Sattler, Sebastian; Forlini, Cynthia; Racine, Eric; Sauer, Carsten
2013-01-01
Enhancing cognitive performance with substances--especially prescription drugs--is a fiercely debated topic among scholars and in the media. The empirical basis for these discussions is limited, given that the actual nature of factors that influence the acceptability of and willingness to use cognitive enhancement substances remains unclear. In an online factorial survey, contextual and substance-specific characteristics of substances that improve academic performance were varied experimentally and presented to respondents. Students in four German universities rated their willingness to use and moral acceptance of different substances for cognitive enhancement. We found that the overall willingness to use performance enhancing substances is low. Most respondents considered the use of these substances as morally unacceptable. Situational influences such as peer pressure, policies concerning substance use, relative performance level of peers, but also characteristics of the substance, such as perceptions of substance safety, shape the willingness and acceptability of using a substance to enhance academic performance. Among the findings is evidence of a contagion effect meaning that the willingness was higher when the respondents have more CE drug users in their social network. We also found deterrence effects from strong side effects of using the substance, as well as from policy regulations and sanctions. Regulations might activate social norms against usage and sanctions can be seen as costly to users. Moreover, enhancement substances seem to be most tempting to low performers to catch up with others compared to high performers. By identifying contextual factors and substance characteristics influencing the willingness and acceptability of cognitive enhancers, policy approaches could consider these insights to better manage the use of such substances.
Sattler, Sebastian; Forlini, Cynthia; Racine, Éric; Sauer, Carsten
2013-01-01
Enhancing cognitive performance with substances–especially prescription drugs–is a fiercely debated topic among scholars and in the media. The empirical basis for these discussions is limited, given that the actual nature of factors that influence the acceptability of and willingness to use cognitive enhancement substances remains unclear. In an online factorial survey, contextual and substance-specific characteristics of substances that improve academic performance were varied experimentally and presented to respondents. Students in four German universities rated their willingness to use and moral acceptance of different substances for cognitive enhancement. We found that the overall willingness to use performance enhancing substances is low. Most respondents considered the use of these substances as morally unacceptable. Situational influences such as peer pressure, policies concerning substance use, relative performance level of peers, but also characteristics of the substance, such as perceptions of substance safety, shape the willingness and acceptability of using a substance to enhance academic performance. Among the findings is evidence of a contagion effect meaning that the willingness was higher when the respondents have more CE drug users in their social network. We also found deterrence effects from strong side effects of using the substance, as well as from policy regulations and sanctions. Regulations might activate social norms against usage and sanctions can be seen as costly to users. Moreover, enhancement substances seem to be most tempting to low performers to catch up with others compared to high performers. By identifying contextual factors and substance characteristics influencing the willingness and acceptability of cognitive enhancers, policy approaches could consider these insights to better manage the use of such substances. PMID:23940757
Hyvelin, Jean-Marc; Gaud, Emmanuel; Costa, Maria; Helbert, Alexandre; Bussat, Philippe; Bettinger, Thierry; Frinking, Peter
2017-05-01
To compare physicochemical characteristics and in vitro and in vivo contrast-enhanced ultrasound imaging performance of 3 commercially available ultrasound contrast agents: SonoVue (Bracco Imaging SpA, Colleretto Giacosa, Italy; also marketed as Lumason in the USA), Definity (Lantheus Medical Imaging, North Billerica, MA) and Optison (GE Healthcare AS, Oslo, Norway). Physicochemical characteristics were measured with a Multisizer Coulter Counter (Beckman Coulter, Fullerton, CA). Two ultrasound systems (Aplio 500; Toshiba Medical Systems Corp, Tochigi-ken, Japan; and Logiq E9; GE Healthcare, Little Chalfont, England) were used with different transducers. Contrast enhancement was measured in vitro by dose-ranging measurements using a custom-built beaker setup; in vivo imaging performances were compared in pigs (heart and liver) and rabbits (liver). Quantitative analyses were performed with VueBox quantification software (Bracco Suisse SA, Plan-les-Ouates, Switzerland). Measured physicochemical characteristics were in agreement with those provided by the manufacturers. In vitro data demonstrated that the performance of SonoVue was similar to or better than that of Definity but superior to Optison (normalized scattered power 2- to 10-fold higher with SonoVue). Similar results were obtained in vivo, although the duration of enhancement in the pig heart was longer for SonoVue compared to Definity, and quantitative analysis revealed higher enhancement for SonoVue (1.5-fold increase). For liver imaging, SonoVue and Definity showed similar contrast enhancement and duration of enhancement, but compared to Optison, both peak enhancement and duration of enhancement were superior for SonoVue (up to 2-fold increase). Imaging performance of SonoVue was similar to or slightly better than that of Definity, but it was superior to Optison for the conditions used in this study. © 2017 by the American Institute of Ultrasound in Medicine.
Facial recognition using enhanced pixelized image for simulated visual prosthesis.
Li, Ruonan; Zhhang, Xudong; Zhang, Hui; Hu, Guanshu
2005-01-01
A simulated face recognition experiment using enhanced pixelized images is designed and performed for the artificial visual prosthesis. The results of the simulation reveal new characteristics of visual performance in an enhanced pixelization condition, and then new suggestions on the future design of visual prosthesis are provided.
NASA Technical Reports Server (NTRS)
Flores, C. C.; Gurkin, L. W.
1982-01-01
The three-stage Taurus-Nike-Tomahawk launch vehicle is being considered for performance enhancement of the existing Taurus-Tomahawk flight system. In addition, performance enhancement of other existing two-stage launch vehicles is being considered through the use of tandem booster systems. Aeroballistic characteristics of the proposed Taurus-Nike-Tomahawk vehicle are presented, as are overall performance capabilities of other potential three-stage flight systems.
Narcissism and Self-Insight: A Review and Meta-Analysis of Narcissists' Self-Enhancement Tendencies.
Grijalva, Emily; Zhang, Luyao
2016-01-01
The current article reviews the narcissism-self-enhancement literature using a multilevel meta-analytic technique. Specifically, we focus on self-insight self-enhancement (i.e., whether narcissists perceive themselves more positively than they are perceived by others); thus, we only include studies that compare narcissists' self-reports to observer reports or objective measures. Results from 171 correlations reported in 36 empirical studies (N = 6,423) revealed that the narcissism-self-enhancement relationship corrected for unreliability in narcissism was .21 (95% confidence interval [CI] = [.17, .25]), and that narcissists tend to self-enhance their agentic characteristics more than their communal characteristics. The average corrected relationship between narcissism and self-enhancement for agentic characteristics was .29 (95% CI = [.25, .33]), whereas for communal characteristics it was .05 (95% CI = [-.01, .10]). In addition, we individually summarized narcissists' self-enhancement for 10 different constructs (i.e., the Big Five, task performance, intelligence, leadership, attractiveness, and likeability). © 2015 by the Society for Personality and Social Psychology, Inc.
Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.
Lüttgen, Jenna; Heuer, Herbert
2012-10-01
Robotic guidance is an engineered form of haptic-guidance training and intended to enhance motor learning in rehabilitation, surgery, and sports. However, its benefits (and pitfalls) are still debated. Here, we investigate the effects of different presentation modes on the reproduction of a spatiotemporal movement pattern. In three different groups of participants, the movement was demonstrated in three different modalities, namely visual, haptic, and visuo-haptic. After demonstration, participants had to reproduce the movement in two alternating recall conditions: haptic and visuo-haptic. Performance of the three groups during recall was compared with regard to spatial and dynamic movement characteristics. After haptic presentation, participants showed superior dynamic accuracy, whereas after visual presentation, participants performed better with regard to spatial accuracy. Added visual feedback during recall always led to enhanced performance, independent of the movement characteristic and the presentation modality. These findings substantiate the different benefits of different presentation modes for different movement characteristics. In particular, robotic guidance is beneficial for the learning of dynamic, but not of spatial movement characteristics.
Rotordynamic Instability Problems in High-Performance Turbomachinery
NASA Technical Reports Server (NTRS)
1984-01-01
Rotordynamics and predictions on the stability of characteristics of high performance turbomachinery were discussed. Resolutions of problems on experimental validation of the forces that influence rotordynamics were emphasized. The programs to predict or measure forces and force coefficients in high-performance turbomachinery are illustrated. Data to design new machines with enhanced stability characteristics or upgrading existing machines are presented.
ERIC Educational Resources Information Center
Coffman, B. A.; Trumbo, M. C.; Flores, R. A.; Garcia, C. M.; van der Merwe, A. J.; Wassermann, E. M.; Weisend, M. P.; Clark, V. P.
2012-01-01
We have previously found that transcranial direct current stimulation (tDCS) over right inferior frontal cortex (RIFC) enhances performance during learning of a difficult visual target detection task (Clark et al., 2012). In order to examine the cognitive mechanisms of tDCS that lead to enhanced performance, here we analyzed its differential…
High performance concrete bridges
DOT National Transportation Integrated Search
2000-08-01
This compilation of FHWA reports focuses on high performance concrete bridges. High performance concrete is described as concrete with enhanced durability and strength characteristics. Under the Strategic Highway Research Program (SHRP), more than 40...
Primary lithium battery technology and its application to NASA missions
NASA Technical Reports Server (NTRS)
Frank, H. A.
1979-01-01
A description is given of the components, overall cell reactions, and performance characteristics of promising new ambient temperature lithium primary systems based on the Li-V205, Li-SO2, and Li-SOC12 couples. Development status of these systems is described in regard to availability and uncertainties in the areas of safety and selected performance characteristics. Studies show that use of lithium batteries would enhance a variety of missions and applications by decreasing power sytems weight and thereby increasing payload weight. In addition, the lithium batteries could enhance cost effectiveness of the missions.
ERIC Educational Resources Information Center
Mallia, Luca; Lucidi, Fabio; Zelli, Arnaldo; Violani, Cristiano
2013-01-01
Using retrospective self-reporting, rates of illegal and legal performance-enhancing substance (PES) use in the past three months among more than 3,400 Italian high school adolescents were obtained and estimated. The study focused on the extent to which these sociodemographic characteristics and illegal PES use were associated with adolescents'…
Social psychological determinants of the use of performance-enhancing drugs by gym users.
Wiefferink, C H; Detmar, S B; Coumans, B; Vogels, T; Paulussen, T G W
2008-02-01
The aim of this study is to identify the social psychological determinants of the use of performance-enhancing drugs by gym users who practice bodybuilding, fitness, powerlifting or combat sports. In this questionnaire-based study, 144 respondents answered questions on their actual use and intention to use such drugs and also on their background characteristics and beliefs, such as their attitudes, social influences and self-efficacy. While all social psychological determinants correlated with intention to use these drugs, the most important predictors were personal norms, beliefs about performance outcomes and the perceived behavior of others. Non-users held more restrictive norms about using performance-enhancing drugs, were less optimistic about the performance-enhancing outcomes and believed that fewer significant others used performance-enhancing drugs than users and ex-users. The results of this study indicate that users attribute advantages to performance-enhancing drugs and are inclined to overlook the risks of using them. Preventive interventions should focus on influencing personal norms and social processes.
A review on brightness preserving contrast enhancement methods for digital image
NASA Astrophysics Data System (ADS)
Rahman, Md Arifur; Liu, Shilong; Li, Ruowei; Wu, Hongkun; Liu, San Chi; Jahan, Mahmuda Rawnak; Kwok, Ngaiming
2018-04-01
Image enhancement is an imperative step for many vision based applications. For image contrast enhancement, popular methods adopt the principle of spreading the captured intensities throughout the allowed dynamic range according to predefined distributions. However, these algorithms take little or no consideration into account of maintaining the mean brightness of the original scene, which is of paramount importance to carry the true scene illumination characteristics to the viewer. Though there have been significant amount of reviews on contrast enhancement methods published, updated review on overall brightness preserving image enhancement methods is still scarce. In this paper, a detailed survey is performed on those particular methods that specifically aims to maintain the overall scene illumination characteristics while enhancing the digital image.
Application of ultra-high performance concrete to bridge girders.
DOT National Transportation Integrated Search
2009-02-01
"Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...
Psychosocial Characteristics of Optimum Performance in Isolated and Confined Environments (ICE)
NASA Technical Reports Server (NTRS)
Palinkas, Lawrence A.; Keeton, Kathryn E.; Shea, Camille; Leveton, Lauren B.
2010-01-01
The Behavioral Health and Performance (BHP) Element addresses human health risks in the NASA Human Research Program (HRP), including the Risk of Adverse Behavioral Conditions and the Risk of Psychiatric Disorders. BHP supports and conducts research to help characteristics and mitigate the Behavioral Medicine risk for exploration missions, and in some instances, current Flight Medical Operations. The Behavioral Health and Performance (BHP) Element identified research gaps within the Behavioral Medicine Risk, including Gap BMed6: What psychosocial characteristics predict success in an isolated, confined environment (ICE)? To address this gap, we conducted an extensive and exhaustive literature review to identify the following: 1) psychosocial characteristics that predict success in ICE environments; 2) characteristics that are most malleable; and 3) specific countermeasures that could enhance malleable characteristics.
DOT National Transportation Integrated Search
2013-01-01
High-performance concrete (HPC) refers to any concrete formulation with enhanced characteristics, compared to normal concrete. One might think this refers to strength, but in Florida, the HPC standard emphasizes withstanding aggressive environments, ...
Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A
2017-06-01
Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.
NASA Technical Reports Server (NTRS)
Perkinson, J. A.
1974-01-01
The application of associative memory processor equipment to conventional host processors type systems is discussed. Efforts were made to demonstrate how such application relieves the task burden of conventional systems, and enhance system speed and efficiency. Data cover comparative theoretical performance analysis, demonstration of expanded growth capabilities, and demonstrations of actual hardware in simulated environment.
Social-aware data dissemination in opportunistic mobile social networks
NASA Astrophysics Data System (ADS)
Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Han, Xiaowei
Opportunistic Mobile Social Networks (OMSNs), formed by mobile users with social relationships and characteristics, enhance spontaneous communication among users that opportunistically encounter each other. Such networks can be exploited to improve the performance of data forwarding. Discovering optimal relay nodes is one of the important issues for efficient data propagation in OMSNs. Although traditional centrality definitions to identify the nodes features in network, they cannot identify effectively the influential nodes for data dissemination in OMSNs. Existing protocols take advantage of spatial contact frequency and social characteristics to enhance transmission performance. However, existing protocols have not fully exploited the benefits of the relations and the effects between geographical information, social features and user interests. In this paper, we first evaluate these three characteristics of users and design a routing protocol called Geo-Social-Interest (GSI) protocol to select optimal relay nodes. We compare the performance of GSI using real INFOCOM06 data sets. The experiment results demonstrate that GSI overperforms the other protocols with highest data delivery ratio and low communication overhead.
Enhancing performing characteristics of organic semiconducting films by improved solution processing
Bazan, Guillermo C; Moses, Daniel; Peet, Jeffrey; Heeger, Alan J
2014-05-13
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.
Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio
2016-01-01
This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees’ psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees’ performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees’ psychological characteristics and either direct or indirect effects on the employees’ performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees’ performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems’ performance by enhancing their macroergonomic compatibility and quality of life at work of the employees. PMID:26742054
Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio
2016-01-05
This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees' psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees' performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees' psychological characteristics and either direct or indirect effects on the employees' performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees' performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems' performance by enhancing their macroergonomic compatibility and quality of life at work of the employees.
Helpful or harmful? The impact of strategic change on the performance of U.S. urban hospitals.
Trinh, Hanh Q; O'Connor, Stephen J
2002-02-01
To contribute to the debate as to whether strategic change helps or harms organizations by empirically examining how strategic change influences performance change in urban hospitals. AHA Annual Survey (1994 and 1996), Health Care Financing Administration's Medicare Cost Reports (1994 and 1996) and Medicare HMO Files (1994), U.S. Bureau of the Census' County Business Patterns Files (1994), and Area Resources File (1994). This work employed a longitudinal approach using a panel design to study the effect of environmental and organizational characteristics on urban hospital strategic behavior and performance. A path analytic model was used to examine the simultaneous effects of environmental and organizational characteristics (1994) on strategic behavior (change in strategies to enhance HMO business and change in strategies to control costs 1994-96), as well as the effects of all of these variables on change in urban hospital performance (change in market share, change in operational efficiency, change in financial performance 1994-96). (1) Environmental context exerts a greater influence on urban hospitals' HMO business enhancement strategies, whereas organizational characteristics have more influence on cost-control strategies. (2) Between the two strategies, HMO business enhancement and cost control, strategic change to enhance business with HMOs is much more complex. (3) Strategic change observed across the 1994 to 1996 time period can be either helpful or harmful to urban hospitals. A strategic change that contributes positively to one type of performance can negatively impact the other. Although differences of opinion persist in the strategic change debate, results of this study indicate that strategic change can be helpful or harmful to urban hospitals, and its consequences are far more complex than previously thought. Strategic rationality has its own limitations and cannot always be relied on to yield expected results. Hospital strategic changes require coordination to achieve greater performance results.
NASA Astrophysics Data System (ADS)
Ganesan, A.; Alakhras, M.; Brennan, P. C.; Lee, W.; Tapia, K.; Mello-Thoms, C.
2018-03-01
Purpose: To determine the impact of Breast Screen Reader Assessment Strategy (BREAST) over time in improving radiologists' breast cancer detection performance, and to identify the group of radiologists that benefit the most by using BREAST as a training tool. Materials and Methods: Thirty-six radiologists who completed three case-sets offered by BREAST were included in this study. The case-sets were arranged in radiologists' chronological order of completion and five performance measures (sensitivity, specificity, location sensitivity, receiver operating characteristics area under the curve (ROC AUC) and jackknife alternative free-response receiver operating characteristic (JAFROC) figure-of-merit (FOM)), available from BREAST, were compared between case-sets to determine the level of improvement achieved. The radiologists were then grouped based on their characteristics and the above performance measures between the case-sets were compared. Paired t-tests or Wilcoxon signed-rank tests with statistical significance set at p < 0.05 were used to compare the performance measures. Results: Significant improvement was demonstrated in radiologists' case-set performance in terms of location sensitivity and JAFROC FOM over the years, and radiologists' location sensitivity and JAFROC FOM showed significant improvement irrespective of their characteristics. In terms of ROC AUC, significant improvement was shown for radiologists who were reading screen mammograms for more than 7 years and spent more than 9 hours per week reading mammograms. Conclusion: Engaging with case-sets appears to enhance radiologists' performance suggesting the important value of initiatives such as BREAST. However, such performance enhancement was not shown for everyone, highlighting the need to tailor the BREAST platform to benefit all radiologists.
Institutional and Economic Determinants of Public Health System Performance
Mays, Glen P.; McHugh, Megan C.; Shim, Kyumin; Perry, Natalie; Lenaway, Dennis; Halverson, Paul K.; Moonesinghe, Ramal
2006-01-01
Objectives. Although a growing body of evidence demonstrates that availability and quality of essential public health services vary widely across communities, relatively little is known about the factors that give rise to these variations. We examined the association of institutional, financial, and community characteristics of local public health delivery systems and the performance of essential services. Methods. Performance measures were collected from local public health systems in 7 states and combined with secondary data sources. Multivariate, linear, and nonlinear regression models were used to estimate associations between system characteristics and the performance of essential services. Results. Performance varied significantly with the size, financial resources, and organizational structure of local public health systems, with some public health services appearing more sensitive to these characteristics than others. Staffing levels and community characteristics also appeared to be related to the performance of selected services. Conclusions. Reconfiguring the organization and financing of public health systems in some communities—such as through consolidation and enhanced intergovernmental coordination—may hold promise for improving the performance of essential services. PMID:16449584
Liang, Po-Wei; Chueh, Chu-Chen; Williams, Spencer T.; ...
2015-02-27
Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells are elucidated. By studying various fullerenes, a clear correlation between the electron mobility of fullerenes and the resulting performance of derived devices is determined. The metallic characteristics of the bilayer perovskite/fullerene field-effect transistor indicates an effective charge redistribution occurring at the corresponding interface. Lastly, a conventional perovskite thin-film solar cell derived from the C 60 electron-transporting layer (ETL) affords a high power conversion efficiency of 15.4%.
Nanocomposites for Machining Tools
Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny
2017-01-01
Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926
Transgenic plants with enhanced growth characteristics
Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.
2016-09-06
The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.
Hydrophilic modification of polyethersulfone and its membrane characteristics
NASA Astrophysics Data System (ADS)
Liu, Haiju; Huangfu, Feng-yun; Bai, Yundong; Kong, Yuanyuan
2010-07-01
In order to enhance the hydrophilicity of PES, A series of sulfonated polyethersulfone (SPES) were readily prepared via a reaction of sulphonation which used chlorosulfonic as sulfonating agent and concentrated sulfuric acid as solvent. Sulfonation was confirmed by Fourier transform infrared spectroscopy and Thermo gravimetric analyzer. We studied forming film characteristic of SPES by phase diagram. The sulfonated PES materials were then utilized as a hydrophilic modifier for fabrication of SPES membranes. The solvent was NMP and PEG-6000 was pore-forming agent. The characteristics of membranes were studied. It was found that the surface hydrophilicity of the modified PES membranes was remarkably enhanced by contact angle. Water flux was obvious increased and antifouling performance was also improved.
Raman-based system for DNA sequencing-mapping and other separations
Vo-Dinh, Tuan
1994-01-01
DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.
Mohamed Kamal, Rasha; Hussien Helal, Maha; Wessam, Rasha; Mahmoud Mansour, Sahar; Godda, Iman; Alieldin, Nelly
2015-06-01
To analyze the morphology and enhancement characteristics of breast lesions on contrast-enhanced spectral mammography (CESM) and to assess their impact on the differentiation between benign and malignant lesions. This ethics committee approved study included 168 consecutive patients with 211 breast lesions over 18 months. Lesions classified as non-enhancing and enhancing and then the latter group was subdivided into mass and non-mass. Mass lesions descriptors included: shape, margins, pattern and degree of internal enhancement. Non-mass lesions descriptors included: distribution, pattern and degree of internal enhancement. The impact of each descriptor on diagnosis individually assessed using Chi test and the validity compared in both benign and malignant lesions. The overall performance of CESM were also calculated. The study included 102 benign (48.3%) and 109 malignant (51.7%) lesions. Enhancement was encountered in 145/211 (68.7%) lesions. They further classified into enhancing mass (99/145, 68.3%) and non-mass lesions (46/145, 31.7%). Contrast uptake was significantly more frequent in malignant breast lesions (p value ≤ 0.001). Irregular mass lesions with intense and heterogeneous enhancement patterns correlated with a malignant pathology (p value ≤ 0.001). CESM showed an overall sensitivity of 88.99% and specificity of 83.33%. The positive and negative likelihood ratios were 5.34 and 0.13 respectively. The assessment of the morphology and enhancement characteristics of breast lesions on CESM enhances the performance of digital mammography in the differentiation between benign and malignant breast lesions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiao, Zijian; Lei, Yaguo; Lin, Jing; Jia, Feng
2017-02-01
In mechanical fault diagnosis, most traditional methods for signal processing attempt to suppress or cancel noise imbedded in vibration signals for extracting weak fault characteristics, whereas stochastic resonance (SR), as a potential tool for signal processing, is able to utilize the noise to enhance fault characteristics. The classical bistable SR (CBSR), as one of the most widely used SR methods, however, has the disadvantage of inherent output saturation. The output saturation not only reduces the output signal-to-noise ratio (SNR) but also limits the enhancement capability for fault characteristics. To overcome this shortcoming, a novel method is proposed to extract the fault characteristics, where a piecewise bistable potential model is established. Simulated signals are used to illustrate the effectiveness of the proposed method, and the results show that the method is able to extract weak fault characteristics and has good enhancement performance and anti-noise capability. Finally, the method is applied to fault diagnosis of bearings and planetary gearboxes, respectively. The diagnosis results demonstrate that the proposed method can obtain larger output SNR, higher spectrum peaks at fault characteristic frequencies and therefore larger recognizable degree than the CBSR method.
ERIC Educational Resources Information Center
Abrams, Alvin J.; Cook, Richard L.
In training people to perform auditory identification tasks (e.g., training students to identify sound characteristics in a sonar classification task), it is important to know whether or not training procedures are merely sustaining performance during training or whether they enhance learning of the task. Often an incorrect assumption is made that…
USDA-ARS?s Scientific Manuscript database
Objectives: The objectives of this project were to 1) evaluate meat quality characteristics, and 2) identify consumer palatability and label preferences for beef produced with varied levels of technology to facilitate production and marketing decisions and enhance consumer knowledge and trust in bee...
DEEP: a general computational framework for predicting enhancers
Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B.
2015-01-01
Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/. PMID:25378307
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.
2013-01-01
Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.
Raman-based system for DNA sequencing-mapping and other separations
Vo-Dinh, T.
1994-04-26
DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.
Space tug point design study. Volume 2: Operations, performance and requirements
NASA Technical Reports Server (NTRS)
1973-01-01
A design study to determine the configuration and characteristics of a space tug was conducted. Among the subjects analyzed in the study are: (1) flight and ground operations, (2) vehicle flight performance and performance enhancement techniques, (3) flight requirements, (4) basic design criteria, and (5) functional and procedural interface requirements between the tug and other systems.
Transgenic plants with enhanced growth characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.
The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of themore » double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.« less
Robust estimators for speech enhancement in real environments
NASA Astrophysics Data System (ADS)
Sandoval-Ibarra, Yuma; Diaz-Ramirez, Victor H.; Kober, Vitaly
2015-09-01
Common statistical estimators for speech enhancement rely on several assumptions about stationarity of speech signals and noise. These assumptions may not always valid in real-life due to nonstationary characteristics of speech and noise processes. We propose new estimators based on existing estimators by incorporation of computation of rank-order statistics. The proposed estimators are better adapted to non-stationary characteristics of speech signals and noise processes. Through computer simulations we show that the proposed estimators yield a better performance in terms of objective metrics than that of known estimators when speech signals are contaminated with airport, babble, restaurant, and train-station noise.
CPW fed UWB antenna with enhanced bandwidth & dual band notch characteristics
NASA Astrophysics Data System (ADS)
Jangid, K. G.; Jain, P. K.; Sharma, B. R.; Saxena, V. K.; Kulhar, V. S.; Bhatnagar, D.
2018-05-01
This paper reports the design and performance of CPW fed UWB antenna having two U-shaped slots etched in the radiating structure. UWB performance of proposed structure is obtained through the truncated shape of the patch and L-slits etched in ground plane. By applying two U- shaped slots in a radiating patch, we achieved dual notch band characteristics. The proposed antenna is simulated by applying CST Microwave Studio simulator. This antenna provides wide impedance bandwidth of 12.585 GHz (2.74GHz - 15.325 GHz) with dual notched band characteristics. This antenna may be proved as a useful structure for modern wireless communication systems including UWB band.
APSA - A new generation of photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Stella, P. M.; Kurland, R. M.
1989-01-01
This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.
Competitive Learning Neural Network Ensemble Weighted by Predicted Performance
ERIC Educational Resources Information Center
Ye, Qiang
2010-01-01
Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…
Ostovar, Afshin; Haerinejad, Mohammad Javad; Akbarzadeh, Samad; Keshavarz, Mojtaba
2017-10-01
Objective: The present study aimed at comparing the prevalence of major psychiatric disorders including major depressive disorder, bipolar disorder, schizophrenia, and generalized anxiety disorder between performance-enhancing drug users and nonuser bodybuilders. Moreover, the prevalence of major psychiatric disorders in bodybuilders was also reported. Method: In this study, 453 athletes were recruited from Bushehr bodybuilding gyms from February to May 2015. A structured questionnaire was used to collect the participants' information, including demographic characteristics, sports' status and performance-enhancing drug use. According to the condition of performance-enhancing drug use, the participants were divided into current users, non-current users, and nonusers. The psychiatric status of the participants was evaluated using DSM-IV diagnostic criteria for major depressive disorder, bipolar disorder, generalized anxiety disorder, and schizophrenia. We also asked about the acute psychotic disturbances after using performance-enhancing drugs, alcohol use, and history of aggressive behavior in bodybuilders. Data were analyzed using one-way analysis of variance and chi-square tests. Results: Prevalence of major depressive disorder, bipolar disorder, schizophrenia, generalized anxiety disorder, and the overall prevalence of psychiatric disorders in the bodybuilders was 19.7%, 3.8%, 1.5%, 16.6%, and 26.7%, respectively. After using performance-enhancing drugs, 33% of the bodybuilders had experienced acute psychological disturbances. There were no significant differences between current, non-current, and nonuser bodybuilding athletes in the measured psychiatric disorders. Conclusion: Prevalence of psychiatric disorders was not significantly different in performance-enhancing drug users and nonusers. Thus, it can be concluded that performance-enhancing drugs do not increase the risk of psychiatric disorders in bodybuilders.
Comparison of display enhancement with intelligent decision-aiding
NASA Technical Reports Server (NTRS)
Kirlik, Alex; Markert, Wendy J.; Kossack, Merrick
1992-01-01
Currently, two main approaches exist for improving the human-machine interface component of a system in order to improve overall system performance, display enhancement and intelligent decision aiding. Each of these two approaches has its own set of advantages and disadvantages, as well as introduce its own set of additional performance problems. These characteristics should help identify which types of problem situations and domains are better aided by which type of strategy. The characteristic issues are described of these two decision aiding strategies. Then differences in expert and novice decision making are described in order to help determine whether a particular strategy may be better for a particular type of user. Finally, research is outlined to compare and contrast the two technologies, as well as to examine the interaction effects introduced by the different skill levels and the different methods for training operators.
NASA Astrophysics Data System (ADS)
Shchinnikov, P. A.; Safronov, A. V.
2014-12-01
General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.
Characteristics of phase-change materials containing oxide nano-additives for thermal storage.
Teng, Tun-Ping; Yu, Chao-Chieh
2012-11-06
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.
NASA Astrophysics Data System (ADS)
Wang, Chenjie; Huo, Zongliang; Liu, Ziyu; Liu, Yu; Cui, Yanxiang; Wang, Yumei; Li, Fanghua; Liu, Ming
2013-07-01
The effects of interfacial fluorination on the metal/Al2O3/HfO2/SiO2/Si (MAHOS) memory structure have been investigated. By comparing MAHOS memories with and without interfacial fluorination, it was identified that the deterioration of the performance and reliability of MAHOS memories is mainly due to the formation of an interfacial layer that generates excess oxygen vacancies at the interface. Interfacial fluorination suppresses the growth of the interfacial layer, which is confirmed by X-ray photoelectron spectroscopy depth profile analysis, increases enhanced program/erase efficiency, and improves data retention characteristics. Moreover, it was observed that fluorination at the SiO-HfO interface achieves a more effective performance enhancement than that at the HfO-AlO interface.
Datta, Niladri Sekhar; Dutta, Himadri Sekhar; Majumder, Koushik
2016-01-01
The contrast enhancement of retinal image plays a vital role for the detection of microaneurysms (MAs), which are an early sign of diabetic retinopathy disease. A retinal image contrast enhancement method has been presented to improve the MA detection technique. The success rate on low-contrast noisy retinal image analysis shows the importance of the proposed method. Overall, 587 retinal input images are tested for performance analysis. The average sensitivity and specificity are obtained as 95.94% and 99.21%, respectively. The area under curve is found as 0.932 for the receiver operating characteristics analysis. The classifications of diabetic retinopathy disease are also performed here. The experimental results show that the overall MA detection method performs better than the current state-of-the-art MA detection algorithms.
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Clark, Casie M.
2013-01-01
Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.
Xu, Chen; Reece, Charles E.; Kelley, Michael J.
2016-03-22
A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R s) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H c, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we havemore » estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q 0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less
Zhang, Lina; Hu, Jiani; Guys, Nicholas; Meng, Jinli; Chu, Jianguo; Zhang, Weisheng; Liu, Ailian; Wang, Shaowu; Song, Qingwei
2018-03-01
To demonstrate the value of diffusion-weighted imaging (DWI) in the characterisation of mastitis lesions. Sixty-one non-puerperal patients with pathologically confirmed single benign mastitis lesions underwent preoperative examinations with conventional MRI and axial DWI. Patients were categorised into three groups: (1) periductal mastitis (PDM), (2) granulomatous lobular mastitis (GLM), and (3) infectious abscess (IAB). Apparent diffusion coefficient (ADC) values of each lesion were recorded. A one-way ANOVA with logistic analysis was performed to compare ADC values and other parameters. Discriminative abilities of DWI modalities were compared using the area under the receiver operating characteristic curve (AUC). P < 0.05 was considered statistically significant. ADC values differed significantly among the three groups (P = 0.003) as well as between PDM and IAB and between PDM and GLM. The distribution of non-mass enhancement on dynamic contrast-enhanced (DCE) MRI differed significantly among the three groups (P = 0.03) but not between any two groups specifically. There were no differences in lesion location, patient age, T 2 WI or DWI signal intensity, enhancement type, non-mass internal enhancement, or mass enhancement characteristics among the three groups. ADC values and the distribution of non-mass enhancement are valuable in classifying mastitis subtypes. • Mastitis subtypes exhibit different characteristics on DWI and DCE MRI. • ADC values are helpful in isolating PDM from other mastitis lesions. • Distribution of non-mass enhancement also has value in comparing mastitis subtypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.D.
Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)
ERIC Educational Resources Information Center
Su, King-Dow
2008-01-01
This study evaluated the performance of university students who learned science texts by using, information communication technologies (ICT) including animation, static figures, power point, and e-plus software. The characteristics of students and their achievements and attitudes toward 11 multimedia science courses were analyzed. The 11 samples…
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Guzik, Monica; Skierski, Michael
2011-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.
Job control and coworker support improve employee job performance.
Nagami, Makiko; Tsutsumi, Akizumi; Tsuchiya, Masao; Morimoto, Kanehisa
2010-01-01
We examined the prospective association of psychosocial job characteristics with employee job performance among 777 full-time employees at a manufacturing company in Japan, using data from a one-year follow-up survey. Psychosocial job characteristics were measured by the Job Content Questionnaire in 2008; job performance was evaluated using the item from the World Mental Health Survey Instrument in 2008 and 2009. The association between psychosocial job characteristics and job performance was tested using multiple regression analysis, controlling for demographic variables, work status, average working hours per day, job type and job performance in 2008. Job control and coworker support in 2008 were positively related to job performance in 2009. Stratified analyses revealed that job control for staff and coworker support for managers were positively related to job performance in 2009. These associations were prominent among men; however, supervisor support in 2008 was negatively related to job performance in 2009 among men. Job demand was not significantly related to job performance. Our findings suggest that it is worthwhile to enhance employees' job control and provide a mutually supportive environment to ensure positive employee job performance.
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2017-02-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
Guo, Daoyan; Chen, Hong; Long, Ruyin
2016-01-01
In the increasingly competitive environment, top managers' background characteristics are undoubtedly vital factors for company performance. This study examines whether the performance of Chinese listed companies in the energy industry differs with respect to top managers' background characteristics and explores the exact distribution interval of top managers' background characteristics when company performance reaches the highest level. The initial sample was collected from the CSMAR database (2005-2014) for listed companies in the energy industry. After removing the outlier and missing data, the final number of observations was determined as 780. Descriptive statistics were used to investigate the present distribution of top managers' background characteristics, factor analysis was used to determine the dimensions of company performance, and one-way ANOVA was used to analyze the differences in company performance and its dimensions with respect to top managers' background characteristics. The findings show that both the age and length of service of top managers present an increasing trend over the years of the study period, whereas the educational level shows no significant changes. The performance of listed companies has three dimensions: profit performance, growth performance, and operating performance. Companies behave differently with regard to their top managers' background characteristics; when the top manager is 40-45 years old, with a doctoral degree and above, and in the 2nd-3rd year of his service period, his company will achieve a higher level of performance. This study contributes to the growing literature on company performance in the Chinese energy industry by demonstrating the differences in the performance of Chinese listed companies in the energy industry with regard to top managers' background characteristics, and reaching conclusions on the optimum distribution interval of top managers' background characteristics when company performance reaches the highest level. This study also provides a valuable reference for organizational reform and performance enhancement, which are urgent problems for the Chinese energy industry.
Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal
NASA Astrophysics Data System (ADS)
Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka
2015-06-01
Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF6 crystal. Eu doped and Eu, Y co-doped LiCaAlF6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.
Correlates of quality educational programs.
Chester, Deborah R; Tracy, Jessamyn A; Earp, Emily; Chauhan, Reetu
2002-06-01
Preliminary evaluation findings are presented that explore relationships between educational program quality and program characteristics such as program type, security level, aftercare, teacher certification, facility size, and private versus public provider. Several program characteristics are found to be related to measurements of educational program quality. Among the major quality characteristics are proportion of program teachers that are professionally certified, smaller sized facilities versus larger facilities, level of aftercare services, and provider sources, with private for-profit providers being the lowest performing and public providers being the highest performing. The article closes with description of the Juvenile Justice Educational Enhancement Program's continuing evaluation of correlates to educational program quality through the continued development of a comprehensive database.
Enhancement of Identity in the Hydraulic Characteristics of a Gas Centrifuge for Isotope Separation
NASA Astrophysics Data System (ADS)
Yatsenko, D. V.; Borisevich, V. D.; Godisov, O. N.
The problem of non-identity in characteristics of the GCs for uranium isotope separation grows up with increase of a rotor speed of rotation. It may lead to noticeable decrease of the separative power of the centrifugal machines. The carried out assessments allowed to get the dependence of the relative separation performance losses on the non-identity in the hydraulic characteristics of the GCs connected in parallel. The results of calculation are compared with that of obtained in experiments.
Ostovar, Afshin; Haerinejad, Mohammad Javad; Akbarzadeh, Samad; Keshavarz, Mojtaba
2017-01-01
Objective: The present study aimed at comparing the prevalence of major psychiatric disorders including major depressive disorder, bipolar disorder, schizophrenia, and generalized anxiety disorder between performance-enhancing drug users and nonuser bodybuilders. Moreover, the prevalence of major psychiatric disorders in bodybuilders was also reported. Method: In this study, 453 athletes were recruited from Bushehr bodybuilding gyms from February to May 2015. A structured questionnaire was used to collect the participants’ information, including demographic characteristics, sports’ status and performance-enhancing drug use. According to the condition of performance-enhancing drug use, the participants were divided into current users, non-current users, and nonusers. The psychiatric status of the participants was evaluated using DSM-IV diagnostic criteria for major depressive disorder, bipolar disorder, generalized anxiety disorder, and schizophrenia. We also asked about the acute psychotic disturbances after using performance-enhancing drugs, alcohol use, and history of aggressive behavior in bodybuilders. Data were analyzed using one-way analysis of variance and chi-square tests. Results: Prevalence of major depressive disorder, bipolar disorder, schizophrenia, generalized anxiety disorder, and the overall prevalence of psychiatric disorders in the bodybuilders was 19.7%, 3.8%, 1.5%, 16.6%, and 26.7%, respectively. After using performance-enhancing drugs, 33% of the bodybuilders had experienced acute psychological disturbances. There were no significant differences between current, non-current, and nonuser bodybuilding athletes in the measured psychiatric disorders. Conclusion: Prevalence of psychiatric disorders was not significantly different in performance-enhancing drug users and nonusers. Thus, it can be concluded that performance-enhancing drugs do not increase the risk of psychiatric disorders in bodybuilders. PMID:29472947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn; Rippa, Massimo
A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example,more » a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.« less
Review of Aircraft Engine Fan Noise Reduction
NASA Technical Reports Server (NTRS)
VanZante, Dale
2008-01-01
Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.
