Sample records for enhanced power efficiency

  1. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  2. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes.

    PubMed

    Kang, Myung-Gyu; Xu, Ting; Park, Hui Joon; Luo, Xiangang; Guo, L Jay

    2010-10-15

    Surface plasmon enhanced photo-current and power conversion efficiency of organic solar cells using periodic Ag nanowires as transparent electrodes are reported, as compared to the device with conventional ITO electrodes. External quantum efficiencies are enhanced about 2.5 fold around the peak solar spectrum wavelength of 560 nm, resulting in 35% overall increase in power conversion efficiency than the ITO control device under normal unpolarized light.

  3. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection.

    PubMed

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Zhihua

    2012-11-01

    This paper presents a wireless power transfer system for a motion-free capsule endoscopy inspection. Conventionally, a wireless power transmitter in a specifically designed jacket has to be connected to a strong power source with a long cable. To avoid the power cable and allow patients to walk freely in a room, this paper proposes a two-hop wireless power transfer system. First, power is transferred from a floor to a power relay in the patient's jacket via strong coupling. Next, power is delivered from the power relay to the capsule via loose coupling. Besides making patients much more conformable, the proposed techniques eliminate the sources of reliability issues arisen from the moving cable and connectors. In the capsule, it is critical to enhance the power conversion efficiency. This paper develops a switch-mode rectifier (rectifying efficiency of 93.6%) and a power combination circuit (enhances combining efficiency by 18%). Thanks to the two-hop transfer mechanism and the novel circuit techniques, this system is able to transfer an average power of 24 mW and a peak power of 90 mW from the floor to a 13 mm × 27 mm capsule over a distance of 1 m with the maximum dc-to-dc power efficiency of 3.04%.

  4. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    PubMed

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  5. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    PubMed

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  6. Coupling and power transfer efficiency enhancement of modular and array of planar coils using in-plane ring-shaped inner ferrites for inductive heating applications

    NASA Astrophysics Data System (ADS)

    Kilic, V. T.; Unal, E.; Demir, H. V.

    2017-07-01

    We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.

  7. Highly efficient X-range AlGaN/GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Tural'chuk, P. A.; Kirillov, V. V.; Osipov, P. E.; Vendik, I. B.; Vendik, O. G.; Parnes, M. D.

    2017-09-01

    The development of microwave power amplifiers (PAs) based on transistors with an AlGaN/GaN heterojunction are discussed in terms of the possible enhancement of their efficiency. The main focus is on the synthesis of the transforming circuits, which ensure the reactive load at the second- and third-harmonic frequencies and complex impedance at the fundamental frequency. This makes it possible to optimize the complex operation mode of a PA; i.e., to reduce the scattering power and enhance the efficiency. A microwave PA based on the Schottky-barrier-gate field-effect transistor with 80 electrodes based on the GaN pHEMT transistor with a gate length of 0.25 nm and a gate width of 125 nm is experimentally investigated. The amplifier has a pulse output power of 35 W and a power-added efficiency of at least 50% at a working frequency of 9 GHz.

  8. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Daisuke; Department of Photonics Engineering, Technical University of Denmark, 2800 Lyngby; Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi Tempaku, 468-8502 Nagoya

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  9. A comparative study of the plasmon effect in nanoelectrode THz emitters: Pulse vs. continuous-wave radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min

    Plasmonic field enhancement in terahertz (THz) generation is one of the recently arisen techniques in the THz field that has attracted considerable interest. However, the reported levels of enhancement of THz output power in the literature are significantly different from each other, from less than two times to about two orders of magnitude of enhancement in power, which implies the existence of other major limiting factors yet to be revealed. In this work, the contribution of the plasmonic effect to the power enhancement of THz emitters is revisited. We show that the carrier collection efficiency in a THz emitter withmore » plasmonic nanostructures is more critical to the device performance than the plasmonic field enhancement itself. The strong reverse fields induced by the highly localized plasmonic carriers in the vicinity of the nanoelectrodes screen the carrier collections and seriously limit the power enhancement. This is supported by our experimental observations of the significantly enhanced power in a plasmonic nanoelectrode THz emitter in continuous-wave radiation mode, while the same device has limited enhancement with pulsed radiation. We hope that our study may provide an intuitive but practical guideline in adopting plasmonic nanostructures with an aim of enhancing the efficiency of optoelectronic devices.« less

  10. Enhancing the power conversion efficiency of dye-sensitized solar cells via molecular plasmon-like excitations.

    PubMed

    Li, Jian-Hao; Gryn'ova, Ganna; Prlj, Antonio; Corminboeuf, Clémence

    2017-02-21

    We introduce a tactic for employing molecular plasmon-like excitations to enhance solar-to-electric power conversion efficiency of dye-sensitized solar cells. We offer general design principles of dimeric dyes, in which a strong plasmonic interaction between two π-conjugated moieties is promoted. The π-stacked conformations of these dimeric dyes result in a desirable broadened absorption and a longer absorption onset wavelength.

  11. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes.

    PubMed

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-06

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  12. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  13. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    PubMed Central

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments. PMID:28059148

  14. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  15. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime.

    PubMed

    Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin

    2014-12-29

    We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics.

  16. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin E.; Xu, Dazhi; Cao, Jianshu

    2018-04-01

    Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.

  17. Enhancing thermoelectric properties through a three-terminal benzene molecule

    NASA Astrophysics Data System (ADS)

    Sartipi, Z.; Vahedi, J.

    2018-05-01

    The thermoelectric transport through a benzene molecule with three metallic terminals is discussed. Using general local and non-local transport coefficients, we investigated different conductance and thermopower coefficients within the linear response regime. Based on the Onsager coefficients which depend on the number of terminal efficiencies, efficiency at maximum power is also studied. In the three-terminal setup with tuning temperature differences, a great enhancement of the figure of merit is observed. Results also show that the third terminal model can be useful in improving the efficiency at maximum output power compared to the two-terminal model.

  18. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek; Rana, Goutam; Bhattacharya, Arkabrata; Singh, Abhishek; Jain, Ravikumar; Bapat, Rudheer D.; Duttagupta, S. P.; Prabhu, S. S.

    2018-05-01

    Photoconductive antennas (PCAs) are among the most conventional devices used for emission as well as detection of terahertz (THz) radiation. However, due to their low optical-to-THz conversion efficiencies, applications of these devices in out-of-laboratory conditions are limited. In this paper, we report several factors of enhancement in THz emission efficiency from conventional PCAs by coating a nano-layer of dielectric (TiO2) on the active area between the electrodes of a semi-insulating GaAs-based device. Extensive experiments were done to show the effect of thicknesses of the TiO2 layer on the THz power enhancement with different applied optical power and bias voltages. Multiphysics simulations were performed to elucidate the underlying physics behind the enhancement of efficiency of the PCA. Additionally, this layer increases the robustness of the electrode gaps of the PCAs with high electrical insulation as well as protect it from external dust particles.

  19. Au generation centres doped n+-Si: hole-injection adjustable anode for efficient organic light emission

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Ran, G. Z.; Zhao, W. Q.; Qin, G. G.

    2008-08-01

    An organic light-emitting diode (OLED) with an n-Si-anode usually has an efficiency evidently lower than the OLED with the same structure with a p-Si-anode due to insufficient hole injection from the n-Si anode compared with the p-Si-anode. In this study, we find that introducing Au as generation centres with a suitable concentration into the n+-Si anode can enhance hole injection to match electron injection and then considerably promote the power efficiency. With optimizing Au generation centre concentration in the n+-Si anode, the OLED with a structure of n+-Si: Au/NPB/AlQ/Sm/Au reaches a highest power efficiency of 1.0 lm W-1, evidently higher than the reported highest power efficiency of 0.2 lm W-1 for its p-Si-anode counterpart. Furthermore, when the electron injection is enhanced by adopting BPhen:Cs2CO3 partly instead of AlQ as the electron transport material, and the Au generation centre concentration in the n+-Si anode is promoted correspondingly, then a highest power efficiency of 1.8 lm W-1 is reached. The role of Au generation centres in the n+-Si anode is discussed.

  20. Enhancement of laser power-efficiency by control of spatial hole burning interactions

    NASA Astrophysics Data System (ADS)

    Ge, Li; Malik, Omer; Türeci, Hakan E.

    2014-11-01

    The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.

  1. Efficiency enhancement of octave-bandwidth traveling wave tubes by use of multistage depressed collectors

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Fox, T. A.

    1979-01-01

    Small, three- and five-stage depressed collectors were evaluated in conjunction with a 4.8- to 9.6-GHz TWT of 325- to 675-W power output and a beam of 0.5 microperv. The multistage depressed collector (MDC) performed well even though its design had been optimized for a TWT of identical design but considerably less output power. Despite large, fixed losses significant efficiency enhancement was demonstrated with both the three- and five-stage depressed collectors. At saturated rf power output, the improvement in the overall efficiency ranged from a factor of 2.5 to 3.0 for the three-stage collector and a factor of 3.0 to 3.5 for the five-stage collector. At saturation three-stage collector efficiencies of 77 to 80 percent and five-stage collector efficiencies of 81 to 84 percent were obtained across the frequency band. An overall efficiency of 37.0 to 44.3 percent across the frequency band of 4.8 to 9.6 GHz was demonstrated with the use of harmonic injection. For operation below saturation, even larger relative improvements in the overall TWT efficiency were demonstrated. Collector performance was relatively insensitive to the degree of regulation of the collector power supply.

  2. Designation of a polarization-converting system and its enhancement of double-frequency efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-08-01

    A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.

  3. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  4. Short-pulse excitation of microwave plasma for efficient diamond growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hideaki, E-mail: yamada-diamond@aist.go.jp; Chayahara, Akiyoshi; Mokuno, Yoshiaki

    To realize a variety of potential applications of diamonds, particularly in the area of power electronics, it is indispensable to improve their growth efficiency. Most conventional approaches have tried to achieve this simply by increasing the gas temperature; however, this makes it difficult to grow large diamond crystals. To improve the growth efficiency while lowering the gas temperature, we propose that using a pulse-modulated microwave plasma with a sub-millisecond pulse width can enhance the power efficiency of the growth rate of single-crystal diamonds. We found that using a sub-millisecond pulse-mode discharge could almost double the growth rate obtained using continuousmore » mode discharge for a fixed average microwave power and gas pressure. A comparison between experimental observations of the optical emission spectra of the discharge and a numerical simulation of the gas temperature suggests that a decrease in the gas temperature was achieved, and highlights the importance of electron-dominated reactions for obtaining the enhancement of the growth rate. This result will have a large impact in the area of diamond growth because it enables diamond growth to be more power efficient at reduced temperatures.« less

  5. Enhanced visible light generation in an active microcavity via third-harmonic conversion beyond the non-depletion approximation

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Ding, Chunling; Wang, Jiangpeng; Zhang, Duo

    2017-12-01

    We explore the possibility of using an active doubly resonant microtoroid resonator to produce high-efficiency third-harmonic generation (THG) by exploiting optical third-order nonlinearity. In a microresonator, the active fundamental mode is coherently driven with a continuous-wave input laser at the telecommunication wavelength (1550 nm), and then, the visible THG signal (517 nm) is monitored via an individual bus waveguide. We thoroughly compare our results with those obtained from the conventional passive (i.e., loss) microtoroid resonator by a systematic analysis and detailed numerical simulations based on the Heisenberg-Langevin equations of motion. It is shown that the achievable THG spectrum features an ultralow critical input power. The THG power transmission can be significantly enhanced by about three orders of magnitude at a low input power of 0.1 μ W as compared with the obtained results in the passive microtoroid resonator THG system. Moreover, the THG efficiency can reach up to 100% with optical critical input power as low as a few microwatts. In turn, the analytical expressions of the critical intracavity intensity of the light in the microcavity, the critical input pump power, and the maximum THG efficiency are obtained. The enhanced THG power transmission and high conversion efficiency are attributed to a gain-induced loss compensation in the microtoroid resonator, reducing the effective loss felt by the resonator photons. With state-of-the art technologies in the field of solid-state resonators, including but not limited to microtoroids, the proposed THG scheme is experimentally realizable.

  6. R&D100: 6.5kV Enhancement-Mode Silicon Carbide JFET Switch

    ScienceCinema

    Dries, Chris; Hostetler, John; Atcitty, Stan

    2018-06-12

    Researchers at Sandia National Laboratories have partnered with United Silicon Carbide, Inc. to combine advanced materials with novel manufacturing ideas to build a new product for significantly more efficient power conversion. Harnessing the unique features of silicon carbide, this first of its kind device allows higher voltage switching, and reductions in switching losses to significantly boost the efficiency and reliability of power generation and power conversion.

  7. Digital combined instrument transformer for automated electric power supply control systems of mining companies

    NASA Astrophysics Data System (ADS)

    Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.

    2017-10-01

    The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.

  8. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-10-01

    Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.

  9. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    PubMed

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  10. Boosted output performance of triboelectric nanogenerator via electric double layer effect

    PubMed Central

    Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min

    2016-01-01

    For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm−2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed. PMID:27703165

  11. Power management of direct-view LED backlight for liquid crystal display

    NASA Astrophysics Data System (ADS)

    Lee, Xuan-Hao; Lin, Che-Chu; Chang, Yu-Yu; Chen, He-Xiang; Sun, Ching-Cherng

    2013-03-01

    In this paper, we present a study of management of power in function of luminous efficacy of white LED as well as the efficiency enhancement of the direct-view backlight with photon recycling. A cavity efficiency as high as 90.7% is demonstrated for a direct-view backlight with photon recycling. In the future, with a 90% backlight cavity, luminous efficacy of 200 lm/W for white LEDs, and a transmission efficiency of 10% for the liquid crystal panel, the required power of LEDs could be only 16 W. Up to 85% energy saving could be achieved in comparison to the power of the current liquid crystal display.

  12. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.

    PubMed

    Meng, Lingyi; Yam, ChiYung; Zhang, Yu; Wang, Rulin; Chen, GuanHua

    2015-11-05

    The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.

  13. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  14. Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells.

    PubMed

    Tsai, Yu-Lin; Wang, Sheng-Wen; Huang, Jhih-Kai; Hsu, Lung-Hsing; Chiu, Ching-Hsueh; Lee, Po-Tsung; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung

    2015-11-30

    This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW solar cells. As a result, the PCE is boosted from 0.63% to 1.11% under AM1.5G illumination. Based on simulation and experimental results, the enhanced PCE can be attributed to the improved carrier collection in GQW caused by the reduction of potential barriers and piezoelectric polarization induced fields near the p-GaN layer. The presented concept paves a way toward highly efficient InGaN-based solar cells and other GaN-related MQW devices.

  15. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  16. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    PubMed

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Antenna coupled photonic wire lasers

    DOE PAGES

    Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...

    2015-06-22

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less

  18. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  19. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  20. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  1. Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer

    NASA Astrophysics Data System (ADS)

    Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook

    2017-09-01

    Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.

  2. Maximal power output by solar cells with angular confinement.

    PubMed

    Höhn, Oliver; Kraus, Tobias; Bauhuis, Gerard; Schwarz, Ulrich T; Bläsi, Benedikt

    2014-05-05

    Angularly selective filters can increase the efficiency of radiatively limited solar cells. A restriction of the acceptance angle is linked to the kind of utilizable solar spectrum (global or direct radiation). This has to be considered when calculating the potential enhancement of both the efficiency and the power output. In this paper, different concepts to realize angularly selective filters are compared regarding their limits for efficiency and power output per unit area. First experimental results of a promising system based on a thin-film filter as the angularly selective element are given to demonstrate the practical relevance of such systems.

  3. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Sun, Jun; Chen, Changhua; Shao, Hao

    2013-07-01

    This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC) simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.

  4. Co-sensitization of ruthenium(II) dye-sensitized solar cells by coumarin based dyes

    NASA Astrophysics Data System (ADS)

    Athanas, Anish Babu; Thangaraj, Shankar; Kalaiyar, Swarnalatha

    2018-05-01

    Co-sensitization technique has been appraised for attaining enhanced performance in dye-sensitized solar cells (DSSCs). DSSCs are fabricated with a heteroleptic Ru(II) sensitizer (RDAB1) containing 4,4‧-diamino-2,2‧-bipyridine (dabpy) ligand, co-sensitized with electron donor-acceptor type coumarin containing thiophene (CT) and indole (CI) moieties. The individual overall power conversion efficiency of the sensitizer is 5.44%. Enhanced power conversion efficiencies of 6.34% and 7.09% were observed when RDAB1 was co-sensitized with Coumarin containing CI and CT respectively. The enhanced PCE can be attributed to the presence of co-sensitizers which effectively overcome the light absorption by I-/I3-, dye aggregation and charge recombination.

  5. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOEpatents

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  6. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  7. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles |

    Science.gov Websites

    , WBG materials/devices enable lighter, more compact, and more efficient power electronics for vehicles, and increased electric vehicle adoption by consumers. Wide bandgap power electronics devices power electronics component size and potentially reduce system or component-level cost, while improving

  9. Tailoring perovskite compounds for broadband light absorption

    NASA Astrophysics Data System (ADS)

    Lu, Hengchang; Guo, Xiaowei; Yang, Cheng; Li, Shaorong

    2018-01-01

    Perovskite solar cells have experienced an outstanding advance in power conversion efficiency (PCE) by optimizing the perovskite layer morphology, composition, interfaces, and charge collection efficiency. To enhance PCE, the mixed perovskites were proposed in recent years. In this study, optoelectronic performance of pure perovskites and mixed ones were investigated. It was demonstrated that the mixed perovskites exhibit superior to the pure ones. The mixed material can absorb broadband light absorption and result in increased short circuit current density and power conversion efficiency.

  10. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.

    PubMed

    Cheng, Ying; Dong, Jun; Ren, Yingying

    2012-10-22

    Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

  11. Highly efficient solid state magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Friedrichs, Daniel; Li, Jiefang; Erickson, Robert W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D.

    2017-09-01

    An enhancement in the power-conversion-efficiency (η) of a magneto-electric (ME) gyrator has been found by the use of Mn-substituted nickel zinc ferrite. A trilayer gyrator of Mn-doped Ni0.8Zn0.2Fe2O3 and Pb(Zr,Ti)O3 has η = 85% at low power conditions (˜20 mW/in3) and η ≥ 80% at high power conditions (˜5 W/in3). It works close to fundamental electromechanical resonance in both direct and converse modes. The value of η is by far the highest reported so far, which is due to the high mechanical quality factor (Qm) of the magnetostrictive ferrite. Such highly efficient ME gyrators with a significant power density could become important elements in power electronics, potentially replacing electromagnetic and piezoelectric transformers.

  12. Colloidal quantum dot solar cells exploiting hierarchical structuring.

    PubMed

    Labelle, André J; Thon, Susanna M; Masala, Silvia; Adachi, Michael M; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H; Fratalocchi, Andrea; Sargent, Edward H

    2015-02-11

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

  13. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes.

    PubMed

    Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong

    2012-02-27

    The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.

  14. Traveling-Wave Tube Efficiency Enhancement

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    2011-01-01

    Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.

  15. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    PubMed

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  16. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  17. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  18. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications

    NASA Astrophysics Data System (ADS)

    Sakti, Apurba; Gallagher, Kevin G.; Sepulveda, Nestor; Uckun, Canan; Vergara, Claudio; de Sisternes, Fernando J.; Dees, Dennis W.; Botterud, Audun

    2017-02-01

    We develop three novel enhanced mixed integer-linear representations of the power limit of the battery and its efficiency as a function of the charge and discharge power and the state of charge of the battery, which can be directly implemented in large-scale power systems models and solved with commercial optimization solvers. Using these battery representations, we conduct a techno-economic analysis of the performance of a 10 MWh lithium-ion battery system testing the effect of a 5-min vs. a 60-min price signal on profits using real time prices from a selected node in the MISO electricity market. Results show that models of lithium-ion batteries where the power limits and efficiency are held constant overestimate profits by 10% compared to those obtained from an enhanced representation that more closely matches the real behavior of the battery. When the battery system is exposed to a 5-min price signal, the energy arbitrage profitability improves by 60% compared to that from hourly price exposure. These results indicate that a more accurate representation of li-ion batteries as well as the market rules that govern the frequency of electricity prices can play a major role on the estimation of the value of battery technologies for power grid applications.

  19. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.

    PubMed

    Ramrakhyani, A K; Mirabbasi, S; Mu Chiao

    2011-02-01

    Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

  20. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  1. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE PAGES

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    2016-09-26

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  2. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  3. Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3.

    PubMed

    Ricciardi, Iolanda; De Rosa, Maurizio; Rocco, Alessandra; Ferraro, Pietro; De Natale, Paolo

    2010-05-24

    We report on efficient cw high-power second harmonic generation in a periodically poled LiTaO3 crystal placed in a resonant enhancement cavity. We tested three configurations, differing in the coupling mirror reflectivity, and a maximum conversion efficiency of about 76%, corresponding to 6.1 W of green light with 8.0 W of fundamental power, was achieved. This is, to the best of our knowledge, the highest cw power ever reported using a periodically-poled crystal in an external cavity. We observed photo-thermal effect induced by photon absorption at the mirrors and in the crystal, which however does not affect stable operation of the cavity. A further effect arises for two out of the three configurations, at higher values of the input power, which degrades the performance of the locked cavity. We suggest this effect is due to the onset of competing nonlinearities in the same crystal.

  4. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    NASA Astrophysics Data System (ADS)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  5. Urea removal coupled with enhanced electricity generation in single-chambered microbial fuel cells.

    PubMed

    Wang, Luguang; Xie, Beizhen; Gao, Ningshengjie; Min, Booki; Liu, Hong

    2017-09-01

    High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN. Over 80% of nitrogen removal was achieved at TAN concentration of 2630 mg/L. The increased nitrogen removal coupled with significantly enhanced coulombic efficiency, which was observed for the first time, indicates the possibility of a new electricity generation mechanism in MFCs: direct oxidation of ammonia for power generation. This study also demonstrates the great potential of using one MFC reactor to achieve simultaneous electricity generation and urea removal from wastewater.

  6. Saturation of side-band instabilities in a free-electron laser

    NASA Astrophysics Data System (ADS)

    Lin, A. T.

