, Han-Joo; Kim, Chong-Kook

    2011-10-01

    To develop the long acting nifedipine oral delivery with bioavailability enhancement, a nifedipine dry elixir (NDE) containing nifedipine ethanol solution in dextrin shell was prepared using a spray-dryer, and then coated nifedipine dry elixir (CNDE) was prepared by coating NDE with Eudragit acrylic resin. The physical characteristics and bioavailability of NDE and CNDE were evaluated, and then compared to those of nifedipine powder. NDE and CNDE, which were spherical in shape, had about 6.64 and 8.68-8.75 μm of geometric mean diameters, respectively. The amount of nifedipine dissolved from NDE for 60 min increased about 7- and 40-fold compared to nifedipine powder in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, respectively. Nifedipine released from CNDE was retarded in both dissolution media compared with that from NDE. After oral administration of NDE, the C(max) and AUC(0→8h) of nifedipine in rat increased about 13- and 7-fold, respectively, and the Tmax of nifedipine was reduced significantly compared with those after oral administration of nifedipine powder alone. The AUC(0→8h) and T(max) of nifedipine in CNDE increased markedly and the C(max) of nifedipine in CNDE was significantly reduced compared to those in NDE. It is concluded that CNDE, which could lower the initial burst-out plasma concentration and maintain the plasma level of nifedipine over a longer period with bioavailability enhancement, might be one of potential alternatives to the marketed long acting oral delivery system for nifedipine.

  18. Sodium Dodecyl Sulfate-Modified Doxorubicin-Loaded Chitosan-Lipid Nanocarrier with Multi Polysaccharide-Lecithin Nanoarchitecture for Augmented Bioavailability and Stability of Oral Administration In Vitro and In Vivo.

    PubMed

    Su, Chia-Wei; Chiang, Min-Yu; Lin, Yu-Ling; Tsai, Nu-Man; Chen, Yen-Po; Li, Wei-Ming; Hsu, Chin-Hao; Chen, San-Yuan

    2016-05-01

    For oral anti-cancer drug delivery, a new chitosan-lipid nanoparticle with sodium dodecyl sulfate modification was designed and synthesized using a double emulsification. TEM examination showed that the DOX-loaded nanoparticles, termed D-PL/TG NPs, exhibited a unique core-shell configuration composed of multiple amphiphilic chitosan-lecithin reverse micelles as the core and a triglyceride shell as a physical barrier to improve the encapsulation efficiency and reduce the drug leakage. In addition, the D-PL/TG NPs with sodium dodecyl sulfate modification on the surface have enhanced stability in the GI tract and increased oral bioavailability of doxorubicin. In vitro transport studies performed on Caco-2 monolayers indicated that the D-PL/TG NPs enhanced the permeability of DOX in the Caco-2 monolayers by altering the transport pathway from passive diffusion to transcytosis. The in vivo intestinal absorption assay suggested that the D-PL/TG NPs were preferentially absorbed through the specialized membranous epithelial cells (M cells) of the Peyer's patches, resulting in a significant improvement (8-fold) in oral bioavailability compared to that of free DOX. The experimental outcomes in this work demonstrate that the D-PL/TG NPs provide an exciting opportunity for advances in the oral administration of drugs with poor bioavailability that are usually used in treating tough and chronic diseases.

  19. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect.

    PubMed

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.

  20. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect

    PubMed Central

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action. PMID:29263662

  1. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion

    PubMed Central

    Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh

    2008-01-01

    Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981

  2. Preparation and evaluation of posaconazole-loaded enteric microparticles in rats.

    PubMed

    Yang, Min; Dong, Zhonghua; Zhang, Yongchun; Zhang, Fang; Wang, Yongjie; Zhao, Zhongxi

    2017-04-01

    Posaconazole (POS) is an antifungal compound which has a low oral bioavailability. The aim of this study was to prepare POS enteric microparticles to enhance its oral bioavailability. POS enteric microparticles were prepared with hypromellose acetate succinate (HPMCAS) via the spray drying method. The solvent mixtures of acetone and ethanol used in the preparation of the microparticles were optimized to produce the ideal POS enteric microparticles. Multivariate data analysis using a principal component analysis (PCA) was used to find the relationship among the HPMCAS molecular characteristics, particle properties and drug release kinetics from the spray dried microparticles. The optimal spray solvent mixtures were critical to produce the POS microparticles with the defined polymer entanglement index, drug surface enrichment, particle size and drug loading. The HPMCAS molecular characteristics affected the microscopic connectivity and diffusivity of polymer matrix and eventually influenced the drug release behavior, and enhanced the bioavailability of POS. These studies suggested that the selection of suitable solvent mixtures of acetone and ethanol used in the spray drying of the microparticles was quite important to produce the entangled polymer structures with preferred polymer molecular properties of polymer coiling, overlap concentration and entanglement index. Additional studies on particle size and surface drug enrichment eventually produced HPMCAS-based enteric microparticles to enhance the oral bioavailability of POS.

  3. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study.

    PubMed

    Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A

    2018-11-01

    This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.

  4. Development of self-nanoemulsifying drug delivery system for oral bioavailability enhancement of valsartan in beagle dogs.

    PubMed

    Li, Zhenbao; Zhang, Wenjuan; Gao, Yan; Xiang, Rongwu; Liu, Yan; Hu, Mingming; Zhou, Mei; Liu, Xiaohong; Wang, Yongjun; He, Zhonggui; Sun, Yinghua; Sun, Jin

    2017-02-01

    Valsartan, an angiotensin II receptor antagonist, is widely used to treat high blood pressure in the clinical setting. However, its poor water solubility results in the low oral bioavailability. The aim of this study was to improve dissolution rate and oral bioavailability by developing a self-nanoemulsifying drug delivery system. Saturation solubility of valsartan in various oils, surfactants, and cosurfactants was investigated, and the optimized formulation was determined by central composite design-response surface methodology. The shape of resultant VAL-SNEDDS was spherical with an average diameter of about 27 nm. And the drug loading efficiency is approximately 14 wt%. Differential scanning calorimetry and XRD studies disclosed the molecular or amorphous state of valsartan in VAL-SNEDDS. The dissolution study indicated that the self-nanoemulsifying drug delivery systems (SNEDDS) exhibited significantly enhanced dissolution compared with market capsules (Diovan®) in various media. Furthermore, the stability of formulation revealed that valsartan SNEDDS was stable under low temperature and accelerated test condition. Furthermore, the pharmacokinetics demonstrated that C max and AUC (0-∞) of SNEDDS capsules were about three- and twofold higher than Diovan® in beagle dogs, respectively. Meanwhile, the safety evaluation implied that VAL-SNEDDS was innocuous to beagle dogs during 15 days of continuous administration. Our results suggested that VAL-SNEDDS was a potential and safe delivery system with enhanced dissolution rate and oral bioavailability, as well as offered a strategy for the engineering of poorly water-soluble drugs in the clinical setting.

  5. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability.

    PubMed

    Luo, YiFan; Chen, DaWei; Ren, LiXiang; Zhao, XiuLi; Qin, Jing

    2006-08-10

    An ultrasonic-solvent emulsification technique was adopted to prepare vinpocetine loaded Glyceryl monostearate (GMS) nanodispersions with narrow size distribution. To increase the lipid load the process was conducted at 50 degrees C, and in order to prepare nanoparticle using an ultrasonic-solvent emulsification technique. The mean particle size and droplet size distribution, drug loading capacity, drug entrapment efficiency (EE%), zeta potential, and long-term physical stability of the SLNs were investigated in detail respectively. Drug release from two sorts of VIN-SLN was studied using a dialysis bag method. A pharmacokinetic study was conducted in male rats after oral administration of 10 mg kg(-1) VIN in different formulations, it was found that the relative bioavailability of VIN in SLNs was significantly increased compared with that of the VIN solution. The amount of surfactant also had a marked effect on the oral absorption of VIN with SLN formulations. The absorption mechanism of the SLN formulations was also discussed. These results indicated that VIN absorption is enhanced significantly by employing SLN formulations. SLNs offer a new approach to improve the oral bioavailability of poorly soluble drugs.

  6. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions.

    PubMed

    Liu, Yanyan; Wang, Tianzi; Ding, Wenya; Dong, Chunliu; Wang, Xiaoting; Chen, Jianqing; Li, Yanhua

    2018-06-01

    The aim of the present investigation was to enhance the solubility, dissolution, and oral bioavailability of praziquantel (PZQ), a poorly water-soluble BCS II drug (Biopharmaceutical Classification System), using a solid dispersion (SD) technique involving hydrophilic copolymers. The SD formulations were prepared by a solvent evaporation method with PZQ and PEG 4000 (polyethylene glycol 4000), PEG 6000, or P 188 polymers at various weight ratios or a combination of PEG 4000/P 188. The optimized SD formulation, which had the highest solubility in distilled water, was further characterized by its surface morphology, crystallinity, and dissolution in 0.1 M HCl with 0.2% w/v of sodium dodecyl sulfate (SDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed the amorphous form of PZQ in the SDs. Moreover, at an oral dosage of 5 mg/kg PZQ, the SDs had higher C max values and areas under the curve (AUCs) compared to those of commercial PZQ tablets. Preparation of PZQ-loaded SDs using PEG 4000/P 188 is a promising strategy to improve the oral bioavailability of PZQ.

  7. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies.

    PubMed

    Chaurasia, Sundeep; Chaubey, Pramila; Patel, Ravi R; Kumar, Nagendra; Mishra, Brahmeshwar

    2016-01-01

    Curcumin (CUR), can inhibit proliferation and induce apoptosis of tumor cells, its extreme insolubility and limited bioavailability restricted its clinical application. An innovative polymeric nanoparticle of CUR has been developed to enhance the bioavailability and anti-cancer efficacy of CUR, in vitro and in vivo. Cationic copolymer Eudragit E 100 was selected as carrier, which can enhance properties of poor bioavailable chemotherapeutic drugs (CUR). The CUR-loaded Eudragit E 100 nanoparticles (CENPs) were prepared by emulsification-diffusion-evaporation method. The in vitro cytotoxicity study of CENPs was carried out using sulphorhodamine B assay. Pharmacokinetic and anti-cancer efficacy of CENPs was investigated in Wister rats as well as colon-26 tumor-bearing mice after oral administration. CENPs showed acceptable particle size and percent entrapment efficiency. In vitro cytotoxicity studies in terms of 50% cell growth inhibition values demonstrated ∼19-fold reduction when treated with CENPs as compared to pure CUR. ∼91-fold increase in Cmax and ∼95-fold increase in AUC0-12h were observed indicating a significant enhancement in the oral bioavailability of CUR when orally administered as CENPs compared to pure CUR. The in vivo anti-cancer study performed with CENPs showed a significant increase in efficacy compared with pure CUR, as observed by tumor volume, body weight and survival rate. The results clearly indicate that the developed polymeric nanoparticles offer a great potential to improve bioavailability and anticancer efficacy of hydrophobic chemotherapeutic drug.

  8. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.

    PubMed

    Kotta, Sabna; Khan, Abdul Wadood; Pramod, Kannissery; Ansari, Shahid H; Sharma, Rakesh Kumar; Ali, Javed

    2012-05-01

    More than 40% of new chemical entities discovered are poorly water soluble and suffer from low oral bioavailability. In recent years, nanoemulsions are receiving increasing attention as a tool of delivering these low-bioavailable moieties in an efficient manner. This review gives a brief description about how oral nanoemulsions act as a tool to improve the bioavailability of poorly water-soluble drugs. The recurrent confusion found in the literature regarding the theory behind the formation of nanoemulsions is clarified, along with the difference between nanoemulsion and lyotropic 'microemulsion' phase. This paper gives a clear-cut idea about all possible methods for the preparation of nanoemulsions and the advantages and disadvantages of each method are described. A description of the stability problems of nanoemulsions and their prevention methods is also provided, in addition to a comprehensive update on the patents and research works done in the arena of oral nanoemulsions. Low-energy emulsification techniques can also produce stable nanoemulsions. It is guaranteed that oral nanoemulsions can act as a potential tool for the delivery of poorly water-soluble therapeutic moieties in a very efficient manner.

  9. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms.

    PubMed

    Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin

    2011-09-14

    The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR.

  10. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles

    PubMed Central

    Lai, Jie; Lu, Yi; Yin, Zongning; Hu, Fuqiang; Wu, Wei

    2010-01-01

    Efforts to improve the oral bioavailability of cyclosporine A (CyA) remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL−1), higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL−1) and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL−1). The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release. PMID:20161984

  11. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system.

    PubMed

    Hu, Mei; Zhang, Jinjie; Ding, Rui; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2017-04-01

    The clinical use of dabigatran etexilate (DABE) is limited by its poor absorption and relatively low bioavailability. Our study aimed to explore the potential of a mixed micelle system composed of Soluplus ® and D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) to improve the oral absorption and bioavailability of DBAE. DBAE was first encapsulated into Soluplus/TPGS mixed micelles by a simple thin film hydration method. The DBAE loaded micelles displayed an average size distribution of around 83.13 nm. The cellular uptake of DBAE loaded micelles in Caco-2 cell monolayer was significantly enhanced by 2-2.6 fold over time as compared with DBAE suspension. Both lipid raft/caveolae and macropinocytosis-mediated the cell uptake of DBAE loaded micelles through P-glycoprotein (P-gp)-independent pathway. Compared with the DBAE suspension, the intestinal absorption of DBAE from DBAE mixed micelles in rats was significantly improved by 8 and 5-fold in ileum at 2 h and 4 h, respectively. Moreover, DBAE mixed micelles were absorbed into systemic circulation via both portal vein and lymphatic pathway. The oral bioavailability of DBAE mixed micelles in rats was 3.37 fold higher than that of DBAE suspension. DBAE mixed micelles exhibited a comparable anti-thrombolytic activity with a thrombosis inhibition rate of 63.18% compared with DBAE suspension in vivo. Thus, our study provides a promising drug delivery system to enhance the oral bioavailability and therapeutic efficacy of DBAE.

  12. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study.

    PubMed

    Peng, Shengfeng; Li, Ziling; Zou, Liqiang; Liu, Wei; Liu, Chengmei; McClements, David Julian

    2018-02-14

    There is great interest in developing colloidal delivery systems to enhance the water solubility and oral bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. In this study, a natural emulsifier was used to form sophorolipid-coated curcumin nanoparticles. The curcumin was loaded into sophorolipid micelles using a pH-driven mechanism based on the decrease in curcumin solubility at lower pH values. The sophorolipid-coated curcumin nanoparticles formed using this mechanism were relatively small (61 nm) and negatively charged (-41 mV). The nanoparticles also had a relatively high encapsulation efficiency (82%) and loading capacity (14%) for curcumin, which was present in an amorphous state. Both in vitro and in vivo studies showed that the curcumin nanoparticles had an appreciably higher bioavailability than that of free curcumin crystals (2.7-3.6-fold), which was mainly attributed to their higher bioaccessibility. These results may facilitate the development of natural colloidal systems that enhance the oral bioavailability and bioactivity of curcumin in food, dietary supplements, and pharmaceutical products.

  13. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability.

    PubMed

    Huang, Yanting; Zhang, Bowen; Gao, Yuan; Zhang, Jianjun; Shi, Limin

    2014-08-01

    The purpose of this study was to investigate the effect of preparation methods on cocrystallization between baicalein (BE) and nicotinamide (NCT), their intermolecular interaction, and to demonstrate that BE-NCT cocrystal can achieve the simultaneous enhancement in solubility, dissolution, and oral bioavailability of BE. The cocrystals from three preparation methods have the similar differential scanning calorimetry thermograms and X-ray powder diffraction patterns. Compared with crystalline BE, BE-NCT cocrystal has significantly improved the solubility and dissolution of BE. In addition, the cocrystal exhibits a 2.49-fold higher peak plasma concentration (Cmax) and 2.80-fold higher area under the curve (AUC) in rats. This prominent improvement in oral bioavailability is even greater than the previously reported BE nanocrystal. This investigation enriched the present understanding of cocrystals on their behavior in vitro and in vivo, and built the groundwork for future development of BE as a promising compound into efficacious drug products. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Enhancing oral bioavailability using preparations of apigenin-loaded W/O/W emulsions: In vitro and in vivo evaluations.

    PubMed

    Kim, Bum-Keun; Cho, Ah-Ra; Park, Dong-June

    2016-09-01

    We analyzed the physical properties and digestibility of apigenin-loaded emulsions as they passed through a simulated digestion model. As the emulsion passed through the simulated stages of digestion, the particle size and zeta potential of all the samples changed, except for the soybean oil-Tween 80 emulsion, in which zeta potential remained constant, through all stages, indicating that soybean oil-Tween 80 emulsions may have an effect on stability during all stages of digestion. Fluorescence microscopy was used to observe the morphology of the emulsions at each step. The in vivo pharmacokinetics revealed that apigenin-loaded soybean oil-Tween 80 emulsions had a higher oral bioavailability than did the orally administrated apigenin suspensions. These results suggest that W/O/W multiple emulsions formulated with soybean oil and tween 80 have great potential as targeted delivery systems for apigenin, and may enhance in vitro and in vivo bioavailability when they pass through the digestive tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    PubMed

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A microemulsion of puerarin-phospholipid complex for improving bioavailability: preparation, in vitro and in vivo evaluations.

    PubMed

    Wu, Jun-Yong; Li, Yong-Jiang; Han, Meng; Hu, Xiong-Bin; Yang, Le; Wang, Jie-Min; Xiang, Da-Xiong

    2018-08-01

    Puerarin is a phytochemical with various pharmacological effects, but poor water solubility and low oral bioavailability limited usage of puerarin. The purpose of this study was to develop a new microemulsion (ME) based on phospholipid complex technique to improve the oral bioavailability of puerarin. Puerarin phospholipid complex (PPC) was prepared by a solvent evaporation method and was characterized by X-ray diffraction and infrared spectroscopy. Pseudo-ternary phase diagrams were constructed to investigate the effects of different oil on the emulsifying performance of the blank ME. Intestinal mucosal injury test was conducted to evaluate safety of PPC-ME, and no sign of damage on duodenum, jejunum and ileum of rats was observed using hematoxylin-eosin staining. In pharmacokinetic study of PPC-ME, a significantly greater C max (1.33 µg/mL) was observed when compared to puerarin (C max 0.55 µg/mL) or PPC (C max 0.70 µg/mL); the relative oral bioavailability of PPC-ME was 3.16-fold higher than puerarin. In conclusion, the ME combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of puerarin.

  17. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    NASA Astrophysics Data System (ADS)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  18. Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: preparation, in vitro, and in vivo evaluation

    PubMed Central

    Hu, Kaili; Cao, Shan; Hu, Fuqiang; Feng, Jianfang

    2012-01-01

    The aim of this research work was to investigate the potential of lecithin nanoparticles (LNs) in improving the oral bioavailability of docetaxel. Docetaxel-loaded LNs (DTX-LNs) were prepared from oil-in-water emulsions and characterized in terms of morphology, size, zeta potential, and encapsulation efficiency. The in vitro release of docetaxel from the nanoparticles was studied by using dialysis bag method. Caco-2 cell monolayer was used for the in vitro permeation study of DTX-LNs. Bioavailability studies were conducted in rats and different pharmacokinetic parameters were evaluated after oral administration of DTX-LNs. The results showed that DTX-LNs had a mean diameter of 360 ± 8 nm and exhibited spherical shape with smooth surface under transmission electron microscopy. The DTX-LNs showed a sustained-release profile, with about 80% of docetaxel released within 72 hours. The apical to basolateral transport of docetaxel across the Caco-2 cell monolayer from the DTX-LNs was 2.14 times compared to that of the docetaxel solution (0.15 × 10−5 ± 0.016 × 10−5 cm/second versus 0.07 × 10−5 ± 0.003 × 10−5 cm/second). The oral bioavailability of the DTX-LNs was 3.65 times that of docetaxel solution (8.75% versus 2.40%). These results indicate that DTX-LNs were valuable as an oral drug delivery system to enhance the absorption of docetaxel. PMID:22848177

  19. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin.

    PubMed

    Chuah, Ai Mey; Jacob, Bindya; Jie, Zhang; Ramesh, Subbarayan; Mandal, Shibajee; Puthan, Jithesh K; Deshpande, Parag; Vaidyanathan, Vadakkanchery V; Gelling, Richard W; Patel, Gaurav; Das, Tapas; Shreeram, Sathyavageeswaran

    2014-08-01

    Curcumin has been shown to have a wide variety of biological activities for various human diseases including inflammation, diabetes and cancer. However, the poor oral bioavailability of curcumin poses a significant pharmacological barrier to its use therapeutically and/or as a functional food. Here we report the evaluation of the bioavailability and bio-efficacy of curcumin as an amorphous solid dispersion (ASD) in a matrix consisting of hydroxypropyl methyl cellulose (HPMC), lecithin and isomalt using hot melt extrusion for application in food products. Oral pharmacokinetic studies in rats showed that ASD curcumin was ∼13-fold more bioavailable compared to unformulated curcumin. Evaluation of the anti-inflammatory activity of ASD curcumin in vivo demonstrated enhanced bio-efficacy compared to unformulated curcumin at 10-fold lower dose. Thus ASD curcumin provides a more potent and efficacious formulation of curcumin which may also help in masking the colour, taste and smell which currently limit its application as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807

  1. Enhancing the bioavailability of resveratrol by combining it with piperine

    PubMed Central

    Johnson, Jeremy J.; Nihal, Minakshi; Siddiqui, Imtiaz A.; Scarlett, Cameron O.; Bailey, Howard H.; Mukhtar, Hasan; Ahmad, Nihal

    2012-01-01

    Scope Resveratrol (3,5,4′-trihydroxystilbene) is a phytoalexin shown to possess a multitude of health-promoting properties in pre-clinical studies. However, the poor in vivo bioavailability of resveratrol due to its rapid metabolism is being considered as a major obstacle in translating its effects in humans. In this study, we examined the hypothesis that piperine will enhance the pharmacokinetic parameters of resveratrol via inhibiting its glucuronidation, thereby slowing its elimination. Methods and results Employing a standardized LC/MS assay, we determined the effect of piperine co-administration with resveratrol on serum levels resveratrol and resveratrol-3-O-β-d-glucuronide in C57BL mice. Mice were administered resveratrol (100 mg/kg; oral gavage) or resveratrol (100 mg/kg; oral gavage) + piperine (10 mg/kg; oral gavage), and the serum levels of resveratrol and resveratrol-3-O-β-d-glucuronide were analyzed at different times. We found that the degree of exposure (i.e. AUC) to resveratrol was enhanced to 229% and the maximum serum concentration (Cmax) was increased to 1544% with the addition of piperine. Conclusion Our study demonstrated that piperine significantly improves the in vivo bioavailability of resveratrol. However, further detailed research is needed to study the mechanism of improved bioavailability of resveratrol via its combination with piperine as well as its effect on resveratrol metabolism. PMID:21714124

  2. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation.

    PubMed

    Lei, Yaya; Kong, Yindi; Sui, Hong; Feng, Jun; Zhu, Rongyue; Wang, Wenping

    2016-10-01

    The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA.

  3. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Fouda, Mohamed A; Abdallah, Ossama Y

    2015-07-15

    The aim of this study was to examine the efficacy of self-nano phospholipid dispersions (SNPDs) based on Phosal(®) to improve the oral bioavailability of curcumin (CUR). SNPDs were prepared with Phosal(®) 53 and Miglyol 812 at different surfactant ratio. Formulations were evaluated for particle size, polydispersity index, zeta potential, and robustness toward dilution, TEM as well as in vitro drug release. The in vivo oral absorption of selected formulations in comparison to drug suspension was evaluated in rats. Moreover, formulations were assessed for in vitro characteristic changes before and after storage. The SNPDs were miscible with water in any ratio and did not show any phase separation or drug precipitation. All the formulas were monodisperse with nano range size from 158±2.6 nm to 610±6.24 nm. They passed the pharmacopeial tolerance for CUR dissolution. No change in dissolution profile and physicochemical characteristics was detected after storage. CUR-SNPDs are found to be more bioavailable compared with suspension during an in vivo study in rats and in vitro release studies failed to imitate the in vivo conditions. These formulations might be new alternative carriers that enhance the oral bioavailability of poorly water-soluble molecules, such as CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    PubMed

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.

  5. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin

    PubMed Central

    Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao

    2012-01-01

    We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability. PMID:23233804

  6. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin.

    PubMed

    Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao

    2012-01-01

    We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.

  7. Dissolution and bioavailability enhancement of alpha-asarone by solid dispersions via oral administration.

    PubMed

    Deng, Li; Wang, Yu; Gong, Tao; Sun, Xun; Zhang, Zhi-Rong

    2017-11-01

    Alpha (α)-asarone (1-propenyl-2,4,5-methoxybenzol) (ARE) has been extensively used to treat chronic obstructive pulmonary diseases (COPD), bronchial asthma, pneumonia, and epilepsy. Due to its poor solubility and bioavailability, ARE was clinically administered via intravenous injection. However, severe allergies were often reported due to the presence of solublizers in the injection formulation. In our study, we sought to explore the biopharmaceutical classification of ARE, elucidate the mechanisms behind ARE absorption, and to develop a viable formulation to improve the oral bioavailability of ARE. ARE was not a P-glycoprotein substrate, which was absorbed in the passive mode without site specificity in the gastrointestinal tract. Solid dispersions prepared using hydrophilic matrix materials such as Pluronic F68, and polyethylene glycol (PEG) of varying molecular weights (PEG4K, PEG10K, and PEG20K) were proven to significantly improve the dissolution of ARE in vitro and the oral bioavailability of ARE in rats, which represent a promising strategy for the oral administration of ARE and other BCS II compounds.

  8. An Intestinal "Transformers"-like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs.

    PubMed

    Chuang, Er-Yuan; Lin, Kun-Ju; Huang, Tring-Yo; Chen, Hsin-Lung; Miao, Yang-Bao; Lin, Po-Yen; Chen, Chiung-Tong; Juang, Jyuhn-Huarng; Sung, Hsing-Wen

    2018-06-06

    Increasing the intestinal dissolution of orally administered poorly water-soluble drugs that have poor oral bioavailability to a therapeutically effective level has long been an elusive goal. In this work, an approach that can greatly enhance the oral bioavailability of a poorly water-soluble drug such as curcumin (CUR) is developed, using a "Transformers"-like nanocarrier system (TLNS) that can self-emulsify the drug molecules in the intestinal lumen to form nanoemulsions. Owing to its known anti-inflammation activity, the use of CUR in treating pancreatitis is evaluated herein. Structural changes of the TLNS in the intestinal environment to form the CUR-laden nanoemulsions are confirmed in vitro. The therapeutic efficacy of this TLNS is evaluated in rats with experimentally induced acute pancreatitis (AP). Notably, the CUR-laden nanoemulsions that are obtained using the proposed TLNS can passively target intestinal M cells, in which they are transcytosed and then transported into the pancreatic tissues via the intestinal lymphatic system. The pancreases in rats that are treated with the TLNS yield approximately 12 times stronger CUR signals than their counterparts receiving free CUR, potentially improving the recovery of AP. These findings demonstrate that the proposed TLNS can markedly increase the intestinal drug dissolution, making oral delivery a favorable noninvasive means of administering poorly water-soluble drugs.

  9. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.

    PubMed

    Nooli, Mounika; Chella, Naveen; Kulhari, Hitesh; Shastri, Nalini R; Sistla, Ramakrishna

    2017-04-01

    Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery. Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug-excipients interactions, powder X-ray diffraction analysis and drug release in vitro. The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100 nm, PDI 0.291, zeta potential of -23.4 mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration. In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM.

  10. Rifampicin-loaded 'flower-like' polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid.

    PubMed

    Moretton, Marcela A; Hocht, Christian; Taira, Carlos; Sosnik, Alejandro

    2014-08-01

    Coadministration of rifampicin (RIF)/isoniazid (INH) is clinically recommended to improve the treatment of tuberculosis. Under gastric conditions, RIF undergoes fast hydrolysis (a pathway hastened by INH) and oral bioavailability loss. We aimed to assess the chemical stabilization and the oral pharmacokinetics of RIF nanoencapsulated within poly(ε-caprolactone)-b-PEG-b-poly(ε-caprolactone) 'flower-like' polymeric micelles. The chemical stability of RIF was evaluated in vitro under acid conditions with and without INH, and the oral pharmacokinetics of RIF-loaded micelles in rats was compared with those of a suspension coded by the US Pharmacopeia. Nanoencapsulation decreased the degradation rate of RIF with respect to the free drug. Moreover, in vivo data showed a statistically significant increase of RIF oral bioavailability (up to 3.3-times) with respect to the free drug in the presence of INH. Overall results highlight the potential of this nanotechnology platform to develop an extemporaneous liquid RIF/INH fixed-dose combination suitable for pediatric administration.

  11. Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.

    PubMed

    Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook

    2011-02-14

    The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose.

    PubMed

    Baek, Hyung Hee; Kim, Dae-Hwan; Kwon, So Young; Rho, Shin-Joung; Kim, Dong-Wuk; Choi, Han-Gon; Kim, Yong-Ro; Yong, Chul Soon

    2012-03-01

    To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose, it was prepared using spray-drying techniques with cycloamylose at a weight ratio of 1:1. The effect of cycloamylose on aqueous solubility of ibuprofen was investigated. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared with ibuprofen powder. This ibuprofen-loaded solid dispersion improved about 14-fold drug solubility. Ibuprofen was present in an unchanged crystalline state, and cycloamylose played the simple role of a solubilizing agent in this solid dispersion. Moreover, the dispersion gave 2-fold higher AUC (area under the drug concentration-time curve) value compared with a ibuprofen powder, indicating that it improved the oral bioavailability of ibuprofen in rats. Thus, the solid dispersion may be useful to deliver ibuprofen with enhanced bioavailability without crystalline change.

  13. Development and in vivo evaluation of an oral delivery system for low molecular weight heparin based on thiolated polycarbophil.

    PubMed

    Kast, Constantia E; Guggi, Davide; Langoth, Nina; Bernkop-Schnürch, Andreas

    2003-06-01

    It was the purpose of this study to develop a new oral drug delivery system for low molecular weight heparin (LMWH) providing an improved bioavailability and a prolonged therapeutic effect. The permeation enhancing polycarbophil-cysteine conjugate (PCP-Cys) used in this study displayed 111.4 +/- 6.4 microM thiol groups per gram polymer. Permeation studies on freshly excised intestinal mucosa were performed in Ussing chambers demonstrating a 2-fold improved uptake of heparin as a result of the addition of 0.5% (w/v) PCP-Cys and the permeation mediator glutathione (GSH). Tablets containing PCP-Cys, GSH, and 279 IU of LMWH showed a sustained drug release over 4 h. To guarantee the swelling of the polymeric carrier matrix in the small intestine tablets were enteric coated. They were orally given to rats. For tablets being based on the thiomer/GSH system an absolute bioavailability of 19.9 +/- 9.3% (means +/- SD; n = 5) vs. intravenous injection could be achieved. whereas tablets comprising unmodified PCP did not lead to a significant (p < 0.01) heparin concentration in plasma. The permeation enhancing effect and subsequently a therapeutic heparin level was maintained for 24 h after a single dose. Because of the strong and prolonged lasting permeation enhancing effect of the thiomer/GSH system, the oral bioavailability of LMWH could be significantly improved. This new delivery system represents therefore a promising tool for the oral administration of heparin.

  14. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice.

    PubMed

    Melariri, Paula; Kalombo, Lonji; Nkuna, Patric; Dube, Admire; Hayeshi, Rose; Ogutu, Benhards; Gibhard, Liezl; deKock, Carmen; Smith, Peter; Wiesner, Lubbe; Swai, Hulda

    2015-01-01

    Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity.

  15. Oral lipid-based nanoformulation of tafenoquine enhanced bioavailability and blood stage antimalarial efficacy and led to a reduction in human red blood cell loss in mice

    PubMed Central

    Melariri, Paula; Kalombo, Lonji; Nkuna, Patric; Dube, Admire; Hayeshi, Rose; Ogutu, Benhards; Gibhard, Liezl; deKock, Carmen; Smith, Peter; Wiesner, Lubbe; Swai, Hulda

    2015-01-01

    Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity. PMID:25759576

  16. Oral bioavailability assessment and intestinal lymphatic transport of Org 45697 and Org 46035, two highly lipophilic novel immunomodulator analogues.

    PubMed

    Caliph, Suzanne M; Faassen, W A Fried; Vogel, Gerard M; Porter, Christopher J H

    2009-08-01

    Org 45697 (MW 600.7, clogP 7.92, soybean oil solubility 50 mg/g) and Org 46035 (MW 601.6, clog P 8.46, soybean oil solubility 40 mg/g) are two poorly water soluble (<0.1 microg/ml), highly lipophilic drug candidates with immunomodulator activity and highly analogous chemical structures. After oral administration to conscious ambulatory rats in an aqueous-based methylcellulose/Tween 80 suspension, the bioavailability of both compounds was low (< 2% of administered dose). However, bioavailability was significantly increased (> 5 fold) after oral administration in a long chain triglyceride lipid (olive oil) formulation. Subsequent studies have explored the potential for solubilising formulations, including lipid-based formulations, to enhance the oral bioavailability of Org 45697 and Org 46035 and secondly to explore the potential contribution of intestinal lymphatic transport to intestinal absorption. The experimental data show that solubilising formulations may provide for significant increases in oral bioavailability for Org 45697 and Org 46035 and that after co-administration with lipid, 35-50% of the absorbed dose may be transported to the systemic circulation via the intestinal lymph. Interestingly, the lymphatic transport of the less lipid soluble analogue, Org 46035 was approximately 40% lower than that of Org 45697 suggesting that relatively subtle differences in lipid solubility can have significant impact on the extent of lymphatic transport.

  17. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    NASA Astrophysics Data System (ADS)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  18. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations.

    PubMed

    Shreya, A B; Managuli, Renuka S; Menon, Jyothsna; Kondapalli, Lavanya; Hegde, Aswathi R; Avadhani, Kiran; Shetty, Pallavi K; Amirthalingam, Muthukumar; Kalthur, Guruprasad; Mutalik, Srinivas

    2016-09-01

    Asenapine maleate (ASPM) is an antipsychotic drug for the treatment of schizophrenia and bipolar disorder. Extensive metabolism makes the oral route inconvenient for ASPM. The objective of this study is to increase ASPM bioavailability via transdermal route by improving the skin permeation using combined strategy of chemical and nano-carrier (transfersomal) based approaches. Transfersomes were prepared by the thin film hydration method using soy-phosphatidylcholine (SPC) and sodium deoxycholate (SDC). Transfersomes were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, surface morphology, and in vitro skin permeation studies. Various chemical enhancers were screened for skin permeation enhancement of ASPM. Optimized transfersomes were incorporated into a gel base containing suitable chemical enhancer for efficient transdermal delivery. In vivo pharmacokinetic study was performed in rats to assess bioavailability by transdermal route against oral administration. Optimized transfersomes with drug:SPC:SDC weight ratio of 5:75:10 were spherical with an average size of 126.0 nm, PDI of 0.232, ZP of -43.7 mV, and entrapment efficiency of 54.96%. Ethanol (20% v/v) showed greater skin permeation enhancement. The cumulative amount of ASPM permeated after 24 h (Q24) by individual effect of ethanol and transfersome, and in combination was found to be 160.0, 132.9, and 309.3 μg, respectively, indicating beneficial synergistic effect of combined approach. In vivo pharmacokinetic study revealed significant (p < 0.05) increase in bioavailability upon transdermal application compared with oral route. Dual strategy of permeation enhancement was successful in increasing the transdermal permeation and bioavailability of ASPM.

  19. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique

    PubMed Central

    Li, Haiying; Pan, Tingting; Cui, Ying; Li, Xiaxia; Gao, Jiefang; Yang, Wenzhi; Shen, Shigang

    2016-01-01

    The objective of this work was to prepare an oil/water glimepiride (GM) microemulsion (ME) for oral administration to improve its solubility and enhance its bioavailability. Based on a solubility study, pseudoternary phase diagrams, and Box–Behnken design, the oil/water GMME formulation was optimized and prepared. GMME was characterized by dynamic laser light scattering, zeta potential, transmission electron microscopy, and viscosity. The in vitro drug release, storage stability, pharmacodynamics, and pharmacokinetics of GMME were investigated. The optimized GMME was composed of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol (cosurfactant), and increased GM solubility up to 544.6±4.91 µg/mL. The GMME was spherical in shape. The particle size and its polydispersity index were 38.9±17.46 nm and 0.266±0.057, respectively. Meanwhile, the GMME was physicochemically stable at 4°C for at least 3 months. The short-term efficacy in diabetic mice provided the proof that blood glucose had a consistent and significant reduction at a dose of 375 µg/kg whether via IP injection or IG administration of GMME. Compared with the glimepiride suspensions or glimepiride-meglumine complex solution, the pharmacokinetics of GMME in Wistar rats via IG administration exhibited higher plasma drug concentration, larger area under the curve, and more enhanced oral bioavailability. There was a good correlation of GMME between the in vitro release values and the in vivo oral absorption. ME could be an effective oral drug delivery system to improve bioavailability of GM. PMID:27540291

  20. Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies

    PubMed Central

    Gundogdu, E; Alvarez, I Gonzalez; Karasulu, E

    2011-01-01

    Fexofenadine (FEX) has high solubility and low permeability (BCS, Class III). In this work, novel FEX loaded water in oil microemulsion (w/o) was designed to improve bioavailability and compared with Fexofen® syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was optimized using a pseudoternary phase diagram, composed of span 80/lutrol F 68 (9.5:0.5 w/w), oleic acide, isopropyl alcohol and water as surfactant mixture; oil and cosurfactant was developed for oral drug delivery. w/o microemulsion systems were characterized by phase behavior, particle size, viscosity and solubilization capacity. In vitro studies were studied using Caco-2 cell monolayer. Pharmacokinetic parameters of w/o microemulsion were investigated in rabbits and compared to Fexofen® syrup. Fexofen® syrup and microemulsion were administered by oral gavage at 6 mg/kg of the same concentration. The experimental results indicated that microemulsion (HLB = 5.53) formed nanometer sized droplets (33.29 ± 1.76) and had good physical stability. This microemulsion increased the oral bioavailability of FEX which was highly water-soluble but fairly impermeable. The relative bioavailability of FEX microemulsion was about 376.76% compared with commercial syrup in rabbits. In vitro experiments were further employed for the enhanced effect of the microemulsion for FEX. These results suggest that novel w/o microemulsion plays an important role in enhancing oral bioavailability of low permeability drugs. PMID:21904453

  1. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture.

    PubMed

    Joshi, Hemant N; Tejwani, Ravindra W; Davidovich, Martha; Sahasrabudhe, Vaishali P; Jemal, Mohammed; Bathala, Mohinder S; Varia, Sailesh A; Serajuddin, Abu T M

    2004-01-09

    Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.

  2. Enhanced oral bioavailability of felodipine by novel solid self-microemulsifying tablets.

    PubMed

    Jing, Boyu; Wang, Zhiyuan; Yang, Rui; Zheng, Xia; Zhao, Jia; Tang, Si; He, Zhonggui

    2016-01-01

    The novel self-microemulsifying (SME) tablets were developed to enhance the oral bioavailability of a poor water-soluble drug felodipine (FDP). Firstly, FDP was dissolved in the optimized liquid self-microemusifying drug delivery systems (SMEDDS) containing Miglyol® 812, Cremophor® RH 40, Tween 80 and Transcutol® P, and the mixture was solidified with porous silicon dioxide and crospovidone as adsorbents. Then after combining the solidified powders with other excipients, the solid SME tablets were prepared by wet granulation-compression method. The prepared tablets possessed satisfactory characterization; the droplet size of the SME tablets following self-emulsification in water was nearly equivalent to the liquid SMEDDS (68.4 ± 14.0 and 64.4 ± 12.0 nm); differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) analysis demonstrated that FDP in SME tablets had undergone a polymorphism transition from a crystal form to an amorphous state, which was further confirmed by transmission electron microscopy (TEM). A similar dissolution performance of SME tablets and liquid SMEDDS was also obtained under the sink condition (85% within 10 min), both significantly higher than commercial tablets. The oral bioavailability was evaluated for the SME tablets, liquid SMEDDS and commercial conventional tablets in the fasted beagle dogs. The AUC of FDP from the SME tablets was about 2-fold greater than that of conventional tablets, but no significant difference was found when compared with the liquid SMEDDS. Accordingly, these preliminary results suggest that this formulation approach offers a useful large-scale producing method to prepare the solid SME tablets from the liquid SMEDDS for oral bioavailability equivalent enhancement of poorly soluble FDP.

  3. Oral bioavailability enhancement of β-lapachone, a poorly soluble fast crystallizer, by cocrystal, amorphous solid dispersion, and crystalline solid dispersion.

    PubMed

    Liu, Chengyu; Liu, Zhengsheng; Chen, Yuejie; Chen, Zhen; Chen, Huijun; Pui, Yipshu; Qian, Feng

    2018-03-01

    The aim of this paper was to compare the in vitro dissolution and in vivo bioavailability of three solubility enhancement technologies for β-lapachone (LPC), a poorly water soluble compound with extremely high crystallization propensity. LPC cocrystal was prepared by co-grinding LPC with resorcinol. LPC crystalline and amorphous solid dispersions (CSD and ASD) were obtained by spray drying with Poloxamer 188 and HPMC-AS, respectively. The cocrystal structure was solved by single crystal x-ray diffraction. All formulations were characterized by WAXRD, DSC, POM and SEM. USP II and intrinsic dissolution studies were used to compare the in vitro dissolution of these formulations, and a crossover dog pharmacokinetic study was used to compare their in vivo bioavailability. An 1:1 LPC-resorcinol cocrystal with higher solubility and faster dissolution rate was obtained, yet it converted to LPC crystal rapidly in solution. LPC/HPMC-AS ASD was confirmed to be amorphous and uniform, while the crystal and crystallite sizes of LPC in CSD were found to be ∼1-3 μm and around 40 nm, respectively. These formulations performed similarly during USP II dissolution, while demonstrated dramatically different oral bioavailability of ∼32%, ∼5%, and ∼1% in dogs, for CSD, co-crystal, and ASD, respectively. CSD showed the fastest intrinsic dissolution rate among the three. The three formulations showed poor IVIVC which could be due to rapid and unpredictable crystallization kinetics. Considering all the reasons, we conclude that for molecules with extremely high crystallization tendency that cannot be inhibited by any pharmaceutical excipients, size-reduction technologies such as CSD could be advantageous for oral bioavailability enhancement in vivo than technologies only generating transient but not sustained supersaturation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Preparation of liposomes containing zedoary turmeric oil using freeze-drying of liposomes via TBA/water cosolvent systems and evaluation of the bioavailability of the oil.

    PubMed

    Yang, Zhiwen; Yu, Songlin; Fu, Dahua

    2010-02-01

    The purpose of this study was to enhance the absorption of zedoary turmeric oil (ZTO) in vivo and develop new formulations of a water-insoluble oily drug. This study described a method for preparing ZTO liposomes, which involved freeze-drying (FD) of liposomes with TBA/water cosolvent systems. The TBA/water cosolvent systems were used to investigate a feasible method of liposomes manufacture; the two factors, sugar/lipid mass ratio and TBA content (concentration), of the preparation process were evaluated in this study. The results showed that the addition of TBA content could significantly enhance the sublimation of ice resulting in short FD cycles time, and reduce the entrapment efficiency of liposomes. In addition, the residual TBA solvents levels were determined to be less than 0.37% under all optimum formulations and processing conditions. Several physical properties of liposomes were examined by H-600 transmission electron microscope (TEM) and zetamaster analyser system. The results revealed that the liposomes were smooth and spherical with an average particle size of 457 +/- 7.8 nm and the zeta potential was more than 3.65 Mv. The bioavailability of the liposomes was evaluated in rabbits, compared with the conventional self-emulsifying formulation for oral administration. Compared with the conventional self-emulsifying formulation, the plasma concentration-time profiles with improved sustained-release characteristics were achieved after oral administration of the liposomes with a bioavailability of 257.7% (a good strategy for improving the bioavailability of an oily drug). In conclusion, the present experimental findings clearly demonstrated the usefulness of ZTO liposome vesicles in improving therapeutic efficacy by enhancing oral bioavailability. Our study offered an alternative method for designing sustained-release preparations of oily drugs.

  5. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: optimization and in-vivo pharmacokinetic study.

    PubMed

    Shah, Nirmal; Seth, Avinashkumar; Balaraman, R; Sailor, Girish; Javia, Ankur; Gohil, Dipti

    2018-04-01

    The objective of this work was to utilize a potential of microemulsion for the improvement in oral bioavailability of raloxifene hydrochloride, a BCS class-II drug with 2% bioavailability. Drug-loaded microemulsion was prepared by water titration method using Capmul MCM C8, Tween 20, and Polyethylene glycol 400 as oil, surfactant, and co-surfactant respectively. The pseudo-ternary phase diagram was constructed between oil and surfactants mixture to obtain appropriate components and their concentration ranges that result in large existence area of microemulsion. D-optimal mixture design was utilized as a statistical tool for optimization of microemulsion considering oil, S mix , and water as independent variables with percentage transmittance and globule size as dependent variables. The optimized formulation showed 100 ± 0.1% transmittance and 17.85 ± 2.78 nm globule size which was identically equal with the predicted values of dependent variables given by the design expert software. The optimized microemulsion showed pronounced enhancement in release rate compared to plain drug suspension following diffusion controlled release mechanism by the Higuchi model. The formulation showed zeta potential of value -5.88 ± 1.14 mV that imparts good stability to drug loaded microemulsion dispersion. Surface morphology study with transmission electron microscope showed discrete spherical nano sized globules with smooth surface. In-vivo pharmacokinetic study of optimized microemulsion formulation in Wistar rats showed 4.29-fold enhancements in bioavailability. Stability study showed adequate results for various parameters checked up to six months. These results reveal the potential of microemulsion for significant improvement in oral bioavailability of poorly soluble raloxifene hydrochloride.

  6. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability.

    PubMed

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, -32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, -18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties.

  7. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    PubMed Central

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351

  8. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    PubMed

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  9. Sugar-based novel niosomal nanocarrier system for enhanced oral bioavailability of levofloxacin.

    PubMed

    Imran, Muhammad; Shah, Muhammad Raza; Ullah, Farhat; Ullah, Shafi; Elhissi, Abdelbary M A; Nawaz, Waqas; Ahmad, Farid; Sadiq, Abdul; Ali, Imdad

    2016-11-01

    Vesicular systems have attracted great attention in drug delivery because of their amphiphilicity, biodegradability, non-toxicity and potential for increasing drug bioavailability. A novel sugar-based double-tailed surfactant containing renewable block was synthesized for preparing niosomal vesicles that could be exploited for Levofloxacin encapsulation, aiming to increase its oral bioavailability. The surfactant was characterized by 1 H NMR, mass spectroscopy and Fourier transform infrared spectroscopy (FT-IR). Its biocompatibility was studied against cell cultures and human blood hemolysis. In vivo acute toxicity was evaluated in mice. The vesicle morphology, size, drug-excipients interaction and entrapment efficiency (EE) were examined using atomic force microscope (AFM), dynamic light scattering (DLS), FT-IR and HPLC. Oral bioavailability studies of Levofloxacin in surfactant-based niosomal formulation were carried out using rabbits and plasma samples were analyzed using HPLC. Vesicles were spherical in shape and the size was 190.31 ± 4.51 nm with a polydispersity index (PDI) of 0.29 ± 0.03. The drug EE in niosomes was 68.28 ± 3.45%. When applied on cell lines, high cell viability was observed even after prolonged exposure at high concentrations. It caused 5.77 ± 1.34% hemolysis at 1000 μg/mL and was found to be safe up to 2000 mg/kg. Elevated Levofloxacin plasma concentration was achieved when delivered with novel vesicles. The surfactant was demonstrated to be safe and effective as carrier of Levofloxacin. The study suggests that this sugar-based double-tailed nonionic surfactant could be promising nano-vesicular system for delivery and enhancing oral bioavailability of the hydrophobic Levofloxacin.

  10. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability.

    PubMed

    AboulFotouh, Khaled; Allam, Ayat A; El-Badry, Mahmoud; El-Sayed, Ahmed M

    2018-07-01

    Self-emulsifying drug delivery systems (SEDDS) have been widely employed to improve the oral bioavailability of poorly soluble drugs. In the past few years, SEDDS were extensively investigated to overcome various barriers encountered in the oral delivery of hydrophilic macromolecules (e.g., protein/peptide therapeutics and plasmid DNA (pDNA)), as well as in lowering the effect of food on drugs' bioavailability. However, the main mechanism(s) by which SEDDS could achieve such promising effects remains not fully understood. This review summarizes the recent progress in the use of SEDDS for protecting protein therapeutics and/or pDNA against enzymatic degradation and increasing the oral bioavailability of various drug substances regardless of the dietary condition. Understanding the underlying mechanism(s) of such promising applications will aid in the future development of rationally designed SEDDS. Entrapment of hydrophilic macromolecules in the oil phase of the formed emulsion is critical for protection of the loaded cargoes against enzymatic degradation and the enhancement of oral bioavailability. On the other hand, drug administration as a preconcentrated solution in the SEDDS preconcentrate allows the process of drug absorption to occur independently of the dietary condition, and thus reducing interindividual variability that results from concomitant food intake. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Preparation and evaluation of a self-emulsifying drug delivery system of etoposide-phospholipid complex.

    PubMed

    Wu, Zhongbin; Guo, Dan; Deng, Li; Zhang, Yue; Yang, Qiuxia; Chen, Jianming

    2011-01-01

    The aim of this study was to develop a new phospholipid complex self-emulsifying drug delivery system (PC-SEDDS) to enhance bioavailability of oral etoposide, a drug with poor water solubility. Etoposide-phospholipid complex (EPC) was prepared by reacting etoposide and phospholipid in tetrahydrofuran and confirmed as a phospholipid compound by differential scanning calorimetry (DSC). Solubility of EPC and etoposide was determined in various vehicles. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsification region of EPC-SEDDS, and the effects of oil concentration, drug loading, and aqueous media on droplet size were investigated. The optimal formulation of EPC-SEDDS was EPC:octyl and decyl monoglyceride (ODO):Cremopher EL:PEG-400 (1:20:48:32) (w/w/w/w). Compared with etoposide-phospholipid complex suspension (EPCS) and etoposide suspension (ES), cumulative release of etoposide from EPC-SEDDS increased by 1.31 and 2.65 fold at 24 hours, respectively. Compared with ES, relative bioavailability of EPC-SEDDS, E-SEDDS, and EPCS after oral administration in rats was enhanced by 60.21-, 44.9-, and 8.44- fold, respectively. The synergistic effect between PC and SEDDS contributed to the enhanced bioavailability of etoposide. It was concluded that PC-SEDDS proved to be a potential system for delivering orally administered hydrophobic compounds including etoposide.

  12. Improved oral bioavailability of glyburide by a self-nanoemulsifying drug delivery system.

    PubMed

    Liu, Hongzhuo; Shang, Kuimao; Liu, Weina; Leng, Donglei; Li, Ran; Kong, Ying; Zhang, Tianhong

    2014-01-01

    The present study aimed at the development and characterisation of self-nanoemulsifying drug delivery system (SNEDDS) to improve the oral bioavailability of poorly soluble glyburide. The solubility of glyburide was determined in various oils, surfactants and co-surfactants which were grouped into two different combinations to construct ternary phase diagrams. The formulations were evaluated for emulsification time, droplet size, zeta-potential, electrical conductivity and stability of nanoemulsions. The optimised SNEDDS loading with 5 mg/g glyburide comprised 55% Cremophor® RH 40, 15% propanediol and 30% Miglyol® 812, which rapidly formed fine oil-in-water nanoemulsions with 46 ± 4 nm particle size. Compared with the commercial micronised tablets (Glynase®PresTab®), enhanced in vitro release profiles of SNEDDS were observed, resulting in the 1.5-fold increase of AUC following oral administration of SNEDDS in fasting beagle dogs. These results indicated that SNEDDS is a promising drug delivery system for increasing the oral bioavailability of glyburide.

  13. Oleic acid derivative of polyethylenimine-functionalized proliposomes for enhancing oral bioavailability of extract of Ginkgo biloba.

    PubMed

    Zheng, Bin; Yang, Shuang; Fan, Chunyu; Bi, Ye; Du, Lin; Zhao, Lingzhi; Lee, Robert J; Teng, Lesheng; Teng, Lirong; Xie, Jing

    2016-05-01

    The present systematic study focused to investigate the oleic acid derivative of branched polyethylenimine (bPEI-OA)-functionalized proliposomes for improving the oral delivery of extract of Ginkgo biloba (GbE). The GbE proliposomes were prepared by a spray drying method at varying ratios of egg yolk phosphatidylcholine and cholesterol, and the optimized formulation was tailored with bPEI-OA to obtain bPEI-OA-functionalized proliposomes. The formulations were characterized for particle size, zeta potential, and entrapment efficiency. The release of GbE from proliposomes exhibited a sustained release. And the release rate was regulated by changing the amount of bPEI-OA on the proliposomes. The physical state characterization studies showed some interactions between GbE and other materials, such as hydrogen bonds and van der Waals forces during the process of preparation of proliposomes. The in situ single-pass perfusion and oral bioavailability studies were performed in rats. The significant increase in absorption constant (Ka) and apparent permeability coefficient (Papp) from bPEI-OA-functionalized proliposomes indicated the importance of positive charge for effective uptake across the gastrointestinal tract. The oral bioavailability of bPEI-OA-functionalized proliposomes was remarkable enhanced in comparison with control and conventional proliposomes. The bPEI-OA-functionalized proliposomes showed great potential of improving oral absorption of GbE as a suitable carrier.

  14. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    PubMed

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  15. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    PubMed

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients

    PubMed Central

    Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.

    2014-01-01

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591

  17. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients.

    PubMed

    Wang, Conan K; Northfield, Susan E; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S; Schroeder, Christina I; Liras, Spiros; Price, David A; Fairlie, David P; Craik, David J

    2014-12-09

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.

  18. Decrease in oral bioavailability of ciclosporin by intravenous pulse of methylprednisolone succinate in rats.

    PubMed

    Konishi, Hiroki; Sumi, Masaki; Shibata, Nobuhito; Takada, Kanji; Minouchi, Tokuzo; Yamaji, Akira

    2004-10-01

    We examined the effects of high-dose methylprednisolone on the bioavailability of orally administered ciclosporin in rats. To emulate the clinical protocol of methylprednisolone pulse therapy, methylprednisolone sodium succinate (MPS), a prodrug of methylprednisolone, was intravenously administered as repeated doses (66.3 mg kg(-1)) for 3 days. The area under the blood ciclosporin concentration versus time curve after oral administration was significantly reduced by 60% by pulse treatment with MPS. Based on our previous finding that the total body clearance of ciclosporin was reduced by about 20% by the same methylprednisolone pulse protocol, the extent of reduction in the oral bioavailability of ciclosporin was estimated to be approximately 50%, indicating a drug interaction between high-dose methylprednisolone and orally administered ciclosporin, which affected the absorption process. In rats treated with MPS, an in-situ efflux experiment using rhodamine-123 demonstrated that the reverse transport function of P-glycoprotein (P-gp) in the small intestine was significantly enhanced, although there was no significant increase in the intestinal microsomal activity of triazolam alpha- and 4-hydroxylation, metabolic probes for CYP3A. In addition, a significant decrease was observed in the amount of secreted bile acids serving as an enhancer of gastrointestinal absorption of ciclosporin in MPS treatment. To directly estimate the absorptive capacity, an in-situ absorption test was conducted using a closed-loop of small intestine in control and MPS-treated rats. Intestinal absorption of ciclosporin was significantly decreased, not only in the absence of bile flow but also by treatment with MPS, which well reflected the change in the in-vivo pharmacokinetic behaviour of ciclosporin after methylprednisolone pulsing. These results demonstrate that bioavailability of ciclosporin is markedly reduced by MPS pulse treatment, and the mechanism of this interaction was confirmed to involve enhancement of small-intestinal P-gp function and decrease in bile secretion.

  19. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process.

    PubMed

    Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J

    2015-10-01

    The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Enhanced Oral Bioavailability of Pueraria Flavones by a Novel Solid Self-microemulsifying Drug Delivery System (SMEDDS) Dropping Pills.

    PubMed

    Guan, Qingxiang; Zhang, Guangyuan; Sun, Shilin; Fan, Hongbo; Sun, Cheng; Zhang, Shaoyuan

    2016-05-01

    To improve bioavailability of pueraria flavones (PF), a self-microemulsifying drug delivery system (SMEDDS) dropping pills composed of PF, Crodamol GTCC, Maisine 35-1, Cremophor RH 40, 1,2-propylene glycol and polyethylene glycol 6000 (PEG6000) was developed. Particle size, zeta potential, morphology and in vitro drug release were investigated, respectively. Pharmacokinetics, bioavailability of PF-SMEDDS dropping pills and commercial Yufengningxin dropping pills were also evaluated and compared in rats. Puerarin treated as the representative component of PF was analyzed. Dynamic light scattering showed the ability of PF-SMEDDS dropping pills to form a nanoemulsion droplet size in aqueous media. The type of media showed no significant effects on the release rate of PF. PF-SMEDDS dropping pills were able to improve the in vitro release rate of PF, and the in vitro release of these dropping pills was significantly faster than that of Yufengningxin dropping pills. There was a dramatic difference between the mean value of t1/2, peak concentration (Cmax), the area of concentration-time curve from 0 to 6 h (AUC0-6 h) of PF-SMEDDS dropping pills and that of commercial Yufengningxin dropping pills. A pharmacokinetic study showed that the bioavailability of PF was greatly enhanced by PF-SMEDDS dropping pills. The value of Cmax and relative bioavailability of PF-SMEDDS dropping pills were dramatically improved by an average of 1.69- and 2.36-fold compared with that of Yufengningxin dropping pills after gavage administration, respectively. It was concluded that bioavailability of PF was greatly improved and that PF-SMEDDS dropping pills might be an encouraging strategy to enhance the oral bioavailability of PF.

  1. Systems Biological Approach of Molecular Descriptors Connectivity: Optimal Descriptors for Oral Bioavailability Prediction

    PubMed Central

    Ahmed, Shiek S. S. J.; Ramakrishnan, V.