Effect of segmented electrode length on the performances of Hall thruster
NASA Astrophysics Data System (ADS)
Duan, Ping; Chen, Long; Liu, Guangrui; Bian, Xingyu; Yin, Yan
2016-09-01
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of ionization rate in discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.C.; DePoorter, G.L.; Munoz, D.R.
1991-02-01
We have initiated a three phase investigation of the development of high performance refractory fibers with enhanced insulating properties and longer usable lifetimes. This report presents the results of the first phase of the study, performed from Aug. 1989 through Feb. 1991, which shows that significant energy saving are possible through the use of high temperature insulating fibers that better retain their efficient insulating properties during the service lifetime of the fibers. The remaining phases of this program include the pilot scale development and then full scale production feasibility development and evaluation of enhanced high temperature refractory insulting fibers. Thismore » first proof of principle phase of the program presents a summary of the current use patterns of refractory fibers, a laboratory evaluation of the high temperature performance characteristics of selected typical refractory fibers and an analysis of the potential energy savings through the use of enhanced refractory fibers. The current use patterns of refractory fibers span a wide range of industries and high temperature furnaces within those industries. The majority of high temperature fiber applications are in furnaces operating between 2000 and 26000{degrees}F. The fibers used in furnaces operating within this range provide attractive thermal resistance and low thermal storage at reasonable cost. A series of heat treatment studies performed for this phase of the program has shown that the refractory fibers, as initially manufactured, have attractive thermal conductivities for high temperature applications but the fibers go through rapid devitrification and subsequent crystal growth upon high temperature exposure. Development of improved fibers, maintaining the favorable characteristics of the existing as-manufactured fibers, could save between 1 and 4% of the energy consumed in high temperature furnaces using refractory fibers.« less
Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Ahn, Ho-Kyun; Jung, Hyun-Wook; Shin, Min Jeong; Lim, Jong-Won
2017-09-01
In this paper, an enhanced-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) was developed by using 4-inch GaN HEMT process. We designed and fabricated Emode HEMTs and characterized device performance. To estimate the possibility of application for millimeter wave applications, we focused on the high frequency performance and power characteristics. To shift the threshold voltage of HEMTs we applied the Al2O3 insulator to the gate structure and adopted the gate recess technique. To increase the frequency performance the e-beam lithography technique was used to define the 0.15 um gate length. To evaluate the dc and high frequency performance, electrical characterization was performed. The threshold voltage was measured to be positive value by linear extrapolation from the transfer curve. The device leakage current is comparable to that of the depletion mode device. The current gain cut-off frequency and the maximum oscillation frequency of the E-mode device with a total gate width of 150 um were 55 GHz and 168 GHz, respectively. To confirm the power performance for mm-wave applications the load-pull test was performed. The measured power density of 2.32 W/mm was achieved at frequencies of 28 and 30 GHz.
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-16
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
NASA Astrophysics Data System (ADS)
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-01
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
Technical Assessment: Synthetic Biology
2015-01-01
to help heal wounds; probiotics that mitigate the effects of stress and enhance mental performance. The same characteristics that make synthetic... probiotics . 5. BW/CW Defense Despite claims about the risks from synthetic biology often inappropriately drowning out discussions of other
Cornwell, Brittany L; Brockmann, Laurie M; Lasky, Elaine C; Mach, Jennifer; McCarthy, John F
2018-06-01
The Veterans Health Administration (VHA) has achieved substantial national implementation of primary care-mental health integration (PC-MHI) services. However, little is known regarding program characteristics, variation in characteristics across settings, or associations between program fidelity and performance. This study identified core elements of PC-MHI services and evaluated their associations with program characteristics and performance. A principal-components analysis (PCA) of reports from 349 sites identified factors associated with PC-MHI fidelity. Analyses assessed the correlation among factors and between each factor and facility type (medical center or community-based outpatient clinic), primary care population size, and performance indicators (receipt of PC-MHI services, same-day access to mental health and primary care services, and extended duration of services). PCA identified seven factors: core implementation, care management (CM) assessments and supervision, CM supervision receipt, colocated collaborative care (CCC) by prescribing providers, CCC by behavioral health providers, participation in patient aligned care teams (PACTs) for special populations, and treatment of complex mental health conditions. Sites serving larger populations had greater core implementation scores. Medical centers and sites serving larger populations had greater scores for CCC by prescribing providers, CM assessments and supervision, and participation in PACTs. Greater core implementation scores were associated with greater same-day access. Sites with greater scores for CM assessments and supervision had lower scores for treatment of complex conditions. Outpatient clinics and sites serving smaller populations experienced challenges in integrated care implementation. To enhance same-day access, VHA should continue to prioritize PC-MHI implementation. Providing brief, problem-focused care may enhance CM implementation.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
2013-01-01
As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.
NASA Astrophysics Data System (ADS)
Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing
2013-01-01
The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.
Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing
2013-01-25
The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca(2+) accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.
Numerical simulation of a novel expanded metal tubular structure for crashworthiness application
NASA Astrophysics Data System (ADS)
Abdelaal, A. H. A.; Tarlochan, F.
2015-12-01
Search for new geometries and materials that would serve in crashworthiness applications is a cumulative process. Recent studies investigated the performance of expanded metal tubes and the possible ways to enhance its energy absorption capability. The aim of this work is to investigate the crashworthiness characteristics of new concept is proposed where expanded metal tube is suited into a double-walled tube made of the same material to form one structure. The tube was then numerically tested through a verified model using ABAQUS software. Moreover, the influence of the size of the expanded metal cell was also investigated in the present study. The new concept showed an enhanced energy absorption characteristics related to the change in the mass of the tubular structure. The enhancement was related to both the change in deformation pattern, and the increase in crushed mass.
Characteristics of phase-change materials containing oxide nano-additives for thermal storage
2012-01-01
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224
The bioethics of enhancing human performance for spaceflight
Gibson, T M
2006-01-01
There are many ways of enhancing human performance. For military aviation in general, and for spaceflight in particular, the most important tools are selection, training, equipment, pharmacology, and surgery. In the future, genetic manipulation may be feasible. For each of these tools, the specific modalities available range from the ethically acceptable to the ethically unacceptable. Even when someone consents to a particular procedure to enhance performance, the action may be ethically unacceptable to society as a whole and the burden of risk for the individual may be too great. In addition, there are several characteristics that define the quality and the acceptability of the consent. Each method of enhancing performance will be examined in the context of the principles of medical ethics in a western society: autonomy, non‐maleficence, beneficence, and justice. The aim is to draw the attention of aeromedical practitioners to the complexities of ethical dilemmas such as this particular one in order to help them to develop a morally justifiable code of practice that balances society's needs against individual ambitions and corporate goals. PMID:16507654
NASA Astrophysics Data System (ADS)
Han, Genquan; Zhao, Bin; Liu, Yan; Wang, Hongjuan; Liu, Mingshan; Zhang, Chunfu; Hu, Shengdong; Hao, Yue
2015-12-01
We design a heterojunction-enhanced n-channel tunneling field effect transistor (HE-TFET) with an InAs/In1-xGaxAs heterojunction located in channel region with a distance of LT-H from source/channel tunneling junction. The influence of LT-H on the performance of HE-TFETs is investigated by simulation. Compared with InAs homo-NTFET, the positive shift of onset voltage, the steeper subthreshold swing (SS), and the enhanced on-state current ION are achieved in HE-NTFETs, which is attributed to the modulation of the heterojunction on band-to-band tunneling. At a supply voltage of 0.3 V, ION of InAs/In0.9Ga0.1As HE-NTFET with a LT-H of 6 nm demonstrates an enhancement of 119.3% in comparison with the homo device. Furthermore, the impact of Ga composition on the performance of HE-NTFETs is studied. As the Ga composition increases, the average SS characteristics of HE-NTFETs are improved, while the drive current of devices is reduced due to the increasing of tunneling barrier.
Rotordynamic Instability Problems in High-Performance Turbomachinery, 1986
NASA Technical Reports Server (NTRS)
1987-01-01
The first rotordynamics workshop proceedings (NASA CP-2133, 1980) emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings (NASA CP-2250, 1982) these uncertainities were reduced through programs established to systematically resolve problems, with emphasis on experimental validiation of the forces that influence rotordynamics. In third proceedings (NASA CP-2338, 1984) many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. The present workshop proceedings illustrates a continued trend toward a more unified view of rotordynamic instability problems and several encouraging new analytical developments.
NASA Technical Reports Server (NTRS)
Adams, J. R.; Hawley, S. W.; Peterson, G. R.; Salinger, S. S.; Workman, R. A.
1971-01-01
A hardware and software specification covering requirements for the computer enhancement of structural weld radiographs was considered. Three scanning systems were used to digitize more than 15 weld radiographs. The performance of these systems was evaluated by determining modulation transfer functions and noise characteristics. Enhancement techniques were developed and applied to the digitized radiographs. The scanning parameters of spot size and spacing and film density were studied to optimize the information content of the digital representation of the image.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Will, Johanna L; Eckart, Moritz T; Rosenow, Felix; Bauer, Sebastian; Oertel, Wolfgang H; Schwarting, Rainer K W; Norwood, Braxton A
2013-06-15
The human serial reaction time task (SRTT) has widely been used to study the neural basis of implicit learning. It is well documented, in both human and animal studies, that striatal dopaminergic processes play a major role in this task. However, findings on the role of the hippocampus - which is mainly associated with declarative memory - in implicit learning and performance are less univocal. We used a SRTT to evaluate implicit learning and performance in rats with perforant pathway stimulation-induced hippocampal neuron loss; a clinically-relevant animal model of mesial temporal lobe epilepsy (MTLS-HS). As has been previously reported for the Sprague-Dawley strain, 8h of continuous stimulation in male Wistar rats reliably induced widespread neuron loss in areas CA3 and CA1 with a characteristic sparing of CA2 and the granule cells. Histological analysis revealed that hippocampal volume was reduced by an average of 44%. Despite this severe hippocampal injury, rats showed superior performance in our instrumental SRTT, namely shorter reaction times, and without a loss in accuracy, especially during the second half of our 16-days testing period. These results demonstrate that a hippocampal lesion can improve performance in a rat SRTT, which is probably due to enhanced instrumental performance. In line with our previous findings based on ibotenic-acid induced hippocampal lesion, these data support the hypothesis that loss or impairment of hippocampal function can enhance specific task performance, especially when it is dependent on procedural (striatum-dependent) mechanisms with minimal spatial requirements. As the animal model used here exhibits the defining characteristics of MTLE-HS, these findings may have implications for the study and management of patients with MTLE. Copyright © 2013 Elsevier B.V. All rights reserved.
FogEye UV Sensor System Performance Characteristics
DOT National Transportation Integrated Search
2004-03-01
The primary objective of the FogEye Evaluation Program is to determine whether coupled ultra-violet sources and detectors may provide enhancements to safety on the airport surface. The results of this effort will be used to complete the evaluation of...
Covariance of engineering management characteristics with engineering employee performance
NASA Astrophysics Data System (ADS)
Hesketh, Andrew Arthur
1998-12-01
As business in the 1990's grapples with the impact of continuous improvement and quality to meet market demands, there is an increased need to improve the leadership capabilities of our managers. Engineers have indicated desire for certain managerial characteristics in their leadership but there have been no studies completed that approached the problem of determining what managerial characteristics were best at improving employee performance. This study addressed the idea of identifying certain managerial characteristics that enhance employee performance. In the early 1990's, McDonnell Douglas Aerospace in St. Louis used a forced distribution system and allocated 35% of its employees into a "exceeds expectations" category and 60% into a "meets expectations" category. A twenty-question 5 point Likert scale survey on managerial capabilities was administered to a sample engineering population that also obtained their "expectations" category. A single factor ANOVA on the survey results determined a statistical difference between the "exceeds" and "meets" employees with four of the managerial capability questions. The "exceeds expectations" employee indicated that supervision did a better job of supporting subordinate development, clearly communicating performance expectations, and providing timely performance feedback when compared to the "meets expectations" employee. The "meets expectations" employee felt that their opinions, when different from their supervisor's, were more often ignored when compared to the "exceeds expectations" employee. These four questions relate to two specific managerial characteristics, "gaining (informal) authority and support" or "control" characteristic and "providing assistance and guidance" or "command" characteristic, that can be emphasized in managerial training programs.
Baseline experimental investigation of an electrohydrodynamically assisted heat pipe
NASA Technical Reports Server (NTRS)
Duncan, A. B.
1995-01-01
The increases in power demand and associated thermal management requirements of future space programs such as potential Lunar/Mars missions will require enhancing the operating efficiencies of thermal management devices. Currently, the use of electrohydrodynamically (EHD) assisted thermal control devices is under consideration as a potential method of increasing thermal management system capacity. The objectives of the currently described investigation included completing build-up of the EHD-Assisted Heat Pipe Test bed, developing test procedures for an experimental evaluation of the unassisted heat pipe, developing an analytical model capable of predicting the performance limits of the unassisted heat pipe, and obtaining experimental data which would define the performance characteristics of the unassisted heat pipe. The information obtained in the currently proposed study will be used in order to provide extensive comparisons with the EHD-assisted performance observations to be obtained during the continuing investigation of EHD-Assisted heat transfer devices. Through comparisons of the baseline test bed data and the EHD assisted test bed data, accurate insight into the performance enhancing characteristics of EHD augmentation may be obtained. This may lead to optimization, development, and implementation of EHD technology for future space programs.
NASA Astrophysics Data System (ADS)
Raju, B. S.; Sekhar, U. Chandra; Drakshayani, D. N.
2017-08-01
The paper investigates optimization of stereolithography process for SL5530 epoxy resin material to enhance part quality. The major characteristics indexed for performance selected to evaluate the processes are tensile strength, Flexural strength, Impact strength and Density analysis and corresponding process parameters are Layer thickness, Orientation and Hatch spacing. In this study, the process is intrinsically with multiple parameters tuning so that grey relational analysis which uses grey relational grade as performance index is specially adopted to determine the optimal combination of process parameters. Moreover, the principal component analysis is applied to evaluate the weighting values corresponding to various performance characteristics so that their relative importance can be properly and objectively desired. The results of confirmation experiments reveal that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of process parameters. Hence, this confirm that the proposed approach in this study can be an useful tool to improve the process parameters in stereolithography process, which is very useful information for machine designers as well as RP machine users.
Geyer, Nelouise-Marié; Coetzee, Siedine K; Ellis, Suria M; Uys, Leana R
2018-02-28
This study aimed to describe intrapersonal characteristics (professional values, personality, empathy, and job involvement), work performance as perceived by nurses, and caring behaviors as perceived by patients, and to examine the relationships among these variables. A cross-sectional design was employed. A sample was recruited of 218 nurses and 116 patients in four private hospitals and four public hospitals. Data were collected using self-report measures. Data analysis included descriptive statistics, exploratory and confirmatory factor analyses, hierarchical linear modelling, correlations, and structural equation modeling. Nurses perceived their work performance to be of high quality. Among the intrapersonal characteristics, nurses had high scores for professional values, and moderately high scores for personality, empathy and job involvement. Patients perceived nurses' caring behaviors as moderately high. Professional values of nurses were the only selected intrapersonal characteristic with a statistically significant positive relationship, of practical importance, with work performance as perceived by nurses and with caring behaviors as perceived by patients at ward level. Managers can enhance nurses' work performance and caring behaviors through provision of in-service training that focuses on development of professional values. © 2018 John Wiley & Sons Australia, Ltd.
Enhancing team-sport athlete performance: is altitude training relevant?
Billaut, François; Gore, Christopher J; Aughey, Robert J
2012-09-01
Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60-120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, 'altitude' training (i.e. living and/or training in O(2)-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.
The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties
Lv, Xin; Li, Shuang; Wang, Qingji
2017-01-01
Semiconductor oxide chemoresistive gas sensors are widely used for detecting deleterious gases due to low cost, simple preparation, rapid response and high sensitivity. The performance of gas sensor is greatly affected by the morphology of the semiconductor oxide. There are many semiconductor oxide morphologies, including zero-dimensional, one-dimensional, two-dimensional and three-dimensional ones. The semiconductor oxides with different morphologies significantly enhance the gas-sensing performance. Among the various morphologies, hollow nanostructures and core-shell nanostructures are always the focus of research in the field of gas sensors due to their distinctive structural characteristics and superior performance. Herein the morphologies of semiconductor oxides and their gas-sensing properties are reviewed. This review also proposes a potential strategy for the enhancement of gas-sensing performance in the future. PMID:29189714
Acceptability of quality reporting and pay for performance among primary health centers in Lebanon.
Saleh, Shadi S; Alameddine, Mohamad S; Natafgi, Nabil M
2013-01-01
Primary health care (PHC) is emphasized as the cornerstone of any health care system. Enhancing PHC performance is considered a strategy to enhance effective and equitable access to care. This study assesses the acceptability of and factors associated with quality reporting among PHC centers (PHCCs) in Lebanon. The managers of 132 Lebanese Ministry of Health PHCCs were surveyed using a cross-sectional design. Managers' willingness to report quality, participate in comparative quality assessments, and endorse pay-for-performance schemes was evaluated. Collected data were matched to the infrastructural characteristics and services database. Seventy-six percent of managers responded to the questionnaire, 93 percent of whom were willing to report clinical performance. Most expressed strong support for peer-performance comparison and pay-for-performance schemes. Willingness to report was negatively associated with the religious affiliation of centers and presence of health care facilities in the catchment area and favorably associated with use of information systems and the size of population served. The great willingness of PHCC managers to employ quality-enhancing initiatives flags a policy priority for PHC stakeholders to strengthen PHCC infrastructure and to enable reporting in an easy, standardized, and systematic way. Enhancing equity necessitates education and empowerment of managers in remote areas and those managing religiously affiliated centers.
Tan, Yan; Xiao, En-hua
2012-10-01
To evaluate the dynamic CT, MRI, ultrasonography, and pathologic features of hepatic perivascular epithelioid cell tumor (PEComa), improving the understanding and diagnosis of the tumor. A retrospective analysis of CT, MRI, ultrasonography, and pathologic features of 7 hepatic PEComas diagnosed by pathology during 1st January 2005 to 1st September 2011 in our hospital. The performance of dynamic CT, MRI, and ultrasonography revealed that lesions were regular masses with well-defined borders, the maximum diameters were 2.5-8.5 cm (mean = 4 cm), density was homogeneous, contrast-enhanced CT and MRI showed the lesions were significantly and heterogeneously enhanced on arterial phase, less enhanced on portal venous phase, and slightly hypodense on delayed phase. One patient had multiple hepatic lesions and had delayed enhancement. There were no backgrounds of hepatitis and cirrhosis, enlarged lymph nodes, or distant metastases. Pathology showed the gross appearance of the tumor was smooth. Tumor cells were round or polygonal, with clear boundaries and clear membranes, and had abundant translucent cytoplasm. Nuclei were round, with medium size. Tumor cells were epithelial-like cells and arranged in dense sheets. Immunohistochemistry showed that most of them were positive in HMB45 and MelanA, S-100, SMA, while negative in CgA, Syn, CK, CD117, CD10, and CD34. Dynamic CT, MRI, ultrasonography, and pathology of PEComa had some characteristics of benign tumor's performance. Enhanced scan showed PEComa quickly enhanced on arterial phase and enhanced less on portal venous phase. Knowing these characteristics could help to improve the understanding and diagnosis of hepatic PEComa.
NASA Astrophysics Data System (ADS)
Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.
2018-03-01
The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.
High performance p-type thermoelectric materials and methods of preparation
NASA Technical Reports Server (NTRS)
Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)
2005-01-01
The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
Microchannel Plate Imaging Detectors for the Ultraviolet
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.
1992-01-01
There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.
Zhang, Lihui; Duan, Feng; Huang, Yaji
2015-04-01
Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
CWRF performance at downscaling China climate characteristics
NASA Astrophysics Data System (ADS)
Liang, Xin-Zhong; Sun, Chao; Zheng, Xiaohui; Dai, Yongjiu; Xu, Min; Choi, Hyun I.; Ling, Tiejun; Qiao, Fengxue; Kong, Xianghui; Bi, Xunqiang; Song, Lianchun; Wang, Fang
2018-05-01
The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate characteristics is evaluated using a 1980-2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis (ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anomalies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface observations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These results indicate that CWRF may significantly enhance China climate modeling capabilities.
Hypersonic airbreathing vehicle visions and enhancing technologies
NASA Astrophysics Data System (ADS)
Hunt, James L.; Lockwood, Mary Kae; Petley, Dennis H.; Pegg, Robert J.
1997-01-01
This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes—missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays.
Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines
NASA Technical Reports Server (NTRS)
Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.
1994-01-01
Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.
Optofluidic Microsystems for Chemical and Biological Analysis
Fan, Xudong; White, Ian M.
2011-01-01
Optofluidics – the synergistic integration of photonics and microfluidics – has recently emerged as a new analytical field that provides a number of unique characteristics for enhanced sensing performance and simplification of microsystems. In this review, we describe various optofluidic architectures developed in the past five years, emphasize the mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, and envision new research directions to which optofluidics leads. PMID:22059090
Yong, Shan; JingZhou, Zhang; Yameng, Wang
2014-11-01
To improve the performance of the afterburner for the turbofan engine, an innovative type of mixer, namely, the chevron mixer, was considered to enhance the mixture between the core flow and the bypass flow. Computational fluid dynamics (CFD) simulations investigated the aerodynamic performances and combustion characteristics of the chevron mixer inside a typical afterburner. Three types of mixer, namely, CC (chevrons tilted into core flow), CB (chevrons tilted into bypass flow), and CA (chevrons tilted into core flow and bypass flow alternately), respectively, were studied on the aerodynamic performances of mixing process. The chevrons arrangement has significant effect on the mixing characteristics and the CA mode seems to be advantageous for the generation of the stronger streamwise vortices with lower aerodynamic loss. Further investigations on combustion characteristics for CA mode were performed. Calculation results reveal that the local temperature distribution at the leading edge section of flame holder is improved under the action of streamwise vortices shedding from chevron mixers. Consequently, the combustion efficiency increased by 3.5% compared with confluent mixer under the same fuel supply scheme.
Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition
Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew
2015-01-01
The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977
Kim, Jae Heon; Sun, Hwa Yeon; Hwang, Jiyoung; Hong, Seong Sook; Cho, Yong Jin; Doo, Seung Whan; Yang, Won Jae; Song, Yun Seob
2016-10-12
The aim of this study was to investigate the diagnostic accuracy of contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of small renal masses in real practice. Contrast-enhanced CT and MRI were performed between February 2008 and February 2013 on 68 patients who had suspected small (≤4 cm) renal cell carcinoma (RCC) based on ultrasonographic measurements. CT and MRI radiographs were reviewed, and the findings of small renal masses were re-categorized into five dichotomized scales by the same two radiologists who had interpreted the original images. Receiver operating characteristics curve analysis was performed, and sensitivity and specificity were determined. Among the 68 patients, 60 (88.2 %) had RCC and eight had benign disease. The diagnostic accuracy rates of contrast-enhanced CT and MRI were 79.41 and 88.23 %, respectively. Diagnostic accuracy was greater when using contrast-enhanced MRI because too many masses (67.6 %) were characterized as "4 (probably solid cancer) or 5 (definitely solid cancer)." The sensitivity of contrast-enhanced CT and MRI for predicting RCC were 79.7 and 88.1 %, respectively. The specificities of contrast-enhanced CT and MRI for predicting RCC were 44.4 and 33.3 %, respectively. Fourteen diagnoses (20.5 %) were missed or inconsistent compared with the final pathological diagnoses. One appropriate nephroureterectomy and five unnecessary percutaneous biopsies were performed for RCC. Seven unnecessary partial nephrectomies were performed for benign disease. Although contrast-enhanced CT and MRI showed high sensitivity for detecting small renal masses, specificity remained low.
NASA Astrophysics Data System (ADS)
Stranieri, Andrew; Yearwood, John; Pham, Binh
1999-07-01
The development of data warehouses for the storage and analysis of very large corpora of medical image data represents a significant trend in health care and research. Amongst other benefits, the trend toward warehousing enables the use of techniques for automatically discovering knowledge from large and distributed databases. In this paper, we present an application design for knowledge discovery from databases (KDD) techniques that enhance the performance of the problem solving strategy known as case- based reasoning (CBR) for the diagnosis of radiological images. The problem of diagnosing the abnormality of the cervical spine is used to illustrate the method. The design of a case-based medical image diagnostic support system has three essential characteristics. The first is a case representation that comprises textual descriptions of the image, visual features that are known to be useful for indexing images, and additional visual features to be discovered by data mining many existing images. The second characteristic of the approach presented here involves the development of a case base that comprises an optimal number and distribution of cases. The third characteristic involves the automatic discovery, using KDD techniques, of adaptation knowledge to enhance the performance of the case based reasoner. Together, the three characteristics of our approach can overcome real time efficiency obstacles that otherwise mitigate against the use of CBR to the domain of medical image analysis.
NASA Astrophysics Data System (ADS)
Jiang, Fan; Chen, Jingwen; Bi, Han; Li, Luying; Jing, Wenkui; Zhang, Jun; Dai, Jiangnan; Che, Renchao; Chen, Changqing; Gao, Yihua
2018-01-01
Non-polar a-plane n-ZnO/p-AlGaN and n-ZnO/i-ZnO/p-AlGaN heterojunction film light-emitting diodes (LEDs) are fabricated with good crystalline quality. The optical measurements show obvious performance enhancement with i-ZnO layer insertion. Off-axis electron holography reveals a potential drop of ˜1.5 V across the heterojunctions with typical p-n junction characteristics. It is found that the electrostatic potentials are inclined and the corresponding electrostatic fields are opposite to each other in n-ZnO and p-AlGaN regions. The electrostatic fields are mainly attributed to strain induced piezoelectric polarizations. After an insertion of an i-ZnO layer into the p-n heterojunction, comparatively flat electrostatic potential generates in the intrinsic ZnO region and contributes to faster movements of the injected electrons and holes, making the i-ZnO layer more conductive to the radiative recombination with enhanced exciton recombination possibilities and at last the LED performance enhancement.
The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.
Burke, Louise M; Maughan, Ronald J
2015-01-01
The oral-pharyngeal cavity and the gastrointestinal tract are richly endowed with receptors that respond to taste, temperature and to a wide range of specific nutrient and non-nutritive food components. Ingestion of carbohydrate-containing drinks has been shown to enhance endurance exercise performance, and these responses have been attributed to post-absorptive effects. It is increasingly recognised, though, that the response to ingested carbohydrate begins in the mouth via specific carbohydrate receptors and continues in the gut via the release of a range of hormones that influence substrate metabolism. Cold drinks can also enhance performance, especially in conditions of thermal stress, and part of the mechanism underlying this effect may be the response to cold fluids in the mouth. There is also some, albeit not entirely consistent, evidence for effects of caffeine, quinine, menthol and acetic acid on performance or other relevant effects. This review summarises current knowledge of responses to mouth sensing of temperature, carbohydrate and other food components, with the goal of assisting athletes to implement practical strategies that make best use of its effects. It also examines the evidence that oral intake of other nutrients or characteristics associated with food/fluid intake during exercise can enhance performance via communication between the mouth/gut and the brain.
Test bed experiments for various telerobotic system characteristics and configurations
NASA Technical Reports Server (NTRS)
Duffie, Neil A.; Wiker, Steven F.; Zik, John J.
1990-01-01
Dexterous manipulation and grasping in telerobotic systems depends on the integration of high-performance sensors, displays, actuators and controls into systems in which careful consideration has been given to human perception and tolerance. Research underway at the Wisconsin Center for Space Automation and Robotics (WCSAR) has the objective of enhancing the performance of these systems and their components, and quantifying the effects of the many electrical, mechanical, control, and human factors that affect their performance. This will lead to a fundamental understanding of performance issues which will in turn allow designers to evaluate sensor, actuator, display, and control technologies with respect to generic measures of dexterous performance. As part of this effort, an experimental test bed was developed which has telerobotic components with exceptionally high fidelity in master/slave operation. A Telerobotic Performance Analysis System has also been developed which allows performance to be determined for various system configurations and electro-mechanical characteristics. Both this performance analysis system and test bed experiments are described.
Research Update: Sport and Physical Activity for People with Physical Disabilities.
ERIC Educational Resources Information Center
Smith, Ralph W.
1993-01-01
Examines research on sport and physical activity for individuals with physical disabilities, focusing on psychosocial characteristics of participants, physiological impacts of participation, and performance enhancement. With the advent of the Americans with Disabilities Act (1990), such research has relevance for all recreation professionals. (SM)
Enhancing Student Motivation: Extensions from Job Enrichment Theory and Practice.
ERIC Educational Resources Information Center
Bloom, Arvid J.; Yorges, Stefani L.; Ruhl, Angela J.
2000-01-01
Explores classroom extensions of job enrichment theory by administering a modified Job Diagnostic Survey, a widely employed organizational research tool that assesses each core job characteristic, to 217 psychology students along with outcome scales assessing their course motivation, satisfaction, performance, absenteeism, interest, and desire to…
Performance and optimization of a derated ion thruster for auxiliary propulsion
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Foster, John E.
1991-01-01
The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed.
Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E
2014-08-01
High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.
Lee, Jae Won; Cho, Hye Jin; Chun, Jinsung; Kim, Kyeong Nam; Kim, Seongsu; Ahn, Chang Won; Kim, Ill Won; Kim, Ju-Young; Kim, Sang-Woo; Yang, Changduk; Baik, Jeong Min
2017-01-01
A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)–grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF–based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study. PMID:28560339
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Enhanced transconductance in a double-gate graphene field-effect transistor
NASA Astrophysics Data System (ADS)
Hwang, Byeong-Woon; Yeom, Hye-In; Kim, Daewon; Kim, Choong-Ki; Lee, Dongil; Choi, Yang-Kyu
2018-03-01
Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 μS/μm, that of the DG GFET was 25.7 μS/μm, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.
Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis
2016-07-01
This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency.
NASA Technical Reports Server (NTRS)
Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James
1988-01-01
The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.
Hypersonic airbreathing vehicle visions and enhancing technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, J.L.; Lockwood, M.K.; Petley, D.H.
1997-01-01
This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Zolfaghari, M.; Ghaderi, R.; Sheikhol Eslami, A.; Ranjbar, A.; Hosseinnia, S. H.; Momani, S.; Sadati, J.
2009-10-01
The enhanced homotopy perturbation method (EHPM) is applied for finding improved approximate solutions of the well-known Bagley-Torvik equation for three different cases. The main characteristic of the EHPM is using a stabilized linear part, which guarantees the stability and convergence of the overall solution. The results are finally compared with the Adams-Bashforth-Moulton numerical method, the Adomian decomposition method (ADM) and the fractional differential transform method (FDTM) to verify the performance of the EHPM.
NASA Astrophysics Data System (ADS)
Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Chen, Hao; Yan, Weizhen; Tao, Zhenning; Rasmussen, Jens C.
2015-01-01
Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit system performance is fiber dispersion, which is strongly influenced by the chirp characteristics of transmitters. We investigated the fiber dispersion impairment in a 400GbE (4 × 116.1-Gb/s) DMT system on LAN-WDM grid for reach enhancement up to 40 km through experiments and numerical simulations.
Wicaksana, F; Fan, A G; Chen, V
2005-01-01
Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.
ASSESSING THE IMPACT OF SYNTHETIC-BASED DRILLING FLUIDS ON BENTHIC ORGANISMS IN TEMPERATE WATERS
Efforts to enhance the efficiency of oil/gas drilling operations and to minimize hazards to marine ecosystems have resulted in the increased use of synthetic-based fluids (SBF). SBFs have performance characteristics closely related to oil-based fluids (OBF) however their lower PA...
System Models and Aging: A Driving Example.
ERIC Educational Resources Information Center
Melichar, Joseph F.
Chronological age is a marker in time but it fails to measure accurately the performance or behavioral characteristics of individuals. This paper models the complexity of aging by using a system model and a human function paradigm. These models help facilitate representation of older adults, integrate research agendas, and enhance remediative…
A space crane concept for performing on-orbit assembly
NASA Technical Reports Server (NTRS)
Dorsey, John T.
1992-01-01
The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.
ERIC Educational Resources Information Center
Chatti, Mohamed Amine; Jarke, Matthias; Specht, Marcus
2010-01-01
Recognizing the failures of traditional Technology Enhanced Learning (TEL) initiatives to achieve performance improvement, we need to rethink how we design new TEL models that can respond to the learning requirements of the 21st century and mirror the characteristics of knowledge and learning which are fundamentally personal, social, distributed,…
Commitment of Licensed Social Workers to Aging Practice
ERIC Educational Resources Information Center
Simons, Kelsey; Bonifas, Robin; Gammonley, Denise
2011-01-01
This study sought to identify client, professional, and employment characteristics that enhance licensed social workers' commitment to aging practice. A series of binary logistic regressions were performed using data from 181 licensed, full-time social workers who reported aging as their primary specialty area as part of the 2004 NASW's national…
High performance P-type thermoelectric materials and methods of preparation
NASA Technical Reports Server (NTRS)
Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)
2002-01-01
The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn.sub.4-x A.sub.x Sb.sub.3-y B.sub.y wherein 0.ltoreq.x.ltoreq.4, A is a transition metal, B is a pnicogen, and 0.ltoreq.y.ltoreq.3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn.sub.4 Sb.sub.3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.
Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.
Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari
2015-09-14
Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.
NASA Technical Reports Server (NTRS)
Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.
2005-01-01
Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.
A national evaluation of Safe Schools/Healthy Students: outcomes and influences.
Derzon, James H; Yu, Ping; Ellis, Bruce; Xiong, Sharon; Arroyo, Carmen; Mannix, Danyelle; Wells, Michael E; Hill, Gary; Rollison, Julia
2012-05-01
The Safe Schools/Healthy Students (SS/HS) Initiative has awarded over $2 billion in grants to more than 350 school districts in partnership with local mental health, law enforcement, and juvenile justice agencies. To estimate the impact of grantee characteristics, grant operations, and near-term outcomes in reducing violence and substance use, promoting mental health, and enhancing school safety, logged odds ratios (LORs) were calculated contrasting Year 3 with Baseline performance from grantee-provided data on seven outcome measures. After comparing grantee performance across outcomes and outcomes across grantees, the LORs were entered as dependent variables in a series of meta-regressions in which grantee characteristics, grant operations, and near-term outcomes were tested after controlling for pre-grant characteristics. Findings indicate that the SS/HS Initiative significantly improved most outcomes, that within-grantee performance varied greatly by outcome, and that random-effects meta-regression appreciably decreased the variance available for modeling. The approach demonstrates that the SS/HS Initiative is effective and that locally collected performance data can be used to estimate grantee success in improving youth outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.
A novel double loop control model design for chemical unstable processes.
Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He
2014-03-01
In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.
Design guidelines of triboelectric nanogenerator for water wave energy harvesters.
Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin
2017-05-05
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis
Hu, Mao-Gui; Wang, Jin-Feng; Ge, Yong
2009-01-01
Satellite remote sensing (RS) is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-urban). In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolution-enhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well in detail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics. PMID:22291530
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Jia; Qu, Youpeng; Zhang, Jian; Zhong, Yingjuan; Feng, Yujie
2017-09-01
The biofilm on the anode of a microbial fuel cell (MFC) is a vital component in system, and its formation and characteristic determines the performance of the system. In this study, a bacteria/Multi-Walled Carbon Nanotube (MWCNT) hybrid biofilm is fabricated by effectively inserting the MWCNTs into the anode biofilm via an adsorption-filtration method. This hybrid biofilm has been demonstrated to be an efficient structure for improving an anode biofilm performance. Electrochemical impedance spectroscopy (EIS) results show that the hybrid biofilm takes advantage of the conductivity and structure of MWCNT to enhance the electron transfer and substrate diffusion of the biofilm. With this hybrid biofilm, the current density, power density and coulombic efficiency are increased by 46.2%, 58.8% and 84.6%, respectively, relative to naturally grown biofilm. Furthermore, the start-up time is reduced by 53.8% compared with naturally grown biofilm. The perturbation test demonstrates that this type of hybrid biofilm exhibits strong adsorption ability and enhances the biofilm's resistance to a sudden change of substrate concentration. The superior performance of the hybrid biofilm with MWCNT ;nanowire; matrix compared with naturally grown biofilm demonstrates its great potential for boosting the performance of MFCs.
Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.
Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O
2018-01-11
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.
Saeki, Hiroyuki; Hirohara, Kazuto; Koshiba, Yasuko; Horie, Satoshi; Misaki, Masahiro; Takeshita, Kimiya; Ishida, Kenji; Ueda, Yasukiyo
2010-01-01
The current-voltage characteristics of benzoporphine-fullerene solar cells were measured subsequent to the deposition of Al as a cathode material. Even in vacuum, a shift in the open circuit voltage was observed at 20 min after Al deposition. Moreover, the displacement of inert gases (N2or Ar) in the evaporation chamber enhanced the photovoltaic parameters. The power conversion efficiency was increased by 24% over the initial characteristics (from 1.04% to 1.29%), which indicates that the structure of the organic-metal interface changed rapidly after Al deposition, even if the process was performed in an air-free glovebox. PMID:21151322
Recent developments in BWR fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Noble, L.D.; Wood, J.E.
1991-11-01
Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less
Enhancing managerial effectiveness in dietetics.
Hoover, L W
1983-01-01
Environmental pressures from such sources as economic conditions, the government, third-party payers, and inter-institutional competition create managerial challenges. Although cost-containment has received considerable attention, long-term cost-effectiveness is probably the significant issue. Dietitians must become more cost-conscious and effective in resource management to attain desired performance outcomes. Some of the skills and characteristics essential to managerial effectiveness are a marketing orientation, systems design skill, quantitative operations management techniques, financial expertise, and leadership. These abilities facilitate decision-making and achievement of long-term cost-effectiveness. Curriculum enhancement and continuing education are two strategies for improving managerial competency in the dietetics profession. In dietetics education, study of management topics should be enhanced to provide more advanced coverage of management theories and quantitative models so that managerial performance can be at a higher level of sophistication and competency. To assure the viability of the dietetics profession, the emphasis on management must be more comprehensive and rigorous.
ERIC Educational Resources Information Center
Ty, Rey
2007-01-01
Using the critical perspective, this research studies the International Training Office's (ITO) changing HRD practices. It presents the organizational characteristics, context, and practices of ITO across three timeframes and analyzes the appropriateness of these practices for its context and makes recommendations for enhancing its effectiveness.…
Fathers Caring for Children: Research and Resources.
ERIC Educational Resources Information Center
Seward, Rudy Ray; Yeatts, Dale E.
This paper reviews studies examining the amount of time spent by fathers and mothers in child care activities, characteristics of fathers who spend more time with their children, ways to enhance fathers' child care performance, and the role of parent education in fatherhood. The paper also contains a list of organizations providing resources or…
Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions
NASA Astrophysics Data System (ADS)
Lempa, E.; Graßmann, C.; Rabe, M.; Schwarz-Pfeiffer, A.; van Langenhove, L.
2017-10-01
For the production of smart textiles the resistivity of prints and coatings with intrinsic conductive polymers is often too high and the performance properties not sufficient. The addition of metal components enhances many characteristics, however the choice of type of metal, morphology and application method influence results to great extend.
USDA-ARS?s Scientific Manuscript database
Fermentable carbohydrates may enhance the ability of the gastrointestinal tract to defend against a pathogenic infection. We hypothesized that a galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex would positively impact immune status and prevent colonization and shedding in Salmonell...
NASA Astrophysics Data System (ADS)
Ba Dinh, Khuong; Le, Hoang Vu; Hannaford, Peter; Van Dao, Lap
2017-08-01
A table-top coherent diffractive imaging experiment on a sample with biological-like characteristics using a focused narrow-bandwidth high harmonic source around 30 nm is performed. An approach involving a beam stop and a new reconstruction algorithm to enhance the quality of reconstructed the image is described.