    The efficiency of a free electron laser is intrinsically limited because the growth of the ponderomotive force produced by the interaction of the rippled magnetic field and the signal wave will eventually trap the electrons. There are a number of approaches for enhancing the efficiency of a free electron laser (FEL). One approach employs a dc field. Most of the efficiency enhancement calculations use a single-mode approximation which prohibits the side band waves to grow. In the present investigation, a particle simulation procedure is employed to demonstrate that the enhancement process is ultimately terminated by the generation of side band instabilities due to the interaction of the trapped electrons and the signal wave. The side band instability will play an important part in determining the maximum output power which can be obtained from a FEL. It is also shown that a considerable improvement in output power can still be achieved by carefully choosing the strength and the turn-on time of the dc electric field.

  7. Broadband Solar Energy Harvesting in Single Nanowire Resonators

    NASA Astrophysics Data System (ADS)

    Yang, Yiming; Peng, Xingyue; Hyatt, Steven; Yu, Dong

    2015-03-01

    Sub-wavelength semiconductor nanowires (NWs) can have optical absorption cross sections far beyond their physical sizes at resonance frequencies, offering a powerful method to simultaneously lower the material consumption and enhance photovoltaic performance. The degree of absorption enhancement is expected to substantially increase in materials with high refractive indices, but this has not yet been experimentally demonstrated. Here, we show that the absorption efficiency can be significantly improved in high-index NWs, by a direct observation of 350% external quantum efficiency (EQE) in lead sulfide (PbS) NWs. Broadband absorption enhancement is also realized in tapered NWs, where light of different wavelength is absorbed at segments with different diameters analogous to a tandem solar cell. Our results quantitatively agree with the finite-difference-time-domain (FDTD) simulations. Overall, our single PbS NW Schottky solar cells taking advantage of optical resonance, near bandgap open circuit voltage, and long minority carrier diffusion length exhibit power conversion efficiency comparable to single Si NW coaxial p-n junction cells, while the fabrication complexity is greatly reduced.

  8. Enhanced efficiency of light emitting diodes with a nano-patterned gallium nitride surface realized by soft UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Min, Guoquan; Song, Zhitang; Zhang, Jing; Liu, Yanbo; Zhang, Jianping

    2010-05-01

    This paper reports a significant enhancement in the extraction efficiency of nano-patterned GaN light emitting diodes (LED) realized by soft UV nanoimprint lithography. The 2 inch soft stamp was fabricated using a replication stamp of anodic alumina oxide (AAO) membrane. The light output power was enhanced by 10.9% compared to that of the LED sample without a nano-patterned surface. Up to 41% enhancement in photoluminescence intensity was obtained from the nano-patterned GaN LED sample. The method is simple, cheap and suitable for mass production.

  9. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  10. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  11. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    PubMed

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  12. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    PubMed

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  13. Study on key technologies of optimization of big data for thermal power plant performance

    NASA Astrophysics Data System (ADS)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  14. A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Li, Jiefang; Viehland, D.; Zhuang, X.

    2018-07-01

    Over the past two decades, magnetoelectric (ME) composites and their devices have been an important topic of research. Potential applications ranging from low-power sensing to high-power converters have been investigated. This review, first begins with a summary of multiferroic materials that work at room temperature. Such ME materials are usually in composites, and their ME effect generated as a product property of magnetostrictive and piezoelectric composite layers. After that, mechanisms, working principles, and applications of ME composites from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters will be discussed. First, the development of ME sensors in terms of materials and structures to enhance their sensitivities and to reduce noise level is reviewed and discussed. Second, the structure of ME-based energy harvesters is discussed and summarized. Third, the development of ME gyrators is summarized for power applications, including current/voltage conversion, power efficiency, power density and figures of merit. Results demonstrate that our ME gyrator has the ability to satisfy the needs of power conversion with superior efficiency (>90%), offering potential uses in power electronic applications.

  15. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  16. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  17. Electric power restructuring in iran: achievements and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosroshahi, Kaveh Aflaki; Jadid, Shahram; Shahidehpour, Mohammad

    2009-03-15

    Although the power market in Iran is not fully constructed, several key steps have been taken to meet privatization and restructuring objectives. The addition of a power exchange sector has placed the power market on par with that in other countries. Operational concerns that still need to be addressed include technical and non-technical losses, enhancing new investment, and providing incentives for introducing energy efficiency and promoting green power generation. (author)

  18. Enhancement of temporal contrast of high-power laser pulses in an anisotropic medium with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Kuz'mina, M. S.; Khazanov, E. A.

    2015-05-01

    We consider the methods for enhancing the temporal contrast of super-high-power laser pulses, based on the conversion of radiation polarisation in a medium with cubic nonlinearity. For a medium with weak birefringence and isotropic nonlinearity, we propose a new scheme to enhance the temporal contrast. For a medium with anisotropic nonlinearity, the efficiency of the temporal contrast optimisation is shown to depend not only on the spatial orientation of the crystal and B-integral, but also on the type of the crystal lattice symmetry.

  19. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer

    PubMed Central

    Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue

    2017-01-01

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496

  20. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.

    PubMed

    Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue

    2017-08-18

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.

  1. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  2. High Power Klystrons for Efficient Reliable High Power Amplifiers.

    DTIC Science & Technology

    1980-11-01

    techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less

  4. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    Herrero Martín, R.; García, A.; Pérez-García, J.

    2012-11-01

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  5. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".

    PubMed

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-09-23

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.

  6. Techno-economic analysis of supercritical carbon dioxide power blocks

    NASA Astrophysics Data System (ADS)

    Meybodi, Mehdi Aghaei; Beath, Andrew; Gwynn-Jones, Stephen; Veeraragavan, Anand; Gurgenci, Hal; Hooman, Kamel

    2017-06-01

    Developing highly efficient power blocks holds the key to enhancing the cost competitiveness of Concentration Solar Thermal (CST) technologies. Supercritical CO2 (sCO2) Brayton cycles have proved promising in providing equivalent or higher cycle efficiency than supercritical or superheated steam cycles at temperatures and scales relevant for Australian CST applications. In this study, a techno-economic methodology is developed using a stochastic approach to determine the ranges for the cost and performance of different components of central receiver power plants utilizing sCO2 power blocks that are necessary to meet the Australian Solar Thermal Initiative (ASTRI) final LCOE target of 12 c/kWh.

  7. Localized-surface-plasmon enhanced emission from porous silicon by gold nanoparticles.

    PubMed

    Wang, Hui; An, Zhenghua; Ren, Qijun; Wang, Hengliang; Mao, Feilong; Chen, Zhanghai; Shen, Xuechu

    2011-12-01

    The porous silicon (PS) samples, decorated by Au nanoparticles (NPs) possessing localized-surface-plasmon (LSP) resonance, are prepared by the conventional anodization method. Photoluminescence (PL) is studied systematically, in particular, its dependence on the excitation power. It is found that undecorated PS samples exhibit a saturation behavior in PL intensity with increasing the pumping laser power, while the luminescence of Au-decorated PS hybrid samples have a purely linear dependence on the excitation power. In the linear response region of PS samples, addition of metal NPs layer moderately suppresses the emission while, in the saturation region, the net emission is enhanced by approximately up to 4-fold. Several possible mechanisms are discussed. We believe that the observed PL enhancement in saturation region is dominantly due to the resonant coupling between the LSP of Au NPs and the electronic excitation of PS, which inhibits the nonradiative Auger recombination process at high excitation power. These results indicate that the plasmon effect could be useful for designing even more efficient optoelectronic devices such as super bright light emitting devices and solar cells with high efficiencies. Despite many challenges, Au NPs can potentially be applied to introduce LSP resonance for the future silicon-based optoelectronics or photonics.

  8. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  9. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.

  10. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.

  11. Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, NY; Elimelech, M

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less

  12. Thermophotonics for ultra-high efficiency visible LEDs

    NASA Astrophysics Data System (ADS)

    Ram, Rajeev J.

    2017-02-01

    The wall-plug efficiency of modern light-emitting diodes (LEDs) has far surpassed all other forms of lighting and is expected to improve further as the lifetime cost of a luminaire is today dominated by the cost of energy. The drive towards higher efficiency inevitably opens the question about the limits of future enhancement. Here, we investigate thermoelectric pumping as a means for improving efficiency in wide-bandgap GaN based LEDs. A forward biased diode can work as a heat pump, which pumps lattice heat into the electrons injected into the active region via the Peltier effect. We experimentally demonstrate a thermally enhanced 450 nm GaN LED, in which nearly fourfold light output power is achieved at 615 K (compared to 295 K room temperature operation), with virtually no reduction in the wall-plug efficiency at bias V < ℏω/q. This result suggests the possibility of removing bulky heat sinks in high power LED products. A review of recent high-efficiency GaN LEDs suggests that Peltier thermal pumping plays a more important role in a wide range of modern LED structures that previously thought - opening a path to even higher efficiencies and lower lifetime costs for future lighting.

  13. Enhanced Electron Affinity and Exciton Confinement in Exciplex-Type Host: Power Efficient Solution-Processed Blue Phosphorescent OLEDs with Low Turn-on Voltage.

    PubMed

    Ban, Xinxin; Sun, Kaiyong; Sun, Yueming; Huang, Bin; Jiang, Wei

    2016-01-27

    A benzimidazole/phosphine oxide hybrid 1,3,5-tris(1-(4-(diphenylphosphoryl)phenyl)-1H-benzo[d]imidazol-2-yl)benzene (TPOB) was newly designed and synthesized as the electron-transporting component to form an exciplex-type host with the conventional hole-transporting material tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Because of the enhanced triplet energy and electron affinity of TPOB, the energy leakage from exciplex-state to the constituting molecule was eliminated. Using energy transfer from exciplex-state, solution-processed blue phosphorescent organic light-emitting diodes (PHOLEDs) achieved an extremely low turn-on voltage of 2.8 V and impressively high power efficiency of 22 lm W(-1). In addition, the efficiency roll-off was very small even at luminance up to 10 000 cd m(-2), which suggested the balanced charge transfer in the emission layer. This study demonstrated that molecular modulation was an effective way to develop efficient exciplex-type host for high performanced PHOLEDs.

  14. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    PubMed Central

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  15. Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Polzin, Kurt A.

    2008-01-01

    Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.

  16. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser.

    PubMed

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong

    2018-03-05

    We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

  17. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    PubMed

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  18. A Novel Power Efficient Location-Based Cooperative Routing with Transmission Power-Upper-Limit for Wireless Sensor Networks

    PubMed Central

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-01-01

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625

  19. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    PubMed

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  20. A study on geometry effect of transmission coil for micro size magnetic induction coil

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  1. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  2. The Smart Power Lab at the Energy Systems Integration Facility

    ScienceCinema

    Christensen, Dane; Sparn, Bethany; Hannegan, Brian

    2018-05-11

    Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  3. The Smart Power Lab at the Energy Systems Integration Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Dane; Sparn, Bethany; Hannegan, Brian

    Watch how NREL researchers are using the Smart Power Laboratory at the Energy Systems Integration Facility (ESIF) to develop technologies that will help the "smart homes" of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.

  4. Nanoparticle-Enhanced Silver-Nanowire Plasmonic Electrodes for High-Performance Organic Optoelectronic Devices.

    PubMed

    Kim, Taehyo; Kang, Saewon; Heo, Jungwoo; Cho, Seungse; Kim, Jae Won; Choe, Ayoung; Walker, Bright; Shanker, Ravi; Ko, Hyunhyub; Kim, Jin Young

    2018-05-21

    Improved performance in plasmonic organic solar cells (OSCs) and organic light-emitting diodes (OLEDs) via strong plasmon-coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core-shell silver-silica nanoparticles (Ag@SiO 2 NPs) is demonstrated. NP-enhanced plasmonic AgNW (Ag@SiO 2 NP-AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon-coupling effect caused by decorating core-shell Ag@SiO 2 NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A -1 (at 3.2 V) and a power efficiency of 25.14 lm W -1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO 2 NP-AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high-performance OODs, which can be further explored in various plasmonic and optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Study of Power Systems Stability Enhancement Effects by Excitation Control of Superconducting Generator with High Response Excitation based on Detailed Excitation Circuit Model

    NASA Astrophysics Data System (ADS)

    Wu, Guohong; Shirato, Hideyuki

    SCG (Superconducting Generator) has a superconducting field winding, which leads to many advantages such as small size, high generation efficiency, low impedance, and so on, and be considered as one of the candidates to meet the needs of high stability and high efficiency in the future power system networks. SCG with high response excitation is especially expected to be able to enhance the transient stability of power system by its SMES (Superconducting Magnetic Energy System) effect. The SMES effect of SCG is recognized that its behaviors are dominated by the structures and controls of its excitation system. For this reason, in order to verify exactly how the SMES effect of SCG influences on the power system stability, the electrical circuits of SCG high response excitation are modeled in detail for conducting digital simulation, and its influence on excitation voltage and active power output of SCG are discussed as well. The simulation results with a typical one machine - infinite bus power system model shows that the SMES effect can be certainly obtained when its exciting power is supplied from SCG terminal bus and may considerably lead to an improvement of power system transient stability.

  6. Self-Powered WSN for Distributed Data Center Monitoring

    PubMed Central

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-01

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135

  7. Self-Powered WSN for Distributed Data Center Monitoring.

    PubMed

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-02

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  8. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  9. Power enhancement of heat engines via correlated thermalization in a three-level “working fluid”

    PubMed Central

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-01-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose “working fluid” is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement. PMID:26394838

  10. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway.

    PubMed

    Feng, Jiao; Qian, Ying; Wang, Zhen; Wang, Xin; Xu, Sheng; Chen, Kequan; Ouyang, Pingkai

    2018-06-10

    Microbial fuel cells (MFCs) are a renewable green energy source that uses microorganisms to catalytically convert chemical energy into electrical energy. The efficiency of extracellular electron transfer (EET) from the microbe cell to the anode electrode plays a key role in the MFC. However, the insulating properties of the cell membrane limit the efficiency of EET. Herein, EET efficiency was improved by introducing a phenazine synthesis pathway into Escherichia coli. Through the heterologous expression of phzA1B1C1D1E1F1G1, phenazine-1-carboxylic acid production increased, and the maximum power density increased from 16.7 mW/m 2 to 181.1 mW/m 2 . Furthermore, the charge transfer resistance of 6.7 Ω decreased to 4.2 Ω, which reflected the enhancement of the EET efficiency and the electricity power output. Our results imply that introducing a heterologous electron shuttle into E. coli could be an efficient approach to improving the EET efficiency and performance of an MFC. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    PubMed

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  12. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  13. Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.

    2001-01-01

    The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.

  14. Effect of thermal annealing on carrier localization and efficiency of spin detection in GaAsSb epilayers grown on InP

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun

    2018-04-01

    The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.

  15. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.

    PubMed

    Gan, Qiaoqiang; Bartoli, Filbert J; Kafafi, Zakya H

    2013-05-07

    Recent advances in molecular organic photovoltaics (OPVs) have shown 10% power conversion efficiency (PCE) for single-junction cells, which put them in direct competition with PVs based on amorphous silicon. Incorporation of plasmonic nanostructures for light trapping in these thin-film devices offers an attractive solution to realize higher-efficiency OPVs with PCE>10%. This article reviews recent progress on plasmonic-enhanced OPV devices using metallic nanoparticles, and one-dimensional (1D) and two-dimensional (2D) patterned periodic nanostructures. We discuss the benefits of using various plasmonic nanostructures for broad-band, polarization-insensitive and angle-independent absorption enhancement, and their integration with one or two electrode(s) of an OPV device. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    PubMed

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  17. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks

    PubMed Central

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-01-01

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062

  18. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    NASA Astrophysics Data System (ADS)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  19. Enhanced Efficiency of Dye-Sensitized Solar Cells with Mesoporous-Macroporous TiO2 Photoanode Obtained Using ZnO Template

    NASA Astrophysics Data System (ADS)

    Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh

    2017-06-01

    Improved light harvesting efficiency can be achieved by enhancing the optical properties of the titanium dioxide (TiO2) photoanode in dye-sensitized solar cells (DSSCs), leading to higher power conversion efficiency. By incorporating submicrometer cavities in TiO2 mesoporous film, using zinc oxide (ZnO) particles as a template, a bimodal pore size structure has been created, called a mesoporous-macroporous nanostructure. This photoanode structure consists of 20-nm TiO2 nanoparticles with two kinds of pores with size of 20 nm (mesopores) and 500 nm (macropores). Energy-dispersive x-ray spectroscopy and x-ray diffraction studies showed no trace of ZnO in the TiO2 after removal by TiCl4 treatment. Higher diffuse transmittance of this film compared with the standard transparent photoanode provides evidence of improved light scattering. When employed in a device, the incident-photon-to-current efficiency of ZnO-assisted devices showed enhancement at longer wavelengths, corresponding to the Mie light scattering effect with the macropores as scattering centers. This resulted in overall higher power conversion efficiency of the DSSC. In this work, a nonvolatile gel ionic liquid was used as the electrolyte to also demonstrate the benefit of this structure in combination with a viscous electrolyte and its promising application to prolong the stability of DSSCs.

  20. Resonant Spin-Transfer-Torque Nano-Oscillators

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2017-12-01

    Spin-transfer-torque nano-oscillators are potential candidates for replacing the traditional inductor-based voltage-controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions, which have the disadvantages of low power outputs and poor conversion efficiencies. We theoretically propose using resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present viable device designs geared toward a high microwave output power and an efficient conversion of the dc input power. We attribute these robust qualities to the resulting nontrivial spin-current profiles and the ultrahigh tunnel magnetoresistance, both of which arise from resonant spin filtering. The device designs are based on the nonequilibrium Green's-function spin-transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation and Poisson's equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around 1150% and an efficiency enhancement of over 1100% compared to typical trilayer designs. We rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. We also demonstrate the robustness of our structures against device design fluctuations and elastic dephasing. This work sets the stage for pentalyer spin-transfer-torque nano-oscillator device designs that ameliorate major issues associated with typical trilayer designs.

  1. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.

    PubMed

    Wang, Xiao-Feng; Koyama, Yasushi; Kitao, Osamu; Wada, Yuji; Sasaki, Shin-Ich; Tamiaki, Hitoshi; Zhou, Haoshen

    2010-04-15

    Dye-sensitized solar cells (DSSCs) are similar to natural photosynthesis in the initial processes involving in light-harvesting and charge separation. In order to mimic those natural photosynthetic systems mainly containing multiple pigments, six different chlorophyllous sensitizers have been isolated from natural photosynthetic organism or synthesized based on natural photosynthetic precursors, and used for fabricating DSSCs. These dye sensitizers can be placed into three classes, i.e., a-type, b-type, or c-type, based on the structural similarity to their analogs of the natural photosynthesis pigments chlorophylls a, b, and c. We succeeded in demonstrating homogeneous co-sensitization among these analogues when these were present together on mesoporous TiO2 films, and we measured the photovoltaic performance of the resulting chlorophyll-sensitized solar cells. Significantly enhanced power-conversion efficiencies (eta) were achieved with DSSCs based on co-sensitization of a chlorophyll a derivative with a chlorophyll b or c derivative. A highest power-conversion efficiency of up to 5.4% has been obtained. These results suggest that it is possible to apply multiple pigments and the energy transfer mechanism from natural photosynthetic systems in fabricating high-efficiency DSSCs. 2010 Elsevier B.V. All rights reserved.

  2. An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks

    DOE PAGES

    Ji, Haoran; Wang, Chengshan; Li, Peng; ...

    2017-09-20

    The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less

  3. An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haoran; Wang, Chengshan; Li, Peng

    The integration of distributed generators (DGs) exacerbates the feeder power flow fluctuation and load unbalanced condition in active distribution networks (ADNs). The unbalanced feeder load causes inefficient use of network assets and network congestion during system operation. The flexible interconnection based on the multi-terminal soft open point (SOP) significantly benefits the operation of ADNs. The multi-terminal SOP, which is a controllable power electronic device installed to replace the normally open point, provides accurate active and reactive power flow control to enable the flexible connection of feeders. An enhanced SOCP-based method for feeder load balancing using the multi-terminal SOP is proposedmore » in this paper. Furthermore, by regulating the operation of the multi-terminal SOP, the proposed method can mitigate the unbalanced condition of feeder load and simultaneously reduce the power losses of ADNs. Then, the original non-convex model is converted into a second-order cone programming (SOCP) model using convex relaxation. In order to tighten the SOCP relaxation and improve the computation efficiency, an enhanced SOCP-based approach is developed to solve the proposed model. Finally, case studies are performed on the modified IEEE 33-node system to verify the effectiveness and efficiency of the proposed method.« less

  4. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael R; Morrison, James A; Spomer, Eric

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heatmore » and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.« less

  5. Inverted organic electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Small, Cephas E.

    The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.

  6. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong

    2008-01-01

    Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.

  7. A 5.2/5.8 GHz Dual Band On-Off Keying Transmitter Design for Bio-Signal Transmission

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hsi; You, Hong-Cheng; Huang, Shun-Zhao

    2018-02-01

    An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of -9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.

  8. Nanostructured organic/inorganic semicondutor photovoltaics: Investigation on morphology and optoelectronics performance

    NASA Astrophysics Data System (ADS)

    Wanninayake, Aruna Pushpa Kumara

    Organic solar cell is a promising technology because of the versatility of organic materials in terms of tunability of their electrical and optical properties. In addition, their relative insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-roll processing. However, the power conversion efficiency of organic solar cell is still limited and needs to be improved in order to be competitive with grid parity. This work is focused on the design and characterization of a new organic/inorganic hybrid device to enhance the efficiency factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell operation, external quantum efficiency is determined by these five factors. The external quantum efficiency has linear relationship to the power conversation efficiency via short circuit current density. Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a longer free path for charge carriers, resulting in a longer diffusional pathway and a larger coulomb interaction between electrons and holes. This is triggered by the low dielectric constant of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits from both organic and inorganic materials, inorganic nanoparticles are incorporated in this donor-acceptor polymer structure. Light trapping enhances light absorption and increases efficiencies with thinner device structure. In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer to optimize the optical absorption properties in the blend. In addition, zinc oxide nanoparticles are used for tuning the conjugated polymer films due to their high electron accepting ability and optical absorption properties. In the zinc oxide structure, electrons exhibit higher mobility, which enhances the exciton dissociation efficiency. In addition, metal nanoparticles such as gold are added to the hole transport layer to enhance the overall hole transport ability. The optimum morphology of P3HT/PCBM films is described by two main features: 1) the molecular ordering within the donor or acceptor phase, which affects the photon absorption and carrier mobility; and 2) the scale of phase separation between the donor and the acceptor, which can directly influence the exciton dissociation and charge transport and/or collection processes. Hence, the molecular ordering and the phase separation between the donor and acceptor phases are crucial for solar cells with high efficiency. Optimization of the morphology of the organic/inorganic hybrid layers will be achieved via thermal annealing. The main goal of this work is to fabricate inorganic nanoparticles incorporated polymer PV devices with increased power conversion efficiency (PCE). This goal is achieved through four research objectives which are 1) enhancement of exciton generation and morphology by CuO NPs, 2) enhancement of exciton transportation and carrier diffusion by thermal annealing, 3) Improvement of exciton dissociation and electron mobility using ZnO NPs, and 4) improvement of hole collection ability using Au NPs. The key findings in this research can be applied to fabricate solar cells with higher power conversion efficiencies.