    2012-01-01

    Background Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. Results The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/−bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. Conclusion The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability. PMID:22815781

  2. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction.

    PubMed

    Ahmed, Shiek S S J; Ramakrishnan, V

    2012-01-01

    Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/-bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability.

  3. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.

    PubMed

    Dhumal, Ravindra S; Biradar, Shailesh V; Yamamura, Shigeo; Paradkar, Anant R; York, Peter

    2008-09-01

    The aim of the present work was to prepare amorphous discreet nanoparticles by sonoprecipitation method for enhancing oral bioavailability of cefuroxime axetil (CA), a poorly water-soluble drug. CA nanoparticles (SONO-CA) were prepared by sonoprecipitation and compared with particles obtained by precipitation without sonication (PPT-CA) and amorphous CA obtained by spray drying. Spray drying present broad particle size distribution (PSD) with mean particle size of 10 microm and low percent yield, whereas, precipitation without sonication resulted in large amorphous aggregates with broad PSD. During sonoprecipitation, particle size and yield improve with an increase in the amplitude of sonication and lowering the operation temperature due to instantaneous supersaturation and nucleation. The overall symmetry and purity of CA molecule was maintained as confirmed by FTIR and HPLC, respectively. All the three methods resulted in the formation of amorphous CA with only sonoprecipitation resulting in uniform sized nanoparticles. Sonoprecipitated CA nanoparticles showed enhanced dissolution rate and oral bioavailability in Wistar rat due to an increased solubility attributed to combination of effects like amorphization and nanonization with increased surface area and reduced diffusion pathway.

  4. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac.

    PubMed

    Ganesh, Mani; Jeon, Ung Jin; Ubaidulla, Udhumansha; Hemalatha, Pushparaj; Saravanakumar, Arthanari; Peng, Mei Mei; Jang, Hyun Tae

    2015-03-01

    Enhanced oral bioavailability of aceclofenac has been achieved using chitosan cocrystals of aceclofenac and its entrapment into alginate matrix a super saturated drug delivery system (SDDS). Prepared SDDS were evaluated by various physiochemical and pharmacological methods. The result revealed that the primary cocrystals enhanced the solubility of the drug and the thick gelled polymer matrix that formed from swelling of calcium alginate beads makes it to release the drug in continuous and sustained manner by supersaturated drug diffusion. The Cmax, Tmax and relative bioavailability for aceclofenac cocrystal and aceclofenac SDDS were 2.06±0.42 μg/ml, 1 h, 159.72±10.84 and 2.01 μg/ml, 1 h, 352.76±12.91, respectively. Anti-inflammatory activity of aceclofenac was significantly improved with the SDDS. With respect to the results, it revealed that the SDDS described herein might be a promising tool for the oral sustained release of aceclofenac and likely for that of various other poorly soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement

    PubMed Central

    Barvaliya, Manish; Zhang, Lu; Anovadiya, Ashish; Brahmbhatt, Harshad; Paul, Parimal; Tripathi, Chandrabhanu

    2018-01-01

    The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. PMID:29438297

  6. Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies

    PubMed Central

    Jin, Xin; Zhang, Zhen-hai; Sun, E; Tan, Xiao-bin; Li, Song-lin; Cheng, Xu-dong; You, Ming; Jia, Xiao-bin

    2013-01-01

    Background 20(S)-protopanaxadiol (PPD), similar to several other anticancer agents, has low oral absorption and is extensively metabolized. These factors limit the use of PPD for treatment of human diseases. Methods In this study, we used cubic nanoparticles containing piperine to improve the oral bioavailability of PPD and to enhance its absorption and inhibit its metabolism. Cubic nanoparticles loaded with PPD and piperine were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and verified using transmission electron microscopy and differential scanning calorimetry. We evaluated the in vitro release of PPD from these nanoparticles and its absorption across the Caco-2 cell monolayer model, and subsequently, we examined the bioavailability and metabolism of PPD and its nanoparticles in vivo. Results The in vitro release of PPD from these nanoparticles was less than 5% at 12 hours. PPD-cubosome and PPD-cubosome loaded with piperine (molar ratio PPD/piperine, 1:3) increased the apical to basolateral permeability values of PPD across the Caco-2 cell monolayer from 53% to 64%, respectively. In addition, the results of a pharmacokinetic study in rats showed that the relative bioavailabilities of PPD-cubosome [area under concentration–time curve (AUC)0–∞] and PPD-cubosome containing piperine (AUC0–∞) compared to that of raw PPD (AUC0–∞) were 166% and 248%, respectively. Conclusion The increased bioavailability of PPD-cubosome loaded with piperine is due to an increase in absorption and inhibition of metabolism of PPD by cubic nanoparticles containing piperine rather than because of improved release of PPD. The cubic nanoparticles containing piperine may be a promising oral carrier for anticancer drugs with poor oral absorption and that undergo extensive metabolism by cytochrome P450. PMID:23426652

  7. Fabrication of a Soybean Bowman-Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin.

    PubMed

    Liu, Chun; Cheng, Fenfen; Yang, Xiaoquan

    2017-03-22

    Curcumin is a poorly water-soluble drug, and its oral bioavailability is very low. Here, a novel self-assembly nanoparticle delivery carrier has been successfully developed by using soybean Bowman-Birk inhibitor (BBI) to improve the solubility, bioaccessibility, and oral absorption of curcumin. BBI is a unique protein, which can be resistant to the pH range and proteolytic enzymes in the gastrointestinal tract (GIT), bioavailable, and not allergenic. The encapsulation efficiencies (EE) and the loading capacities (LC) of curcumin in the curcumin-loaded BBI nanoparticles (Cur-BBI-NPs, size = 90.09 nm, PDI = 0.103) were 86.17 and 10.31%, respectively. The in vitro bioaccessibility of Cur-BBI-NPs was superior to that of curcumin-loaded sodium caseinate (SC) nanoparticles (Cur-SC-NPs) (as control). Moreover, Cur-BBI-NPs significantly enhanced the bioavailability of curcumin in rats compared with Cur-SC-NPs, and the clathrin-mediated endocytosis pathway probably contributed to the favorable bioavailability of Cur-BBI-NPs, as revealed by the cellular uptake inhibition study.

  8. Self-Nanoemulsifying Drug Delivery System for Resveratrol: Enhanced Oral Bioavailability and Reduced Physical Fatigue in Rats

    PubMed Central

    Yen, Ching-Chi; Hsu, Mei-Chich; Wu, Yu-Tse

    2017-01-01

    Resveratrol (RES), a natural polyphenolic compound, exerts anti-fatigue activity, but its administration is complicated by its low water solubility. To improve RES bioavailability, this study developed a self-nanoemulsifying drug delivery system (SNEDDS) for RES and evaluated its anti-fatigue activity and rat exercise performance by measuring fatigue-related parameters, namely lactate, ammonia, plasma creatinine phosphokinase, and glucose levels and the swimming time to exhaustion. Through solubility and emulsification testing, the optimized SNEDDS composed of Capryol 90, Cremophor EL, and Tween 20 was developed; the average particle size in this formulation, which had favorable self-emulsification ability, was approximately 41.3 ± 4.1 nm. Pharmacokinetic studies revealed that the oral bioavailability of the optimized RES-SNEDDS increased by 3.2-fold compared with that of the unformulated RES-solution. Pretreatment using the RES-SNEDDS before exercise accelerated the recovery of lactate after exercise; compared with the vehicle group, the plasma ammonia level in the RES-SNEDDS group significantly decreased by 65.4%, whereas the glucose level significantly increased by approximately 1.8-fold. Moreover, the swimming time to exhaustion increased by 2.1- and 1.8-fold, respectively, compared with the vehicle and RES-solution pretreatment groups. Therefore, the developed RES-SNEDDS not only enhances the oral bioavailability of RES but may also exert anti-fatigue pharmacological effect. PMID:28841149

  9. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.

    PubMed

    Krishnan, Navasona; Konidaris, Konstantis F; Gasser, Gilles; Tonks, Nicholas K

    2018-02-02

    The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. pH-dependent solubility and permeability profiles: A useful tool for prediction of oral bioavailability.

    PubMed

    Sieger, P; Cui, Y; Scheuerer, S

    2017-07-15

    pH-dependent solubility - permeability profiles offer a simple way to predict bioavailability after oral application, if bioavailability is only solubility and permeability driven. Combining both pH-dependent solubility and pH-dependent permeability in one diagram provides a pH-window (=ΔpH sol-perm ) from which the conditions for optimal oral bioavailability can be taken. The size of this window is directly proportional to the observed oral bioavailability. A set of 21 compounds, with known absolute human oral bioavailability, was used to establish this correlation. Compounds with ΔpH sol-perm <2 exhibit poor oral bioavailability (<25%). An increase of ΔpH sol-perm by one pH-unit increases oral bioavailability typically by approximately 25%. For compounds where ΔpH sol-perm ≥3 but still showing poor bioavailability, most probably other pharmacokinetic aspects (e.g. high clearance), are limiting exposure. Interestingly, the location of this pH-window seems to have a negligible influence on the observed oral bioavailability. In scenarios, where the bioavailability is impaired by certain factors, like for example proton pump inhibitor co-medication or food intake, the exact position of this pH-window might be beneficial for understanding the root cause. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    PubMed

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  12. Effects of polymer molecular weight on relative oral bioavailability of curcumin.

    PubMed

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Curcumin encapsulated in low (5000-15,000) and high (40,000-75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (C(max)) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods.

  13. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    PubMed Central

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Background Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Methods Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. Results There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Conclusion Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods. PMID:22745556

  14. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation.

    PubMed

    Chang, Daoxiao; Ma, Yanni; Cao, Guoyu; Wang, Jianhuan; Zhang, Xia; Feng, Jun; Wang, Wenping

    2018-08-01

    Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 μg/ml for coarse powder up to 215.7 μg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The C max and AUC 0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.

  15. A Critical Appraisal of Solubility Enhancement Techniques of Polyphenols

    PubMed Central

    Kaur, Harkiran; Kaur, Gurpreet

    2014-01-01

    Polyphenols constitute a family of natural substances distributed widely in plant kingdom. These are produced as secondary metabolites by plants and so far 8000 representatives of this family have been identified. Recently, there is an increased interest in the polyphenols because of the evidence of their role in prevention of degenerative diseases such as neurodegenerative diseases, cancer, and cardiovascular diseases. Although a large number of drugs are available in the market for treatment of these diseases, however, the emphasis these days is on the exploitation of natural principles derived from plants. Most polyphenols show low in vivo bioavailability thus limiting their application for oral drug delivery. This low bioavailability could be associated with low aqueous solubility, first pass effect, metabolism in GIT, or irreversible binding to cellular DNA and proteins. Therefore, there is a need to devise strategies to improve oral bioavailability of polyphenols. Various approaches like nanosizing, self-microemulsifying drug delivery systems (SMEDDS), microencapsulation, complexation, and solid dispersion can be used to increase the bioavailability. This paper will highlight the various methods that have been employed till date for the solubility enhancement of various polyphenols so that a suitable drug delivery system can be formulated. PMID:26556188

  16. Lipid Nanocarrier-Mediated Drug Delivery System to Enhance the Oral Bioavailability of Rifabutin.

    PubMed

    Nirbhavane, Pradip; Vemuri, Nalini; Kumar, Neeraj; Khuller, Gopal Krishan

    2017-04-01

    Rifabutin (RFB) is prescribed for the treatment of tuberculosis infections as well as Mycobacterium avium complex (MAC) infection in immunocompromised individuals and HIV patients. With a view to develop a sustained release oral solid lipid nanoformulation (SLN), RFB was encapsulated in glyceryl monostearate (GMS) nanoparticles. The rifabutin solid lipid nanoparticles (RFB-SLNs), prepared by the solvent diffusion evaporation method, had a size of 345 ± 17.96 nm and PDI of 0.321 ± 0.09. The stability of RFB-SLNs was investigated in simulated gastric fluid (SGF) pH 2.0, simulated intestinal fluid (SIF) pH 6.8 and physiological buffer (PBS) pH 7.4. The gastric medium did not affect the SLNs and were found to be stable, while a sustained release was observed in SIF up to 48 h and in PBS up to 7 days. The pharmacokinetic profile of a single oral administration of RFB-SLNs in mice showed maintenance of therapeutic drug concentrations in plasma for 4 days and in the tissues (lungs, liver and spleen) for 7 days. Oral administration of free RFB showed clearance from plasma within 24 h. The relative bioavailability of RFB from SLNs was five fold higher as compared to administration with free RFB. The intent of using lipid nanocarriers is primarily to enhance the oral bioavailability of rifabutin and eventually decrease the dose and dosing frequency for successful management of MAC infection.

  17. N-trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer.

    PubMed

    Chen, Guanyu; Svirskis, Darren; Lu, Weiyue; Ying, Man; Huang, Yuan; Wen, Jingyuan

    2018-05-10

    Gemcitabine is a nucleoside analogue effective against a number of cancers. However, the full potential of this drug has not been realised, in part due to low oral bioavailability and frequent dosing requirements. This study reports the synthesis, in-vitro, ex-vivo and in-vivo evaluation of trimethyl chitosan (TMC) - CSKSSDYQC (CSK) peptide conjugates capable of enhancing the oral bioavailability of gemcitabine due to the ability to target intestinal goblet cells and promote intestinal cellular uptake. TMC was synthesized by a novel two-step methylation method to improve quanternization and yield. The CSK-TMC conjugates were prepared by ionic gelation to achieve particles sized at 173.6 ± 6.8 nm, zeta potential of +18.5 ± 0.2 mV and entrapment efficiency of 66.4 ± 0.1%, capable of sustained drug release. By encapsulating gemcitabine into CSK-TMC conjugates, an increased amount of drug permeated through porcine intestinal epithelial membranes compared with the unconjugated TMC nanoparticles (NPs). The rate of cellular uptake of drug loaded conjugates into HT29-MTX-E12 intestinal goblet cells, was time- and concentration-dependant. The conjugates underwent active transport associated with adsorptive mediated, clathrin and caveolae mediated endocytosis. In cellular transport studies, drug loaded conjugates had greater drug transport capability compared with drug solution and TMC NPs over the co-cultured Caco-2/HT29-MTX-E12 cell monolayer. The drug loaded conjugates exhibited electrostatic interaction with the intestinal epithelial cells. Both P-glycoprotein (P-gp) and multiple resistance protein-2 (MRP2) efflux affected the cellular transport of the conjugates. Importantly, during the pharmacokinetic studies, the orally administrated drug loaded into TMC NPs showed an improved oral bioavailability of 54.0%, compared with gemcitabine solution of 9.9%. Notable, the CSK-TMC conjugates further improved oral bioavailability to 60.1% and reduced the tumour growth rate in a BALB/c nude mouse model, with a 5.1-fold and 3.3-fold reduction compare with the non-treated group and gemcitabine solution group. Furthermore, no major evidence of toxicity was discernible on histologic studies of selected organs. In conclusion, the presented CSK-TMC conjugates and TMC nanoparticles both significantly improve the oral bioavailability of gemcitabine and have the potential for the treatment of breast cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system.

    PubMed

    Chen, Li; Liu, Chang-Shun; Chen, Qing-Zhen; Wang, Sen; Xiong, Yong-Ai; Jing, Jing; Lv, Jia-Jia

    2017-03-30

    The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Chlorogenic acid (CA), an important bioactive compound from Lonicerae Japonicae Flos with poor permeability. SMEDDS was prepared and characterized by self-emulsifying rate, morphological observation, droplet size determination, stability, in vitro release, in vivo bioavailability and tissue distribution experiments. Results shown that the SMEDDS of CA has a high self-emulsifying rate (>98%) in the dissolution media, and its microemulsion exhibits small droplet size (16.37nm) and good stability. In vitro release test showed a complete release of CA from SMEDDS in 480min. After oral administration in mice, significantly enhanced bioavailability of CA was achieved through SMEDDS (249.4% relative to the CA suspension). Interestingly, SMEDDS significantly changed the tissue distribution of CA and showed a better targeting property to the kidney (2.79 of the relative intake efficiency). It is suggested that SMEDDS improves the oral bioavailability of CA may mainly through increasing its absorption and slowing the metabolism of absorbed CA via changing its distribution from the liver to the kidney. In conclusion, it is indicated that SMEDDS is a promising carrier for the oral delivery of CA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development and characterization of floating spheroids of atorvastatin calcium loaded NLC for enhancement of oral bioavailability.

    PubMed

    Sharma, Kritika; Hallan, Supandeep Singh; Lal, Bharat; Bhardwaj, Ankur; Mishra, Neeraj

    2016-09-01

    The obejctive of the present study was to investigate the potential use of floating spheroids of Atorvastatin Calcium (ATS) Loaded nanostructured lipid carriers (NLCs). The final formula of floating spheroids was optimized on the basis of shape (spherical), diameter (0.47 mm), lag time (20 s), and floating time (> 32 h). The results were further confirmed by different pharmacokinetic parameters-it was observed that the developed optimized floating ATS spheroid-loaded NLCs formulation has significantly improved relative bioavailability, that is, 3.053-folds through oral route in comparison to marketed formulation.

  20. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin.

    PubMed

    Shangguan, Mingzhu; Lu, Yi; Qi, Jianping; Han, Jin; Tian, Zhiqiang; Xie, Yunchang; Hu, Fuqiang; Yuan, Hailong; Wu, Wei

    2014-02-01

    The main purpose of this study was to prepare binary lipids-based nanostructured lipid carriers to improve the oral bioavailability of silymarin, a poorly water-soluble liver protectant. Silymarin-loaded nanostructured lipid carriers were prepared by the method of high-pressure homogenization with glycerol distearates (Precirol ATO-5) and oleic acid as the solid and liquid lipids, respectively, and lecithin (Lipoid E 100) and Tween-80 as the emulsifiers. The silymarin-nanostructured lipid carrier prepared under optimum conditions was spherical in shape with mean particle size of ∼78.87 nm, entrapment efficiency of 87.55%, loading capacity of 8.32%, and zeta potential of -65.3 mV, respectively. In vitro release of silymarin-nanostructured lipid carriers was very limited even after 12 h, while in vitro lipolysis showed fast digestion of nanostructured lipid carriers within 1 h. Relative oral bioavailability of silymarin-nanostructured lipid carriers in Beagle dogs was 2.54- and 3.10-fold that of marketed Legalon® and silymarin solid dispersion pellets, respectively. It was concluded that nanostructured lipid carriers were potential drug delivery systems to improve the bioavailability of silymarin. Other than improved dissolution, alternative mechanisms such as facilitated absorption as well as lymphatic transport may contribute to bioavailability enhancement.

  1. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: peroral and mucosal routes.

    PubMed

    Silva, A C; Santos, D; Ferreira, D; Lopes, C M

    2012-01-01

    The hydrophobic character of most drug molecules and their potential for degradation under the hostile environment of the gastrointestinal tract (GIT) constitutes the main obstacle in the development of a successful oral drug delivery system, since these are related to limitations of bioavailability and absorption processes. However, according to the advantages of the oral route, alternative ways of drug administration in the oral cavity should be considered. In this context, it is essential to have a systematic knowledge of the GIT and the oral cavity components, for a better understanding of the processes taking place during the oral administration of drugs. This review gives an overview of those anatomical and physiological features and elucidates about the current approaches employed to enhance the bioavailability of oral poorly water-soluble drugs. Strategies including the uses of lipid-based nanocarriers, such as nanoemulsions, liposomes and lipid nanoparticles are discussed, considering their ability to improve solubility, dissolution kinetics, absorption and, consequently, biopharmaceutical properties. Some toxicological concerns are also highlighted.

  2. Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats.

    PubMed

    Choi, Jin-Seok; Kwon, Soon-Hyung; Lee, Sang-Eun; Jang, Woo Suk; Byeon, Jong Chan; Jeong, Hyeong Mo; Park, Jeong-Sook

    2017-06-30

    The purpose of this study is to improve the solubility, in vitro dissolution, and oral bioavailability in rats of tadalafil (TDF) by using SD technique with a weak acid and a copolymer. TDF-SD was prepared via solvent evaporation, coupled with the incorporation of an acidifier and solubilizer. Tartaric acid enhanced the solubility of TDF over 5-fold in DW, and Soluplus ® enhanced the solubility of TDF over 8.7-fold and 19.2-fold compared to that of TDF (pure) in DW and pH 1.2 for 1h, respectively. The optimal formulation of TDF-SD3 was composed of TDF vs Tartaric acid vs Soluplus ® vs Aerosil=1:1:3:3. The in vitro dissolution rate of TDF-SD3 in DW, pH 1.2 and pH 6.8 buffer (51.5%, 53.3%, and 33.2%, respectively) was significantly higher than that of the commercial product (Cialis ® ) powder (16.5%, 15.2%, and 14.8%, respectively). TDF was completely transformed to an amorphous form as shown in SEM, DSC and PXRD data. The stability of TDF-SD3 included drug contents and in vitro dissolution for 1 month were similar to those of Cialis ® , and the amorphous form of TDF-SD3 was well maintained for 6 months. The TDF-SD3 formulation improved the relative bioavailability (BA) and peak plasma concentration (C max ) compared to that of Cialis ® powder after oral administration in rats as 117.3% and 135.7%, respectively. From the results, we found that the acidifier increased the wettability of TDF, and the solubilizer improved solubility through hydrogen bonding with TDF, thereby increasing the solubility, dissolution and oral bioavailability of TDF in TDF-SD3. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations.

    PubMed

    Zhou, Yang; Dong, Wujun; Ye, Jun; Hao, Huazhen; Zhou, Junzhuo; Wang, Renyun; Liu, Yuling

    2017-11-01

    Phospholipid complex is one of the most successful approaches for enhancing oral bioavailability of poorly absorbed plant constituents. But the sticky property of phospholipids results in an unsatisfactory dissolution of drugs. In this study, a matrix dispersion of baicalein based on phospholipid complex (BaPC-MD) was first prepared by a discontinuous solvent evaporation method, in which polyvinylpyrrolidone-K30 (PVP-K30) was employed for improving the dispersibility of baicalein phospholipid complex (BaPC) and increasing dissolution of baicalein. The combination ratio of baicalein and phospholipids in BaPC-MD was 99.39% and baicalein was still in a complete complex state with phospholipid in BaPC-MD. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) analyzes demonstrated that baicalein was fully transformed to an amorphous state in BaPC-MD and phospholipid complex formed. The water-solubility and n-octanol solubility of baicalein in BaPC-MD significantly increased compared with those of pure baicalein. Compared with baicalein and BaPC, the cumulative dissolution of BaPC-MD at 120 min increased 2.77- and 1.23-fold, respectively. In vitro permeability study in Caco-2 cells indicated that the permeability of BaPC-MD was remarkably higher than those of baicalein and BaPC. Pharmacokinetic study showed that the average C max of BaPC-MD was significantly increased compared to baicalein and BaPC. AUC 0-14 h of BaPC-MD was 5.01- and 1.91-fold of baicalein and BaPC, respectively. The novel BaPC-MD significantly enhanced the oral bioavailability of baicalein by improving the dissolution and permeability of baicalein without destroying the complexation state of baicalein and phospholipids. The current drug delivery system provided an optimal strategy to significantly enhance oral bioavailability for poorly water-soluble drugs.

  4. Solid dispersion of dutasteride using the solvent evaporation method: Approaches to improve dissolution rate and oral bioavailability in rats.

    PubMed

    Choi, Jin-Seok; Lee, Sang-Eun; Jang, Woo Suk; Byeon, Jong Chan; Park, Jeong-Sook

    2018-09-01

    The aim of this study was to develop a dutasteride (DUT) solid dispersion (SD) using hydrophilic substances to enhance its dissolution (%) and oral bioavailability in rats. DUT-SD formulations were prepared with various co-polymers using a solvent evaporation method. The physical properties of DUT-SD formulations were confirmed using field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. The toxicity and oral bioavailability of DUT-SD formulations were evaluated. Tocopheryl polyethylene glycol-1000-succinate (TPGS) was chosen as the solubilizer; and methylene chloride, and Aerosil® 200 or microcrystalline cellulose (MCC) were chosen as the solvent and carrier, respectively, based on a solubility test and pre-dissolution study. The dissolution levels of DUT-SD formulations were 86.3 ± 2.3% (F15) and 95.1 ± 1.9% (F16) after 1 h, which were higher than those of the commercial product, i.e., Avodart® (75.8 ± 1.5%) in 0.1 N HCl containing 1% (w/v) sodium lauryl sulfate (SLS). The F16 formulation was found to be stable, after assessing its dissolution (%) and drug content (%) for 6 months. The DUT-SD formulations resulted in relative bioavailability (BA) values of 126.4% (F15) and 132.1% (F16), which were enhanced compared to that of Avodart®. Dissolution (%) and relative BA values were both increased by hydrogen interaction between TPGS and DUT. This study might contribute to a new formulation (powder) whose oral bioavailability is greater than that of Avodart® (soft capsule), which could facilitate to the use of the SD system during the production process. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study.

    PubMed

    Shah, Nirmal V; Seth, Avinash K; Balaraman, R; Aundhia, Chintan J; Maheshwari, Rajesh A; Parmar, Ghanshyam R

    2016-05-01

    The objective of present work was to utilize potential of nanostructured lipid carriers (NLCs) for improvement in oral bioavailability of raloxifene hydrochloride (RLX). RLX loaded NLCs were prepared by solvent diffusion method using glyceryl monostearate and Capmul MCM C8 as solid lipid and liquid lipid, respectively. A full 3(2) factorial design was utilized to study the effect of two independent parameters namely solid lipid to liquid lipid ratio and concentration of stabilizer on the entrapment efficiency of prepared NLCs. The statistical evaluation confirmed pronounced improvement in entrapment efficiency when liquid lipid content in the formulation increased from 5% w/w to 15% w/w. Solid-state characterization studies (DSC and XRD) in optimized formulation NLC-8 revealed transformation of RLX from crystalline to amorphous form. Optimized formulation showed 32.50 ± 5.12 nm average particle size and -12.8 ± 3.2 mV zeta potential that impart good stability of NLCs dispersion. In vitro release study showed burst release for initial 8 h followed by sustained release up to 36 h. TEM study confirmed smooth surface discrete spherical nano sized particles. To draw final conclusion, in vivo pharmacokinetic study was carried out that showed 3.75-fold enhancements in bioavailability with optimized NLCs formulation than plain drug suspension. These results showed potential of NLCs for significant improvement in oral bioavailability of poorly soluble RLX.

  6. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.

    PubMed

    Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang

    2017-11-01

    The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.

  7. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study

    PubMed Central

    Shah, Nirmal V.; Seth, Avinash K.; Balaraman, R.; Aundhia, Chintan J.; Maheshwari, Rajesh A.; Parmar, Ghanshyam R.

    2016-01-01

    The objective of present work was to utilize potential of nanostructured lipid carriers (NLCs) for improvement in oral bioavailability of raloxifene hydrochloride (RLX). RLX loaded NLCs were prepared by solvent diffusion method using glyceryl monostearate and Capmul MCM C8 as solid lipid and liquid lipid, respectively. A full 32 factorial design was utilized to study the effect of two independent parameters namely solid lipid to liquid lipid ratio and concentration of stabilizer on the entrapment efficiency of prepared NLCs. The statistical evaluation confirmed pronounced improvement in entrapment efficiency when liquid lipid content in the formulation increased from 5% w/w to 15% w/w. Solid-state characterization studies (DSC and XRD) in optimized formulation NLC-8 revealed transformation of RLX from crystalline to amorphous form. Optimized formulation showed 32.50 ± 5.12 nm average particle size and −12.8 ± 3.2 mV zeta potential that impart good stability of NLCs dispersion. In vitro release study showed burst release for initial 8 h followed by sustained release up to 36 h. TEM study confirmed smooth surface discrete spherical nano sized particles. To draw final conclusion, in vivo pharmacokinetic study was carried out that showed 3.75-fold enhancements in bioavailability with optimized NLCs formulation than plain drug suspension. These results showed potential of NLCs for significant improvement in oral bioavailability of poorly soluble RLX. PMID:27222747

  8. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems--enhancement of oral bioavailability.

    PubMed

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama A A

    2015-01-01

    Poor water solubility of a drug is a major challenge in drug delivery research and a main cause for limited bioavailability and pharmacokinetic parameters. This work aims to utilize custom fractional factorial design to assess the development of self-nanoemulsifying drug delivery systems (SNEDDS) and solid nanosuspensions (NS) in order to enhance the oral delivery of atorvastatin (ATR). According to the design, 14 experimental runs of ATR SNEDDS were formulated utilizing the highly ATR solubilizing SNEDDS components: oleic acid, Tween 80, and propylene glycol. In addition, 12 runs of NS were formulated by the antisolvent precipitation-ultrasonication method. Optimized formulations of SNEDDS and solid NS, deduced from the design, were characterized. Optimized SNEDDS formula exhibited mean globule size of 73.5 nm, zeta potential magnitude of -24.1 mV, and 13.5 μs/cm of electrical conductivity. Optimized solid NS formula exhibited mean particle size of 260.3 nm, 7.4 mV of zeta potential, and 93.2% of yield percentage. Transmission electron microscopy showed SNEDDS droplets formula as discrete spheres. The solid NS morphology showed flaky nanoparticles with irregular shapes using scanning electron microscopy. The release behavior of the optimized SNEDDS formula showed 56.78% of cumulative ATR release after 10 minutes. Solid NS formula showed lower rate of release in the first 30 minutes. Bioavailability estimation in Wistar albino rats revealed an augmentation in ATR bioavailability, relative to ATR suspension and the commercial tablets, from optimized ATR SNEDDS and NS formulations by 193.81% and 155.31%, respectively. The findings of this work showed that the optimized nanocarriers enhance the oral delivery and pharmacokinetic profile of ATR.

  9. Enhancement of oral bioavailability of E804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats.

    PubMed

    Heshmati, Nasim; Cheng, Xinlai; Eisenbrand, Gerhard; Fricker, Gert

    2013-10-01

    Indirubin and its derivatives have been shown to interrupt the cell cycle by inhibiting cyclin-dependent kinases, explaining their long-time use in traditional Chinese medicine for the treatment of chronic myelocytic leukemia. A potent derivative of indirubin, indirubin-3'-oxime 2,3-dihydroxypropyl ether (E804), has been shown to block the Src-Stat3 and Src-Stat5 signaling pathway in human cancer cells, inducing apoptosis. The anticancer effects of E804, however, cannot be easily examined in vivo because of its poor water solubility and low absorption. The aim of this study was to develop and evaluate a self-nanoemulsifying drug delivery system (SNEDDS) containing E804 for enhancing its solubility and bioavailability. Solubility of E804 was determined in various vehicles, and pseudoternary phase diagram was used to evaluate the self-emulsifying existence area. The SNEDDS composed of Capmul MCM (oil), Solutol HS 15 (surfactant), and polyethylene glycol 400 (cosurfactant) on the ratio of 20.5:62.5:16 loaded 1.5% of E804. The particle size of droplets was found to be 16.8 and 140 nm, and SNEDDS was stable after freeze-thaw cycles and upon dilution in HCl 0.1 N and pH 7.4 HBSS++. The ability of formulation for absorption enhancement was studied in rats in vivo after oral administration. The results showed that the developed SNEDDS increased the E804 bioavailability 984.23% compared with the aqueous suspension. Our studies for the first time show that the developed SNEDDS can be used as a possible formulation for E804 to improve its solubility and oral bioavailability. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Computational modeling of human oral bioavailability: what will be next?

    PubMed

    Cabrera-Pérez, Miguel Ángel; Pham-The, Hai

    2018-06-01

    The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.

  11. Enhancement of bioavailability of cinnarizine from its beta-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent.

    PubMed

    Tokumura, T; Nanba, M; Tsushima, Y; Tatsuishi, K; Kayano, M; Machida, Y; Nagai, T

    1986-04-01

    The present investigation is concerned with an improvement of the bioavailability of cinnarizine by administering its beta-cyclodextrin complex together with another compound which competes with the beta-cyclodextrin molecule in complex formation in aqueous solution (competing agent). The bioavailability of cinnarizine on oral administration of the cinnarizine-beta-cyclodextrin inclusion complex was enhanced by the simultaneous administration of DL-phenylalanine as a competing agent, e.g., the AUC was 1.9 and 2.7 times as large as those of the cinnarizine-beta-cyclodextrin complex alone and cinnarizine alone, respectively. The enhancement of AUC and Cmax completely depended on the dose of DL-phenylalanine. It was found from these results that DL-phenylalanine acted as a competing agent in the GI tract and the minimum effective dose required of DL-phenylalanine might be 1 g for 50 mg of cinnarizine in the cinnarizine-beta-cyclodextrin complex. Evaluating the competing effect of DL-phenylalanine in vitro using an absorption simulator, it was found that the decreased penetration rate of cinnarizine through the artificial lipid barrier with addition of beta-cyclodextrin was restored with the addition of DL-phenylalanine.

  12. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile.

    PubMed

    Kumar, Nagendra; Chaurasia, Sundeep; Patel, Ravi R; Khan, Gayasuddin; Kumar, Vikas; Mishra, Brahmeshwar

    2017-03-01

    Atorvastatin calcium (ATR), a second generation statin drug, was encapsulated in eudragit RSPO-based polymeric nanoparticles. The effect of independent variables (polymer content, stabilizer concentration, volume of chloroform and homogenization speed) on response variables (mean diameter particle size and entrapment efficiency) were investigated by employing central composite experimental design. All the independent variables were found to be significant for determining the response variables. Solid-state characterization study indicated the absence of physicochemical interaction between drug and polymer in formulation. Morphological study exhibited homogenous spherical shape of formulated nanoparticles. In vitro release study in phosphate buffer (pH 7.4) demonstrated sustained release profile over 24 h. Pharmacokinetic study in Charles Foster rats showed significant enhancement in oral bioavailability as compared to pure drug suspension. Efficacy study (lipid profile and blood glucose level) significantly justified the effectiveness of formulation having 50% less dose of ATR as compared to pure drug suspension. The effectiveness of formulation was further justified with an improved plasma safety profile of treated rats. Hence, ATR encapsulated eudragit RSPO nanoparticles can serve as potential drug delivery approach to enhance drug bioavailability, efficacy and safety profiles to alter existing marketed drug products.

  13. Enhanced oral bioavailability of metoprolol with gallic acid and ellagic acid in male Wistar rats: involvement of CYP2D6 inhibition.

    PubMed

    Athukuri, Bhargavi Latha; Neerati, Prasad

    2016-12-01

    Cytochrome P450-2D6 (CYP2D6), a member of the CYP450 mixed function oxidase system, is an important CYP isoform with regard to herbal-drug interactions and is responsible for the metabolism of nearly 25% of drugs. Until now, studies on the effects of various phytochemicals on CYP2D6 activity in vivo have been very rare. Gallic acid and ellagic acid are natural polyphenols which are widely distributed in fruits and medicinal plants. In the present study, the effects of gallic acid and ellagic acid pretreatment on intestinal transport and oral bioavailability of metoprolol were investigated. The intestinal transport of metoprolol was assessed by conducting an in situ single pass intestinal perfusion (SPIP) study. The bioavailability study was conducted to evaluate the pharmacokinetic parameters of orally administered metoprolol in rats. After pretreatment with gallic acid and ellagic acid, no significant change in effective permeability of metoprolol was observed at the ileum part of rat intestine. A significant improvement in the peak plasma concentration (Cmax) and area under the serum concentration-time profile (AUC) and decrease in clearance were observed in rats pretreated with gallic acid and ellagic acid. Gallic acid and ellagic acid significantly enhanced the oral bioavailability of metoprolol by inhibiting CYP2D6-mediated metabolism in the rat liver. Hence, adverse herbal-drug interactions may result with concomitant ingestion of gallic acid and ellagic acid supplements and drugs that are CYP2D6 substrates. The clinical assessment of these interactions should be further investigated in human volunteers.

  14. In-situ single pass intestinal permeability and pharmacokinetic study of developed Lumefantrine loaded solid lipid nanoparticles.

    PubMed

    Garg, Anuj; Bhalala, Kripal; Tomar, Devendra Singh; Wahajuddin

    2017-01-10

    The present investigation aims to develop lumefantrine loaded binary solid lipid nanoparticles (LF-SLNs) to improve its poor and variable oral bioavailability. The oral bioavailability of LF is poor and variable due to its limited aqueous solubility and P-gp mediated efflux occurring in small intestine. LF-SLNs were prepared using binary lipid mixture of stearic acid and caprylic acid stabilized with TPGS (D-alpha tocopheryl polyethylene glycol 1000 succinate) and Poloxamer 188. Developed LF-SLNs were characterized for particle size distribution, zeta potential, entrapment efficiency, solid state properties and biopharmaceutical properties including in situ intestinal permeability and oral bioavailability. The particle size distribution, zeta potential and entrapment efficiency of optimized batch (LF-SLN7) was found to be 357.7±43.27nm, 25.29±1.15mV and 97.35±0.30%, respectively. DSC thermographs showed loss of crystalline nature of lumefantrine in LF-SLNs. In situ single pass intestinal permeability study (SPIP) study indicated significant enhancement in the effective intestinal permeability of LF from LF-SLN7 as compared to that of control. Pharmacokinetic study also showed significant increase in Cmax and area under curve (AUC0- ∞ ) from LF-SLN7 (3860±521ng/mL and 43181±2557h×ng/mL, respectively) as compared to that of LF-control suspension (1425±563ng/mL and 19586±1537h×ng/mL, respectively). Thus, developed LF-SLNs can be promising to overcome P-gp efflux pump and enhance the oral bioavailability of lumefantrine. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    PubMed

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  16. Development of olmesartan medoxomil optimized nanosuspension using the Box-Behnken design to improve oral bioavailability.

    PubMed

    Nagaraj, K; Narendar, D; Kishan, V

    2017-07-01

    The aim of the present investigation was to enhance the oral bioavailability of olmesartan medoxomil by improving its solubility and dissolution rate by preparing nanosuspension (OM-NS), using the Box-Behnken design. In this, four factors were evaluated at three levels. Independent variables include: concentration of drug (X 1 ), concentration of surfactant (X 2 ), concentration of polymer (X 3 ) and number of homogenization cycles (X 4 ). Based on preliminary studies, the size (Y 1 ), zeta potential (ZP) (Y 2 ) and % drug release at 5 min (Y 3 ) were chosen as dependent responses. OM-NS was prepared by high pressure homogenization method. The size, PDI, ZP, assay, in vitro release and morphology of OM-NS were characterized. Further, the pharmacokinetic (PK) behavior of OM-NS was evaluated in male wistar rats. Statistically optimized OM-NS formulation exhibited mean particle size of 492 nm, ZP of -27.9 mV and 99.29% release in 5 min. OM-NS showed more than four times increase in its solubility than pure OM. DSC and XRD analyses indicated that the drug incorporated into OM-NS was in amorphous form. The morphology of OM-NS was found to be nearly spherical with high dispersity by scanning electron microscopic studies. The PK results showed that OM lyophilized nanosuspension (NS) exhibited improved PK properties compared to coarse powder suspension and marketed tablet powder suspension (TS). Oral bioavailability of lyophilized NS was increased by 2.45 and 2.25 folds when compared to marketed TS and coarse powder suspension, respectively. Results of this study lead to conclusion that NS approach was effective in preparing OM formulations with enhanced dissolution and improved oral bioavailability.

  17. Enhanced oral bioavailability and controlled release of dutasteride by a novel dry elixir.

    PubMed

    Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Ban, Eunmi

    2014-01-01

    To develop a solid dosage form of dutasteride for improving its oral bioavailability, a novel dry elixir (DE) system was fabricated. DEs incorporating dextrin and/or xanthan gum were prepared using spray-drying and evaluated by morphology, ethanol content, crystallinity, dissolution and oral bioavailability. DEs were spherical with a smooth surface and had an average particle size of 20-25 μm. The ethanol content could be easily varied by controlling the spray-drying temperature. The dissolution profiles of dutasteride from each DE proved to be much faster than that of dutasteride powder due to the amorphous state and a high amount of incorporated ethanol. In particular, the pharmacokinetic profiles of dutasteride were significantly altered depending on the proportions of dextrin and xanthan gum. Blood concentrations of dutasteride from DE formulations were similar to those of market products and much greater than those of native dutasteride. Interestingly, the dissolution and pharmacokinetic profiles were easily controlled by changing the ratio of dextrin to xanthan gum. The data suggests that a DE using dextrin and/or xanthan gum could provide an applicable solid dosage form to improve the dissolution and bio-availability of dutasteride as well as to modulate its pharmacokinetics.

  18. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation

    PubMed Central

    Allam, Ahmed N; Hamdallah, Sherif I; Abdallah, Ossama Y

    2017-01-01

    Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase (P≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals’ formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher Cmax of 0.74±0.15 µg/mL at a delayed Tmax of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration. PMID:28740381

  19. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation.

    PubMed

    Allam, Ahmed N; Hamdallah, Sherif I; Abdallah, Ossama Y

    2017-01-01

    Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase ( P ≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals' formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher C max of 0.74±0.15 µg/mL at a delayed T max of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration.

  20. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone.

    PubMed

    Chamsai, Benchawan; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2017-12-01

    Low bioavailability of oral manidipine (MDP) is due to its low water solubility. The objective of this study was to increase the solubility and bioavailability of MDP by fabricating ternary solid dispersion (tSD) with d-α-tocopherol polyethyleneglycol-1000-succinate and copovidone. In this study, solid ternary phase diagram was applied in order to check the homogeneity of tSD prepared by melting and solidifying with dry ice. The physicochemical properties of different formulations were determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and hot stage microscopy. Their solubility, dissolution, stability and bioavailability were also investigated. The results demonstrated that tSD obtained from ternary phase diagram divided into homogeneous and non-homogeneous regions. In the homogenous region, the transparent characteristics of tSD was observed and considered as a glass solution, which have a higher MDP solubility than that in non-homogenous region. The hot stage microscopy, DSC and PXRD confirmed that solid dispersion was formed in which MDP was molecularly dispersed in the carriers, especially in the homogenous region of phase diagram. FTIR analysis demonstrated strong hydrogen bonding between amine groups of MDP and carbonyl groups of copovidone, which supported a higher solubility and dissolution of tSD. The pharmacokinetic study in Wistar rats showed that the tSD had the greatest effect on oral bioavailability. Immediate hypotensive effect of tSD was also observed in vivo. The improvement of stability, dissolution and oral bioavailability of MDP could be achieved by using tSD technique.

  1. The influence of supercritical carbon dioxide (SC-CO2) processing conditions on drug loading and physicochemical properties.

    PubMed

    Ahern, Robert J; Crean, Abina M; Ryan, Katie B

    2012-12-15

    Poor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15). The aim of this work was to investigate the impact of altering supercritical carbon dioxide (SC-CO(2)) processing conditions, in an attempt to enhance drug loading onto SBA-15 and increase the drug's dissolution rate. Other formulation variables such as the mass ratio of drug to SBA-15 and the procedure for combining the drug and SBA-15 were also investigated. A model drug with poor water solubility, fenofibrate, was selected for this study. High drug loading efficiencies were obtained using SC-CO(2), which were influenced by the processing conditions employed. Fenofibrate release rate was enhanced greatly after loading onto mesoporous silica. The results highlighted the potential of this SC-CO(2) drug loading approach to improve the oral bioavailability of poorly water soluble drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells.

    PubMed

    Kumar, Nitesh; Rai, Amita; Reddy, Neetinkumar D; Raj, P Vasanth; Jain, Prateek; Deshpande, Praful; Mathew, Geetha; Kutty, N Gopalan; Udupa, Nayanabhirama; Rao, C Mallikarjuna

    2014-10-01

    Silymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal-liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection. The formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat. The formulation showed maximum entrapment (55%) for a lecithin-cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension. Incorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Improving oral bioavailability of acyclovir using nanoparticulates of thiolated xyloglucan.

    PubMed

    Madgulkar, Ashwini; Bhalekar, Mangesh R; Dikpati, Amrita A

    2016-08-01

    Acyclovir a BCS class III drug exhibits poor bioavailability due to limited permeability. The intention of this research work was to formulate and characterize thiolated xyloglucan polysaccharide nanoparticles (TH-NPs) of acyclovir with the purpose of increasing its oral bioavailability. Acyclovir-loaded TH-NPs were prepared using a cross-linking agent. Interactions of formulation excipients were reconnoitered using Fourier transform infrared spectroscopy (FT-IR). The formulated nanoparticles were lyophilised by the addition of a cryoprotectant and characterized for its particle size, morphology and stability and optimized using Box Behnken Design.The optimized TH-NP formulation exhibited particle size of 474.4±2.01 and an entrapment efficiency of 81.57%. A marked enhancement in the mucoadhesion was also observed. In-vivo study in a rat model proved that relative bioavailability of acyclovir TH-NPs is ∼2.575 fold greater than that of the marketed acyclovir drug suspension. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug.

    PubMed

    Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling

    2014-02-01

    Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.

  5. The effect of dietary factors on strawberry anthocyanins oral bioavailability.

    PubMed

    Xiao, Di; Sandhu, Amandeep; Huang, Yancui; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt M

    2017-11-15

    Strawberries are a dietary source of anthocyanins, particularly pelargonidin glycosides. Dietary anthocyanins have received increasing attention among researchers and consumers due to their health benefits. The oral bioavailability of anthocyanins is reported to be low and various dietary factors may influence their oral bioavailability further. Milk is suggested to reduce (poly)phenols' oral bioavailability. However, the effect of milk on anthocyanin oral bioavailability remains uncertain. Likewise, mixed nutrient meals may influence the oral bioavailability of anthocyanins. Therefore, the purpose of this study was to assess the effect of milk on the oral bioavailability and other pharmacokinetic (PK) variables of strawberry anthocyanins consumed with and without a meal. Nine healthy participants consumed a strawberry beverage prepared in milk or water with a standard meal on two occasions. On two additional occasions, the beverages were given to a subset (n = 4) of participants to determine the impact of the meal on anthocyanin PK variables, including oral bioavailability. Independent of the meal, beverages prepared in milk significantly reduced the peak plasma concentrations (C max ) of pelargonidin-3-O-glucoside (P-3-G), pelargonidin-glucuronide (PG) and pelargonidin-3-O-rutinoside (P-3-R), as well as the PG and P-3-R area under the curve (AUC) (p < 0.05) compared to beverages prepared in water. Milk did not influence the oral relative bioavailability of pelargonidin anthocyanins under meal conditions; however, the oral relative bioavailability of pelargonidin anthocyanins was reduced by ∼50% by milk under without meal conditions (p < 0.05). Consuming strawberry beverages made with milk and consuming those made with water with and without a meal influenced different aspects of strawberry anthocyanin PKs. The significance of this effect on clinical efficacy requires additional research.

  6. Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options.

    PubMed

    Aungst, Bruce J

    2017-04-01

    For discovery teams working toward new, orally administered therapeutic agents, one requirement is to attain adequate systemic exposure after oral dosing, which is best accomplished when oral bioavailability is optimized. This report summarizes the bioavailability challenges currently faced in drug discovery, and the design and testing methods and strategies currently utilized to address the challenges. Profiling of discovery compounds usually includes separate assessments of solubility, permeability, and susceptibility to first-pass metabolism, which are the 3 most likely contributors to incomplete oral bioavailability. An initial assessment of absorption potential may be made computationally, and high throughput in vitro assays are typically performed to prioritize compounds for in vivo studies. The initial pharmacokinetic study is a critical decision point in compound evaluation, and the importance of the effect the dosing vehicle or formulation can have on oral bioavailability, especially for poorly water soluble compounds, is emphasized. Dosing vehicles and bioavailability-enabling formulations that can be used for discovery and preclinical studies are described. Optimizing oral bioavailability within a chemical series or for a lead compound requires identification of the barrier limiting bioavailability, and methods used for this purpose are outlined. Finally, a few key guidelines are offered for consideration when facing the challenges of optimizing oral bioavailability in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis.

    PubMed

    Smith, Lindsay; Serrano, Dolores R; Mauger, Marion; Bolás-Fernández, Francisco; Dea-Ayuela, Maria Auxiliadora; Lalatsa, Aikaterini

    2018-05-24

    Nanoenabled lipid-based drug delivery systems offer a platform to overcome challenges encountered with current failed leads in the treatment of parasitic and infectious diseases. When prepared with FDA or EMA approved excipients, they can be readily translated without the need for further toxicological studies, while they remain affordable and amenable to scale-up. Buparvaquone (BPQ), a hydroxynapthoquinone with in vitro activity in the nanomolar range, failed to clinically translate as a viable treatment for visceral leishmaniasis due to its poor oral bioavailability limited by its poor aqueous solubility (BCS Class II drug). Here we describe a self-nanoemulsifying system (SNEDDS) with high loading and thermal stability up to 6 months in tropical conditions and the ability to enhance the solubilization capacity of BPQ in gastrointestinal media as demonstrated by flow-through cell and dynamic in vitro lipolysis studies. BPQ SNEDDS demonstrated an enhanced oral bioavailability compared to aqueous BPQ dispersions (probe-sonicated), resulting in an increased plasma AUC 0-24 by 55% that is 4-fold higher than any previous reported values for BPQ formulations. BPQ SNEDDS can be adsorbed on low molecular glycol chitosan polymers forming solid dispersions that when compressed into tablets allow the complete dissolution of BPQ in gastrointestinal media. BPQ SNEDDS and BPQ solid SNEDDS demonstrated potent in vitro efficacy in the nanomolar range (<37 nM) and were able to near completely inhibit parasite replication in the spleen while also demonstrating 48 ± 48 and 56 ± 23% inhibition of the parasite replication in the liver, respectively, compared to oral miltefosine after daily administration over 10 days. The proposed platform technology can be used to elicit a range of cost-effective and orally bioavailable noninvasive formulations for a range of antiparasitic and infectious disease drugs that are needed for closing the global health innovation gap.

  8. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation.

    PubMed

    Liu, Chen; Chang, Daoxiao; Zhang, Xinhui; Sui, Hong; Kong, Yindi; Zhu, Rongyue; Wang, Wenping

    2017-11-01

    Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm 2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.

  9. Sildenafil citrate as oral solid lipid nanoparticles: a novel formula with higher bioavailability and sustained action for treatment of erectile dysfunction.

    PubMed

    Hosny, Khaled M; Aljaeid, Bader M

    2014-07-01

    The aim of this study was to prepare sildenafil citrate as solid lipid nanoparticles (SLNs), in order to find an innovative way for alleviating the disadvantages associated with commercially available sildenafil citrate tablets. These limitations include poor solubility and extensive first-pass metabolism, resulting in low (40%) bioavailability and short elimination half-life (4 h). SLNs were prepared by hot homogenization followed by ultrasonication. Solubility of sildenafil citrate in different solid lipids was measured, effect of process variables as surfactant type and concentration, homogenization time, ultrasonication time and charge-inducing agent on the particle size, zeta potential and encapsulation efficiency were also determined. Furthermore, in vitro drug release, stability and in vivo pharmacokinetics were studied in rabbits Results: The best SLN formula consisted of 2% precirol ATO5, 0.5% phosphatidylcholine, 2.5% gelucire 44/14, 0.125% stearylamine, had an average particle size of 28.5 nm with 95.34% entrapment efficiency and demonstrated a controlled drug release over 24 h. An in vivo pharmacokinetic study revealed enhanced bioavailability by > 1.87 fold, and the mean residence time was longer than that for the commercially available tablet. SLN could be a promising carrier for sustained/prolonged sildenafil citrate release with enhanced oral bioavailability.

  10. Improved Bioavailability of Levodopa Using Floatable Spray-Coated Microcapsules for the Management of Parkinson's Disease.

    PubMed

    Baek, Jong-Suep; Tee, Jie Kai; Pang, Yi Yun; Tan, Ern Yu; Lim, Kah Leong; Ho, Han Kiat; Loo, Say Chye Joachim

    2018-06-01

    Oral administration of levodopa (LD) is the gold standard in managing Parkinson's disease (PD). Although LD is the most effective drug in treating PD, chronic administration of LD induces levodopa-induced dyskinesia. A continuous and sustained provision of LD to the brain could, therefore, reduce peak-dose dyskinesia. In commercial oral formulations, LD is co-administrated with an AADC inhibitor (carbidopa) and a COMT inhibitor (entacapone) to enhance its bioavailability. Nevertheless, patients are known to take up to five tablets a day because of poor sustained-releasing capabilities that lead to fluctuations in plasma concentrations. To achieve a prolonged release of LD with the aim of improving its bioavailability, floatable spray-coated microcapsules containing all three PD drugs were developed. This gastro-retentive delivery system showed sustained release of all PD drugs, at similar release kinetics. Pharmacokinetics study was conducted and this newly developed formulation showed a more plateaued delivery of LD that is void of the plasma concentration fluctuations observed for the control (commercial formulation). At the same time, measurements of LD and dopamine of mice administered with this formulation showed enhanced bioavailability of LD. This study highlights a floatable, sustained-releasing delivery system in achieving improved pharmacokinetics data compared to a commercial formulation.

  11. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect.

    PubMed

    Wang, Qilong; Wei, Qiuyu; Yang, Qiuxuan; Cao, Xia; Li, Qiang; Shi, Feng; Tong, Shan Shan; Feng, Chunlai; Yu, Qingtong; Yu, Jiangnan; Xu, Ximing

    2018-01-15

    [6]-Gingerol, one of the components of the rhizome of Ginger, has a variety of biological activities such as anticoagulant, antioxidative, antitumor, anti-inflammatory, antihypertensive, and so forth. However, as one of the homologous phenolic ketones, [6]-gingerol is insoluble in water which limits its applications. Herein, we prepared [6]-gingerol proliposomes through modified thin-film dispersion method, which was spherical or oval, and physicochemically stable with narrow size distribution. Surprisingly, in vitro release of [6]-gingerol loaded proliposome compared with the free [6]-gingerol was significantly higher and its oral bioavailability increased 5-fold in vivo. Intriguingly, its antitumor effect was enhanced in the liposome formulation. Thus, our prepared [6]-gingerol proliposome proved to be a novel formulation for [6]-gingerol, which significantly improved its antitumor effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of aprepitant loaded orally disintegrating films for enhanced pharmacokinetic performance.

    PubMed

    Sharma, Radhika; Kamboj, Sunil; Singh, Gursharan; Rana, Vikas

    2016-03-10

    The present investigation was aimed to prepare orally disintegrating films (ODFs) containing aprepitant (APT), an antiemetic drug employing pullulan as film forming agent, tamarind pectin as wetting agent and liquid glucose as plasticizer and solubiliser. The ODFs were prepared using solvent casting method. The method was optimized employing 3(2) full factorial design considering proportion of pullulan: tamarind pectin and concentration of liquid glucose as independent variables and disintegration time, wetting time, folding endurance, tensile strength and extensibility as dependent variables. The optimized ODF was evaluated for various physicochemical, mechanical, drug release kinetics and bioavailability studies. The results suggested prepared film has uniform film surface, non-sticky and disintegrated within 18s. The in-vitro release kinetics revealed more than 87% aprepitant was released from optimized ODF as compared to 85%, 49%, and 12% aprepitant release from marketed formulation Aprecap, micronized aprepitant and non micronized aprepitant, respectively. The results of animal preference study indicated that developed aprepitant loaded ODFs are accepted by rabbits as food material. Animal pharmacokinetic (PK) study showed 1.80, 1.56 and 1.36 fold enhancement in relative bioavailability for aprepitant loaded ODF, Aprecap and micronized aprepitant respectively, in comparison with non-micronized aprepitant. Overall, the solubilised aprepitant when incorporated in the form of aprepitant loaded ODF showed enhanced bioavailability as compared to micronized/non-micronized aprepitant based oral formulations. These findings suggested that aprepitant loaded ODF could be effective for antiemesis during cancer chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients.

    PubMed

    Ajazuddin; Alexander, Amit; Qureshi, Azra; Kumari, Leena; Vaishnav, Pramudita; Sharma, Mukesh; Saraf, Swarnlata; Saraf, Shailendra

    2014-09-01

    The current review emphasizes on the herbal bioenhancers which themselves do not possess inherent pharmacological activity of their own but when co-administered with Active Pharmaceutical Ingredients (API), enhances their bioavailability and efficacy. Herbal bioenhancers play a crucial role in enhancing the bioavailability and bioefficacy of different classes of drugs, such as antihypertensives, anticancer, antiviral, antitubercular and antifungal drugs at low doses. This paper highlights various natural compounds that can be utilized as an efficient bioenhancer. Several herbal compounds including piperine, quercetin, genistein, naringin, sinomenine, curcumin, and glycyrrhizin have demonstrated capability to improve the pharmacokinetic parameters of several potent API. This article also focuses on various United States patents on herbal bioenhancers, which has proved to be beneficial in improving oral absorption of nutraceuticals like vitamins, minerals, amino acids and certain herbal compounds. The present paper also describes proposed mechanism of action, which mainly includes absorption process, drug metabolism, and action on drug target. The herbal bioenhancers are easily available, safe, free from side effects, minimizes drug toxicity, shortens the duration of treatment, lowers the drug resistance problems and minimizes the cost of treatment. Inspite of the fact that herbal bioenhancers provide an innovative concept for enhancing the bioavailability of several potent drugs, there are numerous bioenhancers of herbal origin that are yet to be explored in several vital areas. These bioenhancers must also be implied to enhance the bioavailability and bioefficacy through routes other than the oral route of drug delivery. There is a vast array of unexploited plants which can be investigated for their drug bioenhancing potency. The toxicity profiles of these herbal bioenhancers must not be overlooked. Researches must be carried out to solve these issues and to deliver a safe and effective dose of drugs to attain desired pharmacological response. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin].

    PubMed

    Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao

    2012-11-01

    The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability.

  15. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone.

    PubMed

    Lin, Shiuan-Pey; Hou, Yu-Chi; Liao, Tzu-Yun; Tsai, Shang-Yuan

    2014-03-01

    Preparation of magnolol-loaded amorphous solid dispersion was investigated for improving the bioavailability. A solid dispersion of magnolol was prepared with polyvinylpyrrolidone K-30 (PVP) by melting method, and the physical properties were characterized by using differential scanning calorimetry, powder X-ray diffractometry, Fourier transformation-infrared spectroscopy and scanning electron microscope. In addition, dissolution test was also performed. Subsequently, the bioavailability of magnolol pure compound, its physical mixture and solid dispersion were compared in rabbits. The blood samples withdrawn via marginal ear vein at specific time points were assayed by HPLC method. Oral administration of the solid dispersion of magnolol with PVP significantly increased the systemic exposures of magnolol and magnolol sulfates/glucuronides by 80.1% and 142.8%, respectively, compared to those given with magnolol pure compound. Magnolol-loaded amorphous solid dispersion with PVP has demonstrated enhanced bioavailability of magnolol in rabbits.