Multibeam satellite EIRP adaptability for aeronautical communications.
NASA Technical Reports Server (NTRS)
Kinal, G. V.; Bisaga, J. J.
1973-01-01
EIRP enhancement and management techniques, emphasizing aeronautical communications and adaptable multibeam concepts, are classified and characterized. User requirement and demand characteristics that exploit the improvement available from each technique are identified, and the relative performance improvement of each is discussed. It is concluded that aeronautical satellite communications could benefit greatly by the employment of these techniques.
NASA Astrophysics Data System (ADS)
Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza
2018-01-01
Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.
Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Hu, Zhen; Liu, Hai
2015-10-01
Constructed wetlands (CWs) have been used as an alternative to conventional technologies for wastewater treatment for more than five decades. Recently, the use of various modified CWs to improve treatment performance has also been reported in the literature. However, the available knowledge on various CW technologies considering the intensified and reliable removal of pollutants is still limited. Hence, this paper aims to provide an overview of the current development of CW strategies and techniques for enhanced wastewater treatment. Basic information on configurations and characteristics of different innovations was summarized. Then, overall treatment performance of those systems and their shortcomings were further discussed. Lastly, future perspectives were also identified for specialists to design more effective and sustainable CWs. This information is used to inspire some novel intensifying methodologies, and benefit the successful applications of potential CW technologies.
NASA Technical Reports Server (NTRS)
Herkes, William
2000-01-01
Acoustic and propulsion performance testing of a model-scale Axisymmetric Coannular Ejector nozzle was conducted in the Boeing Low-speed Aeroacoustic Facility. This nozzle is a plug nozzle with an ejector design to provide aspiration of about 20% of the engine flow. A variety of mixing enhancers were designed to promote mixing of the engine and the aspirated flows. These included delta tabs, tone-injection rods, and wheeler ramps. This report addresses the acoustic aspects of the testing. The spectral characteristics of the various configurations of the nozzle are examined on a model-scale basis. This includes indentifying particular noise sources contributing to the spectra and the data are projected to full-scale flyover conditions to evaluate the effectiveness of the nozzle, and of the various mixing enhancers, on reducing the Effective Perceived Noise Levels.
Lang, Ning; Yuan, Huishu; Yu, Hon J; Su, Min-Ying
2017-07-01
This study aimed to evaluate the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiation of four spinal lesions by using heuristic and pharmacokinetic parameters analyzed from DCE signal intensity time course. DCE-MRI of 62 subjects with confirmed myeloma (n = 9), metastatic cancer (n = 22), lymphoma (n = 7), and inflammatory tuberculosis (TB) (n = 24) in the spine were analyzed retrospectively. The region of interest was placed on strongly enhanced tissues. The DCE time course was categorized as the "wash-out," "plateau," or "persistent enhancement" pattern. The maximum enhancement, steepest wash-in enhancement, and wash-out slope using the signal intensity at 67 seconds after contrast injection as reference were measured. The Tofts 2-compartmental pharmacokinetic model was applied to obtain K trans and k ep . Pearson correlation between heuristic and pharmacokinetic parameters was evaluated, and receiver operating characteristic curve analysis was performed for pairwise group differentiation. The mean wash-out slope was -22% ± 10% for myeloma, 1% ± 0.4% for metastatic cancer, 3% ± 3% for lymphoma, and 7% ± 10% for TB, and it could significantly distinguish myeloma from metastasis (area under the curve [AUC] = 0.884), lymphoma (AUC = 1.0), and TB (AUC = 1.0) with P = .001, and distinguish metastasis from TB (AUC = 0.741) with P = .005. The k ep and wash-out slope were highly correlated (r = 0.92), and they showed a similar diagnostic performance. The K trans was significantly correlated with the maximum enhancement (r = 0.71) and the steepest wash-in enhancement (r = 0.85), but they had inferior diagnostic performance compared to the wash-out slope. DCE-MRI may provide additional diagnostic information, and a simple wash-out slope had the best diagnostic performance. The heuristic and pharmacokinetic parameters were highly correlated. Copyright © 2017. Published by Elsevier Inc.
Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen
2015-04-01
Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.
TCP Performance Enhancement Over Iridium
NASA Technical Reports Server (NTRS)
Torgerson, Leigh; Hutcherson, Joseph; McKelvey, James
2007-01-01
In support of iNET maturation, NASA-JPL has collaborated with NASA-Dryden to develop, test and demonstrate an over-the-horizon vehicle-to-ground networking capability, using Iridium as the vehicle-to-ground communications link for relaying critical vehicle telemetry. To ensure reliability concerns are met, the Space Communications Protocol Standards (SCPS) transport protocol was investigated for its performance characteristics in this environment. In particular, the SCPS-TP software performance was compared to that of the standard Transmission Control Protocol (TCP) over the Internet Protocol (IP). This paper will report on the results of this work.
Lipopolysaccharide-Induced Toxic Shock Syndrome in Rabbits.
Stach, Christopher S; Schlievert, Patrick M
2016-01-01
Enhancement of susceptibility to lipopolysaccharide (LPS; endotoxin) is a defining characteristic of Staphylococcus aureus superantigens. At the time of this publication, there are 24 identified staphylococcal superantigens (SAgs), some of which have yet to be fully characterized. Testing the capacity of superantigens to potentiate LPS sensitivity is essential to characterize the role of these proteins in disease development. Here we describe how to perform studies of the enhancement of LPS-induced toxic shock syndrome in rabbits. This protocol also provides information on a second important activity of superantigens: the production of fever.
Computed tomography of infantile hepatic hemangioendothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucaya, J.; Enriquez, G.; Amat, L.
1985-04-01
Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.
Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler
NASA Astrophysics Data System (ADS)
Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing
2016-05-01
Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.
Flow and heat transfer enhancement in tube heat exchangers
NASA Astrophysics Data System (ADS)
Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2015-11-01
The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.
An infrared small target detection method based on multiscale local homogeneity measure
NASA Astrophysics Data System (ADS)
Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen
2018-05-01
Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.
Active Tailoring of Lift Distribution to Enhance Cruise Performance
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D. (Technical Monitor); Pfeiffer, Neal J.; Christians, Joel G.
2005-01-01
During Phase I of this project, Raytheon Aircraft Company (RAC) has analytically and experimentally evaluated key components of a system that could be implemented for active tailoring of wing lift distribution using low-drag, trailing-edge modifications. Simple systems such as those studied by RAC could be used to enhance the cruise performance of a business jet configuration over a range of typical flight conditions. The trailing-edge modifications focus on simple, deployable mechanisms comprised of extendable small flap panels over portions of the span that could be used to subtly but positively optimize the lift and drag characteristics. The report includes results from low speed wind tunnel testing of the trailing-edge devices, descriptions of potential mechanisms for automation, and an assessment of the technology.
NASA Astrophysics Data System (ADS)
Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.
2015-09-01
The authors report on Al2O3/Al0.85In0.15N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al2O3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al2O3/Al0.85In0.15N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.
Seed vigour and crop establishment: extending performance beyond adaptation.
Finch-Savage, W E; Bassel, G W
2016-02-01
Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sources of Variability in Performance Times at the World Orienteering Championships.
Hébert-Losier, Kim; Platt, Simon; Hopkins, William G
2015-07-01
An improvement equal to 0.3 of the typical variation in an elite athlete's race-to-race performance estimates the smallest worthwhile enhancement, which has not yet been determined for orienteers. Moreover, much of the research in high-performance orienteering has focused on physical and cognitive aspects, although course characteristics might influence race performance. Analysis of race data provides insights into environmental effects and other aspects of competitive performance. Our aim was to examine such factors in relation to World Orienteering Championships performances. We used mixed linear modelling to analyze finishing times from the three qualification rounds and final round of the sprint, middle-distance, and long-distance disciplines of World Orienteering Championships from 2006 to 2013. Models accounted for race length, distance climbed, number of controls, home advantage, venue identity, round (qualification final), athlete identity, and athlete age. Within-athlete variability (coefficient of variation, mean ± SD) was lower in the final (4.9% ± 1.4%) than in the qualification (7.3% ± 2.4%) rounds and provided estimates of smallest worthwhile enhancements of 1.0%-3.5%. The home advantage was clear in most disciplines, with distance climbed particularly impacting sprint performances. Small to very large between-venue differences were apparent. Performance predictability expressed as intraclass correlation coefficients was extremely high within years and was high to very high between years. Age of peak performance ranged from 27 to 31 yr. Our results suggest that elite orienteers should focus on training and strategies that enhance performance by at least 1.0%-3.5% for smallest worthwhile enhancement. Moreover, as greater familiarity with the terrain likely mediated the home advantage, foreign athletes would benefit from training in nations hosting the World Orienteering Championships for familiarization.
Wan, Thomas T.H.; Ma, Allen; Y.J.Lin, Blossom
2001-01-01
Abstract Purpose This study examines the integration effects on efficiency and financial viability of the top 100 integrated healthcare networks (IHNs) in the United States. Theory A contingency- strategic theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. Methods The lists of the top 100 IHNs ranked in two years, 1998 and 1999, by the SMG Marketing Group were merged to create a database for the study. Multiple indicators were used to examine the relationship between IHNs' characteristics and their performance in efficiency and financial viability. A path analytical model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' images, represented by attaining ranking among the top 100 in two consecutive years, were analysed. Results and conclusion No positive associations were found between integration and network performance in efficiency or profits. Longitudinal data are needed to investigate the effect of integration on healthcare networks' financial performance. PMID:16896405
Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka
The aim of this study was to develop a method for discriminating between patients with Alzheimer disease (AD) and healthy subjects using layer analysis of cerebral blood flow (CBF) and xenon solubility coefficient (λ) in xenon-enhanced computed tomography (CT). Xenon-enhanced CT was performed on 27 patients with AD (81.7 [3.3] years old) and 15 healthy volunteers (78.6 [4.0] years old) using a wide volume CT. For each subject, we created the first- (surface) to sixth-layer images of CBF and λ for the 6 viewing directions (layer thickness, 5 mm). For the discriminant views, receiver operating characteristic curves for the ratio of CBF to λ were created to identify patients with AD. For the third- and fourth-layer left lateral views, which were designated as the discriminant views, areas under the receiver operating characteristic curve were 96.8% and 97.4%, respectively. With the use of the discriminant views obtained by xenon-enhanced CT, we could effectively discriminate between patients with AD and healthy subjects using both CBF and λ.
What can family medicine practices do to facilitate knowledge management?
Orzano, A John; Ohman-Strickland, Pamela A; Patel, Meghal
2008-01-01
Family medicine practices face increasing demands to enhance efficiency and quality of care. Current solutions propose major practice redesign and investment in sophisticated technology. Knowledge management (KM) is a process that increases the capacity of a practice to deliver effective care by finding and sharing information and knowledge among practice members or by developing new knowledge for use by the practice. Our preliminary research in family medicine practices has suggested improved patient outcomes with greater and more effective KM. Research in other organizational settings has suggested that KM can be facilitated by certain organizational characteristics. To identify those organizational characteristics within a family medicine practice that management can effect to enhance KM. We performed a cross-sectional secondary analysis of second-year data from 13 community family medicine practices participating in a practice improvement project. Practice KM, leaderships' promotion of participatory decision making, existence of activities supportive of human resource processes, and effective communication were derived from clinician's, nurses', and staff's responses to a survey eliciting responses on practice organizational characteristics. Hierarchical linear modeling examined relationships between individual practice members' perception of KM and organizational characteristics of the practice, controlling for practice covariates (solo-group, electronic medical record use, and perception of a chaotic practice environment) and staff-level covariates (gender, age, and role). Practices with greater participatory decision making and human resources' processes and effective communication significantly (p < .019, p < .0001, and p < .004) increased odds of reporting satisfactory KM (odds ratio = 2.48, 95% confidence interval = 1.32-4.65; odds ratio = 10.84, 95% confidence interval = 4.04-29.12; and odds ratio = 4.95, 95% confidence interval = 2.02-12.16). The sizes of these effects were not substantially changed even when practice members perceived their practice environment as more chaotic. Steps to facilitate KM should be considered when evaluating more intensive and costly organizational solutions for enhancing family medicine practice performance.
Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying
2012-06-01
The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.
Accuracy of nursing diagnosis "readiness for enhanced hope" in patients with chronic kidney disease.
Silva, Renan Alves; Melo, Geórgia Alcântara Alencar; Caetano, Joselany Áfio; Lopes, Marcos Venícios Oliveira; Butcher, Howard Karl; Silva, Viviane Martins da
2017-07-06
To analyse the accuracy of the nursing diagnosis readiness for enhanced hope in patients with chronic kidney disease. This is a cross-sectional study with 62 patients in the haemodialysis clinic conducted from August to November 2015. The Hearth Hope Scale was used to create definitions of the defining characteristics of the North American Nursing Diagnosis Association International. We analysed the measures of sensitivity, specificity, predictive value, likelihood ratio, and odds ratio of the defining characteristics of the diagnosis. Of the characteristics, 82.22% presented the diagnosis. The defining characteristics "Expresses the desire to enhance congruency of expectations with desires" and "Expresses the desire to enhance problem solving to meet goals" increased the chance of having the diagnosis by eleven and five, respectively. The characteristics, "Expresses desire to enhance congruency of expectations with desires" and "Expresses desire to enhance problem solving to meet goals" had good accuracy measures.
Dadzie, Grace; Aziato, Lydia; Aikins, Ama de-Graft
2017-01-01
Patient advocacy has been identified as a core duty of the nurse, and certain nurse characteristics influence the performance of the role. However, these characteristics have not been adequately explored in Ghana. This study aimed to explore the perspectives of nurses about the characteristics of nurses that influence their role as patient advocates. An exploratory descriptive qualitative study was conducted among 15 nurses from a regional hospital in Ghana. Purposive sampling was used to select participants and individual in-depth interviews were conducted in English using a semi-structured interview guide. The interviews were audio-taped and transcribed. Data analysis was done concurrently employing the principles of thematic analysis. Ethical approval was obtained for the study from the Noguchi Memorial Institute of Medical Research and the Ghana Health Service Ethical Review Committee. Themes generated revealed nurse traits which enhanced the advocacy role of nurses such as being empathetic, nurturing, ethical, assertive and persistent and nurse states which hindered the performance of the role such as fatigue and frustration. However, "compassionate" emerged as an additional nurse trait from this study. Out of empathy, participants availed themselves for patients to share their problems with them. In their nurturing roles, spending more time with patients and providing personal care fostered closeness which helped in identifying patients' problems. Helping patients navigate the health system was also found. They perceived patient advocacy as a moral responsibility and identified good communication skills and determination to help patients get their problems solved as important in patient advocacy. Some participants also described compassion-based activities such as pleading on patients' behalf, providing material and financial assistance, facilitating care and providing emotional support in their advocacy. However, heavy workload and lack of appreciation from patients were found to hinder the performance of the advocacy role. We concluded that nurse characteristics that influence patient advocacy are comparable to those identified internationally such as being empathetic, assertiveness and fatigue. Enhancing these characteristics could help nurses overcome the negative states that undermine the patient advocacy role of nurses.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Wade, Lucie; Forlini, Cynthia; Racine, Eric
2014-05-12
Donepezil, an acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease, has been widely cited in media and bioethics literature on cognitive enhancement (CE) as having the potential to improve the cognitive ability of healthy individuals. In both literatures, this claim has been repeatedly supported by the results of a small study published by Yesavage et al. in 2002 on non-demented pilots (30-70 years old). The factors contributing to this specific interpretation of this study's results are unclear. We examined print media and interdisciplinary bioethics coverage of this small study, aiming to provide insight into how evidence from research may be shaped within different discourses, potentially influencing important policy, ethics, and clinical decisions. Systematic qualitative content analysis was used to examine how this study was reported in 27 media and 22 bioethics articles. Articles were analyzed for content related to: (1) headlines and titles; (2) colloquialisms; and, (3) accuracy of reporting of the characteristics and results of the study. In media and bioethics articles referencing this small study, strong claims were made about donepezil as a CE drug. The majority of headlines, titles, and colloquialisms used enhancement language and the majority of these suggest that donepezil could be used to enhance intellectual ability. Further, both literatures moved between reporting the results of the primary study and magnifying the perceived connection between these results and the CE debate that was alluded to in the primary study. Specific descriptions of the results overwhelmingly reported an improvement in performance on a flight simulator, while more general statements claimed donepezil enhanced cognitive performance. Further, a high level of reporting accuracy was found regarding study characteristics of the original study, but variable levels of accuracy surrounded the presentation of complex characteristics (i.e., methods) or contentious properties of the CE debate (i.e., initial health status of the study subjects). Hyped claims of CE effects cannot be completely accounted for by sheer inaccuracy in reporting. A complex interaction between the primary and secondary literature, and expectations and social pressures related to CE appears to drive enthusiastic reports.
Heat transfer enhancement with mixing vane spacers using the field synergy principle
NASA Astrophysics Data System (ADS)
Yang, Lixin; Zhou, Mengjun; Tian, Zihao
2017-01-01
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2016-03-25
Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors.
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2016-01-01
Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors. PMID:27023558
Influence of triaxial braid denier on ribbon-based fiber reinforced dental composites.
Karbhari, Vistasp M; Wang, Qiang
2007-08-01
The aim of the study was to compare the mechanical characteristics of two ultrahigh molecular weight polyethylene (UHMWPE) fiber-based triaxial braided reinforcements having different denier braider yarns used in fiber reinforced dental composites to elucidate differences in response and damage under flexural loading. Two commercially available triaxial braided reinforcing systems, differing in denier of the axial and braider yarns, using ultra high molecular weight polyethylene (UHMWPE) were used to reinforce rectangular bars towards the tensile surface which were tested in flexure. Mechanical characteristics including energy absorption were determined and results were compared based on Tukey post-test analysis and Weibull probability. Limited fatigue testing was also conducted for 100, 1000, and 10,000 cycles at a level of 75% of peak load. The effect of the braid denier on damage mechanisms was studied microscopically. The use of the triaxially braided ribbon as fiber reinforcement in the dental composite results in significant enhancement in flexural performance over that of the unreinforced dental composite (179% and 183% increase for the "thin" and "dense" braid reinforced specimens, respectively), with a fairly ductile, non-catastrophic post-peak response. With the exception of strain at peak load, there was very little difference between the performance from the two braid architectures. The intrinsic nature of the triaxial braid also results in very little decrease in flexural strength as a result of fatigue cycling at 75% of peak load. Use of the braids results in peak load levels which are substantially higher than those corresponding to points at which the dentin and unreinforced dental composites would fail. The total energy at peak load level is 56.8 and 60.7 times that at the level that dentin would fail if the reinforcement were not placed for the "thin" and "dense" reinforced braid reinforced composites, respectively. The research shows that in addition to enhancement in flexural performance characteristics, the use of a triaxial braid provides significant damage tolerance and fatigue resistance through its characteristic architecture wherein axial fibers are uncrimped and braider yarns provide shear resistance and enable local arrest of microcracks. Further, it is demonstrated that the decrease in braider yarn denier does not have a detrimental effect, with differences in performance characteristics, being in the main, statistically insignificant. This allows use of thinner reinforcement which provides ease of placement and better bonding without loss in performance.
Cho, Sung-Min; Rice, Cory; Marquardt, Robert J; Zhang, Lucy Q; Khoury, Jean; Thatikunta, Prateek; Buletko, Andrew B; Hardman, Julian; Uchino, Ken; Wisco, Dolora
2017-01-01
Infectious intracranial aneurysm (IIA) can complicate infective endocarditis (IE). We aimed to describe the magnetic resonance imaging (MRI) characteristics of IIA. We reviewed IIAs among 116 consecutive patients with active IE by conducting a neurological evaluation at a single tertiary referral center from January 2015 to July 2016. MRIs and digital cerebral angiograms (DSA) were reviewed to identify MRI characteristics of IIAs. MRI susceptibility weighted imaging (SWI) was performed to collect data on cerebral microbleeds (CMBs) and sulcal SWI lesions. Out of 116 persons, 74 (63.8%) underwent DSA. IIAs were identified in 13 (17.6% of DSA, 11.2% of entire cohort) and 10 patients with aneurysms underwent MRI with SWI sequence. Nine (90%) out of 10 persons with IIAs had CMB >5 mm or sulcal lesions in SWI (9 in sulci, 6 in parenchyma, and 5 in both). Five out of 8 persons who underwent MRI brain with contrast had enhancement within the SWI lesions. In a multivariate logistic regression analysis, both sulcal SWI lesions (p < 0.001, OR 69, 95% CI 7.8-610) and contrast enhancement (p = 0.007, OR 16.5, 95% CI 2.3-121) were found to be significant predictors of the presence of IIAs. In the individuals with IE who underwent DSA and MRI, we found that neuroimaging characteristics, such as sulcal SWI lesion with or without contrast enhancement, are associated with the presence of IIA. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo
2015-11-01
One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation.
NASA Astrophysics Data System (ADS)
Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue
2017-04-01
In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, R. G.; Mcnabb, D.; Kumar, M.
The National Nuclear Security Agency has recently recognized that a long-term need exists to establish a stronger scientific basis for the assessment and qualification of materials and manufacturing processes for the nuclear stockpile and other national security applications. These materials may have undergone substantial changes with age, or may represent new materials that are being introduced because of difficulties associated with reusing or recreating materials used in original stockpile components. Also, with advancements in manufacturing methods, the NNSA anticipates opportunities for an enhanced range of control over fabricated components, an enhanced pace of materials development, and enhanced functionality. The developmentmore » of qualification standards for these new materials will require the ability to understand and control material characteristics that affect both mechanical and dynamic performance. A unique aspect for NNSA is that the performance requirements for materials are often set by system hydrodynamics, and these materials must perform in extreme environments and loading conditions. Thus, the scientific motivation is to understand “Matter-Radiation Interactions in Extremes (MaRIE).”« less
Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster
NASA Astrophysics Data System (ADS)
Duan, Ping; Bian, Xingyu; Cao, Anning; Liu, Guangrui; Chen, Long; Yin, Yan
2016-05-01
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on the potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of the segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, the radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of the ionization rate in the discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected. supported by National Natural Science Foundation of China (Nos. 11375039 and 11275034) and the Key Project of Science and Technology of Liaoning Province, China (No. 2011224007) and the Fundamental Research Funds for the Central Universities, China (No. 3132014328)
NASA Astrophysics Data System (ADS)
Liu, Chao; Liu, Zhaojun; Huang, Tongde; Ma, Jun; May Lau, Kei
2015-03-01
We report selective growth of AlGaN/GaN high electron mobility transistors (HEMTs) on InGaN/GaN light emitting diodes (LEDs) for monolithic integration of III-nitride HEMT and LED devices (HEMT-LED). To improve the breakdown characteristics of the integrated HEMT-LED devices, carbon doping was introduced in the HEMT buffer by controlling the growth pressure and V/III ratio. The breakdown voltage of the fabricated HEMTs grown on LEDs was enhanced, without degradation of the HEMT DC performance. The improved breakdown characteristics can be attributed to better isolation of the HEMT from the underlying conductive p-GaN layer of the LED structure.
Rotordynamic Instability Problems in High-Performance Turbomachinery 1996
NASA Technical Reports Server (NTRS)
1997-01-01
The first rotordynamics workshop proceedings emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings these uncertainties were reduced through programs established to systematically resolve problems, with emphasis on experimental validation of the forces that influence rotordynamics. In the third proceedings many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. In the fourth proceedings there emerged trends towards a more unified view of rotordynamic instability problems and several encouraging new analytical developments. The fifth workshop supported the continuing trend toward a unified view with several new developments in the design and manufacture of new turbomachineries with enhanced stability characteristics along with new data and associated numerical/theoretical results. The sixth workshop report provided field experience and experimental results, and expanded the use of computational and control techniques with integration of damper, bearing, and eccentric seal operation results. The seventh workshop report provided field experiences, numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermophysical properties and turbulence measurements, and introduction of two-phase flow results. In the present workshop, active magnetic bearings (AMB's) evolve into a new method of measuring rotordynamic coefficients with discussions on honeycomb seals, drop of magnetically supported rotors, seals, bearings and dampers with new data being reported. The intent of the workshop and this proceedings is to provide a continuing impetus for an understanding and resolution of these problems.
USDA-ARS?s Scientific Manuscript database
Disease, low survival, and increased feed costs coupled with an influx of cheap foreign catfish declined the US farm-raised catfish production by over 50% in the last decade. Farm efficiency can be improved by development and use of catfish with enhanced performance characteristics. Hybrid catfish ...
USDA-ARS?s Scientific Manuscript database
Research into the use of non-nutritive feed supplements to enhance growth and disease resistance has increased due to concerns about antibiotics and their residues. The use of prebiotics, supplements that stimulate the growth of beneficial bacteria, is increasing in aquafeeds. This study examined ...
USDA-ARS?s Scientific Manuscript database
Research into the use of non-nutritive feed supplements to enhance growth and disease resistance has increased due to concerns about antibiotics and their residues. The use of prebiotics, supplements that stimulate the growth of beneficial bacteria, is increasing in aquafeeds. This study examined th...
2009 Navy ManTech Project Book
2009-01-01
pieces which are welded together, filled with syntactic foam , and welded to the sail and hull structure. The ManTech project was successful in...cladding has demonstrated the required performance characteristics . The testing demonstrated manufacturability of optical fibers with enhanced hard...using Liquid Injection Molding Simulation (LIMS) and Polyworx software tools for infusion set-up optimization. Test articles fabricated are
Dynamic Transfers Of Tasks Among Computers
NASA Technical Reports Server (NTRS)
Liu, Howard T.; Silvester, John A.
1989-01-01
Allocation scheme gives jobs to idle computers. Ideal resource-sharing algorithm should have following characteristics: Dynamics, decentralized, and heterogeneous. Proposed enhanced receiver-initiated dynamic algorithm (ERIDA) for resource sharing fulfills all above criteria. Provides method balancing workload among hosts, resulting in improvement in response time and throughput performance of total system. Adjusts dynamically to traffic load of each station.
USDA-ARS?s Scientific Manuscript database
Fermentable carbohydrates may enhance the ability of the gastrointestinal tract to defend against a pathogenic infection. We hypothesized that a galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex would positively impact immune status and prevent colonization and shedding in Salmonell...
The Effects of Image and Animation in Enhancing Pedagogical Agent Persona
ERIC Educational Resources Information Center
Baylor, Amy L.; Ryu, Jeeheon
2003-01-01
The purpose of this experimental study was to test the role of image and animation on: a) learners' perceptions of pedagogical agent persona characteristics (i.e., extent to which agent was person-like, engaging, credible, and instructor-like); b) agent value; and c) performance. The primary analysis consisted of two contrast comparisons: 1)…
Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu
2012-11-01
The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A Study on Rotordynamic Characteristics of Swirl Brakes for Three Types of Seals
NASA Astrophysics Data System (ADS)
Xu, Wanjun; Yang, Jiangang
2017-03-01
In order to understand swirl brakes mechanisms and their influence on rotordynamic characteristics for different types of seals, a three-dimensional flow numerical simulation was presented. Three typical seals including labyrinth seal, fully partitioned damper seal and hole-pattern seal were compared under three inlet conditions of no preswirl, preswirl and preswirl with swirl brakes. FAN boundary condition was used to provide inlet preswirl. A modified identification method of effective damping was proposed. Feasibility of the swirl brakes on improving performance of damper seals was discussed. The results show that the swirl brakes influence the seal stability characteristics with whirl frequency. For the labyrinth seal the swirl brakes reverse the sign of effective damping at low frequency and improve the seal stability performance in a wide frequency range. The swirl brakes also improve the damper seals’ stability performance by increasing the low frequency effective damping and reducing their crossover frequency. Further results indicate the swirl brakes affect the rotational direction of the maximum (minimum) pressure positions and enhance the stability of the seals by reducing tangential force in each cavity.
Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam
2012-08-16
Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.
Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors
Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming
2014-01-01
Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
Park, Soyeon; Bang, Seokhwan; Lee, Seungjun; Park, Joohyun; Ko, Youngbin; Jeon, Hyeongtag
2011-07-01
In this study, the effects of different annealing conditions (air, O2, N2, vacuum) on the chemical and electrical characteristics of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFT) were investigated. The contact resistance and interface properties between the IGZO film and the gate dielectric improved after an annealing treatment. However, the chemical bonds in the IGZO bulk changed under various annealing atmospheres, which, in turn, altered the characteristics of the TFTs. The TFTs annealed in vacuum and N2 ambients exhibited undesired switching properties due to the high carrier concentration (>10(17) cm(-3)) of the IGZO active layer. In contrast, the IGZO TFTs annealed in air and oxygen ambients displayed clear transfer characteristics due to an adequately adjusted carrier concentration in the operating range of the TFT. Such an optimal carrier concentration arose through the stabilization of unstable chemical bonds in the IGZO film. With regard to device performance, the TFTs annealed in O2 and air exhibited saturation mobility values of 8.29 and 7.54 cm2/Vs, on-off ratios of 7.34 x 10(8) and 3.95 x 10(8), and subthreshold swing (SS) values of 0.23 and 0.19 V/decade, respectively. Therefore, proper annealing ambients contributed to internal modifications in the IGZO structure and led to an enhancement in the oxidation state of the metal. As a result, defects such as oxygen vacancies were eliminated. Oxygen annealing is thus effective for controlling the carrier concentration of the active layer, decreasing electron traps, and enhancing TFT performance.
Wu, Haining; Dong, Jianfei; Qi, Gaojin; Zhang, Guoqi
2015-07-01
Enhancing the colorfulness of illuminated objects is a promising application of LED lighting for commercial, exhibiting, and scientific purposes. This paper proposes a method to enhance the color of illuminated objects for a given polychromatic lamp. Meanwhile, the light color is restricted to white. We further relax the white light constraints by introducing soft margins. Based on the spectral and electrical characteristics of LEDs and object surface properties, we determine the optimal mixing of the LED light spectrum by solving a numerical optimization problem, which is a quadratic fractional programming problem by formulation. Simulation studies show that the trade-off between the white light constraint and the level of the color enhancement can be adjusted by tuning an upper limit value of the soft margin. Furthermore, visual evaluation experiments are performed to evaluate human perception of the color enhancement. The experiments have verified the effectiveness of the proposed method.
Cui, Enming; Long, Wansheng; Luo, Liangping; Hu, Maoqing; Huang, Liebin; Chen, Xiangmeng
2017-10-01
Background Insufficient enhancement of liver parenchyma negatively affects diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI). Currently, there is no reliable method for predicting insufficient enhancement during the hepatobiliary phase (HBP) in Gd-EOB-DTPA-enhanced MRI. Purpose To develop a predictor for insufficient enhancement of liver parenchyma during HBP in Gd-EOB-DTPA-enhanced MRI. Material and Methods In order to formulate a HBP enhancement test (HBP-ET), clinical factors associated with relative enhancement ratio (RER) of liver parenchyma were retrospectively determined from the datasets of 156 patients (Development group) who underwent Gd-EOB-DTPA-enhanced MRI between November 2012 and May 2015. The independent clinical factors were identified by Pearson's correlation and multiple stepwise regression analysis; the performance of HBP-ET was compared to Child-Pugh score (CPS), Model for End-stage Liver Disease score (MELD), and total bilirubin (TBIL) using receiver operating characteristic (ROC) curve analysis. The datasets of 52 patients (Validation group), which were examined between June 2015 and Oct 2015, were applied to validate the HBP-ET. Results Six biochemical parameters independently influenced RER and were used to develop HBP-ET. The mean HBP-ET score of patients with insufficient enhancement was significantly higher than that of patients with sufficient enhancement ( P < 0.001) in both the Development and Validation groups. HBP-ET (area under the curve [AUC] = 0.895) had better performance in predicting insufficient enhancement than CPS (AUC = 0.707), MELD (AUC = 0.798), and TBIL (AUC = 0.729). Conclusion The HBP-ET is more accurate than routine indicators in predicting insufficient enhancement during HBP, which is valuable to aid clinical decisions.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-04-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-06-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
Gynecological Lymphoma: A Case Series and Review of the Literature.
Slonimsky, Einat; Korach, Jacob; Perri, Tamar; Davidson, Tima; Apter, Sara; Inbar, Yael
The aim of the study was to evaluate the radiological characteristics of gynecological lymphoproliferative disease (LPD) and specific imaging features that may suggest the diagnosis. Two readers conducted a retrospective evaluation of imaging studies of 13 female patients presenting with a gynecological LPD. A literature review was also performed. Of the 13 evaluated women, 9 had ovarian involvement, 3 had cervical involvement, and 1 had uterine involvement. The most common lesion characteristics were homogenous masses (11), with mild contrast enhancement (9), followed by soft-tissue necrosis (4), prominent blood vessels displaced by the lesions (4), linear arrangement of cysts at the periphery of the ovaries (3), and "touching" ovaries in all cases of bilateral ovarian involvement. A solid large homogeneous mass with mild contrast enhancement should alert the radiologist to the possibility of the differential diagnosis of LPD. Radiologists should be "the gatekeepers" by raising this possibility to avoid unnecessary surgery and enable appropriate treatment.
Design guidelines of triboelectric nanogenerator for water wave energy harvesters
NASA Astrophysics Data System (ADS)
Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Abu Yazid, Taher; Zu, Jean; Wang, Zhong Lin
2017-05-01
Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester’s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.
Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; ...
2016-08-26
The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
Enhanced Discharge Performance in a Ring Cusp Plasma Source
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2000-01-01
There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster, a thruster discharge chamber with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Characteristics of this ring cusp ion discharge were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the magnetic cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.
Internal Plasma Properties and Enhanced Performance of an 8 cm Ion Thruster Discharge
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
1999-01-01
There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster. a version of this thruster with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Discharge characteristics of this ring cusp ion thruster were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of discharge power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.
The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less
Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A
2016-09-01
The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Lv, Chen; Zhang, Junzhi; Li, Yutong
2014-11-01
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials
NASA Astrophysics Data System (ADS)
Kanimozhi, B., Dr.; Harish, Kasilanka; Sai Tarun, Bellamkonda; Saty Sainath Reddy, Pogaku; Sai Sujeeth, Padakandla
2017-05-01
The objective of the study is to investigate the thermal characteristics of charging and discharge processes of fabricated thermal energy storage system using Phase change materials. Experiments were performed with phase change materials in which a storage tank have designed and developed to enhance the heat transfer rate from the solar tank to the PCM storage tank. The enhancement of heat transfer can be done by using a number of copper tubes in the fabricated storage tank. This storage tank can hold or conserve heat energy for a much longer time than the conventional water storage system. Performance evaluations of experimental results during charging and discharging processes of paraffin wax have discussed. In which heat absorption and heat rejection have been calculated with various flow rate.
Li, Wen; Arasu, Vignesh; Newitt, David C.; Jones, Ella F.; Wilmes, Lisa; Gibbs, Jessica; Kornak, John; Joe, Bonnie N.; Esserman, Laura J.; Hylton, Nola M.
2016-01-01
Functional tumor volume (FTV) measurements by dynamic contrast-enhanced magnetic resonance imaging can predict treatment outcomes for women receiving neoadjuvant chemotherapy for breast cancer. Here, we explore whether the contrast thresholds used to define FTV could be adjusted by breast cancer subtype to improve predictive performance. Absolute FTV and percent change in FTV (ΔFTV) at sequential time-points during treatment were calculated and investigated as predictors of pathologic complete response at surgery. Early percent enhancement threshold (PEt) and signal enhancement ratio threshold (SERt) were varied. The predictive performance of resulting FTV predictors was evaluated using the area under the receiver operating characteristic curve. A total number of 116 patients were studied both as a full cohort and in the following groups defined by hormone receptor (HR) and HER2 receptor subtype: 45 HR+/HER2−, 39 HER2+, and 30 triple negatives. High AUCs were found at different ranges of PEt and SERt levels in different subtypes. Findings from this study suggest that the predictive performance to treatment response by MRI varies by contrast thresholds, and that pathologic complete response prediction may be improved through subtype-specific contrast enhancement thresholds. A validation study is underway with a larger patient population. PMID:28066808
Relationship between listeners' nonnative speech recognition and categorization abilities
Atagi, Eriko; Bent, Tessa
2015-01-01
Enhancement of the perceptual encoding of talker characteristics (indexical information) in speech can facilitate listeners' recognition of linguistic content. The present study explored this indexical-linguistic relationship in nonnative speech processing by examining listeners' performance on two tasks: nonnative accent categorization and nonnative speech-in-noise recognition. Results indicated substantial variability across listeners in their performance on both the accent categorization and nonnative speech recognition tasks. Moreover, listeners' accent categorization performance correlated with their nonnative speech-in-noise recognition performance. These results suggest that having more robust indexical representations for nonnative accents may allow listeners to more accurately recognize the linguistic content of nonnative speech. PMID:25618098
Demographic and Practice Characteristics of Pathologists Who Enjoy Breast Tissue Interpretation
Oster, Natalia V.; Geller, Berta; Carney, Patricia A.; Reisch, Lisa M.; Onega, Tracy; Weaver, Donald L.; Frederick, Paul; Elmore, Joann G.
2015-01-01
Summary Physician attributes, job satisfaction and confidence in clinical skills are associated with enhanced performance and better patient outcomes. We surveyed 252 pathologists to evaluate associations between enjoyment of breast pathology, demographic/clinical characteristics and diagnostic performance. Diagnostic performance was determined by agreement with patient cases previously reviewed by a panel of experienced pathologists. Eighty-three percent of study participants reported enjoying breast pathology. Pathologists who enjoy breast interpretation were more likely to review ≥10 cases/week (p=0.003), report breast interpretation expertise (p=0.013), and high levels of confidence interpreting breast pathology (p<0.001). These pathologists were less likely to report that the field was challenging (p<0.001) and that breast cases make them more nervous than other types of pathology (p<0.001). Enjoyment was not associated with diagnostic performance. Millions of women undergo breast biopsy annually, thus it is reassuring that although nearly a fifth of practicing pathologists who interpret breast tissue report not enjoying the field, precision is not impacted. PMID:25554017
Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin
2016-03-21
Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.
Toh, Cheng Hong; Wei, Kuo-Chen; Chang, Chen-Nen; Ng, Shu-Hang; Wong, Ho-Fai; Lin, Ching-Po
2014-01-01
To compare the diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MRI before and after mathematic contrast leakage correction in differentiating pyogenic brain abscesses from glioblastomas and/or metastatic brain tumors. Cerebral blood volume (CBV), leakage-corrected CBV and leakage coefficient K2 were measured in enhancing rims, perifocal edema and contralateral normal appearing white matter (NAWM) of 17 abscesses, 19 glioblastomas and 20 metastases, respectively. The CBV and corrected CBV were normalized by dividing the values in the enhancing rims or edema to those of contralateral NAWM. For each study group, a paired t test was used to compare the K2 of the enhancing rims or edema with those of NAWM, as well as between CBV and corrected CBV of the enhancing rims or edema. ANOVA was used to compare CBV, corrected CBV and K2 among three lesion types. The diagnostic performance of CBV and corrected CBV was assessed with receiver operating characteristic (ROC) curve analysis. The CBV and correction CBV of enhancing rim were 1.45±1.17 and 1.97±1.01 for abscesses, 3.85±2.19 and 4.39±2.33 for glioblastomas, and 2.39±0.90 and 2.97±0.78 for metastases, respectively. The CBV and corrected CBV in the enhancing rim of abscesses were significantly lower than those of glioblastomas and metastases (P = 0.001 and P = 0.007, respectively). In differentiating abscesses from glioblastomas and metastases, the AUC values of corrected CBV (0.822) were slightly higher than those of CBV (0.792). Mathematic leakage correction slightly increases the diagnostic performance of CBV in differentiating pyogenic abscesses from necrotic glioblastomas and cystic metastases. Clinically, DSC perfusion MRI may not need mathematic leakage correction in differentiating abscesses from glioblastomas and/or metastases.