  9. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  10. Highly Efficient Simplified Single-Emitting-Layer Hybrid WOLEDs with Low Roll-off and Good Color Stability through Enhanced Förster Energy Transfer.

    PubMed

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Zhang, Deqiang; Duan, Lian

    2015-12-30

    Single-emitting layer hybrid white organic light-emitting diodes (SEL-hybrid-WOLEDs) usually suffer from low efficiency, significant roll-off, and poor color stability, attributed to the incomplete energy transfer from the triplet states of the blue fluorophores to the phosphors. Here, we demonstrate highly efficient SEL-hybrid-WOLEDs with low roll-off and good color-stability utilizing blue thermally activated delayed fluorescence (TADF) materials as the host emitters. The triplet states of the blue TADF host emitter can be up-converted into its singlet states, and then the energy is transferred to the complementary phosphors through the long-range Förster energy transfer, enhancing the energy transfer from the host to the dopant. Simplified SEL-hybrid-WOLEDs achieve the highest forward-viewing external quantum efficiency (EQE) of 20.8% and power efficiency of 51.2 lm/W with CIE coordinates of (0.398, 0.456) at a luminance of 500 cd/m(2). The device EQE only slightly drops to 19.6% at a practical luminance of 1000 cd/m(2) with a power efficiency of 38.7 lm/W. Furthermore, the spectra of the device are rather stable with the raising voltage. The reason can be assigned to the enhanced Förster energy transfer, wide charge recombination zone, as well as the bipolar charge transporting ability of the host emitter. We believe that our work may shed light on the future development of highly efficient SEL-hybrid-WOLEDs with simultaneous low roll-off and good color stability.

  11. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  12. Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic

    DOE PAGES

    Mohammad, Nabil; Wang, Peng; Friedman, Daniel J.; ...

    2014-09-17

    We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output powermore » density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. As a result, the potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.« less

  13. Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation.

    PubMed

    Kubota, Keiichi; Watanabe, Tomohide; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2016-01-01

    A two serially connected single-chamber microbial fuel cell (MFC) was applied to the treatment of diluted molasses wastewater in a continuous operation mode. In addition, the effect of series and parallel connection between the anodes and the cathode on power generation was investigated experimentally. The two serially connected MFC process achieved 79.8% of chemical oxygen demand removal and 11.6% of Coulombic efficiency when the hydraulic retention time of the whole process was 26 h. The power densities were 0.54, 0.34 and 0.40 W m(-3) when electrodes were in individual connection, serial connection and parallel connection modes, respectively. A high open circuit voltage was obtained in the serial connection. Power density decreased at low organic loading rates (OLR) due to the shortage of organic matter. Power generation efficiency tended to decrease as a result of enhancement of methane fermentation at high OLRs. Therefore, high power density and efficiency can be achieved by using a suitable OLR range.

  14. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  15. High charge-discharge performance of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} antiferroelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chenhong; University of the Chinese Academy of Sciences, Beijing 100049; Liu, Zhen

    2016-08-21

    The energy storage performance and charge-discharge properties of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density p{sub max} was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm{sup 3}. Moreover, the pulse power properties did not show degradation until 1500 timesmore » of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.« less

  16. Efficiency Analysis: Enhancing the Statistical and Evaluative Power of the Regression-Discontinuity Design.

    ERIC Educational Resources Information Center

    Madhere, Serge

    An analytic procedure, efficiency analysis, is proposed for improving the utility of quantitative program evaluation for decision making. The three features of the procedure are explained: (1) for statistical control, it adopts and extends the regression-discontinuity design; (2) for statistical inferences, it de-emphasizes hypothesis testing in…

  17. 75 FR 34734 - Improving Market and Planning Efficiency Through Improved Software; Notice of Agenda and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Market and Planning Efficiency Through Improved Software; Notice of Agenda and Procedures for Staff Technical Conference June 10, 2010. This notice establishes the agenda and procedures for the staff[email protected] . Kimberly D. Bose, Secretary. Agenda for AD10-12 Staff Technical Conference on Enhanced Power...

  18. Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing

    2015-05-11

    Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less

  19. Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.

    PubMed

    Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju

    2010-05-21

    We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.

  20. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    NASA Astrophysics Data System (ADS)

    Stappel, M.; Steinborn, R.; Kolbe, D.; Walz, J.

    2013-07-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity.

  1. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    NASA Astrophysics Data System (ADS)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  2. Performance Improvement of Power Analysis Attacks on AES with Encryption-Related Signals

    NASA Astrophysics Data System (ADS)

    Lee, You-Seok; Lee, Young-Jun; Han, Dong-Guk; Kim, Ho-Won; Kim, Hyoung-Nam

    A power analysis attack is a well-known side-channel attack but the efficiency of the attack is frequently degraded by the existence of power components, irrelative to the encryption included in signals used for the attack. To enhance the performance of the power analysis attack, we propose a preprocessing method based on extracting encryption-related parts from the measured power signals. Experimental results show that the attacks with the preprocessed signals detect correct keys with much fewer signals, compared to the conventional power analysis attacks.

  3. Simultaneous spin-coating and solvent annealing: Manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells

    DOE PAGES

    He, Zhicai; Liu, Feng; Wang, Cheng; ...

    2015-08-20

    Here, we developed a simultaneous spin-coating/solvent-annealing process and demonstrated morphology optimization for PTB7 based organic photovoltaics. This novel processing method enhances the edge-on crystalline content in thin films and induces the formation of weak PCBM aggregates. As a result, the efficiency of polymer solar cells increased from 9.2% to a certified high efficiency of 9.61%, owing to an enhanced short-circuit current (J sc, 18.4 mA cm –2vs. 17. 5 mA cm –2) and an improved fill factor.

  4. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    PubMed

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  5. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun

    2017-11-01

    Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  6. High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors.

    PubMed

    Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui

    2017-08-16

    Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.

  7. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    NASA Astrophysics Data System (ADS)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  8. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  9. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  10. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    PubMed

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low-resistance ion exchange membranes (0.5 Ω cm(2)) at very small spacing intervals (50 μm).

  11. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  12. Effect of ring-shaped SiO2 current blocking layer thickness on the external quantum efficiency of high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong

    2017-12-01

    A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.

  13. Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals.

    PubMed

    Kulkarni, Aditya; Evers, Wiel H; Tomić, Stanko; Beard, Matthew C; Vanmaekelbergh, Daniel; Siebbeles, Laurens D A

    2018-01-23

    Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases in a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.

  14. Analysis of fuel cell hybrid locomotives

    NASA Astrophysics Data System (ADS)

    Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that is, not a hybrid.

  15. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  16. Design of multisegmented freeform lens for LED fishing/working lamp with high efficiency.

    PubMed

    Lai, Min-Feng; Anh, Nguyen Doan Quoc; Gao, Jia-Zhi; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2015-10-01

    A novel LED fishing/working light is proposed to enhance the lighting efficiency of a fishing boat. The study is focused on the freeform secondary lens design so as to create a lamp that attracts fish and sheds light on the deck for the crew's work. The experimental results show that the proposed multisegmented freeform lens can deliver the proposed aim, giving 3 times as much illuminating power as the traditional high-intensity discharge fishing lamp does with the same input of electrical power.

  17. Ultrasound enhances retrovirus-mediated gene transfer.

    PubMed

    Naka, Toshio; Sakoda, Tsuyoshi; Doi, Takashi; Tsujino, Takeshi; Masuyama, Tohru; Kawashima, Seinosuke; Iwasaki, Tadaaki; Ohyanagi, Mitsumasa

    2007-01-01

    Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased by the retrovirus with ultrasound exposure in these cells. Adjunctive ultrasound exposure was associated with enhanced retrovirus-mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid-DNA-, but also retrovirus-mediated gene transfer.

  18. Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    2010-03-01

    We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.

  19. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    PubMed

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  20. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaulsky, E; Boo, C; Lin, SH

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that ofmore » an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.« less

  1. Power Efficient Hardware Architecture of SHA-1 Algorithm for Trusted Mobile Computing

    NASA Astrophysics Data System (ADS)

    Kim, Mooseop; Ryou, Jaecheol

    The Trusted Mobile Platform (TMP) is developed and promoted by the Trusted Computing Group (TCG), which is an industry standard body to enhance the security of the mobile computing environment. The built-in SHA-1 engine in TMP is one of the most important circuit blocks and contributes the performance of the whole platform because it is used as key primitives supporting platform integrity and command authentication. Mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for low power SHA-1 circuit are required. In this paper, we present a novel and efficient hardware architecture of low power SHA-1 design for TMP. Our low power SHA-1 hardware can compute 512-bit data block using less than 7,000 gates and has a power consumption about 1.1 mA on a 0.25μm CMOS process.

  2. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-06-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  3. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  4. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  5. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  6. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.

    PubMed

    Karalis, Aristeidis; Joannopoulos, J D

    2016-07-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.

  7. ‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion

    PubMed Central

    Karalis, Aristeidis; Joannopoulos, J. D.

    2016-01-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm2 with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm2 with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm2 with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522

  8. Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif

    2015-09-01

    Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.

  9. Advanced control design for hybrid turboelectric vehicle

    NASA Technical Reports Server (NTRS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  10. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.

    PubMed

    Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman

    2015-12-20

    In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.

  11. Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Li, Ping; Gao, Shiqiao; Cong, Binglong

    2018-03-01

    In this paper, performances of vibration energy harvester combined piezoelectric (PE) and electromagnetic (EM) mechanism are studied by theoretical analysis, simulation and experimental test. For the designed harvester, electromechanical coupling modeling is established, and expressions of vibration response, output voltage, current and power are derived. Then, performances of the harvester are simulated and tested; moreover, the power charging rechargeable battery is realized through designed energy storage circuit. By the results, it's found that compared with piezoelectric-only and electromagnetic-only energy harvester, the hybrid energy harvester can enhance the output power and harvesting efficiency; furthermore, at the harmonic excitation, output power of harvester linearly increases with acceleration amplitude increasing; while it enhances with acceleration spectral density increasing at the random excitation. In addition, the bigger coupling strength, the bigger output power is, and there is the optimal load resistance to make the harvester output the maximal power.

  12. Power allocation strategies to minimize energy consumption in wireless body area networks.

    PubMed

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  13. Exploring packaging strategies of nano-embedded thermoelectric generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Aniket; Muralidharan, Bhaskaran, E-mail: bm@ee.iitb.ac.in; Mahanti, Subhendra D.

    2015-10-15

    Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multimore » moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.« less

  14. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting

    PubMed Central

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-01-01

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from −40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions. PMID:28282910

  15. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    PubMed

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  16. Enhancement of Power Conversion Efficiency of TiO₂-Based Dye-Sensitized Solar Cells on Various Acid Treatment.

    PubMed

    Sireesha, Pedaballi; Sun, Wei-Gang; Su, Chaochin; Kathirvel, Sasipriya; Lekphet, Woranan; Akula, Suri Babu; Li, Wen-Ri

    2017-01-01

    The surface modification of the TiO2 photoelectrode film is one of the promising ways to improve the photovoltaic performance of dye-sensitized solar cell (DSSC). In this work for the acid treatment of TiO2 powder, fluorine containing compounds such as trifluoroacetic acid was carried out to enhance the properties of photoanode. In order to investigate the effect of trifluoroacetyl group, the TiO2 nanopowders were also treated with different acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid and their properties were compared. The TiO2 powders treated with both acetic acid and TFA have possessed smooth surface morphologies as well as enhanced particle dispersions with reduced particle sizes. Photoelectrodes prepared for these two kinds of TiO2 powders accommodated high amounts of dye loading and exhibited excellent light transmittance (wavelength region of 400–600 nm). Electrochemical impedance spectroscopy analysis showed the smallest radius of the semicircle which indicates the enhanced rate of electron transport for the cell based photoelectrode with trifluoroacetic acid treated TiO2 powder. The solar cell from the untreated TiO2 film showed the power conversion efficiency of 8.86% and the highest efficiency of 9.51% was achieved by the cell fabricated from trifluoroacetic acid treated TiO2 film.

  17. Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Peng, Ling; Mei, Yang; Chen, Shu-Fen; Zhang, Yu-Pei; Hao, Jing-Yu; Deng, Ling-Ling; Huang, Wei

    2015-11-01

    The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (JSC) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)-based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromagnetic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances. Project supported by the Ministry of Science and Technology, China (Grant No. 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Synergetic Innovation Center for Organic Electronics and Information Displays, China.

  18. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    PubMed

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  19. High-power 671  nm laser by second-harmonic generation with 93% efficiency in an external ring cavity.

    PubMed

    Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei

    2018-04-15

    Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.

  20. Conditional power and predictive power based on right censored data with supplementary auxiliary information.

    PubMed

    Sun, Libo; Wan, Ying

    2018-04-22

    Conditional power and predictive power provide estimates of the probability of success at the end of the trial based on the information from the interim analysis. The observed value of the time to event endpoint at the interim analysis could be biased for the true treatment effect due to early censoring, leading to a biased estimate of conditional power and predictive power. In such cases, the estimates and inference for this right censored primary endpoint are enhanced by incorporating a fully observed auxiliary variable. We assume a bivariate normal distribution of the transformed primary variable and a correlated auxiliary variable. Simulation studies are conducted that not only shows enhanced conditional power and predictive power but also can provide the framework for a more efficient futility interim analysis in terms of an improved accuracy in estimator, a smaller inflation in type II error and an optimal timing for such analysis. We also illustrated the new approach by a real clinical trial example. Copyright © 2018 John Wiley & Sons, Ltd.

  1. High Power Light Gas Helicon Plasma Source for VASIMR

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  2. Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self Assembly

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Li, Hongfei; Akgun, Bulent; Satijia, Sushil; Gersappe, Dilip; Zhu, Yimei; Rafailovich, Miriam

    2013-03-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. The mixture of polythiophene derivatives (donor) and fullerenes (acceptor) is spin coated on substrate as the active layer, and are phase-separated into interconnected domains. However, due to the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes and long path conduction, the power conversion efficiency (PCE) of BHJ solar cell is low. Therefore, morphology control in bulk heterojunction (BHJ) solar cell is considered to be critical for the power conversion efficiency (PCE). Here, we present a novel approach that introduces non-photoactive polymer that organizes the poly(3-hexylthiophene) (P3HT) into columnar phases decorated by [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at the interface. This structure represents a realization of an idealized morphology of an organic solar cell, in which, both exiciton dissociation and the carrier transport are optimized leading to increased power conversion efficiency.

  3. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  4. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  5. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  6. Resolution-Enhanced Harmonic and Interharmonic Measurement for Power Quality Analysis in Cyber-Physical Energy System.

    PubMed

    Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin

    2016-06-27

    Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system.

  7. Resolution-Enhanced Harmonic and Interharmonic Measurement for Power Quality Analysis in Cyber-Physical Energy System

    PubMed Central

    Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin

    2016-01-01

    Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system. PMID:27355946

  8. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator.

    PubMed

    Chang, Ho; Yu, Zhi-Rong

    2012-08-01

    This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.

  9. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    PubMed

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  10. An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants

    NASA Technical Reports Server (NTRS)

    Burroughs, J. W.

    1980-01-01

    New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.

  11. Novel high refractive index, thermally conductive additives for high brightness white LEDs

    NASA Astrophysics Data System (ADS)

    Hutchison, Richard Stephen

    In prior works the inclusion of nanoparticle fillers has typically been shown to increase the thermal conductivity or refractive index of polymer nanocomposites separately. High refractive index zirconia nanoparticles have already proved their merit in increasing the optical efficiency of encapsulated light emitting diodes. However, the thermal properties of zirconia-silicone nanocomposites have yet to be investigated. While phosphor-converted light emitting diodes are at the forefront of solid-state lighting technologies for producing white light, they are plagued by efficiency losses due to excessive heating at the semiconductor die and in and around the phosphor particles, as well as photon scattering losses in the phosphor layer. It would then be of great interest if the high refractive index nanoparticles were found to both be capable of increasing the refractive index, thus reducing the optical scattering, and also the thermal conductivity, channeling more heat away from the LED die and phosphors, mitigating efficiency losses from heat. Thermal conductance measurements on unfilled and nanoparticle loaded silicone samples were conducted to quantify the effect of the zirconia nanoparticle loading on silicone nanocomposite thermal conductivity. An increase in thermal conductivity from 0.27 W/mK to 0.49 W/mK from base silicone to silicone with 33.5 wt% zirconia nanoparticles was observed. This trend closely mirrored a basic rule of mixtures prediction, implying a further enhancement in thermal conductivity could be achieved at higher nanoparticle loadings. The optical properties of transparency and light extraction efficiency of these composites were also investigated. While overall the zirconia nanocomposite showed good transparency, there was a slight decrease at the shorter wavelengths with increasing zirconia content. For longer wavelength LEDs, such as green or red, this might not matter, but phosphor-converted white LEDs use a blue LED as the photon source making this decrease in transparency important to note. This decrease in transparency may be partially or wholly why a decrease in light extraction efficiency is observed at the 33.5 wt% zirconia loading fraction used for the LED samples. Preliminary aging studies under full and enhanced power conditions were conducted over 500 and 1000 hours to observe any changes in the spectral output power and phosphor conversion efficiency of the LEDs due to inclusion of the zirconia nanoparticles. It was found that the nanoparticles have no negative effect on the aging properties but also show no enhancement in relative output power over a preliminary aging study. However, their inclusion did result in increased phosphor conversion efficiency over the use of an unfilled silicone. This increase was seen as around a 10% or greater enhancement for the nanocomposite over that for the base Sylgard silicone. These experiments were originally conducted on the commercially available methylated Sylgard 184 silicone and then again on a higher refractive index methyl-phenyl silicone from Momentive. While some of the results from the Momentive silicone were perplexing, it was seen that, even without the inclusion of nanoparticles, the Momentive silicone had a higher refractive index, better aging properties, and a higher phosphor conversion efficiency over 500 hours under enhanced power conditions, warranting further studies into methyl-phenyl silicone nanocomposites.

  12. Graphene Oxide by UV-Ozone Treatment as an Efficient Hole Extraction Layer for Highly Efficient and Stable Polymer Solar Cells.

    PubMed

    Xia, Yingdong; Pan, Yufeng; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei

    2017-08-09

    The hole extraction layer has a significant impact on the achievement of high-efficiency polymer solar cells (PSCs). Here, we report an efficient approach to direct UV-ozone treatment by larger device performance enhancement employing graphene oxide (GO). The dramatic performance enhancement of PSCs with the P3HT:PCBM blend as an active layer was demonstrated by the UV-ozone treatment of GO for 30 min: best power conversion efficiency (PCE) of 4.18%, fill factor of 0.63, J sc of 10.94 mA cm -2 , and V oc of 0.61 V, which are significantly higher than those of the untreated GO (1.82%) and highly comparable PEDOT:PSS-based PSCs (3.73%). In addition, PSCs with UV-ozone-treated GO showed a longer stability than PSCs with PEDOT:PSS. The significant enhancement of PCEs of PSCs can be attributed to the fact that ozone molecules can oxidize GO into CO 2 and leave highly conductive graphene particles. We suggest that this simple UV-ozone treatment can provide an efficient method for highly efficient GO hole extraction in high-performance PSCs.

  13. Enhanced stability of magnetoelectric gyrators under high power conditions

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Gao, Min; Tang, Xiao; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2017-10-01

    In this study, three different coil-based magnetoelectric (ME) gyrators of different geometries, including gyrators with high power output, have been designed and characterized. These included two magnetostrictive/piezoelectric/magnetostrictive (M-P-M) and one piezoelectric/magnetostrictive/piezoelectric (P-M-P) type ME gyrators, which consisted of nickel zinc ferrite (NZFO) and lead zirconate titanate (PZT) ceramic plates. Compared with M-P-M ME gyrators, the P-M-P ones exhibited a higher power efficiency (η) of 85% when operated at resonance under an optimal magnetic bias field (HBias) of 40 Oe at low power conditions. It retained a relatively high efficiency of η = 79% under a high input power density of 2.87 W/cm3. A low reduction in the magnetomechanical coupling and mechanical quality (k33,m and Qm) factors of the NZFO ferrite layer in the ME gyrator explains the resilience of the P-M-P type structure with increasing power drive. The findings open the possibility of using ME gyrators in high power applications.

  14. Self-Powered Multiparameter Health Sensor.

    PubMed

    Tobola, Andreas; Leutheuser, Heike; Pollak, Markus; Spies, Peter; Hofmann, Christian; Weigand, Christian; Eskofier, Bjoern M; Fischer, Georg

    2018-01-01

    Wearable health sensors are about to change our health system. While several technological improvements have been presented to enhance performance and energy-efficiency, battery runtime is still a critical concern for practical use of wearable biomedical sensor systems. The runtime limitation is directly related to the battery size, which is another concern regarding practicality and customer acceptance. We introduced ULPSEK-Ultra-Low-Power Sensor Evaluation Kit-for evaluation of biomedical sensors and monitoring applications (http://ulpsek.com). ULPSEK includes a multiparameter sensor measuring and processing electrocardiogram, respiration, motion, body temperature, and photoplethysmography. Instead of a battery, ULPSEK is powered using an efficient body heat harvester. The harvester produced 171 W on average, which was sufficient to power the sensor below 25 C ambient temperature. We present design issues regarding the power supply and the power distribution network of the ULPSEK sensor platform. Due to the security aspect of self-powered health sensors, we suggest a hybrid solution consisting of a battery charged by a harvester.

  15. Magnetic metamaterial superlens for increased range wireless power transfer.

    PubMed

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Huang, Da; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav

    2014-01-10

    The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.