  16. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation

    PubMed Central

    Badr-Eldin, Shaimaa M; Ahmed, Osamaa AA

    2016-01-01

    Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (Cmax) and area under the curve and longer time to maxi mum plasma concentration (Tmax) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency. PMID:27103786

  17. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation.

    PubMed

    Badr-Eldin, Shaimaa M; Ahmed, Osamaa Aa

    2016-01-01

    Sildenafil citrate (SLD) is a selective cyclic guanosine monophosphate-specific phosphodiesterase type 5 inhibitor used for the oral treatment of erectile dysfunction and, more recently, for other indications, including pulmonary hypertension. The challenges facing the oral administration of the drug include poor bioavailability and short duration of action that requires frequent administration. Thus, the objective of this work is to formulate optimized SLD nano-transfersomal transdermal films with enhanced and controlled permeation aiming at surmounting the previously mentioned challenges and hence improving the drug bioavailability. SLD nano-transfersomes were prepared using modified lipid hydration technique. Central composite design was applied for the optimization of SLD nano-transfersomes with minimized vesicular size. The independent variables studied were drug-to-phospholipid molar ratio, surfactant hydrophilic lipophilic balance, and hydration medium pH. The optimized SLD nano-transfersomes were developed and evaluated for vesicular size and morphology and then incorporated into hydroxypropyl methyl cellulose transdermal films. The optimized transfersomes were unilamellar and spherical in shape with vesicular size of 130 nm. The optimized SLD nano-transfersomal films exhibited enhanced ex vivo permeation parameters with controlled profile compared to SLD control films. Furthermore, enhanced bioavailability and extended absorption were demonstrated by SLD nano-transfersomal films as reflected by their significantly higher maximum plasma concentration (C max) and area under the curve and longer time to maxi mum plasma concentration (T max) compared to control films. These results highlighted the potentiality of optimized SLD nano-transfersomal films to enhance the transdermal permeation and the bioavailability of the drug with the possible consequence of reducing the dose and administration frequency.

  18. Candesartan cilexetil loaded nanodelivery systems for improved oral bioavailability.

    PubMed

    Dudhipala, Narendar; Veerabrahma, Kishan

    2017-02-01

    Candesartan cilexetil (CC), an antihypertensive drug, has low oral bioavailability due to poor solubility and hepatic first-pass metabolism. These are major limitations in oral delivery of CC. Several approaches are known to reduce the problems of solubility and improve the bioavailability of CC. Among various approaches, nanotechnology-based delivery of CC has potential to overcome the challenges associated with the oral administration. This review focuses on various nano-based delivery systems available and tried for improving the aqueous solubility, dissolution and consequently bioavailability of CC upon oral administration. Of all, solid lipid nanoparticles appear to be promising delivery system, based on current reported results, for delivery of CC, as this system improved the oral bioavailability and possessed prolonged pharmacodynamic effect.

  19. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers.

    PubMed

    Tian, Cihui; Asghar, Sajid; Wu, Yifan; Chen, Zhipeng; Jin, Xin; Yin, Lining; Huang, Lin; Ping, Qineng; Xiao, Yanyu

    2017-01-01

    The expression of multiple receptors on intestinal epithelial cells enables an actively targeted carrier to significantly enhance the oral delivery of payloads. Conjugating the receptors' ligands on the surfaces of a particulate-delivery system allows site-specific targeting. Here, we used taurocholic acid (TCA) as a ligand for uptake of nanostructured lipid carriers (NLCs) mediated by a bile-acid transporter to improve oral bioavailability of curcumin (Cur). First, synthesis of TCA-polyethylene glycol 100-monostearate (S100-TCA) was carried out. Then, the physical and chemical properties of S100-TCA-modified Cur-loaded NLCs (Cur-TCA NLCs) with varying levels of S100-TCA modifications were investigated. Small particle size (<150 nm), high drug encapsulation (>90%), drug loading (about 3%), negative ζ-potential (-7 to -3 mV), and sustained release were obtained. In situ intestinal perfusion studies demonstrated improved absorption rate and permeability coefficient of Cur-TCA NLCs. Depending on the degree of modification, Cur-TCA NLCs displayed about a five- to 15-fold higher area under the curve in rats after oral administration than unmodified Cur NLCs, which established that the addition of S100-TCA to the NLCs boosted absorption of Cur. Further investigations of TCA NLCs might reveal a bright future for effective oral delivery of poorly bioavailable drugs.

  20. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Kim, Jeong-Soo; Park, Hee Jun; Cho, Won Kyung; Cha, Kwang-Ho; Hwang, Sung-Joo

    2011-01-01

    Background The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS) process. Methods First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP) K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS), tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats. Results X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively. Conclusion The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus. PMID:22162657

  1. Development of a biocompatible creatinine-based niosomal delivery system for enhanced oral bioavailability of clarithromycin.

    PubMed

    Ullah, Shafi; Shah, Muhammad Raza; Shoaib, Mohammad; Imran, Muhammad; Elhissi, Abdelbary M A; Ahmad, Farid; Ali, Imdad; Shah, Syed Wadood Ali

    2016-11-01

    Nonionic surfactant vesicles have gained increasing scientific attention for hydrophobic drugs delivery due to their biocompatibility, stability and low cost. The aim of the present study was to synthesize and evaluate a novel creatinine-based nonionic surfactant in terms of its ability to generate biocompatible niosomal system for the delivery of Clarithromycin. The surfactant was synthesized by reacting creatinine with lauroyl chloride followed by characterization using 1 HNMR and MS. The drug-loaded niosomal vesicles of the surfactant were characterized for drug encapsulation efficiency (EE) using LC-MS, vesicle size using dynamic light scattering (DLS) and vesicle shape using atomic force microscopy (AFM). The surfactant was also investigated for blood hemolysis, in vitro cytotoxicity against different cell lines and in vivo acute toxicity in mice. Furthermore, the in vivo bioavailability of Clarithromycin encapsulated in the novel niosomal formulation was investigated using rabbits and quantified through validated LC-MS/MS method. Findings showed that vesicles were able to entrap up to 67.82 ± 1.27% of the drug, and were rounded in shape with a size around 202.73 ± 5.30 nm and low polydispersity. The surfactant caused negligible blood hemolysis, very low cytotoxicity and was found to be safe up to 2500 mg/kg body weight using mice. The niosomal formulation showed twofold enhanced oral bioavailability of Clarithromycin as compared to commercial formulations of the drug. The study has shown that the creatinine-based niosomes developed in our laboratory were biocompatible, safe and increased the oral bioavailability of the model hydrophobic Clarithromycin using experimental animals.

  2. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs.

    PubMed

    Zhang, Xingwang; Xing, Huijie; Zhao, Yue; Ma, Zhiguo

    2018-06-23

    Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.

  3. Improved oral bioavailability in rats of SR13668, a novel anti-cancer agent.

    PubMed

    Green, Carol E; Swezey, Robert; Bakke, James; Shinn, Walter; Furimsky, Anna; Bejugam, Naveen; Shankar, Gita N; Jong, Ling; Kapetanovic, Izet M

    2011-05-01

    SR13668, a bis-indole with potent activity in vitro and in vivo against various cancers and promising cancer chemopreventive activity, was found to have very low oral bioavailability, <1%, in rats during pilot pharmacokinetic studies. The objective of these studies was to better understand the source of low oral exposure and to develop a formulation that could be used in preclinical development studies. An automated screening system for determining solubility in lipid-based vehicles, singly and in combination, was used to identify formulations that might enhance absorption by improving solubility of SR13668, and these results were confirmed in vivo using Sprague-Dawley rats. Pharmacokinetics of SR13668 was then determined in male and female Sprague-Dawley rats administered 1 mg/kg iv, 1, 10, and 30 mg/kg po formulated in PEG400:Labrasol (1:1 v/v). Blood was collected at time points through 24 h and the concentration of SR13668 determined using HPLC with UV and fluorescence detection. SR13668 was found to be resistant to plasma esterases in vitro and relatively stable to rat and human liver microsomal metabolism. SR13668 concentrates in tissues as indicated by significantly higher levels in lung compared to blood, blood concentrations ~2.5-fold higher than plasma levels, and apparent volume of distribution (V) of ~5 l/kg. A marked sex difference was observed in exposure to SR13668 with area under the curve (AUC) significantly higher and clearance (CL) lower for female compared to male rats, after both iv and oral administration. The oral bioavailability (F) of SR13668 was 25.4 ± 3.8 and 27.7 ± 3.9% (30 mg/kg), for males and females, respectively. A putative metabolite (M1), molecular weight of 445 in the negative ion mode (i.e., SR13668 + 16), was identified in blood samples from both the iv and po routes, as well as in vitro microsomal samples. In summary, while SR13668 does undergo metabolism, probably by the liver, the oral bioavailability of SR13668 in rats was dramatically improved by the use of formulation that contained permeation enhancers and promoted better solubilization of the drug.

  4. Biotinylated liposomes as potential carriers for the oral delivery of insulin.

    PubMed

    Zhang, Xingwang; Qi, Jianping; Lu, Yi; He, Wei; Li, Xiaoyang; Wu, Wei

    2014-01-01

    This study aimed to explore biotinylated liposomes (BLPs) as novel carriers to enhance the oral delivery of insulin. Biotinylation was achieved by incorporating biotin-conjugated phospholipids into the liposome membranes. A significant hypoglycemic effect and enhanced absorption were observed after treating diabetic rats with the BLPs with a relative bioavailability of 12.09% and 8.23%, based on the measurement of the pharmacologic effect and the blood insulin level, respectively; this achieved bioavailability was approximately double that of conventional liposomes. The significance of the biotinylation was confirmed by the facilitated absorption of the BLPs through receptor-mediated endocytosis, as well as by the improved physical stability of the liposomes. Increased cellular uptake and quick gastrointestinal transport further verified the ability of the BLPs to enhance absorption. These results provide a proof of concept that BLPs can be used as potential carriers for the oral delivery of insulin. Diabetes remains a major source of mortality in the Western world, and advances in its management are expected to have substantial socioeconomic impact. In this paper, biotinylated liposomes were utilized as carriers of insulin for local delivery, demonstrating the feasibility of this approach in a rat model. © 2014.

  5. Rice Protein Matrix Enhances Circulating Levels of Xanthohumol Following Acute Oral Intake of Spent Hops in Humans.

    PubMed

    O'Connor, Annalouise; Konda, Veera; Reed, Ralph L; Christensen, J Mark; Stevens, Jan F; Contractor, Nikhat

    2018-03-01

    Xanthohumol (XN), a prenylated flavonoid found in hops, exhibits anti-inflammatory and antioxidant properties. However, poor bioavailability may limit therapeutic applications. As food components are known to modulate polyphenol absorption, the objective is to determine whether a protein matrix could enhance the bioavailability of XN post oral consumption in humans. This is a randomized, double-blind, crossover study in healthy participants (n = 6) evaluating XN and its major metabolites (isoxanthohumol [IX], 6- and 8-prenylnaringenin [6-PN, 8-PN]) for 6 h following consumption of 12.4 mg of XN delivered via a spent hops-rice protein matrix preparation or a control spent hops preparation. Plasma XN and metabolites are measured by LC-MS/MS. C max , T max , and area-under-the-curve (AUC) values were determined. Circulating XN and metabolite response to each treatment was not bioequivalent. Plasma concentrations of XN and XN + metabolites (AUC) are greater with consumption of the spent hops-rice protein matrix preparation. Compared to a standard spent hops powder, a protein-rich spent hops matrix demonstrates enhanced plasma levels of XN and metabolites following acute oral intake. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.

    PubMed

    Khani, Samira; Keyhanfar, Fariborz; Amani, Amir

    2016-07-01

    A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.

  7. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations.

    PubMed

    Tsai, Ming-Jun; Huang, Yaw-Bin; Wu, Pao-Chu; Fu, Yaw-Syan; Kao, Yao-Ren; Fang, Jia-You; Tsai, Yi-Hung

    2011-02-01

    Apomorphine, a dopamine receptor agonist for treating Parkinson's disease, has very poor oral bioavailability (<2%) due to the first-pass effect. The aim of this work was to investigate whether the oral bioavailability and brain regional distribution of apomorphine could be improved by utilizing solid lipid nanoparticles (SLNs). Glyceryl monostearate (GMS) and polyethylene glycol monostearate (PMS) were individually incorporated into SLNs as emulsifiers. It was found that variations in the emulsifiers had profound effects on the physicochemical characteristics. Mean diameters of the GMS and PMS systems were 155 and 63 nm, respectively. More than 90% of the apomorphine was entrapped in the SLNs. The interfacial film was the likely location for most of apomorphine molecules. The PMS system, when incubated in simulated intestinal medium, was found to be more stable in terms of particle size and encapsulation efficiency than the GMS system. Using the GMS and PMS systems to orally administer apomorphine (26 mg/kg) equally enhanced the bioavailability in rats. SLNs showed 12- to 13-fold higher bioavailability than the reference solution. The drug distribution in the striatum, the predominant site of therapeutic action, also increased when using the SLNs. The anti-Parkinsonian activity of apomorphine was evaluated in rats with 6-hydroxydopamine-induced lesions, a model of Parkinson's disease. The contralateral rotation behavior was examined after oral apomorphine delivery. The total number of rotations increased from 20 to 94 and from 20 to 115 when the drug was administered from SLNs containing GMS and PMS, respectively. The experimental results suggest that SLNs may offer a promising strategy for apomorphine delivery via oral ingestion. Copyright © 2010 Wiley-Liss, Inc.

  8. Effect of piperine on the bioavailability and pharmacokinetics of rosmarinic acid in rat plasma using UPLC-MS/MS.

    PubMed

    Yang, Jun-Hui; Mao, Kun-Jun; Huang, Ping; Ye, Yin-Jun; Guo, Hua-Shan; Cai, Bao-Chang

    2018-02-01

    1. The purpose of the present study was to investigate the effect of piperine (PP) on the pharmacokinetics of rosmarinic acid (RA) in rat plasma and to determine whether PP could enhance the oral bioavailability of RA via inhibition of its glucuronidation. 2. The pharmacokinetic profiles of RA between oral administration of RA (50 mg/kg) alone and in combination with different oral dose PP (20, 40, 60, and 80 mg/kg) to rats were investigated via a validated UPLC/MS/MS method. 3. The AUC and C max of RA were significantly increased in combination with different dose PP dose dependently, especially in the presence of 60 and 80 mg/kg PP (p < 0.01). The relative bioavailability of RA in the presence of 20, 40, 60, and 80 mg/kg PP was 1.24-, 1.32-, 2.02-, and 2.26-folds higher, respectively, compared with the control group given RA alone. Compared with RA, the pharmacokinetic modulations of RA glucuronide were even more apparent, and the glucuronidation of RA was remarkedly inhibited. 4. This study demonstrated that PP significantly improved the in vivo bioavailability of RA partly attributing to the inhibition of gut and hepatic metabolism enzymes of RA.

  9. Improved oral bioavalability of mebudipine upon administration in PhytoSolve and Phosal-based formulation (PBF).

    PubMed

    Khani, Samira; Keyhanfar, Fariborz

    2014-02-01

    The aim of this investigation was to examine the efficacy of PhytoSolve and Phosal-based formulation (PBF) to enhance the oral bioavailability of mebudipine, which is a poorly water-soluble calcium channel blocker. The solubility of mebudipine in various oils was determined. PhytoSolve was prepared with a medium-chain triglyceride (MCT) oil (20%), soybean phospholipids (5%), and a 70% fructose solution (75%). The influence of the weight ratio of Phosal 50PG to glycerol in PBF on the mean globule size was studied with dynamic light scattering. The optimized formulation was evaluated for robustness toward dilution, transparency, droplet size, and zeta potential. The in vivo oral absorption of different mebudipine formulations (PhytoSolve, PBF, oily solution, and suspension) were evaluated in rats. The optimized PBF contained Phosal 50PG/glycerol in a 6:4 ratio (w/w). The PBF and PhytoSolve formulations were miscible with water in any ratio and did not demonstrate any phase separation or drug precipitation over 1 month of storage. The mean particle size of PhytoSolve and PBF were 138.5 ± 9.0 and 74.4 ± 2.5 nm, respectively. The in vivo study demonstrated that the oral bioavailability of PhytoSolve and PBF in rats was significantly higher than that of the other formulations. The PhytoSolve and PBF formulations of mebudipine are found to be more bioavailable compared with suspension and oily solutions during an in vivo study in rats. These formulations might be new alternative carriers that increase the oral bioavailability of poorly water-soluble molecules, such as mebudipine.

  10. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.

    PubMed

    Sadekar, S; Thiagarajan, G; Bartlett, K; Hubbard, D; Ray, A; McGill, L D; Ghandehari, H

    2013-11-01

    Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2-3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Enhanced oral delivery of docetaxel using thiolated chitosan nanoparticles: preparation, in vitro and in vivo studies.

    PubMed

    Saremi, Shahrooz; Dinarvand, Rassoul; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2013-01-01

    The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P(app)) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs.

  12. Enhanced Oral Delivery of Docetaxel Using Thiolated Chitosan Nanoparticles: Preparation, In Vitro and In Vivo Studies

    PubMed Central

    Saremi, Shahrooz; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2013-01-01

    The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P app) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs. PMID:23971023

  13. Characterization and evaluation of an oral microemulsion containing the antitumor diterpenoid compound ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid.

    PubMed

    Lu, Yingnian; Wu, Kefeng; Li, Li; He, Yuhui; Cui, Liao; Liang, Nianci; Mu, Bozhong

    2013-01-01

    The objective of this study was to develop an oral microemulsion formulation of the antitumor diterpenoid agent, ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (henceforth referred to as 5F), to enhance its bioavailability and evaluate its hepatotoxicity. Pseudoternary phase diagrams showed that the optimal microemulsion formulation contained 45% water, 10% castor oil as the oil phase, 15% Cremophor EL as the surfactant, and 30% as a cosurfactant mixture of 1,2-propanediol and polyethylene glycol (PEG)-400 (2:1, w/w). The microemulsion preparation was characterized and its droplet diameter was within 50 nm. Release of 5F in vitro from the microemulsion was slightly increased compared with a suspension containing the same amount of active drug. Pharmacokinetic parameters in vivo indicated that bioavailability was markedly improved, with the relative bioavailability being 616.15% higher for the microemulsion than for the suspension. Toxicity tests showed that the microemulsion had no hepatotoxicity in mice. These results suggest the potential for 5F microemulsion to be administered by the oral route.

  14. Development and optimisation of atorvastatin calcium loaded self-nanoemulsifying drug delivery system (SNEDDS) for enhancing oral bioavailability: in vitro and in vivo evaluation.

    PubMed

    Kassem, Abdulsalam M; Ibrahim, Hany M; Samy, Ahmed M

    2017-05-01

    The objective of this study was to develop and optimise self-nanoemulsifying drug delivery system (SNEDDS) of atorvastatin calcium (ATC) for improving dissolution rate and eventually oral bioavailability. Ternary phase diagrams were constructed on basis of solubility and emulsification studies. The composition of ATC-SNEDDS was optimised using the Box-Behnken optimisation design. Optimised ATC-SNEDDS was characterised for various physicochemical properties. Pharmacokinetic, pharmacodynamic and histological findings were performed in rats. Optimised ATC-SNEDDS resulted in droplets size of 5.66 nm, zeta potential of -19.52 mV, t 90 of 5.43 min and completely released ATC within 30 min irrespective of pH of the medium. Area under the curve of optimised ATC-SNEDDS in rats was 2.34-folds higher than ATC suspension. Pharmacodynamic studies revealed significant reduction in serum lipids of rats with fatty liver. Photomicrographs showed improvement in hepatocytes structure. In this study, we confirmed that ATC-SNEDDS would be a promising approach for improving oral bioavailability of ATC.

  15. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    PubMed

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  16. Self-Nanoemulsifying Lyophilized Tablets for Flash Oral Transmucosal Delivery of Vitamin K: Development and Clinical Evaluation.

    PubMed

    El-Say, Khalid M; Ahmed, Tarek A; Ahmed, Osama A A; Hosny, Khaled M; Abd-Allah, Fathy I

    2017-09-01

    Owing to limited solubility, vitamin K undergoes low bioavailability with large inter-individual variability after oral administration. This article aimed to prepare self-nanoemulsifying lyophilized tablets (SNELTs) for the flash oral transmucosal delivery of vitamin K. Twenty-one formulae of vitamin K self-nanoemulsifying drug delivery systems (SNEDDS) were prepared using different concentrations of vitamin K, Labrasol, and Transcutol according to mixture design. The SNEDDS was loaded on porous carriers and formulated as lyophilized tablets. The release profile and the pharmacokinetic parameters of vitamin K SNELTs were evaluated in comparison with commercial tablets and ampoules on human volunteers. Results revealed that the optimized SNEDDS showed the smallest and most stable nanoemulsion globules. SNELTs were prepared successfully and showed substantial superiority drug release compared with the commercial tablets. Interestingly, SNELTs enhanced both rate and extent of vitamin K absorption as well as relative bioavailability (169.67%) in healthy subjects compared with the commercial tablets. SNELTs revealed promising no significant difference in the area under the curve compared with the commercial intramuscular injection. SNELTs enhanced dissolution and bioavailability that expected to have the strong impact on the efficiency of vitamin K in the prophylaxis and treatment of bleeding disorders in patients with hepatic dysfunction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Bringing Curcumin to the Clinic in Cancer Prevention: a Review of Strategies to Enhance Bioavailability and Efficacy.

    PubMed

    Mahran, Rama I; Hagras, Magda M; Sun, Duxin; Brenner, Dean E

    2017-01-01

    Curcumin is widely available, inexpensive spice that has been used in ancient folk medicine for millennia, especially in India. Curcumin has the pharmacological properties that slow or reverse cellular proliferation and enhance apoptosis and differentiation associated with a diverse array of molecular effects. Despite its effective anticarcinogenesis properties, curcumin's poor solubility, instability, and extensive metabolism result in poor oral bioavailability. Strategies to enhance curcumin delivery include encapsulating or incorporating curcumin in a nanoparticle or microparticle drug delivery system, synthesizing more stable curcumin analogs that resist metabolism while retaining curcumin's pharmacological properties, and adding another natural product that has bioenhancing properties to curcumin or combination of two of these strategies. This review comprehensively explores curcumin's chemistry and pharmacology followed by comparing and contrasting a vast number of strategies designed to enhance curcumin's bioavailability and its therapeutic effects. The review provides insights into which curcumin formulation strategies have the greatest promise to reach clinical application.

  18. Enhanced absorption of cyclosporin A by complexation with dimethyl-beta-cyclodextrin in bile duct-cannulated and -noncannulated rats.

    PubMed

    Miyake, K; Arima, H; Irie, T; Hirayama, F; Uekama, K

    1999-01-01

    The enhancing effects of dimethyl-beta-cyclodextrin (DM-beta-CyD) on the absorption of cyclosporin A (CsA) after oral administration to rats under bile duct-cannulated and -noncannulated conditions were investigated. The dissolution rate of CsA was markedly augmented by complexation with DM-beta-CyD. In a closed loop in situ study, DM-beta-CyD considerably increased the cumulative amounts of CsA in the mesenteric venous blood after injection of the aqueous CsA suspension into the small intestinal sac of rats. In addition, the cumulative amount ratio of M1, the dominant metabolite of CsA in rats, to CsA in the mesenteric venous blood for up to 40 min after the injection of the CsA-DM-beta-CyD suspension into the sac was lower than that of the CsA suspension alone. DM-beta-CyD inhibited the bioconversion of CsA in the small intestinal microsomes of rats. These results indicate that the bioconversion of CsA was abated by complexation with DM-beta-CyD. An in vivo study revealed that DM-beta-CyD increased the transfer of CsA to blood, not lymph, with low variability in the absorption after oral administration of the CsA suspension to rats. The variability of bioavailability of DM-beta-CyD complex was lower than that of Sandimmune, although the extent of bioavailability of DM-beta-CyD was only a little higher than that of Sandimmune. The bioavailability of CsA or its DM-beta-CyD complex was appreciably decreased by the cannulation of the bile duct of rats, and the extent of the lowering in the bioavailability in the presence of DM-beta-CyD was much less serious than that of CsA alone. The present results suggest that DM-beta-CyD is particularly useful in designing oral preparations of CsA with an enhanced bioavailability and a reduced variability in absorption.

  19. pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation.

    PubMed

    Fan, Bo; Xing, Yang; Zheng, Ying; Sun, Chuan; Liang, Guixian

    2016-01-01

    The aim of present study was to investigate a pH-responsive and mucoadhesive nanoparticle system for oral bioavailability enhancement of low-molecular weight heparin (LMWH). The thioglycolic acid (TGA) was first covalently attached to chitosan (CS) with 396.97 ± 54.54 μmol thiol groups per gram of polymer and then the nanoparticles were prepared with thiolated chitosan (TCS) and pH-sensitive polymer hydroxypropyl methylcellulose phthalate (HPMCP) by ionic cross-linking method. The obtained nanoparticles were characterized for the shape, particle size, zeta potential, drug entrapment efficiency and loading capacity. In vitro results revealed the acid stability of pH-responsive nanoparticles, which had a significant control over LMWH release and could effectively protect entrapped drugs in simulated gastric conditions. By the attachment of the thiol ligand, an improvement of permeation-enhancing effect on freshly excised carp intestine (1.86-fold improvement) could be found. The mucoadhesive properties were evaluated using fluorescently labeled TCS or CS nanoparticles. As compared with the controls, a significant improvement of mucoadhesion on rat intestinal mucosa was observed in TCS/HPMCP nanoparticles via confocal laser scanning microscopy. The activated partial thromboplastin time (APTT) was significantly prolonged and an increase in the oral bioavailability of LMWH was turned out to be pronounced after oral delivered LMWH-loaded TCS/HPMCP nanoparticles in rats, which suggested enhanced anticoagulant effects and improved absorption of LMWH. In conclusion, pH-responsive TCS/HPMCP nanoparticles hold promise for oral delivery of LMWH.

  20. Dietary flavonoids modulate CYP2C to improve drug oral bioavailability and their qualitative/quantitative structure-activity relationship.

    PubMed

    Wang, Hong-Jaan; Pao, Li-Heng; Hsiong, Cheng-Huei; Shih, Tung-Yuan; Lee, Meei-Shyuan; Hu, Oliver Yoa-Pu

    2014-03-01

    This study aims to improve the drug oral bioavailability by co-administration with flavonoid inhibitors of the CYP2C isozyme and to establish qualitative and quantitative (QSAR) structure-activity relationships (SAR) between flavonoids and CYP2C. A total of 40 naturally occurring flavonoids were screened in vitro for CYP2C inhibition. Enzyme activity was determined by measuring conversion of tolbutamide to 4-hydroxytolbutamide by rat liver microsomes. The percent inhibition and IC50 of each flavonoid were calculated and used to develop SAR and QSAR. The most effective flavonoid was orally co-administered in vivo with a cholesterol-reducing drug, fluvastatin, which is normally metabolized by CYP2C. The most potent CYP2C inhibitor identified in vitro was tamarixetin (IC50 = 1.4 μM). This flavonoid enhanced the oral bioavailability of fluvastatin in vivo, producing a >2-fold increase in the area under the concentration-time curve and in the peak plasma concentration. SAR analysis indicated that the presence of a 2,3-double bond in the C ring, hydroxylation at positions 5, 6, and 7, and glycosylation had important effects on flavonoid-CYP2C interactions. These findings should prove useful for predicting the inhibition of CYP2C activity by other untested flavonoid-like compounds. In the present study, tamarixetin significantly inhibited CYP2C activity in vitro and in vivo. Thus, the use of tamarixetin could improve the therapeutic efficacy of drugs with low bioavailability.

  1. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    PubMed

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  2. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation

    PubMed Central

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-01-01

    Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763

  3. Effect of Emulsification Method and Particle Size on the Rate of in vivo Oral Bioavailability of Kenaf (Hibiscus cannabinus L.) Seed Oil.

    PubMed

    Cheong, Ai Mun; Tan, Chin Ping; Nyam, Kar Lin

    2018-05-26

    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields. © 2018 Institute of Food Technologists®.

  4. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats.

    PubMed

    Lu, Ying-Yuan; Dai, Wen-Bing; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Lu, Chuang; Zhang, Qiang; Zhang, Guo-Liang

    2018-02-01

    The objective of this study was to investigate the effect of crystalline state and a formulation of self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor, in rats. The crystalline states of W-1 were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The SNEDDS was formulated by medium-chain lipids, characterized by droplet particle size. The plasma concentrations of W-1 were measured by high performance liquid chromatography (HPLC). The results indicated that W-1 compound were presented as crystalline forms, A and B, the degree of crystallization in form B was higher than that in form A. The SNEDDS of W-1 displayed a significant increase in the dissolution rate than W-1 powder. Furthermore, after oral administration of W-1 (100 mg/kg), the pharmacokinetic parameters of form A, form B, and W-1 SNEDDS were as follows: AUC 0-t 526.4 ± 123.5, 305.1 ± 58.5 and 2297 ± 451 ng h/mL (p < .05, when W-1 SNEDDS were compared with either form A or form B), respectively. With SNEDDS formulation, the relative bioavailabilities were enhanced by 4.36-fold and 7.53-fold over the form A and form B of W-1, respectively. In conclusion, the present results suggested that the crystalline states of W-1 might lead to the lower oral bioavailability, and SNEDDS formulation is a promising strategy of improving bioavailability, in spite of that crystalline states usually carry small lot-to-lot variability.

  5. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery.

    PubMed

    Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling

    2015-04-29

    For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.

  6. Improvement of Oral Bioavailability of Lopinavir Without Co-administration of Ritonavir Using Microspheres of Thiolated Xyloglucan.

    PubMed

    Madgulkar, Ashwini R; Bhalekar, Mangesh R; Kadam, Ashwini A

    2018-01-01

    Lopinavir is a BCS Class IV drug exhibiting poor bioavailability due to P-gp efflux and limited permeation. The aim of this research was to formulate and characterize microspheres of lopinavir using thiolated xyloglucan (TH-MPs) as carrier to improve its oral bioavailability without co-administration of ritonavir. Thiomeric microspheres were prepared by ionotropic gelation between alginic acid and calcium ions. Interaction studies were performed using Fourier transform infrared spectroscopy (FT-IR). The thiomeric microspheres were characterized for its entrapment efficiency, T 80 , surface morphology, and mucoadhesion employing in vitro wash off test. The microspheres were optimized by 3 2 factorial design. The optimized thiomeric microsphere formulation revealed 93.12% entrapment efficiency, time for 80% drug release (T 80 ) of 358.1 min, and 88% mucoadhesion after 1 h. The permeation of lopinavir from microspheres was enhanced 3.15 times as determined by ex vivo study using everted chick intestine and increased relative bioavailability over 3.22-fold over combination of lopinavir and ritonavir as determined by in vivo study in rat model.

  7. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    PubMed

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with the purpose of enhancement in oral bioavailability. Copyright © 2015. Published by Elsevier B.V.

  8. Adenosine 5′-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    PubMed Central

    2012-01-01

    Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine), or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube) or 7 h (pellets) post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003) and naso-duodenal tube (P = 0.001), but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of ATP in the proximal part of the small intestine suggest that ATP or one of its metabolites is absorbed and metabolized. Uric acid itself may have ergogenic effects, but this needs further study. Also, more studies are needed to determine whether chronic administration of ATP will enhance its oral bioavailability. PMID:22510240

  9. Thiolated polycarbophil/glutathione: defining its potential as a permeation enhancer for oral drug administration in comparison to sodium caprate.

    PubMed

    Perera, Glen; Barthelmes, Jan; Vetter, Anja; Krieg, Christof; Uhlschmied, Cindy; Bonn, Günther K; Bernkop-Schnürch, Andreas

    2011-08-01

    Thiolated polyacrylates were shown to be permeation enhancers with notable potential. The aim of this study was to evaluate the permeation enhancing properties of a thiolated polycarbophil/glutathione (PCP-Cys/GSH) system for oral drug application in comparison to a well-established permeation enhancer, namely sodium caprate. In vitro permeation studies were conducted in Ussing-type chambers with sodium fluoresceine (NaFlu) and fluoresceine isothiocyanate labeled dextran (molecular mass 4 kDa; FD4) as model compounds. Bioavailability studies were carried out in Sprague Dawley rats with various formulations. Moreover, cytotoxic effects of both permeation enhancers were compared. Permeation enhancement ratios of 1% sodium caprate were found to be 3.0 (FD4) and 2.3 (NaFlu), whereas 1% PCP-Cys/0.5% GSH displayed enhancement ratios of 2.4 and 2.2. Both excipients performed at a similar level in vivo. Sodium caprate solutions increased oral bioavailability 2.2-fold (FD4) and 2.3-fold (NaFlu), while PCP-Cys hydrogels led to a 3.2-fold and 2.2-fold enhancement. Cell viability experiments revealed a significantly higher tolerance of Caco-2 cells towards 0.5% PCP-Cys (81% survival) compared to 0.5% sodium caprate (5%). As PCP-Cys is not absorbed from mucosal membranes due to its comparatively high molecular mass, systemic side-effects can be excluded. In conclusion, both systems displayed a similar potency for permeation enhancement of hydrophilic compounds. However, PCP-Cys seems to be less harmful to cultured cells.

  10. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    PubMed

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  11. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate.

    PubMed

    Allam, Ayat; Fetih, Gihan

    2016-01-01

    The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug's bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability) of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes), while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration) following sublingual administration was found to be significantly higher (91.06%±13.28%), as compared with that after oral tablet administration (39.37%±11.4%). These results indicate that the fast dissolving niosomal film could be a promising delivery system to enhance the bioavailability and prolong the therapeutic effect of metoprolol tartrate.

  12. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate

    PubMed Central

    Allam, Ayat; Fetih, Gihan

    2016-01-01

    The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug’s bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability) of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes), while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration) following sublingual administration was found to be significantly higher (91.06%±13.28%), as compared with that after oral tablet administration (39.37%±11.4%). These results indicate that the fast dissolving niosomal film could be a promising delivery system to enhance the bioavailability and prolong the therapeutic effect of metoprolol tartrate. PMID:27536063

  13. Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration.

    PubMed

    Harigae, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Taiki; Inoue, Nao; Kimura, Fumiko; Ikeda, Ikuo; Miyazawa, Teruo

    2016-01-01

    Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve the bioavailability of CUR, future studies should focus on enhancing the resistance to metabolic degradation and conversion of CUR to other metabolites, which may lead to novel discoveries regarding food function and disease prevention.

  14. G5 PAMAM dendrimer versus liposome: a comparison study on the in vitro transepithelial transport and in vivo oral absorption of simvastatin.

    PubMed

    Qi, Rong; Zhang, Heran; Xu, Lu; Shen, Wenwen; Chen, Cong; Wang, Chao; Cao, Yini; Wang, Yunan; van Dongen, Mallory A; He, Bing; Wang, Siling; Liu, George; Banaszak Holl, Mark M; Zhang, Qiang

    2015-07-01

    This study compared formulation effects of a dendrimer and a liposome preparation on the water solubility, transepithelial transport, and oral bioavailability of simvastatin (SMV). Amine-terminated G5 PAMAM dendrimer (G5-NH2) was chosen to form SMV/G5-NH2 molecular complexes, and SMV-liposomes were prepared by using a thin film dispersion method. The effects of these preparations on the transepithelial transport were investigated in vitro using Caco-2 cell monolayers. Results indicated that the solubility and transepithelial transport of SMV were significantly improved by both formulations. Pharmacokinetic studies in rats also revealed that both the SMV/G5-NH2 molecular complexes and the SMV-liposomes significantly improved the oral bioavailability of SMV with the liposomes being more effective than the G5-NH2. The overall better oral absorption of SMV-liposomes as compared to SMV/G5-NH2 molecular complexes appeared to arise from better liposomal solubilization and encapsulation of SMV and more efficient intracellular SMV delivery. Various carrier systems have been designed to enhance drug delivery via the oral route. In this study, the authors compared G5 PAMAM dendrimers to liposome preparations in terms of solubility, transepithelial transport, and oral bioavailability of this poorly water-soluble drug. This understanding has improved our knowledge in the further development of drug carrier systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. In Vitro Release and Bioavailability of Silybin from Micelle-Templated Porous Calcium Phosphate Microparticles.

    PubMed

    Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing

    2016-10-01

    Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.

  16. Improvement of bioavailability and anti-inflammatory potential of curcumin in combination with emu oil.

    PubMed

    Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna

    2014-12-01

    The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis.

  17. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability.

    PubMed

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability.

  18. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability

    PubMed Central

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability. PMID:27148747

  19. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model.

    PubMed

    Cherniakov, Irina; Izgelov, Dvora; Domb, Abraham J; Hoffman, Amnon

    2017-11-15

    The lipophilic phytocannabinoids cannabidiol (CBD) and Δ 9 -tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold increase in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL which resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized compounds that currently cannot be administered orally. Copyright © 2017. Published by Elsevier B.V.

  20. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  1. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    PubMed

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. Georg Thieme Verlag KG Stuttgart · New York.

  2. The pharmacokinetics study of ginkgolide A, B and the effect of food on bioavailability after oral administration of ginkgolide extracts in beagle dogs.

    PubMed

    Aa, Lixiang; Fei, Fei; Tan, Zhaoyi; Aa, Jiye; Wang, Guangji; Liu, Changxiao

    2018-06-01

    Ginkgolides are the primarily active components in Ginkgo products that are popular worldwide. However, few studies have evaluated the bioavailability of ginkgolides and the effects of food on it after oral administration of ginkgolides. In this article, pharmacokinetics and absolute bioavailability of the primary components in ginkgolide extracts were evaluated in beagle dogs. For the first time, we showed that the fed dogs had significantly increased area under the concentration-time curve and peak concentration relative to the fasted dogs based on the data from both the prototype form and total lactones of ginkgolide A (GA) and ginkgolide B (GB). In terms of the free form of the prototype ginkgolides, the absolute bioavailabilities of GA and GB were 34.8 and 5.2% in the fasted dogs, respectively, which significantly increased to an average of 78.6 and 17.0%, respectively, in the fed dogs. In terms of acidified total lactones, the absolute bioavailabilities of GA and GB were 7.5 and 14.5% in the fed dogs, and the percentages declined to 4.1 and 3.7% in the fasted dogs, respectively. It was suggested that administration of ginkgolides after meals could promote the in vivo exposure and the bioavailability of GA and GB, and hence potentially enhance therapeutic outcomes. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods.

    PubMed

    McClements, David Julian

    2013-12-01

    The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.

  4. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    PubMed

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  5. In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol.

    PubMed

    Jinno, Jun-ichi; Kamada, Naoki; Miyake, Masateru; Yamada, Keigo; Mukai, Tadashi; Odomi, Masaaki; Toguchi, Hajime; Liversidge, Gary G; Higaki, Kazutaka; Kimura, Toshikiro

    2008-08-25

    The purpose of the present study was to investigate oral bioavailability of an immediate release tablet containing wet-milled crystals of a poorly water-soluble drug, cilostazol, and to establish in vitro-in vivo correlation. Sub-micron sized cilostazol (median diameter: 0.26 microm) was successfully prepared using a beads-mill in water in the presence of a hydrophilic polymer and an anionic surfactant. The milled suspension was solidified with a sugar alcohol as a water-soluble carrier by spray-drying method. The co-precipitate was compressed into an immediate release tablet with common excipients. Oral bioavailability of the wet-milled cilostazol tablet in male beagle dogs was 13-fold higher than the hammer-milled commercial tablet in fasted condition. Food did not increase the oral bioavailability of the wet-milled tablet, while 4-fold increase was found for the commercial tablet. Irrespective to the bioavailability enhancement, in vitro dissolution rate of the wet-milled tablet was even slower than the commercial tablet by the compendial method (USP Apparatus 2). On the other hand, a good correlation was found between the dissolution profiles obtained by a flow-through cell method (USP Apparatus 4, closed-loop system without outlet filter) using a large volume of water and sodium lauryl sulfate (SLS) solution at the concentration lower than the critical micellar concentration (cmc) as dissolution media corresponding to the fasted and fed conditions, respectively.

  6. Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test.

    PubMed

    Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin

    2011-10-01

    To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm(2). The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window.

  7. Novel ethinyl estradiol-beta-cyclodextrin clathrate formulation does not influence the relative bioavailability of ethinyl estradiol or coadministered drospirenone.

    PubMed

    Blode, Hartmut; Schürmann, Rolf; Benda, Norbert

    2008-03-01

    A new combined oral contraceptive formulation has been developed consisting of a beta-cyclodextrin (betadex) clathrate formulation of ethinyl estradiol in combination with drospirenone (EE-betadex clathrate/drsp). In this novel EE-betadex clathrate/drsp preparation, betadex serves as an inert complexing agent to enhance stability and shelf-life. The study was conducted to investigate the relative bioavailability and pharmacokinetic parameters of EE and drsp after oral administration of EE-betadex clathrate/drsp. This was an open-label, randomized, single-dose, three-period, three-treatment, crossover study conducted in 18 healthy postmenopausal women aged 45-75 years. The women received single oral doses of 40 mcg EE/6 mg drsp formulated as EE-betadex clathrate/drsp or EE/drsp (EE as a free steroid) tablets, or as a microcrystalline suspension on three separate occasions. Serum samples were collected for pharmacokinetic analyses. The relative bioavailability of EE and drsp after EE-betadex clathrate/drsp tablet administration was comparable with that achieved with the EE/drsp tablet (107% and 101%, respectively). In addition, the inclusion of EE in a betadex clathrate does not affect the pharmacokinetics of either EE or drsp. There were no safety concerns with any of the medications. The betadex clathrate formulation of EE, when combined with DRSP, does not affect the pharmacokinetics and relative bioavailability of either EE or drsp.

  8. Effects of Manufacturing Methods on Dissolution and Absorption of Ketoconazole in the Presence of Organic Acid as a pH Modifier.

    PubMed

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2017-05-01

    Poorly water-soluble compounds have a potential risk of low and variable bioavailability caused by incomplete dissolution. Incorporation of organic acids as pH modifiers is effective method for solubility enhancement of basic compounds and requires no special technique and equipment. The purpose of this study was to evaluate the effect of manufacturing method on the extent of drug solubility enhancement. We successfully prepared the granules and tablets containing ketoconazole (KZ), which is weakly basic, as a model compound and citric acid as a pH modifier using conventional wet and dry granulations. KZ solubility under non-sink condition was enhanced with supersaturation using both wet and dry granulations. High-shear granulation was the most effective method in terms of KZ dissolution enhancement, because both an intimate contact and strong bonding between KZ and incorporated acid were achieved. KZ dissolved amount from the granules prepared by high-shear granulation was about eight times higher than that from the granules without the acid. The granulation involved to suppress a diffusion of acid dissolved, leading to the effectively maintained supersaturation state. The bioavailability of KZ after oral administration to rats was improved by applying high-shear granulation with citric acid independent of gastrointestinal pH. The granules prepared by high-shear granulation showed the bioavailability about 1.7-fold higher than that of the physical mixture in rats with and without neutralization of stomach. As a result, both the dissolution and absorption rates of KZ after oral administration were enhanced using conventional manufacturing technology.

  9. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan.

    PubMed

    Lee, Jae-Young; Kang, Wie-Soo; Piao, Jingpei; Yoon, In-Soo; Kim, Dae-Duk; Cho, Hyun-Jong

    2015-01-01

    Soluplus(®) (SP) and D-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS)-based solid dispersion (SD) formulations were developed by hot-melt extrusion (HME) to improve oral bioavailability of valsartan (VST). HME process with twin-screw configuration for generating a high shear stress was used to prepare VST SD formulations. The thermodynamic state of the drug and its dispersion in the polymers were evaluated by solid-state studies, including Fourier-transform infrared, X-ray diffraction, and differential scanning calorimetry. Drug release from the SD formulations was assessed at pH values of 1.2, 4.0, and 6.8. Pharmacokinetic study was performed in rats to estimate the oral absorption of VST. HME with a high shear rate produced by the twin-screw system was successfully applied to prepare VST-loaded SD formulations. Drug amorphization and its molecular dispersion in the polymer matrix were verified by several solid-state studies. Drug release from SD formulations was improved, compared to the pure drug, particularly at pH 6.8. Oral absorption of drug in rats was also enhanced in SP and TPGS-based SD groups compared to that in the pure drug group. SP and TPGS-based SDs, prepared by the HME process, could be used to improve aqueous solubility, dissolution, and oral absorption of poorly water-soluble drugs.

  10. Effect of gemfibrozil on the pharmacokinetics of mitiglinide in rats.

    PubMed

    Jin, L; Cao, Q

    2012-01-01

    A sensitive and specific method was developed and validated for the determination of mitiglinide in plasma using LC-MS/MS. The effect of gemfibrozil on the pharmacokinetics of orally administered mitiglinide in rats was investigated. The validated method in positive electrospray ionization mode using MRM and fully validated according to commonly accepted criteria. The desired sensitivity of mitiglinide was achieved with an LOQ of 0.5 ng/mL and the short run time was suitable for analysis of the large batches of samples. The method was successfully used to analyze rats plasma samples for application in pharmacokinetic studies. Pharmacokinetic parameters of mitiglinide were determined in rats following oral (0.25, 0.5, 1 mg/kg) administration to rats in the presence and absence of gemfibrozil (1 mg/kg). Compared to those animals in an oral control group (given mitiglinide alone), the area under the plasma concentration-time curve (AUC) of mitiglinide were increased significantly by 2.8, 3.5, 4.1-fold (0.25, 0.5, 1 mg/kg) by gemfibrozil, respectively. Consequently, the bioavailability of mitiglinide in the presence of gemfibrozil was significantly enhanced compared to that in oral control group (only mitiglinide). Gemfibrozil significantly enhanced the oral bioavailability of mitiglinide, suggesting that concurrent use of gemfibrozil and mitiglinide should be monitored closely for potential drug interactions. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    PubMed

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for <14 days at Palmetto Health Hospitals in Columbia, SC, from 1 January 2010 through 31 December 2013 and discharged on oral antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, <75%). Kaplan-Meier analysis and multivariate Cox proportional hazards regression were used to examine treatment failure. Among the 362 patients, high, moderate and low bioavailability oral antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. Characterization and evaluation of an oral microemulsion containing the antitumor diterpenoid compound ent-11alpha-hydroxy-15-oxo-kaur-16-en-19-oic-acid

    PubMed Central

    Lu, Yingnian; Wu, Kefeng; Li, Li; He, Yuhui; Cui, Liao; Liang, Nianci; Mu, Bozhong

    2013-01-01

    The objective of this study was to develop an oral microemulsion formulation of the antitumor diterpenoid agent, ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (henceforth referred to as 5F), to enhance its bioavailability and evaluate its hepatotoxicity. Pseudoternary phase diagrams showed that the optimal microemulsion formulation contained 45% water, 10% castor oil as the oil phase, 15% Cremophor EL as the surfactant, and 30% as a cosurfactant mixture of 1,2-propanediol and polyethylene glycol (PEG)-400 (2:1, w/w). The microemulsion preparation was characterized and its droplet diameter was within 50 nm. Release of 5F in vitro from the microemulsion was slightly increased compared with a suspension containing the same amount of active drug. Pharmacokinetic parameters in vivo indicated that bioavailability was markedly improved, with the relative bioavailability being 616.15% higher for the microemulsion than for the suspension. Toxicity tests showed that the microemulsion had no hepatotoxicity in mice. These results suggest the potential for 5F microemulsion to be administered by the oral route. PMID:23690685

  13. Development and in vitro-in vivo evaluation of a water-in-oil microemulsion formulation for the oral delivery of troxerutin.

    PubMed

    Xu, Man; Yu, Qing; Zhao, Qianru; Chen, Wei; Lin, Yuanjie; Jin, Yong

    2016-01-01

    The main objective of this study was to develop and evaluate a W/O microemulsion formulation of troxerutin to improve its oral bioavailability. The W/O microemulsion was optimized using a pseudo-ternary phase diagram and evaluated for physical properties. In vitro MDCK cell permeability studies were carried out to evaluate the permeability enhancement effect of microemulsion, and in vivo absorption of troxerutin microemulsion in the intestine was compared with that of solution after single-dose administration (56.7 mg/kg) in male Wistar rats. The optimal formulation consisted of lecithin, ethanol, isopropyl myristate and water (23.30/11.67/52.45/12.59 w/w) was physicochemical stable and the mean droplet size was about 50.20 nm. In vitro study, the troxerutin-loaded microemulsion showed higher intestinal membrane permeability across MDCK monolayer when compared with the control solution. The W/O microemulsion can significantly promote the intestinal absorption of troxerutin in rats in vivo, and the relative bioavailability of the microemulsion was about 205.55% compared to control solution. These results suggest that novel W/O microemulsion could be used as an effective formulation for improving the oral bioavailability of troxerutin.

  14. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  15. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese

    PubMed Central

    Yokel, Robert A.; Hicks, Clair L.; Florence, Rebecca L.

    2008-01-01

    Oral aluminum (Al) bioavailability from drinking water has been previously estimated, but there is little information on Al bioavailability from foods. It was suggested that oral Al bioavailability from drinking water is much greater than from foods. The objective was to further test this hypothesis. Oral Al bioavailability was determined in the rat from basic [26Al]-sodium aluminum phosphate (basic SALP) in a process cheese. Consumption of ~ 1 gm cheese containing 1.5 or 3% basic SALP resulted in oral Al bioavailability (F) of ~ 0.1 and 0.3%, respectively, and time to maximum serum 26Al concentration (Tmax) of 8 to 9 h. These Al bioavailability results were intermediate to previously reported results from drinking water (F ~ 0.3%) and acidic-SALP incorporated into a biscuit (F ~ 0.1%), using the same methods. Considering the similar oral bioavailability of Al from food vs. water, and their contribution to the typical human’s daily Al intake (~ 95 and 1.5%, respectively), these results suggest food contributes much more Al to systemic circulation, and potential Al body burden, than does drinking water. These results do not support the hypothesis that drinking water provides a disproportionate contribution to total Al absorbed from the gastrointestinal tract. PMID:18436363

  16. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese.

    PubMed

    Yokel, Robert A; Hicks, Clair L; Florence, Rebecca L

    2008-06-01

    Oral aluminum (Al) bioavailability from drinking water has been previously estimated, but there is little information on Al bioavailability from foods. It was suggested that oral Al bioavailability from drinking water is much greater than from foods. The objective was to further test this hypothesis. Oral Al bioavailability was determined in the rat from basic [26Al]-sodium aluminum phosphate (basic SALP) in a process cheese. Consumption of approximately 1g cheese containing 1.5% or 3% basic SALP resulted in oral Al bioavailability (F) of approximately 0.1% and 0.3%, respectively, and time to maximum serum 26Al concentration (Tmax) of 8-9h. These Al bioavailability results were intermediate to previously reported results from drinking water (F approximately 0.3%) and acidic-SALP incorporated into a biscuit (F approximately 0.1%), using the same methods. Considering the similar oral bioavailability of Al from food vs. water, and their contribution to the typical human's daily Al intake ( approximately 95% and 1.5%, respectively), these results suggest food contributes much more Al to systemic circulation, and potential Al body burden, than does drinking water. These results do not support the hypothesis that drinking water provides a disproportionate contribution to total Al absorbed from the gastrointestinal tract.

  17. Enhancement of Oral Bioavailability of Curcumin by a Novel Solid Dispersion System.

    PubMed

    Hu, Liandong; Shi, Yanjing; Li, Jian Heng; Gao, Na; Ji, Jing; Niu, Feng; Chen, Queting; Yang, Xiaoning; Wang, Shaocheng

    2015-12-01

    The objective of this study was to improve the solubility and bioavailability of curcumin by a new curcumin dripping pills (Cur-DPs) formulation using melt mixing methods. The optimal formulation consisted of Polyethoxylated 40 hydrogenated castor oil (Cremophor RH40), Poloxamer 188, and Polyethylene glycol 4000 (PEG 4000). Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) were used to verify the forming of Cur-DPs. All the physical characterization information proved the formation of Cur-DPs, and the results demonstrated the superiority of the dripping pills in dissolution rates. The pharmacokinetic study of Cur-DPs was performed in rats compared to the pure curcumin suspension. The oral bioavailability of poorly water-soluble curcumin was successfully improved by CUR-DPs. And the stability of prepared Cur-DP was also in a good state in 3 months. These results identified the Cur-DPs was an effective new approach for pharmaceutical application.

  18. In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin.

    PubMed

    Nazari-Vanani, R; Moezi, L; Heli, H

    2017-04-01

    Curcumin has attracted particular attention in recent years due to its great variety of beneficial biological and pharmacological activities. However, its efficacy has been limited due to its low bioavailability, and this limitation can be overcome by novel drug delivery systems. Self-nanoemulsifying drug delivery system (SNEDDS) is a novel route to improve oral bioavailability of lipophilic drugs. SNEDDS spontaneously forms fine oil-in-water nanoemulsion by mild agitation. An optimal formula for a SNEDDS comprised ethyl oleate:tween 80:PEG 600 (50:40:10% w/w) with 11.2-nm uniform droplets was developed for curcumin delivery. The SNEDDS was characterized and its loading properties for curcumin were orally evaluated in rat. The results showed a significant increment of 3.95 times in C max , and the curcumin bioavailability was enhanced by 194.2%, compared to the curcumin suspension in water. The development of the SNEDDS formulation had a great potential as a possible alternative for curcumin administration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability.

    PubMed

    Shelma, R; Sharma, Chandra P

    2013-06-05

    Curcumin has been demonstrated as a potent anticancer agent but its clinical application has been limited by its poor aqueous solubility and bioavailability. Here we describe encapsulation of curcumin in the lauroyl sulphated chitosan with a view to improve its bioavailability. In vitro antioxidant activity of extract of curcumin loaded matrix was investigated and exhibited dose dependent radical scavenging and reducing activity. Cytotoxicity studies carried out with curcumin loaded carrier on C6 cell line and were found to be toxic. Its in vitro effects on proliferation using the C6 cell lines also studied and observed antiproliferation of C6 cell line. Plasma concentration of curcumin-time profiles from pharmacokinetic studies in rats after oral administration showed a 11.5-fold increased pharmacological availability of curcumin with encapsulated curcumin compared with native curcumin. Overall we demonstrate that the curcumin loaded matrix has shown a superior pharmacological availability in vivo over curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Improved oral bioavailability in rats of SR13668, a novel anti-cancer agent

    PubMed Central

    Green, Carol E.; Swezey, Robert; Bakke, James; Shinn, Walter; Furimsky, Anna; Bejugam, Naveen; Shankar, Gita N.; Jong, Ling; Kapetanovic, Izet M.

    2010-01-01

    Purpose SR13668, a bis-indole with potent activity in vitro and in vivo against various cancers and promising cancer chemopreventive activity, was found to have very low oral bioavailability, <1%, in rats during pilot pharmacokinetic studies. The objective of these studies was to better understand the source of low oral exposure and to develop a formulation that could be used in preclinical development studies. Methods An automated screening system for determining solubility in lipid-based vehicles, singly and in combination, was used to identify formulations that might enhance absorption by improving solubility of SR13668, and these results were confirmed in vivo using Sprague–Dawley rats. Pharmacokinetics of SR13668 was then determined in male and female Sprague–Dawley rats administered 1 mg/kg iv, 1, 10, and 30 mg/kg po formulated in PEG400:Labrasol® (1:1 v/v). Blood was collected at time points through 24 h and the concentration of SR13668 determined using HPLC with UV and fluorescence detection. Results SR13668 was found to be resistant to plasma esterases in vitro and relatively stable to rat and human liver microsomal metabolism. SR13668 concentrates in tissues as indicated by significantly higher levels in lung compared to blood, blood concentrations ~2.5-fold higher than plasma levels, and apparent volume of distribution (V) of ~5 l/kg. A marked sex difference was observed in exposure to SR13668 with area under the curve (AUC) significantly higher and clearance (CL) lower for female compared to male rats, after both iv and oral administration. The oral bioavailability (F) of SR13668 was 25.4 ± 3.8 and 27.7 ± 3.9% (30 mg/kg), for males and females, respectively. A putative metabolite (M1), molecular weight of 445 in the negative ion mode (i.e., SR13668 + 16), was identified in blood samples from both the iv and po routes, as well as in vitro microsomal samples. Conclusions In summary, while SR13668 does undergo metabolism, probably by the liver, the oral bioavailability of SR13668 in rats was dramatically improved by the use of formulation that contained permeation enhancers and promoted better solubilization of the drug. PMID:20623225

  1. A silica-supported solid dispersion of bifendate using supercritical carbon dioxide method with enhanced dissolution rate and oral bioavailability.

    PubMed

    Cai, Cuifang; Liu, Muhua; Li, Yun; Guo, Bei; Chang, Hui; Zhang, Xiangrong; Yang, Xiaoxu; Zhang, Tianhong

    2016-01-01

    In this study, to enhance the dissolution rate and oral bioavailability of bifendate, a silica-supported solid dispersion (SD) of bifendate was prepared using supercritical carbon dioxide (ScCO2) technology. The properties of bifendate-silica SD were characterized by differential scanning calorimetry (DSC), X-ray diffraction (X-RD) and scanning electron microscopy. The pharmacokinetic study was carried out in beagle dogs using commercial bifendate dropping pills as a reference which is a conventional SD formulation of bifendate and PEG6000. A novel method of Ultra Performance Convergence Chromatography-tandem mass spectrometry (UPC(2)™-MS/MS) method was applied to determine bifendate concentration in plasma. The amorphous state of bifendate in bifendate-silica SD was revealed in X-RD and DSC when the ratios of bifendate and silica were 1:15 and 1:19, respectively. In vitro dissolution rate was significantly improved with cumulative release of 67% within 20 min relative to 8% for the physical mixture of bifendate and silica, and which was also higher than the commercial dropping pill of 52%. After storage at 75% relative humidity (RH) for 10 d, no recrystallization was found and reduced dissolution rate was obtained due to the absorption of moisture. In pharmacokinetic study, Cmax and AUC0-t for bifendate-silica SD were 153.1 ng/ml and 979.8 ng h/ml, respectively. AUC0-t of bifendate-silica SDs was ∼1.6-fold higher than that of the commercial dropping pills. These results suggest that adsorbing bifendate onto porous silica via ScCO2 technique could be a feasible method to enhance oral bioavailability together with a higher dissolution rate.