Hue-preserving and saturation-improved color histogram equalization algorithm.
Song, Ki Sun; Kang, Hee; Kang, Moon Gi
2016-06-01
In this paper, an algorithm is proposed to improve contrast and saturation without color degradation. The local histogram equalization (HE) method offers better performance than the global HE method, whereas the local HE method sometimes produces undesirable results due to the block-based processing. The proposed contrast-enhancement (CE) algorithm reflects the characteristics of the global HE method in the local HE method to avoid the artifacts, while global and local contrasts are enhanced. There are two ways to apply the proposed CE algorithm to color images. One is luminance processing methods, and the other one is each channel processing methods. However, these ways incur excessive or reduced saturation and color degradation problems. The proposed algorithm solves these problems by using channel adaptive equalization and similarity of ratios between the channels. Experimental results show that the proposed algorithm enhances contrast and saturation while preserving the hue and producing better performance than existing methods in terms of objective evaluation metrics.
NASA Astrophysics Data System (ADS)
Shukla, Ashish K.; Yadav, Vinayak M.; Kumar, Akash; Palani, I. A.; Manivannan, Anbarasu
2018-01-01
Polyimide (PI) offers promising features such as high strength and excellent thermal stability for flexible solar panels. The flexible solar cell demands maximum absorption of solar insolation through stacked layers to enhance its performance. However, the fluorescence emission (FE) in inactive polyimide substrate hinders the absorption of irradiated solar energy. In this research work, an attempt has been made to generate rippled morphology on PI substrate using laser processing that enhances the absorption and moderates the FE. These changes are confirmed by calculating the Urbach energy (Eu) of the rippled structure, which is found to be 2.5 times that of the pristine substrate. Furthermore, to reduce the FE, tungsten (W) was coated on the rippled structure of the laser-processed PI, and a significant reduction of 70% FE is achieved compared to the FE of unprocessed PI. These enhanced characteristics of PI obtained by laser processing will be highly helpful for improving the overall performance of flexible solar cells.
Slotted Antenna with Uniaxial Dielectric Covering
2016-07-08
1 of 12 SLOTTED ANTENNA WITH UNIAXIAL DIELECTRIC COVERING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...invention is directed to a slotted antenna having enhanced broadband characteristics. (2) Description of the Prior Art [0004] Slotted cylinder antennas ...slotted cylinder antenna for use in a towed buoy. Though somewhat broadband in performance, it is not suitable for vertical mounting over a
ERIC Educational Resources Information Center
Eack, Shaun M.; Bahorik, Amber L.; Hogarty, Susan S.; Greenwald, Deborah P.; Litschge, Maralee Y.; Mazefsky, Carla A.; Minshew, Nancy J.
2013-01-01
Cognitive rehabilitation is an emerging set of potentially effective interventions for the treatment of autism spectrum disorder, yet the applicability of these approaches for "high functioning" adults who have normative levels of intelligence remains unexplored. This study examined the initial cognitive performance characteristics of 40…
ERIC Educational Resources Information Center
Moore, Robert L.
2011-01-01
What is the best way to allocate students to small teams in those economics courses that rely on small group work to enhance individual student learning? While experts in collaborative learning provide many suggestions, little empirical work has been done. This article begins to fill the gap. It examines whether a variety of characteristics of the…
Rotordynamic Instability Problems in High-Performance Turbomachinery, 1988
NASA Technical Reports Server (NTRS)
1989-01-01
The continuing trend toward a unified view is supported with several developments in the design and manufacture of turbomachines with enhanced stability characteristics along with data and associated numerical/theoretical results. The intent is to provide a continuing impetus for an understanding and resolution of these problems. Topics addressed include: field experience, dampers, seals, impeller forces, bearings, and compressor and rotor modeling.
Su, Y C; Huang, C P; Pan, Jill R; Lee, H C
2008-01-01
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.
Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less
Plasma characterization for application in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katulka, G.; Nusca, M.; White, K.
1996-12-31
There is currently a strong motivation for improving the existing performance of fielded military gun systems. For that objective, research over the past several years has been carried out in an effort to enhance performance by addition of energy into the gun chamber by way of a plasma generator. This energy addition, referred to as Electro-thermal Chemical (ETC) propulsion, can be readily controlled electrically where it can be used to ignite the chamber`s energetic material, enhance the total energy, and control the interior process through control of the propellant combustion. To realize the potential advantages of this system it ismore » important to characterize the plasma generator in terms of (a) the impedance characteristics and its relationship to the pulse forming network used to generate the plasma, (b) the plasma output energy components such as radiation and convection in both time and space, (c) the details of the hydrodynamic interactions of the plasma with the propelling charge bed in the gun chamber and, (d) the direct effect of the plasma on the propellant reactions. Experimental studies have been carried out to study the effect of the plasma radiation on the propellant characteristics related to combustion.« less
Enhancement of the performance of GaN IMPATT diodes by negative differential mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yang; Yang, Lin’an, E-mail: layang@xidian.edu.cn; Chen, Qing
2016-05-15
A theoretical analysis of high-efficiency punch-through operation GaN-based terahertz IMPATT diodes has been carried out in this paper. It is shown that the negative differential mobility (NDM) characteristics of GaN coupled with the space charge effect acting as a self-feedback system can markedly increase the drift velocity of injection carriers, and thereby enhance diode performance under appropriate external RF voltage. The behavior of traveling electrons in the transit zone is investigated in detail. It is found that the IMPATT diode with a punch-through structure operating in the NDM mode exhibits superior characteristics compared with the equivalent diode operating in themore » Si-like constant mobility mode. In particular, the NDM-mode diode can tolerate a larger RF voltage swing than that operating in constant mobility mode. Numerical simulation results reveal that the highest efficiency of 26.6% and maximum RF power of 2.29 W can be achieved for the NDM-mode diode at a frequency of 225 GHz. A highest efficiency of 19.0% and maximum RF power of 1.58 W are obtained for the diode with constant mobility.« less
Abbot, Ted A; Premus, Vincent E; Abbot, Philip A; Mayer, Owen A
2012-09-01
This paper presents recent experimental results and a discussion of system enhancements made to the real-time autonomous humpback whale detector-classifier algorithm first presented by Abbot et al. [J. Acoust. Soc. Am. 127, 2894-2903 (2010)]. In February 2010, a second-generation system was deployed in an experiment conducted off of leeward Kauai during which 26 h of humpback vocalizations were recorded via sonobuoy and processed in real time. These data have been analyzed along with 40 h of humpbacks-absent data collected from the same location during July-August 2009. The extensive whales-absent data set in particular has enabled the quantification of system false alarm rates and the measurement of receiver operating characteristic curves. The performance impact of three enhancements incorporated into the second-generation system are discussed, including (1) a method to eliminate redundancy in the kernel library, (2) increased use of contextual analysis, and (3) the augmentation of the training data with more recent humpback vocalizations. It will be shown that the performance of the real-time system was improved to yield a probability of correct classification of 0.93 and a probability of false alarm of 0.004 over the 66 h of independent test data.
Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao
2014-05-01
Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.
Wang, Jian; Xiang, Bo; Lin, Hung-yu; Liu, Hong-yu; Freed, Darren; Arora, Rakesh C; Tian, Gang-hong
2015-01-01
Aim: To investigate the relationship between the collateral circulation and contrast-enhanced MR signal change for myocardial infarction (MI) in pigs. Methods: Pigs underwent permanent ligation of two diagonal branches of the left anterior descending artery. First-pass perfusion (FPP) MRI (for detecting myocardial perfusion abnormalities) and delayed enhancement (DE) MRI (for estimating myocardial infarction) using Gd-DTPA were performed at 2 h, 7 d and 4 weeks after the coronary occlusion. Myocardial blood flow (MBF) was evaluated using nonradioactive red-colored microspheres. Histological examination was performed to characterize the infarcts. Results: Acute MI performed at 2 h afterwards was characterized by hypoenhancement in both FPP- and DE-MRI, with small and almost unchanged FPP-signal intensity (SI) and DE-SI due to negligible MBF. Subacute MI detected 7 d afterwards showed small but significantly increaseing FPP-SI, and was visible as a sluggish hyperenhancement in DE-MRI with considerably higher DE-SI compared to the normal myocardium; the MBF approached the half-normal value. Chronic MI detected at 4 weeks afterwards showed increasing FPP-SI comparable to the normal myocardium, and a rapid hyperenhancement in DE-MRI with even higher DE-SI; the MBF was close to the normal value. The MBF was correlated with FPP-SI (r=+0.94, P<0.01) and with the peak DE-SI (r=+0.92, P<0.01) at the three MI stages. Remodeled vessels were observed at intra-infarction and peri-infarction zones during the subacute and chronic periods. Conclusion: Progressive collateral recovery determines the characteristic profiles of contrast-enhanced MRI in acute, subacute and chronic myocardial infarction in pigs. The FPP- and DE-MRI signal profiles not only depend on the loss of tissue viability and enlarged interstitial space, but also on establishing a collateral circulation. PMID:25832427
NASA Astrophysics Data System (ADS)
Herrera, J. I.; Reddoch, T. W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.
Daly-Smith, Andy J; Zwolinsky, Stephen; McKenna, Jim; Tomporowski, Phillip D; Defeyter, Margaret Anne; Manley, Andrew
2018-01-01
To examine the impact of acute classroom movement break (CMB) and physically active learning (PAL) interventions on physical activity (PA), cognition, academic performance and classroom behaviour. Systematic review. PubMed, EBSCO, Academic Search Complete, Education Resources Information Center, PsycINFO, SPORTDiscus, SCOPUS and Web of Science. Studies investigating school-based acute bouts of CMB or PAL on (PA), cognition, academic performance and classroom behaviour. The Downs and Black checklist assessed risk of bias. Ten PAL and eight CMB studies were identified from 2929 potentially relevant articles. Risk of bias scores ranged from 33% to 64.3%. Variation in study designs drove specific, but differing, outcomes. Three studies assessed PA using objective measures. Interventions replaced sedentary time with either light PA or moderate-to-vigorous PA dependent on design characteristics (mode, duration and intensity). Only one study factored individual PA outcomes into analyses. Classroom behaviour improved after longer moderate-to-vigorous (>10 min), or shorter more intense (5 min), CMB/PAL bouts (9 out of 11 interventions). There was no support for enhanced cognition or academic performance due to limited repeated studies. Low-to-medium quality designs predominate in investigations of the acute impacts of CMB and PAL on PA, cognition, academic performance and classroom behaviour. Variable quality in experimental designs, outcome measures and intervention characteristics impact outcomes making conclusions problematic. CMB and PAL increased PA and enhanced time on task. To improve confidence in study outcomes, future investigations should combine examples of good practice observed in current studies. CRD42017070981.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, D; Zhang, L; Fave, X
Purpose: Determine the impact of morphologic characteristics (e.g. necrosis, vascular enhancement, and cavitation) on radiomic features from contrast enhanced CT (CE-CT) in primary lung tumors. Methods: We developed an auto-segmentation algorithm to separate lung tumors on contrast-enhanced CT into cavitation (air), necrosis, tissue, and enhancing vessels using a combination of thresholding and region-growing. An auto-segmentation algorithm was also designed to identify necrosis on FDG-PET scans. Wilcoxon rank-sum tests were used to determine if significant differences existed in radiomics features (histogram-uniformity and Laplacian-of-Gaussian average) from 249 patients, found to prognostic in previous work, based on the presence/absence of morphologic features. Featuremore » values were also compared between the original tumor contours and contours excluding a specific morphologic feature. Comparison of necrosis segmentation on CE-CT versus FDG-PET was performed in 78 patients to assess for agreement using the concordance correlation coefficient (CCC). Results: Tumors with cavitation and enhancing vasculature had lower uniformity values (p = 0.001 and p = 0.03, respectively). Tumors with enhancing vasculature and necrosis had higher Laplacian-of-Gaussian average values (measure of “edges” within the tumor) (p < 0.001). Removing these tissue types from regions-of-interest did not drastically alter either radiomic feature value (all scenarios had R{sup 2} > 0.8). This suggests there may be interactions between morphologic characteristics and the radiomic feature value of tumor tissue. Comparison of necrosis volume and percent necrosis volume of tumor were found to have CCC values of 0.85 and 0.76, respectively between CE-CT and FDG-PET segmentation methods. Conclusions: Tumors with enhancing vasculature, necrosis, and cavitation have higher radiomic feature values that are associated with poor prognosis than tumors without these features. Removing these tissue types from quantitative assessment did not drastically impact radiomic feature values. High reproducibility of CE-CT segmented necrosis compared to FDG-PET segmented necrosis provides a reasonable validation of segmentation accuracy on CE-CT.« less
Characteristics of health interventions: a systematic analysis of the Austrian Procedure Catalogue.
Neururer, Sabrina B; Pfeiffer, Karl-Peter
2012-01-01
The Austrian Procedure Catalogue contains 1,500 codes for health interventions used for performance-oriented hospital financing in Austria. It offers a multiaxial taxonomy. The aim of this study is to identify characteristics of medical procedures. Therefore a definition analysis followed by a typological analysis was conducted. Search strings were generated out of code descriptions regarding the heart, large vessels and cardiovascular system. Their definitions were looked up in the Pschyrembel Clinical Dictionary and documented. Out of these definitions, types which represent characteristics of health interventions were abstracted. The three axes of the Austrian Procedure Catalogue were approved as well as new, relevant information identified. The results are the foundation of a further enhancement of the Austrian Procedure Catalogue.
NASA Astrophysics Data System (ADS)
Aslam, Mohd.; Sharma, Dheeraj; Yadav, Shivendra; Soni, Deepak; Bajaj, Varun
2018-04-01
This article presents a new device structure to suppress ambipolarity with enhanced electrostatic characteristics of charge plasma TFET (CP-TFET). Here, implantation of a metal angle (MA) of low workfunction inside the high-k dielectric (HfO2) layer near source/channel interface gives excellent improvement in DC and RF characteristics of the proposed device. Deposition of MA is advantageous to increase abruptness of source/channel junction for reducing the tunneling barrier. Along with MA placement, the metal electrode, which is placed over the silicon wafer for inducing N+ drain region, is divided into the two parts of low and high workfunctions. The workfunction of the part of metal electrode near the channel region is taken comparatively higher than the other part to restrict the tunneling of holes at drain/channel junction under negative bias (-V_gs) condition. Such concept induces asymmetrical concentration of charge carriers in the drain region, which widens the tunneling barrier at the drain/channel interface. Consequently, the proposed device shows better RF performance along with suppressed ambipolar conduction. Furthermore, reliability of conventional and proposed structures has been tested in terms of linearity. Simultaneously, the effect of workfunction and length variation of MA on the device characteristics is analyzed in optimization section of the article.
Lee, Eun Ju; Kim, Hong Soon; Kim, Hye Young
2014-12-01
The study was conducted to investigate the levels of implementation of knowledge management and outcomes of nursing performance, to examine the relationships between core knowledge management factors and nursing performance outcomes and to identify core knowledge management factors affecting these outcomes. Effective knowledge management is very important to achieve strong organisational performance. The success or failure of knowledge management depends on how effectively an organisation's members share and use their knowledge. Because knowledge management plays a key role in enhancing nursing performance, identifying the core factors and investigating the level of knowledge management in a given hospital are priorities to ensure a high quality of nursing for patients. The study employed a descriptive research procedure. The study sample consisted of 192 nurses registered in three large healthcare organisations in South Korea. The variables demographic characteristics, implementation of core knowledge management factors and outcomes of nursing performance were examined and analysed in this study. The relationships between the core knowledge management factors and outcomes of nursing performance as well as the factors affecting the performance outcomes were investigated. A knowledge-sharing culture and organisational learning were found to be core factors affecting nursing performance. The study results provide basic data that can be used to formulate effective knowledge management strategies for enhancing nursing performance in hospital nursing organisations. In particular, prioritising the adoption of a knowledge-sharing culture and organisational learning in knowledge management systems might be one method for organisations to more effectively manage their knowledge resources and thus to enhance the outcomes of nursing performance and achieve greater business competitiveness. The study results can contribute to the development of effective and efficient knowledge management systems and strategies for enhancing knowledge-sharing culture and organisational learning that can improve both the productivity and competitiveness of healthcare organisations. © 2014 John Wiley & Sons Ltd.
Visual characteristics of LED display pushbuttons for avionic applications
NASA Astrophysics Data System (ADS)
Vanni, Paolo; Isoldi, Felice
1991-08-01
Programmable LED matrix display push buttons may greatly increase the performances of the computer-based avionic systems. The number of switches in a control panel can be reduced by a factor of 10 or more. This leads to a reduction in weight and size of the control instrumentations and in shorter response time of pilots. This work deals with the study and the optimization of visual performances of these displays in a configuration requiring a low- power consumption and Night Vision Goggles (NVG) compatibility. In considering displays for avionic applications, it is important to take into account sunlight readability. Visibility problems may arise in high ambient illumination. Up to now the only contributions usually considered for reduction of visibility are the diffused and specular reflected luminances that predominate with the sun behind the pilot. But there is another critical condition--the sun in front of the pilot. In this case the equivalent veiling glare predominates. Display performances and contrast enhancement filter characteristics must be optimized to find a compromise between these two extreme ambient conditions. Considering a keyboard with 10 push buttons, with two lines of four characters each and a power consumption less than 14 W with 40 of LEDs on, the authors have obtained good sunlight readability, choosing an optimized combination of NVG and contrast enhancement filter and LED matrix display.
Iwamoto, Takayuki; Imai, Yasuharu; Kogita, Sachiyo; Igura, Takumi; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Seki, Yasushi; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo
We compared the efficacy of contrast-enhanced ultrasound sonography (CEUS) with sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for the assessment of macroscopic classification of nodular hepatocellular carcinoma (HCC). Seventy-seven consecutive patients with 79 surgically resected HCCs who underwent both preoperative CEUS and Gd-EOB-DTPA-enhanced MRI were enrolled in this retrospective study. Based on the macroscopic diagnosis of resected specimens, nodules were categorized into the simple nodular (SN) and non-SN type HCC. Two hepatologists independently assessed image datasets of the post-vascular phase of CEUS and hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to compare their diagnostic performance. Gd-EOB-DTPA-enhanced MRI enabled the evaluation of macroscopic classification in a significantly larger number of nodules than CEUS (78/79 (98.7%) vs. 70/79 (88.6%), p < 0.05). Of 70 nodules that could be evaluated by both modalities, 41 and 29 nodules were pathologically categorized as SN and non-SN, respectively. The areas under the receiver operating characteristic curve (AUC) for non-SN did not differ between CEUS and Gd-EOB-DTPA-enhanced MRI (reader 1: 0.748 for CEUS, 0.808 for MRI; reader 2: 0.759 for CEUS, 0.787 for MRI). The AUC of combined CEUS and Gd-EOB-DTPA-enhanced MRI for SN HCC was 0.855 (reader 1) and 0.824 (reader 2), indicating higher AUC values for the combined modalities. The diagnostic performance for macroscopic classification of nodular HCC of CEUS was comparable with that of Gd-EOB-DTPA-enhanced MRI, although some HCCs could not be evaluated by CEUS owing to lower detectability. The combination of the 2 modalities had a more accurate diagnostic performance. © 2016 S. Karger AG, Basel.
Predicting BCI subject performance using probabilistic spatio-temporal filters.
Suk, Heung-Il; Fazli, Siamac; Mehnert, Jan; Müller, Klaus-Robert; Lee, Seong-Whan
2014-01-01
Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.
Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su
2015-04-01
We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.
Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong
2018-01-28
The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.
Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong
2018-01-01
The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094
Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata
2017-12-23
Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.
NASA Astrophysics Data System (ADS)
Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah
2017-11-01
In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.
Lievens, Ilse; Vlerick, Peter
2014-03-01
To report the impact of transformational leadership on two dimensions of nurses' safety performance (i.e. safety compliance and safety participation) and to study the mediating role of knowledge-related job characteristics in this relationship. Safety performance refers to the behaviours that employees exhibit to adhere to safety guidelines and to promote health and safety at their workplace. Nurses' safety performance is a major challenge for healthcare settings, urging the need to identify the key determinants and psychological mechanisms that influence it. A cross-sectional survey study. The study was carried out in September 2010 in a large Belgian hospital. We used self-administered questionnaires; 152 nurses participated. The hypotheses were tested using hierarchical regression analyses. In line with our first hypothesis, the results show that transformational leadership exerted a significant positive impact on both dimensions of nurses' safety performance. This positive relation was mediated by knowledge-related job characteristics, supporting our second hypothesis. Head nurses' transformational leadership can enhance nurses' compliance with and participation in safety. Furthermore, transformational head nurses are able to influence the perception that their nurses have about the kind and amount of knowledge in their job, which can also lead to increases in both dimensions of nurses' safety performance. This study therefore demonstrates the key impact that transformational head nurses have, both directly and indirectly, on the safety performance of their nurses. © 2013 John Wiley & Sons Ltd.
Dong, Fei; Zeng, Qiang; Jiang, Biao; Yu, Xinfeng; Wang, Weiwei; Xu, Jingjing; Yu, Jinna; Li, Qian; Zhang, Minming
2018-05-01
To study whether some of the quantitative enhancement and necrosis features in preoperative conventional MRI (cMRI) had a predictive value for epidermal growth factor receptor (EGFR) gene amplification status in glioblastoma multiforme (GBM).Fifty-five patients with pathologically determined GBMs who underwent cMRI were retrospectively reviewed. The following cMRI features were quantitatively measured and recorded: long and short diameters of the enhanced portion (LDE and SDE), maximum and minimum thickness of the enhanced portion (MaxTE and MinTE), and long and short diameters of the necrotic portion (LDN and SDN). Univariate analysis of each feature and a decision tree model fed with all the features were performed. Area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of features, and predictive accuracy was used to assess the performance of the model.For single feature, MinTE showed the best performance in differentiating EGFR gene amplification negative (wild-type) (nEGFR) GBM from EGFR gene amplification positive (pEGFR) GBM, and it got an AUC of 0.68 with a cut-off value of 2.6 mm. The decision tree model included 2 features MinTE and SDN, and got an accuracy of 0.83 in validation dataset.Our results suggest that quantitative measurement of the features MinTE and SDN in preoperative cMRI had a high accuracy for predicting EGFR gene amplification status in GBM.
Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents
NASA Technical Reports Server (NTRS)
Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar
2010-01-01
A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure.
Thermite combustion enhancement resulting from biomodal luminum distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K. M.; Pantoya, M.; Son, S. F.
2004-01-01
In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin
2014-07-01
Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance inmore » term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})« less
Examining the relationships between span of control and manager job and unit performance outcomes.
Wong, Carol A; Elliott-Miller, Pat; Laschinger, Heather; Cuddihy, Michael; Meyer, Raquel M; Keatings, Margaret; Burnett, Camille; Szudy, Natalie
2015-03-01
Our aim was to examine the combination of frontline manager (FLM) personal characteristics and span of control (SOC) on their job and unit performance outcomes. Healthcare downsizing and reform have contributed to larger spans for FLMs in Canadian hospitals and increased concerns about manager workload. Despite a heightened awareness of SOC issues among decision makers, there is limited empirical evidence related to the effects of SOC on outcomes. A non-experimental predictive survey design was used to examine FLM SOC in 14 Canadian academic hospitals. Managers (n = 121) completed an online survey of work characteristics and The Ottawa Hospital (TOH) SOC tool. Unit turnover data were collected from organisational databases. The combination of SOC and core self-evaluation significantly predicted role overload, work control and job satisfaction, but only SOC predicted unit adverse outcomes and neither significantly predicted unit turnover. The findings contribute to an understanding of connections between the combination of SOC and core self-evaluation and manager job and unit performance outcomes. Organisational strategies to create manageable FLM SOC are essential to ensure exemplary job and unit outcomes. Core self-evaluation is a personality characteristic that may enhance manager performance in the face of high spans of control. © 2013 John Wiley & Sons Ltd.
A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors
NASA Astrophysics Data System (ADS)
Alahnomi, Rammah A.; Zakaria, Z.; Ruslan, E.; Bahar, Amyrul Azuan Mohd
2016-02-01
In this paper, novel symmetrical split ring resonator (SSRR) is proposed as a suitable component for performance enhancement of microwave sensors. SSRR has been employed for enhancing the insertion loss of the microwave sensors. Using the same device area, we can achieve a high Q-factor of 141.54 from the periphery enhancement using Quasi-linear coupling SSRR, whereas loose coupling SSRR can achieve a Q-factor of 33.98 only. Using Quasi-linear coupling SSRR, the Q-factor is enhanced 4.16 times the loose coupling SSRR using the same device area. After the optimization was made, the SSRR sensor with loose coupling scheme has achieved a very high Qfactor value around 407.34 while quasi-linear scheme has achieved high Q-factor value of 278.78 at the same operating frequency with smaller insertion loss. Spurious passbands at 1st, 2nd, 3rd, and 4th harmonics have been completely suppressed well above -20 dB rejection level without visible changes in the passband filter characteristics. The most significant of using SSRR is to be used for various industrial applications such as food industry, quality control, bio-sensing medicine and pharmacy. The simulation result that Quasi-linear coupling SSRR is a viable candidate for the performance enhancement of microwave sensors has been verified.
Wang, Hui; Lai, Yue-Kun; Zheng, Ru-Yue; Bian, Ye; Zhang, Ke-Qin; Lin, Chang-Jian
2015-01-01
Biological performance of artificial implant materials is closely related to their surface characteristics, such as microtopography, and composition. Therefore, convenient fabrication of artificial implant materials with a cell-friendly surface structure and suitable composition was of great significance for current tissue engineering. In this work, titanate materials with a nanotubular structure were successfully fabricated through a simple chemical treatment. Immersion test in a simulated body fluid and in vitro cell culture were used to evaluate the biological performance of the treated samples. The results demonstrate that the titanate layer with a nanotubular structure on Ti substrates can promote the apatite-inducing ability remarkably and greatly enhance cellular responses. This highlights the potential of such titanate biomaterials with the special nanoscale structure and effective surface composition for biomedical applications such as bone implants. PMID:26089665
Harada, Taiyo L; Saito, Kazuhiro; Araki, Yoichi; Matsubayashi, Jun; Nagao, Toshitaka; Sugimoto, Katsutoshi; Tokuuye, Koichi
2018-05-01
Background Recently, diffusion-weighted imaging (DWI) and quantitative enhancement ratio measured at the hepatobiliary phase (HBP) of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) has been established as an effective method for evaluating liver fibrosis. Purpose To evaluate which is a more favorable surrogate marker in predicting high-stage liver fibrosis, apparently diffusion coefficient (ADC) value or quantitative enhancement ratio measured on HBP. Material and Methods Eighty-three patients with 99 surgically resected hepatic lesions were enrolled in this study. DWI was performed with b-values of 100 and 800 s/mm 2 . Regions of interest were set on ADC map, and the HBP of Gd-EOB-DTPA-enhanced MRI, to calculate ADC value, liver-to-muscle ratio (LMR), liver-to-spleen ratio (LSR), and contrast enhancement index (CEI) of liver. We compared these parameters between low-stage fibrosis (F0, F1, and F2) and high-stage fibrosis (F3 and F4). Receiver operating characteristic analysis was performed to compare the diagnostic performance when distinguishing low-stage fibrosis from high-stage fibrosis. Results LMR and CEI were significantly lower at high-stage fibrosis than at the low stage ( P < 0.01 and P = 0.04, respectively), whereas LSR did not show a significant difference ( P = 0.053). No significant difference was observed in diagnostic performance between LMR and CEI ( P = 0.185). The best sensitivity and specificity, when an LMR of 2.80 or higher was considered to be low-stage fibrosis, were 82.4% and 75.6%, respectively. ADC value showed no significant differences among fibrosis grades ( P = 0.320). Conclusion LMR and CEI were both adequate surrogate parameters to distinguish high-stage fibrosis from low-stage fibrosis.
Musculoskeletal, biomechanical, and physiological gender differences in the US military.
Allison, Katelyn F; Keenan, Karen A; Sell, Timothy C; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; McGrail, Mark; Lephart, Scott M
2015-01-01
The repeal of the Direct Ground Combat Assignment Rule has renewed focus on examining performance capabilities of female military personnel and their ability to occupy previously restricted military occupational specialties. Previous research has revealed female Soldiers suffer a greater proportion of musculoskeletal injuries compared to males, including a significantly higher proportion of lower extremity, knee, and overuse injuries. Potential differences may also exist in musculoskeletal, biomechanical, and physiological characteristics between male and female Soldiers requiring implementation of gender-specific training in order to mitigate injury risk and enhance performance. To examine differences in musculoskeletal, biomechanical, and physiological characteristics in male and female Soldiers. A total of 406 101st Airborne Division (Air Assault) Soldiers (348 male; 58 female) participated. Subjects underwent testing for flexibility, isokinetic and isometric strength (percent body weight), single-leg balance, lower body biomechanics during a stop jump and drop landing, body composition, anaerobic power/capacity, and aerobic capacity. Independent t tests assessed between-group comparisons. Women demonstrated significantly greater flexibility (P<.01-P<.001) and better balance (P≤.001) than men. Men demonstrated significantly greater strength (P≤.001), aerobic capacity (47.5±7.6 vs 40.3±5.4 ml/kg/min, P<.001), anaerobic power (13.3±2.1 vs 9.5±1.7 W/kg, P<.001), and anaerobic capacity (7.8±1.0 vs 6.1±0.8 W/kg, P<.001) and lower body fat (20.1±7.5 vs 26.7±5.7 (%BF), P<.001). Women demonstrated significantly greater hip flexion and knee valgus at initial contact during both the stop jump and drop landing tasks and greater knee flexion at initial contact during the drop landing task (P<.05-P<.001). Gender differences exist in biomechanical, musculoskeletal, and physiological characteristics. Sex-specific interventions may aid in improving such characteristics to optimize physical readiness and decrease the injury risk during gender-neutral training, and decreasing between-sex variability in performance characteristics may result in enhanced overall unit readiness. Identification of sex-specific differences in injury patterns and characteristics should facilitate adjustments in training in order for both sexes to meet the gender-neutral occupational demands for physically demanding military occupational specialties.
Ryason, Adam; Sankaranarayanan, Ganesh; Butler, Kathryn L; DeMoya, Marc; De, Suvranu
2016-08-01
Emergency Cricothyroidotomy (CCT) is a surgical procedure performed to secure a patient's airway. This high-stakes, but seldom-performed procedure is an ideal candidate for a virtual reality simulator to enhance physician training. For the first time, this study characterizes the force/torque characteristics of the cricothyroidotomy procedure, to guide development of a virtual reality CCT simulator for use in medical training. We analyze the upper force and torque thresholds experienced at the human-scalpel interface. We then group individual surgical cuts based on style of cut and cut medium and perform a regression analysis to create two models that allow us to predict the style of cut performed and the cut medium.
Yasaka, Koichiro; Akai, Hiroyuki; Abe, Osamu; Kiryu, Shigeru
2018-03-01
Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Krishna, Jogi; Kishore, P. S.; Brusly Solomon, A.
2017-08-01
The paper presents experimental investigations to evaluate thermal performance of heat pipe using Nano Enhanced Phase Change Material (NEPCM) as an energy storage material (ESM) for electronic cooling applications. Water, Tricosane and nano enhanced Tricosane are used as energy storage materials, operating at different heating powers (13W, 18W and 23W) and fan speeds (3.4V and 5V) in the PCM cooling module. Three different volume percentages (0.5%, 1% and 2%) of Nano particles (Al2O3) are mixed with Tricosane which is the primary PCM. This experiment is conducted to study the temperature distributions of evaporator, condenser and PCM during the heating as well as cooling. The cooling module with heat pipe and nano enhanced Tricosane as energy storage material found to save higher fan power consumption compared to the cooling module that utilities only a heat pipe.
2014-01-01
Background Donepezil, an acetylcholinesterase inhibitor used in the treatment of Alzheimer’s disease, has been widely cited in media and bioethics literature on cognitive enhancement (CE) as having the potential to improve the cognitive ability of healthy individuals. In both literatures, this claim has been repeatedly supported by the results of a small study published by Yesavage et al. in 2002 on non-demented pilots (30–70 years old). The factors contributing to this specific interpretation of this study’s results are unclear. Methods We examined print media and interdisciplinary bioethics coverage of this small study, aiming to provide insight into how evidence from research may be shaped within different discourses, potentially influencing important policy, ethics, and clinical decisions. Systematic qualitative content analysis was used to examine how this study was reported in 27 media and 22 bioethics articles. Articles were analyzed for content related to: (1) headlines and titles; (2) colloquialisms; and, (3) accuracy of reporting of the characteristics and results of the study. Results In media and bioethics articles referencing this small study, strong claims were made about donepezil as a CE drug. The majority of headlines, titles, and colloquialisms used enhancement language and the majority of these suggest that donepezil could be used to enhance intellectual ability. Further, both literatures moved between reporting the results of the primary study and magnifying the perceived connection between these results and the CE debate that was alluded to in the primary study. Specific descriptions of the results overwhelmingly reported an improvement in performance on a flight simulator, while more general statements claimed donepezil enhanced cognitive performance. Further, a high level of reporting accuracy was found regarding study characteristics of the original study, but variable levels of accuracy surrounded the presentation of complex characteristics (i.e., methods) or contentious properties of the CE debate (i.e., initial health status of the study subjects). Conclusions Hyped claims of CE effects cannot be completely accounted for by sheer inaccuracy in reporting. A complex interaction between the primary and secondary literature, and expectations and social pressures related to CE appears to drive enthusiastic reports. PMID:24885270
Mass transport enhancement in redox flow batteries with corrugated fluidic networks
NASA Astrophysics Data System (ADS)
Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos
2017-08-01
We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.
Rossi Espagnet, M C; Bangiyev, L; Haber, M; Block, K T; Babb, J; Ruggiero, V; Boada, F; Gonen, O; Fatterpekar, G M
2015-08-01
The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P < .005). Time-optimization analysis demonstrated that 120 seconds is ideal for dynamic pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging. © 2015 by American Journal of Neuroradiology.
Rossi Espagnet, M.C.; Bangiyev, L.; Haber, M.; Block, K.T.; Babb, J.; Ruggiero, V.; Boada, F.; Gonen, O.; Fatterpekar, G.M.
2015-01-01
BACKGROUNDANDPURPOSE The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. MATERIALS AND METHODS A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. RESULTS Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P < .005). Time-optimization analysis demonstrated that 120 seconds is ideal for dynamic pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. CONCLUSIONS This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging. PMID:25953760
High-performance wireless powering for peripheral nerve neuromodulation systems.
Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.
High-performance wireless powering for peripheral nerve neuromodulation systems
Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.
2017-01-01
Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141
Hong, J H; Jung, D W; Kim, Y S; Lee, S M; Kim, K O
2010-10-01
The sensory characteristics and consumer acceptability of beef soup with added glutathione Maillard reaction products (GMRPs) were investigated to examine the effects of the GMRPs on beef-soup flavor compared to soups made with glutathione (GSH) and monosodium glutamate (MSG), a control (CON), or a control soup made with 150% beef content (CON150). The sensory characteristics of the beef soups were examined by descriptive analysis. The overall acceptabilities of the beef soups were rated by consumers. Principal component analysis was performed on descriptive data as explanatory variables with overall acceptability as a supplementary variable to observe the relationships between the descriptive data and consumer acceptability, as well as the relationships between the beef-soup samples and their sensory attributes. The samples containing GMRPs had "beef flavor" that was stronger than the CON and MSG samples, and comparable to that of the GSH sample and CON150. The GMRP samples had stronger "green onion flavor,"garlic flavor," and "boiled egg white flavor" than the other samples. The beef soup containing MSG was preferred to CON, CON150, and GSH. The samples with GMRPs were least favored because of their pronounced metallic and astringent notes. The results of this study imply the feasibility of GMRPs as a flavor enhancer since the soups containing these compounds showed more complex flavor profiles than GSH. However, future studies are required to optimize the MR conditions that produce GMRPs without undesirable characteristics. Practical Application: This study examined the practicability of the Maillard reaction products between glutathione (GSH) and glucose (GP) or fructose (FP) as a flavor enhancer by investigating the sensory characteristics and consumer acceptability evoked by them in a beef-soup system. This study helps flavor and food industry to develop a new flavor enhancer by providing practical information, such as beef flavor-enhancing effect of FP and GP compared to that by increasing beef content or adding GSH or MSG. In addition, it is expected that the outcome of this study, such as sensory attributes of and consumer responses to GSH Maillard reaction products, compliments previous studies that mostly focused on chemical analysis of Maillard reaction.
Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.
Ghanizadeh, Afshin; Abarghouei, Amir Atapour; Sinaie, Saman; Saad, Puteh; Shamsuddin, Siti Mariyam
2011-07-01
Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.
Nuclear thermal rocket nozzle testing and evaluation program
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1993-01-01
Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.
Eack, Shaun M.; Bahorik, Amber L.; Hogarty, Susan S.; Greenwald, Deborah P.; Litschge, Maralee Y.; Mazefsky, Carla A.; Minshew, Nancy J.
2013-01-01
Cognitive rehabilitation is an emerging set of potentially effective interventions for the treatment of autism spectrum disorder, yet the applicability of these approaches for “high functioning” adults who have normative levels of intelligence remains unexplored. This study examined the initial cognitive performance characteristics of 40 verbal adults with autism enrolled in a pilot trial of Cognitive Enhancement Therapy to investigate the need for cognitive rehabilitation in this population. Results revealed marked and broad deficits across neurocognitive and social-cognitive domains, despite above-average IQ. Areas of greatest impairment included processing speed, cognitive flexibility, and emotion perception and management. These findings indicate the need for comprehensive interventions designed to enhance cognition among verbal adults with autism who have intact intellectual functioning. PMID:23381484
Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin
2014-09-19
Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (Rs<1.0) and low efficiency (800-16,300plates/m), addition of a small amount of HKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun
2015-07-01
Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.
NASA Astrophysics Data System (ADS)
Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; Walczak, Karl A.; Favaro, Marco; Beeman, Jeffrey W.; Hess, Lucas H.; Wang, Cheng; Zhu, Chenhui; Gul, Sheraz; Yano, Junko; Kisielowski, Christian; Schwartzberg, Adam; Sharp, Ian D.
2017-03-01
Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. Here, we demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co3O4/Co(OH)2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. These films comprise compact and continuous nanocrystalline Co3O4 spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH)2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p+n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.
Trottier-Lapointe, W; Zabeida, O; Schmitt, T; Martinu, L
2016-11-01
Ultralow refractive index materials (n less than 1.38 at 550 nm) are of particular interest in the context of antireflective coatings, allowing one to enhance their overall optical performance. However, application of such materials is typically limited by their mechanical properties. In this study, we explore the characteristics of a new category of hybrid (organic/inorganic) SiOCH thin films prepared by glancing angle deposition (GLAD) using electron beam evaporation of SiO2 in the presence of an organosilicon precursor. The resulting layers exhibited n as low as 1.2, showed high elastic rebound, and generally better mechanical properties than their inorganic counterparts. In addition, hybrid GLAD films were found to be highly hydrophobic. The performance of the films is discussed in terms of their hybridicity (organic/inorganic) ratio determined by infrared spectroscopic ellipsometry as well as the presence of anisotropy assessed by the nanostructure-based spectroscopic ellipsometry model. Finally, we demonstrate successful implementation of the ultralow-index material in a complete antireflective stack.