  16. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    PubMed Central

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  17. Light-trapping in perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    We numerically demonstrate enhanced light harvesting efficiency in both CH 3NH 3PbI 3 and CH(NH 2) 2PbI 3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH 3NH 3PbI 3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm 2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm 2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60more » degree for both S- and P- polarizations. For the corresponding CH(NH 2) 2PbI 3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm 2, corresponding to 95.4% of the total available photocurrent. Furthermore, the projected power conversion efficiency of the CH(NH 2) 2PbI 3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.« less

  18. Light-trapping in perovskite solar cells

    DOE PAGES

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    2016-06-01

    We numerically demonstrate enhanced light harvesting efficiency in both CH 3NH 3PbI 3 and CH(NH 2) 2PbI 3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH 3NH 3PbI 3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm 2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm 2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60more » degree for both S- and P- polarizations. For the corresponding CH(NH 2) 2PbI 3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm 2, corresponding to 95.4% of the total available photocurrent. Furthermore, the projected power conversion efficiency of the CH(NH 2) 2PbI 3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.« less

  19. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    PubMed

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majzoobi, A.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Neuber, A. A.

    Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.

  1. Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2017-01-01

    In this paper, we investigate the usage of SOA for reach extension of an impulse radio over fiber system. Operating in the saturated regime translates into strong nonlinearities and spectral distortions, which drops the power efficiency of the propagated pulses. After studying the SOA response versus operating conditions, we have enhanced the system performance by applying simple analog pre-distortion schemes for various derivatives of the Gaussian pulse and their combination. A novel pulse shape has also been designed by linearly combining three basic Gaussian pulses, offering a very good spectral efficiency (> 55 %) for a high power (0 dBm) at the amplifier input. Furthermore, the potential of our technique has been examined considering a 1.5 Gbps-OOK and 0.75 Gbps-PPM modulation schemes. Pre-distortion proved an advantage for a large extension of optical link (150 km), with an inline amplification via SOA at 40 km.

  2. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  3. Optimizing Hydropower Day-Ahead Scheduling for the Oroville-Thermalito Project

    NASA Astrophysics Data System (ADS)

    Veselka, T. D.; Mahalik, M.

    2012-12-01

    Under an award from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Water Power Program, a team of national laboratories is developing and demonstrating a suite of advanced, integrated analytical tools to assist managers and planners increase hydropower resources while enhancing the environment. As part of the project, Argonne National Laboratory is developing the Conventional Hydropower Energy and Environmental Systems (CHEERS) model to optimize day-ahead scheduling and real-time operations. We will present the application of CHEERS to the Oroville-Thermalito Project located in Northern California. CHEERS will aid California Department of Water Resources (CDWR) schedulers in making decisions about unit commitments and turbine-level operating points using a system-wide approach to increase hydropower efficiency and the value of power generation and ancillary services. The model determines schedules and operations that are constrained by physical limitations, characteristics of plant components, operational preferences, reliability, and environmental considerations. The optimization considers forebay and afterbay implications, interactions between cascaded power plants, turbine efficiency curves and rough zones, and operator preferences. CHEERS simultaneously considers over time the interactions among all CDWR power and water resources, hydropower economics, reservoir storage limitations, and a set of complex environmental constraints for the Thermalito Afterbay and Feather River habitats. Power marketers, day-ahead schedulers, and plant operators provide system configuration and detailed operational data, along with feedback on model design and performance. CHEERS is integrated with CDWR data systems to obtain historic and initial conditions of the system as the basis from which future operations are then optimized. Model results suggest alternative operational regimes that improve the value of CDWR resources to the grid while enhancing the environment and complying with water delivery obligations for non-power uses.

  4. Distributed Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

  5. Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes.

    PubMed

    Cao, Bin; Li, Shuiming; Hu, Run; Zhou, Shengjun; Sun, Yi; Gan, Zhiying; Liu, Sheng

    2013-10-21

    Current crowding effects (CCEs) on light extraction efficiency (LEE) of conventional GaN-based light-emitting diodes (LEDs) are analyzed through Monte Carlo ray-tracing simulation. The non-uniform radiative power distribution of the active layer of the Monte Carlo model is obtained based on the current spreading theory and rate equation. The simulation results illustrate that CCE around n-pad (n-CCE) has little effect on LEE, while CCE around p-pad (p-CCE) results in a notable LEE droop due to the significant absorption of photons emitted under p-pad. LEE droop is alleviated by a SiO₂ current blocking layer (CBL) and reflective p-pad. Compared to the conventional LEDs without CBL, the simulated LEE of LEDs with CBL at 20 A/cm² and 70 A/cm² is enhanced by 7.7% and 19.0%, respectively. It is further enhanced by 7.6% and 11.4% after employing a reflective p-pad due to decreased absorption. These enhancements are in accordance with the experimental results. Output power of LEDs with CBL is enhanced by 8.7% and 18.2% at 20 A/cm² and 70 A/cm², respectively. And the reflective p-pad results in a further enhancement of 8.9% and 12.7%.

  6. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    PubMed

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  7. Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.

    PubMed

    Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan

    2017-08-16

    Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.

  8. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming

    2014-08-18

    We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20 mA are 0.24 mW and 556.3 nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resultedmore » from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.« less

  9. Efficient solar-pumped Nd:YAG laser by a double-stage light-guide/V-groove cavity

    NASA Astrophysics Data System (ADS)

    Almeida, Joana; Liang, Dawei

    2011-05-01

    Since the first reported Nd:YAG solar laser, researchers have been exploiting parabolic mirrors and heliostats for enhancing laser output performance. We are now investigating the production of an efficient solar-pumped laser for the reduction of magnesium from magnesium oxide, which could be an alternative solution to fossil fuel. Therefore both high conversion efficiency and excellent beam quality are imperative. By using a single fused silica light guide of rectangular cross section, highly concentrated solar radiation at the focal spot of a stationary parabolic mirror is efficiently transferred to a water-flooded V-groove pump cavity. It allows for the double-pass absorption of pump light along a 4mm diameter, 30mm length, 1.1at% Nd:YAG rod. Optimum pumping parameters and solar laser output power are found through ZEMAXTM non-sequential ray-tracing and LASCADTM laser cavity analysis. 11.0 W of multimode laser output power with excellent beam profile is numerically calculated, corresponding to 6.1W/m2 collection efficiency. To validate the proposed pumping scheme, an experimental setup of the double-stage light-guide/V-groove cavity was built. 78% of highly concentrated solar radiation was efficiently transmitted by the fused silica light guide. The proposed pumping scheme can be an effective solution for enhancing solar laser performances when compared to other side-pump configurations.

  10. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide

    NASA Astrophysics Data System (ADS)

    Kuramoto, Masaru; Kobayashi, Seiichiro; Akagi, Takanobu; Tazawa, Komei; Tanaka, Kazufumi; Saito, Tatsuma; Takeuchi, Tetsuya

    2018-03-01

    We have achieved a high output power of 6 mW from a 441 nm GaN-based vertical-cavity surface-emitting laser (VCSEL) under continuous wave (CW) operation, by reducing both the internal loss and the reflectivity of the front cavity mirror. A preliminary analysis of the internal loss revealed an enormously high transverse radiation loss in a conventional GaN-based VCSEL without lateral optical confinement (LOC). Introducing an LOC structure enhanced the slope efficiency by a factor of 4.7, with a further improvement to a factor of 6.7 upon reducing the front mirror reflectivity. The result was a slope efficiency of 0.87 W/A and an external differential quantum efficiency of 32% under pulsed operation. A flip-chip-bonded VCSEL also exhibited a high slope efficiency of 0.64 W/A and an external differential quantum efficiency of 23% for the front-side output under CW operation. The reflectivity of the cavity mirror was adjusted by varying the number of AlInN/GaN distributed Bragg reflector pairs from 46 to 42, corresponding to reflectivity values from 99.8% to 99.5%. These results demonstrate that a combination of internal loss reduction and cavity mirror control is a very effective way of obtaining a high output GaN-based VCSEL.

  11. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    PubMed Central

    Weiwei, Ma; Zhenhua, Xie; Feng, Liu; Hang, Ning; Yuyang, Jiang

    2009-01-01

    RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene. PMID:19859553

  12. Electric Power Systems Are Profoundly Changing | Energy Analysis | NREL

    Science.gov Websites

    . Advances in efficiency and smart grid technologies also have the potential to change historical demand installations are increasing. NREL works within these currents of change, and helps shape them to enhance our

  13. Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2017-10-01

    Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.

  14. Light-extraction efficiency and forward voltage in GaN-based light-emitting diodes with different patterns of V-shaped pits

    NASA Astrophysics Data System (ADS)

    Wang, Min-Shuai; Huang, Xiao-Jing

    2013-08-01

    We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN-based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaN-based light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal—organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.

  15. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shisheng, E-mail: shishenglin@zju.edu.cn; Chen, Hongsheng; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027

    2015-11-09

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  16. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.

    PubMed

    Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-08-07

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.

  17. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  18. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    PubMed

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  19. Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals

    DOE PAGES

    Kulkarni, Aditya; Evers, Wiel H.; Tomic, Stanko; ...

    2017-12-14

    Here, carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases inmore » a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.« less

  20. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes.

    PubMed

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  1. Compact Deep-Space Optical Communications Transceiver

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas; Charles, Jeffrey R.

    2009-01-01

    Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.

  2. Efficient, full-spectrum, long-lived, non-toxic microwave lamp for plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLennan, D.A.; Turner, B.P.; Dolan, J.T.

    1994-12-31

    Fusion Systems Corporation has developed a mercury-free, low infra-red, efficient microwave lamp using a benign sulfur based fill optimized for visible light. Our literature search and discussions with researchers directed us to enhance the bulbs red output. We have demonstrated a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over 1.3 micro-moles per joule at the power main. Recent work has shown we can make additional increases in overall system efficiency. During the next two years, we expect to demonstrate a system capable of producing more than 1.5 micro-moles/joule measured at the power main with significantlymore » less IR than alternative lamp systems.« less

  3. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    PubMed

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  4. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  5. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-07

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.

  6. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  7. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-09-08

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

  8. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    PubMed

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  9. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiebitz, Paul

    2014-05-27

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliablemore » power sources for microsystems.« less

  10. High-efficiency resonant coupled wireless power transfer via tunable impedance matching

    NASA Astrophysics Data System (ADS)

    Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra

    2017-10-01

    For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.

  11. Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Han, Yashuai; Wang, Junmin

    2016-04-01

    A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.

  12. Simulation of a gigawatt level Ku-band overmoded Cerenkov type oscillator operated at low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Shu, Ting, E-mail: mrtingshu@qq.com; Ju, Jinchuan

    2014-03-15

    We present the simulation results of a Ku-band overmoded Cerenkov type high power microwave oscillator. A guiding magnetic field as low as 0.6 T has been operated in the device. Overmoded slow wave structures with gradually tapered vanes are used in order to increase power capacity and the efficiency of beam-wave interaction. The drift cavity is adopted to enhance the beam-wave interaction of the device. After numerical optimization, the designed generator with an output microwave power of 1.2 GW, a frequency of 13.8 GHz, and a power conversion efficiency as high as 38% can be achieved, when the diode voltage and currentmore » are, respectively, 540 kV and 5.8 kA. The power compositions of TM{sub 0n} modes of the output microwave have been analyzed, the results of which show that TM{sub 01} mode takes over almost 95% of the power proportion.« less

  13. Thermally tunable silicon racetrack resonators with ultralow tuning power.

    PubMed

    Dong, Po; Qian, Wei; Liang, Hong; Shafiiha, Roshanak; Feng, Dazeng; Li, Guoliang; Cunningham, John E; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2010-09-13

    We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts. The 10%-90% switching time is demonstrated to be ~170 µs. Such low-power tunable micro-resonators are particularly useful as multiplexing devices and wavelength-tunable silicon microcavity modulators.

  14. Two essays on efficiency in the electric power industry: Measurement of technical and allocative efficiency

    NASA Astrophysics Data System (ADS)

    Gardiner, John Corby

    The electric power industry market structure has changed over the last twenty years since the passage of the Public Utility Regulatory Policies Act (PURPA). These changes include the entry by unregulated generator plants and, more recently, the deregulation of entry and price in the retail generation market. Such changes have introduced and expanded competitive forces on the incumbent electric power plants. Proponents of this deregulation argued that the enhanced competition would lead to a more efficient allocation of resources. Previous studies of power plant technical and allocative efficiency have failed to measure technical and allocative efficiency at the plant level. In contrast, this study uses panel data on 35 power plants over 59 years to estimate technical and allocative efficiency of each plant. By using a flexible functional form, which is not constrained by the assumption that regulation is constant over the 59 years sampled, the estimation procedure accounts for changes in both state and national regulatory/energy policies that may have occurred over the sample period. The empirical evidence presented shows that most of the power plants examined have operated more efficiently since the passage of PURPA and the resultant increase of competitive forces. Chapter 2 extends the model used in Chapter 1 and clarifies some issues in the efficiency literature by addressing the case where homogeneity does not hold. A more general model is developed for estimating both input and output inefficiency simultaneously. This approach reveals more information about firm inefficiency than the single estimation approach that has previously been used in the literature. Using the more general model, estimates are provided on the type of inefficiency that occurs as well as the cost of inefficiency by type of inefficiency. In previous studies, the ranking of firms by inefficiency has been difficult because of the cardinal and ordinal differences between different types of inefficiency estimates. However, using the general approach, this study illustrates that plants can be ranked by overall efficiency.

  15. To enhance the efficiency of a power supply circuit by the use of Fe-P-B-Nb-type ultralow loss glassy metal core

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Urata, A.; Yamada, Y.; Makino, A.

    2009-04-01

    The inductor in a power supply is required to be capable of dealing satisfactorily with the high-current supply and to improve the power loss characteristic. A novel glassy metal powder with a chemical composition Fe77P7B13Nb3 features both a high saturated magnetic flux density of 1.3 T and a low coercive force of 2.0 A/m, which has a stable amorphous structure suitable for glassy metal composite cores. Hence there is no magnetic saturation even under a high-current supply, and it is confirmed to have significantly low magnetic loss resulting from the low coercive force. As a result of using the glassy metal alloy Fe77P7B13Nb3 powder in an inductor core, we have achieved improvement in power supply efficiency by up to roughly 2.0%. Moreover, the reduction in the standby power requirement by the improvement in the power supply efficiency in the low load current case, where the core loss occupies a high ratio in the entire loss, can be expected. Additionally, heat generation in a core is suppressed by using the low loss powder, and it becomes easy to design a temperature rise in the entire power supply circuit.

  16. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxidemore » (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .« less

  17. Efficient Radio Frequency Inductive Discharges in Near Atmospheric Pressure Using Immittance Conversion Topology

    NASA Astrophysics Data System (ADS)

    Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu

    A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.

  18. High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer

    NASA Astrophysics Data System (ADS)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu

    2006-12-01

    We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.

  19. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  20. Performance enhancement of hybrid solar cells through chemical vapor annealing.

    PubMed

    Wu, Yue; Zhang, Genqiang

    2010-05-12

    Improvement in power conversion efficiency has been observed in cadmium selenide nanorods/poly(3-hexylthiophene) hybrid solar cells through benzene-1,3-dithiol chemical vapor annealing. Phosphor NMR studies of the nanorods and TEM/AFM characterizations of the morphology of the blended film showed that the ligand exchange reaction and related phase separation happening during the chemical vapor annealing are responsible for the performance enhancement.

  1. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.

    PubMed

    Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young

    2013-05-08

    We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.

  2. Bipolar host materials for red and green phosphorescent OLED

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Hyuk; Park, Tae Jin; Jeon, Woo Sik; Park, Jung Joo

    2007-11-01

    We report novel bipolar host materials for high efficiency red and green phosphorescent OLEDs (PHOLEDs). Phenyl moieties were inserted in a 4,4'-N,N'-dicarbazolebipheyl (CBP) compound to provide much easier electron injection and to increase electron mobility. The efficiency increase and voltage reduction by this modification were observed in red and green PHOLEDs. At a given constant luminance of 1000 cd/m2, the power efficiency was enhanced at least by twenty percent in the general red and green PHOLED devices.

  3. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  4. Design analysis and simulation study of an efficiency enhanced L-band MILO

    NASA Astrophysics Data System (ADS)

    Dixit, Gargi; Kumar, Arjun; Jain, P. K.

    2017-01-01

    In this article, an experimental L-band compact magnetically insulated transmission line oscillator (MILO) has been simulated using the 3D PIC simulation code "Particle Studio," and an improvement in the device efficiency has been obtained. The detailed interaction and operating mechanism describing the role of sub-assemblies have been explained. The performance of the device was found to be the function of the distance between the end-surface of the cathode and the beam-dump disk. During simulation, a high power microwave of the TM01 mode is generated with the peak RF-power of 6 GW and the power conversion efficiency of 19.2%, at the operating voltage of ˜600 kV and at the current of 52 kA. For better impedance matching or maximum power transfer, four stubs have been placed at the λg/4 distance from the extractor cavity, which results in the stable RF power output. In this work, an improved L-band MILO along with a new type beam-dump disk is selected for performance improvement with typical design parameters and beam parameters. The total peak power of improved MILO is 7 GW, and the maximum power conversion efficiency is 22.4%. This improvement is achieved due to the formation of the virtual cathode at the load side, which helps in modulating the energy of electrons owing to maximum reflection of electrons from the mesh or foil.

  5. Ultracapacitor-Based Uninterrupted Power Supply System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less downtime for applications and labor involved in replacing an ultracapacitor versus batteries. Also, the lengthy lifespan of this design would greatly reduce the disposal problems posed by lead acid, nickel cadmium, lithium, and nickel metal hydride batteries. This innovation is recyclable by nature, which further reduces system costs. The disposal of ultracapacitors is simple, as they are constructed of non-hazardous components. They are also safer than batteries in that they can be easily discharged, and left indefinitely in a safe, discharged state where batteries cannot.

  6. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  7. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    NASA Astrophysics Data System (ADS)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  8. 5  W output power from a double-clad hybrid fiber with Yb-doped phosphate core and silicate cladding.

    PubMed

    Wang, Longfei; He, Dongbing; Zhang, Lei; Yu, Chunlei; Feng, Suya; Wang, Meng; Chen, Danping; Hu, Lili

    2017-08-01

    For the first time, to the best of our knowledge, we report on the realization of a laser from a Yb-doped phosphate core/silicate cladding double-clad hybrid fiber. 5 W output power was extracted with 14.6% slope efficiency and a laser spectrum of a 1027 nm central wavelength from a 20 cm long single-mode fiber with a ∼10  μm core diameter in a 20%-4% laser cavity. The laser efficiency can be significantly enhanced by correspondingly adjusting and optimizing the laser oscillator.

  9. Recent Trends in Fusion Gyrotron Development at KIT

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Avramidis, K.; Franck, J.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kalaria, P.; Pagonakis, I. Gr.; Ruess, S.; Rzesnicki, T.; Thumm, M.; Wu, C.

    2017-10-01

    ECRH&CD is one of the favorite heating system for magnetically confined nuclear fusion plasmas. KIT is strongly involved in the development of high power gyrotrons for use in ECRH systems for nuclear fusion. KIT is upgrading the sub-components of the existing 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron to support long-pulse operation up to 1 s, all components will be equipped with a specific active cooling system. Two important developments for future high power, highly efficient gyrotrons will be discussed: design of gyrotrons with high operating frequency (˜ 240 GHz) and efficiency enhancement by using advanced collector designs with multi-staged voltage depression.

  10. Proposal for conversion of end use equipment and service from AC to DC for enhanced benefits from photovoltaics and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1998-07-01

    The need to produce electricity either more fuel efficiently or without need for consuming fuel is well recognized. Fuel cells are typically suggested for higher efficiency and photovoltaics can produce electricity directly from the sun. However, both of these devices produce direct current which is not compatible with the existing ac power system. The typical options of installing AC to DC inverters and the dedication of this DC generation to DC loads and storage are costly and inefficient. Thus, the author suggests it would be better in terms of energy conservation and public policy to convert end use service tomore » DC for direct compatibility with this DC generation, as a first step toward conversion to a new and better type of electric power system that can be described as a solid state power electronics based multiple voltage DC power system.« less

  11. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  12. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    PubMed

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Multistage quantum absorption heat pumps.

    PubMed

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  14. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  15. Thoratec transcutaneous energy transformer system: a review and update.

    PubMed

    Rintoul, Thomas C; Dolgin, Alexander

    2004-01-01

    A transcutaneous energy transformer system (TETS) can provide power to an implanted ventricular assist device (VAD) across an unbroken layer of skin. A TETS includes a subcutaneous secondary coil, which traditionally connects to remote power conditioning circuitry located to avoid eddy current losses and heating that occur in metal near operating TETS coils. Litz wire, used to construct the coil and connect it to that circuitry, efficiently conducts the high frequency alternating current but is bulky and stiff. A novel concept (US Patent No. 6,327,504 B1) packages the secondary coil's output power conditioning circuitry within the unused aperture of the coil while minimizing eddy current losses. The concept allows use of a more flexible cable for its direct current power output. The result is improved reliability, functionality, and efficiency along with decreased implant volume and a thinner, more flexible lead system to interconnect to the VAD. This in turn enhances system versatility by expanding sites available for module implantation. A TETS using this concept has demonstrated efficiency exceeding 80% and peak power outputs of 45 W with good tissue compatibility in the bovine model after a 30 day implant.

  16. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.

    PubMed

    Strain, Michael J; Lacava, Cosimo; Meriggi, Laura; Cristiani, Ilaria; Sorel, Marc

    2015-04-01

    A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3  dB at an ultra-low on-chip pump power of 0.7 mW.

  17. Next generation diode lasers with enhanced brightness

    NASA Astrophysics Data System (ADS)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  18. Investigation of negative permeability metamaterials for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin

    2017-11-01

    In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  19. A standard for test reliability in group research.

    PubMed

    Ellis, Jules L

    2013-03-01

    Many authors adhere to the rule that test reliabilities should be at least .70 or .80 in group research. This article introduces a new standard according to which reliabilities can be evaluated. This standard is based on the costs or time of the experiment and of administering the test. For example, if test administration costs are 7 % of the total experimental costs, the efficient value of the reliability is .93. If the actual reliability of a test is equal to this efficient reliability, the test size maximizes the statistical power of the experiment, given the costs. As a standard in experimental research, it is proposed that the reliability of the dependent variable be close to the efficient reliability. Adhering to this standard will enhance the statistical power and reduce the costs of experiments.

  20. Active optimal control strategies for increasing the efficiency of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Aljoaba, Sharif Zidan Ahmad

    Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.

  1. TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse.

    PubMed

    Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2018-04-04

    The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.