  2. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  3. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics.

    PubMed

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-25

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca(2+) accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  4. Formulation Development of Spherical Crystal Agglomerates of Itraconazole for Preparation of Directly Compressible Tablets with Enhanced Bioavailability.

    PubMed

    Fadke, Janki; Desai, Jagruti; Thakkar, Hetal

    2015-12-01

    The objective of the present work was to formulate tablet dosage form of itraconazole with enhanced bioavailability. Spherical crystal agglomerates (SCA) of itraconazole prepared by quasi emulsification solvent diffusion method using Soluplus and polyethylene glycol 4000 (PEG 4000) showed increased solubility (540 μg/ml) in 0.1 N hydrochloric acid as compared to pure drug (12 μg/ml). A Fourier transform infrared (FTIR) study indicated compatibility of drug with the excipients. The developed SCA were spherical with smooth surface having an average size of 412 μm. The significantly improved micromeritic properties compared to the plain drug suggested its suitability for direct compression. The antifungal activity of itraconazole was retained in the SCA form as evidenced from the results of the disc diffusion method. The optimized SCA formulation could be easily compressed into tablet with desirable characteristics of hardness (5 kg/cm(2)) and disintegration time (6.3 min). The in vitro dissolution studies showed significant difference in the dissolution profiles of pure drug (21%) and SCA formulation (85%) which was even greater than that of marketed preparation (75%). In vivo pharmacokinetic showed significant enhancement in C max and AUC0-t with relative bioavailability of 225%. The SCA formulation seems to be promising for enhancement of oral bioavailability of itraconazole.

  5. Lyotropic Liquid Crystalline Nanoparticles of Amphotericin B: Implication of Phytantriol and Glyceryl Monooleate on Bioavailability Enhancement.

    PubMed

    Jain, Sanyog; Yadav, Pooja; Swami, Rajan; Swarnakar, Nitin Kumar; Kushwah, Varun; Katiyar, Sameer S

    2018-05-01

    Implication of different dietary specific lipids such as phytantriol (PT) and glyceryl monooleate (GMO) on enhancing the oral bioavailability of amphotericin B (AmB) was examined. Liquid crystalline nanoparticles (LCNPs) were prepared using hydrotrope method, followed by in vitro characterization, Caco-2 cell monolayer uptake, and in vivo pharmacokinetic and toxicity evaluation. Optimized AmB-LCNPs displayed small particle size (< 210 nm) with a narrow distribution (~ 0.2), sustained drug release and high gastrointestinal stability, and reduced hemolytic toxicity. PLCNPs presented slower release, i.e., ~ 80% as compared to ~ 90% release in case of GLCNPs after 120 h. Significantly higher uptake in Caco-2 monolayer substantiated the role of LCNPs in increasing the intestinal permeability followed by increased drug titer in plasma. Pharmacokinetic studies demonstrated potential of PT in enhancing the bioavailability (approximately sixfold) w.r.t. of its native counterpart with reduced nephrotoxicity as presented by reduced nephrotoxicity biomarkers and histology studies. These studies established usefulness of PLCNPs over GLCNPs and plain drug. It can be concluded that acid-resistant lipid, PT, can be utilized efficiently as an alternate lipid for the preparation of LCNPs to enhance bioavailability and to reduce nephrotoxicity of the drug as compared to other frequently used lipid, i.e., GMO.

  6. Preclinical Bioavailability Strategy for Decisions on Clinical Drug Formulation Development: An In Depth Analysis.

    PubMed

    Van den Bergh, An; Van Hemelryck, Sandy; Bevernage, Jan; Van Peer, Achiel; Brewster, Marcus; Mackie, Claire; Mannaert, Erik

    2018-06-11

    The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( F abs,sol ) and relative ( F rel, susp/sol ) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having F rel,susp/sol and F abs,sol in both rat and dog at doses around 10 and 5 mg/kg, respectively. The bioavailability outcomes in the dog aligned well with a BCS-like classification based upon the solubility of the active pharmaceutical ingredient (API) in biorelevant media, while the alignment was less clear for the bioavailability data in the rat. A retrospective analysis on the clinically tested formulations for a set of 12 Janssen compounds confirmed that the previously proposed animal bioavailability-based decision tree facilitated decisions on the oral formulation type, with the dog as the most discriminative species. Furthermore, the analysis showed that based on a Do for a standard human dose of 100 mg in aqueous and/or biorelevant media, a similar formulation type would have been selected compared to the one suggested by the animal data. However, the concept of a Do did not distinguish between solubility enhancing or enabling formulations and does not consider the API permeability, and hence, it produces the risk of slow and potentially incomplete oral absorption of an API with poor intestinal permeability. In cases where clinical dose estimations are available early in development, the preclinical bioavailability studies and dose number calculations, used to guide formulation selection, may be performed at more relevant doses instead of the proposed standard human dose. It should be noted, however, that unlike in late development, there is uncertainty on the clinical dose estimated in the early clinical phases because that dose is usually only based on in vitro and/or in vivo animal pharmacology models, or early clinical biomarker information. Therefore, formulation strategies may be adjusted based on emerging data supporting clinical doses. In summary, combined early information on in vitro-assessed API solubility and permeability, preclinical suspension/solution bioavailability data in relation to the intravenous clearance, and metabolic pathways of the API can strengthen formulation decisions. However, these data may not always fully distinguish between conventional (e.g., to be taken with food), enhancing, and enabling formulations. Therefore, to avoid overinvestment in complex and expensive enabling technologies, it is useful to evaluate a conventional and solubility (and/or permeability) enhancing formulation under fasted and fed conditions, as part of a first-in-human study or in a subsequent early human bioavailability study, for compounds with high Do, a low animal F rel,susp/sol , or low F abs,sol caused by precipitation of the solubilized API.

  7. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities.

    PubMed

    Wong, Chun Y; Martinez, Jorge; Dass, Crispin R

    2016-09-01

    Diabetes mellitus is characterised by progressive β-cell destruction and loss of function, or loss of ability of tissues to respond to insulin. Daily subcutaneous insulin injection is standard management for people with diabetes, although patient compliance is hard to achieve due to the inconvenience of injections, so other forms of delivery are being tested, including oral administration. This review summarises the developments in oral insulin administration. The PubMed database was consulted to compile this review comparing conventional subcutaneous injection of insulin to the desired oral delivery. Oral administration of insulin has potential benefits in reducing pain and chances of skin infection, improving the portal levels of insulin and avoiding side effects such as hyperinsulinemia, weight gain and hypoglycaemia. Although oral delivery of insulin is an ideal administration route for patients with diabetes, several physiological barriers have to be overcome. An expected low oral bioavailability can be attributed to its high molecular weight, susceptibility to enzymatic proteolysis and low diffusion rate across the mucin barrier. Strategies for increasing the bioavailability of oral insulin include the use of enzyme inhibitors, absorption enhancers, mucoadhesive polymers and chemical modification for endogenous receptor-mediated absorption. These may help significantly increase patient compliance and disease management. © 2016 Royal Pharmaceutical Society.

  8. Effects of Estrogen and Estrus Cycle on Pharmacokinetics, Absorption and Disposition of Genistein in Female Sprague-Dawley Rats

    PubMed Central

    Kulkarni, Kaustubh H.; Yang, Zhen; Tao, Niu; Hu, Ming

    2014-01-01

    Genistein is an active soy isoflavone with anticancer activities but it is unknown why it has a higher oral bioavailability in female than in male rats. Our study determined the effects of estrus cycle on genistein’s oral bioavailability. Female rats with various levels of estrogen were orally administered with genistein or used in a four-site rat intestinal perfusion experiment. Rats in “proestrus” group (with elevated estrogen) had significantly reduced (57% decrease, p<0.05) oral bioavailability of total genistein (aglycone+conjugates) than those in “metoestrus” group (with basal level of estrogen). Female ovariectomized rats, due to lack of estrogen, showed oral bioavailability of total genistein similar to the “metoestrus” group but higher (155% increase, p<0.05) than the “proestrus” group. Based on intestinal perfusion studies, the increased bioavailability was partially attributed to the higher (>100% increase, p<0.05) hepatic disposition via glucuronidation and possibly more efficient enterohepatic recycling of genistein in the “metoestrus” group. Furthermore, chronic exogenous supplementation of estradiol in ovariectomized rats significantly reduced (77%, p<0.05) the oral bioavailability of total genistein, mostly via increased sulfation (>10 folds) in liver, to a level comparable to those in the “proestrus” group. In conclusion, the oral bioavailability of total genistein was inversely proportional to elevated estrogen levels in female rats, which is partially mediated through the regulation of hepatic enzymes responsible disposition of genistein. PMID:22757747

  9. Effects of nifedipine on the pharmacokinetics of repaglinide in rats: possible role of CYP3A4 and P-glycoprotein inhibition by nifedipine.

    PubMed

    Choi, Jin-Seok; Choi, In; Choi, Dong-Hyun

    2013-01-01

    The aim of this study was to investigate the effects of nifedipine on the bioavailability and pharmacokinetics of repaglinide in rats. The effect of nifedipine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was evaluated. The pharmacokinetic parameters of repaglinide and blood glucose concentrations were also determined in rats after oral (0.5 mg/kg) and intravenous (0.2 mg/kg) administration of repaglinide to rats in the presence and absence of nifedipine (1 and 3 mg/kg). Administration of nifedipine resulted in inhibition CYP3A4 activity with an IC50 value of 7.8 μM, and nifedipine significantly inhibited P-gp activity in a concentration-dependent manner. Compared to the oral control group, nifedipine significantly increased the area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of repaglinide by 49.3 and 25.5%, respectively. Nifedipine significantly decreased the total body clearance (CL/F) of repaglinide by 22.0% compared to the oral control group. Nifedipine also increased the absolute bioavailability (AB) of repaglinide by 50.0% compared to the oral control group (33.6%). In addition, the relative bioavailability (RB) of repaglinide was 1.16- to 1.49-fold greater than that of the control group. Compared to the intravenous control, nifedipine significantly increased AUC0-∞ of repaglinide. Blood glucose concentrations had significant differences compared to the oral control groups. Nifedipine enhanced the oral bioavailability of repaglinide, which may be mainly attributable to inhibition of CYP3A4-mediated metabolism of repaglinide in the small intestine and/or in the liver and to inhibition of the P-gp efflux transporter in the small intestine and/or reduction of total body clearance by nifedipine. The current study has raised awareness of potential drug interactions by concomitant use of repaglinide with nifedipine.

  10. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  11. In vitro and in vivo studies of pharmacokinetics and antitumor efficacy of D07001-F4, an oral gemcitabine formulation.

    PubMed

    Hao, Wei-Hua; Wang, Jong-Jing; Hsueh, Shu-Ping; Hsu, Pei-Jing; Chang, Li-Chien; Hsu, Chang-Shan; Hsu, Kuang-Yang

    2013-02-01

    The chemotherapy agent gemcitabine is currently administered intravenously because the drug has poor oral bioavailability. In order to assess the pharmacokinetics and antitumor activity of D07001-F4, a new self-microemulsifying oral drug delivery system preparation of gemcitabine, this study was performed to compare the effect of D07001-F4 with administered gemcitabine in vitro and in vivo. D07001-F4 pharmacokinetics was examined by evaluation of in vitro deamination of D07001-F4 and gemcitabine hydrochloride by recombinant human cytidine deaminase (rhCDA) and in vivo evaluation of D07001-F4 pharmacokinetics in mice. Antitumor activity was evaluated by comparing the effect of D07001-F4 and gemcitabine hydrochloride in inhibiting growth in nine cancer cell lines and by examining the effect of D07001-F4 and gemcitabine in two xenograft tumor models in mice. In vitro deamination of D07001-F4 by rhCDA was 3.3-fold slower than deamination of gemcitabine hydrochloride. Growth inhibition by D07001-F4 of 7 of the 8 cancer cell lines was increased compared with that seen with gemcitabine hydrochloride, and D07001-F4 inhibited the growth of pancreatic and colon cancer xenografts. In vivo pharmacokinetics showed the oral bioavailability of D07001-F4 to be 34%. D07001-F4 was effective against several cancer types, was metabolized more slowly than gemcitabine hydrochloride, and exhibited enhanced oral bioavailability.

  12. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery

    NASA Astrophysics Data System (ADS)

    Wang, Yancai; Zhang, Dianrui; Liu, Zhaoping; Liu, Guangpu; Duan, Cunxian; Jia, Lejiao; Feng, Feifei; Zhang, Xiaoyu; Shi, Yanqiu; Zhang, Qiang

    2010-04-01

    In this study, we evaluate the effect of particle sizes on the physicochemical properties of silybin and identify the influence of silybin nanosuspensions on its permeation across the Caco-2 cell monolayer. In vivo pharmacokinetic evaluation of silybin nanosuspensions was also carried out in beagle dogs. TEM, AFM and SEM analyses revealed the effect of homogenization pressure on particle size and morphology, and confirmed the existence of a surfactant-stabilizer film on the surface of nanoparticles. DSC and XRPD experiments manifested that the crystalline state was maintained as particle size was reduced and the enhanced dissolution property was due to the increased surface area. Nanosuspensions had a significant influence on drug transport across the Caco-2 cell monolayer and the enhanced dissolution velocity was responsible for the increased permeability. A pharmacokinetics study in beagle dogs further confirmed the in vitro results and demonstrated that oral administration of silybin nanosuspensions significantly increase its bioavailability compared to the coarse powder. Nanosuspensions of silybin with smaller particle size reveal a higher potential to increase their oral bioavailability; while for intravenous infusion the lower pressure produced silybin nanosuspensions appeared to maintain a more sustained drug release profile.

  13. Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations.

    PubMed

    Fatma, Sharmeen; Talegaonkar, Sushama; Iqbal, Zeenat; Panda, Amulya Kumar; Negi, Lalit Mohan; Goswami, Dinesh Giri; Tariq, Mohammad

    2016-01-01

    A receptor level interaction of etoposide with P-glycoprotein (P-gp) and subsequent intestinal efflux has an adverse effect on its oral absorption. The present work is aimed to enhance the bioavailability of etoposide by co-administering it with quercetin (a P-gp inhibitor) in dual-loaded polymeric nanoparticle formulation. Poly-lactic-co-glycolic acid (PLGA) nanoparticles were optimized for various parameters like o/w phase volume ratio, poly-vinyl alcohol concentration, PLGA concentration and sonication time. The cytotoxicity studies (MTT assay) revealed a 9- and 11-fold decrease in the IC 50 values for etoposide-loaded nanoparticles (ENP) and etoposide + quercetin dual-loaded nanoparticles (EQNP) when compared to that of free etoposide, respectively, and the results were further supported by florescent-activated cell sorter studies. The confocal imaging of the intestinal sections treated with ENP and EQNP containing fluorescent probe (rhodamine) showed the superiority of the EQNP to permeate deeper. Furthermore, pharmacokinetic studies on rats revealed that EQNP exhibited a 2.4-fold increase in bioavailability of etoposide than ENP with no quercetin. The developed loaded nanoparticles have the high potential to enhance the bioavailability of the etoposide and sensitize the resistant cells.

  14. Oral bioavailability of ketoprofen in suspension and solution formulations in rats: the influence of poloxamer 188.

    PubMed

    Fischer, Sarah Maud; Parmentier, Johannes; Buckley, Stephen Timothy; Reimold, Isolde; Brandl, Martin; Fricker, Gert

    2012-11-01

    The aim of the current study was to investigate the effect of poloxamer 188 (P-188) on the bioavailability of the BCS class 2 drug ketoprofen in vivo. Aqueous suspension and solution formulations of ketoprofen with and without P-188 were orally administered to fasted male Wistar rats. The intrinsic dissolution rate and solubility of ketoprofen in simulated intestinal fluid, in both the presence and absence of P-188, was measured. The AUC and C(max) were found to be significantly enhanced when ketoprofen was administered as suspension and P-188 was present in the formulation (Susp P-188) as compared to the surfactant-free formulation (∼4-fold higher AUC, 7-fold higher C(max) ). While drug solubility appeared to be almost unaffected by P-188, a significantly faster dissolution was observed. In addition, the influence of P-188 on the drug absorption process was investigated by comparison of solution formulations with and without P-188. The in-vivo performance of these solutions, a pure buffer solution and a P-188-containing buffer solution showed no significant difference, suggesting that the increase in bioavailability for Susp P-188 was primarily a consequence of the dissolution rate-enhancing effect. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  15. Nanosizing of drugs: Effect on dissolution rate

    PubMed Central

    Dizaj, S. Maleki; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y.

    2015-01-01

    The solubility, bioavailability and dissolution rate of drugs are important parameters for achieving in vivo efficiency. The bioavailability of orally administered drugs depends on their ability to be absorbed via gastrointestinal tract. For drugs belonging to Class II of pharmaceutical classification, the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore, enhancement of the dissolution rate of these drugs will present improved bioavailability. So far several techniques such as physical and chemical modifications, changing in crystal habits, solid dispersion, complexation, solubilization and liquisolid method have been used to enhance the dissolution rate of poorly water soluble drugs. It seems that improvement of the solubility properties ofpoorly water soluble drugscan translate to an increase in their bioavailability. Nowadays nanotechnology offers various approaches in the area of dissolution enhancement of low aqueous soluble drugs. Nanosizing of drugs in the form of nanoparticles, nanocrystals or nanosuspensions not requiring expensive facilities and equipment or complicated processes may be applied as simple methods to increase the dissolution rate of poorly water soluble drugs. In this article, we attempted to review the effects of nanosizing on improving the dissolution rate of poorly aqueous soluble drugs. According to the reviewed literature, by reduction of drug particle size into nanometer size the total effective surface area is increased and thereby dissolution rate would be enhanced. Additionally, reduction of particle size leads to reduction of the diffusion layer thickness surrounding the drug particles resulting in the increment of the concentration gradient. Each of these process leads to improved bioavailability. PMID:26487886

  16. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration.

    PubMed

    Cherniakov, Irina; Izgelov, Dvora; Barasch, Dinorah; Davidson, Elyad; Domb, Abraham J; Hoffman, Amnon

    2017-11-28

    Nowadays, therapeutic indications for cannabinoids, specifically Δ 9 -tetrahydrocannabinol (THC) and Cannabidiol (CBD) are widening. However, the oral consumption of the molecules is very limited due to their highly lipophilic nature that leads to poor solubility at the aqueous environment. Additionally, THC and CBD are prone to extensive first pass mechanisms. These absorption obstacles render the molecules with low and variable oral bioavailability. To overcome these limitations we designed and developed the advanced pro-nanolipospheres (PNL) formulation. The PNL delivery system is comprised of a medium chain triglyceride, surfactants, a co-solvent and the unique addition of a natural absorption enhancer: piperine. Piperine was selected due to its distinctive inhibitory properties affecting both Phase I and Phase II metabolism. This constellation self emulsifies into nano particles that entrap the cannabinoids and the piperine in their core and thus improve their solubility while piperine and the other PNL excipients inhibit their intestinal metabolism. Another clear advantage of the formulation is that its composition of materials is approved for human consumption. The safe nature of the excipients enabled their direct evaluation in humans. In order to evaluate the pharmacokinetic profile of the THC-CBD-piperine-PNL formulation, a two-way crossover, single administration clinical study was conducted. The trial comprised of 9 healthy volunteers under fasted conditions. Each subject received a THC-CBD (10.8mg, 10mg respectively) piperine (20mg)-PNL filled capsule and an equivalent dose of the oromucosal spray Sativex® with a washout period in between treatments. Single oral administration of the piperine-PNL formulation resulted in a 3-fold increase in Cmax and a 1.5-fold increase in AUC for THC when compared to Sativex®. For CBD, a 4-fold increase in Cmax and a 2.2-fold increase in AUC was observed. These findings demonstrate the potential this formulation has in serving as a standardized oral cannabinoid formulation. Moreover, the concept of improving oral bioavailability described here, can pave the way for other potential lipophilic active compounds requiring enhancement of their oral bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability.

    PubMed

    Zhu, Ying; You, Xinru; Huang, Keqing; Raza, Faisal; Lu, Xin; Chen, Yuejian; Dhinakar, Arvind; Zhang, Yuan; Kang, Yang; Wu, Jun; Ge, Liang

    2018-07-27

    Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 μm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.

  18. Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; You, Xinru; Huang, Keqing; Raza, Faisal; Lu, Xin; Chen, Yuejian; Dhinakar, Arvind; Zhang, Yuan; Kang, Yang; Wu, Jun; Ge, Liang

    2018-07-01

    Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 μm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.

  19. Rivaroxaban crushed tablet suspension characteristics and relative bioavailability in healthy adults when administered orally or via nasogastric tube.

    PubMed

    Moore, Kenneth T; Krook, Mark A; Vaidyanathan, Seema; Sarich, Troy C; Damaraju, C V; Fields, Larry E

    2014-07-01

    Because some patients have difficulty swallowing a whole tablet, we investigated the relative bioavailability of a crushed 20 mg rivaroxaban tablet and of 2 alternative crushed tablet dosing strategies. Stability and nasogastric (NG) tube adsorption characteristics of a crushed rivaroxaban tablet were assessed. Then, in 55 healthy adults, relative bioavailability of rivaroxaban administered orally as a whole tablet (Reference [Whole-Oral]), crushed tablet in applesauce suspension (Crushed-Oral), or crushed tablet in water suspension via NG tube (Crushed-NG) were determined. There were no significant changes in mean percent of non-degraded rivaroxaban recovered over 4 hours from crushed tablet suspensions (>98.4% recovery across all suspensions and time points) or after NG tube exposure (recovery: 99.1% for silicone and 98.9% for polyvinyl chloride NG tubes). Relative bioavailability was similar between Crushed-Oral and Reference dosing (Cmax and AUC∞ were within the 80-125% bioequivalence limits). Relative bioavailability was also similar between the Crushed-NG and Reference dosing (AUC∞ was within bioequivalence limits; Cmax [90% CI range: 78.5-85.8%] was only slightly below the 80% lower bioequivalence limit). A crushed rivaroxaban tablet was stable and when administered orally or via NG tube, displayed similar relative bioavailability compared to a whole tablet administered orally. © 2014, The American College of Clinical Pharmacology.

  20. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer - A comprehensive review.

    PubMed

    Polachi, Navaneethakrishnan; Bai, Guirong; Li, Tingyang; Chu, Yang; Wang, Xiangyang; Li, Shuming; Gu, Ning; Wu, Jiang; Li, Wei; Zhang, Yanjun; Zhou, Shuiping; Sun, He; Liu, Changxiao

    2016-11-10

    Silibinin, a natural flavanone, derived from the milk thistle plant (Silybum marianum), was illustrated for several medicinal uses such as liver-protective, anti-oxidant, anti-cancer, anti-inflammation and many other. However, silibinin has poor absorbance and bioavailability due to low water solubility, thereby limiting its clinical applications and therapeutic efficiency. To overcome this problem, the combination of silibinin with phosphatidylcholine (PC) as a formulation was used to enhance the solubility and bioavailability. The results indicated that silibinin-PC taken orally markedly enhanced bioavailability and therapeutic efficiency. In addition, a deeper understanding of the signaling pathways modulated by silibinin is important to realize its potential in developing targeted therapies against liver disorders and cancer. Silibinin has been shown to inhibit many cell signaling pathways in preclinical models, demonstrating promising effects against liver disorders and cancer through in vitro and in vivo studies. This review summarizes the pharmacokinetic properties, bioavailability, safety data, clinical activities and modulatory effects of silibinin in different cell signaling pathways against liver disorders and cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Novel gastroretentive sustained-release tablet of tacrolimus based on self-microemulsifying mixture: in vitro evaluation and in vivo bioavailability test

    PubMed Central

    Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin

    2011-01-01

    Aim: To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Methods: Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. Results: The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm2. The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. Conclusion: SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window. PMID:21927013

  2. Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability.

    PubMed

    Said, Mayada; Elsayed, Ibrahim; Aboelwafa, Ahmed A; Elshafeey, Ahmed H

    2017-11-01

    Agomelatine is a new antidepressant having very low oral drug bioavailability less than 5% due to being liable to extensive hepatic 1st pass effect. This study aimed to deliver agomelatine by transdermal route through formulation and optimization of microemulsion gel. Pyramidal screening was performed to select the most suitable ingredients combinations and then, the design expert software was utilized to optimize the microemulsion formulations. The independent variables of the employed mixture design were the percentages of capryol 90 as an oily phase (X 1 ), Cremophor RH40 and Transcutol HP in a ratio of (1:2) as surfactant/cosurfactant mixture 'S mix ' (X 2 ) and water (X 3 ). The dependent variables were globule size, optical clarity, cumulative amount permeated after 1 and 24 h, respectively (Q1 and Q 24 ) and enhancement ratio (ER). The optimized formula was composed of 5% oil, 45% S mix and 50% water. The optimized microemulsion formula was converted into carbopol-based gel to improve its retention on the skin. It enhanced the drug permeation through rat skin with an enhancement ratio of 37.30 when compared to the drug hydrogel. The optimum ME gel formula was found to have significantly higher C max , AUC 0-24 h and AUC 0-∞ than that of the reference agomelatine hydrogel and oral solution. This could reveal the prosperity of the optimized microemulsion gel formula to augment the transdermal bioavailability of agomelatine.

  3. Improving permeability and oral absorption of mangiferin by phospholipid complexation.

    PubMed

    Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong

    2014-03-01

    Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system.

    PubMed

    Yeom, Dong Woo; Chae, Bo Ram; Son, Ho Yong; Kim, Jin Han; Chae, Jun Soo; Song, Seh Hyon; Oh, Dongho; Choi, Young Wook

    2017-01-01

    A novel, supersaturable self-microemulsifying drug delivery system (S-SMEDDS) was successfully formulated to enhance the dissolution and oral absorption of valsartan (VST), a poorly water-soluble drug, while reducing the total quantity for administration. Poloxamer 407 is a selectable, supersaturating agent for VST-containing SMEDDS composed of 10% Capmul ® MCM, 45% Tween ® 20, and 45% Transcutol ® P. The amounts of SMEDDS and Poloxamer 407 were chosen as formulation variables for a 3-level factorial design. Further optimization was established by weighting different levels of importance on response variables for dissolution and total quantity, resulting in an optimal S-SMEDDS in large quantity (S-SMEDDS_LQ; 352 mg in total) and S-SMEDDS in reduced quantity (S-SMEDDS_RQ; 144.6 mg in total). Good agreement was observed between predicted and experimental values for response variables. Consequently, compared with VST powder or suspension and SMEDDS, both S-SMEDDS_LQ and S-SMEDDS_RQ showed excellent in vitro dissolution and in vivo oral bioavailability in rats. The magnitude of dissolution and absorption-enhancing capacities using quantity-based comparisons was in the order S-SMEDDS_RQ > S-SMEDDS_LQ > SMEDDS > VST powder or suspension. Thus, we concluded that, in terms of developing an effective SMEDDS preparation with minimal total quantity, S-SMEDDS_RQ is a promising candidate.

  5. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate.

    PubMed

    Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2014-12-19

    The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Ultra rapidly dissolving repaglinide nanosized crystals prepared via bottom-up and top-down approach: influence of food on pharmacokinetics behavior.

    PubMed

    Gadadare, Rahul; Mandpe, Leenata; Pokharkar, Varsha

    2015-08-01

    The present work was undertaken with the objectives of improving the dissolution velocity, related oral bioavailability, and minimizing the fasted/fed state variability of repaglinide, a poorly water-soluble anti-diabetic active by exploring the principles of nanotechnology. Nanocrystal formulations were prepared by both top-down and bottom-up approaches. These approaches were compared in light of their ability to provide the formulation stability in terms of particle size. Soluplus® was used as a stabilizer and Kolliphor™ E-TPGS was used as an oral absorption enhancer. In vitro dissolution profiles were investigated in distilled water, fasted and fed state simulated gastric fluid, and compared with the pure repaglinide. In vivo pharmacokinetics was performed in both the fasted and fed state using Wistar rats. Oral hypoglycemic activity was also assessed in streptozotocin-induced diabetic rats. Nanocrystals TD-A and TD-B showed 19.86 and 25.67-fold increase in saturation solubility, respectively, when compared with pure repaglinide. Almost 10 (TD-A) and 15 (TD-B)-fold enhancement in the oral bioavailability of nanocrystals was observed regardless of the fasted/fed state compared to pure repaglinide. Nanocrystal formulations also demonstrated significant (p < 0.001) hypoglycemic activity with faster onset (less than 30 min) and prolonged duration (up to 8 h) compared to pure repaglinide (after 60 min; up to 4 h, respectively).

  7. Bioavailability and Pharmacokinetics of Oral Cocaine in Humans.

    PubMed

    Coe, Marion A; Jufer Phipps, Rebecca A; Cone, Edward J; Walsh, Sharon L

    2018-06-01

    The pharmacokinetic profile of oral cocaine has not been fully characterized and prospective data on oral bioavailability are limited. A within-subject study was performed to characterize the bioavailability and pharmacokinetics of oral cocaine. Fourteen healthy inpatient participants (six males) with current histories of cocaine use were administered two oral doses (100 and 200 mg) and one intravenous (IV) dose (40 mg) of cocaine during three separate dosing sessions. Plasma samples were collected for up to 24 h after dosing and analyzed for cocaine and metabolites by gas chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by non-compartmental analysis, and a two-factor model was used to assess for dose and sex differences. The mean ± SEM oral cocaine bioavailability was 0.32 ± 0.04 after 100 and 0.45 ± 0.06 after 200 mg oral cocaine. Volume of distribution (Vd) and clearance (CL) were both greatest after 100 mg oral (Vd = 4.2 L/kg; CL = 116.2 mL/[min kg]) compared to 200 mg oral (Vd = 2.9 L/kg; CL = 87.5 mL/[min kg]) and 40 mg IV (Vd = 1.3 L/kg; CL = 32.7 mL/[min kg]). Oral cocaine area-under-thecurve (AUC) and peak concentration increased in a dose-related manner. AUC metabolite-to-parent ratios of benzoylecgonine and ecgonine methyl ester were significantly higher after oral compared to IV administration and highest after the lower oral dose. In addition, minor metabolites were detected in higher concentrations after oral compared to IV cocaine. Oral cocaine produced a pharmacokinetic profile different from IV cocaine, which appears as a rightward and downward shift in the concentration-time profile. Cocaine bioavailability values were similar to previous estimates. Oral cocaine also produced a unique metabolic profile, with greater concentrations of major and minor metabolites.

  8. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    PubMed

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p < 0.05) better bioavailability than the control system displaying a relative bioavailability of 8.1% The 6 kDa LMWH (300 IU) formulation displayed a relative bioavailability of 10.7% in contrast to the control displaying a relative bioavailability of 2.1%. In conclusion, these results suggest that mucoadhesive thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  9. Self nanoemulsifying drug delivery system of stabilized ellagic acid-phospholipid complex with improved dissolution and permeability.

    PubMed

    Avachat, Amelia M; Patel, Vijay G

    2015-07-01

    Ellagic acid (EA), a plant polyphenol known for its wide-range of health benefits has limited use due to its low oral bioavailability. In this study, a new self-nanoemulsifying drug delivery system (SNEDDS), based on the phospholipid complex technique, was developed to improve the oral bioavailability of ellagic acid. Ellagic acid-phospholipid complex was prepared by an anti-solvent method and characterized. Enhanced lipophilicity after the formation of ellagic acid-phospholipid complex was verified through solubility studies. Preliminary screening was carried out to select oil, surfactant and co-surfactant. Ternary phase diagrams were constructed to identify the area of nanoemulsification. Formulations were optimized on the basis of globule size, cloud point and robustness to dilution. The optimized SNEDDS of ellagic acid-phospholipid complex showed mean globule size of 106 ± 0.198 nm and cloud point at 83-85 °C. The in vitro drug release from SNEDDS was found to be higher compared to EA suspension and complex, while ex vivo studies showed increased permeation from SNEDDS compared to EA suspension. Moreover, SNEDDS overcome the food effect which was shown by EA suspension. Thus, SNEDDS were found to be influential in improving the release performance of EA, indicating their potential to improve the oral bioavailability of EA.

  10. Self-nanoemulsifying drug delivery system for enhanced bioavailability and improved hepatoprotective activity of biphenyl dimethyl dicarboxylate.

    PubMed

    El-Laithy, Hanan M

    2008-07-01

    Biphenyl Dimethyl Dicarboxylate (BDD) is insoluble in aqueous solution and the bioavailability after oral administration is low. Self-nanoemulsifying drug delivery system (SNEDDS) containing BDD has been successfully prepared using carefully selected ingredients which are less affected by pH and ionic strength changes to improve its bioavailability. SNEDDS is an isotropic mixture of lipid, surfactant, and cosurfactant which are spontaneously emulsified in aqueous medium under gentle digestive motility in the gastrointestinal tract. Pseudo ternary phase diagrams composed of various excipients were plotted to identify self -nano -emulsifying area. Droplet size changes upon dilution with aqueous media and in vitro release of BDD from SNEDDS in 0.1N HCl and phosphate buffer (pH 7.4) were studied and compared with commercial chinese pilules and Pennel capsules. The hepatoprotective activity upon oral administration of SNEDDS against carbon tetrachloride-induced oxidative stress in albino rats was assessed by measuring biochemical parameters like serum glutamic oxalacetate transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT) and lactate dehydrogenase (LDH). Results showed that using a proper ratio of Tween 80 to Transcutol as surfactant and co-surfactant respectively and Miglyol 812 as oil to surfactants mixture resulted in production of infinitely diluted formulations in nano droplet size range. BDD self nano emulsified formula composed of 20% Miglyol 812, 60% Tween 80 and 20% Transcutol released 99% of the drug very rapidly within 10-15 minutes regardless of the pH condition. The oral absorption and bioavailability of BDD self nano emulsified formula in albino rats were significantly enhanced (P<0.01) with an average improvement of 1.7 and 6-folds that of commercial chinese pilules and Pennel capsules respectively. This improvement was also confirmed histopathologically in chemically injured rats and by the significant decrease in elevated liver enzymes level.

  11. Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol.

    PubMed

    Miao, Xiaoqing; Sun, Changshan; Jiang, Tongying; Zheng, Li; Wang, Tianyi; Wang, Siling

    2011-01-01

    The aim of this study was to develop cilostazol (CLT) nanocrystals intended to improve its dissolution rate and enhance its bioavailability. In this study, CLT nanosuspension was prepared by the anti-solvent and high-pressure homogenization method. The effects of the production parameters, such as the stabilizer concentration, pressure and number of cycles, were investigated. Characterization of the product was performed by scanning electron microscopy (SEM), Nitrogen adsorption, differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), X-ray Photoelectron Spectroscopy (XPS), particle size analysis and dissolution testing. Additionally, the comparison studies of oral bioavailability in beagle dogs of three type tables were performed. The images of SEM showed a spherical smooth CLT powder, and Nitrogen adsorption test revealed spray dried powder were porous with high BET surface area compared with that of raw CLT. DSC and XRPD results demonstrated that the combination of preferred polymorph B and C of CLT were prepared successfully, the saturation solubility of the nanosized crystalline powder is about 5 fold greater than that of raw CLT, and the dissolution rate was enhanced 4 fold than that of raw CLT. The Cmax and AUC0-48h of CLT nanosized crystalline tablets were 2.1 fold and 1.9 fold, and 3.0 fold and 2.3 fold compared with those of the nanosized tablets and commercial tablets, respectively. The anti-solvent-high-pressure homogenization technique was employed successfully to produce cilostazol nanosuspensions. The bioavailability of CLT tablets prepared using spray dried nanosized crystalline powder after oral administration to dogs was markedly increased compared with that produced by nanosized tablets and commercial tablets, because of its greater dissolution rate owing to its transition of the crystalline state to form C and form B, reduced particle size and porous structure with increased surface area.

  12. A Comprehensive Review on Pharmacotherapeutics of Herbal Bioenhancers

    PubMed Central

    Dudhatra, Ghanshyam B.; Mody, Shailesh K.; Awale, Madhavi M.; Patel, Hitesh B.; Modi, Chirag M.; Kumar, Avinash; Kamani, Divyesh R.; Chauhan, Bhavesh N.

    2012-01-01

    In India, Ayurveda has made a major contribution to the drug discovery process with new means of identifying active compounds. Recent advancement in bioavailability enhancement of drugs by compounds of herbal origin has produced a revolutionary shift in the way of therapeutics. Thus, bibliographic investigation was carried out by analyzing classical text books and peer-reviewed papers, consulting worldwide-accepted scientific databases from last 30 years. Herbal bioenhancers have been shown to enhance bioavailability and bioefficacy of different classes of drugs, such as antibiotics, antituberculosis, antiviral, antifungal, and anticancerous drugs at low doses. They have also improved oral absorption of nutraceuticals like vitamins, minerals, amino acids, and certain herbal compounds. Their mechanism of action is mainly through absorption process, drug metabolism, and action on drug target. This paper clearly indicates that scientific researchers and pharmaceutical industries have to give emphasis on experimental studies to find out novel active principles from such a vast array of unexploited plants having a role as a bioavailability and bioefficacy enhancer. Also, the mechanisms of action by which bioenhancer compounds exert bioenhancing effects remain to be explored. PMID:23028251

  13. Improvement of Oral Efficacy of Irinotecan through Biodegradable Polymeric Nanoparticles through Invitro and Invivo Investigations.

    PubMed

    Ahmad, Niyaz; Alam, Md Aftab; Ahmad, Rizwan; Umar, Sadiq; Ahmad, Farhan Jalees

    2018-06-06

    Irinotecan (CPT-11) is a camptothecin derivative with low oral bioavailability due to active efflux by intestinal P-glycoprotein receptors. Hence, no oral formulation is marketed for Irinotecan till date and its oral ingestion continues to remain a challenge. The study aims to develop a nanoformulation i.e. Chitosan (CS)-coated-Irinotecan (IRN)-loaded-poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) in order to enhance oral bioavailability of Irinotecan. Developed formulation revealed particle size, 166.9 ±13.63 nm, zeta potential, 14.67 ±1.08 mV and drug content (42.69 ± 1.97 µg/mg), with spherical shape and smooth surface. Cytotoxicity studies, performed against human breast adenocarcinoma cell lines (MCF-7), confirmed the superiority of IRN-loaded-CS-coated-PLGA-NPs over free IRN solution (IRN-S). Cellular transport conducted on human colon adenocarcinoma cell line (Caco-2) exhibited a higher permeability of 1.33 folds for IRN through CS-IRN-PLGA-NPs as compared to IRN-S (p < 0.01) whereas the permeability for IRN was found to be higher at a rate of 4.32 folds, across rat ileum. Furthermore, pharmacokinetic studies demonstrated marked improvement of 3.53 fold and 8.03 fold in wistar rat's plasma as well as brain higher oral bioavailability through IRN-CS-PLGA-NPs when compared with IRN-S. A simple, rapid UPLC-ESI-Q-TOF-MS/MS method for the determination of IRN (CPT-11) and SN-38 in both plasma and brain (over a range: 1.00-25000.00 ng/mL) was also developed and successfully applied for pharmacokinetic study. CS-IRN-PLGA-NPs approach may be effectively utilized, to replace pre-existing intravenous therapy thus providing "patient care at home".

  14. Preparation and characterization of intravaginal vardenafil suppositories targeting a complementary treatment to boost in vitro fertilization process.

    PubMed

    Gomaa, Eman; Abu Lila, Amr S; Hasan, Azza A; Ghazy, Fakhr-Eldin S

    2018-01-01

    Vaginal route has been recently considered as a potential route for systemic delivery of drugs with poor oral bioavailability. Vardenafil (VDF) is a relatively new phosphodiesterase-5 inhibitor that exhibits a limited oral bioavailability (≈15%) due to extensive first-pass metabolism. In this study, we attempted to enhance the systemic bioavailability of VDF via its formulation within vaginal suppositories. Witepsol H15 and Suppocire NA50 were adopted as lipophilic suppository bases while polyethylene glycol 4000/400 and glycerogelatin were used as hydrophilic suppository bases. The effect of different base types and/or the incorporation of bioadhesive polymer on in vitro release of VDF were evaluated. The in vivo fate and organ biodistribution of VDF following intravaginal (IVG) administration were also investigated. VDF release from water-soluble bases was higher than that from lipophilic bases. The incorporation of bioadhesive polymers, such as Na alginate, remarkably sustained drug release from suppository base. The organ biodistribution study showed a higher C max (32 times) and AUC 0-4h (20 times) of VDF in uterus following IVG administration of conventional suppositories, compared to oral administration of VDF suspension. In addition, cyclic guanosine monophosphate (cGMP) serum levels, used as an indicator of the in vivo activity of VDF, in animals were higher following IVG administration rather than oral administration. This study suggests that IVG administration of VDF might represent a potential alternative to oral route with superior therapeutic benefits especially when targeting the uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    PubMed

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  16. Azathioprine pharmacokinetics after intravenous, oral, delayed release oral and rectal foam administration.

    PubMed Central

    Van Os, E C; Zins, B J; Sandborn, W J; Mays, D C; Tremaine, W J; Mahoney, D W; Zinsmeister, A R; Lipsky, J J

    1996-01-01

    BACKGROUND: 6-Mercaptopurine and its prodrug azathioprine are effective medications for refractory inflammatory bowel disease. However, use of these drugs has been limited by concerns about their toxicity. Colonic delivery of azathioprine may reduce its systemic bioavailability and limit toxicity. AIM: To determine the bioavailability of 6-mercaptopurine after administration of azathioprine via three colonic delivery formulations. METHODS: Twenty four healthy human subjects each received 50 mg of azathioprine by one of four delivery formulations (each n = 6): oral; delayed release oral; hydrophobic rectal foam; and hydrophilic rectal foam. All subjects also received a 50 mg dose of intravenous azathioprine during a separate study period. Plasma concentrations of 6-mercaptopurine were determined by high pressure liquid chromatography. RESULTS: The bioavailabilities of 6-mercaptopurine after colonic azathioprine administration via delayed release oral, hydrophobic rectal foam, and hydrophilic rectal foam (7%, 5%, 1%; respectively) were significantly lower than the bioavailability of 6-mercaptopurine after oral azathioprine administration (47%) by Wilcoxon rank sum pairwise comparison. CONCLUSIONS: Azathioprine delivered to the colon by delayed release oral and rectal foam formulations considerably reduced systemic 6-mercaptopurine bioavailability. The therapeutic potential of these colonic delivery methods, which can potentially limit toxicity by local delivery of high doses of azathioprine, should be investigated in patients with inflammatory bowel disease. PMID:8881811

  17. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.

    PubMed

    Liu, Ying; Wang, Lan; Zhao, Yiqing; He, Man; Zhang, Xin; Niu, Mengmeng; Feng, Nianping

    2014-12-10

    Nanostructured lipid carriers and microemulsions effectively deliver poorly water-soluble drugs. However, few studies have investigated their ability and difference in improving drug bioavailability, especially the factors contributed to the difference. Thus, this study was aimed at investigating their efficiency in bioavailability enhancement based on studying two key processes that occur in NLC and ME during traverse along the intestinal tract: the solubilization process and the intestinal permeability process. The nanostructured lipid carriers and microemulsions had the same composition except that the former were prepared with solid lipids and the latter with liquid lipids; both were evaluated for particle size and zeta potential. Transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction were performed to characterize their properties. Furthermore, in vitro drug release, in situ intestinal absorption, and in vitro lipolysis were studied. The bioavailability of luteolin delivered using nanostructured lipid carriers in rats was compared with that delivered using microemulsions and suspensions. The in vitro analysis revealed different release mechanisms for luteolin in nanostructured lipid carriers and microemulsions, although the in situ intestinal absorption was similar. The in vitro lipolysis data indicated that digestion speed and extent were higher for microemulsions than for nanostructured lipid carriers, and that more of the former partitioned to the aqueous phase. The in vivo bioavailability analysis in rats indicated that the oral absorption and bioavailability of luteolin delivered using nanostructured lipid carriers and microemulsions were higher than those of luteolin suspensions. Nanostructured lipid carriers and microemulsions improved luteolin's oral bioavailability in rats. The rapid lipid digestion and much more drug solubilized available for absorption in microemulsions may contribute to better absorption and higher bioavailability. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Preparation, Characterization and Evaluation of Quetiapine Fumarate Solid Lipid Nanoparticles to Improve the Oral Bioavailability

    PubMed Central

    Narala, Arjun; Veerabrahma, Kishan

    2013-01-01

    Quetiapine fumarate is an antipsychotic drug with poor oral bioavailability (9%) due to first-pass metabolism. Present work is an attempt to improve oral bioavailability of quetiapine fumarate by incorporating in solid lipid nanoparticles (SLN). Six quetiapine fumarate SLN formulations were developed using three different lipids by hot homogenisation followed by ultrasonication. The drug excipient compatibility was studied by differential scanning calorimetry (DSC). Stable quetiapine fumarate SLNs having a mean particle size of 200–250 nm with entrapment efficiency varying in between 80% and 92% were developed. The physical stability of optimized formulation F3 was checked at room temperature for 2 months. Comparative bioavailability studies were conducted in male Wistar rats after oral administration of quetiapine fumarate suspension and SLN formulation. The relative bioavailability of quetiapine fumarate from optimized SLN preparation was increased by 3.71 times when compared with the reference quetiapine fumarate suspension. The obtained results are indicative of SLNs as potential lipid carriers for improving the bioavailability of quetiapine fumarate by minimizing first-pass metabolism. PMID:26555970

  19. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  20. Formulation and Optimization of Candesartan Cilexetil Nano Lipid Carrier: In Vitro and In Vivo Evaluation.

    PubMed

    Paudel, Anjan; Ameeduzzafar; Imam, Syed Sarim; Fazil, Mohd; Khan, Shahroz; Hafeez, Abdul; Ahmad, Farhan Jalees; Ali, Asgar

    2017-01-01

    The objective of this study was to formulate and optimize Candesartan Cilexetil (CC) loaded nanostructured lipid carriers (NLCs) for enhanced oral bioavailability. Glycerol monostearate (GMS), Oleic acid, Tween 80 and Span 40 were selected as a solid lipid, liquid lipid, surfactant and co- surfactant, respectively. The CC-NLCs were prepared by hot emulsion probe sonication technique and optimized using experimental design approach. The formulated CC-NLCs were evaluated for various physicochemical parameters and further optimized formulation (CC-NLC-Opt) was assessed for in vivo pharmacokinetic and pharmacodynamic activity. The optimized formulation (CC-NLC-Opt) showed particle size (183.5±5.89nm), PDI (0.228±0.13), zeta potential (-28.2±0.99mV), and entrapment efficiency (88.9±3.69%). The comparative in vitro release study revealed that CC-NLC-Opt showed significantly better (p<0.05) release and enhanced permeation as compared to CC-suspension. The in vivo pharmacokinetic study gave many folds increase in oral bioavailability than CC suspension, which was further confirmed by antihypertensive activity in a murine model. Thus, the results of ex vivo permeation, pharmacokinetic study and pharmacodynamics study suggest the potential of CC-NLCs for improved oral delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Brain-targeted intranasal zaleplon solid dispersion in hydrophilic carrier system; 23 full-factorial design and in vivo determination of GABA neurotransmitter.

    PubMed

    Abd-Elrasheed, Eman; Nageeb El-Helaly, Sara; El-Ashmoony, Manal M; Salah, Salwa

    2018-05-01

    Intranasal zaleplon solid dispersion was formulated to enhance the solubility, bioavailability and deliver an effective therapy. Zaleplon belongs to Class II drugs, and undergoes extensive first-pass metabolism after oral absorption exhibiting 30% bioavailability. A 2 3 full-factorial design was chosen for the investigation of solid dispersion formulations. The effects of different variables include drug to carrier ratio (1:1 and 1:2), carrier type (polyethylene glycol 4000 and poloxamer 407), and preparation method (solvent evaporation and freeze drying) on different dissolution parameters were studied. The dependent variables determined from the in vitro characterization and their constraints were set as follows: minimum mean dissolution time, maximum dissolution efficiency and maximum percentage release. Numerical optimization was performed according to the constraints set based on the utilization of desirability functions. Differential scanning calorimetry, infrared spectroscopy, X-ray diffraction and scanning electron microscopy were performed. Ex vivo estimation of nasal cytotoxicity and assessment of the γ-aminobutyric acid level in plasma and brain 1 h after nasal SD administration in rabbits compared to the oral market product were conducted. The selected ZP-SD, with a desirability 0.9, composed of poloxamer 407 at drug to carrier ratio 1:2 successfully enhanced the bioavailability showing 44% increase in GABA concentration than the marketed tablets.

  2. Enhancement of bioavailability of ketoprofen using dry elixir as a novel dosage form.

    PubMed

    Ahn, H J; Kim, K M; Kim, C K

    1998-07-01

    To enhance the dissolution rate and bioavailability of poorly water-soluble ketoprofen, a novel oral dosage form of ketoprofen, termed ketoprofen dry elixir, was developed by the spray-drying technique. Ketoprofen, dextrin, and sodium lauryl sulfate were dissolved in an ethanol-water mixture (20:25 w/w) and thereafter spray-dried to form the ketoprofen dry elixir. Comparative studies on the in vitro dissolution and in vivo adsorption of ketoprofen in the form of dry elixir and powder were carried out. Ketoprofen in the dry elixir completely dissolved within 5 min. On the other hand, only about 50.1% of ketoprofen powder alone dissolved during 60 min. The initial dissolution rate of ketoprofen in the dry elixir markedly increased in distilled water at 37 degrees C, becoming fourfold higher than that of ketoprofen powder alone. The maximal plasma concentration of ketoprofen (Cmax) and the area under the concentration-time curve from zero to 8 hr (AUC0-8 hr) after the oral administration of dry elixir increased about 3.2- (24.6 versus 7.6 micrograms/ml) and 2.2-(38.4 versus 17.3 micrograms hr/ml) fold compared with powder alone. It was obvious that ketoprofen dry elixir might be a useful solid dosage form to improve the dissolution rate and bioavailability of poorly water-soluble ketoprofen.

  3. Mesoporous materials and nanocrystals for enhancing the dissolution behavior of poorly water-soluble drugs.

    PubMed

    Santos, Helder A; Peltonen, Leena; Limnell, Tarja; Hirvonen, Jouni

    2013-01-01

    Advanced drug delivery formulations are presently recognized as promising tools for overcoming the adverse physicochemical properties of conventional drug molecules, such as poor water solubility, which often leads to poor drug bioavailability. Oral drug delivery is considered as the easiest and most convenient route of drug administration. However, via the current trends utilizing combinatorial chemistry and high throughput screening in drug development, new drug molecules are moving towards lipophilic and poorly water-soluble large molecules, and the oral delivery route is becoming increasingly challenging. In this context, formulation of poorly soluble and/or permeable drugs using mesoporous materials and nanocrystals technology have proven to be highly successful due to the greater surface/volume ratio of these systems, resulting in improvements in dissolution and bioavailability, as well as enhanced drug permeability. This review addresses the issues of poorly water-soluble drugs with a major focus on recent developments in the application of the mesoporous materials (e.g., porous silicon and silica) and nanocrystals in drug delivery applications. In addition, we present several recent examples of the significant potential of these materials for the pharmaceutical field.

  4. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems.

    PubMed

    Aboalnaja, Khaled Omer; Yaghmoor, Soonham; Kumosani, Taha Abdullah; McClements, David Julian

    2016-09-01

    The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.

  5. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals.

    PubMed

    McClements, David Julian; Xiao, Hang

    2014-07-25

    The oral bioavailability of many lipophilic bioactive agents (pharmaceuticals and nutraceuticals) is limited due to various physicochemical and physiological processes: poor release from food or drug matrices; low solubility in gastrointestinal fluids; metabolism or chemical transformation within the gastrointestinal tract; low epithelium cell permeability. The bioavailability of these agents can be improved by specifically designing food matrices that control their release, solubilization, transport, metabolism, and absorption within the gastrointestinal tract. This article discusses the impact of food composition and structure on oral bioavailability, and how this knowledge can be used to design excipient foods for improving the oral bioavailability of lipophilic bioactives. Excipient foods contain ingredients or structures that may have no bioactivity themselves, but that are able to promote the bioactivity of co-ingested bioactives. These bioactives may be lipophilic drugs in pharmaceutical preparations (such as capsules, pills, or syrups) or nutraceuticals present within food matrices (such as natural or processed foods and beverages).

  6. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers.

    PubMed

    Hou, Jian; Wang, Jing; Sun, E; Yang, Lei; Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2016-11-01

    An effective anti-cancer drug, icariside II (IS), has been used to treat a variety of cancers in vitro. However, its poor aqueous solubility and permeability lead to low oral bioavailability. The aim of this work was to use Solutol®HS15 and Pluronic F127 as surfactants to develop novel mixed micelles to enhance the oral bioavailability of IS by improving permeability and inhibiting efflux. The IS-loaded mixed micelles were prepared using the method of ethanol thin-film hydration. The physicochemical properties, dissolution property, oral bioavailability of the male SD rats, permeability and efflux of Caco-2 transport models, and gastrointestinal safety of the mixed micelles were evaluated. The optimized IS-loaded mixed micelles showed that at 4:1 ratio of Solutol®HS15 and Pluronic F127, the particle size was 12.88 nm with an acceptable polydispersity index of 0.172. Entrapment efficiency (94.6%) and drug loading (9.7%) contributed to the high solubility (11.7 mg/mL in water) of IS, which increased about 900-fold. The SF-IS mixed micelle release profile showed a better sustained release property than that of IS. In Caco-2 cell monolayer models, the efflux ratio dramatically decreased by 83.5%, and the relative bioavailability of the mixed micelles (AUC 0-∞ ) compared with that of IS (AUC 0-∞ ) was 317%, indicating potential for clinical application. In addition, a gastrointestinal safety assay also provided reliable clinical evidence for the safe use of this micelle.

  7. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin.

    PubMed

    Ji, Hongyu; Tang, Jingling; Li, Mengting; Ren, Jinmei; Zheng, Nannan; Wu, Linhua

    2016-01-01

    The present study was to formulate curcumin solid lipid nanoparticles (Cur-SLNs) with P-gp modulator excipients, TPGS and Brij78, to enhance the solubility and bioavailability of curcumin. The formulation was optimized by Plackett-Burman screening design and Box-Behnken experiment design. Then physiochemical properties, entrapment efficiency and in vitro release of Cur-SLNs were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of Cur-SLNs on the bioavailability and intestinal absorption of curcumin. The optimized formulations showed an average size of 135.3 ± 1.5 nm with a zeta potential value of -24.7 ± 2.1 mV and 91.09% ± 1.23% drug entrapment efficiency, meanwhile displayed a sustained release profile. In vivo pharmacokinetic study showed AUC0→t for Cur-SLNs was 12.27-folds greater than curcumin suspension and the relative bioavailability of Cur-SLNs was 942.53%. Meanwhile, Tmax and t(1/2) of curcumin for Cur-SLNs were both delayed comparing to the suspensions (p < 0.01). The in situ intestinal absorption study revealed that the effective permeability (Peff) value of curcumin for SLNs was significantly improved (p < 0.01) comparing to curcumin solution. Cur-SLNs with TPGS and Brij78 could improve the oral bioavailability and intestinal absorption of curcumin effectively.

  8. The oral bioavailability and toxicokinetics of methylmercury in common loon (Gavia immer) chicks

    USGS Publications Warehouse

    Fournier, F.; Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Hines, R.K.

    2002-01-01

    We compared the toxicokinetics of methylmercury in captive common loon chicks during two time intervals to assess the impact of feather growth on the kinetics of mercury. We also determined the oral bioavailability of methylmercury during these trials to test for age-related changes. The blood concentration-time curves for individuals dosed during feather development (initiated 35 days post hatch) were best described by a one-compartment toxicokinetic model with an elimination half-life of 3 days. The data for birds dosed following completion of feather growth (84 days post hatch) were best fitted by a two-compartment elimination model that includes an initial rapid distribution phase with a half-life of 0.9 days, followed by a slow elimination phase with a half-life of 116 days. We determined the oral bioavailability of methylmercury during the first dosing interval by comparing the ratios of the area under the blood concentration-time curves (AUC0→∞) for orally and intravenously dosed chicks. The oral bioavailability of methylmercury during the first dosing period was 0.83. We also determined bioavailability during both dosing periods using a second measure because of irregularities with intravenous results in the second period. This second bioavailability measure estimated the percentage of the dose that was deposited in the blood volume (f), and the results show that there was no difference in bioavailability among dosing periods. The results of this study highlight the importance of feather growth on the toxicokinetics of methylmercury.

  9. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo

    PubMed Central

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  10. Formation and functional attributes of electrostatic complexes involving casein and anionic polysaccharides: An approach to enhance oral absorption of lycopene in rats in vivo.

    PubMed

    Jain, Ashay; Thakur, Deepika; Ghoshal, Gargi; Katare, O P; Singh, Bhupinder; Shivhare, U S

    2016-12-01

    The current work entails a novel strategy of formulating the microparticles of lycopene solely using rational blends of biopolymers without using equipment-intensive techniques. The study is intended to enhance oral bioavailability of lycopene by controlling its release from micro-formulation and facilitating its absorption though lymphatic pathways. Considering the minimum particle size, maximum entrapment efficiency and loading capacity, the amounts of casein (i.e., protein) and gum tragacanth (i.e., polysaccharide) were selected as the critical factors for formulation of microparticles. Complex formation and electrostatic interaction was confirmed by Fourier transform infra red (FTIR) spectra. Size and surface properties of microparticles were studied using scanning electron microscopy (SEM). The optimized formulation (mean particle size: ∼130μm; % entrapment efficiency: ∼67% and loading capacity: ∼71%) designated noticeable improvement in lycopene release profile (over 80% in 24h). Increment in the values of C max (2.22-fold) and AUC (1.97-fold) further indicated noteworthy augmentation in the rate and extent of bioavailability by the microparticles formulation compared to plain lycopene. The resulting formulation was found to be quite stable all through two months of study episode. The resultant microparticles formulation was evaluated for antioxidant activity and tested for their effectiveness in self life enhancement of vegetable oil by calculating peroxide value under temperature and storage condition. Encapsulation strongly increased the stability of micronutrients. The current investigations, therefore, report the successful development of biopolymeric microparticles with improved bioavailability potential of lycopene. Copyright © 2016. Published by Elsevier B.V.