Lee, Seungjin; Park, Jong Hyun; Lee, Bo Ram; Jung, Eui Dae; Yu, Jae Choul; Di Nuzzo, Daniele; Friend, Richard H; Song, Myoung Hoon
2017-04-20
The use of hybrid organic-inorganic perovskites in optoelectronic applications are attracting an interest because of their outstanding characteristics, which enable a remarkable enhancement of device efficiency. However, solution-processed perovskite crystals unavoidably contain defect sites that cause hysteresis in perovskite solar cells (PeSCs) and blinking in perovskite light-emitting diodes (PeLEDs). Here, we report significant beneficial effects using a new treatment based on amine-based passivating materials (APMs) to passivate the defect sites of methylammonium lead tribromide (MAPbBr 3 ) through coordinate bonding between the nitrogen atoms and undercoordinated lead ions. This treatment greatly enhanced the PeLED's efficiency, with an external quantum efficiency (EQE) of 6.2%, enhanced photoluminescence (PL), a lower threshold for amplified spontaneous emission (ASE), a longer PL lifetime, and enhanced device stability. Using confocal microscopy, we observed the cessation of PL blinking in perovskite films treated with ethylenediamine (EDA) due to passivation of the defect sites in the MAPbBr 3 .
Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Gregor; Mensing, Tristan; Golfier, Sven
2009-06-15
Photoelectric-enhanced radiation therapy is a bimodal therapy, consisting of the administration of highly radiation-absorbing substances into the tumor area and localized regional irradiation with orthovoltage x-rays. Irradiation can be performed by a modified computed tomography (CT) unit equipped with an additional x-ray optical module which converts the polychromatic, fan-shaped CT beam into a monochromatized and focused beam for energy-tuned photoelectric-enhanced radiotherapy. A dedicated x-ray optical module designed for spatial collimation, focusing, and monochromatization was mounted at the exit of the x-ray tube of a clinical CT unit. Spectrally resolved measurements of the resulting beam were performed using an energy-dispersive detectionmore » system calibrated by synchrotron radiation. The spatial photon fluence was determined by film dosimetry. Depth-dose measurements were performed and compared to the polychromatic CT and a therapeutic 6 MV beam. The spatial dose distribution in phantoms using a rotating radiation source (quasi-monochromatic CT and 6 MV, respectively) was investigated by gel dosimetry. The photoelectric dose enhancement for an iodine fraction of 1% in tissue was calculated and verified experimentally. The x-ray optical module selectively filters the energy of the tungsten K{alpha} emission line with an FWHM of 5 keV. The relative photon fluence distribution demonstrates the focusing characteristic of the x-ray optical module. A beam width of about 3 mm was determined at the isocenter of the CT gantry. The depth-dose measurements resulted in a half-depth value of approximately 36 mm for the CT beams (quasi-monochromatic, polychromatic) compared to 154 mm for the 6 MV beam. The rotation of the radiation source leads to a steep dose gradient at the center of rotation; the gel dosimetry yields an entrance-to-peak dose ratio of 1:10.8 for the quasi-monochromatic CT and 1:37.3 for a 6 MV beam of the same size. The photoelectric dose enhancement factor increases from 2.2 to 2.4 by using quasi-monochromatic instead of polychromatic radiation. An additional increase in the radiation dose by a factor of 1.4 due to the focusing characteristic of the x-ray optical module was calculated. Photoelectric-enhanced radiation therapy based on a clinical CT unit combined with an x-ray optical module is a novel therapy option in radiation oncology. The optimized quasi-monochromatic radiation is strongly focused and ensures high photoelectric dose enhancement for iodine.« less
An experimental and theoretical study of structural damping in compliant foil bearings
NASA Technical Reports Server (NTRS)
Ku, C.-P. Roger
1994-01-01
This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.
Effect of micropolar fluids on the squeeze film elliptical plates
NASA Astrophysics Data System (ADS)
Rajashekhar Anagod, Roopa; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
This paper elaborates on the theoretical analysis of squeeze film characteristics between elliptical plates lubricated with non-Newtonian micro-polar fluid on the basis of Eringen's micropolar fluid theory. The modified Reynold’s equations governing flow of micro-polar fluid is mathematically derived and the outcome reveals distribution of film pressure which determines the dynamic performance characteristics in terms of load and squeezing time for various values of coupling number and micro structure size parameter. Based on the results reported, The influence of non-Newtonian micropolar fluids is examined in enhancing the time of approach and load carrying capacity to the case of classical Newtonian lubricant.
Study on collision resistance characteristics of the side tanks with water inside
NASA Astrophysics Data System (ADS)
Liu, Yuxi; Hu, Jinwen; Liu, Ting; Wu, Can
2018-05-01
When we evaluate the safety performance of ships against external events, one of the most important indicator is the collision resistance to which water inside the side tanks also make some contributions because of the water effect. To further analyze the interaction mechanism, different collision velocities and side tank waterlines are set for the analysis model. Results indicate the outside shell and the inner shell of the side structure significantly enhanced the collision resistance performance to a certain extension. The water effect on the failure of the outside shell is unobvious, while, it performs a great influence on the destructive reaction force of the inner shell. When the velocity of the coming bulbous bow gradually increases, the destructive reaction forces of the outside shell and the inner shell increase with a decreasing rate. Besides, water influence the collision characteristics of the inner shell a lot when the waterlines are below the upper rib of the strong frame.
Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng
2015-04-01
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
Karthikeya Sharma, T
2015-11-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.
Space storable propellant performance program coaxial injector characterization
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
An experimental program was conducted to characterize the circular coaxial injector concept for application with the space-storable gas/liquid propellant combination FLOX(82.6% F2)/CH4(g) at high pressure. The primary goal of the program was to obtain high characteristic velocity efficiency in conjunction with acceptable injector/chamber compatibility. A series of subscale (single element) cold flow and hot fire experiments was employed to establish design criteria for a 3000-lbf (sea level) engine operating at 500 psia. The subscale experiments characterized both high performance core elements and peripheral elements with enhanced injector/chamber compatibility. The full-scale injector which evolved from the study demonstrated a performance level of 99 percent of the theoretical shifting characteristic exhaust velocity with low chamber heat flux levels. A 44-second-duration firing demonstrated the durability of the injector. Parametric data are presented that are applicable for the design of circular, coaxial injectors that operate with injection dynamics (fuel and oxidizer velocity, etc.) similar to those employed in the work reported.
Organizational Characteristics Associated With Fundraising Performance of Nonprofit Hospitals.
Erwin, Cathleen Owens; Landry, Amy Yarbrough
2015-01-01
Fundraising has become increasingly important to nonprofit hospitals as access to capital has grown more difficult and reimbursement for services more complex. This study analyzes the variation in organizational characteristics and fundraising performance among nonprofit acute care hospitals in the United States to identify and measure critical factors related to one key fundraising performance indicator: public support. Results indicate that the presence of an endowment, along with its value, investments in fundraising, and the geographic location of the organization, account for approximately 46% of variance in public support among nonprofit hospitals. The use of a separate foundation for the fundraising operation is not necessarily associated with measures of fundraising success; however, a majority of hospitals do use a foundation, signaling a strategic choice that may be made for numerous reasons. The study results and limitations are discussed and recommendations are made for maximizing the effectiveness of the fundraising enterprise within nonprofit hospitals. Increasing awareness of challenges associated with fundraising success will enhance the strategic management of fundraising operations by hospital executives and board members.
Karthikeya Sharma, T.
2014-01-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918
Performance optimization of plate heat exchangers with chevron plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muley, A.; Manglik, R.M.
1999-07-01
The enhanced heat transfer performance of a chevron plate heat exchanger (PHE) is evaluated employing (1) energy-conservation based performance evaluation criteria (PECs), and (2) the second-law based minimization of entropy generation principle. Single-phase laminar and turbulent flow convection for three different chevron-plate arrangements are considered. The influence of plate surface corrugation characteristics and their stack arrangements on the heat exchanger's thermal-hydraulic performance is delineated. Based on the different figures of merit, the results show that the extent of heat transfer enhancement increases with flow Re and chevron angle {beta} in laminar flow, but it diminishes with increasing Re in turbulentmore » flows. With up to 2.9 times higher Q, 48% lower A, and entropy generation number N{sub s,a} {lt} 1, relative to an equivalent flat-plate pack, chevron plates are found to be especially suitable in the low to medium flow rates range (20 {le} Re {le} 2,000). Also, there appears to be no significant advantage of using a mixed-plate over a symmetric-plate arrangement.« less
A new approach to enhance the performance of decision tree for classifying gene expression data.
Hassan, Md; Kotagiri, Ramamohanarao
2013-12-20
Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.
NASA Astrophysics Data System (ADS)
Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru
2018-03-01
L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, J.I.; Reddoch, T.W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less
Perumal, G; Ayyagari, A; Chakrabarti, A; Kannan, D; Pati, S; Grewal, H S; Mukherjee, S; Singh, S; Arora, H S
2017-10-25
Substrate-cell interactions for a bioimplant are driven by substrate's surface characteristics. In addition, the performance of an implant and resistance to degradation are primarily governed by its surface properties. A bioimplant typically degrades by wear and corrosion in the physiological environment, resulting in metallosis. Surface engineering strategies for limiting degradation of implants and enhancing their performance may reduce or eliminate the need for implant removal surgeries and the associated cost. In the current study, we tailored the surface properties of stainless steel using submerged friction stir processing (FSP), a severe plastic deformation technique. FSP resulted in significant microstructural refinement from 22 μm grain size for the as-received alloy to 0.8 μm grain size for the processed sample with increase in hardness by nearly 1.5 times. The wear and corrosion behavior of the processed alloy was evaluated in simulated body fluid. The processed sample demonstrated remarkable improvement in both wear and corrosion resistance, which is explained by surface strengthening and formation of a highly stable passive layer. The methylthiazol tetrazolium assay demonstrated that the processed sample is better in supporting cell attachment, proliferation with minimal toxicity, and hemolysis. The athrombogenic characteristic of the as-received and processed samples was evaluated by fibrinogen adsorption and platelet adhesion via the enzyme-linked immunosorbent assay and lactate dehydrogenase assay, respectively. The processed sample showed less platelet and fibrinogen adhesion compared with the as-received alloy, signifying its high thromboresistance. The current study suggests friction stir processing to be a versatile toolbox for enhancing the performance and reliability of currently used bioimplant materials.
Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.
Asadpour, Vahid; Towhidkhah, Farzad; Homayounpour, Mohammad Mehdi
2006-10-01
Science of human identification using physiological characteristics or biometry has been of great concern in security systems. However, robust multimodal identification systems based on audio-visual information has not been thoroughly investigated yet. Therefore, the aim of this work to propose a model-based feature extraction method which employs physiological characteristics of facial muscles producing lip movements. This approach adopts the intrinsic properties of muscles such as viscosity, elasticity, and mass which are extracted from the dynamic lip model. These parameters are exclusively dependent on the neuro-muscular properties of speaker; consequently, imitation of valid speakers could be reduced to a large extent. These parameters are applied to a hidden Markov model (HMM) audio-visual identification system. In this work, a combination of audio and video features has been employed by adopting a multistream pseudo-synchronized HMM training method. Noise robust audio features such as Mel-frequency cepstral coefficients (MFCC), spectral subtraction (SS), and relative spectra perceptual linear prediction (J-RASTA-PLP) have been used to evaluate the performance of the multimodal system once efficient audio feature extraction methods have been utilized. The superior performance of the proposed system is demonstrated on a large multispeaker database of continuously spoken digits, along with a sentence that is phonetically rich. To evaluate the robustness of algorithms, some experiments were performed on genetically identical twins. Furthermore, changes in speaker voice were simulated with drug inhalation tests. In 3 dB signal to noise ratio (SNR), the dynamic muscle model improved the identification rate of the audio-visual system from 91 to 98%. Results on identical twins revealed that there was an apparent improvement on the performance for the dynamic muscle model-based system, in which the identification rate of the audio-visual system was enhanced from 87 to 96%.
NASA Astrophysics Data System (ADS)
Sillay, Karl; Schomberg, Dominic; Hinchman, Angelica; Kumbier, Lauren; Ross, Chris; Kubota, Ken; Brodsky, Ethan; Miranpuri, Gurwattan
2012-04-01
Convection-enhanced delivery (CED) is an advanced infusion technique used to deliver therapeutic agents into the brain. CED has shown promise in recent clinical trials. Independent verification of published parameters is warranted with benchmark testing of published parameters in applicable models such as gel phantoms, ex vivo tissue and in vivo non-human animal models to effectively inform planned and future clinical therapies. In the current study, specific performance characteristics of two CED infusion catheter systems, such as backflow, infusion cloud morphology, volume of distribution (mm3) versus the infused volume (mm3) (Vd/Vi) ratios, rate of infusion (µl min-1) and pressure (mmHg), were examined to ensure published performance standards for the ERG valve-tip (VT) catheter. We tested the hypothesis that the ERG VT catheter with an infusion protocol of a steady 1 µl min-1 functionality is comparable to the newly FDA approved MRI Interventions Smart Flow (SF) catheter with the UCSF infusion protocol in an agarose gel model. In the gel phantom models, no significant difference was found in performance parameters between the VT and SF catheter. We report, for the first time, such benchmark characteristics in CED between these two otherwise similar single-end port VT with stylet and end-port non-stylet infusion systems. Results of the current study in agarose gel models suggest that the performance of the VT catheter is comparable to the SF catheter and warrants further investigation as a tool in the armamentarium of CED techniques for eventual clinical use and application.
Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster
NASA Technical Reports Server (NTRS)
Ryan, Richard M.; Rothschild, William J.; Christensen, David L.
1998-01-01
The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.
Heat transfer and performance characteristics of axial cooling fans with downstream guide vanes
NASA Astrophysics Data System (ADS)
Terzis, Alexandros; Stylianou, Ioannis; Kalfas, Anestis I.; Ott, Peter
2012-04-01
This study examines experimentally the effect of stators on the performance and heat transfer characteristics of small axial cooling fans. A single fan impeller, followed by nine stator blades in the case of a complete stage, was used for all the experimental configurations. Performance measurements were carried out in a constant speed stage performance test rig while the transient liquid crystal technique was used for the heat transfer measurements. Full surface heat transfer coefficient distributions were obtained by recording the temperature history of liquid crystals on a target plate. The experimental data indicated that the results are highly affected by the flow conditions at the fan outlet. Stators can be beneficial in terms of pressure drop and efficiency, and thus more economical operation, as well as, in the local heat transfer distribution at the wake of the stator blades if the fan is installed very close to the cooling object. However, as the separation distance increases, enhanced heat transfer rate in the order of 25% is observed in the case of the fan impeller.
Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2008-01-01
Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.
Physiological properties of brain-machine interface input signals.
Slutzky, Marc W; Flint, Robert D
2017-08-01
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo
2015-12-01
In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL-TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL-TMBS rectifier compared with the performance of a conventional TMBS rectifier.
Future of Mechatronics and Human
NASA Astrophysics Data System (ADS)
Harashima, Fumio; Suzuki, Satoshi
This paper mentions circumstance of mechatronics that sustain our human society, and introduces HAM(Human Adaptive Mechatronics)-project as one of research projects to create new human-machine system. The key point of HAM is skill, and analysis of skill and establishment of assist method to enhance total performance of human-machine system are main research concerns. As study of skill is an elucidation of human itself, analyses of human higher function are significant. In this paper, after surveying researches of human brain functions, an experimental analysis of human characteristic in machine operation is shown as one example of our research activities. We used hovercraft simulator as verification system including observation, voluntary motion control and machine operation that are needed to general machine operation. Process and factors to become skilled were investigated by identification of human control characteristics with measurement of the operator's line-of sight. It was confirmed that early switching of sub-controllers / reference signals in human and enhancement of space perception are significant.
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
Wang, Huei-Tang; Taufany, Fadlilatul; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang
2014-05-01
The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV-visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient "electron-acceptor" which boosts electron-transfer from a -NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.
Bakonyi, Péter; Kumar, Gopalakrishnan; Koók, László; Tóth, Gábor; Rózsenberszki, Tamás; Bélafi-Bakó, Katalin; Nemestóthy, Nándor
2018-03-01
Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H 2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physical Characteristics and Performance of Japanese Top-Level American Football Players.
Yamashita, Daichi; Asakura, Masaki; Ito, Yoshihiko; Yamada, Shinzo; Yamada, Yosuke
2017-09-01
Yamashita, D, Asakura, M, Ito, Y, Yamada, S, and Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31(9): 2455-2461, 2017-This study aimed to compare the physical characteristics and performance between top-level nonprofessional football players in Japan and National Football League (NFL) Combine invited players and between top-level and middle-level players in Japan to determine the factors that enhance performance in international and national competitions. A total of 168 American football players (>20 years) in Japan participated in an anthropometric (height and weight) and physical (vertical jump, long jump, 40-yard dash, pro-agility shuttle, 3-cone drill, and bench press repetition test) measurement program based on the NFL Combine program to compete in the selection of candidates for the Senior World Championship. All players were categorized into 1 of the 3 position groups based on playing position: skill players, big skill players, and linemen. Japanese players were additionally categorized into selected and nonselected players for the second tryout. The NFL Combine candidates had significantly better performance than selected Japanese players on all variables except on performance related to quickness among the 3 position groups. Compared with nonselected players, selected Japanese skill players had better performance in the 40-yard dash and bench press test and big skill players had better performance in the vertical jump, broad jump, and 40-yard dash. Selected and nonselected Japanese linemen were not different in any measurements. These results showed the challenges in American football in Japan, which include not only improving physical performance of top-level players, but also increasing the number of football players with good physical performance.
Physical Characteristics and Performance of Japanese Top-Level American Football Players
Asakura, Masaki; Ito, Yoshihiko; Yamada, Shinzo; Yamada, Yosuke
2017-01-01
Abstract Yamashita, D, Asakura, M, Ito, Y, Yamada, S, and Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31(9): 2455–2461, 2017—This study aimed to compare the physical characteristics and performance between top-level nonprofessional football players in Japan and National Football League (NFL) Combine invited players and between top-level and middle-level players in Japan to determine the factors that enhance performance in international and national competitions. A total of 168 American football players (>20 years) in Japan participated in an anthropometric (height and weight) and physical (vertical jump, long jump, 40-yard dash, pro-agility shuttle, 3-cone drill, and bench press repetition test) measurement program based on the NFL Combine program to compete in the selection of candidates for the Senior World Championship. All players were categorized into 1 of the 3 position groups based on playing position: skill players, big skill players, and linemen. Japanese players were additionally categorized into selected and nonselected players for the second tryout. The NFL Combine candidates had significantly better performance than selected Japanese players on all variables except on performance related to quickness among the 3 position groups. Compared with nonselected players, selected Japanese skill players had better performance in the 40-yard dash and bench press test and big skill players had better performance in the vertical jump, broad jump, and 40-yard dash. Selected and nonselected Japanese linemen were not different in any measurements. These results showed the challenges in American football in Japan, which include not only improving physical performance of top-level players, but also increasing the number of football players with good physical performance. PMID:28052052
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 4
2008-04-01
stability characteristics to those extensively reported for the Cost Performance Index in Earned Value Management . by Kym Henderson and Dr. Ofer...Zwikael Schedule Adherence:A Useful Measure for Project Management This article utilizes the new practice of Earned Schedule to discuss a proposed...measure for further enhancing the practice of Earned Value Management . by Walt Lipke A Review of Boundary Value Analysis Techniques This article reviews
Enhancing Microbolometer Performance at Terahertz Frequencies with Metamaterial Absorbers
2013-09-01
focal plane arrays (FPAs). Indeed, these sensors naturally evolved in snakes in the form of pit organs leading to a high sensitivity, albeit low...materials. Indeed, they can even have characteristics that are not found in nature , such as a negative refractive index [27]. Absorption in these...modes [44], interference of multiple reflections [45], and transmission lines [46]. However, due to the complex nature of metamaterials, these models
A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots
2010-01-01
mance of QD infrared detector to a level that is compatible to the widely used, conventional MCT infrared detector . Acknowledgment. S.Y.L. gratefully...amenable to large scale fabrication and, more importantly, does not degrade the noise current characteristics of the photodetector. We believe that this...demonstration would bring the performance of QD-based infrared detectors to a level suitable for emerging surveillance and medical diagnostic
Injury Prevention and Performance Enhancement in 101st Airborne Soldiers
2009-10-01
a prospective study that looked at injury risk factors in sub- elite rugby players , preseason tests of a vertical jump, 10- and 40-meter sprint, and...Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players : a prospective... nutritional characteristics. Based on the results of initial testing included 101st-specific task and demand analyses and biomechanical
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
NASA Astrophysics Data System (ADS)
Zhang, Kai; Kong, Cen; Zhou, Jianjun; Kong, Yuechan; Chen, Tangsheng
2017-02-01
The paper reports high-performance enhancement-mode MOS high-electron mobility transistors (MOS-HEMTs) based on a quaternary InAlGaN barrier. Self-aligned gate technology is used for gate recessing, dielectric deposition, and gate electrode formation. An improved digital recessing process is developed, and an Al2O3 gate dielectric grown with O2 plasma is used. Compared to results with AlGaN barrier, the fabricated E-mode MOS-HEMT with InAlGaN barrier delivers a record output current density of 1.7 A/mm with a threshold voltage (V TH) of 1.5 V, and a small on-resistance (R on) of 2.0 Ω·mm. Excellent V TH hysteresis and greatly improved gate leakage characteristics are also demonstrated.
Tao, Lu; Yu, Dan; Zhou, Junshuang; Lu, Xiong; Yang, Yunxia; Gao, Faming
2018-05-01
The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m 2 g pt -1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Warm-up with a weighted vest improves running performance via leg stiffness and running economy.
Barnes, K R; Hopkins, W G; McGuigan, M R; Kilding, A E
2015-01-01
To determine the effects of "strides" with a weighted-vest during a warm-up on endurance performance and its potential neuromuscular and metabolic mediators. A bout of resistance exercise can enhance subsequent high-intensity performance, but little is known about such priming exercise for endurance performance. A crossover with 5-7 days between an experimental and control trial was performed by 11 well-trained distance runners. Each trial was preceded by a warm-up consisting of a 10-min self-paced jog, a 5-min submaximal run to determine running economy, and six 10-s strides with or without a weighted-vest (20% of body mass). After a 10-min recovery period, runners performed a series of jumps to determine leg stiffness and other neuromuscular characteristics, another 5-min submaximal run, and an incremental treadmill test to determine peak running speed. Clinical and non-clinical forms of magnitude-based inference were used to assess outcomes. Correlations and linear regression were used to assess relationships between performance and underlying measures. The weighted-vest condition resulted in a very-large enhancement of peak running speed (2.9%; 90% confidence limits ±0.8%), a moderate increase in leg stiffness (20.4%; ±4.2%) and a large improvement in running economy (6.0%; ±1.6%); there were also small-moderate clear reductions in cardiorespiratory measures. Relationships between change scores showed that changes in leg stiffness could explain all the improvements in performance and economy. Strides with a weighted-vest have a priming effect on leg stiffness and running economy. It is postulated the associated major effect on peak treadmill running speed will translate into enhancement of competitive endurance performance. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krol, M.; Kokkinaki, A.; Sleep, B.
2014-12-01
The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.
McCormick, Peter A.; Francis, Lori
2005-01-01
There is debate over the mechanisms that govern the orienting of attention. Some argue that the enhanced performance observed at a cued location is the result of increased perceptual sensitivity or preferential access to decision-making processes. It has also been suggested that these effects may be the result of trades in speed for accuracy on the part of the observers. In the present study, observers performed either an exogenous or an endogenous orienting of attention task under both normal instructions (respond as quickly and as accurately as possible) and speeded instructions that used a deadline procedure to limit the amount of time observers had to complete a choice reaction time (CRT) task. An examination of the speed-accuracy operating characteristics (SAOCs) yielded evidence against the notion that CRT precuing effects are due primarily to a tradeoff of accuracy for speed. PMID:15759078
A review on ZnO-based electrical biosensors for cardiac biomarker detection
Shanmugam, Nandhinee R; Muthukumar, Sriram; Prasad, Shalini
2017-01-01
Over the past few decades zinc oxide (ZnO)-based thin films and nanostructures have shown unprecedented performance in a wide range of applications. In particular, owing to high isoelectric point, biocompatibility and other multifunctional characteristics, ZnO has extensively been studied as a transduction material for biosensor development. The fascinating properties of ZnO help retain biological activity of the immobilized biomolecule and help in achieving enhanced sensing performance. As a consequence of recent advancements in this multidisciplinary field, diagnostic biosensors are expanding beyond traditional clinical labs to point-of-care and home settings. Label-free electrical detection of biomarkers has been demonstrated using ZnO-sensing platforms. In this review we highlight the characteristics of ZnO that enable realization of its use in development of point-of-care biosensors toward disease diagnosis, in particular cardiovascular diseases. PMID:29134112
Propulsion integration for military aircraft
NASA Technical Reports Server (NTRS)
Henderson, William P.
1989-01-01
The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.
Effect of tumor resection on the characteristics of functional brain networks.
Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P
2010-08-01
Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.
The study and design of tension controller
NASA Astrophysics Data System (ADS)
Jun, G.; Lamei, X.
2018-02-01
Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.
Imaging-based logics for ornamental stone quality chart definition
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Gargiulo, Aldo; Serranti, Silvia; Raspi, Costantino
2007-02-01
Ornamental stone products are commercially classified on the market according to several factors related both to intrinsic lythologic characteristics and to their visible pictorial attributes. Sometimes these latter aspects prevail in quality criteria definition and assessment. Pictorial attributes are in any case also influenced by the performed working actions and the utilized tools selected to realize the final stone manufactured product. Stone surface finishing is a critical task because it can contribute to enhance certain aesthetic features of the stone itself. The study was addressed to develop an innovative set of methodologies and techniques able to quantify the aesthetic quality level of stone products taking into account both the physical and the aesthetical characteristics of the stones. In particular, the degree of polishing of the stone surfaces and the presence of defects have been evaluated, applying digital image processing strategies. Morphological and color parameters have been extracted developing specific software architectures. Results showed as the proposed approaches allow to quantify the degree of polishing and to identify surface defects related to the intrinsic characteristics of the stone and/or the performed working actions.
Characteristics of elite open-water swimmers.
VanHeest, Jaci L; Mahoney, Carrie E; Herr, Larry
2004-05-01
Open-water swimming (5, 10, and 25 km) has many unique challenges that separate it from other endurance sports, like marathon running and cycling. The characteristics of a successful open-water swimmer are unclear. The purpose of this study was to determine the physical and metabolic characteristics of a group of elite-level open-water swimmers. The open-water swimmers were participating in a 1-week training camp. Anthropometric, metabolic, and blood chemistry assessments were performed on the athletes. The swimmers had a VO(2)peak of 5.51 +/- 0.96 and 5.06 +/- 0.57 ml.kg(-1).min(-1) for males and females, respectively. Their lactate threshold (LT) occurred at a pace equal to 88.75% of peak pace for males and 93.75% for females. These elite open-water swimmers were smaller and lighter than competitive pool swimmers. They possess aerobic metabolic alterations that resulted in enhanced performance in distance swimming. Trainers and coaches should develop dry-land programs that will improve the athlete's muscular endurance. Furthermore, programs should be designed to increase the LT velocity as a percentage of peak swimming velocity.
Compact high reliability fiber coupled laser diodes for avionics and related applications
NASA Astrophysics Data System (ADS)
Daniel, David R.; Richards, Gordon S.; Janssen, Adrian P.; Turley, Stephen E. H.; Stockton, Thomas E.
1993-04-01
This paper describes a newly developed compact high reliability fiber coupled laser diode which is capable of providing enhanced performance under extreme environmental conditions including a very wide operating temperature range. Careful choice of package materials to minimize thermal and mechanical stress, used with proven manufacturing methods, has resulted in highly stable coupling of the optical fiber pigtail to a high performance MOCVD-grown Multi-Quantum Well laser chip. Electro-optical characteristics over temperature are described together with a demonstration of device stability over a range of environmental conditions. Real time device lifetime data is also presented.
An expert system that performs a satellite station keepimg maneuver
NASA Technical Reports Server (NTRS)
Linesbrowning, M. Kate; Stone, John L., Jr.
1987-01-01
The development and characteristics of a prototype expert system, Expert System for Satellite Orbit Control (ESSOC), capable of providing real-time spacecraft system analysis and command generation for a geostationary satellite are described. The ESSOC recommends appropriate commands that reflect both the changing spacecraft condition and previous procedural action. An internal knowledge base stores satellite status information and is updated with processed spacecraft telemetry. Procedural structure data are encoded in production rules. Structural methods of knowledge acquisition and the design and performance-enhancing techniques that enable ESSOC to operate in real time are also considered.
ATAMM enhancement and multiprocessing performance evaluation
NASA Technical Reports Server (NTRS)
Stoughton, John W.
1994-01-01
The algorithm to architecture mapping model (ATAAM) is a Petri net based model which provides a strategy for periodic execution of a class of real-time algorithms on multicomputer dataflow architecture. The execution of large-grained, decision-free algorithms on homogeneous processing elements is studied. The ATAAM provides an analytical basis for calculating performance bounds on throughput characteristics. Extension of the ATAMM as a strategy for cyclo-static scheduling provides for a truly distributed ATAMM multicomputer operating system. An ATAAM testbed consisting of a centralized graph manager and three processors is described using embedded firmware on 68HC11 microcontrollers.
Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.
2016-01-01
We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298
Enhanced TCAS 2/CDTI traffic Sensor digital simulation model and program description
NASA Technical Reports Server (NTRS)
Goka, T.
1984-01-01
Digital simulation models of enhanced TCAS 2/CDTI traffic sensors are developed, based on actual or projected operational and performance characteristics. Two enhanced Traffic (or Threat) Alert and Collision Avoidance Systems are considered. A digital simulation program is developed in FORTRAN. The program contains an executive with a semireal time batch processing capability. The simulation program can be interfaced with other modules with a minimum requirement. Both the traffic sensor and CAS logic modules are validated by means of extensive simulation runs. Selected validation cases are discussed in detail, and capabilities and limitations of the actual and simulated systems are noted. The TCAS systems are not specifically intended for Cockpit Display of Traffic Information (CDTI) applications. These systems are sufficiently general to allow implementation of CDTI functions within the real systems' constraints.
Warren, Ruth M L; Thompson, Deborah; Pointon, Linda J; Hoff, Rebecca; Gilbert, Fiona J; Padhani, Anwar R; Easton, Douglas F; Lakhani, Sunil R; Leach, Martin O
2006-06-01
To evaluate prospectively the accuracy of a lesion classification system designed for use in a magnetic resonance (MR) imaging high-breast-cancer-risk screening study. All participating patients provided written informed consent. Ethics committee approval was obtained. The results of 1541 contrast material-enhanced breast MR imaging examinations were analyzed; 1441 screening examinations were performed in 638 women aged 24-51 years at high risk for breast cancer, and 100 examinations were performed in 100 women aged 23-81 years. Lesion analysis was performed in 991 breasts, which were divided into design (491 breasts) and testing (500 breasts) sets. The reference standard was histologic analysis of biopsy samples, fine-needle aspiration cytology, or minimal follow-up of 24 months. The scoring system involved the use of five features: morphology (MOR), pattern of enhancement (POE), percentage of maximal focal enhancement (PMFE), maximal signal intensity-time ratio (MITR), and pattern of contrast material washout (POCW). The system was evaluated by means of (a) assessment of interreader agreement, as expressed in kappa statistics, for 315 breasts in which both readers analyzed the same lesion, (b) assessment of the diagnostic accuracy of the scored components with receiver operating characteristic curve analysis, and (c) logistic regression analysis to determine which components of the scoring system were critical to the final score. A new simplified scoring system developed with the design set was applied to the testing set. There was moderate reader agreement regarding overall lesion outcome (ie, malignant, suspicious, or benign) (kappa=0.58) and less agreement regarding the scored components. The area under the receiver operating characteristic curve (AUC) for the overall lesion score, 0.88, was higher than the AUC for any one component. The components MOR, POE, and POCW yielded the best overall result. PMFE and MITR did not contribute to diagnostic utility. Applying a simplified scoring system to the testing set yielded a nonsignificantly (P=.2) higher AUC than did applying the original scoring system (sensitivity, 84%; specificity, 86.0%). Good diagnostic accuracy can be achieved by using simple qualitative descriptors of lesion enhancement, including POCW. In the context of screening, quantitative enhancement parameters appear to be less useful for lesion characterization. Copyright (c) RSNA, 2006.
Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions
NASA Astrophysics Data System (ADS)
Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha
2016-09-01
Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.
Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures.
Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C
2016-09-27
Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.
Muraskin, Jordan; Sherwin, Jason; Sajda, Paul
2015-12-01
Given a decision that requires less than half a second for evaluating the characteristics of the incoming pitch and generating a motor response, hitting a baseball potentially requires unique perception-action coupling to achieve high performance. We designed a rapid perceptual decision-making experiment modeled as a Go/No-Go task yet tailored to reflect a real scenario confronted by a baseball hitter. For groups of experts (Division I baseball players) and novices (non-players), we recorded electroencephalography (EEG) while they performed the task. We analyzed evoked EEG single-trial variability, contingent negative variation (CNV), and pre-stimulus alpha power with respect to the expert vs. novice groups. We found strong evidence for differences in inhibitory processes between the two groups, specifically differential activity in supplementary motor areas (SMA), indicative of enhanced inhibitory control in the expert (baseball player) group. We also found selective activity in the fusiform gyrus (FG) and orbital gyrus in the expert group, suggesting an enhanced perception-action coupling in baseball players that differentiates them from matched controls. In sum, our results show that EEG correlates of decision formation can be used to identify neural markers of high-performance athletes. Copyright © 2015 Elsevier Inc. All rights reserved.
Mobile-media pragmatism: innovation excellences and encumbrances
NASA Astrophysics Data System (ADS)
Lin, Chen-Ju
2017-10-01
Establishing two pragmatic models of enhancing entertainment and job-performance, this study aims to elaborate on how people adopt and perceive innovation excellences and encumbrances of modern mobile-media services through reflecting on their intrinsic expectancy. A survey methodology was executed to examine the hypothesised variable relationships using the purposive sampling method. CHT's Taipei think-tank head-office provided this study with a representative sampling frame and assisted to collect data from 725 focused subjects (with normative characteristics) who subscribed to HiNet or MOD, or predominantly used 4G telecommunication services. As a result of adopting the structural equation modelling test, the models of perceived innovation excellences and innovation encumbrances were affirmatively established to interpret the two applicative scenarios: entertainment and job-performance enhancement. Several valuable findings were generated. When a consumer targets entertainment technology pragmatism, he or she may stress the importance of innovative excellences, especially on product novelty. For the sake of pursuing job-performance enhancement, a customer was actively willing to invest his or her energy to meet and deal with the learning cost, customer unfamiliarity and complexity of telecom products and services. Importantly, the adopter's previous experiences with telecom products in the IT domain could effectively moderate the effect of pursuing new telecom innovation, adopting the product, and then strengthening self-evaluation.
Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures
Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C.
2016-01-01
Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices. PMID:27671709
Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison
NASA Astrophysics Data System (ADS)
van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder
2000-04-01
Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.
Associations of job demands and intelligence with cognitive performance among men in late life.
Potter, Guy G; Helms, Michael J; Plassman, Brenda L
2008-05-06
To examine the association of job characteristics and intelligence to cognitive status in members of the National Academy of Sciences-National Research Council Twins Registry of World War II veterans. Participants (n = 1,036) included individuals with an assessment of intelligence based on Armed Services testing in early adulthood. In late adulthood, these individuals completed the modified Telephone Interview for Cognitive Status (TICS-m) and occupational history as part of an epidemiologic study of aging and dementia. Occupational history was coded to produce a matrix of job characteristics. Based on factor analysis, job characteristics were interpreted as reflecting general intellectual demands (GI), human interaction and communication (HC), physical activity (PA), and visual attention (VA). Based on regression analysis of TICS-m score covarying for age, intelligence, and years of education, higher levels of GI and HC were independently associated with higher TICS-m performance, whereas higher PA was independently associated with lower performance. There was an interaction of GI and intelligence, indicating that individuals at the lower range of intellectual aptitude in early adulthood derived greater cognitive benefit from intellectually demanding work. Intellectually demanding work was associated with greater benefit to cognitive performance in later life independent of related factors like education and intelligence. The fact that individuals with lower intellectual aptitude demonstrated a stronger positive association between work and higher cognitive performance during retirement suggests that behavior may enhance intellectual reserve, perhaps even years after peak intellectual activity.
Associations of job demands and intelligence with cognitive performance among men in late life
Potter, Guy G.; Helms, Michael J.; Plassman, Brenda L.
2013-01-01
Objective To examine the association of job characteristics and intelligence to cognitive status in members of the National Academy of Sciences–National Research Council Twins Registry of World War II veterans. Methods Participants (n = 1,036) included individuals with an assessment of intelligence based on Armed Services testing in early adulthood. In late adulthood, these individuals completed the modified Telephone Interview for Cognitive Status (TICS-m) and occupational history as part of an epidemiologic study of aging and dementia. Occupational history was coded to produce a matrix of job characteristics. Based on factor analysis, job characteristics were interpreted as reflecting general intellectual demands (GI), human interaction and communication (HC), physical activity (PA), and visual attention (VA). Results Based on regression analysis of TICS-m score covarying for age, intelligence, and years of education, higher levels of GI and HC were independently associated with higher TICS-m performance, whereas higher PA was independently associated with lower performance. There was an interaction of GI and intelligence, indicating that individuals at the lower range of intellectual aptitude in early adulthood derived greater cognitive benefit from intellectually demanding work. Conclusions Intellectually demanding work was associated with greater benefit to cognitive performance in later life independent of related factors like education and intelligence. The fact that individuals with lower intellectual aptitude demonstrated a stronger positive association between work and higher cognitive performance during retirement suggests that behavior may enhance intellectual reserve, perhaps even years after peak intellectual activity. PMID:18077796
Nuclear thermal rocket nozzle testing and evaluation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidian, K.O.; Kacynski, K.J.
Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulsemore » values are expected to be within plus or minus 1.17%.« less
NASA Astrophysics Data System (ADS)
Li, Ang; He, Renyue; Bian, Zhuo; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng
2018-06-01
Self-assembled hierarchical CuO nanostructures with fractal structures were prepared by a mild method and exhibited excellent lithium storage properties, certain of which even demonstrated a high reversible capacity of 827 mAh g-1 at a rate of 0.1 C. An interesting phenomenon was observed that the electrochemical performance varies along with the structure complexity, and the products with higher surface factal dimensions exhibited larger capability and better cyclability. Structural and electrochemical analysis methods were used to explore the lithiation kinetics of the samples and the reasons for the outstanding electrochemical performances related to the complexities of hierarchical nanostructures and the irregularities of surface and mass distribution.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei
2018-06-01
This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.
NASA Astrophysics Data System (ADS)
Tanohata, Naoki; Seki, Hirokazu
This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.
Quantitative and Sensitive Detection of Chloramphenicol by Surface-Enhanced Raman Scattering
Ding, Yufeng; Yin, Hongjun; Meng, Qingyun; Zhao, Yongmei; Liu, Luo; Wu, Zhenglong; Xu, Haijun
2017-01-01
We used surface-enhanced Raman scattering (SERS) for the quantitative and sensitive detection of chloramphenicol (CAP). Using 30 nm colloidal Au nanoparticles (NPs), a low detection limit for CAP of 10−8 M was obtained. The characteristic Raman peak of CAP centered at 1344 cm−1 was used for the rapid quantitative detection of CAP in three different types of CAP eye drops, and the accuracy of the measurement result was verified by high-performance liquid chromatography (HPLC). The experimental results reveal that the SERS technique based on colloidal Au NPs is accurate and sensitive, and can be used for the rapid detection of various antibiotics. PMID:29261161
Meteor burst communications for LPI applications
NASA Astrophysics Data System (ADS)
Schilling, D. L.; Apelewicz, T.; Lomp, G. R.; Lundberg, L. A.