  2. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to efficient coupling of optical energy, pre-injection of photoactive dyes promoted the degree of tissue removal during laser irradiation. Further studies will investigate spatial distribution of dyes and optimal injecting pressure to govern the extent of dye-assisted ablation in a predictable manner. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser vaporization for BPH with low power application. © 2014 Wiley Periodicals, Inc.

  3. Investigating market efficiency through a forecasting model based on differential equations

    NASA Astrophysics Data System (ADS)

    de Resende, Charlene C.; Pereira, Adriano C. M.; Cardoso, Rodrigo T. N.; de Magalhães, A. R. Bosco

    2017-05-01

    A new differential equation based model for stock price trend forecast is proposed as a tool to investigate efficiency in an emerging market. Its predictive power showed statistically to be higher than the one of a completely random model, signaling towards the presence of arbitrage opportunities. Conditions for accuracy to be enhanced are investigated, and application of the model as part of a trading strategy is discussed.

  4. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer.

    PubMed

    Brown, Patrick R; Lunt, Richard R; Zhao, Ni; Osedach, Timothy P; Wanger, Darcy D; Chang, Liang-Yi; Bawendi, Moungi G; Bulović, Vladimir

    2011-07-13

    The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.

  5. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery.

    PubMed

    Lu, Mei; Zhao, Xiaoyun; Xing, Haonan; Xun, Zhe; Yang, Tianzhi; Cai, Cuifang; Wang, Dongkai; Ding, Pingtian

    2018-04-03

    Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery. Copyright © 2018. Published by Elsevier Ltd.

  6. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation

    NASA Astrophysics Data System (ADS)

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-01-01

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06547f

  7. Field enhancement in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Piltan, Shiva; Sievenpiper, Dan

    2018-05-01

    Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.

  8. Enhancement of the Power-Conversion Efficiency of Organic Solar Cells via Unveiling an Appropriate Rational Design Strategy in Indacenodithiophene- alt-quinoxaline π-Conjugated Polymers.

    PubMed

    Chochos, Christos L; Singh, Ranbir; Gregoriou, Vasilis G; Kim, Min; Katsouras, Athanasios; Serpetzoglou, Efthymis; Konidakis, Ioannis; Stratakis, Emmanuel; Cho, Kilwon; Avgeropoulos, Apostolos

    2018-03-28

    We report on the photovoltaic parameters, photophysical properties, optoelectronic properties, self-assembly, and morphology variations in a series of high-performance donor-acceptor (D-A) π-conjugated polymers based on indacenodithiophene and quinoxaline moieties as a function of the number-average molecular weight ([Formula: see text]), the nature of aryl substituents, and the enlargement of the polymer backbone. One of the most important outcome is that from the three optimization approaches followed to tune the chemical structure toward enhanced photovoltaic performance in bulk heterojunction solar cell devices with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester as the electron acceptor, the choice of the aryl substituent is the most efficient rational design strategy. Incorporation of thienyl rings as substituents versus phenyl rings accelerates the electron-hole extraction process to the respective electrode, despite the slightly lower recombination lifetime and, thus, improves the electrical performance of the device. Single-junction solar cells based on ThIDT-TQxT feature a maximum power-conversion efficiency of 7.26%. This study provides significant insights toward understanding of the structure-properties-performance relationship for D-A π-conjugated polymers in solid state, which provide helpful inputs for the design of next-generation polymeric semiconductors for organic solar cells with enhanced performance.

  9. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    PubMed

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  10. Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures.

    PubMed

    Mayer, Jan A; Offermans, Ton; Chrapa, Marek; Pfannmöller, Martin; Bals, Sara; Ferrini, Rolando; Nisato, Giovanni

    2018-03-19

    Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%.

  11. Enhanced thermoelectric performance of graphene nanoribbon-based devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md Sharafat, E-mail: hossain@student.unimelb.edu.au; Huynh, Duc Hau; Nguyen, Phuong Duc

    There have been numerous theoretical studies on exciting thermoelectric properties of graphene nano-ribbons (GNRs); however, most of these studies are mainly based on simulations. In this work, we measure and characterize the thermoelectric properties of GNRs and compare the results with theoretical predictions. Our experimental results verify that nano-structuring and patterning graphene into nano-ribbons significantly enhance its thermoelectric power, confirming previous predictions. Although patterning results in lower conductance (G), the overall power factor (S{sup 2}G) increases for nanoribbons. We demonstrate that edge roughness plays an important role in achieving such an enhanced performance and support it through first principles simulations.more » We show that uncontrolled edge roughness, which is considered detrimental in GNR-based electronic devices, leads to enhanced thermoelectric performance of GNR-based thermoelectric devices. The result validates previously reported theoretical studies of GNRs and demonstrates the potential of GNRs for the realization of highly efficient thermoelectric devices.« less

  12. GAPIT version 2: an enhanced integrated tool for genomic association and prediction

    USDA-ARS?s Scientific Manuscript database

    Most human diseases and agriculturally important traits are complex. Dissecting their genetic architecture requires continued development of innovative and powerful statistical methods. Corresponding advances in computing tools are critical to efficiently use these statistical innovations and to enh...

  13. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  14. Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Alireza; Hosseini, Seyed Mahmoud; Hassanpour Amiri, Morteza; Namdar, Naser; Sanaee, Zeinab

    2016-06-01

    Nitrogen doping of vertically aligned carbon nanotubes (VACNTs) using plasma-enhanced chemical vapour deposition has been investigated to improve the supercapacitance performance of CNTs. Incorporating electrochemical measurements on the open-ended nitrogen-doped CNTs, showed the achievement of 6 times improvement in the capacitance value. For nitrogen-doped CNTs on silicon substrate, specific capacitance of 60 F g-1 was obtained in 0.5 M KCl solution, with capacity retention ratio above 90 % after cycled at 0.1 A g-1 for 5000 cycles. Using this sample, a symmetric supercapacitance was fabricated which showed the power density of 37.5 kW kg-1. The facile fabrication approach and its excellent capacitance improvement, propose it as an efficient technique for enhancing the supercapacitance performance of the carbon-based electrodes.

  15. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.

    PubMed

    Yong, Yang-Chun; Yu, Yang-Yang; Yang, Yun; Liu, Jing; Wang, Jing-Yuan; Song, Hao

    2013-02-01

    The microbial fuel cell (MFC), is a promising environmental biotechnology for harvesting electricity energy from organic wastes. However, low bacterial membrane permeability of electron shuttles is a limiting factor that restricts the electron shuttle-mediated extracellular electron transfer (EET) from bacteria to electrodes, thus the electricity power output of MFCs. To this end, we heterologously expressed a porin protein OprF from Pseudomonas aeruginosa PAO1 into Escherichia coli, which dramatically increased its membrane permeability, delivering a much higher current output in MFCs than its parental strain (BL21). We found that the oprF-expression strain showed more efficient EET than its parental strain. More strikingly, the enhanced membrane permeability also rendered the oprF-expression strain an efficient usage of riboflavin as the electron shuttle, whereas its parental strain was incapable of. Our results substantiated that membrane permeability is crucial for the efficient EET, and indicated that the expression of synthetic porins could be an efficient strategy to enhance bioelectricity generation by microorganisms (including electrogenic bacteria) in MFCs. Copyright © 2012 Wiley Periodicals, Inc.

  16. Magnetic and optical effects in TiO2 based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kannan U., M.; Jammalamadaka, S. Narayana

    2018-04-01

    We report on the magnetic effects on the solar cell efficiency of TiO2 based dye sensitized solar cells (DSSC). The strong spin orbit coupling of rare earth Ho3+ ions introduced by the addition of Ho2O3 into the photoanode resulted in a 28% enhancement in the power conversion efficiency of DSSC. Such an enhancement in the efficiency may be attributed to the improved lifetime of photo generated excitons as a result of the accelerated intersystem crossing phenomenon. This observation is supported by our photoluminescence (PL) measurements where we could observe a decrease in the photo emission intensity with the addition of Ho2O3. In addition, we have used a low magnetic field of 100 Oe to further enhance the overall efficiency to 5.6%, which in turn proves that the Lorentz force plays a significant role in magnetic field controlled charge transport in DSSC. Finally, we have carried out a transfer matrix model based theoretical simulation for studying the optical properties of the multilayer device stack.

  17. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-07-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  18. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles.

    PubMed

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  19. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    PubMed Central

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs. PMID:23817586

  20. Plasmon-Enhanced Photocleaving Dynamics in Colloidal MicroRNA-Functionalized Silver Nanoparticles Monitored with Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Abu-Laban, Mohammad; Landry, Corey R; Kruger, Blake; Zhang, Zhenyu; Hayes, Daniel J; Haber, Louis H

    2016-10-11

    The photocleaving dynamics of colloidal microRNA-functionalized nanoparticles are studied using time-dependent second harmonic generation (SHG) measurements. Model drug-delivery systems composed of oligonucleotides attached to either silver nanoparticles or polystyrene nanoparticles using a nitrobenzyl photocleavable linker are prepared and characterized. The photoactivated controlled release is observed to be most efficient on resonance at 365 nm irradiation, with pseudo-first-order rate constants that are linearly proportional to irradiation powers. Additionally, silver nanoparticles show a 6-fold plasmon enhancement in photocleaving efficiency over corresponding polystyrene nanoparticle rates, while our previous measurements on gold nanoparticles show a 2-fold plasmon enhancement compared to polystyrene nanoparticles. Characterizations including extinction spectroscopy, electrophoretic mobility, and fluorimetry measurements confirm the analysis from the SHG results. The real-time SHG measurements are shown to be a highly sensitive method for investigating plasmon-enhanced photocleaving dynamics in model drug delivery systems.

  1. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  2. A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    PubMed Central

    Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing

    2010-01-01

    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery. PMID:22399907

  3. A power-efficient bio-potential acquisition device with DS-MDE sensors for long-term healthcare monitoring applications.

    PubMed

    Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing

    2010-01-01

    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery.

  4. Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer

    NASA Astrophysics Data System (ADS)

    Urzhumov, Yaroslav; Smith, David R.

    2011-05-01

    Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio.

  5. A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Junpu, E-mail: lingjunpu@163.com; Zhang, Jiande; He, Juntao

    2014-02-15

    A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity bymore » increasing the radial dimension of the Ku-band device. With a 550 keV and 7.5 kA electron beam, a 1.25 GW microwave pulse at 12.08 GHz has been obtained in the simulation. The power conversion efficiency is about 30%.« less

  6. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  7. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    PubMed

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  8. Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.

    PubMed

    Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua

    2017-07-13

    The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.

  9. Enhancing power density of biophotovoltaics by decoupling storage and power delivery

    NASA Astrophysics Data System (ADS)

    Saar, Kadi L.; Bombelli, Paolo; Lea-Smith, David J.; Call, Toby; Aro, Eva-Mari; Müller, Thomas; Howe, Christopher J.; Knowles, Tuomas P. J.

    2018-01-01

    Biophotovoltaic devices (BPVs), which use photosynthetic organisms as active materials to harvest light, have a range of attractive features relative to synthetic and non-biological photovoltaics, including their environmentally friendly nature and ability to self-repair. However, efficiencies of BPVs are currently lower than those of synthetic analogues. Here, we demonstrate BPVs delivering anodic power densities of over 0.5 W m-2, a value five times that for previously described BPVs. We achieved this through the use of cyanobacterial mutants with increased electron export characteristics together with a microscale flow-based design that allowed independent optimization of the charging and power delivery processes, as well as membrane-free operation by exploiting laminar flow to separate the catholyte and anolyte streams. These results suggest that miniaturization of active elements and flow control for decoupled operation and independent optimization of the core processes involved in BPV design are effective strategies for enhancing power output and thus the potential of BPVs as viable systems for sustainable energy generation.

  10. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    NASA Astrophysics Data System (ADS)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  11. Jet impingement heat transfer enhancement for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.

    1981-01-01

    A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.

  12. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.

    PubMed

    Petterson, Maureen K; Lemaitre, Maxime G; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V; Kravchenko, Ivan I; Rinzler, Andrew G

    2015-09-30

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm(2) AM1.5G illumination, results in a short-circuit current density of 35 mA/cm(2) and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.

  13. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm 2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm 2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  14. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE PAGES

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; ...

    2015-09-09

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm 2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm 2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  15. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  16. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50.

    PubMed

    Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao

    2018-02-15

    Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.

  17. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  18. Electricity forecasting on the individual household level enhanced based on activity patterns

    PubMed Central

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039

  19. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  20. Electricity forecasting on the individual household level enhanced based on activity patterns.

    PubMed

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.

  1. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGES

    Lu, Luyao; Chen, Wei; Xu, Tao; ...

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. As a result, the working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  2. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.

    PubMed

    Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J; Grant, Patrick S

    2011-03-01

    The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

  3. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Ahuja, Preety; Ujjain, Sanjeev Kumar; Kanojia, Rajni

    2018-01-01

    This paper reports the interaction of 3d-4d transition metal mixed oxide as simultaneous existence of M(3d) and M(4d) expectedly enhance the electrochemical performance of the resulting composite. Electrochemical performance of MnO2-RuO2 nanoflakes reduced graphene oxide nanoribbon composite (MnO2-RuO2@GNR) is intensively explored in symmetric and asymmetric supercapacitor assembly. In situ incorporation of graphene oxide nanoribbon (GONR) during synthesis provides efficient binding sites for growth of MnO2-RuO2 nanoflakes via their surface functionalities. The interconnected MnO2-RuO2 nanoflakes via GNR form a network with enhanced diffusion kinetics leading to efficient supercapacitor performance. Fabricated asymmetric supercapacitor reveals energy density 60 Wh kg-1 at power density 14 kW kg-1. Based on the analysis of impedance data in terms of complex power, quick response time of supercapacitor reveals excellent power delivery of the device. Improved cycling stability after 7000 charge discharge cycles for symmetric and asymmetric supercapacitor highlights the buffering action of GNR and can be generalized for next generation high performance supercapacitor.

  4. Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron

    2008-01-01

    In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.

  5. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Sánchez, Beatriz Mendoza; Dobson, Peter J.; Grant, Patrick S.

    2011-03-01

    The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.

  6. Silicon photonics for neuromorphic information processing

    NASA Astrophysics Data System (ADS)

    Bienstman, Peter; Dambre, Joni; Katumba, Andrew; Freiberger, Matthias; Laporte, Floris; Lugnan, Alessio

    2018-02-01

    We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency, as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information processing for applications like recognition of biological cells.

  7. Dispersion Engineering of High-Q Silicon Microresonators via Thermal Oxidation - Postprint

    DTIC Science & Technology

    2014-03-12

    microresonators, which benefit from dramatic cavity enhancement, enables intriguing functionalities such as ultralow -threshold parametric oscillation9–11, octave...real- ization of a desired dispersion in practice is still a chal- lenging problem. In this paper, we propose and demon- strate a simple but powerful ...for broad applications of nonlinear parametric processes. To show the power of this technique, we applied it to achieve highly efficient photon-pair

  8. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells

    NASA Astrophysics Data System (ADS)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger K.; Aji, Vivek; Gabor, Nathaniel M.

    2017-12-01

    Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-VSD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.

  9. Motivational Techniques for Good Human Relations.

    ERIC Educational Resources Information Center

    Greene, Betty J.

    Negative motivators like threats, intimidation, criticism, denigration, the withholding of information, and the exercise of power produce temporary results but engender resentment and close the door of communication. Good leaders use positive motivators to meet people's needs, enhance efficiency, and improve working relationships. Some of these…

  10. Replacement of Biphenyl by Bipyridine Enabling Powerful Hole Transport Materials for Efficient Perovskite Solar Cells.

    PubMed

    Wu, Fei; Shan, Yahan; Qiao, Jianhui; Zhong, Cheng; Wang, Rui; Song, Qunliang; Zhu, Linna

    2017-10-09

    Here, 2,2'- and 3,3'-bipyridine are introduced for the first time as the core structure to get two new hole transport materials (HTMs), namely F22 and F33. The electron-withdrawing nature of bipyridine lowers the HOMO level of the new compounds and enhances the open-circuit voltage of perovskite solar cells. Especially for F33, the better planarity leads to better conjugation in the whole molecule and the molecular interaction is enhanced. Hole-mobility tests, steady-state photoluminescence (PL) spectra as well as time-resolved PL decay results demonstrate that the new HTMs exhibit good hole extraction and hole-transporting property. Impressive power conversion efficiencies of 17.71 and 18.48 % are achieved in conventional planar perovskite (CH 3 NH 3 PbI 3-x Cl x ) solar cells containing F22 and F33 as HTMs, respectively. As far as we know, this is the first report on bypiridine-based HTMs with leading efficiencies, and the design motif in this work opens a new way for devising HTMs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up.

    PubMed

    Cui, Dan; Guo, Yu-Qi; Lee, Hyung-Sool; Wu, Wei-Min; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2014-07-01

    A four-compartment anaerobic baffled reactor (ABR) incorporated with membrane-less biocatalyzed electrolysis system (BES) was tested for the treatment of azo dye (alizarin yellow R, AYR) wastewater (AYR, 200 mg L(-1); glucose, 1000 mg L(-1)). The ABR-BES was operated without and with external power supply to examine AYR reduction process and reductive intermediates with different external voltages (0.3, 0.5 and 0.7 V) and hydraulic retention times (HRT: 8, 6 and 4h). The decolorization efficiency in the ABR-BES (8h HRT, 0.5 V) was higher than that in ABR-BES without electrolysis, i.e. 95.1 ± 1.5% versus 86.9 ± 6.3%. Incorporation of BES with ABR accelerated the consumption of VFAs (mainly acetate) and attenuated biogas (methane) production. Higher power supply (0.7 V) enhanced AYR decolorization efficiency (96.4 ± 1.8%), VFAs removal, and current density (24.1 Am(-3) TCV). Shorter HRT increased volumetric AYR decolorization rates, but decreased AYR decolorization efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enhancement of the performance of GaN IMPATT diodes by negative differential mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Yang, Lin’an, E-mail: layang@xidian.edu.cn; Chen, Qing

    2016-05-15

    A theoretical analysis of high-efficiency punch-through operation GaN-based terahertz IMPATT diodes has been carried out in this paper. It is shown that the negative differential mobility (NDM) characteristics of GaN coupled with the space charge effect acting as a self-feedback system can markedly increase the drift velocity of injection carriers, and thereby enhance diode performance under appropriate external RF voltage. The behavior of traveling electrons in the transit zone is investigated in detail. It is found that the IMPATT diode with a punch-through structure operating in the NDM mode exhibits superior characteristics compared with the equivalent diode operating in themore » Si-like constant mobility mode. In particular, the NDM-mode diode can tolerate a larger RF voltage swing than that operating in constant mobility mode. Numerical simulation results reveal that the highest efficiency of 26.6% and maximum RF power of 2.29 W can be achieved for the NDM-mode diode at a frequency of 225 GHz. A highest efficiency of 19.0% and maximum RF power of 1.58 W are obtained for the diode with constant mobility.« less

  13. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells.

    PubMed

    De Marco, Nicholas; Zhou, Huanping; Chen, Qi; Sun, Pengyu; Liu, Zonghao; Meng, Lei; Yao, En-Ping; Liu, Yongsheng; Schiffer, Andy; Yang, Yang

    2016-02-10

    Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.

  14. Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells

    DOE PAGES

    Gill, Hardeep Singh; Li, Lian; Ren, Haizhou; ...

    2018-01-01

    The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.

  15. Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Hardeep Singh; Li, Lian; Ren, Haizhou

    The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.

  16. Improvement for enhancing effectiveness of universal power system (UPS) continuous testing process

    NASA Astrophysics Data System (ADS)

    Sriratana, Lerdlekha

    2018-01-01

    This experiment aims to enhance the effectiveness of the Universal Power System (UPS) continuous testing process of the Electrical and Electronic Institute by applying work scheduling and time study methods. Initially, the standard time of testing process has not been considered that results of unaccurate testing target and also time wasting has been observed. As monitoring and reducing waste time for improving the efficiency of testing process, Yamazumi chart and job scheduling theory (North West Corner Rule) were applied to develop new work process. After the improvements, the overall efficiency of the process possibly increased from 52.8% to 65.6% or 12.7%. Moreover, the waste time could reduce from 828.3 minutes to 653.6 minutes or 21%, while testing units per batch could increase from 3 to 4 units. Therefore, the number of testing units would increase from 12 units up to 20 units per month that also contribute to increase of net income of UPS testing process by 72%.

  17. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells

    PubMed Central

    Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.

    2008-01-01

    To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.

  18. Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2018-05-01

    In this paper, Er3+-Yb3+-Li+ tri-doped TiO2 (UC-TiO2) was prepared by an addition of Li+ to Er3+-Yb3+ co-doped TiO2. The UC-TiO2 presented an enhanced up-conversion emission compared with Er3+-Yb3+ co-doped TiO2. The UC-TiO2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO2 was 14.0%, while the PCE of the solar cells with UC-TiO2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.

  19. Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2.

    PubMed

    Zhang, Zhenlong; Qin, Jianqiang; Shi, Wenjia; Liu, Yanyan; Zhang, Yan; Liu, Yuefeng; Gao, Huiping; Mao, Yanli

    2018-05-11

    In this paper, Er 3+ -Yb 3+ -Li + tri-doped TiO 2 (UC-TiO 2 ) was prepared by an addition of Li + to Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 presented an enhanced up-conversion emission compared with Er 3+ -Yb 3+ co-doped TiO 2 . The UC-TiO 2 was applied to the perovskite solar cells. The power conversion efficiency (PCE) of the solar cells without UC-TiO 2 was 14.0%, while the PCE of the solar cells with UC-TiO 2 was increased to 16.5%, which presented an increase of 19%. The results suggested that UC-TiO 2 is an effective up-conversion material. And this study provided a route to expand the spectral absorption of perovskite solar cells from visible light to near-infrared using up-conversion materials.

  20. Carbon-free hydrogen production from low rank coal

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  1. Varying ultrasound power level to distinguish surgical instruments and tissue.

    PubMed

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  2. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    DOE PAGES

    Wang, Kai; Yi, Chao; Liu, Chang; ...