  11. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols.

    PubMed

    Hu, Bing; Liu, Xixia; Zhang, Chunlan; Zeng, Xiaoxiong

    2017-01-01

    Diet polyphenols-primarily categorized into flavonoids (e.g., flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones) and nonflavonoids (with major subclasses of stilbenes and phenolic acids)-are reported to have health-promoting effects, such as antioxidant, antiinflammatory, anticarcinoma, antimicrobial, antiviral, and cardioprotective properties. However, their applications in functional foods or medicine are limited because of their inefficient systemic delivery and poor oral bioavailability. Epigallocatechin-3-gallate, curcumin, and resveratrol are the well-known representatives of the bioactive diet polyphenols but with poor bioavailability. Food macromolecule based nanoparticles have been fabricated using reassembled proteins, crosslinked polysaccharides, protein-polysaccharide conjugates (complexes), as well as emulsified lipid via safe procedures that could be applied in food. The human gastrointestinal digestion tract is the first place where the food grade macromolecule nanoparticles exert their effects on improving the bioavailability of diet polyphenols, via enhancing their solubility, preventing their degradation in the intestinal environment, elevating the permeation in small intestine, and even increasing their contents in the bloodstream. We contend that the stability and structure behaviors of nanocarriers in the gastrointestinal tract environment and the effects of nanoencapsulation on the metabolism of polyphenols warrant more focused attention in further studies. Copyright © 2016. Published by Elsevier B.V.

  12. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers.

    PubMed

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2015-08-30

    Formulation development of poorly water-soluble compounds can be challenging because of incomplete dissolution that causes low and variable bioavailability. Enhancing compound solubility is important and many techniques have been investigated to that end, but they require specific materials and machinery. This study investigates the incorporation of a pH-modifier as a method to increase compound solubility and uses ketoconazole (KZ), which is weakly basic (pKa: 6.5), as a model compound. Organic acids are effective pH-modifiers and are generally used in pharmaceutical industries. We successfully obtained granules containing variable organic acids (KZ/acid granule) using a high-shear mixer. Dissolution tests of the KZ/acid granule resulted in highly enhanced solubility under non-sink conditions. Adding water-soluble acids, such as citric acid (CA) and tartaric acid, resulted in more than 8-fold higher dissolution at pH 6.0 compared to that of KZ only. The granules containing citric acid (KZ/CA granule) improved the dissolution of KZ after oral administration to rats under low gastric acid conditions, where the bioavailability of the KZ/CA granules at elevated gastric pH was comparable with that of KZ only at gastric acidic pH. The incorporation of organic acids would result in effective therapeutic outcomes independent of gastric pH in patients. In addition, higher bioavailability of KZ was observed after oral administration of KZ/CA granules under gastric acidic pH conditions than that of KZ alone. Thus, CA improved the dissolution and absorption rate of KZ after oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Animal versus human oral drug bioavailability: Do they correlate?

    PubMed Central

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J.D.; Liu, Bo; Rostami Hodjegan, Amin

    2014-01-01

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction. PMID:23988844

  14. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon.

  15. The effects of inhibiting cytochrome P450 3A, p-glycoprotein, and gastric acid secretion on the oral bioavailability of methadone in dogs.

    PubMed

    Kukanich, B; Lascelles, B D X; Aman, A M; Mealey, K L; Papich, M G

    2005-10-01

    Methadone is an opioid, which has a high oral bioavailability (>70%) and a long elimination half-life (>20 h) in human beings. The purpose of this study was to evaluate the effects of ketoconazole [a CYP3A and p-glycoprotein (p-gp) inhibitor] and omeprazole (an H+,K(+)-ATPase proton-pump inhibitor) on oral methadone bioavailability in dogs. Six healthy dogs were used in a crossover design. Methadone was administered i.v. (1 mg/kg), orally (2 mg/kg), again orally following oral ketoconazole (10 mg/kg q12 h for two doses), and following omeprazole (1 mg/kg p.o. q12 h for five doses). Plasma concentrations of methadone were analyzed by high-pressure liquid chromatography or fluorescence polarization immunoassay. The mean +/- SD for the elimination half-life, volume of distribution, and clearance were 1.75 +/- 0.25 h, 3.46 +/- 1.09 L/kg, and 25.14 +/- 9.79 mL/min.kg, respectively following i.v. administration. Methadone was not detected in any sample following oral administration alone or following oral administration with omeprazole. Following administration with ketoconazole, detectable concentrations of methadone were present in one dog with a 29% bioavailability. MDR-1 genotyping, encoding p-gp, was normal in all dogs. In contrast to its pharmacokinetics humans, methadone has a short elimination half-life, rapid clearance, and low oral bioavailability in dogs and the extent of absorption is not affected by inhibition of CYP3A, p-gp, and gastric acid secretion.

  16. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.

    PubMed

    Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L

    2013-01-01

    The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.

  17. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study.

    PubMed

    Gora, Shayana; Mustafa, Gulam; Sahni, Jasjeet Kaur; Ali, Javed; Baboota, Sanjula

    2016-01-01

    The purpose of the present study was to formulate and evaluate nanosuspension of Valsartan (VAL), a poorly water soluble and low bioavailable drug (solubility of 0.18 mg mL(-1); 23% of oral bioavailability) with the aim of improving the aqueous solubility thus the bioavailability and consequently better anti-hypertensive activity. Valsartan nanosuspension (VAL-NS) was prepared using high-pressure homogenization followed by lyophilisation. The screening of homogenization factors influencing nanosuspension was done by 3-factorial, 3-level Box-Behnken statistical design. Model suggested the influential role of homogenization pressure and cycles on drug nanosizing. The optimized formulation containing Poloxamer(-1)88 (PXM 188) was homogenized for 2 cycles at 500 and 1000 bar, followed by 5 cycles at 1500 bars. The size analysis and transmission electron microscopy showed nanometric size range and uniform shape of the nanosuspension. The in vitro dissolution showed an enhanced release of VAL from nanosuspension (VAL-NS) compared to physical mixture with PXM 188. Pharmacodynamic results showed that, oral administration of VAL-NS significantly lowered (p ≤ 0.001) blood pressure in comparison to non-homogenized VAL (VAL-Susp) in Wistar rat. The level of VAL in rat plasma treated with VAL-NS showed significant difference (p ≤ 0.005) in Cmax (1627.47 ± 112.05 ng mL(-1)), Tmax (2.00 h) and AUC0→24 (13279.2 ± 589.426 ng h mL(-1)) compared to VAL-Susp that was found to be 1384.73 ± 98.76 ng mL(-1), 3.00 h and 9416.24 ± 218.48 ng h mL(-1) respectively. The lower Tmax value, proved the enhanced dissolution rate of VAL. The overall results proved that newly developed VAL-NS increased the plasma bioavailability and pharmacodyanamic potential over the reference formulation containing crude VAL.

  18. [Effect of Radix euphorbiae pekinensis extract on bioavailability of paclitaxel after their oral co-administration].

    PubMed

    Li, Minghua; Peng, Li; Yang, Fuheng; Liu, Sijia; Wang, Shengqi

    2015-06-01

    To evaluate the effect of Radix euphorbiae pekinensis extract on the permeability and bioavailability of paclitaxel co-administered orally. Based on Ussing Chamber and in vivo experiment, the permeability and bioavailability of paclitaxel were evaluated after oral co-administration with radix euphorbiae pekinensis in rats. The contents of paclitaxel in the permeates and the blood samples were determined using HPLC and LC-MS/MS method, respectively. In Radix euphorbiae pekinensis co-administration group, the Papp of the mucosal-to-serosal (M-S) transport or serosal-to-mucosal transport (S-M) of paclitaxel in the jejunum or ileum segment differed significantly from those in verapamil co-administration group and blank control group (P<0.05), but the Papp of S-M transport in the colon showed no significant difference from that in the blank control group. In the blank group, the average absolute bioavailability (AB%) of orally administered paclitaxel was only 2.81%, compared to that of 7.63% in radix euphorbiae pekinensis group. The average AB% in verapamil group was about 1.5 times that of the blank group. Co-administration of Radix euphorbiae pekinensis extract can increase the bioavailability of orally administered paclitaxel.

  19. Evaluation of polymer carriers with regard to the bioavailability enhancement of bifendate solid dispersions prepared by hot-melt extrusion.

    PubMed

    Feng, Jia; Xu, Lishuang; Gao, Renchao; Luo, Yanfei; Tang, Xing

    2012-06-01

    The aim of this study was to evaluate several polymer carriers with regard to the bioavailability enhancement of bifendate solid dispersions (SD) prepared by hot-melt extrusion (HME) and select the most appropriate polymer carrier. Solid dispersions containing bifendate in different polymers, including Plasdone(®) S-630, Eudragit(®) EPO and Kollidon(®) VA 64 were prepared by hot-melt extrusion. Differential scanning calorimetry (DSC), Powder X-ray diffraction (XRD) and dissolution testing were used to characterize the systems. Then, the thermal degradation during the HME process and the storage stability of tablets consisting of bifendate-Kollidon(®) VA 64 SD were investigated. Finally, the oral bioavailability of bifendate dosage forms with bifendate-Plasdone(®) S-630 (1/9), bifendate-Eudragit(®) EPO (1/4) and bifendate-Kollidon(®) VA 64 (1/9) SD in beagle dogs was compared with that of commercially available benfidate pills. DSC and XDR analysis showed the dispersion of the drug in the polymer on a molecular basis or in the amorphous state. The drug release from both bifendate-Plasdone(®) S-630 SD and bifendate-Eudragit(®) EPO SD was up to more than 90% with the pH 1.2 simulated gastric fluid as the dissolution medium, while the relative bioavailability was just 87.8 ± 51.8% and 110 ± 62% compared with commercial pills, respectively. The directly compressed tablets with bifendate-Kollidon(®) VA 64 SD were found to dissolve rapidly over 95% within 30 min and the relative bioavailability was 145.0 ± 35.2%. The bioavailability of water-insoluble bifendate was markedly enhanced by dispersing the drug in the polymer carrier Kollidon(®) VA 64 employing HME technology.

  20. Chronic Exposure to Deoxynivalenol Has No Influence on the Oral Bioavailability of Fumonisin B1 in Broiler Chickens

    PubMed Central

    Antonissen, Gunther; Devreese, Mathias; Van Immerseel, Filip; De Baere, Siegrid; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2015-01-01

    Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. PMID:25690690

  1. Aluminum bioavailability from the approved food additive leavening agent acidic sodium aluminum phosphate, incorporated into a baked good, is lower than from water.

    PubMed

    Yokel, Robert A; Florence, Rebecca L

    2006-10-03

    There are estimates of oral aluminum (Al) bioavailability from drinking water, but little information on Al bioavailability from foods. Foods contribute approximately 95% and drinking water 1-2% of the typical human's daily Al intake. The objectives were to estimate oral Al bioavailability from a representative food containing the food additive acidic sodium aluminum phosphate (acidic SALP), a leavening agent in baked goods. Rats were acclimated to a special diet that resulted in no stomach contents 14 h after its withdrawal. They were trained to rapidly consume a biscuit containing 1.5% acidic SALP. Oral Al bioavailability was then determined from a biscuit containing 1% or 2% acidic SALP, synthesized to contain (26)Al. The rats received concurrent (27)Al infusion. Blood was repeatedly withdrawn and serum analyzed for (26)Al by accelerator mass spectrometry. Total Al was determined by atomic absorption spectrometry. Oral (26)Al bioavailability was determined from the area under the (26)Al, compared to (27)Al, serum concentrationxtime curves. Oral Al bioavailability (F) from biscuit containing 1% or 2% acidic (26)Al-SALP averaged approximately 0.11% and 0.13%; significantly less than from water, which was previously shown to be approximately 0.3%. The time to maximum serum (26)Al concentration was 4.2 and 6h after consumption of biscuit containing 1% or 2% (26)Al-acidic SALP, respectively, compared to 1-2h following (26)Al in water. These results of oral Al bioavailability from acidic (26)Al-SALP in a biscuit (F approximately 0.1%) and results from (26)Al in water (F approximately 0.3%) x the contributions of food and drinking water to the typical human's daily Al intake ( approximately 5-10mg from food and 0.1mg from water, respectively) suggest food provides approximately 25-fold more Al to systemic circulation, and potential Al body burden, than does drinking water.

  2. Enhancement of the Oral Bioavailability of Fexofenadine Hydrochloride via Cremophor® El-Based Liquisolid Tablets

    PubMed Central

    Yehia, Soad Ali; El-Ridi, Mohamed Shafik; Tadros, Mina Ibrahim; El-Sherif, Nolwa Gamal

    2015-01-01

    Purpose: The current work aimed to develop promising Fexofenadine hydrochloride (FXD) liquisolid tablets able to increase its oral bioavailability and shorten time to reach maximum plasma concentrations (Tmax). Methods: Eighteen liquisolid powders were developed based on 3 variables; (i) vehicle type [Propylene glycol (PG) or Cremophor® EL (CR)], (ii) carrier [Avicel® PH102] to coat [Aerosil® 200] ratio (15, 20, 25) and (iii) FXD concentration in vehicle (30, 35, 40 %, w/w). Pre-compression studies involved identification of physicochemical interactions and FXD crystallinity (FT-IR, DSC, XRD), topographic visualization (SEM) and estimation of flow properties (angle of repose, Carr’s index, Hausner’s ratio). CR-based liquisolid powders were compressed as liquisolid tablets (LST 9 – 18) and evaluated for weight-variation, drug-content, friability-percentage, disintegration-time and drug-release. The pharmacokinetics of LST-18 was evaluated in healthy volunteers relative to Allegra® tablets. Results: Pre-compression studies confirmed FXD dispersion in vehicles, conversion to amorphous form and formation of liquisolid powders. CR-based liquisolid powders showed acceptable-to-good flow properties suitable for compaction. CR-based LSTs had appropriate physicochemical properties and short disintegration times. Release profile of LST-18 showed a complete drug release within 5 min. Conclusion: LST-18 succeeded in increasing oral FXD bioavailability by 62% and reducing Tmax to 2.16 h. PMID:26819931

  3. Bioavailability of the Yuzpe and levonorgestrel regimens of emergency contraception: vaginal vs. oral administration.

    PubMed

    Kives, Sari; Hahn, Philip M; White, Emily; Stanczyk, Frank Z; Reid, Robert L

    2005-03-01

    Separate crossover studies compared the bioavailability of oral vs. vaginal routes of administration for the Yuzpe (n=5) and levonorgestrel regimens (n=4) of emergency contraception. Twice the standard dose of the Yuzpe regimen (200 microg of ethinyl estradiol, 1000 microg of levonorgestrel) or the levonorgestrel regimen (1500 microg of levonorgestrel) was self-administered vaginally. One week later, each subject received orally the standard dose of the assigned medication. Serial blood samples were collected over 24 h and assayed for levonorgestrel and ethinyl estradiol (for the Yuzpe regimen only). Paired t tests were used to compare oral vs. vaginal administration for maximum concentration (Cmax), time to maximum concentration (Tmax) and area under the curve over 24 h (AUC0-24). Relative bioavailability (vaginal/oral) was derived from AUC0-24. Vaginal administration of double the standard dose of the Yuzpe regimen resulted in a lower Cmax (vaginal=5.4 vs. oral=14.6 ng/mL, p=.038) and a later Tmax (5.9 vs. 2.0 h, p=.066) for levonorgestrel, compared to oral administration. Corresponding ethinyl estradiol concentrations were higher (786 vs. 391 pg/mL, p=.039) and peaked later (4.0 vs. 1.9 hr, p=.154) with vaginal administration. Relative bioavailabilities for levonorgestrel and ethinyl estradiol were 58% and 175%, respectively. Similarly, vaginal administration of the levonorgestrel regimen resulted in a lower Cmax (vaginal=5.4 vs. oral=15.2 ng/mL, p=.006) and a later Tmax (7.4 vs. 1.3 h, p=.037) for levonorgestel, compared to oral administration. The relative bioavailability was 62%. Our preliminary data suggest that vaginal administration of these emergency contraception regimens appears to require at least three times the standard oral dose to achieve equivalent systemic levonorgestrel concentrations.

  4. Bioavailability of voriconazole in hospitalised patients.

    PubMed

    Veringa, Anette; Geling, Sanne; Span, Lambert F R; Vermeulen, Karin M; Zijlstra, Jan G; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2017-02-01

    An important element in antimicrobial stewardship programmes is early switch from intravenous (i.v.) to oral antimicrobial treatment, especially for highly bioavailable drugs. The antifungal agent voriconazole is available both in i.v. and oral formulations and bioavailability is estimated to be >90% in healthy volunteers, making this drug a suitable candidate for such a transition. Recently, two studies have shown that the bioavailability of voriconazole is substantially lower in patients. However, for both studies various factors that could influence the voriconazole serum concentration, such as inflammation, concomitant intake of food with oral voriconazole, and gastrointestinal complications, were not included in the evaluation. Therefore, in this study a retrospective chart review was performed in adult patients treated with both oral and i.v. voriconazole at the same dose and within a limited (≤5 days) time interval in order to evaluate the effect of switching the route of administration on voriconazole serum concentrations. A total of 13 patients were included. The mean voriconazole trough concentration was 2.28 mg/L [95% confidence interval (CI) 1.29-3.26 mg/L] for i.v. voriconazole administration and 2.04 mg/L (95% CI 0.78-3.30 mg/L) for oral administration. No significant difference was found in the mean oral and i.v. trough concentrations of voriconazole (P = 0.390). The mean bioavailability was 83.0% (95% CI 59.0-107.0%). These findings suggest that factors other than bioavailability may cause the observed difference in voriconazole trough concentrations between oral and i.v. administration in the earlier studies and stress the need for an antimicrobial stewardship team to guide voriconazole dosing. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  6. Korean red ginseng extract enhances paclitaxel distribution to mammary tumors and its oral bioavailability by P-glycoprotein inhibition.

    PubMed

    Bae, Jin Kyung; Kim, You-Jin; Chae, Hee-Sung; Kim, Do Yeun; Choi, Han Seok; Chin, Young-Won; Choi, Young Hee

    2017-05-01

    1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.

  7. Enhanced oral bioavailability and antiasthmatic efficacy of curcumin using redispersible dry emulsion.

    PubMed

    Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Lee, Kooyeon

    2014-01-01

    Dry emulsion containing curcumin (DE-CUR) was prepared for oral delivery of poorly water-soluble curcumin, and its oral bioavailability and antiasthmatic efficacy was evaluated. After comparison of the solubility of curcumin in various oils, Plurol® Oleique CC497 was selected to be the oil phase due to its higher solubility of CUR than other oils. A dry emulsion prepared by spray-drying of a homogenized oil-in-water emulsion was well-reconstituted in water, fabricating similar particle distribution and in vitro release to that of a dispersed homogeneous emulsion before spraying. The release of DE-CUR was much higher than that of curcumin (85.3 vs. 1.7% release at 60 min). Consequently, DE-CUR resulted in 12.0- and 7.1-fold higher Cmax and AUC0-24h than curcumin. In a murine asthma model, DE-CUR effectively suppressed airway hyperresponsiveness and levels of T-helper cytokines such as interleukin-4, inteleukin-5, and interleukin-13. These findings demonstrate that the DE-CUR shows a potential for the development of functional foods or medicines including CUR.

  8. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.

    PubMed

    Szymusiak, Magdalena; Hu, Xiaoyu; Leon Plata, Paola A; Ciupinski, Paulina; Wang, Zaijie Jim; Liu, Ying

    2016-09-10

    Curcumin is a bioactive molecule extracted from Turmeric roots that has been recognized to possess a wide variety of important biological activities. Despite its great pharmacological activities, curcumin is highly hydrophobic, which results in poor bioavailability. We have formulated this hydrophobic compound into stable polymeric nanoparticles (nano-curcumin) to enhance its oral absorption. Pharmacokinetic analysis after oral delivery of nano-curcumin in mice demonstrated approximately 20-fold reduction in dose requirement when compared to unformulated curcumin to achieve comparable plasma and central nervous system (CNS) tissue concentrations. This investigation corroborated our previous study of curcumin functionality of attenuating opioid tolerance and dependence, which shows equivalent efficacy of low-dose (20mg/kg) nano-curcumin and high-dose (400mg/kg) pure curcumin in mice. Furthermore, the highly selective and validated liquid chromatography-mass spectrometry (LC-MS) method was developed to quantify curcumin glucuronide, the major metabolite of curcumin. The results suggest that the presence of curcumin in the CNS is essential for prevention and reversal of opioid tolerance and dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  10. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Pharmacokinetics and bioavailability of denaverine hydrochloride in healthy subjects following intravenous, oral and rectal single doses.

    PubMed

    Staab, Alexander; Schug, Barbara S; Larsimont, Véronique; Elze, Martina; Thümmler, Daniela; Mutschler, Ernst; Blume, Henning

    2003-02-01

    The neurotropic-musculotropic spasmolytic agent denaverine hydrochloride is used mainly in the treatment of smooth muscle spasms of the gastrointestinal and urogenital tract. Despite its commercial availability as a solution for intravenous or intramuscular administration (ampoule) and as a suppository formulation, no pharmacokinetic data in man was available to date. Therefore, the objectives of this clinical trial were to determine the basic pharmacokinetic parameters of denaverine after intravenous administration, to assess the feasibility of using the oral route of administration and to characterise the bioavailability of the suppository formulation. To achieve this, healthy subjects received 50 mg denaverine hydrochloride intravenously, orally and rectally in aqueous solutions and rectally as suppository in an open, randomised crossover design. Total body clearance, volume of distribution at steady-state and half-life of denaverine are 5.7 ml/min per kg, 7.1 l/kg and 33.8 h, respectively. The absolute bioavailability after oral administration of an aqueous solution is 37%. First-pass metabolism leading to the formation of N-monodemethyl denaverine was found to be one reason for the incomplete bioavailability after oral administration. Rectal administration of an aqueous solution of denaverine hydrochloride resulted in a decreased rate (median of C(max) ratios: 26%, difference in median t(max) values: 1.9 h) and extent (31%) of bioavailability compared to oral administration. Using the suppository formulation led to a further reduction in rate (median of C(max) ratios: 30%, difference in median t(max) values: 3 h) and extent (42%) of bioavailability compared to the rectal solution.

  12. Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [13C8]‐evacetrapib as a tracer

    PubMed Central

    Aburub, Aktham; Ward, Chris; Hinds, Chris; Czeskis, Boris; Ruterbories, Kenneth; Suico, Jeffrey G.; Royalty, Jane; Ortega, Demetrio; Pack, Brian W.; Begum, Syeda L.; Annes, William F.; Lin, Qun; Small, David S.

    2015-01-01

    This open‐label, single‐period study in healthy subjects estimated evacetrapib absolute bioavailability following simultaneous administration of a 130‐mg evacetrapib oral dose and 4‐h intravenous (IV) infusion of 175 µg [13C8]‐evacetrapib as a tracer. Plasma samples collected through 168 h were analyzed for evacetrapib and [13C8]‐evacetrapib using high‐performance liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameter estimates following oral and IV doses, including area under the concentration‐time curve (AUC) from zero to infinity (AUC[0‐∞]) and to the last measureable concentration (AUC[0‐tlast]), were calculated. Bioavailability was calculated as the ratio of least‐squares geometric mean of dose‐normalized AUC (oral : IV) and corresponding 90% confidence interval (CI). Bioavailability of evacetrapib was 44.8% (90% CI: 42.2–47.6%) for AUC(0‐∞) and 44.3% (90% CI: 41.8–46.9%) for AUC(0‐tlast). Evacetrapib was well tolerated with no reports of clinically significant safety assessment findings. This is among the first studies to estimate absolute bioavailability using simultaneous administration of an unlabeled oral dose with a 13C‐labeled IV microdose tracer at about 1/1000th the oral dose, with measurement in the pg/mL range. This approach is beneficial for poorly soluble drugs, does not require additional toxicology studies, does not change oral dose pharmacokinetics, and ultimately gives researchers another tool to evaluate absolute bioavailability. PMID:26639670

  13. Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [(13) C8 ]-evacetrapib as a tracer.

    PubMed

    Cannady, Ellen A; Aburub, Aktham; Ward, Chris; Hinds, Chris; Czeskis, Boris; Ruterbories, Kenneth; Suico, Jeffrey G; Royalty, Jane; Ortega, Demetrio; Pack, Brian W; Begum, Syeda L; Annes, William F; Lin, Qun; Small, David S

    2016-05-30

    This open-label, single-period study in healthy subjects estimated evacetrapib absolute bioavailability following simultaneous administration of a 130-mg evacetrapib oral dose and 4-h intravenous (IV) infusion of 175 µg [(13) C8 ]-evacetrapib as a tracer. Plasma samples collected through 168 h were analyzed for evacetrapib and [(13) C8 ]-evacetrapib using high-performance liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameter estimates following oral and IV doses, including area under the concentration-time curve (AUC) from zero to infinity (AUC[0-∞]) and to the last measureable concentration (AUC[0-tlast ]), were calculated. Bioavailability was calculated as the ratio of least-squares geometric mean of dose-normalized AUC (oral : IV) and corresponding 90% confidence interval (CI). Bioavailability of evacetrapib was 44.8% (90% CI: 42.2-47.6%) for AUC(0-∞) and 44.3% (90% CI: 41.8-46.9%) for AUC(0-tlast ). Evacetrapib was well tolerated with no reports of clinically significant safety assessment findings. This is among the first studies to estimate absolute bioavailability using simultaneous administration of an unlabeled oral dose with a (13) C-labeled IV microdose tracer at about 1/1000(th) the oral dose, with measurement in the pg/mL range. This approach is beneficial for poorly soluble drugs, does not require additional toxicology studies, does not change oral dose pharmacokinetics, and ultimately gives researchers another tool to evaluate absolute bioavailability. © 2015 The Authors Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons Ltd.

  14. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats.

    PubMed

    Alalaiwe, Ahmed; Roberts, Georgia; Carpinone, Paul; Munson, John; Roberts, Stephen

    2017-11-01

    Metallic nanoparticles can be produced in a variety of shapes, sizes, and surface chemistries, making them promising potential tools for drug delivery. Most studies to date have evaluated uptake of metallic nanoparticles from the GI tract with methods that are at best semi-quantitative. This study used the classical method of comparing blood concentration area under the curve (AUC) following intravenous and oral doses to determine the oral bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold nanoparticles (AuNPs). Male rats were given a single intravenous dose (0.8 mg/kg) or oral (gavage) dose (8 mg/kg) of a PEG-coated AuNP, and the concentration of gold was measured in blood over time and in tissues (liver, spleen and kidney) at sacrifice. Blood concentrations following oral administration were inversely related to PEG size, and the AUC in blood was significantly greater for the 1 kDa PEG-coated AuNPs than particles coated with 2 or 5 kDa PEG. However, bioavailabilities of all of the particles were very low (< 0.1%). Concentrations in liver, spleen and kidney were similar after the intravenous doses, but kidney showed the highest concentrations after an oral dose. In addition to providing information on the bioavailability of AuNPs coated with PEG in the 1-5 kDa range, this study demonstrates the utility of applying the blood AUC approach to assess the quantitative oral bioavailability of metallic nanoparticles.

  15. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability.

    PubMed

    Onoue, Satomi; Takahashi, Haruki; Kawabata, Yohei; Seto, Yoshiki; Hatanaka, Junya; Timmermann, Barbara; Yamada, Shizuo

    2010-04-01

    Considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders, however, the therapeutic potential of curcumin could often be limited by its poor solubility, bioavailability, and photostability. To overcome these drawbacks, efficacious formulations of curcumin, including nanocrystal solid dispersion (CSD-Cur), amorphous solid dispersion (ASD-Cur), and nanoemulsion (NE-Cur), were designed with the aim of improving physicochemical and pharmacokinetic properties. Physicochemical properties of the prepared formulations were characterized by scanning/transmission electron microscope for morphological analysis, laser diffraction, and dynamic light scattering for particle size analysis, and polarized light microscope, powder X-ray diffraction and differential scanning calorimetry for crystallinity assessment. In dissolution tests, all curcumin formulations exhibited marked improvement in the dissolution behavior when compared with crystalline curcumin. Significant improvement in pharmacokinetic behavior was observed in the newly developed formulations, as evidenced by 12- (ASD-Cur), 16- (CSD-Cur), and 9-fold (NE-Cur) increase of oral bioavailability. Upon photochemical characterization, curcumin was found to be photoreactive and photodegradable in the solution state, possibly via type 2 photochemical reaction, whereas high photochemical stability was seen in the solid formulations, especially CSD-Cur. On the basis of these observations, taken together with dissolution and pharmacokinetic behaviors, CSD strategy would be efficacious to enhance bioavailability of curcumin with high photochemical stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  16. [Bioavailability and factors influencing its rate].

    PubMed

    Vraníková, Barbora; Gajdziok, Jan

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  17. Recent Advances in Delivery Systems and Therapeutics of Cinnarizine: A Poorly Water Soluble Drug with Absorption Window in Stomach

    PubMed Central

    Pathak, Kamla

    2014-01-01

    Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain. PMID:25478230

  18. Duloxetine loaded-microemulsion system to improve behavioral activities by upregulating serotonin and norepinephrine in brain for the treatment of depression.

    PubMed

    Sindhu, Pardeep; Kumar, Shobhit; Iqbal, Babar; Ali, Javed; Baboota, Sanjula

    2018-04-01

    Duloxetine is a well-known antidepressant molecule which is used in the treatment of depression but due to poor solubility it suffers with the drawback of low oral bioavailability. The objective of present work was to formulate and characterize duloxetine loaded microemulsion to enhance the oral bioavailability. Prepared microemulsion was studied for droplet size, zeta potential, refractive index, polydispersity index (PDI), percentage transmittance, viscosity and in vitro release study. Optimized microemulsion (D1) showed spherical droplets with mean diameter of 35.40 ± 3.11 nm, PDI of 0.170 and zeta potential values of -25.8 mV. Formulation showed good transmittance (greater than 99%), viscosity (0.205 Pa s) and refractive index (1.43 ± 0.01). Increased duloxetine release was obtained with microemulsion in comparison to drug suspension. Behavioral tests like mobility test, tail suspension test and forced swimming test performed in depressed and treated rats with duloxetine microemulsion significantly improved the behavioral activities in comparison to duloxetine suspension. Pharmacokinetic studies showed that microemulsion exhibited 1.8 times increment in bioavailability in comparison to duloxetine suspension. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium.

    PubMed

    Zidan, Mohamed F; Ibrahim, Hany M; Afouna, Mohsen I; Ibrahim, Elsherbeny A

    2018-08-01

    The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7 ± 12.9 to 423 ± 15.9 nm while zeta potential values varied from -21.7 ± 0.90 to -22.7 ± 0.85 mV. The loading capacity varied from 17.9 ± 1.21 to 34.1 ± 1.16%. DSC, FT-IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p < .05) in total cholesterol, triglyceride, LDL-C and increased level of beneficial HDL-C along with improvement in the associated liver steatosis as confirmed through photomicrographs of liver sections. In this study, we confirmed that complexation of AC with NS would be a viable approach for improving oral bioavailability and in vivo performance of AC.

  20. Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe

    PubMed Central

    Rashid, Rehmana; Kim, Dong Wuk; Yousaf, Abid Mehmood; Mustapha, Omer; Din, Fakhar ud; Park, Jong Hyuck; Yong, Chul Soon; Oh, Yu-Kyoung; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The objective of this study was to compare the physicochemical characteristics, solubility, dissolution, and oral bioavailability of an ezetimibe-loaded solid self-nanoemulsifying drug delivery system (SNEDDS), surface modified solid dispersion (SMSD), and solvent evaporated solid dispersion (SESD) to identify the best drug delivery system with the highest oral bioavailability. Methods For the liquid SNEDDS formulation, Capryol 90, Cremophor EL, and Tween 80 were selected as the oil, surfactant, and cosurfactant, respectively. The nanoemulsion-forming region was sketched using a pseudoternary phase diagram on the basis of reduced emulsion size. The optimized liquid SNEDDS was converted to solid SNEDDS by spray drying with silicon dioxide. Furthermore, SMSDs were prepared using the spray drying technique with various amounts of hydroxypropylcellulose and Tween 80, optimized on the basis of their drug solubility. The SESD formulation was prepared with the same composition of optimized SMSD. The aqueous solubility, dissolution, physicochemical properties, and pharmacokinetics of all of the formulations were investigated and compared with the drug powder. Results The drug existed in the crystalline form in SMSD, but was changed into an amorphous form in SNEDDS and SESD, giving particle sizes of approximately 24, 6, and 11 µm, respectively. All of these formulations significantly improved the aqueous solubility and dissolution in the order of solid SNEDDS ≥ SESD > SMSD, and showed a total higher plasma concentration than did the drug powder. Moreover, SESD gave a higher area under the drug concentration time curve from zero to infinity than did SNEDDS and SMSD, even if they were not significantly different, suggesting more improved oral bioavailability. Conclusion Among the various formulations tested in this study, the SESD system would be strongly recommended as a drug delivery system for the oral administration of ezetimibe with poor water solubility. PMID:26491288

  1. Pharmacokinetic Evaluation of Improved Oral Bioavailability of Valsartan: Proliposomes Versus Self-Nanoemulsifying Drug Delivery System.

    PubMed

    Nekkanti, Vijaykumar; Wang, Zhijun; Betageri, Guru V

    2016-08-01

    The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.

  2. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  3. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs.

    PubMed

    Ni, Jiang; Tian, Fengchun; Dahmani, Fatima Zohra; Yang, Hui; Yue, Deren; He, Shuwang; Zhou, Jianping; Yao, Jing

    2016-11-01

    The low oral bioavailability of numerous drugs has been mostly attributed to the significant effect of P-gp-mediated efflux on intestinal drug transport. Herein, we developed mixed polymeric micelles (MPMs) comprised of curcumin-carboxymethyl chitosan (CNC) conjugate, as a potential inhibitor of P-gp-mediated efflux and gastrointestinal absorption enhancer, and low-molecular-weight heparin-all-trans-retinoid acid (LHR) conjugate, as loading material, with the aim to improve the oral absorption of P-gp substrate drugs. CNC conjugate was synthesized by chemical bonding of curcumin (Cur) and carboxymethyl chitosan (CMCS) taking advantage of the inhibition of intestinal P-gp-mediated secretion by Cur and the intestinal absorption enhancement by CMCS. The chemical structure of CNC conjugate was characterized by 1 H NMR with a degree of substitution of Cur of 4.52-10.20%. More importantly, CNC conjugate markedly improved the stability of Cur in physiological pH. Cyclosporine A-loaded CNC/LHR MPMs (CsA-CNC/LHR MPMs) were prepared by dialysis method, with high drug loading 25.45% and nanoscaled particle size (∼200 nm). In situ single-pass perfusion studies in rats showed that both CsA + CNC mixture and CsA-CNC/LHR MPMs achieved significantly higher K a and P eff than CsA suspension in the duodenum and jejunum segments (p <  0.01), which was comparable to verapamil coperfusion effect. Similarly, CsA + CNC mixture and CsA-CNC/LHR MPMs significantly increased the oral bioavailability of CsA as compared to CsA suspension. These results suggest that CNC conjugate might be considered as a promising gastrointestinal absorption enhancer, while CNC/LHR MPMs had the potential to improve the oral absorption of P-gp substrate drugs.

  4. Aluminum bioavailability from drinking water is very low and is not appreciably influenced by stomach contents or water hardness.

    PubMed

    Yokel, R A; Rhineheimer, S S; Brauer, R D; Sharma, P; Elmore, D; McNamara, P J

    2001-03-21

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intragastric 26Al in the absence and presence of food in the stomach and with or without concomitant calcium (Ca) and magnesium (Mg) at concentrations found in hard drinking water. The use of 26Al enables the study of Al pharmacokinetics at physiological Al concentrations without interference from 27Al in the environment or the subject. 27Al was intravenously administered throughout the study. Repeated blood withdrawal enabled determination of oral 26Al bioavailability from the area under its serum concentrationxtime curve compared to serum 27Al concentration in relation to its infusion rate. Oral Al bioavailability averaged 0.28%. The presence of food in the stomach and Ca and Mg in the water that contained the orally dosed 26Al appeared to delay but not significantly alter the extent of 26Al absorption. The present and published results suggest oral bioavailability of Al from drinking water is very low, about 0.3%. The present results suggest it is independent of stomach contents and water hardness.

  5. Phase behavior and oral bioavailability of amorphous Curcumin.

    PubMed

    Pawar, Yogesh B; Shete, Ganesh; Popat, Dharmesh; Bansal, Arvind K

    2012-08-30

    Amorphous form has been used as a means to improve aqueous solubility and oral bioavailability of poorly water soluble drugs. The objective of present study was to characterize thermodynamic and kinetic parameters of amorphous form of Curcumin (CRM-A). CRM-A was found to be a good glass former with glass transition temperature (T(g)) of 342.64K and critical cooling rate below 1K/min. CRM-A had a moderate tendency of crystallization and exhibited Kauzmann temperature (T(KS)) of 294.23 K. CRM-A was found to be fragile in nature as determined by T(m)/T(g) (1.32), C(p)(1 iq):C(p)(glass) (1.22), strength parameter (D<10), fragility index (m>75), T(K)/T(g) (0.85), and T(g)-T(K) (48.41). Theoretically predicted aqueous solubility advantage of 43.15-folds, was reduced to 17-folds under practical conditions. This reduction in solubility was attributed to water induced devitrification, as evident through PXRD and SEM analysis. Further, oral bioavailability study of CRM-A was undertaken to investigate bioavailability benefits, if any. C(max) was improved by 1.97-folds (statistically significant difference over control). However, oral bioavailability (AUC(0-)(∞)) was improved by 1.45-folds (statistically non significant difference over control). These observations pointed towards role of rapid devitrification of CRM-A in GIT milieu, thus limiting its oral bioavailability advantage. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system.

    PubMed

    Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping

    2012-01-01

    Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor(®) EL:Transcutol(®) P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin.

  7. Peptide pills for brain diseases? Reality and future perspectives.

    PubMed

    Serrano Lopez, Dolores Remedios; Lalatsa, Aikaterini

    2013-04-01

    The peptide therapeutic market is one of the fastest growth areas of the pharmaceutical industry. Although few orally administered peptides are marketed and many are in different phases of clinical development, there is no marketed oral peptide therapeutic used for CNS disorders. The major challenges involved in orally delivering peptides to the brain relate to their enzymatic instability and inability to permeate across physiological barriers. The paucity of therapies for the treatment of brain diseases and the presence of the blood-brain barrier excluding 98% of therapeutic molecules necessitates parenteral administration. Various approaches have been applied to enhance oral peptide bioavailability, but only nanoparticulate strategies were able to deliver orally therapeutic peptides to the brain. Although industry may be reluctant to invest in developing oral peptide nanomedicines, the increasingly unmet clinical need and economic burden associated with brain diseases will fuel the development of the first marketed oral-to-brain peptide therapy.

  8. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.

    PubMed

    Yu, Hailong; Huang, Qingrong

    2012-05-30

    Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.

  9. Pharmacokinetics of three formulations of ondansetron hydrochloride in healthy volunteers: 24-mg oral tablet, rectal suppository, and i.v. infusion.

    PubMed

    VanDenBerg, C M; Kazmi, Y; Stewart, J; Weidler, D J; Tenjarla, S N; Ward, E S; Jann, M W

    2000-06-01

    The absolute bioavailability and pharmacokinetics of three formulations of ondansetron hydrochloride 24 mg--an oral tablet, an intravenous solution, and an extemporaneous rectal suppository--were studied. Twelve healthy, nonsmoking volunteers (six men and six women) were given ondansetron in a study with a three-way cross-over design. All subjects received each dosage form on the same day in the following order: oral tablet, rectal suppository, and intravenous infusion. Administrations were separated by one week. Blood sampling times varied, depending on the administration route. Mean absolute bioavailability for the oral tablet and the rectal suppository differed significantly. Absorption of ondansetron was prolonged when it was administered as the rectal suppository. Absolute bioavailability for the 24-mg tablet was similar to that for other tablet strengths in previous studies. All subjects completed the study without significant adverse effects. Absorption of ondansetron from the rectal suppository was prolonged compared with the oral tablet and the i.v. infusion. Bioavailability for the 24-mg suppository formulation was considerably lower than for the 24-mg tablet.

  10. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    PubMed

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  11. Effect of dose and dosage interval on the oral bioavailability of docetaxel in combination with a curcumin self-emulsifying drug delivery system (SEDDS).

    PubMed

    Yan, Yi-Dong; Marasini, Nirmal; Choi, Young Keun; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han Gon

    2012-09-01

    The present study investigated the effects of a curcumin self-emulsifying drug delivery systems (SEDDS) on the pharmacokinetics of orally administered docetaxel in rats. A single dose of docetaxel was orally administered (30 mg/kg) alone or after oral curcumin SEDDS (25, 50, 100 and 150 mg/kg) administration with time intervals of 0, 15 and 30 min, respectively. After oral administration, the C (max) and the area under the plasma concentration-time curve (AUC) of docetaxel were significantly increased (0 min, p < 0.05; 15 and 30 min, p < 0.01) by 2.2, 4.7 and 4.6 times and 2.0, 3.8 and 4.1 times compared to that of control group, respectively, after treatment with curcumin SEDDS (100 mg/kg) for each interval. Moreover, The C (max) of docetaxel was increased by 2.6 and 4.4 times in response to 25 and 50 mg/kg curcumin SEDDS treatment, respectively, the corresponding AUC was increased by about 2.4 and 3.1 times, and consequently the absolute bioavailabilities of docetaxel in these two treatment groups were 7.9 and 10.4%, respectively, which showed a significant increase of about 2.4- and 3.2-fold in comparison to the control value (3.3%). However, no further increase in either AUC or C (max) values of docetaxel was observed as the curcumin SEDDS dose was increased from 50 to 150 mg/kg. It is worth noting that the presence of curcumin SEDDS did not significantly decrease the systemic clearance, which was shown by the almost unchanged terminal half-life (t (1/2)) of docetaxel in all treatment groups. Thus, the enhanced bioavailability of oral docetaxel by curcumin SEDDS seemed to be likely due to an inhibition function of cytochrome P450 (CYP) 3A and P-glycoprotein (Pgp) in the intestines of the rats. However, further in vivo studies are needed to verify these hypotheses.

  12. Thiolated chitosan: development and in vivo evaluation of an oral delivery system for leuprolide.

    PubMed

    Iqbal, Javed; Shahnaz, Gul; Perera, Glen; Hintzen, Fabian; Sarti, Federica; Bernkop-Schnürch, Andreas

    2012-01-01

    The aim of the present study was to develop an oral delivery system for the peptide drug leuprolide. Gel formulations based on unmodified chitosan/reduced glutathione (GSH) and chitosan-thioglycolic acid (chitosan-TGA)/GSH were prepared, and their effect on the absorption of leuprolide was evaluated in vitro and in vivo in male Sprague Dawley rats. Transport studies were performed with freshly excised rat intestinal mucosa mounted in Ussing-type chambers. Due to the addition of gel formulations comprising 0.5% (m/v) unmodified chitosan/0.5% (m/v) GSH and 0.5% (m/v) chitosan-TGA/0.5% (m/v) GSH, the transport of leuprolide across excised mucosa was improved up to 2.06-fold and 3.79-fold, respectively, in comparison with leuprolide applied in buffer (P(app)=2.87 ± 0.77 × 10⁻⁶ cm/s). In vivo, the addition of oral gel formulation comprising 8 mg of unmodified chitosan, 1mg of GSH and 1mg of leuprolide increased the area under the plasma concentration-time curve (AUC₀₋₈) of leuprolide 1.39-fold in comparison with leuprolide having been administered just in saline. Moreover, the administration of oral gel formulation comprising 8 mg of chitosan-TGA, 1mg of GSH and 1mg of leuprolide resulted in a further enhanced leuprolide plasma concentration, and the area under the plasma concentration-time curve (AUC₀₋₈) of leuprolide was increased 3.72-fold in comparison with the control. With the oral gel formulation comprising 8 mg of chitosan-TGA, a relative bioavailability (versus s.c. injection) of 4.5% was achieved in contrast to the control displaying a relative bioavailability of 1.2%. Thus, according to the achieved results, it is suggested that chitosan-TGA in combination with GSH is a valuable tool for improving the oral bioavailability of the peptide drug leuprolide. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Antifungal activity of osthol in vitro and enhancement in vivo through Eudragit S100 nanocarriers

    PubMed Central

    Li, Lin-peng; Wang, Xiao-juan; Zhang, Jin-Yu; Zhang, Lu-lu; Cao, Yong-bing; Gu, Li-qun; Yu, Yi-qun; Yang, Qi-lian; Shen, Chun-ying; Han, Bing; Jiang, Yuan-ying

    2018-01-01

    ABSTRACT In vitro interaction of osthol (Ost) and fluconazole (FLC) was investigated against 11 fluconazole-resistant clinical isolates of Candida albicans. Synergistic activities were determined using the checkerboard microdilution assay. The results of agar diffusion test confirmed the synergistic interaction. We used an enteric material Eudragit S100 for preparation of Ost nanoparticle (Ost-NP) to improve the oral bioavailability, biological activity of Ost. The physicochemical characteristics of Ost-S100-NP revealed Ost-S100-NP with mean particle size of 55.4±0.4 nm, encapsulation efficiency of 98.95±0.06%, drug loading efficiency of 23.89±0.25%, yield of 98.5±0.1% and a polydispersity index (PDI) of 0.165. As the Ost concentration-time curve showed, Ost-S100-NP can increase the plasma concentration and relative bioavailability of Ost compared with Ost-suspension by oral administration. In vivo, Ost-S100-NP enhanced the therapeutic efficacy of Ost against FLC-resistant C. albicans in immunosuppressed candidiasis mice model. The available information strongly suggests that Ost-S100-NP may be used as a promising compound against drug-resistant fungi. PMID:28795862

  14. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles.

    PubMed

    Xie, Shuyu; Pan, Baoliang; Wang, Ming; Zhu, Luyan; Wang, Fenghua; Dong, Zhao; Wang, Xiaofang; Zhou, WenZhong

    2010-07-01

    The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug. PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy. Pharmacokinetics were studied after oral, subcutaneous and intramuscular administration in mice. The diameter, polydispersivity index, zeta potential, encapsulation efficiency and loading capacity of the nanoparticles were 344.0 +/- 15.1 nm, 0.31 +/- 0.08, -16.7 +/- 0.5 mV, 62.17 +/- 6.53% and 12.43 +/- 1.31%, respectively. In vitro release of PZQ-loaded HCO-SLN exhibited an initial burst release followed by a sustained release. SLN increased the bioavailability of PZQ by 14.9-, 16.1- and 2.6-fold, and extended the mean residence time of the drug from 7.6, 6.6 and 8.2 to 95.9, 151.6 and 48.2 h after oral, subcutaneous and intramuscular administration, respectively. The PZQ-loaded HCO-SLN could be a promising formulation to enhance the pharmacological activity of PZQ.

  15. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics

    PubMed Central

    Fatouh, Ahmed M; Elshafeey, Ahmed H; Abdelbary, Ahmed

    2017-01-01

    Purpose Agomelatine is a novel antidepressant drug suffering from an extensive first-pass metabolism leading to a diminished absolute bioavailability. The aim of the study is: first to enhance its absolute bioavailability, and second to increase its brain delivery. Methods To achieve these aims, the nasal route was adopted to exploit first its avoidance of the hepatic first-pass metabolism to increase the absolute bioavailability, and second the direct nose-to-brain pathway to enhance the brain drug delivery. Solid lipid nanoparticles were selected as a drug delivery system to enhance agomelatine permeability across the blood–brain barrier and therefore its brain delivery. Results The optimum solid lipid nanoparticles have a particle size of 167.70 nm ±0.42, zeta potential of −17.90 mV ±2.70, polydispersity index of 0.12±0.10, entrapment efficiency % of 91.25%±1.70%, the percentage released after 1 h of 35.40%±1.13% and the percentage released after 8 h of 80.87%±5.16%. The pharmacokinetic study of the optimized solid lipid nanoparticles revealed a significant increase in each of the plasma peak concentration, the AUC(0–360 min) and the absolute bioavailability compared to that of the oral suspension of Valdoxan® with the values of 759.00 ng/mL, 7,805.69 ng⋅min/mL and 44.44%, respectively. The optimized solid lipid nanoparticles gave a drug-targeting efficiency of 190.02, which revealed more successful brain targeting by the intranasal route compared with the intravenous route. The optimized solid lipid nanoparticles had a direct transport percentage of 47.37, which indicates a significant contribution of the direct nose-to-brain pathway in the brain drug delivery. Conclusion The intranasal administration of agomelatine solid lipid nanoparticles has effectively enhanced both the absolute bioavailability and the brain delivery of agomelatine. PMID:28684900

  16. Transepithelial Transport of Curcumin in Caco-2 Cells Is significantly Enhanced by Micellar Solubilisation.

    PubMed

    Frank, Jan; Schiborr, Christina; Kocher, Alexa; Meins, Jürgen; Behnam, Dariush; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2017-03-01

    Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min -1  cm -2 , respectively). This resulted in a higher P app value of 2.11 × 10 -6  cm/s for Sol-CUR compared to a P app value of 0.56 × 10 -6  cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.

  17. Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L.

    PubMed

    Xie, Yan; Luo, Huilin; Duan, Jingze; Hong, Chao; Ma, Ping; Li, Guowen; Zhang, Tong; Wu, Tao; Ji, Guang

    2014-03-01

    Total flavones of Hippophae rhamnoides L. (TFH) have a clinical use in the treatment of cardiac disease. The pharmacological effects of TFH are attributed to its major flavonoid components, isorhamnetin, kaempferol, and quercetin. However, poor oral bioavailability of these flavonoids limits the clinical applications of TFH. This study explores phytic acid (IP6) enhancement of the oral absorption in rats of isorhamnetin, kaempferol, and quercetin in TFH. In vitro Caco-2 cell experiments and in vivo pharmacokinetic studies were performed to investigate the effects of IP6. The aqueous solubility and lipophilicity of isorhamnetin, quercetin, and kaempferol were determined with and without IP6, and mucosal epithelial damage resulting from IP6 addition was evaluated by MTT assays and morphology observations. The Papp of isorhamnetin, kaempferol, and quercetin was improved 2.03-, 1.69-, and 2.11-fold in the presence of 333 μg/mL of IP6, respectively. Water solubility was increased 22.75-, 15.15-, and 12.86-fold for isorhamnetin, kaempferol, and quercetin, respectively, in the presence of 20mg/mL IP6. The lipophilicity of the three flavonoids was slightly decreased, but their hydrophilicity was increased after the addition of IP6 in the water phase as the logP values of isorhamnetin, kaempferol, and quercetin decreased from 2.38±0.12 to 1.64±0.02, from 2.57±0.20 to 2.01±0.04, and from 2.39±0.12 to 1.15±0.01, respectively. The absorption enhancement ratios were 3.21 for isorhamnetin, 2.98 for kaempferol, and 1.64 for quercetin with co-administration of IP6 (200 mg/kg) in rats. In addition, IP6 (200 mg/kg, oral) caused neither significant irritation to the rat intestines nor cytotoxicity (400 μg/mL) in Caco-2 cells. The oral bioavailability of isorhamnetin, kaempferol, and quercetin in TFH was enhanced by the co-administration of IP6. The main mechanisms are related to their enhanced aqueous solubility and permeability in the presence of IP6. In summary, IP6 is a potential absorption enhancer for pharmaceutical formulations that is both effective and safe. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparison of oral toxicological properties of botulinum neurotoxin serotypes A and B.

    PubMed

    Cheng, Luisa W; Henderson, Thomas D

    2011-07-01

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated proteins (NAPs), forming large complexes that have been shown to play important roles in oral toxicity. Using mouse intraperitoneal and oral models of botulism, we determined the dose response to both BoNT/B holotoxin and complex toxins, and compared the toxicities of BoNT/B and BoNT/A complexes. Although serotype A and B complexes have similar NAP composition, BoNT/B formed larger-sized complexes, and was approximately 90 times more lethal in mouse oral intoxications than BoNT/A complexes. When normalized by mean lethal dose, mice orally treated with high doses of BoNT/B complex showed a delayed time-to-death when compared with mice treated with BoNT/A complex. Furthermore, we determined the effect of various food matrices on oral toxicity of BoNT/A and BoNT/B complexes. BoNT/B complexes showed lower oral bioavailability in liquid egg matrices when compared to BoNT/A complexes. In summary, our studies revealed several factors that can either enhance or reduce the toxicity and oral bioavailability of BoNTs. Dissecting the complexities of the different BoNT serotypes and their roles in foodborne botulism will lead to a better understanding of toxin biology and aid future food risk assessments. Published by Elsevier Ltd.

  19. Bioavailabilities of rectal and oral methadone in healthy subjects

    PubMed Central

    Dale, Ola; Sheffels, Pamela; Kharasch, Evan D

    2004-01-01

    Aims Rectal administration of methadone may be an alternative to intravenous and oral dosing in cancer pain, but the bioavailability of the rectal route is not known. The aim of this study was to compare the absolute rectal bioavailability of methadone with its oral bioavailability in healthy humans. Methods Seven healthy subjects (six males, one female, aged 20–39 years) received 10 mg d5-methadone-HCl rectally (5 ml in 20% glycofurol) together with either d0-methadone intravenously (5 mg) or orally (10 mg) on two separate occasions. Blood samples for the LC-MS analyses of methadone and it's metabolite EDDP were drawn for up to 96 h. Noninvasive infrared pupillometry was peformed at the same time as blood sampling. Results The mean absolute rectal bioavalability of methadone was 0.76 (0.7, 0.81), compared to 0.86 (0.75, 0.97) for oral administration (mean (95% CI)). Rectal absorption of methadone was more rapid than after oral dosing with Tmax values of 1.4 (0.9, 1.8) vs. 2.8 (1.6, 4.0) h. The extent of formation of the metabolite EDDP did not differ between routes of administration. Single doses of methadone had a duration of action of at least 10 h and were well tolerated. Conclusions Rectal administration of methadone results in rapid absorption, a high bioavailability and long duration of action. No evidence of presystemic elimination was seen. Rectal methadone has characteristics that make it a potential alternative to intravenous and oral administration, particularly in cancer pain and palliative care. PMID:15255797

  20. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus.

    PubMed

    Yu, Qin; Hu, Xiongwei; Ma, Yuhua; Xie, Yunchang; Lu, Yi; Qi, Jianping; Xiang, Li; Li, Fengqian; Wu, Wei

    2016-05-01

    The main purpose of this study was to improve the oral bioavailability of sirolimus (SRL), a poorly water-soluble immunosuppressant, by encapsulating into lipids-based nanostructured lipid carriers (NLCs). SRL-loaded NLCs (SRL-NLCs) were prepared by a high-pressure homogenization method with glycerol distearates (PRECIROL ATO-5) as the solid lipid, oleic acid as the liquid lipids, and Tween 80 as the emulsifier. The SRL-NLCs prepared under optimum conditions was spherical in shape with a mean particle size of about 108.3 nm and an entrapment efficiency of 99.81%. In vitro release of SRL-NLCs was very slow, about 2.15% at 12 h, while in vitro lipolysis test showed fast digestion of the NLCs within 1 h. Relative oral bioavailability of SRL-NLCs in Beagle dogs was 1.81-folds that of the commercial nanocrystalline sirolimus tablets Rapamune®. In conclusion, the NLCs show potential to improve the oral bioavailability of SRL.

  1. Lipids in the Stomach - Implications for the Evaluation of Food Effects on Oral Drug Absorption.

    PubMed

    Koziolek, Mirko; Carrière, Frédéric; Porter, Christopher J H

    2018-02-08

    Food effects on oral drug bioavailability can have significant impact on the provision of safe and reliable oral pharmacotherapy. A mechanistic understanding of the events that contribute to the occurrence of food effects is therefore critical. An increased oral bioavailability is often seen for poorly water-soluble drugs after co-administration with lipids, including lipids in food, and is commonly explained by the ability of lipids to enhance drug solubility in intestinal luminal fluids. In contrast, the impact of lipids on drug solubilisation in the stomach has received less attention. This is in spite of the fact that lipid digestion is initiated in the stomach by human gastric lipase and that gastric events also initiate emulsification of lipids in the gastrointestinal tract. The stomach therefore acts to 'pre-process' lipids for subsequent events in the intestine and may significantly affect downstream events at intestinal drug absorption sites. In this article, the mechanisms by which lipids are processed in the stomach are reviewed and the potential impact of these processes on drug absorption discussed. Attention is also focused on in vitro methods that are used to assess gastric processing of lipids and their application to better understand food effects on drug release and absorption.

  2. Improvement of lipophilicity and membrane transport of cefuroxime using in vitro models.

    PubMed

    Mrestani, Yahya; Mrestani-Klaus, Carmen; Bretschneider, Beate; Neubert, Reinhard H H

    2004-11-01

    Most beta-lactam antibiotics cannot be absorbed orally and, therefore, must be administered intravenously (i.v.) or intramuscularly (i.m.). Because of the obvious drawbacks of drug delivery by injection, the development of alternatives with enhanced oral bioavailability is receiving much attention in pharmaceutical research. Cefuroxime exhibiting significant advantages in the parental treatment of common infections, was used as model drug in the present study. The effect of the cationic absorption enhancers (four quaternary ammonium salts) on the lipophilicity of cefuroxime was investigated by means of the n-octanol/water system. The results on partitioning coefficients in the n-octanol/buffer system were confirmed using an in vitro transport model with artificial (dodecanol collodium membrane) and biological membranes (Charles-River guinea pig).