A technique that enhances the performance of meteor-burst communications is described. The technique, the feedback adaptive variable rate (FAVR) system, maintains a feedback channel that allows the transmitted bit rate to mimic the time behavior of the received power so that a constant bit energy is maintained. This results in a constant probability of bit error in each transmitted bit. Experimentally determined meteor-burst channel characteristics and FAVR system simulation results are presented.
Abramson, Zvi Howard; Levi, Orit
2008-11-01
Studies have demonstrated associations between physicians' characteristics, specifically personal health behavior, and their reported prevention counseling behavior. This study, performed in 2007, examines associations between patients getting immunized against influenza and characteristics of their primary care physicians, including whether they themselves were immunized. Computerized data were extracted on 29,447 patients aged 65 years and over registered in the largest health maintenance organization (HMO) in the Jerusalem area and on their primary care physicians. Further physician data were collected from a questionnaire distributed to a large sample of physicians. Logistic regression was performed with patient immunization as the dependent variable. Patients were more likely to get vaccinated if their physician was vaccinated and if the physician was female or a specialist or had studied in West Europe or America. Patients of physicians who reported exercising regularly and of physicians who knew that the vaccine can't cause influenza were also more likely to get immunized. These associations of physician factors with patient immunization, though statistically significant, were weaker than those previously reported with physician influenza vaccination counseling. Physician's beliefs and medical education and personal health behavior are of importance in determining patient vaccination. An increase in population immunization rates may possibly be achieved by programs directed at enhancing physician knowledge and self immunization.
Melhem, N; El Balaa, H; Younes, G; Al Kattar, Z
2017-06-15
The Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission has different calibration methods for various types of dosimeters used in industrial, military and medical fields. The calibration is performed using different beams of X-rays (low and medium energy) and Gamma radiation delivered by a Cesium 137 source. The Secondary Standard Dosimetry laboratory in charge of calibration services uses different protocols for the determination of high and low air kerma rate and for narrow and wide series. In order to perform this calibration work, it is very important to identify all the beam characteristics for the different types of sources and qualities of radiation. The following work describes the methods used for the determination of different beam characteristics and calibration coefficients with their uncertainties in order to enhance the radiation protection of workers and patient applications in the fields of medical diagnosis and industrial X-ray. All the characteristics of the X-ray beams are determined for the narrow spectrum series in the 40 and 200 keV range where the inherent filtration, the current intensity, the high voltage, the beam profile and the total uncertainty are the specific characteristics of these X-ray beams. An X-ray software was developed in order to visualize the reference values according to the characteristics of each beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rustagi, Tarun; Njei, Basile
2014-08-01
This study aimed to perform a structured meta-analysis of all eligible studies to assess the overall diagnostic use of magnetic resonance cholangiopancreatography (MRCP) alone or with secretin enhancement (secretin-enhanced MRCP [S-MRCP]) in the detection of pancreas divisum. Two authors independently performed a comprehensive search of PubMed, MEDLINE, and the Cochrane Library from inception to September 2013. Studies were included if they allowed construction of 2 × 2 contingency tables of MRCP and/or S-MRCP compared with criterion standard. DerSimonian-Laird random effect models were used to estimate the pooled sensitivity, specificity, specificity, and quantitative receiver operating characteristics. Of 51 citations, 10 studies with 1474 patients were included. Secretin-enhanced MRCP had a higher overall diagnostic performance than MRCP (S-MRCP: pooled sensitivity, 86% [95% confidence interval (CI), 77%-93%]; specificity, 97% [95% CI, 94%-99%]; and area under the curve, 0.93 ± 0.056 compared with MRCP: sensitivity, 52% [95% CI, 45%-59%]; specificity, 97% [95% CI, 94%-99%]; and area under the curve, 0.76 ± 0.104). Pooled diagnostic odds ratios were 72.19 (95% CI, 5.66-938.8) and 23.39 (95% CI, 7.93-69.02) for S-MRCP and MRCP, respectively. Visual inspection of the funnel plot showed low potential for publication bias. Secretin-enhanced MRCP has a much higher diagnostic accuracy than MRCP and should be preferred for diagnosis of pancreas divisum.
Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application
NASA Astrophysics Data System (ADS)
Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro
2018-04-01
Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.
Characteristics of color memory for natural scenes
NASA Astrophysics Data System (ADS)
Amano, Kinjiro; Uchikawa, Keiji; Kuriki, Ichiro
2002-08-01
To study the characteristics of color memory for natural images, a memory-identification task was performed with differing color contrasts; three of the contrasts were defined by chromatic and luminance components of the image, and the others were defined with respect to the categorical colors. After observing a series of pictures successively, subjects identified the pictures using a confidence rating. Detection of increased contrasts tended to be harder than detection of decreased contrasts, suggesting that the chromaticness of pictures is enhanced in memory. Detecting changes within each color category was more difficult than across the categories. A multiple mechanism that processes color differences and categorical colors is briefly considered. 2002 Optical Society of America
Degradation of electro-optic components aboard LDEF
NASA Technical Reports Server (NTRS)
Blue, M. D.
1993-01-01
Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.
Design and analysis of biomimetic joints for morphing of micro air vehicles.
Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick
2010-12-01
Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.
NASA Astrophysics Data System (ADS)
Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.
2017-10-01
In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.
Idiopathic and diabetic skeletal muscle necrosis: evaluation by magnetic resonance imaging.
Kattapuram, Taj M; Suri, Rajeev; Rosol, Michael S; Rosenberg, Andrew E; Kattapuram, Susan V
2005-04-01
Idiopathic and diabetic-associated muscle necrosis are similar, uncommon clinical entities requiring conservative management and minimal intervention to avoid complications and prolonged hospitalization. An early noninvasive diagnosis is therefore essential. We evaluated the magnetic resonance imaging (MRI) characteristics of muscle necrosis in 14 patients, in eight of whom the diagnoses were confirmed histologically. Two experienced musculoskeletal radiologists performed retrospective evaluations of the MRI studies of 14 patients with the diagnoses of skeletal muscle infarction. In 10 cases gadolinium-enhanced (T1-weighted fat-suppressed) sequences were available along with T1-weighted, T2-weighted images and STIR sequences, while in four cases contrast-enhanced images were not available. Eight patients had underlying diabetes and in six patients the cause of the myonecrosis was considered idiopathic. T1-weighted images demonstrated isointense swelling of the involved muscle, with mildly displaced fascial planes. There was effacement of the fat signal intensity within the muscle. Fat-suppressed T2-weighted images showed diffuse heterogeneous high signal intensity in the muscles suggestive of edema. Perifascial fluid collection was seen in eight cases. Subcutaneous edema was present in seven patients. Following intravenous gadolinium administration, MRI demonstrated a focal area of heterogeneously enhancing mass with peripheral enhancement. Within this focal lesion, linear dark areas were seen with serpentine enhancing streaks separating them in eight cases. In two cases, a central relatively nonenhancing mass with irregular margins and peripheral enhancement was noted. The peripheral enhancement involved a significant part of the muscle. No focal fluid collection was noted. We believe that the constellation of imaging findings on T1- and T2-weighted images and post-gadolinium sequences is highly suggestive of muscle necrosis. We consider certain specific findings on gadolinium-enhanced images to be characteristic. The findings reported here should provide radiologists with useful information in making the diagnosis of skeletal muscle necrosis without resorting to invasive procedures.
Poor Performance Among Trainees in a Dutch Postgraduate GP Training Program.
Vermeulen, Margit I; Kuyvenhoven, Marijke M; de Groot, Esther; Zuithoff, Nicolaas Pa; Pieters, Honore M; van der Graaf, Yolanda; Damoiseaux, Roger Amj
2016-06-01
Poor performance among trainees is an important issue, for patient safety and economic reasons. While early identification might enhance remediation measures, we explored the frequency, nature, and risk factors of poor performance in a Dutch postgraduate general practitioner (GP) training program. All trainees who started the GP training between 2005 and 2007 were included. Multivariate logistic regression analysis was applied to examine associations between individual characteristics; early assessments of competencies and knowledge, training process characteristics (eg, illness, maternal leave), and the outcome poor performance; sub-analyses were performed for each year. A total of 215 trainees started the 3-year GP program, and 49 (22.8%) exhibited poor performance (in one or more years). In the first and second years, problem areas among poor performers were equally distributed across the roles of "medical expert," "communicator," and "professional." In the third year, shortcomings in "professionalism" were the most common problem. Increasing age was a risk factor for poor performance as were insufficient scores in communication and knowledge. Poor performance in the previous year was a risk factor for poor performance in the second and third years; OR=4.20 (CI=1.31--13.47) and OR=5.40 (CI=1.58--18.47), respectively. Poor performance is prevalent but primarily occurring within a single training year. This finding suggests that trainees are capable of solving trainee problems. Increasing age, insufficient assessment scores early in the training, and poor performance in a previous year constitute risk factors for poor performance.
Shakeri, Shadi A.; Abbey, Craig K.; Gazi, Peymon; Prionas, Nicolas; Nosratieh, Anita; Li, Chin-Shang; Boone, John M.; Lindfors, Karen K.
2015-01-01
Purpose Compare conspicuity of ductal carcinoma in-situ (DCIS) to benign calcifications on unenhanced (bCT), contrast-enhanced dedicated breast CT (CEbCT) and mammography (DM). Methods and Materials The institutional review board approved this HIPAA-compliant study. 42 women with Breast Imaging Reporting and Data System 4 or 5 category micro-calcifications had breast CT before biopsy. Three subjects with invasive disease at surgery were excluded. Two breast radiologists independently compared lesion conspicuity scores (CS) for CEbCT, to bCT and DM. Enhancement was measured in Hounsfield units (HU). Mean CS ± standard deviations are shown. Receiver operating characteristic analysis (ROC) measured radiologists’ discrimination performance by comparing CS to enhancement alone. Statistical measurements were made using ANOVA F-test, Wilcoxon rank-sum test and robust linear regression analyses. Results 39 lesions (17 DCIS, 22 benign) were analyzed. DCIS (8.5±0.9, n=17) was more conspicuous than benign micro-calcifications (3.6±2.9, n=22; p<0.0001) on CEbCT. DCIS was equally conspicuous on CEbCT and DM (8.5±0.9, 8.7±0.8, n=17; p=0.85) and more conspicuous when compared to bCT (5.3±2.6, n=17; p<0.001). All DCIS enhanced; mean enhancement (90HU ±53HU, n=17) was higher compared to benign lesions (33 ±30HU, n=22)(p<0.0001). ROC analysis of the radiologists’ CS showed high discrimination performance (AUC=0.94) compared to enhancement alone (AUC=0.85) (p<0.026). Conclusion DCIS is more conspicuous than benign micro-calcifications on CEbCT. DCIS visualization on CEbCT is equal to mammography but improved compared to bCT. Radiologists’ discrimination performance using CEBCT is significantly higher than enhancement values alone. CEbCT may have an advantage over mammography by reducing false positive examinations when calcifications are analyzed. PMID:26520874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dong; Pan, Jie; Zhu, Xiaojing
2011-02-15
Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Dong; Zhu, Xi; Li, Jian
2015-05-28
High-index dielectric and semiconductor nanoparticles with the characteristics of low absorption loss and strong scattering have attracted more and more attention for improving performance of thin-film photovoltaic devices. In this paper, we focus our attention on InP nanoparticles and study the influence of the substrate and the geometrical configurations on their scattering properties. We demonstrate that, compared with the InP sphere, the InP cylinder has higher coupling efficiency due to the stronger interactions between the optical mode in the nanoparticle and its induced mirror image in the substrate. Moreover, we propose novel thin-film InGaAs photodetectors integrated with the periodically arrangedmore » InP nanoparticles on the substrate. Broadband light absorption enhancement is achieved over the wavelength range between 1.0 μm and 1.7 μm. The highest average absorption enhancement of 59.7% is realized for the photodetector with the optimized cylinder InP nanoparticles. These outstanding characteristics attribute to the preferentially forward scattering of single InP nanoparticle along with the effective coupling of incident light into the guided modes through the collective diffraction effect of InP nanoparticles array.« less
Tao, Wei; Zheng, Hai-Qun; Fu, Ting; He, Zhuo-Jing; Hong, Yan
2017-08-03
Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4 + CD8 - T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.
Kim, Jimyung; Delfyett, Peter J
2009-12-07
The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.
Meng, Fanying; Li, Xuemei; Duan, Yixiang
2014-01-01
A novel microplasma generator based on ceramic chips has been developed and coupled with optical emission spectrometry through orthogonal detection. Stable microplasma was generated between two electrodes in the ingroove discharge chamber and the optical fiber was set in perpendicular to the gas outlet to collect emitted light. The emission signal of CN is surprisingly enhanced by reacting carbon-containing species with back-diffusion nitrogen from open air, and the enhanced CN signal is successfully applied to sensitively detect organic compounds for the first time. This article focuses to study the structural characteristic and the signal enhancement mechanism through back-diffusion reaction. Several organic compounds were detected directly with the limits of detection down to ppb level. Besides, the advantages of low energy consumption and the chip-based discharge chamber show great potential to be applied in portable devices. This development may lead to a new way for the sensitive detection of organic compounds. PMID:24763181
CFD Analysis of Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Drummond, J. Philip; Baurle, Robert A.
2016-01-01
CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.
Mentoring Clinical-Year Medical Students: Factors Contributing to Effective Mentoring
Fallatah, Hind I; Soo Park, Yoon; Farsi, Jamila; Tekian, Ara
2018-01-01
Theory: Academic mentoring is an effective method of enhancing undergraduate medical student academic performance, research productivity, career planning, and overall satisfaction. Hypotheses: This study investigates the relationship between mentor characteristics and mentee academic performance, with an emphasis on identifying students who need special support. Methods: A cross-sectional study was conducted among fourth-year medical students at King Abdulaziz University Faculty of Medicine undertaking the clinical skills module (CSM) rotation. Mentors included senior and junior faculty members from the Department of Internal Medicine and the Department of Family Medicine. King Abdulaziz University Faculty of Medicine assigned 1 mentor for every 10 medical students. We organized our mentoring program in the following format: (1) an initial group meeting (mentor with all 10 medical students) and (2) subsequent one-on-one meetings (mentor with each mentee alone). We assessed mentor characteristics, student academic performance and satisfaction, and the rate of mentees referred for special support. Results: A total of 184 students completed the CSM rotation. Among these, 90 students responded to the preprogram survey, with 83% reporting that mentoring was important to them. Group meetings and one-on-one meetings were attended by 60% and 49% of all students, respectively. The most frequent type of support required by the participating students was psychological support (12% of mentees). Participation in the mentoring program had no significant effect on student academic performance. Mentor seniority (P = .024) and motivation (P = .002) were significantly associated with the rate of student referral for special support. Conclusions: This study demonstrated that academic mentoring can be effective in enhancing student outcomes and promoting special support for students. Moreover, mentor and mentee motivation were found to be essential elements of a successful mentoring program. PMID:29497707
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-01-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467
Li, Suyun; Yang, Xue; Zhang, Yanyan; Ma, Haile; Qu, Wenjuan; Ye, Xiaofei; Muatasim, Rahma; Oladejo, Ayobami Olayemi
2016-07-01
This research investigated the structural characteristics and enzymolysis kinetics of rice protein which was pretreated by energy-gathered ultrasound and ultrasound assisted alkali. The structural characteristics of rice protein before and after the pretreatment were performed with surface hydrophobicity and Fourier transform infrared (FTIR). There was an increase in the intensity of fluorescence spectrum and changes in functional groups after the pretreatment on rice protein compared with the control (without ultrasound and ultrasound assisted alkali processed), thus significantly enhancing efficiency of the enzymatic hydrolysis. A simplified kinetic equation for the enzymolysis model with the impeded reaction of enzyme was deduced to successfully describe the enzymatic hydrolysis of rice protein by different pretreatments. The initial observed rate constants (Kin,0) as well as ineffective coefficients (kimp) were proposed and obtained based on the experimental observation. The results showed that the parameter of kin,0 increased after ultrasound and ultrasound assisted alkali pretreatments, which proved the effects of the pretreatments on the substrate enhancing the enzymolysis process and had relation to the structure changes of the pretreatments on the substrate. Furthermore, the applicability of the simplified model was demonstrated by the enzymatic hydrolysis process for other materials. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-12-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field.
Physician Perceptions of Performance Feedback in a Quality Improvement Activity.
Eden, Aimee R; Hansen, Elizabeth; Hagen, Michael D; Peterson, Lars E
Physician performance and peer comparison feedback can affect physician care quality and patient outcomes. This study aimed to understand family physician perspectives of the value of performance feedback in quality improvement (QI) activities. This study analyzed American Board of Family Medicine open-ended survey data collected between 2004 and 2014 from physicians who completed a QI module that provided pre- and post-QI project individual performance data and peer comparisons. Physicians made 3480 comments in response to a question about this performance feedback, which were generally positive in nature (86%). Main themes that emerged were importance of accurate feedback data, enhanced detail in the content of feedback, and ability to customize peer comparison groups to compare performance to peers with similar patient populations or practice characteristics. Meaningful and tailored performance feedback may be an important tool for physicians to improve their care quality and should be considered an integral part of QI project design.
NASA Astrophysics Data System (ADS)
Zhu, Na
This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.
Shen, Xuejiao; Yi, Dan; Ni, Xueqin; Zeng, Dong; Jing, Bo; Lei, Mingxia; Bian, Zhengrong; Zeng, Yan; Li, Tao; Xin, Jinge
2014-04-01
Examples of probiotics that can promote host health by improving its intestinal microbial balance and intestinal immunity belong to the genus Lactobacillus. Bursin (BS) is a peptide isolated from the bursa of Fabricius for use as an adjuvant for a variety of immunogens. To investigate the synergistic effects of Lactobacillus plantarum (LP) dietary supplementation and BS immunization on production performance, immune characteristics, antioxidant status, and intestinal microflora in broilers, we randomly allocated 200 1-day-old broilers of mixed sex into 4 treatments in a 2 × 2 factorial arrangement (LP-/BS-, LP-/BS+, LP+/BS-, LP+/BS+) for 42 days. BS immunization enhanced immune response by increasing serum total immunoglobulin G concentration and interleukin-6 concentration, promoted antioxidant capacity by increasing catalase activities in serum and liver and by decreasing serum malondialdehyde (MDA) content at 42 days of age (DOA), and enriched intestinal microflora diversity. LP supplementation enhanced immune response by increasing interleukin-2 concentration at 42 DOA; promoted antioxidant capacity by increasing liver catalase activities, increasing glutathione peroxidase activities in serum and liver at 21 DOA, and decreasing serum MDA content at 42 DOA; promoted intestinal microflora composition by decreasing total aerobes and Escherichia coli counts at 21 DOA, by increasing total anaerobes count at 21 DOA, and by increasing Lactobacillus spp. and Bifidobacterium spp. counts at both 21 and 42 DOA. The interactions between BS and LP had a significant effect on daily body mass gain and feed conversion ratio in the starter period (1-21 DOA); on interleukin-2 concentration and liver MDA content at 21 DOA; and on thymus index, peripheral lymphocyte proliferation, and E. coli counts at 42 DOA. Overall, these data suggest that the combination of LP dietary supplementation and BS immunization promoted the production performance, immune characteristics, antioxidant status, and intestinal microflora of broilers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushima, Toshinori, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Adachi, Chihaya, E-mail: tmatusim@opera.kyushu-u.ac.jp, E-mail: adachi@cstf.kyushu-u.ac.jp; Japan Science and Technology Agency
2014-12-15
Spatial gaps between grains and other grains, substrates, or electrodes in organic electronic devices are one of the causes of the reduction in the electrical characteristics. In this study, we demonstrate that cold isostatic pressing (CIP) is an effective method to crush the gaps and enhance the electrical characteristics. CIP of metal-free phthalocyanine (H{sub 2}PC) films induced a decrease in the film thickness by 34%–40% because of the gap crush. The connection of smaller grains into a larger grain and planarization of the film surface were also observed in the CIP film. The crystal axes of the H{sub 2}PC crystallitesmore » were rearranged from the a-axis to the c-axis of the α-phase crystal structure in a direction perpendicular to the substrate by CIP, indicating favorable hole injection and transport in this direction because of a better overlap of π orbitals. Thermally stimulated current measurements showed that deep hole traps disappeared and the total hole-trap density decreased after CIP. These CIP-induced changes of the film thicknesses, crystal axes and the hole traps lead to a marked increase in the hole mobility of the H{sub 2}PC films from 2.0 × 10{sup −7} to 4.0 × 10{sup −4} cm{sup 2}/V s by 2000 times in the perpendicular direction. We believe that these findings are important for unveiling the underlying carrier injection and transport mechanisms of organic films and for enhancing the performance of future organic electronic devices.« less
Veroniki, Areti Angeliki; Straus, Sharon E; Ashoor, Huda M; Hamid, Jemila S; Hemmelgarn, Brenda R; Holroyd-Leduc, Jayna; Majumdar, Sumit R; McAuley, Glenn; Tricco, Andrea C
2016-01-01
Introduction Alzheimer's dementia (AD) is the most common cause of dementia, and several organisations, such as the National Institute for Health and Care Excellence, suggest that management of patients with AD should be tailored to their needs. To date, little research has been conducted on the treatment effect in different subgroups of patients with AD. The aim of this study is to examine the comparative effectiveness and safety of cognitive enhancers for different patient characteristics. Methods and analysis We will update our previous literature search from January 2015 forward, using the same terms and electronic databases (eg, MEDLINE) from our previous review. We will additionally search grey literature and scan the reference lists of the included studies. Randomised clinical trials of any duration conducted at any time comparing cognitive enhancers alone or in any combination against other cognitive enhancers, or placebo in adults with AD will be eligible. The outcomes of interest are cognition according to the Mini-Mental State Examination, and overall serious adverse events. For each outcome and treatment comparison, we will perform a Bayesian hierarchical random-effects meta-analysis combining the individual patient data (IPD) from each eligible study. If the identified treatment comparisons form a connected network diagram, we will perform an IPD network meta-analysis (NMA) to estimate subgroup effects for patients with different characteristics, such as AD severity and sex. We will combine aggregated data from studies that we will not be able to obtain IPD, with the IPD provided by the original authors, in a single model. We will use the PRISMA-IPD and PRISMA-NMA statements to report our findings. Ethics and dissemination The findings of this study will be of interest to stakeholders, including decision makers, guideline developers, clinicians, methodologists and patients, and they will help to improve guidelines for the management of patients with AD. Trial registration number CRD42015023507. PMID:26769792
Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; ...
2016-11-07
Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. We demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co 3 O 4 /Co(OH) 2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. Furthermore, these films comprise compact and continuous nanocrystalline Co 3 O 4more » spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH) 2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p + n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.« less
Color constancy: enhancing von Kries adaption via sensor transformations
NASA Astrophysics Data System (ADS)
Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.
1993-09-01
Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.
Misselhorn, Jonas; Daume, Jonathan; Engel, Andreas K; Friese, Uwe
2016-07-29
A novel crossmodal matching paradigm including vision, audition, and somatosensation was developed in order to investigate the interaction between attention and crossmodal congruence in multisensory integration. To that end, all three modalities were stimulated concurrently while a bimodal focus was defined blockwise. Congruence between stimulus intensity changes in the attended modalities had to be evaluated. We found that crossmodal congruence improved performance if both, the attended modalities and the task-irrelevant distractor were congruent. If the attended modalities were incongruent, the distractor impaired performance due to its congruence relation to one of the attended modalities. Between attentional conditions, magnitudes of crossmodal enhancement or impairment differed. Largest crossmodal effects were seen in visual-tactile matching, intermediate effects for audio-visual and smallest effects for audio-tactile matching. We conclude that differences in crossmodal matching likely reflect characteristics of multisensory neural network architecture. We discuss our results with respect to the timing of perceptual processing and state hypotheses for future physiological studies. Finally, etiological questions are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recognition of surgical skills using hidden Markov models
NASA Astrophysics Data System (ADS)
Speidel, Stefanie; Zentek, Tom; Sudra, Gunther; Gehrig, Tobias; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger
2009-02-01
Minimally invasive surgery is a highly complex medical discipline and can be regarded as a major breakthrough in surgical technique. A minimally invasive intervention requires enhanced motor skills to deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To recognize and analyze the current situation for context-aware assistance, we need intraoperative sensor data and a model of the intervention. Characteristics of a situation are the performed activity, the used instruments, the surgical objects and the anatomical structures. Important information about the surgical activity can be acquired by recognizing the surgical gesture performed. Surgical gestures in minimally invasive surgery like cutting, knot-tying or suturing are here referred to as surgical skills. We use the motion data from the endoscopic instruments to classify and analyze the performed skill and even use it for skill evaluation in a training scenario. The system uses Hidden Markov Models (HMM) to model and recognize a specific surgical skill like knot-tying or suturing with an average recognition rate of 92%.
Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix
NASA Astrophysics Data System (ADS)
Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed
2017-09-01
The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.
Prevedello, Luciano M; Erdal, Barbaros S; Ryu, John L; Little, Kevin J; Demirer, Mutlu; Qian, Songyue; White, Richard D
2017-12-01
Purpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images. Examinations were processed by using a convolutional neural network (deep learning) using two different window and level configurations (brain window and stroke window). AI algorithm performance was tested on a separate dataset containing 50 examinations with HMH findings, 15 with SAI findings, and 35 with noncritical findings. Results Final algorithm performance for HMH showed 90% (45 of 50) sensitivity (95% confidence interval [CI]: 78%, 97%) and 85% (68 of 80) specificity (95% CI: 76%, 92%), with area under the receiver operating characteristic curve (AUC) of 0.91 with the brain window. For SAI, the best performance was achieved with the stroke window showing 62% (13 of 21) sensitivity (95% CI: 38%, 82%) and 96% (27 of 28) specificity (95% CI: 82%, 100%), with AUC of 0.81. Conclusion AI using deep learning demonstrates promise for detecting critical findings at noncontrast-enhanced head CT. A dedicated algorithm was required to detect SAI. Detection of SAI showed lower sensitivity in comparison to detection of HMH, but showed reasonable performance. Findings support further investigation of the algorithm in a controlled and prospective clinical setting to determine whether it can independently screen noncontrast-enhanced head CT examinations and notify the interpreting radiologist of critical findings. © RSNA, 2017 Online supplemental material is available for this article.
Zhou, Aijuan; Zhang, Jiaguang; Wen, Kaili; Liu, Zhihong; Wang, Guoying; Liu, Wenzong; Wang, Aijie; Yue, Xiuping
2016-01-01
Volatile fatty acids (VFAs) production from waste activated sludge (WAS) digestion is constrained by unbalanced nutrient composition (low carbon-to-nitrogen ratio). Characteristics conditioning by extra carbon sources, normally in the mixture of raw solid, has been reported to be an efficient approach to enhance WAS acidification. However, little attention has been paid to the contributions of other adjustment forms. Moreover, the corresponding ecological estimation has not been investigated yet. In this study, the feasibility of corn stover (CS) conditioning with three adjustment forms [pretreated straw (S), hydrolysate (H) and hydrolysate + straw (HS)] in improving VFAs production from WAS was demonstrated. It was observed that the highest VFAs yield was achieved in H co-digesting test (574 mg COD/g VSS), while it was only 392 mg COD/g VSS for WAS digesting alone. VFAs composition was strongly adjustment form-dependent, as more acetic (HAc) and propionic (HPr) acids were generated in CS_HS and S, respectively. High-throughput sequencing analysis illustrated that acid (especially HAc)-producing characteristic genera ( Bacteroides , Proteiniclasticum and Fluviicola ) and HPr-producing characteristic genera ( Mangroviflexu s and Paludibacter ) were detected by CS_HS and S conditioning, respectively. Corn stover conditioning greatly upgraded the WAS acidification performance, especially for the CS_H adjustment form, and the VFAs yield gained was considerably larger than that previously reported. CS adjustment forms played an important role in structuring the innate microbial community in WAS. Canonical correlation analysis illustrated that characteristic genera, with better hydrolysis and acidification abilities, could be enriched by the feedstocks with certain content of cellulose, hemicellulose or their saccharification hydrolysates. Moreover, ecological estimation revealed that, as far as the entire CS (including S and H) per acre was concerned, the capacity of WAS treatment would reach that produced in a one million mts capacity wastewater treatment plants (WWTPs) per day. These findings may have crucial implications for the operation of WWTPs.
Muscle dysmorphia: risk may be influenced by goals of the weightlifter.
Skemp, Karen M; Mikat, Richard P; Schenck, Kyle P; Kramer, Natalie A
2013-09-01
Athletes with muscle dysmorphia suffer from constant dissatisfaction with body size and shape because they perceive themselves as smaller and less muscular than they actually are. There may be discrepancies among the various subgroups within the weightlifting community in regards to vulnerability and susceptibility to the development of MD. The purpose of this study, therefore, was to examine and compare MD symptomology between male and female, competitive and noncompetitive, and appearance-related and performance-related weightlifters. The MD assessments were made with the muscle dysmorphia inventory (MDI). The participants included 85 competitive (55 men and 30 women) and 48 noncompetitive (24 men and 24 women) weight training athletes. Each group included athletes with a primary focus on appearance enhancement or performance enhancement. Factorial analyses of variance were used to measure differences between each group on all MDI subscales. The results showed that men scored significantly higher than did women on the supplement (p = 0.006), physique protection (p = 0.039), and body size and symmetry subscales (p < 0.001). Competitive athletes scored significantly higher than noncompetitive athletes did on diet (p < 0.001), supplement (p < 0.001), exercise dependence (p < 0.001), and body size and symmetry (p = 0.002) subscales. Finally, the athletes focused on appearance enhancement scored significantly higher than athletes focused on performance enhancement on all 6 subscales (p < 0.01). Coaches and health and fitness professionals should understand that the goals of athletes in regard to weight training can influence susceptibility to development of MD symptoms. Knowing that athletes who engage in weight training to enhance appearance may exhibit greater behavioral characteristics than those athletes who do not may be helpful so they may be able to identify, prevent, and reverse MD in the athletes they serve.
Server, Andrés; Orheim, Tone E Døli; Graff, Bjørn A; Josefsen, Roger; Kumar, Theresa; Nakstad, Per H
2011-05-01
Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region.
NASA Technical Reports Server (NTRS)
Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.
1987-01-01
A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.
NASA Astrophysics Data System (ADS)
Mallikarjunarao; Ranjan, Rajeev; Pradhan, K. P.; Artola, L.; Sahu, P. K.
2016-09-01
In this paper, a novel N-channel Tunnel Field Effect Transistor (TFET) i.e., Trigate Silicon-ON-Insulator (SOI) N-TFET with high-k spacer is proposed for better Sub-threshold swing (SS) and OFF-state current (IOFF) by keeping in mind the sensitivity towards temperature. The proposed model can achieve a Sub-threshold swing less than 35 mV/decade at various temperatures, which is desirable for designing low power CTFET for digital circuit applications. In N-TFET source doping has a significant effect on the ON-state current (ION) level; therefore more electrons will tunnel from source to channel region. High-k Spacer i.e., HfO2 is used to enhance the device performance and also it avoids overlapping of transistors in an integrated circuits (IC's). We have designed a reliable device by performing the temperature analysis on Transfer characteristics, Drain characteristics and also on various performance metrics like ON-state current (ION), OFF-state current (IOFF), ION/IOFF, Trans-conductance (gm), Trans-conductance Generation Factor (TGF), Sub-threshold Swing (SS) to observe the applications towards harsh temperature environment.
Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster
NASA Technical Reports Server (NTRS)
Ryan, Richard M.; Rothschild, William J.; Christensen, David L.
1998-01-01
The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.
Xun, Ma; Jianqiang, Yuan; Hongwei, Liu; Hongtao, Li; Lingyun, Wang; Ping, Jiang
2016-06-01
The industrial x-ray diode with high impedance configuration is usually adopted to generate repetitive x-ray, but its performance would be worsened due to lower electric field on the cathode of diode when a voltage of several hundreds of kV is applied. To improve its performance, a novel metal-ceramic cathode is proposed in this paper. Key factors (width, relative permittivity of ceramic, and so on) affecting electric field distribution on triple points are analyzed by electrostatic field calculation program, so as to optimize the design of this novel cathode. Experiments are done to study the characteristics including emission current of cathode, diode voltage duration, diode mean dynamic impedance, and diode impedance drop velocity within diode power duration. The results show that metal-ceramic cathode could improve diode performance by enhancing emission current and stabling impedance; the impedance drop velocity of diode with spoke-shaped metal-ceramic cathode was reduced to -5 Ω ns(-1) within diode power duration, comparing to -15 Ω ns(-1) with metal foil cathode.
Effect of anode position on the performance characteristics of a low-power cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Gao, Yuanyuan; Liu, Hui; Hu, Peng; Huang, Hongyan; Yu, Daren
2017-06-01
In this paper, the design of a new cylindrical Hall thruster (CHT) is presented. Its anode is separated from the gas distributor, which is made of ceramic. The effect of the anode position on the performance characteristics of the CHT was investigated by mounting a series of anodes with different radii inside the CHT. It is found that progressively positioning the anode away from the axis along the radial direction increases the ion current and reduces the electron current. Meanwhile, the peak energy in the ion energy distribution function increases, and the shape of the ion energy distribution function noticeably narrows; the ion beam in the plume converges. It is suggested that moving the anode away from the axis may strengthen the electron confinement, thus optimizing the ionization efficiency. Additionally, the electric field near the anode appears to deflect toward the axis, which may promote the collimation of the ion beam in the plume. As a result, the overall performance of the CHT is significantly enhanced in our proposed design.
Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing
2018-06-13
Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.
The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement
2012-01-01
This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909
MRI Texture Analysis of Background Parenchymal Enhancement of the Breast
Woo, Jun; Amano, Maki; Yanagisawa, Fumi; Yamamoto, Hiroshi; Tani, Mayumi
2017-01-01
Purpose The purpose of this study was to determine texture parameters reflecting the background parenchymal enhancement (BPE) of the breast, which were acquired using texture analysis (TA). Methods We investigated 52 breasts of the 26 subjects who underwent dynamic contrast-enhanced MRI. One experienced reader scored BPE visually (i.e., minimal, mild, moderate, and marked). TA, including 12 texture parameters, was performed to distinguish the BPE scores quantitatively. Relationships between the visual BPE scores and texture parameters were evaluated using analysis of variance and receiver operating characteristic analysis. Results The variance and skewness of signal intensity were useful for differentiating between moderate and mild or minimal BPE or between mild and minimal BPE, respectively, with the cutoff value of 356.7 for variance and that of 0.21 for skewness. Some TA features could be useful for defining breast lesions from the BPE. Conclusion TA may be useful for quantifying the BPE of the breast. PMID:28812015
Khorakian, Alireza; Sharifirad, Mohammad Sadegh
2018-01-01
The impact of implicit leadership theories on performance and the mechanism linking them have received insufficient theoretical and research attention. Drawing on Bandura's social cognitive theory, the present study contributes theory through examining the assertion that higher congruence between followers' implicit leadership theory and the characteristics of supervisors enhance job performance through higher quality of leader-member exchange and self-efficacy. Moreover, in the proposed model, attachment insecurity was considered as the antecedent of the congruence and leader-member exchange in addition to the moderator of the relationship between them. Capitalizing upon Structural Equation Modeling (SEM), this study tested the model in a field study using a sample of employees in knowledge-oriented firms in Iran. The results suggest that the congruence between followers' implicit leadership theory and the characteristics of supervisors does not directly impact performance and leader-member exchange and self-efficacy are the full mediators. The results also showed that attachment insecurity is the predictor of neither the congruence nor the leader-member exchange. Additionally, attachment insecurity moderates the relationship between these two variables in a way that when attachment insecurity is high, the congruence has more positive impact on leader-member exchange.
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Kratovil, Patrick T.; Tucker, Sara C.; Vallestero, Neil J.; Khusid, Mark
2004-01-01
A free-space, line-of-sight, ground-based optical link at 1.5 microns is attractive for tactical communications because it would provide eye-safety, covertness and jam-proof operation. However, the effects of atmospheric turbulence have to be appropriately mitigated for achieving acceptable bit-error-rate (BER) for reliable dissemination of information. Models to predict achievable BER at 1.5 microns for several beam propagation schemes that include beam scanning have been developed for various turbulence conditions. In this paper, we report performance characterization of free-space, high-data (>1Gb/s) rate beam propagation parameters at 1.5 microns for achieving BER reduction under the presence of turbulence. For standard free-space optical links, the mean SNR limits the achievable BER to lesser than 10-6 for Cn2 (structure constant of refractive index fluctuations) around 10-12 m-2/3. To validate these models, simultaneous measurements of structure constant of refractive index fluctuations, Cn2, and coherence diameter over tactical ranges have been carried out and analyzed. The effect of input beam conditioning to reduce BER levels have been explored. Furthermore, single and multiple transmit beams in conjunction with single and multiple detector arrangements have been examined. Based on these measurements, it is shown that the advantages of input beam conditioning coupled with modified receiver geometric characteristics would provide a path for BER reduction and hence, appreciable enhancements in data link reliability.
NASA Astrophysics Data System (ADS)
Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.
1993-08-01
An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.
Characterisation of a grooved heat pipe with an anodised surface
NASA Astrophysics Data System (ADS)
Solomon, A. Brusly; Ram Kumar, A. M.; Ramachandran, K.; Pillai, B. C.; Senthil Kumar, C.; Sharifpur, Mohsen; Meyer, Josua P.
2017-03-01
A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°-90°, 25-250 W and 10-70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m2. The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.
NASA Astrophysics Data System (ADS)
Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.
2016-04-01
Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.
Gate-tunable transport characteristics of Bi2S3 nanowire transistors
NASA Astrophysics Data System (ADS)
Kilcoyne, Colin; Ali, Ahmed H.; Alsaqqa, Ali M.; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, Ganapathy
2018-02-01
Electrical transport and resistance noise spectroscopy measurements are performed on individual, single crystalline Bi2S3 nanowires in the field-effect geometry. The nanowires exhibit n-type conduction and device characteristics such as activation energy, ON/OFF ratio, and mobility are calculated over a temperature range of 120-320 K and at several bias values. The noise magnitude is measured between 0.01 and 5 Hz at several gate voltages as the device turns from it's OFF to ON state. The presence of mid-gap states which act as charge traps within the band gap can potentially explain the observed transport characteristics. Sulfur vacancies are the likely origin of these mid-gap states which makes Bi2S3 nanowires appealing for defect engineering as a means to enhance its optoelectronic properties and also to better understand the important role of defects in nanoscale semiconductors.
Quantitative Evaluation of 3 DBMS: ORACLE, SEED AND INGRES
NASA Technical Reports Server (NTRS)
Sylto, R.
1984-01-01
Characteristics required for NASA scientific data base management application are listed as well as performance testing objectives. Results obtained for the ORACLE, SEED, and INGRES packages are presented in charts. It is concluded that vendor packages can manage 130 megabytes of data at acceptable load and query rates. Performance tests varying data base designs and various data base management system parameters are valuable to applications for choosing packages and critical to designing effective data bases. An applications productivity increases with the use of data base management system because of enhanced capabilities such as a screen formatter, a reporter writer, and a data dictionary.
DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma
Sheffield, Nathan C; Pierron, Gaelle; Klughammer, Johanna; Datlinger, Paul; Schönegger, Andreas; Schuster, Michael; Hadler, Johanna; Surdez, Didier; Guillemot, Delphine; Lapouble, Eve; Freneaux, Paul; Champigneulle, Jacqueline; Bouvier, Raymonde; Walder, Diana; Ambros, Ingeborg M; Hutter, Caroline; Sorz, Eva; Amaral, Ana T; de Álava, Enrique; Schallmoser, Katharina; Strunk, Dirk; Rinner, Beate; Liegl-Atzwanger, Bernadette; Huppertz, Berthold; Leithner, Andreas; de Pinieux, Gonzague; Terrier, Philippe; Laurence, Valérie; Michon, Jean; Ladenstein, Ruth; Holter, Wolfgang; Windhager, Reinhard; Dirksen, Uta; Ambros, Peter F; Delattre, Olivier; Kovar, Heinrich; Bock, Christoph; Tomazou, Eleni M
2018-01-01
Developmental tumors in children and young adults carry few genetic alterations, yet they have diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in patients with metastatic disease. In summary, our study provides a comprehensive assessment of epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized medicine. PMID:28134926
Raastad, Olav; Aune, Tore Kristian; van den Tillaar, Roland
2016-10-01
The aim of this study was to investigate if making the skill acquisition phase more difficult or easier would enhance performance in soccer juggling, and if this practice has a positive intertask transfer effect to ball reception performance. Twenty-two adolescent soccer players were tested in juggling a soccer ball and in the control of an approaching ball at a pre, post and retention test. The participants were randomly divided in a small ball size and bigger ball size training group that both trained four times per week for 6 weeks. At the post and retention test both groups enhanced performance in soccer juggling test with no difference between groups and no increase in ball reception performance at these tests. It was concluded that about intra task transfer and retention of soccer juggling skills, it does not matter if you increase (small balls) or decrease the difficulty (larger balls) when using the same amount of practice time within the skill acquisition phase in soccer juggling. In addition that for ball juggling and ball reception (inter task) these two tasks differ too much in afferent information and movement characteristics that no positive transfer between these two skills no positive intertask transfer can be expected.
Heuer, Herbert; Hegele, Mathias
2010-12-01
Mechanical tools are transparent in the sense that their input-output relations can be derived from their perceptible characteristics. Modern technology creates more and more tools that lack mechanical transparency, such as in the control of the position of a cursor by means of a computer mouse or some other input device. We inquired whether an enhancement of transparency by means of presenting the shaft of a virtual sliding lever, which governed the transformation of hand position into cursor position, supports performance of aimed cursor movement and the acquisition of an internal model of the transformation in both younger and older adults. Enhanced transparency resulted in an improvement of visual closed-loop control in terms of movement time and curvature of cursor paths. The movement-time improvement was more pronounced at older working age than at younger working age, so that the enhancement of transparency can serve as a means to mitigate age-related declines in performance. Benefits for the acquisition of an internal model of the transformation and of explicit knowledge were absent. Thus, open-loop control in this task did not profit from enhanced mechanical transparency. These findings strongly suggest that environmental support of transparency of the effects of input devices on controlled systems might be a powerful tool to support older users. Enhanced transparency may also improve simulator-based training by increasing motivation, even if training benefits do not transfer to situations without enhanced transparency. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Forsyth, Jennifer K.; Bachman, Peter; Mathalon, Daniel H.; Roach, Brian J.; Asarnow, Robert F.
2015-01-01
Experience-dependent plasticity is a fundamental property of the brain. It is critical for everyday function, is impaired in a range of neurological and psychiatric disorders, and frequently depends on long-term potentiation (LTP). Preclinical studies suggest that augmenting N-methyl-d-aspartate receptor (NMDAR) signaling may promote experience-dependent plasticity; however, a lack of noninvasive methods has limited our ability to test this idea in humans until recently. We examined the effects of enhancing NMDAR signaling using d-cycloserine (DCS) on a recently developed LTP EEG paradigm that uses high-frequency visual stimulation (HFvS) to induce neural potentiation in visual cortex neurons, as well as on three cognitive tasks: a weather prediction task (WPT), an information integration task (IIT), and a n-back task. The WPT and IIT are learning tasks that require practice with feedback to reach optimal performance. The n-back assesses working memory. Healthy adults were randomized to receive DCS (100 mg; n = 32) or placebo (n = 33); groups were similar in IQ and demographic characteristics. Participants who received DCS showed enhanced potentiation of neural responses following repetitive HFvS, as well as enhanced performance on the WPT and IIT. Groups did not differ on the n-back. Augmenting NMDAR signaling using DCS therefore enhanced activity-dependent plasticity in human adults, as demonstrated by lasting enhancement of neural potentiation following repetitive HFvS and accelerated acquisition of two learning tasks. Results highlight the utility of considering cellular mechanisms underlying distinct cognitive functions when investigating potential cognitive enhancers. PMID:26621715
Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang
2018-02-27
To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.
Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data
Zhang, Nannan; Wu, Lifeng; Yang, Jing; Guan, Yong
2018-01-01
The bearing is the key component of rotating machinery, and its performance directly determines the reliability and safety of the system. Data-based bearing fault diagnosis has become a research hotspot. Naive Bayes (NB), which is based on independent presumption, is widely used in fault diagnosis. However, the bearing data are not completely independent, which reduces the performance of NB algorithms. In order to solve this problem, we propose a NB bearing fault diagnosis method based on enhanced independence of data. The method deals with data vector from two aspects: the attribute feature and the sample dimension. After processing, the classification limitation of NB is reduced by the independence hypothesis. First, we extract the statistical characteristics of the original signal of the bearings effectively. Then, the Decision Tree algorithm is used to select the important features of the time domain signal, and the low correlation features is selected. Next, the Selective Support Vector Machine (SSVM) is used to prune the dimension data and remove redundant vectors. Finally, we use NB to diagnose the fault with the low correlation data. The experimental results show that the independent enhancement of data is effective for bearing fault diagnosis. PMID:29401730
NASA Technical Reports Server (NTRS)
Stohlgren, Tom; Schnase, John; Morisette, Jeffrey; Most, Neal; Sheffner, Ed; Hutchinson, Charles; Drake, Sam; Van Leeuwen, Willem; Kaupp, Verne
2005-01-01
The National Institute of Invasive Species Science (NIISS), through collaboration with NASA's Goddard Space Flight Center (GSFC), recently began incorporating NASA observations and predictive modeling tools to fulfill its mission. These enhancements, labeled collectively as the Invasive Species Forecasting System (ISFS), are now in place in the NIISS in their initial state (V1.0). The ISFS is the primary decision support tool of the NIISS for the management and control of invasive species on Department of Interior and adjacent lands. The ISFS is the backbone for a unique information services line-of-business for the NIISS, and it provides the means for delivering advanced decision support capabilities to a wide range of management applications. This report describes the operational characteristics of the ISFS, a decision support tool of the United States Geological Survey (USGS). Recent enhancements to the performance of the ISFS, attained through the integration of observations, models, and systems engineering from the NASA are benchmarked; i.e., described quantitatively and evaluated in relation to the performance of the USGS system before incorporation of the NASA enhancements. This report benchmarks Version 1.0 of the ISFS.
Compact Deep-Space Optical Communications Transceiver
NASA Technical Reports Server (NTRS)
Roberts, W. Thomas; Charles, Jeffrey R.
2009-01-01
Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.
NASA Astrophysics Data System (ADS)
Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi
2017-08-01
We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2010-01-01
Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.
NASA Astrophysics Data System (ADS)
Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi
2017-10-01
The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.
Experimental Investigation of Supersonic Coplanar Jets within Ejectors
NASA Technical Reports Server (NTRS)
Papamoschou, Dimitri
2001-01-01
This experimental and theoretical work involved reduction of supersonic jet noise using Mach Wave Elimination (MWE), a method that suppresses noise by means of a gaseous layer that envelops the supersonic jet. Also explored was a new method for mixing enhancement in which an axial, secondary flow enhances mixing in a primary flow. The research is relevant to the advent of future supersonic transports that must adhere to the same take-off and landing restrictions as ordinary subsonic aircraft. To reduce noise, one needs to understand the fundamental fluid mechanics of the jet, namely its turbulent structure and mean-flow characteristics, and to perform high-quality noise measurements. The results generated are applicable to free jets as well as to jets within ejectors.
A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care
NASA Astrophysics Data System (ADS)
Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.
This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.
Exploration of Mars by Mariner 9 - Television sensors and image processing.
NASA Technical Reports Server (NTRS)
Cutts, J. A.
1973-01-01
Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.
Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y
2014-02-15
This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
Enhanced Logistics Intra-theater Support Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Groningen, Charles N.; Braun, Mary Duffy; Widing, Mary Ann
2004-01-27
Developed for use by Department of Defense deployment analysts to perform detailed Reception, Staging, Onward movement and Integration (RSO&I) analyses. ELIST requires: o Vehicle characteristics for ships, planes, trucks, railcars, buses, and helicopters. o Network (physical) characteristics defining the airport, seaport, road, rail, waterway and pipeline infrastructure available in a theater of operations. o Assets available for moving the personnel, equipment and supplies over the infrastructure network. o Movement requirements plan defining the deployment requirements of a military force. This includes defining each unit, its cargo (at various levels of resolution) , where it must move from and to, whatmore » modes it is required to travel by, and when it must be delivered through each phase of deployment.« less
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Whitcanack, Larry D.; Krause, Frederick C.; Hwang, Constanza; Bugga, Ratnakumar V.; Santee, Stuart; Puglia, Frank J.; Gitzendanner, Rob
2012-01-01
Many future NASA missions aimed at exploring the Moon and Mars require high specific energy rechargeable batteries that possess enhanced safety characteristics. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for HEV and PHEV automotive applications. In previous work focused upon evaluating various potential flame retardant additives1, triphenyl phosphate (TPP)2 was observed to have the most desirable attributes, including good life characteristics and resilience to high voltage operation. We have employed a number of approaches in the design of promising TPP-based electrolytes with improved safety, including: (a) varying the flame retardant additive (FRA) content (from 5 to 15%), (b) the use of fluorinated co-solvents, (c) the use of additives to improve compatibility, and (c) the use of ester co-solvents to decrease the viscosity and increase the conductivity. In recent work, we have demonstrated a number of these electrolyte formulations to be compatible with a number of chemistries, including: MCMB carbon-LiNi0.8Co0.2O2, graphite-LiNi0.8Co0.15Al0.05O2, Li-Li(Li0.17Ni 0.25 Mn 0.58 )O2, Li-LiNiCoMnO2 and graphite- LiNiCoMnO2.3,4 In the current study, we have demonstrated the performance of a number of TPP-containing electrolytes in 7 Ah prototype MCMB-LiNiCoO2 cells. We will describe the results of a number of performance tests, including: a) 100% DOD cycle life testing at various temperatures, b) discharge rate characterization as a function of temperature, c) charge rate characterization as a function of temperature, and d) impedance as a function of temperature. In addition to displaying good life characteristics, being comparable to baseline chemistries, a number of cells were observed to provide good performance over a wide temperature range.
Onjong, Hillary Adawo; Wangoh, John; Njage, Patrick Murigu Kamau
2014-10-01
Fish-processing plants still face food safety (FS) challenges worldwide despite the existence of several quality assurance standards and food safety management systems/s (FSMSs). This study assessed performance of FSMS in fish exporting sector considering pressure from the context in which they operate. A FSMS diagnostic tool with checklist was used to assess the context, FSMS, and FS output in 9 Kenyan fish exporting companies. Majority (67%) companies operated at moderate- to high-risk context but with an average performance in control and assurance activities. This situation could be insufficient to deal with ambiguity, uncertainty, and vulnerability issues in the context characteristics. Contextual risk posed by product characteristics (nature of raw materials) and chain environment characteristics was high. Risk posed by the chain environment characteristics, low power in supplier relationships, and low degree of authority in customer relationships was high. Lack of authority in relationship with suppliers would lead to high raw material risk situation. Even though cooling facilities, a key control activity, was at an advanced level, there was inadequate packaging intervention equipment which coupled with inadequate physical intervention equipment could lead to further weakened FSMS performance. For the fish companies to improve their FSMS to higher level and enhance predictability, they should base their FSMS on scientific information sources, historical results, and own experimental trials in their preventive, intervention, and monitoring systems. Specific suggestions are derived for improvements toward higher FSMS activity levels or lower risk levels in context characteristics. Weak areas in performance of control and assurance activities in export fish-processing sector already implementing current quality assurance guidelines and standards were studied taking into consideration contextual pressure wherein the companies operate. Important mitigation measures toward improved contextual risk, core assurance, and control activities irrespective of applied food safety management systems in fish industries were suggested. © 2014 Institute of Food Technologists®
Hayashi, Tatsuya; Saitoh, Satoshi; Fukuzawa, Kei; Tsuji, Yoshinori; Takahashi, Junji; Kawamura, Yusuke; Akuta, Norio; Kobayashi, Masahiro; Ikeda, Kenji; Fujii, Takeshi; Miyati, Tosiaki; Kumada, Hiromitsu
2017-09-15
Noninvasive liver fibrosis evaluation was performed in patients with nonalcoholic fatty liver disease (NAFLD). We used a quantitative method based on the hepatic volume acquired from gadoxetate disodium-enhanced (Gd-EOB-DTPA-enhanced) magnetic resonance imaging (MRI) for diagnosing advanced fibrosis in patients with NAFLD. A total of 130 patients who were diagnosed with NAFLD and underwent Gd-EOB-DTPA-enhanced MRI were retrospectively included. Histological data were available for 118 patients. Hepatic volumetric parameters, including the left hepatic lobe to right hepatic lobe volume ratio (L/R ratio), were measured. The usefulness of the L/R ratio for diagnosing fibrosis ≥F3-4 and F4 was assessed using the area under the receiver operating characteristic (AUROC) curve. Multiple regression analysis was performed to identify variables (age, body mass index, serum fibrosis markers, and histological features) that were associated with the L/R ratio. The L/R ratio demonstrated good performance in differentiating advanced fibrosis (AUROC, 0.80; 95% confidence interval, 0.72 to 0.88) from cirrhosis (AUROC, 0.87; 95% confidence interval, 0.75 to 0.99). Multiple regression analysis showed that only fibrosis was significantly associated with the L/R ratio (coefficient, 0.121; p<0.0001). The L/R ratio, which is not influenced by pathological parameters other than fibrosis, is useful for diagnosing cirrhosis in patients with NAFLD.
Herath, Nuradhika; Das, Sanjib; Keum, Jong K.; ...
2015-08-28
Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh 2) 2:PC 71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2more » nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. Lastly, the significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei
Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less
Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Okada, Tomohisa; Shibata, Toshiya; Togashi, Kaori
2009-05-01
To evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for superparamagnetic iron oxide (SPIO)-enhanced T2-weighted magnetic resonance (MR) imaging with respiratory compensation with the prospective acquisition correction (PACE) technique in the detection of hepatic lesions. The institutional human research committee approved this prospective study, and all patients provided written informed consent. Eighty-one patients (mean age, 58 years) underwent hepatic 1.5-T MR imaging. Fat-saturated T2-weighted turbo spin-echo images were acquired with the PACE technique and with and without the PROPELLER method after administration of SPIO. Images were qualitatively evaluated for image artifacts, depiction of liver edge and intrahepatic vessels, overall image quality, and presence of lesions. Three radiologists independently assessed these characteristics with a five-point confidence scale. Diagnostic performance was assessed with receiver operating characteristic (ROC) curve analysis. Quantitative analysis was conducted by measuring the liver signal-to-noise ratio (SNR) and the lesion-to-liver contrast-to-noise ratio (CNR). The Wilcoxon signed rank test and two-tailed Student t test were used, and P < .05 indicated a significant difference. MR imaging with the PROPELLER and PACE techniques resulted in significantly improved image quality, higher sensitivity, and greater area under the ROC curve for hepatic lesion detection than did MR imaging with the PACE technique alone (P < .001). The mean liver SNR and the lesion-to-liver CNR were higher with the PROPELLER technique than without it (P < .001). T2-weighted MR imaging with the PROPELLER and PACE technique and SPIO enhancement is a promising method with which to improve the detection of hepatic lesions. (c) RSNA, 2009.
Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.
Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice
2017-08-01
Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.
Surface modification of nanoporous anodic alumina photonic crystals for photocatalytic applications
NASA Astrophysics Data System (ADS)
Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel
2018-01-01
Herein, we report on the development of a rationally designed composite photocatalyst material by combining nanoporous anodic alumina-rugate filters (NAA-RFs) with photo-active layers of titanium dioxide (TiO2). NAA-RFs are synthesised by sinusoidal pulse anodisation and subsequently functionalised with TiO2 by sol-gel method to provide the photonic structures with photocatalytic properties. We demonstrate that the characteristic photonic stopband (PSB) of the surface-modified NAA-RFs can be precisely tuned across the UV-visible-NIR spectrum to enhance the photon-toelectron conversion of TiO2 by `slow photon effect'. We systematically investigate the effect of the anodisation parameters (i.e. anodisation period and pore widening time) on the position of the PSB of NAA-RFs as well as the photocatalytic performances displayed by these photonic crystal structures. When the edges of the PSB of surfacemodified NAA-RFs are positioned closely to the absorption peak of the model organic dye (i.e. methyl orange - MO), the photocatalytic performance of the system to degrade these molecules is enhanced under simulated solar light irradiation due to slow photon effect. Our investigation also reveals that the photocatalytic activity of surface-modified NAA-RFs is independent of slow photon effect and enhances with increasing period length (i.e. increasing anodisation period) of the photonic structures when there is no overlap between the PSB and the absorption peak of MO. This study therefore provides a rationale towards the photocatalytic enhancement of photonic crystals by a rational design of the PSB, creating new opportunities for the future development of high-performance photocatalysts.
[ERCP success after 72 hours of pre-cut].
Peñaloza-Ramírez, Arecio; Murillo-Arias, Andrés; Rodríguez-Mongui, Jaison; Carvajal-Flechas, Ricardo; Aponte-Ordoñez, Pedro
2018-01-01
Despite the advances of bile duct catheterization, its success is still not guaranteed. Few studies have been published regarding a second ERCP attempt, however those reports enhance the catheterization success Objective: To determine whether an ERCP performed 72 hours after a first precut papillotomy enhances the bile duct catheterization. A cohort study was performed including all patients that had ERCP with precut papilotomy without catheterization of the bile duct and 72 hours later were programmed to a new ERCP between September 2015 and September 2016. These patients did not have any distinctive characteristic such as age, gender or anatomy that were associated with the failure to catheterize the bile duct, compared to the general population. 16 patients were included with a mean age of 61,3 years (SD: 10,6), bile duct catheterization was successful in 14 cases. No complications presented after precut papilotomy. Both failures went to surgery. Our experience about an 87% successful bile duct catheterization, 72 hours after precut papillotomy allows us to suggest it as an alternative before considering surgery.
Does the S.D.E.P. increase performance?
NASA Astrophysics Data System (ADS)
Syltebo, Andy
2003-05-01
Through the guidance of the program, "Physical Systems," at The Evergreen State College in Olympia Washington, Andy Syltebo will be investigating how the Surface Drive Enhancement Project will affect the performance of a planing hull powered by surface drive propulsion. A radio controlled model boat of the forementioned design is the prototype vehicle used for experimentation and analysis. The idea of this project revolves around harnessing the energy in the water of a rooster tail ejected from the wake of a surface drive propeller of a boat with a planing hull design. The Surface Drive Enhancement Project (S.D.E.P. for short) is an angled set of adjustable platforms placed in the path of the rooster tail. Theoretically, it experiences the normal force of the water on its surface which, through conservation of momentum, distributes a force on the boat, with which the S.D.E.P. is attached, in both the upwards and forwards directions. This design will be tested and documented to see if it increases forward velocity without sacrificing handling characteristics.
MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chi; Xie, Xiuqiang; Anasori, Babak
Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less
NASA Astrophysics Data System (ADS)
Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.
2017-05-01
A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.
Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariyawansa, Gamini, E-mail: gamini.ariyawansa.2@us.af.mil; Reyner, Charles J.; Duran, Joshua M.
2016-07-11
Growth and characteristics of mid-wave infrared (MWIR) InGaAs/InAsSb strained layer superlattice (SLS) detectors are reported. InGaAs/InAsSb SLSs, identified as ternary SLSs, not only provide an extra degree of freedom for superlattice strain compensation but also show enhanced absorption properties compared to InAs/InAsSb SLSs. Utilizing In{sub 1-y}Ga{sub y}As/InAs{sub 0.65}Sb{sub 0.35} ternary SLSs (y = 0, 5, 10, and 20%) designed to have the same bandgap, a set of four unipolar detectors are investigated. These demonstrate an enhancement in the detector quantum efficiency due to the increased absorption coefficient. The detectors exhibit dark current performance within a factor of 10 of Rule 07 atmore » temperatures above 120 K, and external quantum efficiencies in the 15%–25% range. This work demonstrates ternary SLSs are a potential absorber material for future high performance MWIR detectors.« less
Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan
2016-12-01
In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.
MoS 2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries
Chen, Chi; Xie, Xiuqiang; Anasori, Babak; ...
2018-01-02
Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS 2-on-MXene heterostructures through in situ sulfidation of Mo 2TiC 2Tx MXene. The computational results show that MoS 2-on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render themore » as-prepared MoS 2-on-MXene heterostructures stable Li-ion storage performance. In conclusion, this work paves the way to use MXene to construct 2D heterostructures for energy storage applications.« less
Minimalist Running Shoes and Injury Risk Among United States Army Soldiers.
Grier, Tyson; Canham-Chervak, Michelle; Bushman, Timothy; Anderson, Morgan; North, William; Jones, Bruce H
2016-06-01
Minimalist running shoes (MRS) are lightweight, are extremely flexible, and have little to no cushioning. It has been thought that MRS will enhance running performance and decrease injury risk. To compare physical characteristics, fitness performance, and injury risks associated with soldiers wearing MRS and those wearing traditional running shoes (TRS). Case series; Level of evidence, 4. Participants were men in a United States Army brigade (N = 1332). Physical characteristics and Army Physical Fitness Test data were obtained by survey. Fitness performance testing was administered at the brigade, and the types of footwear worn were identified by visual inspection. Shoe types were categorized into 2 groups: TRS (stability, cushioning, and motion control) and MRS. Injuries from the previous 12 months were obtained from the Defense Medical Surveillance System. A t test was used to determine mean differences between personal characteristics, training, and fitness performance metrics by shoe type. Hazard ratios and 95% CIs were calculated to determine injury risk by shoe type, controlling for other risk factors. A majority of soldiers wore cushioning shoes (57%), followed by stability shoes (24%), MRS (17%), and motion control shoes (2%). Soldiers wearing MRS were slightly younger than those wearing TRS (P < .01); performed more push-ups, sit-ups, and pull-ups (P < .01); and ran faster during the 2-mile run (P = .01). When other risk factors were controlled, there was no difference in injury risk for running shoe type between soldiers wearing MRS compared with TRS. Soldiers who chose to wear MRS were younger and had higher physical performance scores compared with soldiers wearing TRS. When these differences are controlled, use of MRS does not appear to be associated with higher or lower injury risk in this population. © 2016 The Author(s).
Glazier, Richard H.; Klein-Geltink, Julie; Kopp, Alexander; Sibley, Lyn M.
2009-01-01
Background Primary care reform in Ontario, Canada, included the initiation of a blended capitation model in 2001–2002 and an enhanced fee-for-service model in 2003. Both models involve patient rostering, incentives for preventive care and requirements for after-hours care. We evaluated practice characteristics and patterns of care under both models. Methods Using administrative data, we identified physicians belonging to either the capitation or the enhanced fee-for-service group throughout the period from Sept. 1, 2005, to Aug. 31, 2006, and their enrolled patients. Practices were stratified by location (urban v. rural). We compared the groups in terms of practice characteristics and patterns of care, including comprehensiveness of care, continuity of care, after-hours care, visits to the emergency department and uptake of new patients. Results Patients in the capitation and enhanced fee-for-service practices had similar demographic characteristics. Patients in capitation practices had lower morbidity and comorbidity indices. Comprehensiveness and continuity of care were similar between the 2 groups. Compared with patients in enhanced fee-for-service practices, those in capitation practices had less after-hours care (adjusted rate ratio [RR] 0.68, 95% confidence interval [CI] 0.61–0.75) and more visits to emergency departments (adjusted RR 1.20, 95% CI 1.15–1.25). Overall, physicians in the capitation group enrolled fewer new patients than did physicians in the enhanced fee-for-service group (37.0 v. 52.0 per physician); the same was true of new graduates (60.3 v. 72.1 per physician). Interpretation Physicians enrolled in the capitation model had different practice characteristics than those in the enhanced fee-for-service model. These characteristics appeared to be pre-existing and not due to enrolment in a new model. Although the capitation model provides an alternative to fee-for-service practice, its characteristics should be the focus of future policy development and research. PMID:19468106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Steve; Nam, Ji Hyun; Koo, Ja Hoon
2015-03-09
We demonstrate a technique to convert p-type single-walled carbon nanotube (SWNT) network transistor into ambipolar transistor by thermally evaporating C{sub 60} on top. The addition of C{sub 60} was observed to have two effects in enhancing ambipolar characteristics. First, C{sub 60} served as an encapsulating layer that enhanced the ambipolar characteristics of SWNTs. Second, C{sub 60} itself served as an electron transporting layer that contributed to the n-type conduction. Such a dual effect enables effective conversion of p-type into ambipolar characteristics. We have fabricated inverters using our SWNT/C{sub 60} ambipolar transistors with gain as high as 24, along with adaptivemore » NAND and NOR logic gates.« less
Zhang, Lina; Zhuang, Ling; Shi, Chang; Miao, Yanwei; Zhang, Weisheng; Song, Qingwei; Kang, Jianyun; Lang, Zhijin; Xin, Xuegang; Liu, Ailian; Hu, Jiani
2017-08-07
Solid papillary carcinoma (SPC) is a rare variant of breast papillary carcinoma with unique pathological morphology and biological behavior. There is only one case report on T 1 -MRI of SPC. In this study, we report our findings on this new category of papillary carcinoma to fill the gap in MRI characterization of SPC. This retrospective study included four pathology-confirmed in situ SPC patients. Conventional MRI, diffusion weighted imaging (DWI), and magnetic resonance spectroscopy (MRS) were performed with a 1.5 T whole-body MR scanner before surgical operation. The following characteristics of each lesion were recorded: signal intensity on T 2 WI/STIR and T 1 FSPGR, morphology, maximum lesion size, and time intensity curve (TIC) on dynamic contrast enhancement MRI (DCE-MRI), apparent diffusion coefficient (ADC) value from DWI, and Cho peak from MRS. Signal intensities of all lesions were heterogenous on T 2 WI/STIR and T 1 FSPGR. Mass enhancements were observed for all lesions with either oval or irregular shapes on DCE-MRI. The maximum lesion size ranged from 0.8 cm to 3.2 cm. All lesion margins were circumscribed, and internal enhancements were homogeneous or heterogeneous from DCE-MRI. TIC appeared with a rapid increase in initial contrast phases of all lesions. All lesions on DWI (b = 1000s/mm 2 ) were slightly hyperintense with an ADC value range of 1.3 × 10 -3 mm 2 /s to 1.9 × 10 -3 mm 2 /s. Cho peak was absent at 3.2 ppm for all lesions. MRI characteristics of SPC include heterogeneous signal intensity within the lesion on T 2 WI/STIR and T 1 FSPGR, mass enhancement with circumscribed margins, either oval or irregular shapes, and a rapid initial enhancement of TIC on DCE-MRI. ADC values and the absence of Cho peak may provide valuable information to distinguish SPC from other invasive breast carcinomas.
Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang
2011-05-01
It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P < 0.01), and ultrasonic destruction PESDA resulted in more significant gene expression than ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into cardiac myocytes, and the gene tranfection is related to the characteristics of microbubbles.
NASA Astrophysics Data System (ADS)
Pyo, Ju-Young; Cho, Won-Ju
2017-09-01
In this paper, we propose an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with off-planed source/drain electrodes. We applied different metals for the source/drain electrodes with Ni and Ti to control the work function as high and low. When we measured the configuration of Ni to drain and source to Ti, the a-IGZO TFT showed increased driving current, decreased leakage current, a high on/off current ratio, low subthreshold swing, and high mobility. In addition, we conducted a reliability test with a gate bias stress test at various temperatures. The results of the reliability test showed the Ni drain and Ti drain had an equivalent effective energy barrier height. Thus, we confirmed that the proposed off-planed structure improved the electrical characteristics of the fabricated devices without any degradation of characteristics. Through the a-IGZO TFT with different source/drain electrode metal engineering, we realized high-performance TFTs for next-generation display devices.
Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach.
de Marco, Bianca Aparecida; Natori, Jéssica Sayuri Hisano; Fanelli, Stefany; Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes
2017-05-04
Bacterial infections are the second leading cause of global mortality. Considering this fact, it is extremely important studying the antimicrobial agents. Amoxicillin is an antimicrobial agent that belongs to the class of penicillins; it has bactericidal activity and is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this penicillin, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. Thus, this study presents a brief literature review on amoxicillin and the analytical methods developed for the analysis of this drug in official and scientific papers. The major analytical methods found were high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (U-HPLC), capillary electrophoresis and iodometry and diffuse reflectance infrared Fourier transform. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques to provide enhanced benefits to environment and staff.
Assessment of Thermal Performance of Functionally Graded Materials in Longitudinal Fins
NASA Astrophysics Data System (ADS)
Hassanzadeh, R.; Bilgili, M.
2018-01-01
Assessment of the thermal characteristics of materials in heat exchangers with longitudinal fins is performed in the case where a conventional homogeneous material of a longitudinal fin is replaced by a functionally graded one, in which the fin material properties, such as the conductivity, are assumed to be graded as linear and power-law functions along the normal axis from the fin base to the fin tip. The resulting equations are calculated under two (Dirichlet and Neumann) boundary conditions. The equations are solved by an approximate analytical method with the use of the mean value theorem. The results show that the inhomogeneity index of a functionally graded material plays an important role for the thermal energy characteristics in such heat exchangers. In addition, it is observed that the use of such a material in longitudinal fins enhances the rate of heat transfer between the fin surface and surrounding fluid. Hopefully, the results obtained in the study will arouse interest of designers in heat exchange industry.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
NASA Astrophysics Data System (ADS)
Hsu, Chao-Hsin; Chu, Cheng-Hsun; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Tsiang, Raymond Chien-Chao; Wang, Hsiang-Chen
2016-03-01
We have demonstrated a Cu2O/ZnO nanorods (NRs) array p-n heterostructures photoelectrochemical biosensor. The electrodeposition of Cu2O at pH 12 acquired the preferably (111) lattice planes, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. High verticality ZnO nanorods by seed layer and thermal annealing assist the hydrothermal growth. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of four strains of different races and different degree of cancer cell which made the device self-powered. We got spectral response characteristics and operating wavelength range of biosensor, and to verify the biological characteristics of cancer cells wafer react with different stages of cancer characterized by a cancer measured reaction experiment.
Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.
2014-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.
Prospects and progress of high Tc superconductivity for space applications
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Sokoloski, Marty M.
1991-01-01
Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.
Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim
2017-10-01
A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.
Pak, Richard; Fink, Nicole; Price, Margaux; Bass, Brock; Sturre, Lindsay
2012-01-01
This study examined the use of deliberately anthropomorphic automation on younger and older adults' trust, dependence and performance on a diabetes decision-making task. Research with anthropomorphic interface agents has shown mixed effects in judgments of preferences but has rarely examined effects on performance. Meanwhile, research in automation has shown some forms of anthropomorphism (e.g. etiquette) have effects on trust and dependence on automation. Participants answered diabetes questions with no-aid, a non-anthropomorphic aid or an anthropomorphised aid. Trust and dependence in the aid was measured. A minimally anthropomorphic aide primarily affected younger adults' trust in the aid. Dependence, however, for both age groups was influenced by the anthropomorphic aid. Automation that deliberately embodies person-like characteristics can influence trust and dependence on reasonably reliable automation. However, further research is necessary to better understand the specific aspects of the aid that affect different age groups. Automation that embodies human-like characteristics may be useful in situations where there is under-utilisation of reasonably reliable aids by enhancing trust and dependence in that aid. Practitioner Summary: The design of decision-support aids on consumer devices (e.g. smartphones) may influence the level of trust that users place in that system and their amount of use. This study is the first step in articulating how the design of aids may influence user's trust and use of such systems.
IR CMOS: near infrared enhanced digital imaging (Presentation Recording)
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani
2015-08-01
SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km
Efficiency and Pressure Loss Characteristics of an Ultra-Compact Combustor with Bulk Swirl
2007-06-01
al., 2004a:3). Besides offering size and weight reductions, the UCC opens the door to adding a reheat step to the Brayton cycle currently used in...possible include a reheat step in the Brayton cycle to gain enhanced performance. Sirignano and Liu (Sirignano and Liu, 1998:1-2) pioneered the idea of...increase in speed for a subsonic flow resulting in a given loss in total pressure. This pressure loss is not desired in the constant pressure Brayton
The Use of Thermal Spraying to Enhance the Bonding Characteristics of a Urethane Coated Propeller
1999-05-03
NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Naval Academy USNA Trident Scholar project report Annapolis, MD no. 265 (1999...9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES Accepted by the U.S...TEST: A 90-degree Peel Test was used to examine the bond strength of the specimens. A SATEC tensile test machine was used with a 2000 lb. load cell
The evolving potential of companion diagnostics.
Khoury, Joseph D
2016-01-01
The scope of companion diagnostics in cancer has undergone significant shifts in the past few years, with increased development of targeted therapies and novel testing platforms. This has provided new opportunities to effect unprecedented paradigm shifts in the application of personalized medicine principles for patients with cancer. These shifts involve assay platforms, analytes, regulations, and therapeutic approaches. As opportunities involving each of these facets of companion diagnostics expand, close collaborations between key stakeholders should be enhanced to ensure optimal performance characteristics and patient outcomes.
Walisko, Robert; Krull, Rainer; Schrader, Jens; Wittmann, Christoph
2012-11-01
Filamentous microorganisms are important work horses in industrial biotechnology and supply enzymes, antibiotics, pharmaceuticals, bulk and fine chemicals. Here we highlight recent findings on the use of microparticles in the cultivation of filamentous bacteria and fungi, with the aim of enabling a more precise control of their morphology towards better production performance. First examples reveal a broad application range of microparticle based processes, since multiple filamentous organisms are controllable in their growth characteristics and respond by enhanced product formation.
NASA Astrophysics Data System (ADS)
Tomita, Masaru
The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.
Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.
Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P
2010-01-01
In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.
2012-08-01
growth factors directly to the bone defect site can enhance repair of non-union fractures. In this study, a new chitosan /xylan composite hydrogel was...delivery aspect of this study did not succeed, treatment with the new xylan/ chitosan hydrogel alone was enough to heal serious fractures that did not...characteristics of the hydrogel in question could be tested as well as performing in vitro cell work. The previous supplier of chitosan , the main polymer
Comparative study of goal contents and goal characteristics between medical and business students.
Park, Soowon; Kim, Ji Eun; Lee, Jun-Young; Shin, Jongho
2016-03-01
Medical and business are one of the most popular majors among students, and both fields require intensive training to reach certain level of expertise. During the development of professionalism, goal can become a crucial role in psychological impetus. The purpose of this study is to compare goal contents, goal characteristics, and effect of goal characteristics on student's major satisfaction between medical and business. A total of 193 undergraduate students (97 medical students, 96 business students) answered survey questions including goal contents, goal characteristics (goal autonomy, goal attainability, social value of goal) and satisfaction on their majors. Qualitative analysis of goal contents and quantitative analysis of goal characteristics, and their effects on student major satisfaction were performed. Goal content analysis showed percentage of social concern goal was higher in medical students (25.8%) than business students (6.3%), whereas percentage of wealth goal was higher business students (24.0%) than medical students (3.1%). Among goal characteristics, goal attainability and social value of goal were higher in medical students than business students. In both groups, social value of goal was significantly predict major satisfaction. Goal contents and goal characteristics are different between medical and business students. Curriculum and educational interventions that concerning students' goal and developing programs to enhance students' social value of goal is necessary.
NASA Astrophysics Data System (ADS)
Musa, Omer; Weixuan, Li; Xiong, Chen; Lunkun, Gong; Wenhe, Liao
2018-07-01
Solid-fuel ramjet converts thermal energy of combustion products to a forward thrust without using any moving parts. Normally, it uses air intake system to compress the incoming air without swirler. A new design of swirler has been proposed and used in the current work. In this paper, a series of firing tests have been carried out to investigate the impact of using swirl flow on regression rate, combustion characteristics, and performance of solid-fuel ramjet engines. The influences of swirl intensity, solid fuel port diameter, and combustor length were studied and varied independently. A new technique for determining the time and space averaged regression rate of high-density polyethylene solid fuel surface after experiments has been proposed based on the laser scan technique. A code has been developed to reconstruct the data from the scanner and then used to obtain the three-dimensional distribution of the regression rate. It is shown that increasing swirl number increases regression rate, thrust, and characteristic velocity, and, decreases air-fuel ratio, corner recirculation zone length, and specific impulse. Using swirl flow enhances the flame stability meanwhile negatively affected on ignition process and specific impulse. Although a significant reduction of combustion chamber length can be achieved when swirl flow is used. Power fitting correlation for average regression rate was developed taking into account the influence of swirl number. Furthermore, varying port diameter and combustor length were found to have influences on regression rate, combustion characteristics and performance of solid-fuel ramjet.
Strategies to Achieve High-Performance White Organic Light-Emitting Diodes
Zhang, Lirong; Li, Xiang-Long; Luo, Dongxiang; Xiao, Peng; Xiao, Wenping; Song, Yuhong; Ang, Qinshu; Liu, Baiquan
2017-01-01
As one of the most promising technologies for next-generation lighting and displays, white organic light-emitting diodes (WOLEDs) have received enormous worldwide interest due to their outstanding properties, including high efficiency, bright luminance, wide viewing angle, fast switching, lower power consumption, ultralight and ultrathin characteristics, and flexibility. In this invited review, the main parameters which are used to characterize the performance of WOLEDs are introduced. Subsequently, the state-of-the-art strategies to achieve high-performance WOLEDs in recent years are summarized. Specifically, the manipulation of charges and excitons distribution in the four types of WOLEDs (fluorescent WOLEDs, phosphorescent WOLEDs, thermally activated delayed fluorescent WOLEDs, and fluorescent/phosphorescent hybrid WOLEDs) are comprehensively highlighted. Moreover, doping-free WOLEDs are described. Finally, issues and ways to further enhance the performance of WOLEDs are briefly clarified. PMID:29194426
Hegde, John V.; Mulkern, Robert V.; Panych, Lawrence P.; Fennessy, Fiona M.; Fedorov, Andriy; Maier, Stephan E.; Tempany, Clare M.C.
2013-01-01
Magnetic resonance (MR) examinations of men with prostate cancer are most commonly performed for detecting, characterizing, and staging the extent of disease to best determine diagnostic or treatment strategies, which range from biopsy guidance to active surveillance to radical prostatectomy. Given both the exam's importance to individual treatment plans and the time constraints present for its operation at most institutions, it is essential to perform the study effectively and efficiently. This article reviews the most commonly employed modern techniques for prostate cancer MR examinations, exploring the relevant signal characteristics from the different methods discussed and relating them to intrinsic prostate tissue properties. Also, a review of recent articles using these methods to enhance clinical interpretation and assess clinical performance is provided. PMID:23606141
NASA Astrophysics Data System (ADS)
Seema; Chauhan, Sudakar Singh
2018-05-01
In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.
Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle
NASA Astrophysics Data System (ADS)
Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani
2017-03-01
In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.