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less

  3. Efficiency enhancement of blue light emitting diodes by eliminating V-defects from InGaN/GaN multiple quantum well structures through GaN capping layer control

    NASA Astrophysics Data System (ADS)

    Tsai, Sheng-Chieh; Li, Ming-Jui; Fang, Hsin-Chiao; Tu, Chia-Hao; Liu, Chuan-Pu

    2018-05-01

    A facile method for fabricating blue light-emitting diodes (B-LEDs) with small embedded quantum dots (QDs) and enhanced light emission is demonstrated by tuning the temperature of the growing GaN capping layer to eliminate V-defects. As the growth temperature increases from 770 °C to 840 °C, not only does the density of the V-defects reduce from 4.12 ∗ 108 #/cm2 nm to zero on a smooth surface, but the QDs also get smaller. Therefore, the growth mechanism of smaller QDs assisted by elimination of V-defects is discussed. Photoluminescence and electroluminescence results show that smaller embedded QDs can improve recombination efficiency, and thus achieve higher peak intensity with smaller peak broadening. Accordingly, the external quantum efficiency of the B-LEDs with smaller QDs is enhanced, leading to a 6.8% increase in light output power in lamp-form package LEDs.

  4. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    PubMed Central

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo

    2017-01-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs. PMID:29308238

  5. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO2 surface, form a perfect CH3NH3PbI3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO2/perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  6. Enhancing the efficiency of planar heterojunction perovskite solar cells via interfacial engineering with 3-aminopropyl trimethoxy silane hydrolysate.

    PubMed

    Wang, Ya-Qiong; Xu, Shou-Bin; Deng, Jian-Guo; Gao, Li-Zhen

    2017-12-01

    The interfacial compatibility between compact TiO 2 and perovskite layers is critical for the performance of planar heterojunction perovskite solar cells (PSCs). A compact TiO 2 film employed as an electron-transport layer (ETL) was modified using 3-aminopropyl trimethoxy silane (APMS) hydrolysate. The power conversion efficiency (PCE) of PSCs composed of an APMS-hydrolysate-modified TiO 2 layer increased from 13.45 to 15.79%, which was associated with a significant enhancement in the fill factor (FF) from 62.23 to 68.04%. The results indicate that APMS hydrolysate can enhance the wettability of γ-butyrolactone (GBL) on the TiO 2 surface, form a perfect CH 3 NH 3 PbI 3 film, and increase the recombination resistance at the interface. This work demonstrates a simple but efficient method to improve the TiO 2 /perovskite interface that can be greatly beneficial for developing high-performance PSCs.

  7. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    PubMed

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3 ) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr 3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  8. Enhancement of the inverted polymer solar cells via ZnO doped with CTAB

    NASA Astrophysics Data System (ADS)

    Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin

    2018-02-01

    A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.

  9. Jet engine performance enhancement through use of a wave-rotor topping cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    1993-01-01

    A simple model is used to calculate the thermal efficiency and specific power of simple jet engines and jet engines with a wave-rotor topping cycle. The performance of the wave rotor is based on measurements from a previous experiment. Applied to the case of an aircraft flying at Mach 0.8, the calculations show that an engine with a wave rotor topping cycle may have gains in thermal efficiency of approximately 1 to 2 percent and gains in specific power of approximately 10 to 16 percent over a simple jet engine with the same overall compression ratio. Even greater gains are possible if the wave rotor's performance can be improved.

  10. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping.

    PubMed

    Kuru, Cihan; Yavuz, Serdar; Kargar, Alireza; Choi, Duyoung; Choi, Chulmin; Rustomji, Cyrus; Jin, Sungho; Bandaru, Prabhakar R

    2016-01-01

    We report a doping strategy, where nickel oxide (NiO) nanoparticle film coating is employed for graphene/Si heterojunction solar cells to improve the power conversion efficiency (PCE). NiO doping has been shown to improve the short circuit current (J(SC)) by 12%, open circuit voltage (V(OC)) by 25% and fill factor (FF) by 145% of the cells, in turn increasing the PCE from 1.37% to 4.91%. Furthermore, NiO doped graphene/Si solar cells don't show any significant performance degradation over 10 days revealing that NiO doping can be a promising approach for practical applications of graphene in solar cells.

  11. An efficient nonlinear Feshbach engine

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fogarty, Thomás; Campbell, Steve; Chen, Xi; Busch, Thomas

    2018-01-01

    We investigate a thermodynamic cycle using a Bose-Einstein condensate (BEC) with nonlinear interactions as the working medium. Exploiting Feshbach resonances to change the interaction strength of the BEC allows us to produce work by expanding and compressing the gas. To ensure a large power output from this engine these strokes must be performed on a short timescale, however such non-adiabatic strokes can create irreversible work which degrades the engine’s efficiency. To combat this, we design a shortcut to adiabaticity which can achieve an adiabatic-like evolution within a finite time, therefore significantly reducing the out-of-equilibrium excitations in the BEC. We investigate the effect of the shortcut to adiabaticity on the efficiency and power output of the engine and show that the tunable nonlinearity strength, modulated by Feshbach resonances, serves as a useful tool to enhance the system’s performance.

  12. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  13. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.

    PubMed

    Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A

    2009-09-01

    Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

  14. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    PubMed

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  15. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  16. 2.4 GHz CMOS power amplifier with mode-locking structure to enhance gain.

    PubMed

    Lee, Changhyun; Park, Changkun

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm(2).

  17. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  18. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  19. Design and performance verification of advanced multistage depressed collectors. [traveling wave tubes for ECM

    NASA Technical Reports Server (NTRS)

    Kosmahl, H.; Ramins, P.

    1975-01-01

    Design and performance of a small size, 4-stage depressed collector are discussed. The collector and a spent beam refocusing section preceding it are intended for efficiency enhancement of octave bandwidth, high CW power traveling wave tubes for use in ECM.

  20. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure

    PubMed Central

    Su, Pengyu; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-01-01

    In this paper, we fabricated a TiO2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO2 nanosheets. The enhanced properties can be explained by the better contact of TiO2 nanosheets/nanoparticles with CH3NH3PbI3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells. PMID:29134092

  1. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    PubMed

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  2. Enhanced Weight based DSR for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Verma, Samant; Jain, Sweta

    2011-12-01

    Routing in ad hoc network is a great problematic, since a good routing protocol must ensure fast and efficient packet forwarding, which isn't evident in ad hoc networks. In literature there exists lot of routing protocols however they don't include all the aspects of ad hoc networks as mobility, device and medium constraints which make these protocols not efficient for some configuration and categories of ad hoc networks. Thus in this paper we propose an improvement of Weight Based DSR in order to include some of the aspects of ad hoc networks as stability, remaining battery power, load and trust factor and proposing a new approach Enhanced Weight Based DSR.

  3. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  4. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation.

    PubMed

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-02-14

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.

  5. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.

    PubMed

    Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong

    2018-06-21

    Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.

  6. Network topology and resilience analysis of South Korean power grid

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwan; Eisenberg, Daniel A.; Chun, Yeong Han; Park, Jeryang

    2017-01-01

    In this work, we present topological and resilience analyses of the South Korean power grid (KPG) with a broad voltage level. While topological analysis of KPG only with high-voltage infrastructure shows an exponential degree distribution, providing another empirical evidence of power grid topology, the inclusion of low voltage components generates a distribution with a larger variance and a smaller average degree. This result suggests that the topology of a power grid may converge to a highly skewed degree distribution if more low-voltage data is considered. Moreover, when compared to ER random and BA scale-free networks, the KPG has a lower efficiency and a higher clustering coefficient, implying that highly clustered structure does not necessarily guarantee a functional efficiency of a network. Error and attack tolerance analysis, evaluated with efficiency, indicate that the KPG is more vulnerable to random or degree-based attacks than betweenness-based intentional attack. Cascading failure analysis with recovery mechanism demonstrates that resilience of the network depends on both tolerance capacity and recovery initiation time. Also, when the two factors are fixed, the KPG is most vulnerable among the three networks. Based on our analysis, we propose that the topology of power grids should be designed so the loads are homogeneously distributed, or functional hubs and their neighbors have high tolerance capacity to enhance resilience.

  7. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.

    PubMed

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-10-12

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.

  8. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic

    PubMed Central

    Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun

    2016-01-01

    With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency. PMID:27754315

  9. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  10. MinT: Middleware for Cooperative Interaction of Things

    PubMed Central

    Jeon, Soobin; Jung, Inbum

    2017-01-01

    This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182

  11. MinT: Middleware for Cooperative Interaction of Things.

    PubMed

    Jeon, Soobin; Jung, Inbum

    2017-06-20

    This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.

  12. Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators

    PubMed Central

    Jo, Han-Gue; Malinowski, Peter; Schmidt, Stefan

    2017-01-01

    Mindfulness meditators often show greater efficiency in resolving response conflicts than non-meditators. However, the neural mechanisms underlying the improved behavioral efficiency are unclear. Here, we investigated frontal theta dynamics—a neural mechanism involved in cognitive control processes—in long-term mindfulness meditators. The dynamics of EEG theta oscillations (4–8 Hz) recorded over the medial frontal cortex (MFC) were examined in terms of their power (MFC theta power) and their functional connectivity with other brain areas (the MFC-centered theta network). Using a flanker-type paradigm, EEG data were obtained from 22 long-term mindfulness meditators and compared to those from 23 matched controls without meditation experience. Meditators showed more efficient cognitive control after conflicts, evidenced by fewer error responses irrespective of response timing. Furthermore, meditators exhibited enhanced conflict modulations of the MFC-centered theta network shortly before the response, in particular for the functional connection between the MFC and the motor cortex. In contrast, MFC theta power was comparable between groups. These results suggest that the higher behavioral efficiency after conflicts in mindfulness meditators could be a function of increased engagement to control the motor system in association with the MFC-centered theta network. PMID:28638334

  13. Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells.

    PubMed

    Li, Chang-Zhi; Huang, Jiang; Ju, Huanxin; Zang, Yue; Zhang, Jianyuan; Zhu, Junfa; Chen, Hongzheng; Jen, Alex K-Y

    2016-09-01

    By creating an effective π-orbital hybridization between the fullerene cage and the aromatic anchor (addend), the azafulleroid interfacial modifiers exhibit enhanced electronic coupling to the underneath metal oxides. High power conversion efficiency of 10.3% can be achieved in organic solar cells using open-cage phenyl C61 butyric acid methyl ester (PCBM)-modified zinc oxide layer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Kim, Donghyuk; Lee, Yonghee; Jeon, Duk Young

    2017-06-01

    Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ˜180 Ω sq-1 and ˜88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.

  15. Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Yang, Zhengbao; Zu, Jean

    2015-04-01

    Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.

  16. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  17. New transmission scheme to enhance throughput of DF relay network using rate and power adaptation

    NASA Astrophysics Data System (ADS)

    Taki, Mehrdad; Heshmati, Milad

    2017-09-01

    This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.

  18. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  19. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  20. Study of enhanced photogalvanic effect of Naphthol Green B in natural sunlight

    NASA Astrophysics Data System (ADS)

    Koli, Pooran

    2015-07-01

    The photogalvanic cells based on Naphthol Green B sensitizer-Fructose reductant-Sodium Lauryl Sulphate surfactant has been studied in natural sunlight. The cell has been found workable in natural sunlight with greatly enhanced optimum cell performance. The 1159.2 μW power, 4500 μA short-circuit current, 1070 mV open-circuit potential, 14.49% efficiency and 240 min storage capacity (as half change time) has been observed in optimum cell fabrication conditions.

  1. Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters.

    PubMed

    Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona

    2013-07-08

    In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).

  2. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials

    PubMed Central

    Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun

    2015-01-01

    Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability. PMID:26330371

  3. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.

    PubMed

    Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun

    2015-09-02

    Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron-phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm(-2) at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.

  4. Cyanopyridine Based Bipolar Host Materials for Green Electrophosphorescence with Extremely Low Turn-On Voltages and High Power Efficiencies.

    PubMed

    Li, Wei; Li, Jiuyan; Liu, Di; Li, Deli; Wang, Fang

    2016-08-24

    Low driving voltage and high power efficiency are basic requirements when practical applications of organic light emitting diodes (OLEDs) in displays and lighting are considered. Two novel host materials m-PyCNmCP and 3-PyCNmCP incorporating cyanopyridine moiety as electron-transporting unit are developed for use in fac-tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) based green phosphorescent OLEDs (PhOLEDs). Extremely low turn-on voltages of 2.01 and 2.27 V are realized, which are even lower than the theoretical limit of the emitted photon energy (hv)/electron charge (e) (2.37 V) of Ir(ppy)3. High power efficiency of 101.4 lm/W (corresponding to a maximum external quantum efficiency of 18.4%) and 119.3 lm/W (24.7%) are achieved for m-PyCNmCP and 3-PyCNmCP based green PhOLEDs. The excellent EL performance benefits from the ideal parameters of host materials by combining cyano and pyridine to enhance the n-type feature. The energetic favorable alignment of HOMO/LUMO levels of hosts with adjacent layers and the dopant for easy charge injections and direct charge trapping by dopant, their bipolar feature to balance charge transportations, sufficiently high triplet energy and small singlet/triplet energy difference (0.38 and 0.43 eV) combine to be responsible for the extremely low driving voltages and high power efficiencies of the green PhOLEDs.

  5. Relativistic backward wave oscillator operating in TM02 with cutoff-type resonant reflector

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Shi, Yanchao; Yang, Dewen; Cao, Yibing; Zhang, Zhijun

    2017-04-01

    This paper proposes an overmoded relativistic backward wave oscillator (RBWO) operating in the TM02 mode with the cutoff-type resonant reflector characterized by the advantages of the cutoff neck and the single resonant cavity. In order to protect the explosive emission of the annular cathode from the disturbance of the microwave leakage, the cutoff-type resonant reflector can effectively prevent the microwave consisting of several modes from propagating into the diode region. Attributed to the strong reflections caused by the cutoff-type resonant reflector at the front end of the overmoded slow-wave structure (SWS), the overmoded RBWO works in the state of the strong resonance, which enhances the beam-to-microwave power conversion efficiency. TM02 is selected as the operation mode so as to increase the power handling capability. The nonuniform SWS depresses the cross-excitation of the unwanted longitudinal modes of TM02 and improves the synchronous interaction between the electron beam and the structure wave. It is found that when we make the peak values of the longitudinal electric field and the modulated current appear nearly at the same position in the overmoded SWS by optimizing the electrodynamic structure, the conversion efficiency will be enhanced significantly. In the numerical simulation, the microwave generation with power 2.99 GW and efficiency 0.45 is obtained under the diode voltage 851 kV and current 7.8 kA with the guide magnetic field of 4.3 T. The microwave generation with the pure frequency spectrum of 10.083 GHz radiates in the TM01 mode. The conversion efficiency keeps above 0.40 over the diode voltage range of 220 kV.

  6. A parametric study of the microwave plasma-assisted combustion of premixed ethylene/air mixtures

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2017-11-01

    A parametric study of microwave argon plasma assisted combustion (PAC) of premixed ethylene/air mixtures was carried out using visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy as diagnostic tools. The parameters investigated included the plasma feed gas flow rate, the plasma power, the fuel equivalence ratio and the total flow rate of the fuel/air mixture. The combustion enhancement effects were characterized by the minimum ignition power, the flame length and the fuel efficiency of the combustor. It was found that: (1) increasing the plasma feed gas flow rate resulted in a decrease in the flame length, an increase in the minimum ignition power for near stoichiometric fuel equivalence ratios and a corresponding decrease in the minimum ignition power for ultra-lean and rich fuel equivalence ratios; (2) at a constant plasma power, increasing the total flow rate of the ethylene/air mixture from 1.0 slm to 1.5 slm resulted in an increase in the flame length and a reduction in the fuel efficiency; (3) increasing the plasma power resulted in a slight increase in flame length as well as improved fuel efficiency with fewer C2(d) and CH(A) radicals present downstream of the flame; (4) increasing the fuel equivalence ratio caused an increase in flame length but at a reduced fuel efficiency when plasma power was kept constant; and (5) the ground state OH(X) number density was on the order of 1015 molecules/cm3 and was observed to drop downstream along the propagation axis of the flame at all parameters investigated. Results suggest that each of the parameters independently influences the PAC processes.

  7. Brightness-enhanced high-efficiency single emitters for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe

    2013-02-01

    Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.

  8. Defective TiO 2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    DOE PAGES

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...

    2016-08-18

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less

  9. The transition to fully competitive bulk power markets: Federal regulatory developments in the electric power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portasik, L.S.

    In recent years, traditional electric utilities have become increasingly dependent upon enhanced competitive conditions in the bulk power market to improve efficiency and secure {open_quotes}least-cost{close_quotes} generation for their franchise and wholesale customers. The industry`s growing reliance on competitive wholesale markets both presaged and overtook the new legislation reflected in the Energy Policy Act of 1992 (EPAct). This article describes the new environment, as revealed in recent Federal Energy Regulatory Commission (FERC) decisions, and discusses its impact on the services and rates of affected utilities.

  10. Investigation of efficiency enhancement in InGaN MQW LED with compositionally step graded GaN/InAlN/GaN multi-layer barrier

    NASA Astrophysics Data System (ADS)

    Prajoon, P.; Anuja Menokey, M.; Charles Pravin, J.; Ajayan, J.; Rajesh, S.; Nirmal, D.

    2018-04-01

    The advantage of InGaN multiple Quantum well (MQW) Light emitting diode (LED) on a SiC substrate with compositionally step graded GaN/InAlN/GaN multi-layer barrier (MLB) is studied. The Internal quantum efficiency, Optical power, current-voltage characteristics, spontaneous emission rate and carrier distribution profile in the active region are investigated using Sentaurus TCAD simulation. An analytical model is also developed to describe the QW carrier injection efficiency, by including carrier leakage mechanisms like carrier overflow, thermionic emission and tunnelling. The enhanced electron confinement, reduced carrier asymmetry, and suppressed carrier overflow in the active region of the MLB MQW LED leads to render a superior performance than the conventional GaN barrier MQW LED. The simulation result also elucidates the efficiency droop behaviour in the MLB MQW LED, it suggests that the efficiency droop effect is remarkably improved when the GaN barrier is replaced with GaN/InAlN/GaN MLB barrier. The analysis shows a dominating behaviour of carrier escape mechanism due to tunnelling. Moreover, the lower lattice mismatching of SiC substrate with GaN epitaxial layer is attributed with good crystal quality and reduced polarization effect, ultimately enhances the optical performance of the LEDs.

  11. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing.

    PubMed

    Lai, Fang-I; Yang, Jui-Fu

    2013-05-17

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.

  12. Numerical study on the power extraction performance of a flapping foil with a flexible tail

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B.

    2015-01-01

    The numerical study on the power extraction performance of a flapping foil with a flexible tail is performed in this work. A NACA0015 airfoil is arranged in a two-dimensional laminar flow and imposed with a synchronous harmonic plunge and pitch rotary motion. A flat plate that is attached to the trailing edge of the foil is utilized to model a tail, and so they are viewed as a whole for the purpose of power extraction. In addition, the tail either is rigid or can deform due to the exerted hydrodynamic forces. To implement numerical simulations, an immersed boundary-lattice Boltzmann method is employed. At a Reynolds number of 1100 and the position of the pitching axis at third chord, the influences of the mass and flexibility of the tail as well as the frequency of motion on the power extraction are systematically examined. It is found that compared to the foil with a rigid tail, the efficiency of power extraction for the foil with a deformable tail can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging component of the power extraction, which is caused by the increased lift force, directly contributes to the efficiency improvement. Since a flexible tail with medium and high masses is not beneficial to the efficiency improvement, a flexible tail with low mass together with high flexibility is recommended in the flapping foil based power extraction system.

  13. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  14. Comprehensive Anti-error Study on Power Grid Dispatching Based on Regional Regulation and Integration

    NASA Astrophysics Data System (ADS)

    Zhang, Yunju; Chen, Zhongyi; Guo, Ming; Lin, Shunsheng; Yan, Yinyang

    2018-01-01

    With the large capacity of the power system, the development trend of the large unit and the high voltage, the scheduling operation is becoming more frequent and complicated, and the probability of operation error increases. This paper aims at the problem of the lack of anti-error function, single scheduling function and low working efficiency for technical support system in regional regulation and integration, the integrated construction of the error prevention of the integrated architecture of the system of dispatching anti - error of dispatching anti - error of power network based on cloud computing has been proposed. Integrated system of error prevention of Energy Management System, EMS, and Operation Management System, OMS have been constructed either. The system architecture has good scalability and adaptability, which can improve the computational efficiency, reduce the cost of system operation and maintenance, enhance the ability of regional regulation and anti-error checking with broad development prospects.

  15. Efficient, full-spectrum, long-lived, non-toxic microwave lamp for plant growth

    NASA Technical Reports Server (NTRS)

    Maclennan, Donald A.; Turner, Brian P.; Dolan, James T.; Ury, Michael G.; Gustafson, Paul

    1994-01-01

    Fusion Systems Corporation has developed a mercury-free, low infrared, efficient microwave lamp using a benign sulfur based fill optimized for visible light. Our literature search and discussions with researchers directed us to enhance the bulbs red output. We have demonstrated a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over 1.3 micro-moles per joule at the power main. Recent work has shown we can make additional increases in overall system efficiency. During the next two years, we expect to demonstrate a system capable of producing more than 1.5 micro-moles/joule measured at the power main with significantly less IR than alternative lamp systems. We determined optimal plant growth light requirements via a literature search and researcher input. We surveyed candidate lamp fill materials to be used in combination with sulfur and explored several methods of increasing photosynthetic efficacy.

  16. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  17. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications

    PubMed Central

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N.

    2015-01-01

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation–spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration. PMID:26576667

  18. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications.

    PubMed

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-11-18

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation-spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration.

  19. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures.

    PubMed

    Zhang, Fang; LaBarge, Nicole; Yang, Wulin; Liu, Jia; Logan, Bruce E

    2015-03-01

    A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72 °C produced a power density of 236 ± 8 Wm(-2), with a linear decrease in power to 95 ± 5 Wm(-2) at 23 °C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Wh m(-3) at a discharge energy efficiency of 54% and a temperature of 37 °C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A two-dimensional DNA lattice implanted polymer solar cell.

    PubMed

    Lee, Keun Woo; Kim, Kyung Min; Lee, Junwye; Amin, Rashid; Kim, Byeonghoon; Park, Sung Kye; Lee, Seok Kiu; Park, Sung Ha; Kim, Hyun Jae

    2011-09-16

    A double crossover tile based artificial two-dimensional (2D) DNA lattice was fabricated and the dry-wet method was introduced to recover an original DNA lattice structure in order to deposit DNA lattices safely on the organic layer without damaging the layer. The DNA lattice was then employed as an electron blocking layer in a polymer solar cell causing an increase of about 10% up to 160% in the power conversion efficiency. Consequently, the resulting solar cell which had an artificial 2D DNA blocking layer showed a significant enhancement in power conversion efficiency compared to conventional polymer solar cells. It should be clear that the artificial DNA nanostructure holds unique physical properties that are extremely attractive for various energy-related and photonic applications.