  3. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: an attempt to enhance its oral bioavailability

    PubMed Central

    Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Khan, Shahzeb; Faidah, Hani S; Naseemullah; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul

    2017-01-01

    Background Silibinin has gained in importance in the past few decades as a hepatoprotector and is used widely as oral therapy for toxic liver damage, liver cirrhosis, and chronic inflammatory liver diseases, as well as for the treatment of different types of cancers. Unfortunately, it has low aqueous solubility and inadequate dissolution, which results in low oral bioavailability. Materials and methods In this study, nanoparticles (NPs) of silibinin, which is a hydrophobic drug, were manufactured using two cost-effective methods. Antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN) were used. The prepared NPs were characterized using different analytical techniques such as scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffractometry (XRD) and were sifted for their bioavailability through in vitro dissolution and solubility studies. Moreover, the prepared NPs were evaluated for antimicrobial activity against a battery of bacteria and yeast. Results DSC and XRD studies indicated that the prepared NPs were amorphous in nature, with more solubility and dissolution compared to the crystalline form of this drug. NPs prepared through the EPN method had better results than those prepared using the APSP method. Antimicrobial activities of the NPs were improved compared to the unprocessed drugs, while having comparable activities to standard antimicrobial drugs. Conclusion Results indicate that the NPs have significantly increased solubility, dissolution rate, and antimicrobial activities due to the conversion of crystalline structure into amorphous form. PMID:28553075

  4. Preparation and pharmacokinetics in beagle dogs of ganershu sustained-release pellets

    PubMed Central

    Pan, Jin-huo; Wang, Jian-chun; Jiang, Zhi-tao; Zhang, Ting; Ge, Shao-bo; Zhang, Ye-xia; Jin, Xin; Yan, Guo-jun

    2014-01-01

    Background: The active ingredients of Ganershu compound recipe, which are effective for hepatitis treatment in liver protection and transaminase reduction. However, the active ingredients of Ganershu compound recipe are poor absorption, which conduct it has a low oral bioavailability. Objective: We prepared Ganershu sustained-release pellets (GSPs) by fluidized-bed on central composite design-response surface methodology and increase its bioavailability in beagle dogs. Materials and Methods: In this study, GSPs were successfully prepared. The Drug-loaded pellets and sustained-release coated were carried out in fluidized-bed machine. GSP was optimized for fitting release, roundness, and the overall desirability by central composite design-response surface methodology. Results: To optimize cumulative release profile, the outermost ethyl cellulose coating layer and the hydroxypropyl methyl cellulose (HPMC) swelling layer were employed, which were respectively given coating levels in terms of weight gain of 22% and 6%, the concentration of HPMC is 4.5% (g/ml). The pharmacokinetics of Ganershu normal pellets (GNPs) and GSP was studied in beagle dogs after oral administration. The naringenin as an index, the area under the curve0-∞ of naringenin in GSP was 1.38 times greater than that of GNP. Meanwhile, Tmax of GSP was prolonged for about 74%. Conclusion: This study can clearly indicate that we enhanced the oral bioavailability of Ganershu by preparing the GSP, which had the sustained dissolution and improved the potential of it for clinical application. PMID:25210307

  5. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone.

    PubMed

    Gadalla, Hytham H; Soliman, Ghareb M; Mohammed, Fergany A; El-Sayed, Ahmed M

    2016-09-01

    The colon is a promising target for drug delivery owing to its long transit time of up to 78 h, which is likely to increase the time available for drug absorption. Progesterone has a short elimination half-life and undergoes extensive first-pass metabolism, which results in very low oral bioavailability (∼25%). To overcome these shortcomings, we developed an oral multiparticulate system for the colonic delivery of progesterone. Zn-pectinate/chitosan microparticles were prepared by ionotropic gelation and characterized for their size, shape, weight, drug entrapment efficiency, mucoadhesion and swelling behavior. The effect of cross-linking pH, cross-linking time and chitosan concentration on progesterone release were also studied. Spherical microparticles having a diameter of 580-720 µm were obtained. Drug entrapment efficiency of ∼75-100% was obtained depending on the microparticle composition. Microparticle mucoadhesive properties were dependent on the pectin concentration, as well as the cross-linking pH. Progesterone release in simulated gastric fluids was minimal (3-9%), followed by burst release at pH 6.8 and a sustained phase at pH 7.4. The in vivo study revealed that the microparticles significantly increased progesterone residence time in the plasma and increased its relative bioavailability to ∼168%, compared to the drug alone. This study confirms the potential of Zn-pectinate/chitosan microparticles as a colon-specific drug delivery system able to enhance the oral bioavailability of progesterone or similar drugs.

  6. Stabilization of a non-aqueous self-double-emulsifying delivery system of rutin by fat crystals and nonionic surfactants: preparation and bioavailability study.

    PubMed

    Wang, Qiang; Huang, Juan; Hu, Caibiao; Xia, Nan; Li, Tong; Xia, Qiang

    2017-07-19

    Literature examples of non-aqueous Pickering emulsions stabilized by fat crystals are very rare. Moreover, the applications of rutin are limited due to its low solubility in both water and oils (less than 0.10 mg g -1 and 0.25 mg g -1 , respectively). Thus, herein, we developed an optimum formulation of a non-aqueous self-double-emulsifying delivery system (SDEDS) containing rutin and evaluated its oral bioavailability. The new formulation stabilized by fat crystals (glycerol monostearate, GMS) and nonionic surfactants was prepared via a two-step emulsification process. The presence of a mixture of GMS crystals and nonionic surfactants effectively improves the stability of the emulsions. The non-aqueous SDEDS spontaneously forms oil-in-oil-in-water (O/O/W) double emulsions in the gastrointestinal environment with the inner oil phase mainly containing the active ingredients. It is stable at both 4 °C and 25 °C for 30 days and could enhance the dissolution properties of the active ingredients. Furthermore, the protection of rutin against digestion-mediated precipitation was observed when the formulation contained a high concentration of GMS crystals. The oral absolute bioavailability of rutin obtained from SDEDS (8.62%) is 1.76-fold higher than that of the actives suspension (4.90%). Thus, the non-aqueous SDEDS is an attractive candidate for the encapsulation of water-insoluble and simultaneously oil-insoluble nutrients (such as rutin) and for use in oral delivery applications.

  7. Improving Flavonoid Bioaccessibility using an Edible Oil-Based Lipid Nanoparticle for Oral Delivery.

    PubMed

    Ban, Choongjin; Park, So Jeong; Lim, Seokwon; Choi, Seung Jun; Choi, Young Jin

    2015-06-03

    To enhance the oral bioaccessibility of flavonoids, including quercetin, naringenin, and hesperetin, we prepared an edible oil-based lipid nanoparticle (LNP) system. Flavonoid-loaded LNPs were similar to the blank LNP in physicochemical characteristics (z average <154.8 nm, polydispersity index <0.17, and ζ potential < -40.8 mV), and their entrapment efficiency was >81% at 0.3 wt % flavonoid concentration of the lipid phase. In the simulated digestion assay (mouth, stomach, and small intestine), LNPs were hydrolyzed under small intestine conditions and protected successfully incorporated flavonoids (≥94%). Moreover, the relative bioaccessibility of flavonoids was >71%, which was otherwise <15%, although flavonoids were released rapidly from LNPs into the medium. In conclusion, since the flavonoids incorporated in LNPs were preserved well during oral digestion and had improved bioaccessibility, the designed LNP system may serve as an encapsulation strategy to enhance the bioavailability of nonbioaccessible nutraceuticals in foods.

  8. Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes.

    PubMed

    Rong, Wen-Ting; Lu, Ya-Peng; Tao, Qing; Guo, Miao; Lu, Yu; Ren, Yong; Yu, Shu-Qin

    2014-02-01

    The objective of the study was to evaluate the effect of hydroxypropyl-sulfobutyl-β-cyclodextrin (HP-SBE-βCD) on the bioavailability and intestinal absorption of edaravone, and identify its mechanism of action. We devised HP-SBE-βCD as a carrier and modulator of P-glycoprotein (Pgp) efflux pump, and edaravone as a model drug, and prepared edaravone/HP-SBE-βCD inclusion complex. HP-SBE-βCD improved the water solubility and enhanced the bioavailability of edaravone by 10.3-fold in rats. Then, in situ single-pass intestinal perfusion showed that HP-SBE-βCD had an effect of improving the permeability and inhibiting the efflux of edaravone. Furthermore, the effects of HP-SBE-βCD on Pgp were achieved through interfering with the lipid raft and depleting the cholesterol of enterocytes membrane. From the results, we presented the novel mechanisms. First, edaravone/HP-SBE-βCD had a lower release from the inclusion compound to protect edaravone from the low pH of the stomach. Then, HP-SBE-βCD modulated the membrane microenvironment of intestinal absorption epithelial cells. At last, the result was that HP-SBE-βCD enhanced the absorption of edaravone by interfering with Pgp. In conclusion, HP-SBE-βCD improves the bioavailability of drug not only because of its enhancing water solubility of the drug, but also because it modulates the Pgp-mediated efflux from enterocytes. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility

    EPA Science Inventory

    Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data comb...

  10. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system

    PubMed Central

    Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping

    2012-01-01

    Background Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. Methods A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. Results The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor® EL:Transcutol® P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. Conclusion The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin. PMID:22403491

  11. Absolute Bioavailability and Pharmacokinetics of Linezolid in Hospitalized Patients Given Enteral Feedings

    PubMed Central

    Beringer, Paul; Nguyen, Megan; Hoem, Nils; Louie, Stan; Gill, Mark; Gurevitch, Michael; Wong-Beringer, Annie

    2005-01-01

    Linezolid is a new antimicrobial agent effective against drug-resistant gram-positive pathogens which are common causes of infections in hospitalized patients. Many such patients rely on the intravenous or enteral route for nutrition and drug administration. Therefore, the bioavailability of linezolid administered enterally in the presence of enteral feedings in hospitalized patients was examined. Eighteen subjects were assessed in a randomized single-dose crossover study; 12 received continuous enteral feedings, while 6 did not (controls). Both groups received linezolid 600 mg intravenously and orally (control) or enterally, with the alternate route of administration separated by a 24-h washout period. Pharmacokinetic parameters derived from noncompartmental and compartmental analysis incorporating linear and nonlinear elimination pathways were compared between groups: F, Ka, Vs, K23, K32, Vmax, Km, and K20 (bioavailability, absorption rate constant, volume of central compartment normalized to body weight, intercompartmental rate constants, maximum velocity, Michaelis-Menten constant, and elimination rate constant, respectively). Pharmacokinetic (PK) data were available from 17 patients. The linezolid oral suspension was rapidly and completely absorbed by either the oral or enteral route of administration. Bioavailability was unaltered in the presence of enteral feedings. PK estimates remain similar regardless of the model applied. At the therapeutic dose used, only slight nonlinearity in elimination was observed. A linezolid oral suspension may be administered via the enteral route to hospitalized patients without compromise in its excellent bioavailability and rapid rate of absorption. Compartmental pharmacokinetic analysis offers a more flexible study application, since bioavailability (F) can be estimated directly with intermixed intravenous/oral doses without a need for a washout period. PMID:16127039

  12. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability.

    PubMed

    Abo Enin, Hadel A; Abdel-Bar, Hend Mohamed

    2016-11-01

    This study aims to illustrate the applicability of solid supersaturated self-nanoemulsifying drug delivery system (sat-SNEDDS) for the improvement of rosuvastatin calcium (RC) oral bioavailability. Different sat-SNEDDS were prepared by incorporating different ratios of RC into SNEDDS using tween80/PEG400 (77.2%) as surfactant/cosurfactant mixture and garlic /olive oil (22.8%) as oil phase. The prepared systems were characterized viz; size, zeta potential, TEM and stability. Various hydrophilic and hydrophobic carriers were employed to solidify the optimized RC sat-SNEDDS. The influence of the carrier was investigated by SEM, XRPD, DSC, flow properties, in vitro precipitation, drug release and oral bioavailability study. The adsorption of the stable positively charged nanocarrier RC sat-SNEDDS onto solid carriers provided free flowing amorphous powder. The carrier could amend the morphological architecture and in vitro release of the RC solid sat-SNEDDS. Hydrophobic carriers as microcrystalline cellulose 102 (MCC) showed superior physical characters and higher dissolution rate over hydrophilic carriers as maltodextrin with respective T 100% 30 min and 45 min. The rapid spontaneous emulsification, the positively nanosized MCC-sat-SNEDDS improved oral bioavailability of RC by 2.1-fold over commercial tablets. Solid MCC-sat-SNEDDS combined dual benefits of sat-SNEDDS and solid dosage form was successfully optimized to improve RC oral bioavailability.

  13. Bioavailability of Oral Hydrocortisone Corrected for Binding Proteins and Measured by LC-MS/MS Using Serum Cortisol and Salivary Cortisone.

    PubMed

    Johnson, T N; Whitaker, M J; Keevil, B; Ross, R J

    2018-01-01

    The assessment absolute bioavailability of oral hydrocortisone is complicated by its saturable binding to cortisol binding globulin (CBG). Previous assessment of bioavailability used a cortisol radioimmunoassay which has cross reactivity with other steroids. Salivary cortisone is a measure of free cortisol and LC-MS/MS is the gold standard method for measuring steroids. We here report the absolute bioavailability of hydrocortisone calculated using serum cortisol and salivary cortisone measured by LC-MS/MS. 14 healthy male dexamethasone suppressed volunteers were administered 20 mg hydrocortisone either intravenously or orally by tablet. Samples of serum and saliva were taken and measured for cortisol and cortisone by LC-MS/MS. Serum cortisol was corrected for saturable binding using published data and pharmacokinetic parameters derived using the program WinNonlin. The mean (95% CI) bioavailability of oral hydrocortisone calculated from serum cortisol, unbound serum cortisol and salivary cortisone was 1.00 (0.89-1.14); 0.88 (0.75-1.05); and 0.93 (0.83-1.05), respectively. The data confirm that, after oral administration, hydrocortisone is completely absorbed. The data derived from serum cortisol corrected for protein binding, and that from salivary cortisone, are similar supporting the concept that salivary cortisone reflects serum free cortisol levels and that salivary cortisone can be used as a non-invasive method for measuring the pharmacokinetics of hydrocortisone.

  14. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform.

    PubMed

    Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar

    2014-01-02

    Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo.

    PubMed

    Anand, Preetha; Nair, Hareesh B; Sung, Bokyung; Kunnumakkara, Ajaikumar B; Yadav, Vivek R; Tekmal, Rajeshwar R; Aggarwal, Bharat B

    2010-02-01

    Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, antiproliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon "as curcumin (NP)", was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid and more efficient cellular uptake than curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-kappaB activation and in suppression of NF-kappaB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin.

  16. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides.

    PubMed

    Batista, Patrícia; Castro, Pedro M; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela

    2018-03-01

    Bioactive proteins and peptides have been used with either prophylactic or therapeutic purposes, presenting inherent advantages as high specificity and biocompatibility. Nanocarriers play an important role in the stabilization of proteins and peptides, offering enhanced buccal permeation and protection while crossing the gastrointestinal tract. Moreover, preparation of nanoparticles as oral delivery systems for proteins/peptides may include tailored formulation along with functionalization aiming bioavailability enhancement of carried proteins or peptides. Oral delivery systems, namely buccal delivery systems, represent an interesting alternative route to parenteric delivery systems to carry proteins and peptides, resulting in higher comfort of administration and, therefore, compliance to treatment. This paper outlines an extensive overview of the existing publications on proteins/peptides oral nanocarriers delivery systems, with special focus on buccal route. Manufacturing aspects of most commonly used nanoparticles for oral delivery (e.g. polymeric nanoparticles using synthetic or natural polymers and lipid nanoparticles) advantages and limitations and potential applications of nanoparticles as proteins/peptides delivery systems will also be thoroughly addressed. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro.

    PubMed

    Vashisht, Monika; Rani, Payal; Onteru, Suneel Kumar; Singh, Dheer

    2017-11-01

    Exosomes, the extracellular secretary nano-vesicles, act as carriers of biomolecules to the target cells. They exhibit several attributes of an efficient drug delivery system. Curcumin, despite having numerous bioactive and therapeutic properties, has limited pharmaceutical use due to its poor water solubility, stability, and low systemic bioavailability. Hence, this study aims to enhance the therapeutic potential of curcumin, a model hydrophobic drug, by its encapsulation into milk exosomes. In the present study, we investigated the stability of free curcumin and exosomal curcumin in PBS and in vitro digestive processes. Additionally, their uptake and trans-epithelial transport were studied on Caco-2 cells. Curcumin in milk exosomes had higher stability in PBS, sustained harsh digestive processes, and crossed the intestinal barrier than free curcumin. In conclusion, the encapsulation of curcumin into the exosomes enhances its stability, solubility, and bioavailability. Therefore, the present study demonstrated that milk exosomes act as stable oral drug delivery vehicles.

  18. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach.

    PubMed

    Patil, Ganesh B; Patil, Nandkishor D; Deshmukh, Prashant K; Patil, Pravin O; Bari, Sanjay B

    2016-01-01

    Present invention relates to design of nanostructured lipid carriers (NLC) to augment oral bioavailability of Carvedilol (CAR). In this attempt, formulations of CAR-NLCs were prepared with glyceryl-monostearate (GMS) as a lipid, poloxamer 188 as a surfactant and tween 80 as a co-surfactant using high pressure homogenizer by 2(3) factorial design approach. Formed CAR-NLCs were assessed for various performance parameters. Accelerated stability studies demonstrated negligible change in particle size and entrapment efficiency, after storage at specified time up to 3 months. The promising findings in this investigation suggest the practicability of these systems for enhancement of bioavailability of drugs like CAR.

  19. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  20. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy

    PubMed Central

    Chen, Haijun; Yang, Zhengduo; Ding, Chunyong; Chu, Lili; Zhang, Yusong; Terry, Kristin; Liu, Huiling; Shen, Qiang; Zhou, Jia

    2013-01-01

    Fragment-based drug design (FBDD) is a promising approach for the generation of lead molecules with enhanced activity and especially drug-like properties against therapeutic targets. Herein, we report the fragment-based drug design, systematic chemical synthesis and pharmacological evaluation of novel scaffolds as potent anticancer agents by utilizing six privileged fragments from known STAT3 inhibitors. Several new molecules such as compounds 5, 12, and 19 that may act as advanced chemical leads have been identified. The most potent compound 5 (HJC0123) has demonstrated to inhibit STAT3 promoter activity, downregulate phosphorylation of STAT3, increase the expression of cleaved caspase-3, inhibit cell cycle progression and promote apoptosis in breast and pancreatic cancer cells with low micromolar to nanomolar IC50 values. Furthermore, compound 5 significantly suppressed estrogen receptor (ER)-negative breast cancer MDA-MB-231 xenograft tumor growth in vivo (p.o.), indicating its great potential as an efficacious and orally bioavailable drug candidate for human cancer therapy. PMID:23416191

  1. Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel.

    PubMed

    Jiang, Xing; Wang, Kaikai; Zhou, Zaigang; Zhang, Yifan; Sha, Huizi; Xu, Qiuping; Wu, Jie; Wang, Juan; Wu, Jinhui; Hu, Yiqiao; Liu, Baorui

    2017-06-24

    Paclitaxel (PTX) is a cytotoxic chemotherapy drug with encouraging activity in human malignancies. However, free PTX has a very low oral bioavailability due to its low aqueous solubility and the gastrointestinal drug barrier. In order to overcome this obstacle, we have designed erythrocyte membrane nanoparticles (EMNP) using sonication method. The permeability of PTX by EMNP was 3.5-fold (P app  = 0.425 nm/s) and 16.2-fold (P app  = 394.1 nm/s) higher than free PTX in MDCK-MDR1 cell monolayers and intestinal mucosal tissue, respectively. The in vivo pharmacokinetics indicated that the AUC 0-t (μg/mL·h) and C max (μg/mL) of EMNP were 14.2-fold and 6.0-fold higher than that of free PTX, respectively. In summary, the EMNP appears to be a promising nanoformulation to enhance the oral bioavailability of insoluble and poorly permeable drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lead Optimization Studies on FimH Antagonists: Discovery of Potent and Orally Bioavailable Ortho-substituted Biphenyl Mannosides

    PubMed Central

    Han, Zhenfu; Pinkner, Jerome S.; Ford, Bradley; Chorell, Erik; Crowley, Jan M.; Cusumano, Corinne K.; Campbell, Scott; Henderson, Jeffrey P.; Hultgren, Scott J.; Janetka, James W.

    2012-01-01

    Herein, we describe the X-ray structure-based design and optimization of biaryl mannoside FimH inhibitors. Diverse modifications to the biaryl ring to improve drug-like physical and pharmacokinetic properties of mannosides were assessed for FimH binding affinity based on their effects on hemagglutination and biofilm formation along with direct FimH binding assays. Substitution on the mannoside phenyl ring ortho to the glycosidic bond results in large potency enhancements of several-fold higher than corresponding unsubstituted matched pairs and can be rationalized from increased hydrophobic interactions with the FimH hydrophobic ridge (Ile13) or “tyrosine gate” (Tyr137 and Tyr48) also lined by Ile52. The lead mannosides have increased metabolic stability and oral bioavailability as determined from in vitro PAMPA predictive model of cellular permeability and in vivo pharmacokinetic studies in mice, thereby representing advanced preclinical candidates with promising potential as novel therapeutics for the clinical treatment and prevention of recurring urinary tract infections. PMID:22449031

  3. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L.

    PubMed

    Zhao, Guoying; Duan, Jingze; Xie, Yan; Lin, Guobei; Luo, Huilin; Li, Guowen; Yuan, Xiurong

    2013-07-01

    The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.

  4. Enhanced oral bioavailability of lurasidone by self-nanoemulsifying drug delivery system in fasted state.

    PubMed

    Miao, Yanfei; Sun, Jiqin; Chen, Guoguang; Lili, Ren; Ouyang, Pingkai

    2016-08-01

    The purpose of this work was to develop a new formulation to enhance the bioavailability and reduce the food effect of lurasidone using self-nanoemulsifying drug delivery systems (SNEDDSs). The formulation of lurasidone-SNEDDS was selected by the solubility and pseudo-ternary phase diagram studies. The prepared lurasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis, zeta potential and in vitro drug release. Lurasidone-SNEDDSs were administered to beagle dogs in fed and fasted state and their pharmacokinetics were compared to commercial available tablet as a control. The result showed lurasidone-SNEDDS was successfully prepared using Capmul MCM, Tween 80 and glycerol as oil phase, surfactant and co-surfactant, respectively. In vitro drug release studies indicated that the lurasidone-SNEDDS showed improved drug release profiles and the release behavior was not affected by the medium pH with total drug release of over 90% within 5 min. Pharmacokinetic study showed that the AUC(0-∞) and Cmax for lurasidone-SNEDDS are similar in the fasted and fed state, indicating essentially there is no food effect on the drug absorption. It was concluded that enhanced bioavailability and no food effect of lurasidone had been achieved by using SNEDDS.

  5. Pharmacokinetics of isochlorgenic acid C in rats by HPLC-MS: Absolute bioavailability and dose proportionality.

    PubMed

    Huang, Li Hua; Xiong, Xiao Hong; Zhong, Yun Ming; Cen, Mei Feng; Cheng, Xuan Ge; Wang, Gui Xiang; Zang, Lin Quan; Wang, Su Jun

    2016-06-05

    Isochlorgenic acid C (IAC), one of the bioactive compounds of Lonicera japonica, exhibited diverse pharmacological effects. However, its pharmacokinetic properties and bioavailability remained unresolved. To determine the absolute bioavailability in rats and the dose proportionality on the pharmacokinetics of single oral dose of IAC. A validated HPLC-MS method was developed for the determination of IAC in rat plasma. Plasma concentration versus time data were generated following oral and intravenous dosing. The pharmacokinetic analysis was performed using DAS 3.0 software analysis. Absolute bioavailability in rats was determined by comparing pharmacokinetic data after administration of single oral (5, 10 and 25mgkg(-1)) and intravenous (5mgkg(-1)) doses of IAC. The dose proportionality of AUC(0-∞) and Cmax were analyzed by linear regression. Experimental data showed that absolute oral bioavailability of IAC in rats across the doses ranged between 14.4% and 16.9%. The regression analysis of AUC(0-∞) and Cmax at the three doses (5, 10 and 25mgkg(-1)) indicated that the equations were y=35.23x+117.20 (r=0.998) and y=121.03x+255.74 (r=0.995), respectively. A new HPLC-MS method was developed to determine the bioavailability and the dose proportionality of IAC. Bioavailability of IAC in rats was poor and both Cmax and AUC(0-∞) of IAC had a positive correlation with dose. Evaluation of the pharmacokinetics of IAC will be useful in assessing concentration-effect relationships for the potential therapeutic applications of IAC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of ranitidine (antacid), food, and formulation on the pharmacokinetics of fostamatinib: results from five phase I clinical studies.

    PubMed

    Flanagan, Talia; Martin, Paul; Gillen, Michael; Mathews, David; Lisbon, Eleanor; Kruusmägi, Martin

    2017-02-01

    Fostamatinib is an orally dosed phosphate prodrug that is cleaved by intestinal alkaline phosphatase to the active metabolite R406. Clinical studies were performed to assess the effect of food and ranitidine on exposure, to support in vitro-in vivo relationships (IVIVR) understanding and formulation transitions and to investigate absolute oral bioavailability. A series of in vitro dissolution and clinical pharmacokinetic studies were performed to support the design and introduction of a new formulation, understand the impact of changes in in vitro dissolution on in vivo performance for two fostamatinib formulations, to characterize the effects of food and ranitidine on exposure, and determine the absolute oral bioavailability. The in vivo performance of fostamatinib was generally insensitive to changes in in vitro dissolution performance, although marked slowing of the dissolution rate did impact exposures. Food and ranitidine had minor effects on R406 exposure that were not considered clinically relevant. The absolute oral bioavailability of fostamatinib was 54.6 %. The absolute oral bioavailability of fostamatinib was ~55 %. Food and ranitidine had minor effects on R406 exposure. An in vitro dissolution versus clinical performance relationship was determined that supported formulation transitions.

  7. Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats.

    PubMed

    Di, Xin; Wang, Xin; Di, Xin; Liu, Youping

    2015-11-10

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been widely used as a traditional medicine and was shown to possess a multitude of health-promoting properties in pre-clinical studies, but its bioavailability was low due to the extensive glucuronidation in liver and intestine, hindering the development of emodin as a feasible chemopreventive agent. In this study, piperine, as a bioenhancer, was used to enhance the bioavailability of emodin by inhibiting its glucuronidation. The pharmacokinetic profiles of emodin after oral administration of emodin (20mg/kg) alone and in combination with piperine (20mg/kg) to rats were investigated via a validated LC/MS/MS method. As the in vivo pharmacokinetic studies had indicated, the AUC and Cmax of emodin were increased significantly after piperine treatment, and the glucuronidation of emodin was markedly inhibited. Our study demonstrated that piperine significantly improved the in vivo bioavailability of emodin and the influence of piperine on the pharmacokinetics of emodin may be attributed to the inhibition of glucuronidation of emodin. Further research is needed to investigate the detailed mechanism of improved bioavailability of emodin via its combination with piperine. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Lapatinib nano-delivery systems: a promising future for breast cancer treatment.

    PubMed

    Bonde, Gunjan Vasant; Yadav, Sarita Kumari; Chauhan, Sheetal; Mittal, Pooja; Ajmal, Gufran; Thokala, Sathish; Mishra, Brahmeshwar

    2018-05-01

    Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation. Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose. Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.

  9. Omeprazole does not change the oral bioavailability or pharmacokinetics of vinpocetine in rats.

    PubMed

    Sozański, Tomasz; Magdalan, Jan; Trocha, Małgorzata; Szumny, Antoni; Merwid-Ląd, Anna; Słupski, Wojciech; Karaźniewicz-Łada, Marta; Kiełbowicz, Grzegorz; Ksiądzyna, Dorota; Szeląg, Adam

    2011-01-01

    Previous studies proved that food strongly enhanced the bioavailability of vinpocetine. Food may change the pharmacokinetics of a drug by affecting various factors, including gastrointestinal pH. However, the influence of proton pump inhibitor-induced pH alterations on vinpocetine pharmacokinetics is not known. The aim was to evaluate the influence of omeprazole on the pharmacokinetics of oral vinpocetine. One group of male Wistar rats received single oral doses of vinpocetine (2 mg/kg - regimen V). In the second group, omeprazole (10 mg/kg) was administered intraperitoneally for 5 days before vinpocetine administration (regimen OV). For analysis of vinpocetine pharmacokinetics, blood samples were obtained before and 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10 and 12 h after vinpocetine administration. Vinpocetine concentrations were measured by high performance liquid chromatography (HPLC). The mean values of AUC(0-t), AUC(0-inf) and C(max) in regimen V were very similar to respective values in regimen OV. The mean T(max) in both regimens was estimated for 1.5 h. There were no statistically significant differences between both regimens. In conclusion, omeprazole did not affect the pharmacokinetic profile of vinpocetine.

  10. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    PubMed

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  11. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity

    PubMed Central

    Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria

    2018-01-01

    Background Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Methods Semi-crystalline nanoparticles (NPs) of 90–110 nm diameter for APSP and 65–75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. Results The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Conclusion Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug. PMID:29491706

  12. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic

    PubMed Central

    Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.

    2010-01-01

    The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316

  13. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity.

    PubMed

    Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria

    2018-01-01

    Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Semi-crystalline nanoparticles (NPs) of 90-110 nm diameter for APSP and 65-75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug.

  14. Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents12

    PubMed Central

    Nair, Krishnapillai Madhavan; Brahmam, Ginnela N.V.; Radhika, Madhari S.; Dripta, Roy Choudhury; Ravinder, Punjal; Balakrishna, Nagalla; Chen, Zhensheng; Hawthorne, Keli M.; Abrams, Steven A.

    2013-01-01

    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run residential schools. Participants were given a standardized rice meal (regular) and the same meal with 100 g of guava fruit (modified) with 57Fe on 2 consecutive days. A single oral dose of 58Fe in orange juice was given at a separate time as a reference dose. Zinc absorption was assessed by using 70Zn, administered intravenously, and 67Zn given orally with meals. The mean hemoglobin concentration was similar in girls (129 ± 7.8 g/L) and boys (126 ± 7.1 g/L). There were no sex differences in the indicators of iron and zinc status except for a higher hepcidin concentration in boys (P < 0.05). The regular and modified meals were similar in total iron (10–13 mg/meal) and zinc (2.7 mg/meal) content. The molar ratio of iron to phytic acid was >1:1, but the modified diet had 20 times greater ascorbic acid content. The absorption of 57Fe from the modified meal, compared with regular meal, was significantly (P < 0.05) greater in both girls (23.9 ± 11.2 vs. 9.7 ± 6.5%) and boys (19.2 ± 8.4 vs. 8.6 ± 4.1%). Fractional zinc absorption was similar between the regular and modified meals in both sexes. Hepcidin was found to be a significant predictor of iron absorption (standardized β = −0.63, P = 0.001, R2 = 0.40) from the reference dose. There was no significant effect of sex on iron and zinc bioavailability from meals. We conclude that simultaneous ingestion of guava fruit with a habitual rice-based meal enhances iron bioavailability in adolescents. PMID:23596161

  15. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans.

    PubMed

    Hurst, Susan; Loi, Cho-Ming; Brodfuehrer, Joanne; El-Kattan, Ayman

    2007-08-01

    The onset, intensity and duration of therapeutic response to a compound depend on the intrinsic pharmacological activity of the drug and pharmacokinetic factors related to its absorption, distribution, metabolism and elimination that are inherent to the biological system. The process of drug transfer from the site of administration to the systemic circulation and the interspecies factors that impact this process are the scope of this review. In general, the factors that influence oral drug bioavailability via absorption and metabolism can be divided into physicochemical/biopharmaceutical and physiological factors. Physicochemical and biopharmaceutical factors that influence permeability and solubility tend to be species independent. Although there are significant differences in the anatomy and physiology of the gastrointestinal tract, these are not associated with significant differences in the rate and extent of drug absorption between rats and humans. However, species differences in drug metabolism in rats and humans did result in significant species differences in bioavailability. Overall, this review provides a better understanding of the interplay between drug physicochemical/biopharmaceutical factors and species differences/similarities in the absorption and metabolism mechanisms that affect oral bioavailability in rats and humans. This will enable a more rational approach to perform projection of oral bioavailability in human using available rat in vivo data.

  16. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    PubMed

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  17. Simultaneous oral therapeutic and intravenous 14C‐microdoses to determine the absolute oral bioavailability of saxagliptin and dapagliflozin

    PubMed Central

    Boulton, David W.; Kasichayanula, Sreeneeranj; Keung, Chi Fung (Anther); Arnold, Mark E.; Christopher, Lisa J.; Xu, Xiaohui (Sophia); LaCreta, Frank

    2013-01-01

    Aim To determine the absolute oral bioavailability (Fp.o.) of saxagliptin and dapagliflozin using simultaneous intravenous 14C‐microdose/therapeutic oral dosing (i.v.micro + oraltherap). Methods The Fp.o. values of saxagliptin and dapagliflozin were determined in healthy subjects (n = 7 and 8, respectively) following the concomitant administration of single i.v. micro doses with unlabelled oraltherap doses. Accelerator mass spectrometry and liquid chromatography‐tandem mass spectrometry were used to quantify the labelled and unlabelled drug, respectively. Results The geometric mean point estimates (90% confidence interval) Fp.o. values for saxagliptin and dapagliflozin were 50% (48, 53%) and 78% (73, 83%), respectively. The i.v.micro had similar pharmacokinetics to oraltherap. Conclusions Simultaneous i.v.micro + oraltherap dosing is a valuable tool to assess human absolute bioavailability. PMID:22823746

  18. Influence of gastrointestinal digestion and edible plant combination on oral bioavailability of triterpene saponins, using a biomimetic digestion and absorption system and determination by HPLC.

    PubMed

    Li, Shun-Xing; Mu, Yang; Zheng, Feng-Ying

    2013-11-06

    Saponins have many biological activities, but their overload could cause toxicity to the human body. Bionic gastrointestinal digestion and monolayer liposome extraction were used for oral bioavailability assessment of triterpene saponins (notoginsenoside R1, ginsenosides Rb1 and Rd1) in an edible herb (San-Chi) and its compound herbal medicine (Pien Tze Huang, PZH). The concentrations of affinity-monolayer liposome saponins in the chyme were determined by HPLC and used for oral bioavailability assessment. With the digestion of San-Chi and PZH from the stomach to the intestine, the release of saponins in their chyme was increased. The intestinal absorption ratios of N-R1, G-Rb1, G-Rd1, and total saponins from San-Chi were 86.57, 18.56, 73.30, and 40.20%, respectively, which were more than those from PZH (i.e., 19.56, 10.11, 30.11, and 16.08%). The oral bioavailability of saponins was controlled by saponin species, gastrointestinal digestion, and edible plants combination.

  19. Increased bioavailability of tacrolimus after rectal administration in rats.

    PubMed

    Sakai, Masayuki; Hobara, Norio; Hokama, Nobuo; Kameya, Hiromasa; Ohshiro, Susumu; Sakanashi, Matao; Saitoh, Hiroshi

    2004-09-01

    The oral bioavailability of tacrolimus is low and varies considerably in humans due to first-pass metabolism by cytochrome P450 (CYP) 3A4 and the active efflux mediated by P-glycoprotein. This study was undertaken to elucidate the usefulness of rectal administration of tacrolimus as an alternative route to improve its bioavailability. Tacrolimus powder was suspended in a suppository base (witepsol H-15) and the tacrolimus suppository was inserted into the anus of the rats. For comparison, tacrolimus was suspended in 0.5% sodium methylcellulose solution and administered orally to rats. The dose of tacrolimus was fixed to 2 mg/kg. Blood samples were collected periodically up to 24 h after dosing, and tacrolimus concentrations were assayed by microparticle enzyme immunoassay. The whole blood concentrations of tacrolimus after rectal administration were much greater than those after oral administration. The C(max) and AUC(0-24 h) values after rectal administration were 3.9- and 6.9-fold greater than those after oral administration, respectively. These results clearly suggest a possibility that rectal administration of tacrolimus is capable of improving its bioavailability and cutting the costs of tacrolimus treatment.

  20. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  1. Effects of oils and pharmaceutical excipients on the bioavailability of ampicillin orally administered, different oily and aqueous suspensions in rabbit.

    PubMed

    Alhamami, Omran M O

    2003-01-01

    The in vivo bioavailability and in vitro drug-release studies of ampicillin trihydrate in different oily and aqueous suspensions have been investigated. In addition, partition, solubility, and rheological measurements have also been carried out. The in vivo experimental design was based on a 6 x 6 latin square using the rabbit as the test animal. The bioavailability of ampicillin was determined using the plasma levels, which were measured microbiologically. Results of the study showed that oily and sucrose-containing aqueous formulations enhanced the extent of ampicillin absorption, although not statistically significantly, but was close to the borderline of significance. Ampicillin appears to be absorbed at essentially the same rate from both aqueous and oily formulations. The latter showed plasma-level time curves with biphasic absorption and are likely to produce prolonged plasma concentrations of ampicillin because of the effects of enterohepatic recycling. Viscosity appears to play an insignificant role in the results obtained since the bioavailability parameters correlate poorly with the viscosity except Cmax. It is suggested that enhancement in the bioavailability of ampicillin is due to the decrease in the gut transit rate brought about by the oil which predominates and masks the other effects of viscosity and osmotic effects of sucrose. The existence of a correlation between the in vitro drug-release rate (t50%) and viscosity and the lack of a correlation between in vivo and in vitro parameters support the above suggestion and indicate that traditional dissolution rate tests, such as flask-stirrer method, are unsatisfactory as bioavailability indicators when applied to dosage forms that caused marked changes in physiological factors like GER and biliary excretion.

  2. Role of tangeretin as a potential bioavailability enhancer for silybin: Pharmacokinetic and pharmacological studies.

    PubMed

    Yuan, Zhong-Wen; Li, Ya-Zhuo; Liu, Zhong-Qiu; Feng, Sen-Ling; Zhou, Hua; Liu, Chang-Xiao; Liu, Liang; Xie, Ying

    2018-02-01

    Biological responses of a variety of naturally occurring compounds in vivo were restrained by their poor oral bioavailability. Silybin, as one of the active ingredients of silymarin, has presented promising bioactivity for the treatment of chronic liver diseases and cancer. However, its exposure in body was limited. In this study, silybin was demonstrated to be substrates of both BCRP and MRP2 by utilizing monolayer Caco-2 cell model and confirmed in MDCK cells overexpressing specific efflux transporter. Of all compounds screened, tangeretin, a potent inhibitor of efflux transporters of BCRP, MRP2 and P-gp, was able to enhance exposure of silybin by inhibiting functions of the barriers mediating transcellular transport. Moreover, study carried out in sandwich-cultured rat hepatocyte (SCH) model showed that the biliary excretion index (BEI) and in vitro biliary clearance of silybin decreased as levels of tangeretin increased, indicating efflux transporters mediating biliary excretion of silybin might be involved. Pharmacokinetic behaviors of silybin in rats were altered by co-administration of tangeretin, in terms of increased AUC and Cmax of silybin by comparing with that of silybin given alone. In addition, results coming from CCl 4 -induced acute liver injury rat model revealed that protection effect of silybin against liver damage in the presence of tangeretin was significantly enhanced. All these data were evident that efflux transporters play a critical role in transcellular transport of silybin and account for its low bioavailability. Enhanced bioavailability of silybin with co-administration of tangeretin by significantly inhibiting the efflux transporters further boost its bioactivity which is of particular importance in clinical use. Copyright © 2017. Published by Elsevier Ltd.

  3. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs.

    PubMed

    Chadha, Renu; Saini, Anupam; Arora, Poonam; Bhandari, Swati

    2012-01-01

    Solid dosage forms are by far the preferred drug delivery systems. However, these often face the problem of poor and erratic bioavailability during the drug development process. Numerous formulation strategies for drug delivery are currently under development, among which the solid forms such as polymorphs, solvates, salts, and cocrystals have been considered to be the most important for improving dissolution rate and bioavailability. Cocrystallization is a fairly new approach in pharmaceutical industry that can improve the solubility and, consequently, the bioactivity of the active pharmaceutical ingredient (API) without compromising its structural integrity. Pharmaceutical cocrystals have found their place in drug delivery, primarily due to their ability to produce alternative, viable solid forms when a more standard approach of salt and polymorph formation fails to deliver the desired objectives. Over the past few years, a number of papers have been published focusing on a broad range of subjects, from traditional crystal engineering to structure-property relationships of cocrystals. The present review, however, illustrates how the cocrystalline forms of APIs have improved their in vitro dissolution rate and in vivo bioavailability, often correlating well with their improved solubility as well.

  4. Thiolated chitosans: useful excipients for oral drug delivery.

    PubMed

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  5. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.

    PubMed

    Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí

    2013-01-01

    Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.

  6. Oral bioavailability of DN101, a concentrated formulation of calcitriol, in tumor-bearing dogs.

    PubMed

    Rassnick, Kenneth M; Muindi, Josephia R; Johnson, Candace S; Bailey, Dennis B; Trump, Donald L

    2011-01-01

    High-dose calcitriol (1,25-dihydroxyvitamin D(3)) has antineoplastic activity against a range of tumors and potentiates chemotherapeutic agents. In an earlier canine study, the MTD of intravenous (i.v.) calcitriol was 3.75 μg/kg, but polysorbate-associated hypersensitivity reactions were common. Use of commercially available oral calcitriol is limited by the absence of a formulation of suitable strength to allow administration of a reasonable number of caplets. This study evaluated the bioavailability of DN101, a concentrated oral calcitriol formulation specifically developed for anticancer applications. An open-label, single-dose, 2-way crossover study was conducted. Dogs randomly received a single 3.75 μg/kg dose of calcitriol either i.v. or oral (as DN101), followed by cisplatin (60 mg/m(2)). Three weeks later, the alternate form of calcitriol was given prior to another dose of cisplatin. Dogs received antihistamines and corticosteroids prior to both treatments. Food was withheld for 12 h before and after therapy. Serum calcitriol concentrations were measured by radioimmunoassay. Ten tumor-bearing dogs received both i.v. and oral calcitriol. Six dogs experienced hypersensitivity reactions during i.v. calcitriol. Sequence of calcitriol administration (day-1 vs. day-21) by either i.v. or oral routes had no effect on the major calcitriol pharmacokinetic parameters. Oral calcitriol resulted in significantly lower values for AUC (P = 0.05) and prolonged T (1/2) (P = 0.003) when compared to i.v. Calcitriol oral bioavailability was highly variable among dogs (mean ± SEM, 71 ± 12.6%). This study demonstrates that a high-dose formulation of calcitriol has a moderate bioavailability in dogs, but inter-individual variability in PK parameters is similar to that observed in people. With this bioavailability, serum concentrations of calcitriol that exhibit antitumor activity in a preclinical murine model were achieved in some dogs. Exploration of methods to minimize variation in calcitriol systemic exposure is warranted.

  7. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In Vitro Drug Release and Pharmacokinetics Studies

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Bajpai, Meenakshi; Mishra, Anushika

    2014-01-01

    Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of 124.5 ± 3.2 nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment. In vitro drug release study has shown 60.6–98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C ± 2°C and 75 ± 5% relative humidity (RH) for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (C max⁡) and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES). PMID:24967360

  8. Characteristics of Artemether-Loaded Poly(lactic-co-glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability.

    PubMed

    Mangrio, Farhana Akbar; Dwivedi, Pankaj; Han, Shuya; Zhao, Gang; Gao, Dayong; Si, Ting; Xu, Ronald X

    2017-12-04

    Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.

  9. Formulation of Convenient, Easily Scalable, and Efficient Granisetron HCl Intranasal Droppable Gels.

    PubMed

    Ibrahim, Howida K; Abdel Malak, Nevine S; Abdel Halim, Sally A

    2015-06-01

    Deacetylated gellan gum and two sodium alginate polymer types were used each at three concentrations in the suitable range for their sol-gel transition. The prepared nine droppable gels were evaluated in vitro, ex vivo through sheep nasal mucosa, as well as in vivo in comparison to drug solution given intravenously and orally at the same dose. The prepared formulas gelled instantaneously in simulated nasal fluid and the obtained gels sustained their shear thinning and thixotropic behavior up to 48 h. Polymer type and concentration had significant effects on the apparent viscosities and the in vitro release profile of granisetron from the prepared gels. The drug release data best fitted a modified Higuchi equation with initial burst and followed Fickian diffusion mechanism. A 0.5% gellan-gum-based formula sustained the in vitro drug release up to 3 h and enhanced the drug permeation without need for an enhancer. The histopatholgical study revealed the safety of the tested formula. Intranasal delivery recorded double the drug bioavailabilty in comparison to the oral route. It had an absolute bioavailability of 0.6539 and the maximum plasma drug concentration reached after 1.5 h. The developed formula could be promising for the management of chemotherapy-induced nausea and vomiting regarding its improved bioavailability, patient acceptability, and ease of production.

  10. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth

    2016-02-29

    Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of β-cyclodextrin derivatives on the diosgenin absorption in Caco-2 cell monolayer and rats.

    PubMed

    Okawara, Masaki; Tokudome, Yoshihiro; Todo, Hiroaki; Sugibayashi, Kenji; Hashimoto, Fumie

    2014-01-01

    Orally administrated diosgenin, a steroidal saponin found in the roots of Dioscorea villosa, improves reduced skin thickness in ovariectomized mice, and plays an important role in the treatment of hyperlipidemia. Diosgenin has been noticed as an active element in cosmeceutical and dietary supplements. We have already elucidated that the absolute oral bioavailability of diosgenin is very low; however, a high skin distribution of diosgenin was also observed. The aim of the present study was to examine and compare the effects of β-cyclodextrin (β-CD) and 3 kinds of its derivatives such as hydroxypropyl β-CD on the diosgenin permeability using a Caco-2 model and rat jejunal perfusion. These derivatives of β-CD greatly improved the low solubility of diosgenin. No significant increase was observed in the lactate dehydrogenase leakage from Caco-2 cell, while a slight decrease was found on the transepithelial electrical resistance by diosgenin and β-CD derivatives. However, β-CD derivatives, especially hydroxyethyl β-CD and hydroxypropyl β-CD, markedly enhanced diosgenin permeability across the Caco-2 monolayer and rat jejunum. The bioavailability of diosgenin in the presence of β-CD derivatives were about 4 to 11 fold higher than diosgenin suspension. The mechanisms of these enhancement effects may be due to improvements in solubility and tight junction opening.

  12. In Situ Lipidization as a New Approach for the Design of a Self Microemulsifying Drug Delivery System (SMEDDS) of Doxorubicin Hydrochloride for Oral Administration.

    PubMed

    Derajram M Benival, M; Devarajan, Padma V

    2015-05-01

    The present paper reports in situ lipidization as a novel approach for the design of Dox-self microemulsifying drug delivery system (SMEDDS). Dox-aerosol OT (AOT) ion pair complex (lipidized Dox), exhibited high log P value of 1.74, indicating lipophilic nature. The lipidized Dox revealed good solubility but limited stability in various oils. Rapid complex formation of Dox with AOT dissolved in oils, and the high partitioning of lipidized Dox (-90%) into the oily phase presented in situ lipidization as a strategy to overcome the limited chemical stability of lipidized Dox. SMEDDS was prepared by mixing the lipidizing agent AOT, the surfactant α-Tocopheryl-Polyethyleneglycol-1 000-Succinate (TPGS) and Capmul as the oil. Dox was suspended in the SMEDDS to obtain Dox-SMEDDS. Dox-SMEDDS on aqueous dilution, resulted in a microemulsion with globule size 196 ± 16.56 nm, and revealed slow release of Dox. Oral bioavailability study in rats revealed a 420% enhancement from Dox-SMEDDS compared to Dox solution. Dox-SMEDDS and control group revealed comparable superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels in heart and kidneys suggesting safety of the Dox-SMEDDS. Efficacy study (tumor size reduction) in fibrosarcoma mouse model suggested Dox-SMEDDS as a promising oral delivery system for the treatment of cancer. In situ lipidization of Dox in SMEDDS presents a novel approach for the design of an orally bioavailable and promising formulation of Dox for oral administration.

  13. Development of chitosan-based ondansetron buccal delivery system for the treatment of emesis.

    PubMed

    Park, Dong-Min; Song, Yun-Kyoung; Jee, Jun-Pil; Kim, Hyung Tae; Kim, Chong-Kook

    2012-09-01

    For the buccal drug delivery, chitosan (CS) can be used to improve drug absorption and reduce application frequency and drug amount. The aim of this study is to develop and evaluate mucoadhesive ondansetron buccal films for the treatment of emesis using CS as a mucoadhesive polymer. The film prepared by solvent casting method was comprised of ondansetron (approximately 65 μg)-loaded mucoadhesive gels containing 1, 2 or 3% CS and impermeable backing layer. Rheological property of the gels, physiochemical properties of the films (weight, thickness, drug content, swelling ratio, adhesion time and mucoadhesive force) and in vitro ondansetron release profile from the films were determined to evaluate the formulation. The films containing 3% CS (diameter: 0.5 cm; thickness: 170 μm) was selected as the novel formulation, and were used for the in vivo study. Comparative pharmacokinetic studies of ondansetron with this film and oral solution were performed at the same dose in hamsters. The mean values of T(max) and C(max) of the film and oral solution were similar. However, the half-life, mean residence time and AUC(0-24 h) of the film were about 1.7, 1.4 and 2.0-fold higher than those of the oral solution, respectively. The film showed enhanced bioavailability and prolonged efficacy compared to the oral solution. The mucoadhesive ondansetron buccal film may be a potential alternative to the marketed oral formulation, parenterals and solid suppositories with better patient compliance and higher bioavailability for the treatment of emesis.

  14. Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs.

    PubMed

    Park, Jin Woo; Kim, Sun Jin; Kwag, Dong Sup; Kim, Sol; Park, Jeyoung; Youn, Yu Seok; Bae, You Han; Lee, Eun Seong

    2015-01-01

    In recent years, advances in biotechnology and protein engineering have enabled the production of large quantities of proteins and peptides as important therapeutic agents. Various researchers have used biocompatible functional polymers to prepare oral dosage forms of proteins and peptides for chronic use and for easier administration to enhance patient compliance. However, there is a need to enhance their safety and effectiveness further. Most macromolecules undergo severe denaturation at low pH and enzymatic degradation in the gastrointestinal tract. The macromolecules' large molecular size and low lipophilicity cause low permeation through the intestinal membrane. The major strategies that have been used to overcome these challenges (in oral drug carrier systems) can be classified as follows: enteric coating or encapsulation with pH-sensitive polymers or mucoadhesive polymers, co-administration of protease inhibitors, incorporation of absorption enhancers, modification of the physicochemical properties of the macromolecules, and site-specific delivery to the colon. This review attempts to summarize the various advanced oral delivery carriers, including nanoparticles, lipid carriers, such as liposomes, nano-aggregates using amphiphilic polymers, complex coacervation of oppositely charged polyelectrolytes, and inorganic porous particles. The particles were formulated and/or surface modified with functional polysaccharides or synthetic polymers to improve oral bioavailability of proteins and peptides. We also discuss formulation strategies to overcome barriers, therapeutic efficacies in vivo, and potential benefits and issues for successful oral dosage forms of the proteins and peptides.

  15. Ramizol® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation.

    PubMed

    Wright, Leah; Rao, Shasha; Thomas, Nicky; Boulos, Ramiz A; Prestidge, Clive A

    2018-04-11

    Novel antibiotic Ramizol ® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing. The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance. Ramizol ® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague-Dawley rats. Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague-Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in T max and T 1/2 when compared to the oral and IV routes. Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol ® . This formulation will allow further development of Ramizol ® for systemic infection eradication.

  16. Enhanced intestinal permeability and oral bioavailability of enalapril maleate upon complexation with the cationic polymethacrylate Eudragit E100.

    PubMed

    Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H

    2014-05-13

    The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system.

    PubMed

    Kamel, Amany O; Mahmoud, Azza A

    2013-01-01

    The purpose of this study was to develop spray dried self-nanoemulsifying drug delivery system (SNEDDS) tablets of rosuvastatin using mannitol as a carrier. SNEDDS were prepared using Capryol 90, poloxamer 407 and Transcutol P or triacetin as oil, surfactant and cosurfactants, respectively. The prepared systems were characterized and their cytotoxicity was evaluated using Caco-2 cell lines. A comparative bioavailability study was performed in human volunteers relative to the conventional commercial product. Results showed better self-nanoemulsifying ability of systems containing triacetin compared to Transcutol P. SNEDDS formed uni-modal nanoemulsion droplet size distributions with droplet size less than 50 nm and polydispersity index values ranging from 0.127 to 0.275. The solubilizing capacity of rosuvastatin was affected by both surfactant and cosurfactant concentrations. Upon spray drying, systems prepared using Transcutol P tended to be soft and tacky and were sticking to the walls of the dryer. The redispersion of rosuvastatin from solid SNEDDS was very fast (100% within 5 minutes). Optimized SNEDDS prepared with triacetin were safe with no cytotoxic effect on Caco-2 cells. The anticancer effect of rosuvastatin was enhanced when incorporated in SNEDDS (IC50 value decreased from 4 to 3 microg/ml) due to the increase in penetration of SNEDDS inside the cells. The relative bioavailability for SNEDDS tablets compared to the commercial tablets was 167%. The effective solubilization, penetration and enhancement in bioavailability of SNEDDS tablets proves their potential as a safe, and effective drug delivery system for poorly-soluble drugs.

  18. Assessment of oral bioavailability enhancing approaches for SB-247083 using flow-through cell dissolution testing as one of the screens.

    PubMed

    Perng, Cherng-Yih; Kearney, Albert S; Palepu, Nagesh R; Smith, Brian R; Azzarano, Leonard M

    2003-01-02

    SB-247083 is a potent, nonpeptidic, orally active, ETA-selective, endothelin receptor antagonist. The diacid form and three salts (monoarginine, diarginine and disodium) of SB-247083 were evaluated during the pre-clinical phase of development. The developability attributes (i.e. hygroscopicity, thermal behavior, aqueous solubility, and drug-excipient compatibility) of these compounds were evaluated. In addition to these attributes, the flow-through cell (FTC) dissolution testing (using USP Apparatus 4) was used as a screening technique to evaluate several SB-247083 formulations of the diacid and its salts. FTC dissolution testing offers two distinct advantages over the more traditional static-condition dissolution testing: (1) maintenance of sink conditions; and (2) the ability to change the dissolution medium during a dissolution run. The former advantage is especially important for poorly aqueous soluble drugs having associated dissolution-rate-limitations, and the latter advantage allows one to more closely simulate the pH gradient associated with transit through the GI tract. Based on the comparative dissolution data, three formulations were chosen for oral dosing in dogs. The reasonable correlation found between the FTC dissolution results and the oral bioavailability data demonstrate that FTC dissolution testing can be a valuable tool for aiding in salt (solid-state form) and formulation selection in the early stages of development of drug candidates.

  19. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique.

    PubMed

    Sawicki, E; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-11-01

    Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and with that suboptimal or even failing therapy. This review discusses pharmaceutical formulation aspects and absorption pharmacokinetics of currently licensed orally administered oncolytics. In nearly half of orally dosed oncolytics poor dissolution is likely to play a major role in low and unpredictable absorption. Dissolution-limited drug absorption can be improved with a solid dispersion which is a formulation method that induces super-saturated drug dissolution and with that it enhances in vivo absorption. This review discusses formulation principles with focus on the solid dispersion technology and how it works to enhance drug absorption. There are currently three licensed orally dosed oncolytics formulated as a solid dispersion (everolimus, vemurafenib and regorafenib) and these formulations result in remarkably improved dissolution and absorption compared to what can be achieved with conventional formulations of the respective oncolytics. Because of the successful implementation of these three solid dispersion formulations, we encourage the application of this formulation method for poorly soluble oral oncolytics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of Short-Term Fasting on Systemic Cytochrome P450-Mediated Drug Metabolism in Healthy Subjects: A Randomized, Controlled, Crossover Study Using a Cocktail Approach.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; van Schaik, Ron H N; Romijn, Johannes A; Mathôt, Ron A A

    2017-10-01

    Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a randomized, controlled, crossover trial, 12 healthy subjects received a single administration of a cytochrome P450 (CYP) probe cocktail, consisting of caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and warfarin (CYP2C9), on four occasions: an oral (1) and intravenous (2) administration after an overnight fast (control) and an oral (3) and intravenous (4) administration after 36 h of fasting. Pharmacokinetic parameters of the probe drugs were analyzed using the nonlinear mixed-effects modeling software NONMEM. Short-term fasting increased systemic caffeine clearance by 17% (p = 0.04) and metoprolol clearance by 13% (p < 0.01), whereas S-warfarin clearance decreased by 19% (p < 0.01). Fasting did not affect bioavailability. The study demonstrates that short-term fasting alters CYP-mediated drug metabolism in a non-uniform pattern without affecting oral bioavailability.

  1. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Min; Zhao, Lixia; Guo, Chenyu; Cao, Fengliang; Chen, Huanlei; Zhao, Liyan; Tan, Qi; Zhu, Xiuqing; Zhu, Fanping; Ding, Tingting; Zhai, Yingjie; Zhai, Guangxi

    2012-02-01

    A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40-400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

  2. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability

    PubMed Central

    Sane, Ramola; Mittapalli, Rajendar K.; Elmquist, William F.

    2014-01-01

    The study objective was to develop a formulation of elacridar to overcome its dissolution-rate limited bioavailability. Elacridar is a P-gp and BCRP inhibitor that has been used to improve the brain distribution of drugs that are substrates of P-gp and BCRP. The chronic use of elacridar is restricted due to poor solubility leading to poor oral bioavailability. A microemulsion formulation using Cremophor EL, Carbitol and Captex 355 (6:3:1) was developed. The elacridar microemulsion was effective in the inhibition of P-gp and Bcrp in MDCKII-transfected cells. FVBn mice were used to determine the bioavailability of elacridar after a 10 mg/kg dose of elacridar in the microemulsion, intraperitoneally and orally; and the absolute bioavailability was determined to be 1.3 and 0.47, respectively. Co-administration of elacridar microemulsion intraperitoneally with oral erlotinib in FVBn mice improved the erlotinib brain penetration three-fold. The current study shows that a microemulsion formulation of elacridar is effective in improving the bioavailability of elacridar and is an effective inhibitor of P-gp and Bcrp; in-vitro and in-vivo. It offers an alternative to the suspension and allows a decrease in the dose required to achieve a significant inhibitory effect at the blood-brain barrier. PMID:23334925

  3. Improving oral bioavailability of resveratrol by a UDP-glucuronosyltransferase inhibitory excipient-based self-microemulsion.