Advanced analytical modeling of double-gate Tunnel-FETs - A performance evaluation
NASA Astrophysics Data System (ADS)
Graef, Michael; Hosenfeld, Fabian; Horst, Fabian; Farokhnejad, Atieh; Hain, Franziska; Iñíguez, Benjamín; Kloes, Alexander
2018-03-01
The Tunnel-FET is one of the most promising devices to be the successor of the standard MOSFET due to its alternative current transport mechanism, which allows a smaller subthreshold slope than the physically limited 60 mV/dec of the MOSFET. Recently fabricated devices show smaller slopes already but mostly not over multiple decades of the current transfer characteristics. In this paper the performance limiting effects, occurring during the fabrication process of the device, such as doping profiles and midgap traps are analyzed by physics-based analytical models and their performance limiting abilities are determined. Additionally, performance enhancing possibilities, such as hetero-structures and ambipolarity improvements are introduced and discussed. An extensive double-gate n-Tunnel-FET model is presented, which meets the versatile device requirements and shows a good fit with TCAD simulations and measurement data.
Khalaf, K A; Parnianpour, M; Sparto, P J; Barin, K
1999-01-01
In any quantitative gait or occupational biomechanics investigation, the quantification of the different kinematic, kinetic, and electromyographic parameters is essential towards assessment of functional capacity and development of a biomechanical profile of the task demands. In the current study, the authors presented a methodology for using inferential statistics to evaluate the effect of lift characteristics on phase-dependent and phase-independent variability in performance. Using a database of kinematic and kinetic profiles obtained from a manual lifting study, the phase-dependent effects of lift characteristics: box mass (load), mode (technique of lift), and speed (frequency of lift) were investigated through the use of analysis of variance (ANOVA) techniques, which recognize the vectorial constitution of the profiles. In addition, the Karhunen-Loeve Expansion (KLE) feature extraction method was used for representing the lifting patterns of measured joint angular position, velocity, acceleration, and net muscular torque profiles obtained from a 2-D biomechanical lifting model in order to study the phase-independent effects. In comparison to traditional descriptive statistical analyses currently used in various occupational biomechanics experimental investigations, this method allows the significant information content of the time varying signal to be captured, enhancing the sensitivity of subsequent hypothesis testing procedures. The application of this technique to MMH investigations allows identification of the lift characteristics that dominate the variability of task demands, hence aiding in the design and assessment of ergonomic solutions.
Unusual Enhancement of Magnetization by Pressure in the Antiferro-Quadrupole-Ordered Phase in CeB6
NASA Astrophysics Data System (ADS)
Ikeda, Suguru; Sera, Masafumi; Hane, Shingo; Uwatoko, Yoshiya; Kosaka, Masashi; Kunii, Satoru
2007-06-01
The effect of pressure on CeB6 was investigated by the measurement of the magnetization (M) under pressure, and we obtained the following results. The effect of pressure on M in phase I is very small. By applying pressure, TQ is enhanced, but TN and the critical field from the antiferromagnetic (AFM) phase III to the antiferro-quadrupole (AFQ) phase II (HcIII--II) are suppressed, as previously reported. The magnetization curve in phase III shows the characteristic shoulder at H˜ HcIII--II/2 at ambient pressure. This shoulder becomes much more pronounced by applying pressure. Both HcIII--II and the magnetic field, where a shoulder is seen in the magnetization curve in phase III, are largely suppressed by pressure. In phase II, the M-T curve at a low magnetic field exhibits an unusual concave temperature dependence below TQ down to TN. Thus, we found that the lower the magnetic field, the larger the enhancement of M in both phases III and II. To clarify the origin of the unusual pressure effect of M, we performed a mean-field calculation for the 4-sublattice model using the experimental results of dTQ/dP>0 and dTN/dP<0 and assuming the positive pressure dependence of the Txyz-antiferro-octupole (AFO) interaction. The characteristic features of the pressure effect of M obtained by the experiments could be reproduced well by the mean-field calculation. We found that the origin of the characteristic effect of pressure on CeB6 is the change in the subtle balance between the AFM interaction and the magnetic field-induced-effective FM interaction induced by the coexistence of the Oxy-AFQ and Txyz-AFO interactions under pressure.
Characteristics explaining performance in downhill mountain biking.
Chidley, Joel B; MacGregor, Alexandra L; Martin, Caoimhe; Arthur, Calum A; Macdonald, Jamie H
2015-03-01
To identify physiological, psychological, and skill characteristics that explain performance in downhill (DH) mountain-bike racing. Four studies were used to (1) identify factors potentially contributing to DH performance (using an expert focus group), (2) develop and validate a measure of rider skill (using video analysis and expert judge evaluation), (3) evaluate whether physiological, psychological, and skill variables contribute to performance at a DH competition, and (4) test the specific contribution of aerobic capacity to DH performance. STUDY 1 identified aerobic capacity, handgrip endurance, anaerobic power, rider skill, and self-confidence as potentially important for DH. In study 2 the rider-skill measure displayed good interrater reliability. Study 3 found that rider skill and handgrip endurance were significantly related to DH ride time (β=-0.76 and -0.14, respectively; R2=.73), with exploratory analyses suggesting that DH ride time may also be influenced by self-confidence and aerobic capacity. Study 4 confirmed aerobic capacity as an important variable influencing DH performance (for a DH ride, mean oxygen uptake was 49±5 mL·kg(-1)·min(-1), and 90% of the ride was completed above the 1st ventilatory threshold). In order of importance, rider skill, handgrip endurance, self-confidence, and aerobic capacity were identified as variables influencing DH performance. Practically, this study provides a novel assessment of rider skill that could be used by coaches to monitor training and identify talent. Novel intervention targets to enhance DH performance were also identified, including self-confidence and aerobic capacity.
NASA Astrophysics Data System (ADS)
Karahaliou, A.; Vassiou, K.; Skiadopoulos, S.; Kanavou, T.; Yiakoumelos, A.; Costaridou, L.
2009-07-01
The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.
DNP enhanced NMR with flip-back recovery
NASA Astrophysics Data System (ADS)
Björgvinsdóttir, Snædís; Walder, Brennan J.; Pinon, Arthur C.; Yarava, Jayasubba Reddy; Emsley, Lyndon
2018-03-01
DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, L-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.
Oliynyk, Sergiy; Oh, Seikwan
2012-01-01
Actoprotectors are preparations that enhance body stability against physical loads without increasing oxygen consumption or heat production. Or, in short, actoprotectors are synthetic adaptogens with a significant capacity to improve physical performance. This paper explores the history of actoprotectors’development, their pharmacological properties, mechanism of action, and practical application to the improvement of mental and physical performance. A brief summary of the clinico-pharmacological characteristics of the main representatives of this class (bemitil and bromantane) is provided. Some other synthesized compounds, and even natural ones such as ginseng, also are regarded as potential actoprotectors, and these are treated herein as well. Actoprotectors, owing to their wide-ranging pharmacological activities, high efficiency and safety, can be applied under either normal or extreme conditions. PMID:24009833
NbTiN Based SIS Multilayer Structures for SRF Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Anne-marie; Eremeev, Grigory; Phillips, H
2013-09-01
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less
Tang, Yakun; Liu, Lang; Zhao, Hongyang; Zhang, Yue; Kong, Ling Bing; Gao, Shasha; Li, Xiaohui; Wang, Lei; Jia, Dianzeng
2018-06-20
Hybrid nanotubes of cation disordered rock salt structured Li 2 FeTiO 4 nanoparticles embedded in porous CNTs were developed. Such unique hybrids with continuous 3D electron transportation paths and isolated small particles have been shown to be an ideal architecture that brought out enhanced electrochemical performances. Meanwhile, they exhibited improved extrinsic capacitive characteristics. In addition, we demonstrate a successful example to use cathode active material as anode for lithium-ion batteries (LIBs). More importantly, our hybrids had much superior electrochemical performances than most of the reported Li 4 Ti 5 O 12 -based nanocomposites. Therefore, it is concluded that Li 2 FeTiO 4 can be a prospective anode material for LIBs.
NASA Astrophysics Data System (ADS)
Mulyati, S.; Armando, M. A.; Mawardi, H.; Azmi, F. A.; Pratiwi, W. P.; Fadzlina, A.; Akbar, R.; Syawaliah
2018-03-01
This paper reports the effects of rice husk nanosilica addition on the performance of polyethersulfone (PES) membrane. Polyethersulfone membrane (PES) was fabricated by using N-methyl-2-pyrolidone (NMP) as a solvent and rice husk nanosilica as a modifying agent. The influence of the rice husk nanosilica additive on the characteristics and performance of the membrane has been studied. Scanning Electron Microscopy (SEM) analysis confirmed that the manufactured membrane has an asymmetric morphological structure consisting of two layers. The upper part of the membrane is a thin layer, meanwhile in the bottom side is a porous layer. The addition of 5% nanosilica resulting a PES membrane to have a bigger porous than that of pristine PES. The pure water flux of nanosilica-modified membranes were greater in comparison to the pure water flux of unmodified PES membrane. The performance of all membranes were evaluated on humic acid removal. The highest selectivity was showcased by pure PES membrane. The introduction of rice husk nanosilica additive to the membrane declined the selectivity of the membrane to humic acid in the feed solution. This is caused by the pores enlargement and enhanced hydrophilicity of the membrane after modification with rice husk biosilica.
NASA Astrophysics Data System (ADS)
Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.
2015-03-01
This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of small-size objects.
Wang, Pengyun; Li, Juan; Li, Huijie; Li, Bing; Jiang, Yang; Bao, Feng; Zhang, Shouzi
2013-11-01
This study investigated whether the observed absence of emotional memory enhancement in recognition tasks in patients with amnestic mild cognitive impairment (aMCI) could be related to their greater proportion of familiarity-based responses for all stimuli, and whether recognition tests with emotional items had better discriminative power for aMCI patients than those with neutral items. In total, 31 aMCI patients and 30 healthy older adults participated in a recognition test followed by remember/know judgments. Positive, neutral, and negative faces were used as stimuli. For overall recognition performance, emotional memory enhancement was found only in healthy controls; they remembered more negative and positive stimuli than neutral ones. For "remember" responses, we found equivalent emotional memory enhancement in both groups, though a greater proportion of "remember" responses was observed in normal controls. For "know" responses, aMCI patients presented a larger proportion than normal controls did, and their "know" responses were not affected by emotion. A negative correlation was found between emotional enhancement effect and the memory performance related to "know" responses. In addition, receiver operating characteristic curve analysis revealed higher diagnostic accuracy for recognition test with emotional stimuli than with neutral stimuli. The present results implied that the absence of the emotional memory enhancement effect in aMCI patients might be related to their tendency to rely more on familiarity-based "know" responses for all stimuli. Furthermore, recognition memory tests using emotional stimuli may be better able than neutral stimuli to differentiate people with aMCI from cognitively normal older adults. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Being in the zone: physiological markers of togetherness in joint improvisation
Noy, Lior; Levit-Binun, Nava; Golland, Yulia
2015-01-01
Performers improvising together describe special moments of ‘being in the zone’ – periods of high performance, synchrony, and enhanced sense of togetherness. Existing evidence suggests a possible route for attaining togetherness – interpersonal synchrony, the fine-grained sensory-motor coordination that promotes social connectedness. Here, we investigated the physiological characteristics of togetherness using a practice from theater and dance, the mirror game. Pairs of expert improvisers jointly improvised synchronized linear motion, while their motion tracks and cardiovascular activity were continuously monitored. Players also provided dynamic ratings of togetherness while watching video recordings of their games. We identified periods of togetherness using kinematic and subjective markers and assessed their physiological characteristics. The kinematic and the subjective measures of togetherness showed some agreement, with more extensive game periods being marked by the subjective than the kinematic one. Game rounds with high rates of togetherness were characterized by increased players’ cardiovascular activity, increased correlation of players’ heart rates (HRs), and increased motion intensity. By comparing motion segments with similar motion intensity, we showed that moments of togetherness in the mirror game were marked by increased players’ HRs, regardless of motion intensity. This pattern was robust for the subjectively defined periods of togetherness, while showing a marginal effect for the kinematically defined togetherness. Building upon similar findings in flow research we suggest that the observed increase of players’ HRs during togetherness periods in the mirror game might indicate the enhanced engagement and enjoyment reported by performers going into ‘the zone.’ The suggested approach, combining temporal measurements of kinematic, physiological and subjective responses, demonstrates how the dynamics of spontaneously emerging dyadic states can be studied empirically. PMID:25999832
Being in the zone: physiological markers of togetherness in joint improvisation.
Noy, Lior; Levit-Binun, Nava; Golland, Yulia
2015-01-01
Performers improvising together describe special moments of 'being in the zone' - periods of high performance, synchrony, and enhanced sense of togetherness. Existing evidence suggests a possible route for attaining togetherness - interpersonal synchrony, the fine-grained sensory-motor coordination that promotes social connectedness. Here, we investigated the physiological characteristics of togetherness using a practice from theater and dance, the mirror game. Pairs of expert improvisers jointly improvised synchronized linear motion, while their motion tracks and cardiovascular activity were continuously monitored. Players also provided dynamic ratings of togetherness while watching video recordings of their games. We identified periods of togetherness using kinematic and subjective markers and assessed their physiological characteristics. The kinematic and the subjective measures of togetherness showed some agreement, with more extensive game periods being marked by the subjective than the kinematic one. Game rounds with high rates of togetherness were characterized by increased players' cardiovascular activity, increased correlation of players' heart rates (HRs), and increased motion intensity. By comparing motion segments with similar motion intensity, we showed that moments of togetherness in the mirror game were marked by increased players' HRs, regardless of motion intensity. This pattern was robust for the subjectively defined periods of togetherness, while showing a marginal effect for the kinematically defined togetherness. Building upon similar findings in flow research we suggest that the observed increase of players' HRs during togetherness periods in the mirror game might indicate the enhanced engagement and enjoyment reported by performers going into 'the zone.' The suggested approach, combining temporal measurements of kinematic, physiological and subjective responses, demonstrates how the dynamics of spontaneously emerging dyadic states can be studied empirically.
Scabies: should we always perform dermatoscopy?
Betti, S; Bassi, A; Prignano, F; Lotti, T
2009-06-01
The authors describe a case of scabies in a 80 year-old woman with a history of intense itching. Lesions were not present in the body parts where they usually occur, but few erythematous and papular lesions were visible on the rear trunk. Diagnosis was not based on the usual clinical features or on the traditional method of microscopic examination but a high magnification videodermatoscopy was performed and, on a burrow-like scabby lesions at the rear trunk, a mite was found. This paper focuses on the importance of the videodermatoscopy, a simple, quick, non-expensive and non-invasive technique, that enhances the diagnostic capability in a case of scabies, which is not localized in the characteristic zones.
Data management system advanced development
NASA Technical Reports Server (NTRS)
Douglas, Katherine; Humphries, Terry
1990-01-01
The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.
Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian
Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.
More Genetic Engineering With Cloned Hemoglobin Genes
NASA Technical Reports Server (NTRS)
Bailey, James E.
1992-01-01
Cells modified to enhance growth and production of proteins. Method for enhancing both growth of micro-organisms in vitro and production of various proteins or metalbolites in these micro-organisms provides for incorporation of selected chromosomal or extrachormosomal deoxyribonucleic acid (DNA) sequences into micro-organisms from other cells or from artificial sources. Incorporated DNA includes parts encoding desired product(s) or characteristic(s) of cells and parts that control expression of productor characteristic-encoding parts in response to variations in environment. Extended method enables increased research into growth of organisms in oxygen-poor environments. Industrial applications found in enhancement of processing steps requiring oxygen in fermentation, enzymatic degradation, treatment of wastes containing toxic chemicals, brewing, and some oxidative chemical reactions.
Job demands, job resources, and job performance in japanese workers: a cross-sectional study.
Nakagawa, Yuko; Inoue, Akiomi; Kawakami, Norito; Tsuno, Kanami; Tomioka, Kimiko; Nakanishi, Mayuko; Mafune, Kosuke; Hiro, Hisanori
2014-01-01
This study investigated the cross-sectional association of job demands (i.e., psychological demands) and job resources (i.e., decision latitude, supervisor support, co-worker support, and extrinsic reward) with job performance. A total of 1,198 workers (458 males and 740 females) from a manufacturing company in Japan completed a self-administered questionnaire that included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, World Health Organization Health and Work Performance Questionnaire, and demographic survey. Hierarchical multiple regression analyses were conducted. After adjusting for demographic characteristics, decision latitude (β=0.107, p=0.001) and extrinsic reward (β=0.158, p<0.001) were positively and significantly associated with job performance while supervisor support (β=-0.102, p=0.002) was negatively and significantly associated with job performance. On the other hand, psychological demands or co-worker support was not significantly associated with job performance. These findings suggest that higher decision latitude and extrinsic reward enhance job performance among Japanese employees.
Job Demands, Job Resources, and Job Performance in Japanese Workers: A Cross-sectional Study
NAKAGAWA, Yuko; INOUE, Akiomi; KAWAKAMI, Norito; TSUNO, Kanami; TOMIOKA, Kimiko; NAKANISHI, Mayuko; MAFUNE, Kosuke; HIRO, Hisanori
2014-01-01
This study investigated the cross-sectional association of job demands (i.e., psychological demands) and job resources (i.e., decision latitude, supervisor support, co-worker support, and extrinsic reward) with job performance. A total of 1,198 workers (458 males and 740 females) from a manufacturing company in Japan completed a self-administered questionnaire that included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, World Health Organization Health and Work Performance Questionnaire, and demographic survey. Hierarchical multiple regression analyses were conducted. After adjusting for demographic characteristics, decision latitude (β=0.107, p=0.001) and extrinsic reward (β=0.158, p<0.001) were positively and significantly associated with job performance while supervisor support (β=−0.102, p=0.002) was negatively and significantly associated with job performance. On the other hand, psychological demands or co-worker support was not significantly associated with job performance. These findings suggest that higher decision latitude and extrinsic reward enhance job performance among Japanese employees. PMID:25016948
NASA Astrophysics Data System (ADS)
Ibrahim, I. M.; Kassim, E. S. Mohd; Husin, H.; Jai, J.; Daud, M.; Hashim, M. A.
2018-05-01
This paper contains a review on the effect of halide ion with a selected inhibitor which is imidazole derivatives on the efficiency of corrosion inhibition. The paper first describes the mechanism of synergistic inhibition effect among halide ions enhancer with inhibitor on the steel surface. Then the paper describes the measured inhibition efficiency and summarizes the synergistic inhibition condition of imidazoline derivatives inhibitor with iodide ions. The characteristic of synergistic inhibition effect and the relationship between the amount of iodide ion consumption and the amount of organic inhibitor consumption are also discussed. It has been shown that, the synergistic effect between imidazole derivative and iodide ion is an effective method to improve the inhibitive performance in different aqueous media.
Radar range data signal enhancement tracker
NASA Technical Reports Server (NTRS)
1975-01-01
The design, fabrication, and performance characteristics are described of two digital data signal enhancement filters which are capable of being inserted between the Space Shuttle Navigation Sensor outputs and the guidance computer. Commonality of interfaces has been stressed so that the filters may be evaluated through operation with simulated sensors or with actual prototype sensor hardware. The filters will provide both a smoothed range and range rate output. Different conceptual approaches are utilized for each filter. The first filter is based on a combination low pass nonrecursive filter and a cascaded simple average smoother for range and range rate, respectively. Filter number two is a tracking filter which is capable of following transient data of the type encountered during burn periods. A test simulator was also designed which generates typical shuttle navigation sensor data.
High quantum efficiency photocathode simulation for the investigation of novel structured designs
MacPhee, A. G.; Nagel, S. R.; Bell, P. M.; ...
2014-09-02
A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1–30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 μm and a temporal spread of 1–10 ps. As a result, we present the details ofmore » the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.« less
Enhancing charge storage of conjugated polymer electrodes with phenolic acids
NASA Astrophysics Data System (ADS)
Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle
2016-01-01
We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.
Face adaptation improves gender discrimination.
Yang, Hua; Shen, Jianhong; Chen, Juan; Fang, Fang
2011-01-01
Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern. However, the functional roles of adaptation, especially in high-level vision, are still equivocal. In the present study, we performed three experiments to investigate if face gender adaptation could affect gender discrimination. Experiments 1 and 2 revealed that adapting to a male/female face could selectively enhance discrimination for male/female faces. Experiment 3 showed that the discrimination enhancement induced by face adaptation could transfer across a substantial change in three-dimensional face viewpoint. These results provide further evidence suggesting that, similar to low-level vision, adaptation in high-level vision could calibrate the visual system to current inputs of complex shapes (i.e. face) and improve discrimination at the adapted characteristic. Copyright © 2010 Elsevier Ltd. All rights reserved.
Performance in quasi-firms: an example from the Community Clinical Oncology Program.
Lacey, L M; Hynes, D M; Kaluzny, A D
1992-01-01
In this analysis, the authors examined the effects of different sets of process, structure, and environmental variables on the performance of the CCOP as a quasi-firm. Specifically, they distinguished between internal organizational processes, structural, and size characteristics of the CCOP and the organizational environment created by prior NCI program experience and the relationship within the quasi-firm. The analysis revealed that these sets of organizational and environmental characteristics have differential effects on treatment accrual. The strongest predictors are those associated with the quasi-firm relationship between the CCOP and its chosen research bases. Any definitive policy implications for the design of organizational network relationships--especially the CCOPs--will require further analysis. Particular attention needs to be given to the longitudinal nature of the relationships and the ability of these organizational and environmental factors to affect other aspects of performance. Several points have been made within this initial assessment. First, the structural character of the CCOP and its relationship to its organizational environment are important factors affecting accrual performance. The subtleties of this multivariate model are not as important as simply demonstrating that the various internal and external characteristics of these organizations as quasi-firms simultaneously affect their ability to accrue patients to clinical trials. Secondly, the importance of research base relations, and particularly the significant role of nurses, needs to be emphasized. While CCOPs were originally designed as a network of physicians and hospitals, it appears that an infrastructure of professionally active nurses working within a larger organizational environment is critical to success--at least as defined by accrual to treatment protocols. Finally, the failure of prior experience with other NCI community programs to affect CCOP accrual performance suggests that such experience does not assure "organizational learning" that may enhance performance. This suggests that CCOPs can be designated de novo to maximize performance without necessarily having to undergo a developmental or experiential phase involving community cancer programs to be effective. However, the authors suspect that another method of characterizing experience may produce different results. Further analyses of these data will test these results against other measures of CCOP performance. Specifically, attention will be given to whether this same set of characteristics is predictive of accrual to cancer control research protocols. Similarly, these same organizational characteristics may or may not be associated with other dimensions of CCOP performance such as changes in physician practice patterns and/or levels of institutionalization of the CCOP within its local community.(ABSTRACT TRUNCATED AT 400 WORDS)
Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.
2015-01-01
Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652
Pan, Xinju; Zhou, Gang
2018-03-28
It is desirable, yet challenging, to utilize non-precious metals instead of noble-metals as efficient catalysts in the renewable energy manufacturing industry. Using first principles calculations, we study the structural characteristics of partially oxidized nickel-based nanoheterostructures (NiO/Ni NHSs), and the interfacial effects on hydrogen evolution. The origin of the enhanced hydrogen evolution performance is discussed at the microscopic level. This study identifies two types of active sites of the exposed Ni surface available for the hydrogen evolution reaction (HER). One is the hcp-hollow sites near the perimeter boundary that exhibit a more excellent HER performance than platinum (Pt), and the other the second nearest neighbor fcc-hollow sites away from the boundary that exhibit a similar performance to Pt. The interfacial effects result from the competitive charge transfer between NiO and Ni surfaces in NHSs, and enhance the reactivity of NiO/Ni NHSs by shifting the d-states of surface atoms down in energy. The illumination of the mechanism would be helpful for the design of more efficient and cheap transition metal-based catalysts.
Wise, Merrill S.
2016-01-01
Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646
NASA Astrophysics Data System (ADS)
Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.
2017-10-01
Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.
Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport
NASA Astrophysics Data System (ADS)
Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur
2015-12-01
While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells.
Ha, Jong Goon; Man Kim, Ji; Hwang, Won Ju; Lee, Sang Gyu
2014-09-01
The aim of the present study was to analyse the impact of organisational characteristics on the turnover intention of care workers working at nursing homes in Korea. Study participants included 504 care workers working at 14 nursing homes in Korea. The variables measured were: high-performance work practices, consisting of five subfactors (official training, employment stability, autonomy, employee participation and group-based payment); organisational commitment, consisting of three subfactors (affective, normative and continuance commitment); organisational support; and turnover intention. The inter-relationship between high-performance work practices, organisational support, organisational commitment and turnover intention and the fit of the hypothetical model were analysed using structural equation modelling. According to our analysis, high-performance work practices not only had a direct effect on turnover intention, but also an indirect effect by mediating organisational support and commitment. The factor having the largest direct influence on turnover intention was organisational commitment. The results of the present study suggest that to improve health conditions for frail elderly patients at nursing homes, as well as the efficiency of nursing homes through the continuance of nursing service and enhancement of quality of service, long-term care facilities should reduce the turnover intention of care workers by increasing their organisational commitment by actively implementing high-performance work practices.
Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks
NASA Astrophysics Data System (ADS)
Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger
2015-02-01
The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.
Influence of Off-Centre Operation on the Performance of HTS Maglev
NASA Astrophysics Data System (ADS)
Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.
2014-03-01
Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
Infectious Disease Transmission during Organ and Tissue Transplantation
Kuehnert, Matthew J.; Fishman, Jay A.
2012-01-01
Infectious disease transmission through organ and tissue transplantation has been associated with severe complications in recipients. Determination of donor-derived infectious risk associated with organ and tissue transplantation is challenging and limited by availability and performance characteristics of current donor epidemiologic screening (e.g., questionnaire) and laboratory testing tools. Common methods and standards for evaluating potential donors of organs and tissues are needed to facilitate effective data collection for assessing the risk for infectious disease transmission. Research programs can use advanced microbiological technologies to define infectious risks posed by pathogens that are known to be transplant transmissible and provide insights into transmission potential of emerging infectious diseases for which transmission characteristics are unknown. Key research needs are explored. Stakeholder collaboration for surveillance and research infrastructure is required to enhance transplant safety. PMID:22840823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoirmore » characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.« less
Lindor, Ebony; Rinehart, Nicole; Fielding, Joanne
2018-05-22
Individuals with Autism Spectrum Disorder (ASD) often excel on visual search and crowding tasks; however, inconsistent findings suggest that this 'islet of ability' may not be characteristic of the entire spectrum. We examined whether performance on these tasks changed as a function of motor proficiency in children with varying levels of ASD symptomology. Children with high ASD symptomology outperformed all others on complex visual search tasks, but only if their motor skills were rated at, or above, age expectations. For the visual crowding task, children with high ASD symptomology and superior motor skills exhibited enhanced target discrimination, whereas those with high ASD symptomology but poor motor skills experienced deficits. These findings may resolve some of the discrepancies in the literature.
Lu, Qin; Yi, Jing; Yang, Dianhai
2016-01-01
High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.
NASA Astrophysics Data System (ADS)
Chatterjee, A. K.; Banerjee, R.; Sharon, M.
The electrochemical characteristics of a porous ceramic that is coated with carbon beads, impregnated with Ni, Fe and Co catalyst and operated as a hydrogen electrode for an alkaline fuel cell (AFC) are studied. To improve the catalytic activity and electrode performance, Ni is bimetallized with Co as well as Fe. Chemical vapour deposition (CVD) of turpentine oil, a renewable natural precursor, is used to grow the carbon beads. Various compositions of Ni-Co and Ni-Fe (10:90, 50:50, 90:10) are electroplated over the carbon-coated ceramic substrate. The detailed surface profile and elemental composition of the electrodes are studied by SEM, TEM, XRD and XRF analysis. Vander-Pauw resistivity measurements of the electrodes showed an increase in the conductivity of Ni electrode by addition of Co and Fe. The electrochemical performance is investigated by measuring hydrogen dissociation voltage, half-cell and full-cell current-potential characteristics and chrono-potentiometry in 30% KOH solution. The activity of the NI electrode is improved by addition of small amounts of Co and Fe. The best performance is obtained using an electrode coated with 90:10 ratios of Ni-Co and Ni-Fe bimetallic composition.
Design and Integration of an Actuated Nose Strake Control System
NASA Technical Reports Server (NTRS)
Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.
1996-01-01
Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.
Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie
2018-02-02
Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
Projectile Combustion Effects on Ram Accelerator Performance
NASA Astrophysics Data System (ADS)
Chitale, Saarth Anjali
University of Washington Abstract Projectile Combustion Effects on Ram Accelerator Performance Saarth Anjali Chitale Chair of the Supervisory Committee: Prof. Carl Knowlen William E. Boeing Department of Aeronautics and Astronautics The ram accelerator facility at the University of Washington is used to propel projectiles at supersonic velocities. This concept is similar to an air-breathing ramjet engine in that sub-caliber projectiles, shaped like the ramjet engine center-body, are shot through smooth-bore steel-walled tubes having an internal diameter of 38 mm. The ram accelerator propulsive cycles operate between Mach 2 to 10 and have the potential to accelerate projectile to velocities greater than 8 km/s. The theoretical thrust versus Mach number characteristics can be obtained using knowledge of gas dynamics and thermodynamics that goes into the design of the ram accelerator. The corresponding velocity versus distance profiles obtained from the test runs at the University of Washington, however, are often not consistent with the theoretical predictions after the projectiles reach in-tube Mach numbers greater than 4. The experimental velocities are typically greater than the expected theoretical predictions; which has led to the proposition that the combustion process may be moving up onto the projectile. An alternative explanation for higher than predicted thrust, which is explored here, is that the performance differences can be attributed to the ablation of the projectile body which results in molten metal being added to the flow of the gaseous combustible mixture around the projectile. This molten metal is assumed to mix uniformly and react with the gaseous propellant; thereby enhancing the propellant energy release and altering the predicted thrust-Mach characteristics. This theory predicts at what Mach number the projectile will first experience enhanced thrust and the corresponding velocity-distance profile. Preliminary results are in good agreement with projectiles operating in methane/oxygen/nitrogen propellants. Effects of projectile surface to volume ratio are also explored by applying the model to experimental results from smaller (Tohoku University, 25-mm-bore) and larger (Institute of Saint-Louis 90-mm-bore) bore ram accelerators. Due to lower surface-to-volume ratio, large diameter projectiles are predicted to need to reach higher Mach numbers than smaller diameter projectiles before thrust enhancement due to metal ablation and burning would be experienced. This proposition was supported by published experimental data. The theoretical modeling of projectile ablation, metal combustion, and subsequent ram accelerator thrust characteristics are presented along comparisons to experiments from three different sized ram accelerator facilities.
Hwang, J; Kim, S H; Lee, M W; Lee, J Y
2012-07-01
To compare the diagnostic performance of gadoxetic acid-enhanced MRI using 3.0 T with that of multiphasic 64-multirow detector CT (MDCT) for the detection of small (≤2 cm) hepatocellular carcinoma (HCC) in patients with chronic liver disease. A total of 54 patients (44 men, 10 women; age range, 33-81 years) with 59 HCCs (≤2 cm in diameter) who underwent both multiphasic (arterial, portal venous, equilibrium) 64-MDCT and gadoxetic acid-enhanced 3.0 T MRI were enrolled in this study. Two observers independently and randomly reviewed the MR and CT images on a lesion-by-lesion basis. The diagnostic performance of these techniques for the detection of HCC was assessed by alternative free-response receiver operating characteristic (ROC) analysis, in addition to evaluating the sensitivity and positive predictive value. For each observer, the areas under the ROC curve were 0.874 and 0.863 for MRI, respectively, as opposed to 0.660 and 0.687 for CT, respectively. The differences between the two techniques were statistically significant for each observer (p<0.001). The sensitivities (89.8% and 86.4%) of MRI for both observers were significantly higher than those (57.6% and 61.0% for each observer, respectively) of MDCT. No significant difference was seen between the positive predictive values for the two techniques (p>0.05). Gadoxetic acid-enhanced 3.0 T MRI shows a better diagnostic performance than that of 64-MDCT for the detection of small (≤2 cm) HCCs in patients with chronic liver disease.
Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.
Vietz, Carolin; Kaminska, Izabela; Sanz Paz, Maria; Tinnefeld, Philip; Acuna, Guillermo P
2017-05-23
Plasmonic structures are known to affect the fluorescence properties of dyes placed in close proximity. This effect has been exploited in combination with single-molecule techniques for several applications in the field of biosensing. Among these plasmonic structures, top-down zero-mode waveguides stand out due to their broadband capabilities. In contrast, optical antennas based on gold nanostructures exhibit fluorescence enhancement on a narrow fraction of the visible spectrum typically restricted to the red to near-infrared region. In this contribution, we exploit the DNA origami technique to self-assemble optical antennas based on large (80 nm) silver nanoparticles. We have studied the performance of these antennas with far- and near-field simulations and characterized them experimentally with single-molecule fluorescence measurements. We demonstrate that silver-based optical antennas can yield a fluorescence enhancement of more than 2 orders of magnitude throughout the visible spectral range for high intrinsic quantum yield dyes. Additionally, a comparison between the performance of gold and silver-based antennas is included. The results indicate that silver-based antennas strongly outperform their gold counterparts in the blue and green ranges and exhibit marginal differences in the red range. These characteristics render silver-based optical antennas ready for applications involving several fluorescently labeled species across the visible spectrum.
NASA Astrophysics Data System (ADS)
Prajoon, P.; Anuja Menokey, M.; Charles Pravin, J.; Ajayan, J.; Rajesh, S.; Nirmal, D.
2018-04-01
The advantage of InGaN multiple Quantum well (MQW) Light emitting diode (LED) on a SiC substrate with compositionally step graded GaN/InAlN/GaN multi-layer barrier (MLB) is studied. The Internal quantum efficiency, Optical power, current-voltage characteristics, spontaneous emission rate and carrier distribution profile in the active region are investigated using Sentaurus TCAD simulation. An analytical model is also developed to describe the QW carrier injection efficiency, by including carrier leakage mechanisms like carrier overflow, thermionic emission and tunnelling. The enhanced electron confinement, reduced carrier asymmetry, and suppressed carrier overflow in the active region of the MLB MQW LED leads to render a superior performance than the conventional GaN barrier MQW LED. The simulation result also elucidates the efficiency droop behaviour in the MLB MQW LED, it suggests that the efficiency droop effect is remarkably improved when the GaN barrier is replaced with GaN/InAlN/GaN MLB barrier. The analysis shows a dominating behaviour of carrier escape mechanism due to tunnelling. Moreover, the lower lattice mismatching of SiC substrate with GaN epitaxial layer is attributed with good crystal quality and reduced polarization effect, ultimately enhances the optical performance of the LEDs.
Xiao, Ran; Awasthi, Mukesh Kumar; Li, Ronghua; Park, Jonghwan; Pensky, Scott M; Wang, Quan; Wang, Jim J; Zhang, Zengqiang
2017-12-01
In recent years, considerable studies have been devoted to investigating the effect of biochar application on organic solid waste composting. This review provides an up-to-date overview of biochar amendment on composting processes and compost quality. Biochar production, characteristics, and its application coupled with the basic concepts of composting are briefly introduced before detailing the effects of biochar addition on composting. According to recent studies, biochar has exhibited great potential for enhancing composting. It is evident that biochar addition in composting can: (1) improve compost mixture physicochemical properties, (2) enhance microbial activities and promote organic matter decomposition, (3) reduce ammonia (NH 3 ) and greenhouse gas (GHG) emissions, and (4) upgrade compost quality by increasing the total/available nutrient content, enhancing maturity, and decreasing phytotoxicity. Despite that, further research is needed to explore the mechanism of biochar addition on composting and to evaluate the agricultural and environmental performances of co-composted biochar compost. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.
2016-01-01
High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193
Baltzer, Pascal Andreas Thomas; Freiberg, Christian; Beger, Sebastian; Vag, Tibor; Dietzel, Matthias; Herzog, Aimee B; Gajda, Mieczyslaw; Camara, Oumar; Kaiser, Werner A
2009-09-01
Enhancement characteristics after administration of a contrast agent are regarded as a major criterion for differential diagnosis in magnetic resonance mammography (MRM). However, no consensus exists about the best measurement method to assess contrast enhancement kinetics. This systematic investigation was performed to compare visual estimation with manual region of interest (ROI) and computer-aided diagnosis (CAD) analysis for time curve measurements in MRM. A total of 329 patients undergoing surgery after MRM (1.5 T) were analyzed prospectively. Dynamic data were measured using visual estimation, including ROI as well as CAD methods, and classified depending on initial signal increase and delayed enhancement. Pathology revealed 469 lesions (279 malignant, 190 benign). Kappa agreement between the methods ranged from 0.78 to 0.81. Diagnostic accuracies of 74.4% (visual), 75.7% (ROI), and 76.6% (CAD) were found without statistical significant differences. According to our results, curve type measurements are useful as a diagnostic criterion in breast lesions irrespective of the method used.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
NASA Astrophysics Data System (ADS)
Dechana, A.; Thamboon, P.; Boonyawan, D.
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.
Dechana, A; Thamboon, P; Boonyawan, D
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.
NASA Astrophysics Data System (ADS)
Ganeshraja, Ayyakannu Sundaram; Zhu, Kaixin; Nomura, Kiyoshi; Wang, Junhu
2018-05-01
The hierarchical silver chloride loaded tin-doped titania (AgCl@Sn-TiO2) microspheres were first time prepared by a hydrothermal method and annealing at different temperatures. The catalyst showed the enhanced visible light photocatalytic activity as compared to the plasmonic photocatalysts of AgCl and Ag/AgCl, and commercial Degussa P25 (TiO2). The improved efficiency is considered to local surface plasmonic resonance (AgCl could reduce to Ag0 during photocatalytic reaction) in enhanced broad band visible light absorption in addition to the characteristics of heterojunction between Sn-TiO2 and AgCl NPs. Moreover, the surface and bulk properties of as-synthesized samples were analyzed by 119Sn Mössbauer spectroscopy. The magnetic property of the bulk was studied as a function of magnetic field with different temperatures. These results signify the clear details of the magnetic and visible light photocatalytic activities of hierarchical AgCl@Sn-TiO2 microspheres.
NASA Technical Reports Server (NTRS)
Dunbar, P. M.; Hauser, J. R.
1976-01-01
Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.
Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback
Moll, Jorge; Weingartner, Julie H.; Bado, Patricia; Basilio, Rodrigo; Sato, João R.; Melo, Bruno R.; Bramati, Ivanei E.; de Oliveira-Souza, Ricardo; Zahn, Roland
2014-01-01
In Ridley Scott’s film “Blade Runner”, empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior. PMID:24847819
Characteristics of Extreme Geoelectric Fields and Their Possible Causes: Localized Peak Enhancements
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Ngwira, C. M.; Bernabeu, E.; Eichner, J.; Viljanen, A.; Crowley, G.
2015-12-01
One of the major challenges pertaining to extreme geomagnetic storms is to understand the basic processes associated with the development of dynamic magnetosphere-ionosphere currents, which generate large induced surface geoelectric fields. Previous studies point out the existence of localized peak geoelectric field enhancements during extreme storms. We examined induced global geoelectric fields derived from ground-based magnetometer recordings for 12 extreme geomagnetic storms between the years 1982--2005. However for the present study, an in-depth analysis was performed for two important extreme storms, October 29, 2003 and March 13, 1989. The primary purpose of this paper is to provide further evidence on the existence of localized peak geoelectric field enhancements, and to show that the structure of the geoelectric field during these localized extremes at single sites can differ greatly from globally and regionally averaged fields. Although the physical processes that govern the development of these localized extremes are still not clear, we discuss some possible causes.