  1. Characterization of UV fluorophores for application to luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Hellier, Kaitlin; Carter, Sue

    The implementation of solar as an alternative energy source faces many challenges, including the competition for space with agriculture and the environmental impacts of solar farms in deserts. As a solution to these problems, the Carter Lab has developed Luminescent Solar Concentrator (LSC) panels for applications to greenhouses. These panels utilize a luminescent dye compatible with the spectrum used in photosynthesis for the plants below and front-facing PV cells, achieving power enhancement of greater than 20% compared with the cells alone. To increase this enhancement, additional portions of the unused spectrum must be harvested. In this talk, we will discuss the characterization of UV absorbing fluorophores, including spectra, quantum yield, and the enhancement of light output and power generation. We will also address the combination of these UV dyes with the original LSC dye in low and high concentration, and the FRET efficiency and potential applications associated with high concentration films.

  2. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    PubMed

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  4. High power single-longitudinal-mode Ho:YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate

    NASA Astrophysics Data System (ADS)

    Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.

    2017-05-01

    We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.

  5. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  6. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10% enhancement over those based on PBDTT-DPP. Finally, in Chapter 5, I demonstrate a new polymer system based on alternating dithienopyran and benzothiadiazole units with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.

  7. The tailored inner space of TiO2 electrodes via a 30 second wet etching process: high efficiency solid-state perovskite solar cells.

    PubMed

    Kwon, Jeong; Kim, Sung June; Park, Jong Hyoek

    2015-06-28

    We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures.

  8. Graphene/Si solar cells employing triethylenetetramine dopant and polymethylmethacrylate antireflection layer

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Jang, Chan Wook; Lee, Ha Seung; Seo, Sang Woo; Kim, Sung; Choi, Suk-Ho

    2018-03-01

    We report the use of triethylenetetramine (TETA) as a dopant of graphene transparent conducting electrodes (TCEs) for Si heterojunction solar cells. The molar concentration (nD) of TETA is varied from 0.05 to 0.3 mM to optimize the graphene TCEs. The TETA-doped graphene/Si Schottky solar cells show a maximum power-conversion efficiency (PCE) of 4.32% at nD = 0.2 mM, resulting from the enhanced electrical and optical properties, as proved from the nD-dependent behaviors of sheet resistance, transmittance, reflectance, series resistance, and external quantum efficiency. In addition, polymethylmethacrylate is employed as an antireflection layer to enhance the light-trapping effect on graphene/Si solar cells, resulting in further enhancement of the maximum PCE from 4.32 to 5.48%. The loss of the PCE is only within 2% of its original value during 10 days in air.

  9. Photon-enhanced thermionic emission for solar concentrator systems.

    PubMed

    Schwede, Jared W; Bargatin, Igor; Riley, Daniel C; Hardin, Brian E; Rosenthal, Samuel J; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T; Shen, Zhi-Xun; Melosh, Nicholas A

    2010-09-01

    Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.

  10. High efficiency and enhanced ESD properties of UV LEDs by inserting p-GaN/p-AlGaN superlattice

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, PeiXian; Yang, Zhuo; Hao, Yue; Wang, XiaoBo

    2014-05-01

    Significantly improved electrostatic discharge (ESD) properties of InGaN/GaN-based UV light-emitting diode (LED) with inserting p-GaN/p-AlGaN superlattice (p-SLs) layers (instead of p-AlGaN single layer) between multiple quantum wells and Mg-doped GaN layer are reported. The pass yield of the LEDs increased from 73.53% to 93.81% under negative 2000 V ESD pulses. In addition, the light output power (LOP) and efficiency droop at high injection current were also improved. The mechanism of the enhanced ESD properties was then investigated. After excluding the effect of capacitance modulation, high-resolution X-ray diffraction (XRD) and atomic force microscope (AFM) measurements demonstrated that the dominant mechanism of the enhanced ESD properties is the material quality improved by p-SLs, which indicated less leakage paths, rather than the current spreading improved by p-SLs.

  11. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering.

    PubMed

    Zhang, Zi-Hui; Ju, Zhengang; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-04-15

    The p-type AlGaN electron blocking layer (EBL) is widely used in InGaN/GaN light-emitting diodes (LEDs) for electron overflow suppression. However, a typical EBL also reduces the hole injection efficiency, because holes have to climb over the energy barrier generated at the p-AlGaN/p-GaN interface before entering the quantum wells. In this work, to address this problem, we report the enhancement of hole injection efficiency by manipulating the hole transport mechanism through insertion of a thin GaN layer of 1 nm into the p-AlGaN EBL and propose an AlGaN/GaN/AlGaN-type EBL outperforming conventional AlGaN EBLs. Here, the position of the inserted thin GaN layer relative to the p-GaN region is found to be the key to enhancing the hole injection efficiency. InGaN/GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency.

  12. Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility.

    PubMed

    Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo

    2016-01-20

    The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.

  13. Insight into D-A-π-A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells.

    PubMed

    Wu, Yongzhen; Zhu, Wei-Hong; Zakeeruddin, Shaik M; Grätzel, Michael

    2015-05-13

    The dye-sensitized solar cell (DSSC) is one of the most promising photovoltaic technologies with potential of low cost, light weight, and good flexibility. The practical application of DSSCs requires further improvement in power conversion efficiency and long-term stability. Recently, significant progress has been witnessed in DSSC research owing to the novel concept of the D-A-π-A motif for the molecular engineering of organic photosensitizers. New organic and porphyrin dyes based on the D-A-π-A motif can not only enhance photovoltaic performance, but also improve durability in DSSC applications. This Spotlight on Applications highlights recent advances in the D-A-π-A-based photosensitizers, specifically focusing on the mechanism of efficiency and stability enhancements. Also, we find insight into the additional acceptor as well as the trade-off of long wavelength response. The basic principles are involved in molecular engineering of efficient D-A-π-A sensitizers, providing a clear road map showing how to modulate the energy bands, rationally extending the response wavelength, and optimizing photovoltaic efficiency step by step.

  14. Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions.

    PubMed

    Cui, Jiabin; Li, Yongjia; Liu, Lei; Chen, Lin; Xu, Jun; Ma, Jingwen; Fang, Gang; Zhu, Enbo; Wu, Hao; Zhao, Lixia; Wang, Leyu; Huang, Yu

    2015-10-14

    We report a highly efficient photocatalyst comprised of Cu7S4@Pd heteronanostructures with plasmonic absorption in the near-infrared (NIR)-range. Our results indicated that the strong NIR plasmonic absorption of Cu7S4@Pd facilitated hot carrier transfer from Cu7S4 to Pd, which subsequently promoted the catalytic reactions on Pd metallic surface. We confirmed such enhancement mechanism could effectively boost the sunlight utilization in a wide range of photocatalytic reactions, including the Suzuki coupling reaction, hydrogenation of nitrobenzene, and oxidation of benzyl alcohol. Even under irradiation at 1500 nm with low power density (0.45 W/cm(2)), these heteronanostructures demonstrated excellent catalytic activities. Under solar illumination with power density as low as 40 mW/cm(2), nearly 80-100% of conversion was achieved within 2 h for all three types of organic reactions. Furthermore, recycling experiments showed the Cu7S4@Pd were stable and could retain their structures and high activity after five cycles. The reported synthetic protocol can be easily extended to other Cu7S4@M (M = Pt, Ag, Au) catalysts, offering a new solution to design and fabricate highly effective photocatalysts with broad material choices for efficient conversion of solar energy to chemical energy in an environmentally friendly manner.

  15. Perovskite-sensitized solar cells-based Ga-TiO2 nanodiatom-like photoanode: the improvement of performance by perovskite crystallinity refinement

    NASA Astrophysics Data System (ADS)

    Umar, Akrajas Ali; Al-She'irey, Altaf Yahya Ahmed; Rahman, Mohd Yusri Abd; Salleh, Muhamad Mat; Oyama, Munetaka

    2018-05-01

    The structure and crystallinity of the photoactive materials in solar cell determines the exciton formation, carrier's recombination, life-time and transportation in the devices. Here, we report that enhanced charge transportation, internal quantum efficiency and the carrier life-time can be achieved by modifying the structure, morphology of the organic perovskite thin film, enabling the improvement of the solar cell performance. The thin film structure modification was achieved via a thermal annealing in vacuum. In typical procedure, the power conversion efficiency of the PSC device can be upgraded from 0.5 to 2.9%, which is approximately 6 times increment, when the surface structure disorders are limited in the organic perovskite thin film. By optimizing the organic perovskite loading on the Ga-TiO2 diatom-like nanostructures photoanode and combining with a fine control of organic perovskite thin film structure, power conversion efficiency as high as 6.58% can be generated from the device. Electrochemical impedance spectroscopy and current-voltage analysis in the dark indicated that this process has effectively augmented the carrier life-time and limited the carrier recombination, enhancing the overall performance of the solar cell device. The preparation process and mechanism of the device performance improvement will be discussed.

  16. GaN-Based Light-Emitting Diodes Grown on Nanoscale Patterned Sapphire Substrates with Void-Embedded Cortex-Like Nanostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Yeh, J. Andrew

    2011-09-01

    High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.

  17. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  18. Thermophotovoltaic energy generation

    DOEpatents

    Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter

    2015-08-25

    Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.

  19. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  20. Automating a spacecraft electrical power system using expert systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  1. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less

  2. Hydroxyethyl cellulose doped with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as an effective dual functional hole-blocking layer for polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Liang; Chen, Yun

    2017-07-01

    We report a doping method to improve the performance of solution-processed polymer light-emitting diodes (PLEDs). Doping 12 wt% copper(II) phthalocyanine-tetrasulfonated acid tetrasodium salt (TS-CuPc) into hydroxyethyl cellulose (HEC) as a dual functional hole-blocking layer (df-HBL) of multilayer PLED (glass/ITO/PEDOT:PSS/HY-PPV/TS-CuPc-doped HEC/LiF/Al) significantly enhanced maximum luminance, maximum current and power efficiency over that without the df-HBL (10,319 cd/m2, 2.98 cd/A and 1.24 lm/W) to (29,205 cd/m2, 13.27 cd/A and 9.56 lm/W). CV measurements reveal that HEC possesses a powerful hole-blocking capability. Topography and conductivity AFM images show that doping TS-CuPc increases the interfacial contact area and interfacial conductivity, which can overcome the insulating nature of HEC and thus further facilitate electron injection. Enhancements in device performance are attributed to the improved carrier balance and recombination in the presence of df-HBL, confirmed in electron-only and hole-only devices. Moreover, apparently raised open-circuit voltages provide further evidence that enhanced electron injection is indeed realized by the df-HBL. This study demonstrates an effective approach to develop highly efficient PLEDs.

  3. Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency.

    PubMed

    Song, Da Hyun; Kim, Ho-Sub; Suh, Jung Sang; Jun, Bong-Hyun; Rho, Won-Yeop

    2017-06-04

    The use of dye-sensitized solar cells (DSSCs) is widespread owing to their high power conversion efficiency (PCE) and low cost of manufacturing. We prepared multi-shaped Ag nanoparticles (NPs) and introduced them into DSSCs to further enhance their PCE. The maximum absorption wavelength of the multi-shaped Ag NPs is 420 nm, including the shoulder with a full width at half maximum (FWHM) of 121 nm. This is a broad absorption wavelength compared to spherical Ag NPs, which have a maximum absorption wavelength of 400 nm without the shoulder of 61 nm FWHM. Therefore, when multi-shaped Ag NPs with a broader plasmon-enhanced absorption were coated on a mesoporous TiO₂ layer on a layer-by-layer structure in DSSCs, the PCE increased from 8.44% to 10.22%, equivalent to an improvement of 21.09% compared to DSSCs without a plasmonic layer. To confirm the plasmon-enhanced effect on the composite film structure in DSSCs, the PCE of DSSCs based on the composite film structure with multi-shaped Ag NPs increased from 8.58% to 10.34%, equivalent to an improvement of 20.51% compared to DSSCs without a plasmonic layer. This concept can be applied to perovskite solar cells, hybrid solar cells, and other solar cells devices.

  4. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.28). High efficiency white PHOLEDs are also demonstrated by incorporating green and red phosphorescent emitters together with the deep-blue emitter FIr6. Similar to the FIr6-only devices, the D-EML structure with high triplet energy charge transport materials leads to a maximum external quantum efficiency of (19 +/- 1) %. Using the p-i-n device structure, a peak power efficiency of (40 +/- 2) lm/W and (36 +/- 2) lm/W at 100 cd/m2 were achieved, and the white PHOLED possesses a CRI of 79 and CIE coordinates of (0.37, 0.40). The limited light extraction from the planar-type OLEDs is also one of the remaining challenges to the OLED efficiency. Here we have developed a simple soft lithography technique to fabricate a transparent, close-packed hemispherical microlens arrays. The application of such microlens arrays to the glass surface of the large-area fluorescent OLEDs enhanced the light extraction efficiency up to (70 +/- 7)%. It is also shown that the light extraction efficiency of the OLEDs is affected by microlens contact angle, OLEDs size, and detailed layer structure of the OLEDs.

  5. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  6. Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications

    NASA Astrophysics Data System (ADS)

    Bayramian, Andrew James

    2000-11-01

    A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.

  7. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarick, Holly; Boulesbaa, Abdelaziz; Puretzky, Alexander A

    In this paper, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3more » perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.« less

  8. Enhanced sampling simulations to construct free-energy landscape of protein-partner substrate interaction.

    PubMed

    Ikebe, Jinzen; Umezawa, Koji; Higo, Junichi

    2016-03-01

    Molecular dynamics (MD) simulations using all-atom and explicit solvent models provide valuable information on the detailed behavior of protein-partner substrate binding at the atomic level. As the power of computational resources increase, MD simulations are being used more widely and easily. However, it is still difficult to investigate the thermodynamic properties of protein-partner substrate binding and protein folding with conventional MD simulations. Enhanced sampling methods have been developed to sample conformations that reflect equilibrium conditions in a more efficient manner than conventional MD simulations, thereby allowing the construction of accurate free-energy landscapes. In this review, we discuss these enhanced sampling methods using a series of case-by-case examples. In particular, we review enhanced sampling methods conforming to trivial trajectory parallelization, virtual-system coupled multicanonical MD, and adaptive lambda square dynamics. These methods have been recently developed based on the existing method of multicanonical MD simulation. Their applications are reviewed with an emphasis on describing their practical implementation. In our concluding remarks we explore extensions of the enhanced sampling methods that may allow for even more efficient sampling.

  9. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites

    DOE PAGES

    Zarick, Holly; Boulesbaa, Abdelaziz; Puretzky, Alexander A; ...

    2016-12-14

    In this paper, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3more » perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.« less

  10. Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

    PubMed

    Jin, Yuanhao; Yang, Fenglei; Li, Qunqing; Zhu, Zhendong; Zhu, Jun; Fan, Shoushan

    2012-07-02

    Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the transmission efficiency of the 530 nm light emitted from the inside of the GaN LED increased for incidence angles between 23.58° and 60°. Such a structure was fabricated by electron-beam lithography and an etching method. The light output power from the LED was increased approximately 4.7 times compared with that from a conventional LED. The structure optimization is the key to the great increase in transmission efficiency. Furthermore, the light emitted from the edge of the LED units could be collected and extracted by the grating structures in adjacent LED units, thus enhancing the performance of the whole LED chip.

  11. Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring.

    PubMed

    Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-03-21

    We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.

  12. Enhancement of Oscillatory Flap Propulsors for Low Speed Flows in Water

    DTIC Science & Technology

    2010-07-13

    in efficiency results from a reduction in the induced drag created by the lifting surface. Many of these modifications such as winglets , tip bulbs...one of the many terms that account for the total power loss. Thus, winglet -type tip modifications for the OFD are expected to lead to an

  13. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    PubMed

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  14. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong

    2016-08-08

    We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.

  15. Analysis and experiments on Fano interference using a 2D metamaterial cavity for field localized wireless power transfer

    NASA Astrophysics Data System (ADS)

    Son Pham, Thanh; Kumara Ranaweera, Aruna; Viet Ngo, Duc; Lee, Jong-Wook

    2017-08-01

    To meet both safety and efficiency demands of future wireless power transfer (WPT) systems, field leakage to the nearby environment should be controlled below a certain level. Therefore, field localization is one of the key issues in advanced WPT systems. Recently, metamaterials have shown great potential for enhanced control of electromagnetic propagation in various environments. In this work, we investigate a locally modified metamaterial to create a two-dimensional (2D) cavity for field localization at a sub-wavelength scale. We also show that the field localization in the cavity can be explained using Fano-type interference. We believe that this is one of the first works demonstrating that Fano-type interference can be applied for resonance-coupled mid-range WPT. Using the proposed approach, we achieve a localized WPT in a region that is eight times smaller than that of a transmit coil. At a distance of 0.6 meters, the measured efficiency is 56.5%, which represents a six-fold and two-fold enhancement compared to free space and uniform metamaterial slabs, respectively.

  16. Effect of ultrasonic frequency on degradation of methylene blue in the presence of particle

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Suzuki, Atsushi; Takahashi, Tomoki; Matsumoto, Hideyuki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2012-05-01

    Techniques for the degradation of hazardous organic compounds have been investigated such as solvent extraction, incineration, chemical dehalogenation and biodegradation, etc. Ultrasound has been found to be an attractive advanced technology for the degradation of hazardous organic compounds in water. In addition, the sonochemical reaction is enhanced by particle addition. However, the enhancement mechanism of particle addition has not been investigated well, because ultrasound enhances not only chemical reaction but also mass transfer. In this study, the degradation process of methylene blue as the model hazardous organic compound by ultrasonic irradiation was investigated. The effects of ultrasonic irradiation condition on degradation rate were investigated. The effect of ultrasonic frequency on improvement of degradation reaction by particle addition was also investigated. In addition, the effects of ultrasonic frequency on ultrasonic power and chemical efficiency were investigated by calorimetry and SE value. The degradation rate constants were estimated from the results of temporal change of the concentration of methylene blue assuming first order kinetics for the decomposition. There was a linear relation in the degradation rate and the ultrasonic power. In addition, the degradation rates at 127 kHz and 490 kHz were much larger than that at 22.8 kHz. The effect of ultrasonic frequency on sonochemical efficiency has been investigated, and the sonochemical effects in the range of frequency of 200 - 500 kHz are 10 times larger than those in the lower or higher frequency regions. Therefore, the degradation rate of methylene blue was considered to estimate using sonochemical efficiency. The degradation process of methylene blue was intensified by particle addition, and the degradation rate increased with increasing amount of particle. On the other hand, the enhancement of degradation rate by particle addition was influenced by both ultrasonic frequency and species of particle. The relationship between particle size and resonance diameter of ultrasound is considered to influence the enhancement of ultrasonic degradation process.

  17. Three-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter.

    PubMed

    Arfi, Anis Ben; Elsayed, Fahmi; Aflaki, Pouya M; Morris, Brad; Ghannouchi, Fadhel M

    2018-02-20

    In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode back-to-back power amplifiers working at peak power. A signal processing technique known as quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR). After amplification, the two branches are combined using a non-isolated combiner, preserving the efficiency of the transmitter. A comprehensive study on the operation of this topology and signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was established. Moreover, this work proposes a highly efficient design of the amplification block based on a back-to-back power topology performing a dynamic load modulation exploiting the non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation, the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™ platform followed by the back-to-back Class-E switch-mode power amplification block. The full transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.

  18. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection

    NASA Astrophysics Data System (ADS)

    Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.

    2018-04-01

    Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.

  19. Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.

    PubMed

    Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo

    2016-09-14

    Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.

  20. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    PubMed Central

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048

  1. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    PubMed

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  2. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer.

    PubMed

    Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin

    2017-01-25

    Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.

  3. Conical structures for highly efficient solar cell applications

    NASA Astrophysics Data System (ADS)

    Korany, Fatma M. H.; Hameed, Mohamed Farhat O.; Hussein, Mohamed; Mubarak, Roaa; Eladawy, Mohamed I.; Obayya, Salah Sabry A.

    2018-01-01

    Improving solar cell efficiency is a critical research topic. Nowadays, light trapping techniques are a promising way to enhance solar cell performance. A modified nanocone nanowire (NW) is proposed and analyzed for solar cell applications. The suggested NW consists of conical and truncated conical units. The geometrical parameters are studied using a three-dimensional (3-D) finite difference time-domain (FDTD) method to achieve broadband absorption through the reported design and maximize its ultimate efficiency. The analyzed parameters are absorption spectra, ultimate efficiency, and short circuit current density. The numerical results prove that the proposed structure is superior compared with cone, truncated cone, and cylindrical NWs. The reported design achieves an ultimate efficiency of 44.21% with substrate and back reflector. Further, short circuit current density of 36.17 mA / cm2 is achieved by the suggested NW. The electrical performance analysis of the proposed structure including doping concentration, junction thickness, and Shockley-Read-Hall recombination is also investigated. The electrical simulations show that a power conversion efficiency of 17.21% can be achieved using the proposed NW. The modified nanocone has advantages of broadband absorption enhancement, low cost, and fabrication feasibility.

  4. Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency

    NASA Astrophysics Data System (ADS)

    Soderquist, Peter; Leeser, Miriam E.

    1999-01-01

    Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.

  5. Rigorous theory of graded thermoelectric converters including finite heat transfer coefficients

    NASA Astrophysics Data System (ADS)

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2017-11-01

    Maximization of thermoelectric (TE) converter performance with an inhomogeneous material and electric current distribution has been investigated in previous literature neglecting thermal contact resistances to the heat reservoirs. The heat transfer coefficients (HTCs), defined as inverse thermal contact resistances per unit area, are thus infinite, whereas in reality, always parasitic thermal resistances, i.e., finite HTCs, are present. Maximization of the generated electric power and of cooling power in the refrigerator mode with respect to Seebeck coefficients and heat conductivity for a given profile of the material's TE figure of merit Z are mathematically ill-posed problems in the presence of infinite HTCs. As will be shown in this work, a fully self consistent solution is possible for finite HTCs, and in many respects, the results are fundamentally different. A previous theory for 3D devices will be extended to include finite HTCs and is applied to 1D devices. For the heat conductivity profile, an infinite number of solutions exist leading to the same device performance. Cooling power maximization for finite HTCs in 1D will lead to a strongly enhanced corresponding efficiency (coefficient of performance), whereas results with infinite HTCs lead to a non-monotonous temperature profile and coefficient of performance tending to zero for the prescribed heat conductivities. For maximized generated electric power, the corresponding generator efficiency is nearly a constant independent from the finite HTC values. The maximized efficiencies in the generator and cooling mode are equal to the efficiencies for the infinite HTC, provided that the corresponding powers approach zero. These and more findings are condensed in 4 theorems in the conclusions.