    PubMed

    Yang, Fei-Fei; Zhou, Jing; Hu, Xiao; Cong, Zhao-Qing; Liu, Chun-Yu; Pan, Rui-Le; Chang, Qi; Liu, Xin-Min; Liao, Yong-Hong

    2018-03-01

    Self-microemulsifying (SME) drug delivery system has been developed to increase oral bioavailabilities, and inhibitory excipients are capable of improving oral bioavailability by inhibiting enzyme mediated intestinal metabolism. However, the potential of enzyme inhibitory excipients containing SME in boosting resveratrol bioavailability remains largely uninvestigated. In this study, we set out to prepare SME-1 with UGT inhibitory excipients (excipients without inhibitory activities named SME-2 as control) to increase the bioavailability of RES by inhibiting intestinal metabolism. Results demonstrated that similar physicochemical properties such as size, polydistribution index and in vitro release, cellular uptake and permeability in Caco-2 cells as well as in vivo lymphatic distribution between inhibitory SME-1 and non-inhibitory SME-2 were observed. In vivo study demonstrated that the molar ratios of RES-G/RES were 7.25±0.48 and 5.06±2.42 for free drug and SME-2, respectively, and the molar ratio decreased to 0.36±0.10 in SME-1 group. Pharmacokinetic study confirmed that the inhibitory excipients containing SME demonstrated potential in increasing bioavailability of RES from 6.5% for the free RES and 12.9% for SME-2 to 76.1% in SME-1 through modulating the glucuronidation by UGT inhibitory excipients. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Design of Curcumin Loaded PLGA Nanoparticles Formulation with Enhanced Cellular Uptake, and Increased Bioactivity in vitro and Superior Bioavailability in vivo

    PubMed Central

    Anand, Preeta; Nair, Harish B.; Sung, Bokyung; Kunnumakkara, Ajaikumar B.; Yadav, Vivek R.; Tekmal, Rajeshwar R.; Aggarwal, Bharat B.

    2011-01-01

    Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, anti-proliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon “as curcumin (NP)”, was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid (2 h vs > 72 h) and more efficient cellular uptake then curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-κB activation and in suppression of NF-κB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin. PMID:19735646

  5. Pharmacokinetics of brotizolam in healthy subjects following intravenous and oral administration

    PubMed Central

    Jochemsen, Roeline; Wesselman, J. G. J.; Hermans, J.; van Boxtel, C. J.; Breimer, D. D.

    1983-01-01

    1 Pharmacokinetics and bioavailability of brotizolam after i.v. and oral administration were studied in healthy young volunteers. 2 Kinetic parameters after i.v. administration were: volume of distribution 0.66 ± 0.19 1/kg, total plasma clearance 113 ± 28 ml/min, distribution half-life 11 ± 6 min, and elimination half-life 4.8 ± 1.4 h (mean values ± s.d.). 3 Kinetic parameters after oral administration were: absorption lag-time 8 ± 12 min, absorption half-life 10 ± 11 min, and elimination half-life 5.1 ± 1.2 h (mean values ± s.d.). 4 Bioavailability of brotizolam was 70 ± 22% when calculated by comparing oral and intravenous area-under-curve values, corrected for intra-individual half-life differences. An alternative calculation method, which is relatively independent of large clearance variations, provided a bioavailability of 70 ± 24% (range: 47-117%). PMID:6661374

  6. N,N'-dihydroxyamidines: a new prodrug principle to improve the oral bioavailability of amidines.

    PubMed

    Reeh, Christiane; Wundt, Judith; Clement, Bernd

    2007-12-27

    N, N'-dihydroxybenzamdine represents a model compound for a new prodrug principle to improve the oral bioavailability of drugs containing amidine functions. The activation of the prodrug could be demonstrated in vitro by porcine and human subcellular enzyme fractions, the mitochondrial benzamidoxime reducing system, and porcine hepatocytes. In vivo, the bioavailability of benzamidine after oral application of N, N'-dihydroxybenzamidine was about 91% and exceeded that of benzamidine after oral application of benzamidoxime, being about 74% (Liu, L.; Ling, Y.; Havel, C.; Bashnick, L.; Young, W.; Rai, R.; Vijaykumar, D.; Riggs, J. R.; Ton, T.; Shaghafi, M.; Graupe, D.; Mordenti, J.; Sukbuntherng, J. Species comparison of in vitro and in vivo conversion of five N-hydroxyamidine prodrugs of fVIIA inhibitors to their corresponding active amidines. Presented at the 13th North America ISSX Meeting, Maui, HI, 2005).

  7. Pharmacokinetics of dietary cancer chemopreventive compound dibenzoylmethane in rats and the impact of nanoemulsion and genetic knockout of Nrf2 on its disposition.

    PubMed

    Lin, Wen; Hong, Jin-Liern; Shen, Guoxiang; Wu, Rachel T; Wang, Yuwen; Huang, Mou-Tuan; Newmark, Harold L; Huang, Qingrong; Khor, Tin Oo; Heimbach, Tycho; Kong, Ah-Ng

    2011-03-01

    The pharmacokinetic disposition of a dietary cancer chemopreventive compound dibenzoylmethane (DBM) was studied in male Sprague-Dawley rats after intravenous (i.v.) and oral (p.o.) administrations. Following a single i.v. bolus dose, the mean plasma clearance (CL) of DBM was low compared with the hepatic blood flow. DBM displayed a high volume of distribution (Vss). The elimination terminal t1/2 was long. The mean CL, Vss and AUC0-∞/dose were similar between the i.v. 10 and 10 mg/kg doses. After single oral doses (10, 50 and 250 mg/kg), the absolute oral bioavailability (F*) of DBM was 7.4%-13.6%. The increase in AUC was not proportional to the oral doses, suggesting non-linearity. In silico prediction of oral absorption also demonstrated low DBM absorption in vivo. An oil-in-water nanoemulsion containing DBM was formulated to potentially overcome the low F* due to poor water solubility of DBM, with enhanced oral absorption. Finally, to examine the role of Nrf2 on the pharmacokinetics of DBM, since DBM activates the Nrf2-dependent detoxification pathways, Nrf2 wild-type (+/+) mice and Nrf2 knockout (-/-) mice were utilized. There was an increased systemic plasma exposure of DBM in Nrf2 (-/-) mice, suggesting that the Nrf2 genotype could also play a role in the pharmacokinetic disposition of DBM. Taken together, the results show that DBM has low oral bioavailability which could be due in part to poor water solubility and this could be overcome by a nanotechnology-based drug delivery system and furthermore the Nrf2 genotype could also play a role in the pharmacokinetics of DBM. Copyright © 2010 John Wiley & Sons, Ltd.

  8. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes.

    PubMed

    Schiborr, Christina; Kocher, Alexa; Behnam, Dariush; Jandasek, Josef; Toelstede, Simone; Frank, Jan

    2014-03-01

    Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences. In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration-time curve (AUC), the micronized curcumin was 14-, 5-, and 9-fold and micellar curcumin 277-, 114-, and 185-fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations. Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. © 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Physicochemical and Pharmacokinetic Characterization of Amorphous Solid Dispersion of Meloxicam with Enhanced Dissolution Property and Storage Stability.

    PubMed

    Ochi, Masanori; Kimura, Keisuke; Kanda, Atsushi; Kawachi, Takaki; Matsuda, Akitoshi; Yuminoki, Kayo; Hashimoto, Naofumi

    2016-08-01

    The aim of the present study was to develop amorphous solid dispersion (ASD) of meloxicam (MEL) for providing rapid onset of action. ASDs of MEL with polyvinylpyrrolidone (PVP) K-30 (MEL/PVP), HPC-SSL (MEL/HPC), and Eudragit EPO (MEL/EPO) were prepared. The physicochemical properties were characterized by focusing on morphology, crystallinity, dissolution properties, stability, and the interaction of MEL with coexisting polymers. MEL/EPO was physicochemically stable after storage at 40°C/75% RH for 30 days. In contrast, recrystallization of MEL was observed in MEL/PVP and MEL/HPC at 40°C/50% RH for 30 days. Infrared spectroscopic studies and (1)H NMR analyses of MEL/EPO revealed that Eudragit EPO interacted with MEL and reduced intermolecular binding between MEL molecules. Intermolecular interaction of drug molecules is necessary for the formation of crystalline. Thus, the interaction of MEL with Eudragit EPO and interruption of the formation of supramolecular interaction between MEL molecules might lead to the inhibition of crystal growth of MEL. Of all the MEL solid dispersions prepared, MEL/EPO showed the largest improvement in dissolution behavior. Oral administration of MEL/EPO to rats showed rapid and enhanced MEL exposure with a 2.4-fold increase in bioavailability compared with crystalline MEL. Based on these findings, MEL/EPO was physicochemically stable and provided a rapid onset of action and enhanced bioavailability after oral administration.

  10. Enhancement of oral bioavailability of rivastigmine with quercetin nanoparticles by inhibiting CYP3A4 and esterases.

    PubMed

    Palle, Suresh; Neerati, Prasad

    2017-04-01

    Quercetin is a well-known flavonoid, has pharmacokinetic interaction with ester drugs due to its capability of esterase inhibition in the gut and liver. However, the interaction between quercetin nanoparticles (NQC) and rivastigmine has not been reported. Hence, the present study was performed to evaluate the effect of quercetin alone and its nanoparticles on the pharmacokinetics of rivastigmine in rats. NQC prepared by antisolvent precipitation method. The influence of quercetin on the pharmacokinetics of rivastigmine was evaluated by following methods i.e. in vitro inhibitory effect on esterase enzyme in rat liver microsomes and in vitro assessment of CYP3A activity using erythromycin-N-demethylase (EMD) assay. To confirm these findings, an in vivo pharmacokinetic study of orally administered rivastigmine in rats with quercetin and NQC pretreatments was performed. The size of NQC was observed below 300nm. Quercetin significantly (p<0.05) inhibited the esterase-mediated metabolism of rivastigmine. In in vitro assessment of CYP3A activity model the erythromycin-N-demethylation (EMD) levels in quercetin treated group were significantly reduced (p<0.05). C max , AUC 0-t and AUC 0- ∞ of rivastigmine were found to be increased in quercetin and NQC pretreated groups. Further, the CL/F and Vd/F of rivastigmine were significantly decreased. The results revealed that enhanced bioavailability of rivastigmine might be caused by the combination of their effects due to CYP3A and esterase inhibition, Therefore, concomitant administration of NQC influences the bioavailability of rivastigmine and also has synergetic effect in the treatment of Alzheimer's disease. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Proceedings: ISEA Bioavailability Symposium, Durham, North Carolina Use of InVitro Bioaccessibility/Relative Bioavailability Estimates for Metals in Regulatory Settings: What is Needed?

    EPA Science Inventory

    Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...

  12. Aluminum bioavailability from tea infusion.

    PubMed

    Yokel, Robert A; Florence, Rebecca L

    2008-12-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer (26)Al. (26)Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous (27)Al infusion. Oral Al bioavailability (F) was calculated from the area under the (26)Al, compared to (27)Al, serum concentration x time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F=0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F=0.1-0.3%), but greater than acidic SALP in a biscuit (F=0.1%). Time to maximum serum (26)Al concentration was 1.25, 1.5, 8 and 4.8h, respectively. These results of oral Al bioavailability x daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water.

  13. Aluminum bioavailability from tea infusion

    PubMed Central

    Yokel, Robert A.; Florence, Rebecca L.

    2008-01-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer 26Al. 26Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous 27Al infusion. Oral Al bioavailability (F) was calculated from the area under the 26Al, compared to 27Al, serum concentration × time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F = 0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F = 0.1 to 0.3%), but greater than acidic SALP in a biscuit (F = 0.1%). Time to maximum serum 26Al concentration was 1.25, 1.5, 8 and 4.8 h, respectively. These results of oral Al bioavailability × daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water. PMID:18848597

  14. A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: Box-Behnken optimization, ex vivo and in vivo evaluation.

    PubMed

    Said, Mayada; Elsayed, Ibrahim; Aboelwafa, Ahmed A; Elshafeey, Ahmed H

    2018-06-18

    Agomelatine suffers from extensive inactivation through 1 st pass effect with a limited oral bioavailability (5%). The aim of this study was to formulate and optimize liquid nanocrystals (LNC) containing agomelatine to enhance the transdermal permeation of the drug. The independent factors of the employed Box-Behnken design were the Pluronic F127, deoxycholic acid sodium salt and propylene glycol percentages. On the other hand, particle size, polydispersity index, zeta potential, entrapment efficiency, cumulative amount permeated at certain time intervals and permeation enhancement ratio were considered as dependent responses. The optimized formulation was composed of 1.5% Pluronic F127 and 1.5% deoxycholic acid sodium salt and it was found to have significantly higher AUC 0-24h , AUC 0-∞ and elimination t 1/2 than that of the employed reference indicating the enhancement of the drug permeation. The obtained findings indicated the ability of the optimized LNC formulation to improve the drug bioavailability after its transdermal application. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Influence of surfactants in self-microemulsifying formulations on enhancing oral bioavailability of oxyresveratrol: Studies in Caco-2 cells and in vivo.

    PubMed

    Sangsen, Yaowaporn; Wiwattanawongsa, Kamonthip; Likhitwitayawuid, Kittisak; Sritularak, Boonchoo; Graidist, Potchanapond; Wiwattanapatapee, Ruedeekorn

    2016-02-10

    Self-microemulsifying drug delivery systems (SMEDDS) containing two types (Tween80 and Labrasol) and two levels (low; 5% and high; 15%) of co-surfactants were formulated to evaluate the impact of surfactant phase on physical properties and oral absorption of oxyresveratrol (OXY). All formulations showed a very rapid release in the simulated gastric fluid (SGF) pH 1.2. After dilution with different media, the microemulsion droplet sizes of the Tween80-based (∼26 to 36 nm) were smaller than that of the Labrasol-based systems (∼34 to 45 nm). Both systems with high levels of surfactant increased the Caco-2 cells permeability of OXY compared to those with low levels of surfactant (1.4-1.7 folds) and the unformulated OXY (1.9-2.0 folds). It was of interest, that there was a reduction (4.4-5.3 folds) in the efflux transport of OXY from both systems compared to the unformulated OXY. The results were in good agreement with the in vivo absorption studies of such OXY-formulations in rats. Significantly greater values of Cmax and AUC(0-10h) (p<0.05) were obtained from the high levels of Tween80-based (F(r,0-10h) 786.32%) compared to those from the Labrasol-based system (F(r,0-10h) 218.32%). These finding indicate the importance of formulation variables such as type and quantity of surfactant in the SMEDDS to enhance oral drug bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In Vitro and In Vivo Characterization of Drug Nanoparticles Prepared Using PureNano™ Continuous Crystallizer to Improve the Bioavailability of Poorly Water Soluble Drugs.

    PubMed

    Tahara, Kohei; Nishikawa, Masahiro; Matsui, Ko; Hisazumi, Koji; Onodera, Risako; Tozuka, Yuichi; Takeuchi, Hirofumi

    2016-09-01

    The aim of this study was to enhance the dissolution and oral absorption of poorly water-soluble active pharmaceutical ingredients (APIs) using nanoparticle suspensions prepared with a PureNano™ continuous crystallizer (PCC). Nanoparticle suspensions were prepared with a PCC, which is based on microfluidics reaction technology and solvent-antisolvent crystallization. Phenytoin, bezafibrate, flurbiprofen, and miconazole were used as model APIs. These APIs were dissolved in ethanol and precipitated by the addition of water and polyvinyl alcohol. Batch crystallization (BC) using a beaker was also performed to prepare the suspensions. Both PCC and BC formulations were freeze-dried before being characterized in vitro and in vivo. The particle sizes of the nanoparticle suspensions prepared with the PCC were smaller than those prepared by BC. The dissolution rate of each API in vitro significantly increased after crystallization. Reducing the particle size of either the BC or PCC formulation led to increased API flux across Caco-2 cell monolayers. PCC preparations showed higher plasma concentrations after oral administration, demonstrating the advantages of a fast dissolution rate and increased interaction with the gastrointestinal tract owing to the smaller particle size. PCC can continuously produce nanoparticle APIs and is an efficient approach for improving their oral bioavailability.

  17. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals.

    PubMed

    Liu, Mingyu; Hong, Chao; Yao, Yashu; Shen, Hongyi; Ji, Guang; Li, Guowen; Xie, Yan

    2016-10-01

    Myricetin shows low oral bioavailability (<10%) in rats due to poor aqueous solubility, although it has demonstrated various pharmacological activities such as those related to anticancer, anti-diabetes, and hepatic protection. To overcome this issue, in this study, pharmaceutical cocrystals were designed to efficiently deliver myricetin by oral administration. A 1:2 stoichiometric cocrystal of myricetin with proline was prepared successfully by solution crystallization based on the ternary phase diagram (TPD) principle, and it is presented as a new sphericity-like crystalline phase characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The formation of myricetin-proline cocrystals was a spontaneous and exothermic process, probably due to the supramolecular interactions between themselves, which were determined by Fourier transform-infrared spectroscopy (FT-IR). Consequently, the dissolution efficiency of myricetin from cocrystals was increased 7.69-fold compared with that of coarse myricetin, and the oral bioavailability of myricetin cocrystals in rats was enhanced by approximately 3.03 times compared with that of pure myricetin. The present study provides useful information for the potential application of cocrystal technology for water-insoluble drugs, especially flavonoid compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Exploration of hydrophobic modification degree of chitosan-based nanocomplexes on the oral delivery of enoxaparin.

    PubMed

    Wang, Linlin; Li, Liang; Sun, Yujiao; Tian, Ye; Li, Ying; Li, Conghao; Junyaprasert, Varaporn B; Mao, Shirui

    2013-11-20

    The objective of this paper is to elucidate the influence of lipophilic modification degree of chitosan on the peroral absorption of enoxaparin. A series of novel chitosan grafted glyceryl monostearate (GM) copolymers with different GM substitution degree were synthesized and the successful synthesis was confirmed by (1)H NMR, FTIR and X-ray diffraction. Enoxaparin loaded nanocomplexes with different carriers were prepared by self-assembly process. Influence of GM substitution degree and chitosan molecular weight in the copolymer on the properties of the nanocomplexes was investigated. Morphology of the nanocomplexes was observed by atomic force microscopy. Mucoadhesive properties of the nanocomplexes were characterized using mucin particle method. Initially, mucoadhesion of the nanocomplexes increased with the increase of GM substitution degree and it started to decrease when the substitution degree was up to 18.6%. A good linear relationship between GM substitution degree and in vivo absorption of enoxaparin in fasted rats was established in the substitution degree range of 0-11.1%. In agreement with mucoadhesion data, further increasing GM substitution degree to 18.6% caused a decrease in oral absorption. In conclusion, oral bioavailability of enoxaparin can be enhanced by structure modification of the carriers and the bioavailability is hydrophobic modification degree dependent. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Drug transport mechanism of oral antidiabetic nanomedicines.

    PubMed

    Gundogdu, Evren; Yurdasiper, Aysu

    2014-01-01

    Over the last few decades, extensive efforts have been made worldwide to develop nanomedicine delivery systems, especially via oral route for antidiabetic drugs. Absorption of insulin is hindered by epithelial cells of gastrointestinal tract, acidic gastric pH and digestive enzymes. Recent reports have identified and explained the beneficial role of several structural molecules like mucoadhesive polymers (polyacrylic acid, sodium alginate, chitosan) and other copolymers for the efficient transport and release of insulin to its receptors. Insulin nanomedicines based on alginate-dextran sulfate core with a chitosan-polyethylene glycol-albumin shell reduced glycaemia in a dose dependent manner. Orally available exendin-4 formulations exerted their effects in a time dependent manner. Insulin nanoparticles formed by using alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin showed a threefold increase of the hypoglycemic effect in comparison to free insulin in animal models. Solid lipid nanoparticles showed an enhancement of the bioavailability of repaglinide (RG) within optimized solid lipid nanoparticle formulations when compared with RG alone. Nanoparticles represent multiparticulate delivery systems designed to obtain prolonged or controlled drug delivery and to improve bioavailability as well as stability. Nanoparticles can also offer advantages like limiting fluctuations within therapeutic range, reducing side effects, protecting drugs from degradation, decreasing dosing frequency, and improving patient compliance and convenience.

  20. Bioenhancers from mother nature and their applicability in modern medicine

    PubMed Central

    Randhawa, Gurpreet Kaur; Kullar, Jagdev Singh; Rajkumar

    2011-01-01

    Concept of bioenhancers or biopotentiators was first time reported in 1929 by Bose. A bioenhancer is an agent capable of enhancing bioavailability and efficacy of a drug with which it is co-administered, without any pharmacological activity of its own at therapeutic dose used. Development and consequent isolation of these molecules, such as piperine and quercetin, is considered as scientific breakthrough. A fixed drug combination (Risorine) of rifampicin, isoniazid, and piperine is the result of this research. It contains almost 60% less dose of rifampicin because of its increased bioavailability and it also prevents resistance. This concept is mentioned as yogvahi in ayurveda and was used to increase the effect of medicines by increasing oral bioavailability, decreasing adverse effects and to circumvent parenteral routes of drug administration. More such useful and economically viable drug combinations can be developed by integrating knowledge of time tested ayurveda with modern methods of research. This review is an account of these bioenhancers, available from the natural resources. PMID:23776764

  1. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    PubMed

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  2. Effect of permeability enhancers on paracellular permeability of acyclovir.

    PubMed

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  3. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery.

    PubMed

    Soliman, Kareem AbuBakr; Ibrahim, Howida Kamal; Ghorab, Mahmoud Mohammed

    2016-10-10

    Avanafil was incorporated into solid self-nanoemulsifying systems with the aim of improving its oral bioavailability. Labrafil, Labrafac, and Miglyol 812 N were investigated as oils, Tween 80 and Cremophor EL as surfactants, and Transcutol HP as a co-surfactant. Nine formulations produced clear solutions of 13.89-38.09nm globules after aqueous dilution. Adsorption of preconcentrate onto Aeroperl 300 Pharma at a 2:1 ratio had no effect on nanoemulsion particle size. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy indicated that avanafil was molecularly dispersed within the solid nanosystems. A formulation containing 10% Labrafil, 60% Tween 80, and 30% Transcutol HP had the highest drug loading (44.48mg/g) and an acceptable in vitro dissolution profile (96.42% within 30min). This formulation was chemically and physically stable for 6months under accelerated storage conditions and it produced a 3.2-fold increase in bioavailability in rabbits, as compared to conventional commercially available avanafil tablets (Spedra(®)). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation and Optimization of Amorphous Ursodeoxycholic Acid Nano-suspensions by Nanoprecipitation based on Acid-base Neutralization for Enhanced Dissolution.

    PubMed

    Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi

    2017-01-01

    Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Relative bioavailability of single doses of prolonged-release tacrolimus administered as a suspension, orally or via a nasogastric tube, compared with intact capsules: a phase 1 study in healthy participants.

    PubMed

    Undre, Nasrullah; Dickinson, James

    2017-04-04

    Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10 mg doses of tacrolimus were well tolerated. Compared with intact capsules, the rate of absorption of prolonged-release tacrolimus from suspension was faster, leading to higher peak blood concentrations and shorter time to peak; relative bioavailability was similar with suspension administered orally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. The effects of ketoconazole and cimetidine on the pharmacokinetics of oral tramadol in greyhound dogs.

    PubMed

    KuKanich, B; KuKanich, K; Black, J

    2017-12-01

    Tramadol is administered to dogs for analgesia but has variability in its extent of absorption, which may hinder its efficacy. Additionally, the active opioid metabolite (M1) occurs in low concentrations. The purpose of this study was to determine if administration of oral tramadol with suspected metabolism inhibitors (ketoconazole, cimetidine) would lead to improved bioavailability of tramadol and M1. Six healthy Greyhounds were included. They were administered tramadol orally and intravenously, M1 intravenously, oral tramadol with oral ketoconazole and oral tramadol with oral cimetidine. Oral tramadol bioavailability was low (2.6%). Ketoconazole and cimetidine significantly increased tramadol bioavailability to 18.2% and 20.3%, respectively. The mean maximum plasma concentration of tramadol alone was 22.9 ng/ml, and increased to 109.9 and 143.2 μg/ml with ketoconazole and cimetidine, respectively. However, measured tramadol plasma concentrations were below the minimum concentration considered effective in humans (228 μg/ml). In all treatment groups, measured M1 concentrations (<7 μg/ml) were below concentrations associated with efficacy in humans. To conclude, tramadol and M1 concentrations were low and variable in dogs after oral dosing of tramadol, even in combination with cimetidine or ketoconazole, but effective concentrations in dogs have not been defined. © 2017 John Wiley & Sons Ltd.

  7. To Take or Not to Take With Meals? Unraveling Issues Related to Food Effects Labeling for Oral Antineoplastic Drugs.

    PubMed

    Deng, Jiexin; Brar, Satjit S; Lesko, Lawrence J

    2017-12-02

    There has been controversy regarding whether bioavailability of certain oral oncology drugs should be maximized by taking these medications with food, irrespective of label instructions in the dosing and administration section. To provide insight into this controversy, we conducted an in-depth analysis for oral antineoplastic drugs approved by the Food and Drug Administration in 2000-2016 and identified important issues influencing food labeling decisions. Furthermore, a case study involving sonidegib, a drug approved for locally advanced basal cell carcinoma with a significant food effect on exposure, was used to demonstrate the consequences of failure to adhere to food label recommendations using drug-specific population pharmacokinetic and exposure-toxicity models. In 2000-2009, 80% (4 out of 5) of all approved oral antineoplastics with increased bioavailability in the fed state were labeled as "take on empty stomach." In contrast, we found that in 2010-2016 there is a greater diversity in food recommendations for drugs with increased bioavailability in the fed state. Currently, many oral oncology drugs are given with food to maximize their bioavailability; however, as seen from our case study of sonidegib, failure to fully adhere to label recommendations to either take with food or not could lead to adverse consequences in terms of safety and efficacy. © 2017, The American College of Clinical Pharmacology.

  8. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice

    PubMed Central

    Zhongfa, Liu; Chiu, Ming; Wang, Jiang; Chen, Wei; Yen, Winston; Fan-Havard, Patty; Yee, Lisa D.; Chan, Kenneth K.

    2012-01-01

    Purpose Curcumin has shown a variety of biological activity for various human diseases including cancer in preclinical setting. Its poor oral bioavailability poses significant pharmacological barriers to its clinical application. Here, we established a practical nano-emulsion curcumin (NEC) containing up to 20% curcumin (w/w) and conducted the pharmacokinetics of curcuminoids and curcumin metabolites in mice. Methods This high loading NEC was formulated based on the high solubility of curcumin in polyethylene glycols (PEGs) and the synergistic enhancement of curcumin absorption by PEGs and Cremophor EL. The pharmacokinetics of curcuminoids and curcumin metabolites was characterized in mice using a LC–MS/MS method, and the pharmacokinetic parameters were determined using WinNonlin computer software. Results A tenfold increase in the AUC0→24h and more than 40-fold increase in the Cmax in mice were observed after an oral dose of NEC compared with suspension curcumin in 1% methylcellulose. The plasma pharmacokinetics of its two natural congeners, demethoxycurcumin and bisdemethoxycurcumin, and three metabolites, tetrahydrocurcumin (THC), curcumin-O-glucuronide, and curcumin-O-sulfate, was characterized for the first time in mice after an oral dose of NEC. Conclusion This oral absorption enhanced NEC may provide a practical formulation to conduct the correlative study of the PK of curcuminoids and their pharmacodynamics, e.g., hypomethylation activity in vivo. PMID:21968952

  9. Bioavailability of repaglinide, a novel antidiabetic agent, administered orally in tablet or solution form or intravenously in healthy male volunteers.

    PubMed

    Hatorp, V; Oliver, S; Su, C A

    1998-12-01

    Repaglinide is a novel prandial glucose regulator (PGR) for the treatment of type 2 diabetes. In order to investigate subject variability following oral administration of repaglinide, and to determine the relative and absolute bioavailabilities of repaglinide following oral or intravenous administration, two single-centre, open-label, randomized, crossover clinical studies were conducted. Study 1 was conducted in 24 healthy male subjects (aged 18 to 49 years), who received repaglinide 2 mg, as either tablet or oral solution, twice each on 4 separate occasions at least 7 days apart. Study 2 was conducted in 12 healthy male subjects (aged 18 to 45 years), who received repaglinide 2 mg, either as a tablet or as an intravenous infusion over 15 minutes, once each on 2 separate occasions, with a washout period of 7-10 days. In study 1 there was no significant difference between administration of repaglinide 2 mg, in either tablet or oral solution form with regard to intrasubject variation in AUC and Cmax. However, the intrasubject variation in t(max) and mean residence time (MRT) was significantly (p = 0.001) larger for the tablets than for the oral solution. Intersubject variation (CV) in AUC ranged from 44.7% to 62.1% after oral administration. The relative bioavailability of repaglinide (AUC(tablet)/AUC(oral solution)) was 110% (95% CI, 103%-117%). In study 2 the absolute bioavailability of repaglinide administered as a tablet was 62.5% (95% CI, 49.2%-79.5%) relative to an intravenous infusion of the same dose. There was no evidence from either study that the tablet formulation led to greater variation in serum profiles of repaglinide. It was concluded that repaglinide is rapidly absorbed and eliminated in healthy subjects when administered orally or intravenously under fasting conditions, and that the total availability of repaglinide is similar in the tablet and oral solution formulations, though that the rate of absorption is slower for the tablet formulation.

  10. Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement

    PubMed Central

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.

    2016-01-01

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. PMID:27520734

  11. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends

    PubMed Central

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research. PMID:29922053

  12. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends.

    PubMed

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.

  13. Lack of dose dependent kinetics of methyl salicylate-2-O-β-D-lactoside in rhesus monkeys after oral administration.

    PubMed

    He, Yangyang; Yan, Yu; Zhang, Tiantai; Ma, Yinzhong; Zhang, Wen; Wu, Ping; Song, Junke; Wang, Shuang; Du, Guanhua

    2015-04-22

    Methyl salicylate-2-O-β-d-lactoside (MSL) is one of the main active components isolated from Gaultheria yunnanensis, which is a traditional Chinese medicine used to treat arthritis and various aches and pains. Pharmacological researches showed that MSL had various effective activities in both in vivo and in vitro experiments. However, the pharmacokinetics features and oral bioavailability of MSL in primates were not studied up to now. To study the pharmacokinetics of different doses of MSL in rhesus monkeys and investigate the absolute bioavailability of MSL after oral administration. Male and female rhesus monkeys were either orally administrated with MSL 200, 400 and 800 mg/kg or received an intravenous dose of 20mg/kg randomly. The levels of MSL and salicylic acid (SA) in plasma were simultaneous measured by a simple, sensitive and reproducible high performance liquid chromatography method. Mean peak plasma concentration values for groups treated with 200, 400 and 800 mg/kg doses ranged from 48.79 to 171.83 μg/mL after single-dose oral administration of MSL, and mean area under the concentration-time curve values ranged from 195.16 to 1107.76 μg/mL h. Poor linearity of the kinetics of SA after oral administration of MSL was observed in the regression analysis of the Cmax-dose plot (r(2)=0.812), CL-dose plot (r(2)=0.225) and AUC(0-t)-dose plot (r(2)=0.938). Absolute bioavailability of MSL was assessed to be 118.89 ± 57.50, 213.54 ± 58.98 and 168.72 ± 76.58%, respectively. Bioavailability of MSL after oral administration in rhesus monkeys was measured for the first time. Pharmacokinetics parameters did not appear to be dose proportional among the three oral doses of treatments, and MSL showed an apparent absolute bioavailability in excess of 100% in rhesus monkeys based on the present study. In addition, a rapid, sensitive and reliable HPLC method was established and demonstrated for the research of traditional Chinese medicine in this study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Imprinted-like biopolymeric micelles as efficient nanovehicles for curcumin delivery.

    PubMed

    Zhang, Lili; Qi, Zeyou; Huang, Qiyu; Zeng, Ke; Sun, Xiaoyi; Li, Juan; Liu, You-Nian

    2014-11-01

    To enhance the solubility and improve the bioavailability of hydrophobic curcumin, a new kind of imprinted-like biopolymeric micelles (IBMs) was designed. The IBMs were prepared via co-assembly of gelatin-dextran conjugates with hydrophilic tea polyphenol, then crosslinking the assembled micelles and finally removing the template tea polyphenol by dialysis. The obtained IBMs show selective binding for polyphenol analogous drugs over other drugs. Furthermore, curcumin can be effectively encapsulated into the IBMs with 5×10(4)-fold enhancement of aqueous solubility. We observed the sustained drug release behavior from the curcumin-loaded IBMs (CUR@IBMs) in typical biological buffers. In addition, we found the cell uptake of CUR@IBMs is much higher than that of free curcumin. The cell cytotoxicity results illustrated that CUR@IBMs can improve the growth inhibition of HeLa cells compared with free curcumin, while the blank IBMs have little cytotoxicity. The in vivo animal study demonstrated that the IBMs could significantly improve the oral bioavailability of curcumin. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development and Characterization of an Amorphous Solid Dispersion of Furosemide in the Form of a Sublingual Bioadhesive Film to Enhance Bioavailability.

    PubMed

    De Caro, Viviana; Ajovalasit, Alessia; Sutera, Flavia Maria; Murgia, Denise; Sabatino, Maria Antonietta; Dispenza, Clelia

    2017-06-24

    Administered by an oral route, Furosemide (FUR), a diuretic used in several edematous states and hypertension, presents bioavailability problems, reported as a consequence of an erratic gastrointestinal absorption due to various existing polymorphic forms and low and pH-dependent solubility. A mucoadhesive sublingual fast-dissolving FUR based film has been developed and evaluated in order to optimize the bioavailability of FUR by increasing solubility and guaranteeing a good dissolution reproducibility. The Differential Scanning Calorimetry (DSC) analyses confirmed that the film prepared using the solvent casting method entrapped FUR in the amorphous state. As a solid dispersion, FUR increases its solubility up to 28.36 mg/mL. Drug content, thickness, and weight uniformity of film were also evaluated. The measured Young's Modulus, yield strength, and relative elongation of break percentage (EB%) allowed for the classification of the drug-loaded film as an elastomer. Mucoadhesive strength tests showed that the force to detach film from mucosa grew exponentially with increasing contact time up to 7667 N/m². FUR was quickly discharged from the film following a trend well fitted with the Weibull kinetic model. When applied on sublingual mucosa, the new formulation produced a massive drug flux in the systemic compartment. Overall, the proposed sublingual film enhances drug solubility and absorption, allowing for the prediction of a rapid onset of action and reproducible bioavailability in its clinical application.

  16. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential.

    PubMed

    Singh, Bhupinder; Khurana, Lalit; Bandyopadhyay, Shantanu; Kapil, Rishi; Katare, O O P

    2011-11-01

    Carvedilol, a widely prescribed cardiovascular drug for hypertension and congestive heart failure, exhibits low and variable bioavailability owing to poor absorption and extensive hepatic first-pass metabolism. The current research work, therefore, entails formulation development of liquid self-nano-emulsifying drug delivery systems (SNEDDS) to enhance the bioavailability of carvedilol by facilitating its transport via lymphatic circulation. The formulation constituents, i.e. lipids, surfactants, and co-surfactants, were selected on the basis of solubility studies. Pseudo-ternary phase diagrams were constructed to embark upon the selection of blend of lipidic (i.e. Capmul PG8) and hydrophilic components (i.e. Cremophor EL as surfactant and Transcutol HP as co-surfactant) for efficient and robust formulation of SNEDDS. The SNEDDS, systematically optimized employing a central composite design (CCD), were evaluated for various response variables viz drug release parameters, emulsification time, emulsion droplet size, and mean dissolution time. In vitro drug release studies depicted that the release from SNEDDS systems followed a non-Fickian kinetic behavior. The TEM imaging of the optimized formulation affirmed the uniform shape and nano size of the system. Accelerated studies of the optimized formulation indicated high stability of the formulation for 6 months. The in situ perfusion studies carried out in wistar rats construed several fold augmentation in the permeability and absorption potential of the optimized formulation vis-à-vis marketed formulation. Thus, the present studies ratified the potential of SNEDDS in augmenting the oral bioavailability of BCS class II drugs.

  17. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption

    PubMed Central

    Attili-Qadri, Suha; Karra, Nour; Nemirovski, Alina; Schwob, Ouri; Talmon, Yeshayahu; Nassar, Taher; Benita, Simon

    2013-01-01

    An original oral formulation of docetaxel nanocapsules (NCs) embedded in microparticles elicited in rats a higher bioavailability compared with the i.v. administration of the commercial docetaxel solution, Taxotere. In the present study, various animal studies were designed to elucidate the absorption process of docetaxel from such a delivery system. Again, the docetaxel NC formulation elicited a marked enhanced absorption compared with oral Taxotere in minipigs, resulting in relative bioavailability and Cmax values 10- and 8.4-fold higher, respectively, confirming the previous rat study results. It was revealed that orally absorbed NCs altered the elimination and distribution of docetaxel, as shown in the organ biodistribution rat study, due to their reinforced coating, while transiting through the enterocytes by surface adsorption of apoproteins and phospholipids. These findings were demonstrated by the cryogenic-temperature transmission electron microscopy results and confirmed by the use of a chylomicron flow blocker, cycloheximide, that prevented the oral absorption of docetaxel from the NC formulation in an independent pharmacokinetic study. The lipoproteinated NCs reduced the docetaxel release in plasma and its distribution among the organs. The improved anticancer activity compared with i.v. Taxotere, observed in the metastatic lung cancer model in Severe Combined Immune Deficiency-beige (SCID-bg) mice, should be attributed to the extravasation effect, leading to the lipoproteinated NC accumulation in lung tumors, where they exert a significant therapeutic action. To the best of our knowledge, no study has reported that the absorption of NCs was mediated by a lymphatic process and reinforced during their transit. PMID:24101508

  18. Oral bioavailability and intestinal absorption of candesartan cilexetil: role of naringin as P-glycoprotein inhibitor.

    PubMed

    Gurunath, Surampalli; Nanjwade, Basavaraj K; Patil, P A

    2015-01-01

    The aim of the study is to explore the pharmacokinetic behavior of candesartan solid dispersions prepared by different pharmaceutical interventions using P-gp inhibitor in rabbits to validate the effectiveness of naringin as a pharmaceutical excipient in enhancing the oral delivery of lipophilic candesartan cilexetil. Male albino rabbits (1-1.5 kg) were orally administered pure CAN suspensions and various candesartan solid dispersions (10 mg/kg) with and without naringin (15 mg/kg) and blood samples were collected at specified time points. CAN plasma samples were measured using HPLC. After oral dosing of pure CAN suspension, the mean AUC0-8 h was found to be 0.14 ± 0.09 μgh/ml which was increased significantly, i.e. 0.52 ± 0.13 μgh/ml with freeze-dried solid dispersions in the presence of naringin (p < 0.01). Similarly, the mean Cmax of pure CAN suspension increased from 35.81 ± 0.13 μg/ml (without naringin) to 112.23 ± 0.13 μg/ml (freeze-dried solid dispersions with naringin) (p < 0.01). A 3.7-folds increase in apparent bioavailability was noticed with freeze-dried solid dispersions with naringin as compared to free CAN suspension administered alone. These results are quite stimulating for further development of a clinically useful oral formulation of candesartan cilexetil based on P-gp inhibition using naringin, a natural flavonoid as a pharmaceutical excipient.

  19. Oral bioavailability of cyclotrimethylenetrinitramine (RDX) from contaminated site soils in rats.

    PubMed

    Crouse, Lee C B; Michie, Mark W; Major, Michael A; Leach, Glenn J; Reddy, Gunda

    2008-01-01

    Cyclotrimethylenetrinitramine (RDX), a commonly used military explosive, was detected as a contaminant of soil and water at Army facilities and ranges. This study was conducted to determine the relative oral bioavailability of RDX in contaminated soil and to develop a method to derive bioavailability adjustments for risk assessments using rodents. Adult male Sprague-Dawley rats preimplanted with femoral artery catheters were dosed orally with gelatin capsules containing either pure RDX or an equivalent amount of RDX in contaminated soils from Louisiana Army Ammunition Plant (LAAP) (2300 microg/g of soil) or Fort Meade (FM) (670 microg/g of soil). After dosing rats, blood samples were collected from catheters at 2-h intervals (2, 4, 6, 8, 10, and 12) and at 24 and 48 h. RDX levels in the blood were determined by gas chromatography. The results show that the peak absorption of RDX in blood was 6 h for neat RDX (1.24 mg/kg) and for RDX from contaminated soil (1.24 mg/kg) of LAAP. Rats dosed with RDX-contaminated FM soil (0.2 mg/kg) showed peak levels of RDX in blood at 6 h, whereas their counterparts that received an identical dose (0.2 mg/kg) of neat RDX showed peak absorption at 4 h. The blood levels of absorbed RDX from LAAP soil were about 25% less than for neat RDX, whereas the bioavailability of RDX from FM soils was about 15% less than that seen in rats treated with neat RDX (0.2 mg/kg). The oral bioavailability in rats fed RDX in LAAP soil and the FM soil was reduced with the neat compound but decrease in bioavailability varied with the soil type.

  20. Sex differences in excipient effects: Enhancement in ranitidine bioavailability in the presence of polyethylene glycol in male, but not female, rats.

    PubMed

    Afonso-Pereira, Francisco; Murdan, Sudaxshina; Sousa, Joao; Veiga, Francisco; Basit, Abdul W

    2016-06-15

    Males and females respond differently to drugs: indeed, sex plays a crucial role in determining drug pharmacokinetics and pharmacodynamics. Excipients have also been shown to enhance the biovailability of drugs differently in men and women. The aim of this work was to investigate whether rodents are a good model in which to study sex-specific effects of polyethylene glycol 400 (PEG 400) on the bioavailability of ranitidine. Ranitidine (50mg/kg) was dissolved in water with different amounts of PEG 400-0 (control), 13, 26, 51, 77, 103, and 154mg/kg; these solutions were dosed orally by gavage to male and female Wistar rats. Blood samples were withdrawn over 480min and assayed via HPLC-UV. Individual ranitidine plasma profiles were constructed for each rat, and standard pharmacokinetic parameters were determined. In the male rats, the change in the area under the plasma ranitidine curve (AUC0-480) compared to the control group, was +18%; +49% (p<0.05); +37% (p<0.05); +31% (p<0.05); +8% and -22% (p<0.05) for PEG 400 doses of 13; 26; 51; 77; 103; and 154mg/kg respectively. On the other hand, females showed no statistically significant difference between the groups. In conclusion, low doses of PEG 400 enhanced the bioavailability of ranitidine in male, but not female, rats. These findings are in agreement with previously published human data, therefore confirming the validity of the rodent model, and highlight the unusual and clinically significant phenomenon that an excipient can influence drug bioavailability in one gender and not the other. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D

    PubMed Central

    Ke, Zhongcheng; Hou, Xuefeng; Jia, Xiao-bin

    2016-01-01

    Background The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS) for improving the bioavailability of cyclovirobuxine D as a poorly water-soluble drug. Materials and methods Solubility trials, emulsifying studies, and pseudo-ternary phase diagrams were used to screen the SNEDDS formulations. The optimized drug-loaded SNEDDS was prepared at a mass ratio of 3:24:38:38 for cyclovirobuxine D, oleic acid, Solutol SH15, and propylene glycol, respectively. The optimized formulation was characterized in terms of physicochemical and pharmacokinetic parameters compared with marketed cyclovirobuxine D tablets. Results The optimized cyclovirobuxine-D-loaded SNEDDS was spontaneously dispersed to form a nanoemulsion with a globule size of 64.80±3.58 nm, which exhibited significant improvement of drug solubility, rapid absorption rate, and enhanced area under the curve, together with increased permeation and decreased efflux. Fortunately, there was a nonsignificant cytotoxic effect toward Caco-2 cells. The relative bioavailability of SNEDDS was 200.22% in comparison with market tablets, in rabbits. Conclusion SNEDDS could be a potential candidate for an oral dosage form of cyclovirobuxine D with improved bioavailability. PMID:27418807

  2. PLGA nanoparticles for the oral delivery of nuciferine: preparation, physicochemical characterization and in vitro/in vivo studies.

    PubMed

    Liu, Ying; Wu, Xin; Mi, Yushuai; Zhang, Bimeng; Gu, Shengying; Liu, Gaolin; Li, Xiaoyu

    2017-11-01

    This article reports a promising approach to enhance the oral delivery of nuciferine (NUC), improve its aqueous solubility and bioavailability, and allow its controlled release as well as inhibiting lipid accumulation. NUC-loaded poly lactic-co-glycolic acid nanoparticles (NUC-PLGA-NPs) were prepared according to a solid/oil/water (s/o/w) emulsion technique due to the water-insolubility of NUC. PLGA exhibited excellent loading capacity for NUC with adjustable dosing ratios. The drug loading and encapsulation efficiency of optimized formulation were 8.89 ± 0.71 and 88.54 ± 7.08%, respectively. NUC-PLGA-NPs exhibited a spherical morphology with average size of 150.83 ± 5.72 nm and negative charge of -22.73 ± 1.63 mV, which are suitable for oral administration. A sustained NUC released from NUC-PLGA-NPs with an initial exponential release owing to the surface associated drug followed by a slower release of NUC, which was entrapped in the core. In addition, ∼77 ± 6.67% was released in simulating intestinal juice, while only about 45.95 ± 5.2% in simulating gastric juice. NUC-PLGA-NPs are more efficient against oleic acid (OA)-induced hepatic steatosis in HepG 2 cells when compared to naked NUC (n-NUC, *p < 0.05). The oral bioavailability of NUC-PLGA-NPs group was significantly higher (**p < 0.01) and a significantly decreased serum levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), as well as a higher concentration of high-density lipoprotein cholesterol (HDL-C) was observed, compared with that of n-NUC treated group. These findings suggest that NUC-PLGA-NPs hold great promise for sustained and controlled drug delivery with improved bioavailability to alleviating lipogenesis.

  3. Preparation and Pharmacokinetics Evaluation of Solid Self-Microemulsifying Drug Delivery System (S-SMEDDS) of Osthole.

    PubMed

    Sun, Chaojie; Gui, Yun; Hu, Rongfeng; Chen, Jiayi; Wang, Bin; Guo, Yuxing; Lu, Wenjie; Nie, Xiangjiang; Shen, Qiang; Gao, Song; Fang, Wenyou

    2018-05-29

    The study was performed aiming to enhance the solubility and oral bioavailability of poorly water-soluble drug osthole by formulating solid self-microemulsifying drug delivery system (S-SMEDDS) via spherical crystallization technique. Firstly, the liquid self-microemulsifying drug delivery system (L-SMEDDS) of osthole was formulated with castor oil, Cremophor RH40, and 1,2-propylene glycol after screening various lipids and emulsifiers. The type and amount of polymeric materials, good solvents, bridging agents, and poor solvents in S-SMEDDS formulations were further determined by single-factor study. The optimal formulation contained 1:2 of ethyl cellulose (EC) and Eudragit S100, which served as matrix forming and enteric coating polymers respectively. Anhydrous ethanol and dichloromethane with a ratio of 5:3 are required to perform as good solvent and bridging agent, respectively, with the addition of 0.08% SDS aqueous solution as poor solvent. The optimized osthole S-SMEDDS had a high yield (83.91 ± 3.31%) and encapsulation efficiency (78.39 ± 2.25%). Secondly, osthole L-SMEDDS was solidified to osthole S-SMEDDS with no significant changes in terms of morphology, particle size, and zeta potential. In vitro release study demonstrated a sustained release of the drug from osthole S-SMEDDS. Moreover, in vivo pharmacokinetic study showed that the T max and mean residence time (MRT (0-t) ) of osthole were significantly prolonged and further confirmed that osthole S-SMEDDS exhibited sustained release effect in rabbits. Comparing with osthole aqueous suspension and L-SMEDDS, osthole S-SMEDDS increased bioavailability by 205 and 152%, respectively. The results suggested that S-SMEDDS was an effective oral solid dosage form, which can improve the solubility and oral bioavailability of poorly water-soluble drug osthole.

  4. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits.

    PubMed

    Xu, Hongtao; He, Ling; Nie, Shufang; Guan, Jin; Zhang, Xiaoning; Yang, Xinggang; Pan, Weisan

    2009-11-16

    Free-flowing proliposomes which contained vinpocetine were prepared successfully to increase the oral bioavailability of vinpocetine. In this study the proliposomes were prepared by a novel method which was reported for the first time and the formulation was optimized using the centre composite design (CCD). The optimized formulation was Soybean phosphatidylcholine: 860 mg; cholesterol: 95 mg and sorbitol: 8000 mg. After the proliposomes were contacted with water, the suspension of vinpocetine liposomes formed automatically and the entrapment efficiency was approximately 86.3% with an average particle size of about 300 nm. The physicochemical properties of the proliposomes including SEM, TEM, XRD and FTIR were also detected. HPLC system was applied to study the concentration of vinpocetine in the plasma of the New Zealand rabbits after oral administration of vinpocetine proliposomes and vinpocetine suspension. The pharmacokinetic parameters were calculated by the software program DAS2.0. The concentration-time curves of vinpocetine suspension and vinpocetine proliposomes were much more different. There were two absorption peaks on the concentration-time curves of the vinpocetine proliposomes. The pharmacokinetic parameters of vinpocetine and vinpocetine proliposomes in New Zealand rabbits were T(max) 1 h and 3 h (there was also an absorption peak at 1 h); C(max) 163.82+/-12.28 ng/ml and 166.43+/-21.04 ng/ml; AUC(0-infinity) 1479.70+/-68.51 ng/ml h and 420.70+/-35.86 ng/ml h, respectively. The bioavailability of vinpocetine in proliposomes was more than 3.5 times higher than the vinpocetine suspension. The optimized vinpocetine proliposomes did improve the oral bioavailability of vinpocetine in New Zealand rabbits and offer a new approach to enhance the gastrointestinal absorption of poorly water soluble drugs.

  5. Bioadhesive chitosan-coated cyclodextrin-based superamolecular nanomicelles to enhance the oral bioavailability of doxorubicin

    NASA Astrophysics Data System (ADS)

    Liu, Yuhai; Zhai, Yinglei; Han, Xiaopeng; Liu, Xiaohong; Liu, Wanjun; Wu, Chunnuan; Li, Lin; Du, Yuqian; Lian, He; Wang, Yongjun; He, Zhonggui; Sun, Jin

    2014-10-01

    In order to improve the oral bioavailability of doxorubicin (Dox), a novel bioadhesive nanomicelle based on host-guest interaction was developed in this study. Hyaluronic acid-linked β-cyclodextrin (HA-CD) was synthesized. The primary nanomicelles were formed through the self-assemble of HA-CD and retinoic acid (RA) which was included as the hydrophobic core to anchor CD cavity by host-guest interaction. Chitosan (CS) was then coated on the surface of primary nanomicelles by ionic interaction with the negatively charged HA. The critical micellar concentration of HA-CD-RA was as low as 22.5 μg/mL. Dox was successfully encapsulated into the hydrophobic core of CS-coated HA-CD-RA nanomicelles (CS/HA-CD-RA-Dox), with encapsulation efficiency as high as 89.2 %. The CS/HA-CD-RA-Dox particle size was 234 nm and was stable over 30 days. In vitro Dox release showed that CS/HA-CD-RA nanomicelles were more sustained than HA-CD-RA nanomicelles, and Dox encapsulated into CS-coated nanomicelles was stable at low pH. The in situ single pass intestinal perfusion revealed that encapsulation of Dox into CS/HA-CD-RA nanomicelles could significantly improve the intestinal permeability of Dox. The mucoadhesion results indicated that the retention percentage of CS/HA-CD-RA nanomicelles was significantly higher than that of HA-CD-RA nanomicelles in gastrointestinal tract. In vivo pharmacokinetic study revealed that AUC(0-∞) of CS/HA-CD-RA nanomicelles was about fourfold higher than that of Dox solution. The present study suggested that CS/HA-CD-RA nanomicelles as biodegradable, biocompatible, and bioadhesive nanostructure can be a promising nanocarrier in improving the bioavailability of anticancer drugs to facilitate the oral chemotherapy.

  6. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia–Reperfusion Injury

    PubMed Central

    Davis, Janelle L.; Paris, Hunter L.; Beals, Joseph W.; Binns, Scott E.; Giordano, Gregory R.; Scalzo, Rebecca L.; Schweder, Melani M.; Blair, Emek; Bell, Christopher

    2016-01-01

    Intravenous administration of vitamin C has been shown to decrease oxidative stress and, in some instances, improve physiological function in adult humans. Oral vitamin C administration is typically less effective than intravenous, due in part to inferior vitamin C bioavailability. The purpose of this study was to determine the efficacy of oral delivery of vitamin C encapsulated in liposomes. On 4 separate randomly ordered occasions, 11 men and women were administered an oral placebo, or 4 g of vitamin C via oral, oral liposomal, or intravenous delivery. The data indicate that oral delivery of 4 g of vitamin C encapsulated in liposomes (1) produces circulating concentrations of vitamin C that are greater than unencapsulated oral but less than intravenous administration and (2) provides protection from ischemia–reperfusion-mediated oxidative stress that is similar to the protection provided by unencapsulated oral and intravenous administrations. PMID:27375360

  7. 26Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing 26Al as an aluminum tracer

    NASA Astrophysics Data System (ADS)

    Yokel, Robert A.; Urbas, Aaron A.; Lodder, Robert A.; Selegue, John P.; Florence, Rebecca L.

    2005-04-01

    We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300-400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.

  8. Effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after oral administration.

    PubMed

    Chen, Yin Bin; Wang, Yu Fang; Hou, Wei; Wang, Ying Ping; Xiao, Sheng Yuan; Fu, Yang Yang; Wang, Jia; Zheng, Si Wen; Zheng, Pei He

    2017-04-01

    Both ginsenoside Re and B-complex vitamins are widely used as nutritional supplements. They are often taken together so as to fully utilize their antifatigue and refreshing effects, respectively. Whether actually a drug-nutrient interaction exists between ginsenoside Re and B-complex vitamins is still unknown. The objective of this study was to simultaneously investigate the effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after their oral administration. The study results will provide valuable theoretical guidance for the combined utilization of ginseng and B-complex vitamins. Ginsenoside Re with or without B-complex vitamins was orally administered to mice to evaluate its antifatigue effects and to rats to evaluate its bioavailability. The antifatigue activity was evaluated by the weight-loaded swimming test and biochemical parameters, including hepatic glycogen, plasma urea nitrogen, and blood lactic acid. The concentration of ginsenoside Re in plasma was determined by liquid chromatography-tandem mass spectrometry. No antifatigue effect of ginsenoside Re was noted when ginsenoside Re in combination with B-complex vitamins was orally administered to mice. B-complex vitamins caused to a reduction in the bioavailability of ginsenoside Re with the area under the concentration-time curve from zero to infinity markedly decreasing from 11,830.85 ± 2,366.47 h·ng/mL to 890.55 ± 372.94 h·ng/mL. The results suggested that there were pharmacokinetic and pharmacodynamic drug-nutrient interactions between ginsenoside Re and B-complex vitamins. B-complex vitamins can significantly weaken the antifatigue effect and decrease the bioavailability of ginsenoside Re when simultaneously administered orally.

  9. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.

    PubMed

    Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin

    2017-11-01

    Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.

  10. Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates.

    PubMed

    Mandagere, Arun K; Thompson, Thomas N; Hwang, Kin-Kai

    2002-01-17

    This paper describes a graphical model for simplifying in vitro absorption, metabolism, distribution, and elimination (ADME) data analysis through the estimation of oral bioavailability (%F) of drugs in humans and other species. This model integrates existing in vitro ADME data, such as Caco-2 permeability (P(app)) and metabolic stability (percent remaining - %R) in liver S9 or microsomes, to estimate %F into groups of low, medium, or high regions. To test the predictive accuracy of our model, we examined 21 drugs and drug candidates with a wide range of oral bioavailability values, which represent approximately 10 different therapeutic areas in humans, rats, dogs, and guinea pigs. In vitro data from model compounds were used to define the boundaries of the low, medium, and high regions of the %F estimation plot. On the basis of the in vitro data, warfarin (93%), indomethacin (98%), timolol (50%), and carbamazepine (70%) were assigned to the high %F region; propranolol (26%) and metoprolol (38%) to medium %F region; and verapamil (22%) and mannitol (18%) to the low %F region. Similarly, the %F of 11 drug candidates from Elastase Inhibitor, NK1/NK2 antagonist, and anti-viral projects in rats, guinea pigs, and dogs were correctly estimated. This model estimates the oral bioavailability ranges of neutral, polar, esters, acidic, and basic drugs in all species. For a large number of drug candidates, this graphical model provides a tool to estimate human oral bioavailability from in vitro ADME data. When combined with the high throughput in vitro ADME screening process, it has the potential to significantly accelerate the processes of lead identification and optimization.

  11. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    PubMed

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-05

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bioavailability of metronidazole in rabbits after administration of a rectal suppository.

    PubMed

    Ofoefule, Sabinus I; Ibezim, Emmanuel C; Esimone, Okechukwu C; Pepple, Miriam N; Njoku, Chinedu N; Orisakwe, Ebere O

    2004-01-01

    The bioavailability of metronidazole in rabbits was studied using plasma concentration measurements after the administration of the drug in a hydrophilic (glycerogelatin) suppository form. The peak in the plasma concentration time curve occurred about 1 hour after administration, indicating that the rate of absorption is fast and equivalent to that observed in humans after oral administration. There was rapid elimination of the drug, as indicated by a relatively high elimination rate constant and low plasma half-life. The in vitro dissolution profile of the suppositories further confirms rapid absorption of the drug from the suppositories in the rectum. The presence of Tween 80 enhanced the in vitro release of metronidazole, but the presence of a hydrogenated vegetable oil lubricant (Lubritab) caused retardation in the drug release from the suppositories.

  13. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes.

    PubMed

    El-Far, Yousra M; Zakaria, Mahmoud M; Gabr, Mahmoud M; El Gayar, Amal M; El-Sherbiny, Ibrahim M; Eissa, Laila A

    2016-10-01

    This study aimed to develop a new stable nanoformulation of silymarin (SM) with optimum enhanced oral bioavailability and to evaluate its effect as well as mechanism of action as a superior antidiabetic agent over native SM using streptozotocin-induced diabetic rats. SM-loaded pluronic nanomicelles (SMnp) were prepared and fully characterized. Biochemical parameters were performed as well as histological, confocal and reverse-transcription polymerase chain reaction studies on pancreatic target tissues. SMnp were found to improve significantly the antihyperglycemic, antioxidant and antihyperlipidemic properties as compared with native SM. In addition, SMnp was found to be a more efficient agent over SM in the management of diabetes and its associated complications due to its superior bioavailability in vivo, and the controlled release profile of SM. [Formula: see text].

  14. Influence of mycotoxin binders on the oral bioavailability of tylosin, doxycycline, diclazuril, and salinomycin in fed broiler chickens.

    PubMed

    De Mil, T; Devreese, M; Maes, A; De Saeger, S; De Backer, P; Croubels, S

    2017-07-01

    The presence of mycotoxins in broiler feed can have deleterious effects on the wellbeing of the animals and their performance. Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the intestinal tract and thereby prevent the oral absorption of the mycotoxin. The simultaneous administration of coccidiostats and/or antimicrobials with mycotoxin binders might lead to a reduced oral bioavailability of these veterinary medicinal products. This paper describes the influence of 3 mycotoxin binders (i.e., clay 1 containing montmorillonite, mica, and feldspars; clay 2 containing montmorillonite and quartz; and yeast 1 being a modified glucomannan fraction of inactivated yeast cells) and activated carbon on the oral bioavailability and pharmacokinetic parameters of the antimicrobials doxycycline and tylosin, and the coccidiostats diclazuril and salinomycin. A feeding study with 40 15 day-old broilers was performed evaluating the effects of long-term feeding 2 g mycotoxin binder/kg of feed. The birds were randomly divided into 5 groups of 8 birds each, i.e., a control group receiving no binder and 4 test groups receiving either clay 1, clay 2, yeast 1, or activated carbon mixed in the feed. After 15 d of feeding, both the control and each test group were administered doxycycline, tylosin, diclazuril, and salinomycin, consecutively, respecting a wash-out period of 2 to 3 d between each administration. The 4 medicinal products were dosed using a single bolus administration directly in the crop. After each bolus administration, blood was collected for plasma analysis and calculation of the main pharmacokinetic parameters and relative oral bioavailability (F = area under the plasma concentration-time curve (AUC0-8 h) in the test groups/AUC0-8 h in the control group)*100). No effects were observed of any of the mycotoxin binders on the relative oral bioavailability of the coccidiostats (i.e., F between 82 and 101% and 79 and 93% for diclazuril and salinomycin, respectively). Also, no significant effects could be noticed of any of the mycotoxin binders on the relative oral bioavailability of the antimicrobials doxycycline and tylosin (i.e., F between 67 and 83% and between 43 and 104%, respectively). © 2017 Poultry Science Association Inc.

  15. Oral relative bioavailability of Dichlorodiphenyltrichloroethane (DDT) in contaminated soil and its prediction using in vitro strategies for exposure refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhasz, Albert L., E-mail: Albert.Juhasz@unisa.edu

    In this study, the bioavailability of DDTr (sum of DDT, DDD and DDE isomers) in pesticide-contaminated soil was assessed using an in vivo mouse model. DDTr relative bioavailability (RBA) ranged from 18.7±0.9 (As35) to 60.8±7.8% (As36) indicating that a significant portion of soil-bound DDTr was not available for absorption following ingestion. When DDTr bioaccessibility was assessed using the organic Physiologically Based Extraction Test (org-PBET), the inclusion of a sorption sink (silicone cord) enhanced DDTr desorption by up to 20-fold (1.6–3.8% versus 18.9–56.3%) compared to DDTr partitioning into gastrointestinal fluid alone. Enhanced desorption occurred as a result of the silicone cordmore » acting as a reservoir for solubilized DDTr to partition into, thereby creating a flux for further desorption until equilibrium was achieved. When the relationship between in vivo and in vitro data was assessed, a strong correlation was observed between the mouse bioassay and the org-PBET+silicone cord (slope=0.94, y-intercept=3.5, r{sup 2}=0.72) suggesting that the in vitro approach may provide a robust surrogate measure for the prediction of DDTr RBA in contaminated soil. - Highlights: • An optimised mouse assay was used to quantify DDTr relative bioavailability in soil. • DDTr bioaccessibility was also determined using an in vitro sorption sink approach. • A strong correlation was observed between in vivo and in vitro data. • The sorption sink approach may be used to predict DDTr relative bioavailability.« less

  16. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy.

    PubMed

    Wang, Jingnan; Tan, Jiayun; Luo, Jiahao; Huang, Peilin; Zhou, Wuyi; Chen, Luming; Long, Lingli; Zhang, Li-Ming; Zhu, Banghao; Yang, Liqun; Deng, David Y B

    2017-03-01

    Diabetic retinopathy is the most common complication in diabetic patients relates to high expression of VEGF and microaneurysms. Scutellarin (Scu) turned out to be effective against diabetes related vascular endothelial cell dysfunction. However, its clinical applications have been limited by its low bioavailability. In this study, we formulated and characterized a novel intestinal target nanoparticle carrier based on amphiphilic chitosan derivatives (Chit-DC-VB12) loaded with scutellarin to enhance its bioavailability and then evaluated its therapeutic effect in experimental diabetic retinopathy model. Chit-DC-VB12 nanoparticles showed low toxicity toward the human colon adenocarcinoma (Caco-2) cells and zebra fish within concentration of 250 μg/ml, owing to good biocompatibility of chitosan. The scutellarin-loaded Chit-DC-VB12 nanoparticles (Chit-DC-VB12-Scu) were then prepared by self-assembly in aqueous solution. Scanning electron microscopy and dynamic light scattering analysis indicated that the Chit-DC-VB12-Scu nanoparticles were spherical particles in the sizes ranging from 150 to 250 nm. The Chit-DC-VB12-Scu nanoparticles exhibited high permeation in Caco-2 cell, indicated it could be beneficial to be absorbed in humans. We also found that Chit-DC-VB12 nanoparticles had a high cellular uptake. Bioavailability studies were performed in Sprague-Dawley rats, which present the area under the curve of scutellarin of Chit-DC-VB12-Scu was two to threefolds greater than that of free scutellarin alone. Further to assess the therapeutic efficacy of diabetic retinopathy, we showed Chit-DC-VB12-Scu down-regulated central retinal artery resistivity index and the expression of angiogenesis proteins (VEGF, VEGFR2, and vWF) of retinas in type II diabetic rats. Chit-DC-VB12 nanoparticles loaded with scutellarin have better bioavailability and cellular uptake efficiency than Scu, while Chit-DC-VB12-Scu nanoparticles alleviated the structural disorder of intraretinal neovessels in the retina induced by diabetes, and it also inhibited the retinal neovascularization via down-regulated the expression of angiogenesis proteins. In conclusion, the Chit-DC-VB12 nanoparticles enhanced scutellarin oral delivery efficacy and exhibited potential as small intestinal target promising nano-carriers for treatment of type II diabetes induced-retinopathy.

  17. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  18. Oral relative bioavailability of Dichlorodiphenyltrichloroethane (DDT) in contaminated soil and its prediction using in vitro strategies for exposure refinement.

    PubMed

    Juhasz, Albert L; Herde, Paul; Smith, Euan

    2016-10-01

    In this study, the bioavailability of DDTr (sum of DDT, DDD and DDE isomers) in pesticide-contaminated soil was assessed using an in vivo mouse model. DDTr relative bioavailability (RBA) ranged from 18.7±0.9 (As35) to 60.8±7.8% (As36) indicating that a significant portion of soil-bound DDTr was not available for absorption following ingestion. When DDTr bioaccessibility was assessed using the organic Physiologically Based Extraction Test (org-PBET), the inclusion of a sorption sink (silicone cord) enhanced DDTr desorption by up to 20-fold (1.6-3.8% versus 18.9-56.3%) compared to DDTr partitioning into gastrointestinal fluid alone. Enhanced desorption occurred as a result of the silicone cord acting as a reservoir for solubilized DDTr to partition into, thereby creating a flux for further desorption until equilibrium was achieved. When the relationship between in vivo and in vitro data was assessed, a strong correlation was observed between the mouse bioassay and the org-PBET+silicone cord (slope=0.94, y-intercept=3.5, r(2)=0.72) suggesting that the in vitro approach may provide a robust surrogate measure for the prediction of DDTr RBA in contaminated soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.

    PubMed

    Chen, Yizhen; Tuo, Jue; Huang, Huizhi; Liu, Dan; You, Xiuhua; Mai, Jialuo; Song, Jiaqi; Xie, Yanqi; Wu, Chuanbin; Hu, Haiyan

    2015-06-20

    The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions. Copyright © 2015. Published by Elsevier B.V.

  20. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: a comparative study to hot melt extrusion.

    PubMed

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-03-01

    KinetiSol Dispersing (KSD) is a novel high energy manufacturing process investigated here for the production of pharmaceutical solid dispersions. Solid dispersions of itraconazole (ITZ) and hypromellose were produced by KSD and compared to identical formulations produced by hot melt extrusion (HME). Materials were characterized for solid state properties by modulated differential scanning calorimetry and X-ray diffraction. Dissolution behavior was studied under supersaturated conditions. Oral bioavailability was determined using a Sprague-Dawley rat model. Results showed that KSD was able to produce amorphous solid dispersions in under 15 s while production by HME required over 300 s. Dispersions produced by KSD exhibited single phase solid state behavior indicated by a single glass transition temperature (T(g)) whereas compositions produced by HME exhibited two T(g)s. Increased dissolution rates for compositions manufactured by KSD were also observed compared to HME processed material. Near complete supersaturation was observed for solid dispersions produced by either manufacturing processes. Oral bioavailability from both processes showed enhanced AUC compared to crystalline ITZ. Based on the results presented from this study, KSD was shown to be a viable manufacturing process for the production of pharmaceutical solid dispersions, providing benefits over conventional techniques including: enhanced mixing for improved homogeneity and reduced processing times. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  1. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.

    PubMed

    Wang, Xue-Qing; Zhang, Qiang

    2012-10-01

    pH-sensitive polymeric nanoparticles are promising for oral drug delivery, especially for peptide/protein drugs and poorly water-soluble medicines. This review describes current status of pH-sensitive polymeric nanoparticles for oral drug delivery and introduces the mechanisms of drug release from them as well as possible reasons for absorption improvement, with emphasis on our contribution to this field. pH-sensitive polymeric nanoparticles are prepared mainly with polyanions, polycations, their mixtures or cross-linked polymers. The mechanisms of drug release are the result of carriers' dissolution, swelling or both of them at specific pH. The possible reasons for improvement of oral bioavailability include the following: improve drug stability, enhance mucoadhesion, prolong resident time in GI tract, ameliorate intestinal permeability and increase saturation solubility and dissolution rate for poorly water-soluble drugs. As for the advantages of pH-sensitive nanoparticles over conventional nanoparticles, we conclude that (1) most carriers used are enteric-coating materials and their safety has been approved. (2) The rapid dissolution or swelling of carriers at specific pH results in quick drug release and high drug concentration gradient, which is helpful for absorption. (3) At the specific pH carriers dissolve or swell, and the bioadhesion of carriers to mucosa becomes high because nanoparticles turn from solid to gel, which can facilitate drug absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study.

    PubMed

    Javed, Ibrahim; Hussain, Syed Zajif; Shahzad, Atif; Khan, Jahanzeb Muhammad; Ur-Rehman, Habib; Rehman, Mubashar; Usman, Faisal; Razi, Muhammad Tahir; Shah, Muhammad Raza; Hussain, Irshad

    2016-05-01

    We report the synthesis and evaluation of lecithin-gold hybrid nanocarriers for the oral delivery of drugs with improved pharmacokinetics, Au-drug interactive bioactivity and controlled drug releasing behavior at physiological pH inside human body. For this purpose, diacerein, a hydrophobic anti-arthritic drug, was loaded in lecithin NPs (LD NPs), which were further coated by Au NPs either by in-situ production of Au NPs on LD NPs or by employing pre-synthesized Au NPs. All LDAu NPs were found to release drug selectively at the physiological pH of 7.4 and showed 2.5 times increase in the oral bioavailability of diacerein. Pharmacological efficacy was significantly improved i.e., greater than the additive effect of diacerein and Au NPs alone. LDAu NPs started suppressing inflammation at first phase, whereas LD NPs showed activity in the second phase of inflammation. These results indicate the interaction of Au NPs with prostaglandins and histaminic mediators of first phase of carrageenan induced inflammation. Acute toxicity study showed no hepatic damage but the renal toxicity parameters were close to the upper safety limits. Toxicity parameters were dependent on surface engineering of LDAu NPs. Apart from enhancing the oral bioavailability of hydrophobic drugs and improving their anti-inflammatory activity, these hybrid nanocarriers may have potential applications in gold-based photothermal therapy and the tracing of inflammation at atherosclerotic and arthritic site. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.

    PubMed

    Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing

    2017-11-01

    Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.

  4. In Vitro And In Vivo Approaches For The Measurement Of Oral Bioavailability Of Lead (Pb) In Contaminated Soils: A Review

    EPA Science Inventory

    We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil ...

  5. Determination of Tangeretin in Rat Plasma: Assessment of Its Clearance and Absolute Oral Bioavailability.

    PubMed

    Elhennawy, Mai Gamal; Lin, Hai-Shu

    2017-12-29

    Tangeretin (TAN) is a dietary polymethoxylated flavone that possesses a broad scope of pharmacological activities. A simple high-performance liquid chromatography (HPLC) method was developed and validated in this study to quantify TAN in plasma of Sprague-Dawley rats. The lower limit of quantification (LLOQ) was 15 ng/mL; the intra- and inter-day assay variations expressed in the form of relative standard deviation (RSD) were all less than 10%; and the assay accuracy was within 100 ± 15%. Subsequently, pharmacokinetic profiles of TAN were explored and established. Upon single intravenous administration (10 mg/kg), TAN had rapid clearance ( Cl = 94.1 ± 20.2 mL/min/kg) and moderate terminal elimination half-life ( t 1/2 λz = 166 ± 42 min). When TAN was given as a suspension (50 mg/kg), poor but erratic absolute oral bioavailability (mean value < 3.05%) was observed; however, when TAN was given in a solution prepared with randomly methylated-β-cyclodextrin (50 mg/kg), its plasma exposure was at least doubled (mean bioavailability: 6.02%). It was obvious that aqueous solubility hindered the oral absorption of TAN and acted as a barrier to its oral bioavailability. This study will facilitate further investigations on the medicinal potentials of TAN.

  6. Preparation and in vitro/in vivo evaluation of metformin hydrochloride rectal dosage forms for treatment of patients with type II diabetes.

    PubMed

    Zaghloul, Abdel-Azim; Lila, Ahmad; Abd-Allah, Fathy; Nada, Aly

    2017-06-01

    Metformin hydrochloride (MtHCL) is an oral antidiabetic drug and has many other therapeutic benefits. It has poor bioavailability, narrow absorption window and extensive liver metabolism. Moreover, children and elders face difficulty to swallow the commercial oral tablets. Preparation, in vitro/in vivo evaluation of MtHCL suppositories for rectal administration to solve some of these problems. Suppository fatty bases (Witepsol ® , Suppocire ® and Massa ® ; different grades) and PEG bases 1000, 4000 and 6000 (different ratios), were used to prepare rectal suppository formulations each containing 500 mg drug. These were characterized for manufacturing defects, and pharmacotechnical performance and formulations showing superior results were subjected to bioavailability testing in human volunteers compared with the commercial oral tablet (Ref) applying LC-MS/MS developed analytical technique. The preparation method produced suppositories with satisfactory characteristics and free of manufacturing defects. The fatty bases were superior compared with PEG bases regarding the physical characteristics. Three formulations were chosen for bioavailability testing and the results showed comparable bioavailability compared to the Ref. The fatty bases showed superior characteristics compared with the PEG bases. MtHCL formulated in selected fatty bases could be a potential alternative to the commercial oral tablets particularly for pediatric and geriatric patients.

  7. Controlled-release systemic delivery - a new concept in cancer chemoprevention

    PubMed Central

    2012-01-01

    Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo. PMID:22696595

  8. Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin.

    PubMed

    Chen, Miles C M; Wang, Jui-Ling; Tzen, Jason T C

    2005-01-01

    To elevate its bioavailability via oral administration, cyclosporine A (CsA), a hydrophobic drug, was either incorporated into olive oil directly or encapsulated in artificial oil bodies (AOBs) constituted with olive oil and phospholipid in the presence or absence of recombinant caleosin purified from Escherichia coli. The bioavailabilities of CsA in these formulations were assessed in Wistar rats in comparison with the commercial formulation, Sandimmun Neoral. Among these tests, CsA-loaded AOBs stabilized by the recombinant caleosin exhibited better bioavailability than the commercial formulation and possessed the highest maximum whole blood concentration (C(max)), 1247.4 +/- 106.8 ng/mL, in the experimental animals 4.3 +/- 0.7 h (t(max)) after oral administration. C(max) and the area under the plasma concentration-time curve (AUC(0-24)) were individually increased by 50.8% and 71.3% in the rats fed with caleosin-stabilized AOBs when compared with those fed with the reference Sandimmun Neoral. The results suggest that constitution of AOBs stabilized by caleosin may be a suitable technique to encapsulate hydrophobic drugs for oral administration.

  9. Influence of piperine and quercetin on antidiabetic potential of curcumin.

    PubMed

    Kaur, Ginpreet; Invally, Mihir; Chintamaneni, Meena

    2016-09-01

    Curcumin is a nutraceutical obtained from the rhizomes of Curcuma longa with a significant medicinal value against numerous disorders. However, the potential cannot be completely exploited due to low in vivo bioavailability. Hence, in order to enhance the bioavailability of curcumin, we combined it with the bioavailability enhancers like piperine and quercetin. The present study was targeted to explore the antidiabetic potential of combinatorial extract of curcumin with piperine and quercetin (CPQ) in streptozotocin- and nicotinamide-induced diabetic rats. Diabetes mellitus was induced by single intraperitoneal injection of streptozotocin (55 mg/kg) and nicotinamide (120 mg/kg-1). CPQ was orally administered at 100 mg kg-1 dose/day for a period of 28 days. At the end of 28 days, blood was analyzed for glucose, high density lipoprotein (HDL), low density lipoprotein (LDL) and total cholesterol level. Oral glucose tolerance test (OGTT) was also conducted at the end of 28 days. Oral administration of CPQ at the dose of 100 mg kg-1 significantly (p<0.01) reduced plasma glucose at the end of 28 days, as compared to the diabetic control group. The reduction in the plasma glucose produced by the CPQ extract was equivalent to that of glibenclamide and significantly more compared to curcumin alone (p<0.01). Furthermore, a significant (p<0.01) reduction in the raised LDL, cholesterol and triglycerides and improvement was observed in the group fed with CPQ compared to diabetic control as well as the alone (p<0.05) curcumin group. There was a significant improvement in the body weight with CPQ compared to diabetes control group. OGTT revealed a significantly high glucose tolerance in CPQ fed rats compared to the diabetic control as well as the rats fed with curcumin alone. Treatment with combinatorial extract of curcumin presented a significantly better therapeutic potential when compared with curcumin alone, which reveals that CPQ, with reduced dose of curcumin may serve as a therapeutic agent in the treatment of type 2 diabetes mellitus.

  10. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability

    PubMed Central

    Neves, Ana Rute; Lúcio, Marlene; Martins, Susana; Lima, José Luís Costa; Reis, Salette

    2013-01-01

    Introduction Resveratrol is a polyphenol found in grapes and red wines. Interest in this polyphenol has increased due to its pharmacological cardio- and neuroprotective, chemopreventive, and antiaging effects, among others. Nevertheless, its pharmacokinetic properties are less favorable, since the compound has poor bioavailability, low water solubility, and is chemically unstable. To overcome these problems, we developed two novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance resveratrol’s oral bioavailability for further use in medicines, supplements, and nutraceuticals. Methods and materials Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) loaded with resveratrol were successfully produced by a modified hot homogenization technique. These were completely characterized to evaluate the quality of the developed resveratrol-loaded nanoparticles. Results Cryo-scanning electron microscopy morphology studies showed spherical and uniform nanoparticles with a smooth surface. An average resveratrol entrapment efficiency of ~70% was obtained for both SLNs and NLCs. Dynamic light scattering measurements gave a Z-average of 150–250 nm, polydispersity index of ~0.2, and a highly negative zeta potential of around −30 mV with no statistically significant differences in the presence of resveratrol. These characteristics remained unchanged for at least 2 months, suggesting good stability. Differential scanning calorimetry studies confirmed the solid state of the SLNs and NLCs at both room and body temperatures. The NLCs had a less ordered crystalline structure conferred by the inclusion of the liquid lipid, since they had lower values for phase transition temperature, melting enthalpy, and the recrystallization index. The presence of resveratrol induced a disorder in the crystal structure of the nanoparticles, suggesting a favoring of its entrapment. The in vitro release studies on conditions of storage showed a negligible resveratrol release over several hours for both nanosystems and the in vitro simulation of gastrointestinal transit showed that the resveratrol remained mostly associated with the lipid nanoparticles after their incubation in digestive fluids. Conclusion Both nanodelivery systems can be considered suitable carriers for oral administration, conferring protection to the incorporated resveratrol and allowing a controlled release after uptake. PMID:23326193

  11. Preparation and in vitro/in vivo Evaluation of Lacidipine by Adsorption onto Fumed Silica Using Supercritical Carbon Dioxide.

    PubMed

    Geng, Yajie; Fu, Qiang; Guo, Bei; Li, Yun; Zhang, Xiangrong; Wang, Xianglin; Zhang, Tianhong

    2016-01-01

    The aim of this study was to design a silica-supported solid dispersion of lacidipine (LCDP) to enhance the dissolution rate and oral absorption using supercritical CO2 (scCO2) as a solvent. The formulation was characterized using differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and fourier transformed infrared spectroscopy. In the dissolution test, LCDP-scCO2 formulation showed a significantly enhanced dissolution compared with LCDPsilica physical mixture and a faster dissolution rate than Lacipil® under different dissolution conditions. In an in vivo test, the area under concentration-time curve and Cmax of LCDP-scCO2 formulation was 9.23 and 23.78 fold greater than LCDP-silica physical mixture (1:15, w/w), respectively, whereas the corresponding values were 1.92 and 2.80 fold greater than Lacipil®, respectively. Our results showed that the solid dispersion prepared by supercritical fluids technology is a feasible method to enhance the oral bioavailability of LCDP.

  12. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles.

    PubMed

    Ahmad, Niyaz; Ahmad, Rizwan; Alam, Md Aftab; Ahmad, Farhan Jalees

    2018-05-23

    Doxorubicin hydrochloride (DOX·HCl), an anthracycline glycoside antibiotic, exhibits low oral bioavailability due to active efflux from intestinal P-glycoprotein receptors. The oral administration of DOX remains a challenge hence; no oral formulation for DOX is marketed, till date. To improve the oral bioavailability of DOX through, preparation of a nanoformulation i.e. PEGylated-doxorubicin(DOX)-loaded-poly-lactic-co-glycolic acid (PLGA)-Nanoparticles (NPs) and to develop and validate an ultra-high performance liquid chromatography electrospray ionization-synapt mass spectrometric bioanalytical method (UHPLC/ESI-QTOF-MS/MS) for plasma (Wistar rats) DOX quantification. For chromatography, Waters ACQUITY UPLC™ along with a BEH C-18 column (2.1 mm × 100 mm; 1.7 μm), mobile phase conditions (acetonitrile: 0.1% formic acid::1:1 v/v) and flow rate (0.20 ml/min) was used. For analyte recovery from rat plasma, a liquid-liquid extraction method (LLE), using Acetonitrile: 5 mM ammonium acetate in a ratio of 6:4 v/v at pH 3.5, was used. Nanoformulation with a particle size (183.10 ± 7.41 nm), zeta potential (- 13.10 ± 1.04 mV), drug content (42.69 ± 1.97 µg/mg) and a spherical shape and smooth surface was developed. An elution time of 1.61 and 1.75 min along with a transition at m/z 544.42/397.27 and 528.46/321.41 were observed for DOX and internal standard (IS) Daunorubicin, respectively. In addition, a linear dynamic range with r 2  ≥ 0.9985 over a concentration range of 1.00-2500.0 ng/ml was observed for different processes and parameters used in the study. Similarly a marked improvement i.e. 6.8 fold was observed, in PEGylated-DOX-PLGA-NPs as compared to DOX-S, in pharmacokinetics studies. The promising approach of PEGylated-DOX-PLGA-NPs may provide an alternate to intravenous therapy for better patient care.

  13. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine.

    PubMed

    Rao, Monica R P; Chaudhari, Jagruti; Trotta, Francesco; Caldera, Fabrizio

    2018-06-04

    Rilpivrine is BCS class II drug used for treatment of HIV infection. The drug has low aqueous solubility (0.0166 mg/ml) and dissolution rate leading to low bioavailability (32%). Aim of this work was to enhance solubility and dissolution of rilpivirine using beta-cyclodextrin-based nanosponges. These nanosponges are biocompatible nanoporous particles having high loading capacity to form supramolecular inclusion and non-inclusion complexes with hydrophilic and lipophilic drugs for solubility enhancement. Beta-cyclodextrin was crosslinked with carbonyl diimidazole and pyromellitic dianhydride to prepare nanosponges. The nanosponges were loaded with rilpivirine by solvent evaporation method. Binary and ternary complexes of drug with β-CD, HP-β-CD, nanosponges, and tocopherol polyethylene glycol succinate were prepared and characterized by phase solubility, saturation solubility in different media, in vitro dissolution, and in vivo pharmacokinetics. Spectral analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry was performed. Results obtained from spectral characterization confirmed inclusion complexation. Phase solubility studies indicated stable complex formation. Saturation solubility was found to be 10-13-folds higher with ternary complexes in distilled water and 12-14-fold higher in 0.1 N HCl. Solubility enhancement was evident in biorelevant media. Molecular modeling studies revealed possible mode of entrapment of rilpivirine within β-CD cavities. A 3-fold increase in dissolution with ternary complexes was observed. Animal studies revealed nearly 2-fold increase in oral bioavailability of rilpivirine. It was inferred that electronic interactions, hydrogen bonding, and van der Waals forces are involved in the supramolecular interactions.

  14. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models.

    PubMed

    Luo, Li-Yu; Fan, Miao-Xuan; Zhao, Hai-Yu; Li, Ming-Xing; Wu, Xu; Gao, Wen-Yuan

    2018-03-21

    Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.

  15. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.

    PubMed

    Yang, Lei; Sun, Zhen; Zu, Yuangang; Zhao, Chunjian; Sun, Xiaowei; Zhang, Zhonghua; Zhang, Lin

    2012-05-01

    The objective of the study was to prepare ursolic acid (UA) nanoparticles using the supercritical anti-solvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during SAS process, were investigated. Particles with mean particle size ranging from 139.2±19.7 to 1039.8±65.2nm were obtained by varying the process parameters. The UA was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, specific surface area, dissolution test and bioavailability test. It was concluded that physicochemical properties and bioavailability of crystalline UA could be improved by physical modification, such as particle size reduction and generation of amorphous state using SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of UA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Bioavailability and in vivo release behavior of controlled-release multiple-unit theophylline dosage forms in beagle dogs, cynomolgus monkeys, and göttingen minipigs.

    PubMed

    Ikegami, Kengo; Tagawa, Kozo; Osawa, Takashi

    2006-09-01

    To determine the usefulness of monkey as an animal model, bioavailability and in vivo release behaviors of theophylline (TP) after oral administration of controlled-release beads in dogs, monkeys, and minipigs were evaluated. Controlled-release beads were prepared using a centrifugal-fluid type granulator, that is, CF-granulator, and Ethylcellulose (EC) was used as controlled-release coating agent. Aqueous solution and EC-coated beads, which contained TP were orally administered to animals after at least 1-week intervals. In dogs and minipigs, their relative bioavailabilities of EC-coated beads were 33.1% and 47.0%, respectively, and in vivo TP release from EC-coated beads in the gastrointestinal tract of dogs and minipigs were not reflected in vitro data. In monkeys, relative bioavailability of EC-coated beads was 80.0% and the highest among the three species, and release amount of TP from EC-coated beads at 24 h after oral administration was 82.8% and 92.4%, which was almost correlated to in vitro data. Therefore, the discrepancy of the relative bioavailability in three species is considered to be due to the difference of in vivo release behavior of TP. The monkey may be useful animal model for bioavailability studies of controlled-release dosage forms of TP from the viewpoint of in vitro-in vivo release correlation. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  17. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition.

    PubMed

    Ling, Guixia; Zhang, Peng; Zhang, Wenping; Sun, Jin; Meng, Xiaoxue; Qin, Yimeng; Deng, Yihui; He, Zhonggui

    2010-12-01

    To improve the encapsulation efficiency and oral bioavailability of vincristine sulfate (VCR), novel self-assembled dextran sulphate-PLGA hybrid nanoparticles (DPNs) were successfully developed using self-assembly and nanoprecipitation method. By introducing the negative polymer of dextran sulphate sodium (DS), VCR was highly encapsulated (encapsulation efficiency up to 93.6%) into DPNs by forming electrostatic complex. In vitro release of VCR solution (VCR-Sol) and VCR-loaded DPNs (VCR-DPNs) in pH 7.4 PBS showed that about 80.4% of VCR released from VCR-DPNs after 96h and burst release was effectively reduced, indicating pronounced sustained-release characteristics. In vivo pharmacokinetics in rats after oral administration of VCR-Sol and VCR-DPNs indicated that the apparent bioavailability of VCR-DPNs was increased to approximate 3.3-fold compared to that of VCR-Sol. The cellular uptake experiments were conducted by quantitative assay of VCR cellular accumulation and fluorescence microscopy imaging of fluorescent labeled DPNs in two human breast cancer cells including MCF-7 and P-glycoprotein over-expressing MCF-7/Adr cells. The relative cellular uptake of VCR-DPNs was 12.4-fold higher than that of VCR-Sol in MCF-7/Adr cells implying that P-glycoprotein-mediated drug efflux was diminished by the introduction of DPNs. The new DPNs might provide an effective strategy for oral delivery of VCR with improved encapsulation efficiency and oral bioavailability. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Effect of short-term drinking water exposure to dichloroacetate on its pharmacokinetics and oral bioavailability in human volunteers: a stable isotope study.

    PubMed

    Schultz, Irvin R; Shangraw, Robert E

    2006-07-01

    Dichloroacetic acid (DCAA) is a by-product of drinking water disinfection, is a known rodent hepatocarcinogen, and is also used therapeutically to treat a variety of metabolic disorders in humans. We measured DCAA bioavailability in 16 human volunteers (eight men, eight women) after simultaneous administration of oral and iv DCAA doses. Volunteers consumed DCAA-free bottled water for 2 weeks to wash out background effects of DCAA. Subsequently, each subject consumed (12)C-DCAA (2 mg/kg) dissolved in 500 ml water over a period of 3 min. Five minutes after the start of the (12)C-DCAA consumption, (13)C-labeled DCAA (0.3 mg/kg) was administered iv over 20 s and plasma (12)C/(13)C-DCAA concentrations measured at predetermined time points over 4 h. Volunteers subsequently consumed for 14 consecutive days DCAA 0.02 microg/kg/day dissolved in 500 ml water to simulate a low-level chronic DCAA intake. Afterward, the (12)C/(13)C-DCAA administrations were repeated. Study end points were calculation of AUC(0-->infinity), apparent volume of distribution (V(ss)), total body clearance (Cl(b)), plasma elimination half-life (t((1/2),beta)), oral absorption rate (K(a)), and oral bioavailability. Oral bioavailability was estimated from dose-adjusted AUC ratios and by using a compartmental pharmacokinetic model after simultaneous fitting of oral and iv DCAA concentration-time profiles. DCAA bioavailability had large interindividual variation, ranging from 27 to 100%. In the absence of prior DCAA intake, there were no significant differences (p > 0.05) in any pharmacokinetic parameters between male and female volunteers, although there was a trend that women absorbed DCAA more rapidly (increased K(a)), and cleared DCAA more slowly (decreased Cl(b)), than men. Only women were affected by previous 14-day DCAA exposure, which increased the AUC(0-->infinity) for both oral and iv DCAA doses (p < 0.04 and p < 0.014, respectively) with a corresponding decrease in the Cl(b).

  19. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect.

    PubMed

    Miao, Yanfei; Chen, Guoguang; Ren, Lili; Pingkai, Ouyang

    2016-09-01

    The purpose of this work was to develop self-nanomulsifying drug delivery systems (SNEDDS) in sustained-release pellets of ziprasidone to enhance the oral bioavailability and overcome the food effect of ziprasidone. Preformulation studies including screening of excipients for solubility and pseudo-ternary phase diagrams suggested the suitability of Capmul MCM as oil phase, Labrasol as surfactant, and PEG 400 as co-surfactant for preparation of self-nanoemulsifying formulations. Preliminary composition of the SNEDDS formulations were selected from the pseudo-ternary phase diagrams. The prepared ziprasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized ziprasidone-SNEDDS were used to prepare ziprasidone-SNEDDS sustained-release pellets via extrusion-spheronization method. The pellets were characterized for SEM, particle size, droplet size distribution and zeta potential. In vitro drug release studies indicated the ziprsidone-SNEDDS sustained-release pellets showed sustained release profiles with 90% released within 10 h. The ziprsidone-SNEDDS sustained-release pellets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation of Zeldox as a control. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolonged actions and enhanced bioavailability with no food effect was achieved simultaneously in ziprsidone-SNEDDS sustained-release pellets compared with Zeldox in fed state. The results indicated a sustained release with prolonged actions of schizophrenia and bipolar disorder treatment.

  20. Enhanced colonic delivery of ciclosporin A self-emulsifying drug delivery system encapsulated in coated minispheres.

    PubMed

    Keohane, Kieran; Rosa, Mónica; Coulter, Ivan S; Griffin, Brendan T

    2016-01-01

    Investigate the potential of coated minispheres (SmPill®) to enhance localized Ciclosporin A (CsA) delivery to the colon. CsA self-emulsifying drug delivery systems (SEDDS) were encapsulated into SmPill® minispheres. Varying degrees of coating thickness (low, medium and high) were applied using ethylcellulose and pectin (E:P) polymers. In vitro CsA release was evaluated in simulated gastric and intestinal media. Bioavailability of CsA in vivo following oral administration to pigs of SmPill® minispheres was compared to Neoral® po and Sandimmun® iv in a pig model. CsA concentrations in blood and intestinal tissue were determined by HPLC-UV. In vitro CsA release from coated minispheres decreased with increasing coating thickness. A linear relationship was observed between in vitro CsA release and in vivo bioavailability (r(2) = 0.98). CsA concentrations in the proximal, transverse and distal colon were significantly higher following administration of SmPill®, compared to Neoral® po and Sandimmun® iv (p < 0.05). Analysis of transverse colon tissue subsections also revealed significantly higher CsA concentrations in the mucosa and submucosa using SmPill® minispheres (p < 0.05). Modulating E:P coating thickness controls release of CsA from SmPill® minispheres. Coated minispheres limited CsA release in the small intestine and enhanced delivery and uptake in the colon. These findings demonstrate clinical advantages of an oral coated minisphere-enabled CsA formulation in the treatment of inflammatory conditions of the large intestine.

  1. Enhanced blood-brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider.

    PubMed

    Ding, Jiaojiao; Sun, Yujiao; Li, Jinfeng; Wang, Huimin; Mao, Shirui

    2017-07-01

    The blood-brain barrier represents an insurmountable obstacle for the therapy of central nervous system related diseases. Polymeric micelles have many desirable properties for brain targeting by oral delivery, but the stability and targeting efficiency needs to be improved. In this study, it was demonstrated that binary micelle system can compensate the drawbacks of mono system by preparing mixed micelles in combination with PEG-based copolymers. Here, we explored a brain targeting drug delivery system via facile approaches using P123 based mixed micelles in combination with a message guider from traditional Chinese medicine, borneol, for oral delivery. With higher drug-loading, improved stability, prolonged in vitro release profile, increased bioavailability and enhanced brain targeting effect was achieved after peroral delivery of the mixed micelles. More importantly, without extra structure modification for active targeting, it was demonstrated for the first time that oral delivery of vinpocetine loaded mixed micelles together with borneol is an effective way to increase drug concentration in the brain and the targeting efficiency is borneol dose dependent. Such a "simple but effective" modality may shed light on the potential use of polymeric micelles in combination with a message drug to achieve drug brain targeting or other targeting sites via oral delivery.

  2. Evaluation of kinetic parameters of natural phytoalexin in resveratrol orally administered in wine to rats.

    PubMed

    Bertelli, A A; Giovannini, L; Stradi, R; Urien, S; Tillement, J P; Bertelli, A

    1998-01-01

    In view of the increasing interest in the biological activity of resveratrol, one of the components of red wine which is considered to be one of the main ingredients responsible for the beneficial effect of wine on human health, we have studied plasma kinetics and tissue bioavailability of this compound after red wine oral administration in rats. Plasma pharmacokinetics after oral administration of resveratrol could be described by an open one- or two-compartment model. Tissue concentrations show a significant cardiac bioavailability, and a strong affinity for the liver and kidneys.

  3. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.

    PubMed

    Bernkop-Schnürch, A; Kast, C E; Guggi, D

    2003-12-05

    Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.

  4. Spirocyclic ureas: orally bioavailable 11 beta-HSD1 inhibitors identified by computer-aided drug design.

    PubMed

    Tice, Colin M; Zhao, Wei; Xu, Zhenrong; Cacatian, Salvacion T; Simpson, Robert D; Ye, Yuan-Jie; Singh, Suresh B; McKeever, Brian M; Lindblom, Peter; Guo, Joan; Krosky, Paula M; Kruk, Barbara A; Berbaum, Jennifer; Harrison, Richard K; Johnson, Judith J; Bukhtiyarov, Yuri; Panemangalore, Reshma; Scott, Boyd B; Zhao, Yi; Bruno, Joseph G; Zhuang, Linghang; McGeehan, Gerard M; He, Wei; Claremon, David A

    2010-02-01

    Structure-guided drug design led to the identification of a class of spirocyclic ureas which potently inhibit human 11beta-HSD1 in vitro. Lead compound 10j was shown to be orally bioavailable in three species, distributed into adipose tissue in the mouse, and its (R) isomer 10j2 was efficacious in a primate pharmacodynamic model. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  6. Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol.

    PubMed

    Song, Im-Sook; Cha, Jin-Sun; Choi, Min-Koo

    2016-10-17

    The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 ( w / w / w ). The solubility and dissolution rate of the curcumin solid dispersion markedly improved compared with those of curcumin powder and a physical mixture of curcumin, TPGS, and mannitol. About 90% of the curcumin was released from the solid dispersion formulation within 10 min. After administering the formulation orally to rats, higher plasma concentrations of curcumin were observed, with increases in the maximum plasma concentration (C max ) and area under the plasma concentration-time curve (AUC) of 86- and 65-fold, respectively, compared with those of curcumin powder. The solid dispersion formulation effectively increased intestinal permeability and inhibited P-gp function. These effects increased the anti-proliferative effect of curcumin in MDA-MB-231 breast cancer cells. Moreover, 2 h incubation with curcumin powder, solid dispersion formulation, and its physical mixture resulted in differential cytotoxic effect of paclitaxel in P-gp overexpressed LLC-PK1-P-gp and MDA-MB-231 cells through the inhibition of P-gp-mediated paclitaxel efflux. In conclusion, compared with curcumin, a solid dispersion formulation of curcumin with TPGS and mannitol could be a promising option for enhancing the oral bioavailability and efficacy of curcumin through increased solubility, dissolution rate, cell permeability, and P-gp modulation.

  7. Fabrication of novel GMO/Eudragit E100 nanostructures for enhancing oral bioavailability of carvedilol.

    PubMed

    Patil, Sharvil S; Roy, Krishtey; Choudhary, Bhavana; Mahadik, Kakasaheb R

    2016-08-01

    In the present work, novel nanostructures comprising of glyceryl monooleate (GMO) and Eudragit E100 were prepared using high intensity ultrasonic homogenization. 3(2) Factorial design approach was used for optimization of nanostructures. Results of regression analysis revealed that the amount of GMO and Eudragit E100 had a drastic effect on particle size and percent entrapment efficiency. Optimized carvedilol-loaded nanostructures (Car-NS) were characterized by FTIR, TEM, DSC, in vitro drug release study. Pharmacokinetic parameters such as Cmax, Tmax, Ke, Ka, Vd and AUC were estimated for Car-NS upon its oral administration in Sprague-Dawley rats. Particle size of Car-NS was found to be 183 ± 2.43 nm with an entrapment efficiency of 81.4 ± 0.512%. FTIR studies revealed loading and chemical compatibility of carvedilol with the components of nanostructures. DSC thermograms did not show endothermic peak for melting of carvedilol which could be attributed to solubilization of carvedilol in molten GMO during DSC run. The prepared Car-NS released carvedilol in sustained manner over a period of 10 h as suggested by in vitro drug release study. The pharmacokinetic study of Car-NS showed significant improvement in Cmax (two fold, p < 0.001) and AUC (four folds, p < 0.001) of carvedilol when compared to carvedilol suspension. Car-NS were found to be stable for a period of 3 months. Thus, a stable, floating, multiparticulate GMO/Eudragit E100 nanostructures having ability to release the drug in sustained manner with enhanced oral bioavailability can prove to be a promising carrier system for poorly water soluble drugs.

  8. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension.

    PubMed

    Pandya, Nilima T; Jani, Parva; Vanza, Jigar; Tandel, Hemal

    2018-05-01

    The aim of the current investigation was to develop solid lipid nanoparticles of olmesartan medoxomil using hot homogenization method to improve its oral bioavailability. Central composite design was applied to optimize the formulation variables; lipid X1 (Glyceryl monostearate) and surfactant X2 (Poloxamer: Tween 80). The particle sizes were in the nanometer range and spherical shaped for all prepared solid lipid nanoparticles formulations and the zeta potential absolute values were high, predicting good long-term stability. In vitro study of olmesartan loaded solid lipid nanoparticle exhibited controlled release profile for at least 24 h. The rate and extent of drug diffusion was studied using dialysis sac, rat's stomach and intestine tissues; study demonstrated that drug release from the solid lipid nanoparticles was significantly higher than drug suspension. In vivo pharmacokinetic study of olmesartan loaded solid lipid nanoparticles revealed higher Cmax of 1610 ng/mL, higher AUC of 15492.50 ng/mL and increased relative bioavailability by almost 2.3 folds compared to marketed formulation. These results clearly indicate that olmesartan loaded solid lipid nanoparticles are shown to have enhanced bioavailability and effective therapeutic result and thus would be an excellent way to treat hypertension. Hence, these solid lipid nanoparticles could represent as a great potential for a possible alternative to conventional oral formulation in the treatment of hypertension. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation.

    PubMed

    Ravi, Punna Rao; Vats, Rahul; Dalal, Vikas; Murthy, Aditya Narasimha

    2014-07-01

    To prepare stearic acid-based lopinavir (LPV) loaded solid lipid nanoparticles (SLNs) using a hybrid design and compare in-vivo performance of optimized formulation with marketed LPV/ritonavir (RTV) coformulation. LPV SLNs were prepared by hot melt emulsion technique and optimized using Plackett-Burman design and Box-Behnken design. Physical characterization studies were conducted for the optimized SLNs. Comparative oral pharmacokinetic studies and tissue distribution studies of optimized SLNs and LPV/RTV coformulation were done in Wistar rats. In-vitro metabolic stability and intestinal permeability studies for LPV SLNs were undertaken to elucidate the mechanism involved in the pharmacokinetic improvement of LPV. Optimized SLNs exhibited nanometeric size (223 nm) with high entrapment efficiency (83%). In-vitro drug release study of SLNs showed biphasic sustained release behaviour. Significant increase in oral bioavailability of LPV from LPV SLNs (5 folds) and LPV/RTV coformulation (3.7 folds) was observed as compared with free LPV. LPV SLNs showed better tissue distribution of LPV in HIV reservoirs than LPV/RTV coformulation. In-vitro studies demonstrated that SLNs provided metabolic protection of LPV and were endocytosized during absorption. SLNs enhanced oral bioavailability and improved distribution profile of LPV to HIV reservoirs and hence could be better alternative to LPV/RTV coformulation. © 2014 Royal Pharmaceutical Society.

  10. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids.

    PubMed

    Maher, Eman Magdy; Ali, Ahmed Mahmoud Abdelhaleem; Salem, Heba Farouk; Abdelrahman, Ahmed Abdelbary

    2016-10-01

    Improvement of water solubility, dissolution rate, oral bioavailability, and reduction of first pass metabolism of OL (OL), were the aims of this research. Co-amorphization of OL carboxylic acid dispersions at various molar ratios was carried out using rapid solvent evaporation. Characterization of the dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Dispersions with highest equilibrium solubility were formulated as fast dissolving oral films. Modeling and optimization of film formation were undertaken using artificial neural networks (ANNs). The results indicated co-amorphization of OL-ascorbic acid through H-bonding. The co-amorphous dispersions at 1:2 molar ratio showed more than 600-fold increase in solubility of OL. The model optimized fast dissolving film prepared from the dispersion was physically and chemically stable, demonstrated short disintegration time (8.5 s), fast dissolution (97% in 10 min) and optimum tensile strength (4.9 N/cm 2 ). The results of in vivo data indicated high bioavailability (144 ng h/mL) and maximum plasma concentration (14.2 ng/mL) compared with the marketed references. Therefore, the optimized co-amorphous OL-ascorbic acid fast dissolving film could be a valuable solution for enhancing the physicochemical and pharmacokinetic properties of OL.

  11. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    PubMed

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  12. Drug Transport Mechanism of Oral Antidiabetic Nanomedicines

    PubMed Central

    Gundogdu, Evren; Yurdasiper, Aysu

    2014-01-01

    Context: Over the last few decades, extensive efforts have been made worldwide to develop nanomedicine delivery systems, especially via oral route for antidiabetic drugs. Absorption of insulin is hindered by epithelial cells of gastrointestinal tract, acidic gastric pH and digestive enzymes. Evidence Acquisition: Recent reports have identified and explained the beneficial role of several structural molecules like mucoadhesive polymers (polyacrylic acid, sodium alginate, chitosan) and other copolymers for the efficient transport and release of insulin to its receptors. Results: Insulin nanomedicines based on alginate-dextran sulfate core with a chitosan-polyethylene glycol-albumin shell reduced glycaemia in a dose dependent manner. Orally available exendin-4 formulations exerted their effects in a time dependent manner. Insulin nanoparticles formed by using alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin showed a threefold increase of the hypoglycemic effect in comparison to free insulin in animal models. Solid lipid nanoparticles showed an enhancement of the bioavailability of repaglinide (RG) within optimized solid lipid nanoparticle formulations when compared with RG alone. Conclusions: Nanoparticles represent multiparticulate delivery systems designed to obtain prolonged or controlled drug delivery and to improve bioavailability as well as stability. Nanoparticles can also offer advantages like limiting fluctuations within therapeutic range, reducing side effects, protecting drugs from degradation, decreasing dosing frequency, and improving patient compliance and convenience PMID:24696697

  13. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria.

    PubMed

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Nagaraj, Viswanathan Arun; Panda, Amulya Kumar; Padmanaban, Govindarajan

    2017-08-30

    Curcumin has many pharmacological activities despite its poor bioavailability and in vivo stability. Here, we show that a nanoformulated curcumin (PLGA-curcumin) has better therapeutic index than native curcumin in preventing the onset of neurological symptoms and delaying the death of mice in experimental cerebral malaria. Oral PLGA-curcumin was at least as effective as native curcumin at a 15-fold lower concentration in preventing the breakdown of blood-brain barrier and inhibition of brain mRNAs for inflammatory cytokines, chemokine receptor CXCR3 and its ligand CXCL10, with an increase in the anti-inflammatory cytokine IL-10. This was also reflected in serum cytokine and chemokine levels. At equivalent concentrations, a single oral dose of PLGA-curcumin was more effective in inhibiting serum IFNγ levels and enhancing IL-10 levels than native curcumin. Even at low concentrations, PLGA-curcumin was superior to native curcumin in inhibiting the sequestration of parasitized-RBCs and CD8 + T cells in the brain. A single oral dose of 5 mg PLGA-curcumin containing 350 μg of curcumin resulted in 3-4 fold higher concentration and prolonged presence of curcumin in the brain than that obtained with 5 mg of native curcumin, indicating better bioavailability of PLGA-curcumin. PLGA-curcumin has potential as an adjunct drug to treat human cerebral malaria.

  14. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.

    PubMed

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca

    2016-10-28

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats

    PubMed Central

    Kapetanovic, Izet M.; Huang, Zhihua; Thompson, Thomas N.; McCormick, David L.

    2011-01-01

    Purpose Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a naturally occurring polyphenol with a broad range of possible health benefits, including anti-cancer activity. However, the biological activity of resveratrol may be limited by poor absorption and first-pass metabolism: only low plasma concentrations of resveratrol are seen following oral administration, and metabolism to glucuronide and sulfate conjugates is rapid. Methylated polyphenol analogs (such as pterostilbene [3,5-dimethoxy-4′-hydroxy-trans-stilbene], the dimethylether analog of resveratrol) may overcome these limitations to pharmacologic efficacy. The present study was designed to compare the bioavailability, pharmacokinetics, and metabolism of resveratrol and pterostilbene following equimolar oral dosing in rats. Methods The agents were administered orally via gavage for 14 consecutive days at 50 or 150 mg/kg/day for resveratrol and 56 or 168 mg/kg/day for pterostilbene. Two additional groups were dosed once intravenously with 10 and 11.2 mg/kg for resveratrol and pterostilbene, respectively. Plasma concentrations of agents and metabolites were measured using a high-pressure liquid chromatograph-tandem mass spectrometer system. Noncompartmental analysis was used to derive pharmacokinetic parameters. Results Resveratrol and pterostilbene were approximately 20 and 80% bioavailable, respectively. Following oral dosing, plasma levels of pterostilbene and pterostilbene sulfate were markedly greater than were plasma levels of resveratrol and resveratrol sulfate. Although plasma levels of resveratrol glucuronide exceeded those of pterostilbene glucuronide, those differences were smaller than those of the parent drugs and sulfate metabolites. Conclusions When administered orally, pterostilbene demonstrates greater bioavailability and total plasma levels of both the parent compound and metabolites than does resveratrol. These differences in agent pharmacokinetics suggest that the in vivo biological activity of equimolar doses of pterostilbene may be greater than that of resveratrol. PMID:21116625

  16. Stable isotope-labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults.

    PubMed

    de Vries, Ronald; Smit, Johan W; Hellemans, Peter; Jiao, James; Murphy, Joseph; Skee, Donna; Snoeys, Jan; Sukbuntherng, Juthamas; Vliegen, Maarten; de Zwart, Loeckie; Mannaert, Erik; de Jong, Jan

    2016-02-01

    Ibrutinib, an inhibitor of Bruton's tyrosine kinase, is used in the treatment of mantle cell lymphoma or chronic lymphocytic leukaemia. Ibrutinib undergoes extensive rapid oxidative metabolism mediated by cytochrome P450 3A both at the level of first pass and clearance, which might result in low oral bioavailability. The present study was designed to investigate the absolute bioavailability (F) of ibrutinib in the fasting and fed state and assess the effect of grapefruit juice (GFJ) on the systemic exposure of ibrutinib in order to determine the fraction escaping the gut (Fg ) and the fraction escaping hepatic extraction (Fh ) in the fed state. All participants received treatment A [560 mg oral ibrutinib, under fasting conditions], B (560 mg PO ibrutinib, fed, administered after drinking glucose drink) and C (140 mg oral ibrutinib, fed, with intake of GFJ before dosing). A single intravenous (i.v.) dose of 100 μg (13) C6 -ibrutinib was administered 2 h after each oral dose. The estimated 'F' for treatments A, B and C was 3.9%, 8.4% and 15.9%, respectively. Fg and Fh in the fed state were 47.0% and 15.9%, respectively. Adverse events were mild to moderate in severity (Grade 1-2) and resolved without sequelae by the end of the study. The absolute oral bioavailability of ibrutinib was low, ranging from 3.9% in the fasting state to 8.4% when administered 30 min before a standard breakfast without GFJ and 15.9% with GFJ. Ibrutinib was well tolerated following a single oral and i.v. dose, under both fasted and fed conditions and regardless of GFJ intake status. © 2015 The British Pharmacological Society.

  17. Stable isotope‐labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults

    PubMed Central

    Smit, Johan W.; Hellemans, Peter; Jiao, James; Murphy, Joseph; Skee, Donna; Snoeys, Jan; Sukbuntherng, Juthamas; Vliegen, Maarten; de Zwart, Loeckie; Mannaert, Erik; de Jong, Jan

    2016-01-01

    Aims Ibrutinib, an inhibitor of Bruton's tyrosine kinase, is used in the treatment of mantle cell lymphoma or chronic lymphocytic leukaemia. Ibrutinib undergoes extensive rapid oxidative metabolism mediated by cytochrome P450 3A both at the level of first pass and clearance, which might result in low oral bioavailability. The present study was designed to investigate the absolute bioavailability (F) of ibrutinib in the fasting and fed state and assess the effect of grapefruit juice (GFJ) on the systemic exposure of ibrutinib in order to determine the fraction escaping the gut (Fg) and the fraction escaping hepatic extraction (Fh) in the fed state. Methods All participants received treatment A [560 mg oral ibrutinib, under fasting conditions], B (560 mg PO ibrutinib, fed, administered after drinking glucose drink) and C (140 mg oral ibrutinib, fed, with intake of GFJ before dosing). A single intravenous (i.v.) dose of 100 μg 13C6‐ibrutinib was administered 2 h after each oral dose. Results The estimated ‘F’ for treatments A, B and C was 3.9%, 8.4% and 15.9%, respectively. Fg and Fh in the fed state were 47.0% and 15.9%, respectively. Adverse events were mild to moderate in severity (Grade 1–2) and resolved without sequelae by the end of the study. Conclusion The absolute oral bioavailability of ibrutinib was low, ranging from 3.9% in the fasting state to 8.4% when administered 30 min before a standard breakfast without GFJ and 15.9% with GFJ. Ibrutinib was well tolerated following a single oral and i.v. dose, under both fasted and fed conditions and regardless of GFJ intake status. PMID:26382728

  18. Oral availability of bilastine.

    PubMed

    Sádaba, B; Gómez-Guiu, A; Azanza, J R; Ortega, I; Valiente, R

    2013-05-01

    Bilastine (Bilaxten™) is a novel non-sedating H1 receptor antagonist (antihistamine) developed in the dosage form of oral tablets and indicated for the treatment of allergic rhinitis (seasonal and perennial) and urticaria. Several clinical trials have been performed in order to determine the efficacy and safety of bilastine. The aim of this trial was to study the absolute oral bioavailability of bilastine in humans. Twelve male and female adults were recruited into a single centre for a randomized, single-dose, open-label, controlled two-arm crossover study with a minimum 14-day washout period between the two single doses. Two single doses of bilastine were administered: a 20-mg oral tablet and a 10-mg intravenous formulation. Blood and urine samples were collected between 0 and 72 h post each administration. The clinical trial was carried out under quality assurance and quality control systems with standard operating procedures to ensure that the study was conducted and data generated in compliance with the protocol, Good Clinical Practice standards, International Conference on Harmonisation and other applicable regulations. Oral bioavailability of bilastine was 60.67 % with a 90 % parametric confidence interval of 53.79-67.56. The maximum bilastine concentration was measured 1.31 h after oral administration. Pharmacokinetic parameters were similar to those observed in previous studies. Tolerance to treatment was good, with no adverse events related to study medication. The absorption of bilastine after oral administration to healthy subjects was rapid. The absolute oral bioavailability was moderate.

  19. Curcumin-loaded lipid nanocarrier for improving bioavailability, stability and cytotoxicity against malignant glioma cells.

    PubMed

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2016-01-01

    In the present study, Curcumin (CU)-loaded nanocarrier (NC) such as nanoemulsion (NE) was developed with the objective of increasing its cytotoxicity and bioavailability through lymphatic transport by enhancing its solubility and intestinal permeability. Based on the area obtained in pseudoternary phase diagram, various % combination of Labrafac Lipophile WL 1349, Solutol HS 15, Transcutol HP and distilled water were selected. Formulations which passed physical stability studies were selected for further studies such as globule size, zeta potential, in vitro release, ex vivo permeation, in vitro lipolysis studies, bioavailability studies and cytotoxicity against glioblastoma cells (U-87). The optimized NC (NE-SB1) had small average globule diameter of 67 ± 6 nm with zeta potential of -37 ± 2.5 mv which indicated long-term dispersion stability. During in vitro lipolysis study, the digestion rate of medium chain triglycerides increased with decreased globule diameter. Statistically significant difference was found in AUC0-inf of NC formulation (p < 0.05) compared to CU suspension. The relative bioavailability of NC was found 11.88 ± 0.47 with respect to CU suspension. During cytotoxicity studies, IC50 of CU solution on U87 cells was found 24.23 µM, while for the NE- SB1 it was 16.41 µM. The optimized formulation was found to be stable during 6 months of accelerated stability. The overall results revealed that the CU-loaded NC is a very effective approach for enhancing the oral absorption of poorly water-soluble drug CU and have great potential for future clinical application.

  20. Low bioavailability of ergotamine tartrate after oral and rectal administration in migraine sufferers.

    PubMed Central

    Ibraheem, J J; Paalzow, L; Tfelt-Hansen, P

    1983-01-01

    Fifteen migraine patients were administered 2 mg ergotamine tartrate in a partial cross-over design as a single, oral tablet, rectal suppository and rectal solution. Eight of these patients were in a previous investigation given 0.5 mg ergotamine tartrate intravenously. The blood samples were taken up to 54 h after oral and suppository while it was followed for only 3 h after rectal solution. The chemical analysis was performed by applying h.p.l.c. method with a limit of sensitivity of 0.1 ng/ml ergotamine base in plasma. No ergotamine was detected in the blood samples after the oral route, whereas small and very variable quantities was found in blood after the rectal route. Regular calculation of bioavailability could therefore not be performed. An estimate of the maximal possible bioavailability was found to yield a mean value of 2% (tablets); 5% (suppositories) and 6% (rectal solution). Rectal solution elicited faster absorption and the extent of absorption was significantly higher (P less than 0.05) than for the suppository. PMID:6419759

Top