  6. Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

    NASA Astrophysics Data System (ADS)

    Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb

    2018-01-01

    A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.

  7. Power matching between plasma generation and electrostatic acceleration in helicon electrostatic thruster

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.

    2017-10-01

    The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.

  8. Technology in the teaching of neuroscience: enhanced student learning.

    PubMed

    Griffin, John D

    2003-12-01

    The primary motivation for integrating any form of education technology into a particular course or curriculum should always be to enhance student learning. However, it can be difficult to determine which technologies will be the most appropriate and effective teaching tools. Through the alignment of technology-enhanced learning experiences with a clear set of learning objectives, teaching becomes more efficient and effective and learning is truly enhanced. In this article, I describe how I have made extensive use of technology in two neuroscience courses that differ in structure and content. Course websites function as resource centers and provide a forum for student interaction. PowerPoint presentations enhance formal lectures and provide an organized outline of presented material. Some lectures are also supplemented with interactive CD-ROMs, used in the presentation of difficult physiological concepts. In addition, a computer-based physiological recording system is used in laboratory sessions, improving the hands-on experience of group learning while reinforcing the concepts of the research method. Although technology can provide powerful teaching tools, the enhancement of the learning environment is still dependent on the instructor. It is the skill and enthusiasm of the instructor that determines whether technology will be used effectively.

  9. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity.

    PubMed

    Liu, Ting; Yu, Yang-Yang; Chen, Tao; Chen, Wei Ning

    2017-03-01

    In this study, a synthetic microbial consortium containing exoelectrogen Shewanella oneidensis MR-1 and riboflavin-producing strain, Bacillus subtilis RH33, was rationally designed and successfully constructed, enabling a stable, multiple cycles of microbial fuel cells (MFCs) operation for more than 500 h. The maximum power density of MFCs with this synthetic microbial consortium was 277.4 mW/m 2 , which was 4.9 times of that with MR-1 (56.9 mW/m 2 ) and 40.2 times of RH33 (6.9 mW/m 2 ), separately. At the same time, the Coulombic efficiency of the synthetic microbial consortium (5.6%) was higher than MR-1 (4.1%) and RH33 (2.3%). Regardless the high concentration of riboflavin produced by RH33, the power density of RH33 was rather low. The low bioelectricity generation can be ascribed to the low efficiency of RH33 in utilizing riboflavin for extracellular electron transfer (EET). In the synthetic microbial consortium of MR-1 and RH33, it was found that both mediated and direct electron transfer efficiencies were enhanced. By exchanging the anolyte of MR-1 and RH33, it was confirmed that the improved MFC performance with the synthetic microbial consortium was because MR-1 could efficiently utilize the high concentration of riboflavin produced by RH33. Biotechnol. Bioeng. 2017;114: 526-532. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Hierarchical TiO{sub 2} submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Guo, Zhiguang, E-mail: zguo@licp.cas.cn

    Hierarchical TiO{sub 2} submicron-sized sphere scattering layer, with relatively large surface area and effective light scattering, shows enhanced power conversion efficiency in dye-sensitized solar cells. - Highlights: • Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized. • The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. • DSC exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS (2.00%) photoanodes. - Abstract: Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized by amore » facile one-step solvothermal method in ethanol solvent. The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. When applied as the scattering overlayer in dye-sensitized solar cells (DSCs), such TiO{sub 2} HSSs effectively improved light harvesting and led to the increase of photocurrent in DSCs. Furthermore, bilayer-structured photoanode also provided fast electron transportation and long electron lifetime as confirmed by electrochemical impedance spectra. As a result, DSC based on P25 nanoparticle underlayer and HSS-2 overlayer exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS-2 (2.00%) photoanodes.« less

  11. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    PubMed

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  12. Integration of CdSe/CdSexTe1−x Type-II Heterojunction Nanorods into Hierarchically Porous TiO2 Electrode for Efficient Solar Energy Conversion

    PubMed Central

    Lee, Sangheon; Flanagan, Joseph C.; Kang, Joonhyeon; Kim, Jinhyun; Shim, Moonsub; Park, Byungwoo

    2015-01-01

    Semiconductor sensitized solar cells, a promising candidate for next-generation photovoltaics, have seen notable progress using 0-D quantum dots as light harvesting materials. Integration of higher-dimensional nanostructures and their multi-composition variants into sensitized solar cells is, however, still not fully investigated despite their unique features potentially beneficial for improving performance. Herein, CdSe/CdSexTe1−x type-II heterojunction nanorods are utilized as novel light harvesters for sensitized solar cells for the first time. The CdSe/CdSexTe1−x heterojunction-nanorod sensitized solar cell exhibits ~33% improvement in the power conversion efficiency compared to its single-component counterpart, resulting from superior optoelectronic properties of the type-II heterostructure and 1-octanethiol ligands aiding facile electron extraction at the heterojunction nanorod-TiO2 interface. Additional ~32% enhancement in power conversion efficiency is achieved by introducing percolation channels of large pores in the mesoporous TiO2 electrode, which allow 1-D sensitizers to infiltrate the entire depth of electrode. These strategies combined together lead to 3.02% power conversion efficiency, which is one of the highest values among sensitized solar cells utilizing 1-D nanostructures as sensitizer materials. PMID:26638994

  13. Integration of CdSe/CdSexTe1-x Type-II Heterojunction Nanorods into Hierarchically Porous TiO2 Electrode for Efficient Solar Energy Conversion.

    PubMed

    Lee, Sangheon; Flanagan, Joseph C; Kang, Joonhyeon; Kim, Jinhyun; Shim, Moonsub; Park, Byungwoo

    2015-12-07

    Semiconductor sensitized solar cells, a promising candidate for next-generation photovoltaics, have seen notable progress using 0-D quantum dots as light harvesting materials. Integration of higher-dimensional nanostructures and their multi-composition variants into sensitized solar cells is, however, still not fully investigated despite their unique features potentially beneficial for improving performance. Herein, CdSe/CdSe(x)Te(1-x) type-II heterojunction nanorods are utilized as novel light harvesters for sensitized solar cells for the first time. The CdSe/CdSe(x)Te(1-x) heterojunction-nanorod sensitized solar cell exhibits ~33% improvement in the power conversion efficiency compared to its single-component counterpart, resulting from superior optoelectronic properties of the type-II heterostructure and 1-octanethiol ligands aiding facile electron extraction at the heterojunction nanorod-TiO(2) interface. Additional ~31% enhancement in power conversion efficiency is achieved by introducing percolation channels of large pores in the mesoporous TiO(2) electrode, which allow 1-D sensitizers to infiltrate the entire depth of electrode. These strategies combined together lead to 3.02% power conversion efficiency, which is one of the highest values among sensitized solar cells utilizing 1-D nanostructures as sensitizer materials.

  14. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    PubMed

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  15. Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm

    NASA Astrophysics Data System (ADS)

    Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad

    2016-03-01

    Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.

  16. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    PubMed Central

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  17. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    NASA Astrophysics Data System (ADS)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  18. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    PubMed Central

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Introduction Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Trial Registration Dutch Trial Register NTR3418 PMID:26600039

  19. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    PubMed

    Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.

  20. USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Augenbroe , Godfried

    2015-12-09

    Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the powermore » performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the significance of enhancing building energy models with electrical characteristics. This would support different studies such as those related to modernization of the power system that require micro scale building-grid interaction, evaluating building energy efficiency with power efficiency considerations, and also design and control decisions that rely on accuracy of building energy simulation results.« less

  1. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and construct OSC and USC head power plants, joint efforts of the government, experts in power industry and metallurgy, scientific institutions, and equipment manufacturers are required.

  2. Numerical Simulations of SCR DeNOx System for a 660MW coal-fired power station

    NASA Astrophysics Data System (ADS)

    Yongqiang, Deng; Zhongming, Mei; Yijun, Mao; Nianping, Liu; Guoming, Yin

    2018-06-01

    Aimed at the selective catalytic reduction (SCR) DeNOx system of a 660 MW coal-fired power station, which is limited by low denitrification efficiency, large ammonia consumption and over-high ammonia escape rate, numerical simulations were conducted by employing STAR-CCM+ (CFD tool). The simulations results revealed the problems existed in the SCR DeNOx system. Aimed at limitations of the target SCR DeNOx system, factors affecting the denitrification performance of SCR, including the structural parameters and ammonia injected by the ammonia nozzles, were optimized. Under the optimized operational conditions, the denitrification efficiency of the SCR system was enhanced, while the ammonia escape rate was reduced below 3ppm. This study serves as references for optimization and modification of SCR systems.

  3. Analysis of a new PM motor design for a rotary dynamic blood Pump.

    PubMed

    Xu, L; Wang, F; Fu, M; Medvedev, A; Smith, W A; Golding, L A

    1997-01-01

    The permanent magnet (PM) motor for a rotary dynamic blood pump requires high power density to coordinate the motor size with the limited pump space and high efficiency to reduce the size and weight of the associated batteries. The motor also serves as a passive axial magnetic thrust bearing, a reacting hydraulic force, and provides a stabilizing force for the radial journal bearing. This article presents analysis of a new PM motor for the blood pump application. High power density is achieved by using the Halbach magnetic array, and high efficiency is accomplished by optimizing the rotor magnet assembly and the stator slots/windings. While both radial and axial forces are greatly enhanced, pulsating components of the torque and force are also significantly reduced.

  4. A variational conformational dynamics approach to the selection of collective variables in metadynamics.

    PubMed

    McCarty, James; Parrinello, Michele

    2017-11-28

    In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.

  5. A variational conformational dynamics approach to the selection of collective variables in metadynamics

    NASA Astrophysics Data System (ADS)

    McCarty, James; Parrinello, Michele

    2017-11-01

    In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.

  6. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  7. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    DOE PAGES

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; ...

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less

  8. Safe delivery of optical power from space.

    PubMed

    Smith, M; Fork, R L; Cole, S

    2001-05-07

    More than a billion gigawatts of sunlight pass through the area extending from Earth out to geostationary orbit. A small fraction of this clean renewable power appears more than adequate to satisfy the projected needs of Earth, and of human exploration and development of space far into the future. Recent studies suggest safe and efficient access to this power can be achieved within 10 to 40 years. Light, enhanced in spatial and temporal coherence, as compared to natural sunlight, offers a means, and probably the only practical means, of usefully transmitting this power to Earth. We describe safety standards for satellite constellations and Earth based sites designed, respectively, to transmit, and receive this power. The spectral properties, number of satellites, and angle subtended at Earth that are required for safe delivery are identified and discussed.

  9. Investigation of a large power water-cooled microwave resonance window for application with the ECR ion source

    NASA Astrophysics Data System (ADS)

    Guo, Guo; Guo, Junwei; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu

    2017-06-01

    A large power water-cooled microwave resonance window used for the electron cyclotron resonance (ECR) ion source is investigated in this paper. The microwave characteristic simulation, thermal analysis, and structure design are deeply and successively carried out before fabrication. After the machining and welding of the components, the window is cold and hot tested. The application results demonstrate that when the input power is 2000 W, the reflected power is only 5 W. The vacuum is below 10-10 Pa, and the high power microwave operation can last 30 h continuously and reliably, which indicates that the design and assembling can achieve the high efficiency of the microwave transmission. Finally, the performance of the ECR ion source is enhanced by the improvement of the injected microwave power to the ECR plasma.

  10. 1.8V Operation Power Amplifier IC for Bluetooth Class 1 Utilizing p+-GaAs Gate Hetero-Junction FET

    NASA Astrophysics Data System (ADS)

    Harima, Fumio; Bito, Yasunori; Takahashi, Hidemasa; Iwata, Naotaka

    We have developed a power amplifier IC for Bluetooth Class 1 operating at single low voltage of 1.8V for both control and drain voltages. We can realize it due to fully enhancement-mode hetero-junction FETs utilizing a re-grown p+-GaAs gate technology. The power amplifier is a highly compact design as a small package of 1.5mm×1.5mm×0.4mm with fully integrated gain control and shutdown functions. An impressive power added efficiency of 52% at an output power of 20dBm is achieved with an associated gain of 22dB. Also, sufficiently low leakage current of 0.25μA at 27°C is exhibited, which is comparable to conventional HBT power amplifiers.

  11. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  12. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ruankham, Pipat; Wongratanaphisan, Duangmanee; Gardchareon, Atcharawon; Phadungdhitidhada, Surachet; Choopun, Supab; Sagawa, Takashi

    2017-07-01

    Full coverage of perovskite layer onto ZnO nanorod substrates with less pinholes is crucial for achieving high-efficiency perovskite solar cells. In this work, a two-step sequential deposition method is modified to achieve an appropriate property of perovskite (MAPbI3) film. Surface treatment of perovskite layer and its precursor have been systematically performed and their morphologies have been investigated. By pre-wetting of lead iodide (PbI2) and letting it dry before reacting with methylammonium iodide (MAI) provide better coverage of perovskite film onto ZnO nanorod substrate than one without any treatment. An additional MAI deposition followed with toluene drop-casting technique on the perovskite film is also found to increase the coverage and enhance the transformation of PbI2 to MAPbI3. These lead to longer charge carrier lifetime, resulting in an enhanced power conversion efficiency (PCE) from 1.21% to 3.05%. The modified method could been applied to a complex ZnO nanorods/TiO2 nanoparticles substrate. The enhancement in PCE to 3.41% is observed. These imply that our introduced method provides a simple way to obtain the full coverage and better transformation to MAPbI3 phase for enhancement in performances of perovskite solar cells.

  13. Potential active materials for photo-supercapacitor: A review

    NASA Astrophysics Data System (ADS)

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  14. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces

    NASA Astrophysics Data System (ADS)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-10-01

    This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.

  15. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.

    PubMed

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2012-08-01

    We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).

  16. Benzoyl Peroxide as an Efficient Dopant for Spiro-OMeTAD in Perovskite Solar Cells.

    PubMed

    Liu, Qiuju; Fan, Lisheng; Zhang, Qin'e; Zhou, An'an; Wang, Baozeng; Bai, Hua; Tian, Qingyong; Fan, Bin; Zhang, Tongyi

    2017-08-10

    Although organic small molecule spiro-OMeTAD is widely used as a hole-transport material in perovskite solar cells, its limited electric conductivity poses a bottleneck in the efficiency improvement of perovskite solar cells. Here, a low-cost and easy-fabrication technique is developed to enhance the conductivity and hole-extraction ability of spiro-OMeTAD by doping it with commercially available benzoyl peroxide (BPO). The experimental results show that the conductivity increases several orders of magnitude, from 6.2×10 -6  S cm -1 for the pristine spiro-OMeTAD to 1.1×10 -3  S cm -1 at 5 % BPO doping and to 2.4×10 -2  S cm -1 at 15 % BPO doping, which considerably outperform the conductivity of 4.62×10 -4  S cm -1 for the currently used oxygen-doped spiro-OMeTAD. The fluorescence spectra suggest that the BPO-doped spiro-OMeTAD-OMeTAD layer is able to efficiently extract holes from CH 3 NH 3 PbI 3 and thus greatly enhances the charge transfer. The BPO-doped spiro-OMeTAD is used in the fabrication of perovskite solar cells, which exhibit enhancement in the power conversion efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The influence of thermal and free carrier dispersion effects on all-optical wavelength conversion in a silicon racetrack-shaped microring resonator

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Shaopeng; Han, Jing

    2016-07-01

    We experimentally demonstrate ultra-low pump power wavelength conversion based on four-wave mixing in a silicon racetrack-shaped microring resonator. When the pump and signal are located at the resonance wavelengths, wavelength conversion with a pump power of only 1 mW can be realized in this microring resonator because of the resonant enhancement of the device. However, saturation of the conversion efficiency occurs because of the shift of the resonance peak, which is caused by the change of the effective refractive index induced by a combination of thermal and free carrier dispersion effects, and it is demonstrated that the thermal effect is the leading-order factor for the change of the refractive index. The maximum conversion efficiency of  -21 dB is obtained when the pump power is less than 12 mW. This ultra-low-power on-chip wavelength convertor based on a silicon microring resonator can find important potential applications in highly integrated optical circuits for all-optical signal processing.

  18. Study the performance of photogalvanic cells for solar energy conversion and storage: Rose Bengal-D-Xylose-NaLS system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangotri, K.M.; Bhimwal, Mahesh Kumar

    2010-07-15

    The Rose Bengal is used as photosensitizer with D-Xylose as reductant and sodium lauryl sulphate (NaLS) as surfactant for the enhancement of the conversion efficiency and storage capacity of photogalvanic cell for its commercial viability. The observed value of the photogeneration of photopotential was 885.0 mV and photocurrent was 460.0 {mu}A whereas maximum power of the cell was 407.10 {mu}W. The observed power at power point was 158.72 {mu}W and the conversion efficiency was 1.52%. The fill factor 0.3151 was experimentally determined at the power point of the cell. The rate of initial generation of photocurrent was 63.88 {mu}A min{supmore » -1}. The photogalvanic cell so developed can work for 145.0 min in dark on irradiation for 165.0 min, i.e. the storage capacity of the photogalvanic cell is 87.87%. A simple mechanism for the photogeneration of photocurrent has also been proposed. (author)« less

  19. Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption.

    PubMed

    Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M; Wang, Gunuk

    2017-10-04

    A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method for fabricating selector-less memristor arrays using an engineered nanoporous Ta 2 O 5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (∼2.7 × 10 -6 W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta 2 O 5-x layer. Our results, on the basis of the structural engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor arrays with acceptable device uniformity and low power consumption without the need for additional addressing selectors.

  20. High Energy Conversion Efficiency with 3-D Micro-Patterned Photoanode for Enhancement Diffusivity and Modification of Photon Distribution in Dye-Sensitized Solar Cells.

    PubMed

    Yun, Min Ju; Sim, Yeon Hyang; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2017-11-08

    Dye sensitize solar cells (DSSCs) have been considered as the promising alternatives silicon based solar cell with their characteristics including high efficiency under weak illumination and insensitive power output to incident angle. Therefore, many researches have been studied to improve the energy conversion efficiency of DSSCs. However the efficiency of DSSCs are still trapped at the around 10%. In this study, micro-scale hexagonal shape patterned photoanode have proposed to modify light distribution of photon. In the patterned electrode, the appearance efficiency have been obtained from 7.1% to 7.8% considered active area and the efficiency of 12.7% have been obtained based on the photoanode area. Enhancing diffusion of electrons and modification of photon distribution utilizing the morphology of the electrode are major factors to improving the performance of patterned electrode. Also, finite element method analyses of photon distributions were conducted to estimate morphological effect that influence on the photon distribution and current density. From our proposed study, it is expecting that patterned electrode is one of the solution to overcome the stagnant efficiency and one of the optimized geometry of electrode to modify photon distribution. Process of inter-patterning in photoanode has been minimized.

  1. Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.

    PubMed

    Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung

    2013-07-28

    Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells.

  2. Factors Influencing Computer Anxiety and Its Impact on E-Learning Effectiveness: A Review of Literature

    ERIC Educational Resources Information Center

    Chien, Tien-Chen

    2008-01-01

    Computer is not only a powerful technology for managing information and enhancing productivity, but also an efficient tool for education and training. Computer anxiety can be one of the major problems that affect the effectiveness of learning. Through analyzing related literature, this study describes the phenomenon of computer anxiety,…

  3. Bridging the "green gap" of LEDs: giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals.

    PubMed

    Tsai, Yu-Lin; Liu, Che-Yu; Krishnan, Chirenjeevi; Lin, Da-Wei; Chu, You-Chen; Chen, Tzu-Pei; Shen, Tien-Lin; Kao, Tsung-Sheng; Charlton, Martin D B; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung; He, Jr-Hau

    2016-01-14

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is the so-called "green gap". In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boost the light extraction efficiency of LEDs with an enhancement of 78% but also collimate the view angle of LEDs from 131.5° to 114.0°. This could be because of the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs point the way towards a promising avenue of solid-state lighting.

  4. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

  5. Efficiency and droop improvement in a blue InGaN-based light emitting diode with a p-InGaN layer inserted in the GaN barriers

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Fu; Tong, Jin-Hui; Zhao, Bi-Jun; Chen, Xin; Ren, Zhi-Wei; Li, Dan-Wei; Zhuo, Xiang-Jing; Zhang, Jun; Yi, Han-Xiang; Li, Shu-Ti

    2013-09-01

    The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region, output power, and internal quantum efficiency are investigated. The simulation results show that the InGaN-based light-emitting diode with a p-InGaN layer inserted in the barriers has better performance over its conventional counterpart and the light emitting diode with p-GaN inserted in the barriers. The improvement is due to enhanced Mg acceptor activation and enhanced hole injection into the quantum wells.

  6. Room-Temperature Atomic Layer Deposition of Al2 O3 : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells.

    PubMed

    Kot, Malgorzata; Das, Chittaranjan; Wang, Zhiping; Henkel, Karsten; Rouissi, Zied; Wojciechowski, Konrad; Snaith, Henry J; Schmeisser, Dieter

    2016-12-20

    In this work, solar cells with a freshly made CH 3 NH 3 PbI 3 perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %. However, when the aged perovskite was covered with a layer of Al 2 O 3 deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al 2 O 3 -covered perovskite films showed enhanced ambient air stability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid state d.c. power controller design philosophies and their evaluation.

    NASA Technical Reports Server (NTRS)

    Maus, L. G.; Williams, D. E.

    1972-01-01

    Evaluation of remote power controllers (RPC), which has enhanced knowledge of the capabilities of various design philosophies and has indicated certain limitations that RPC's exhibit. Additionally, this activity has clearly emphasized that certain RPC design parameters merit further consideration in development. The major design parameters to be analyzed in more detail are the rates of change of the rise and fall times of the output current. The major reason why transient voltages and currents should be reduced is the minimization of the reverse collector-to-emitter voltage. The requirement for higher bus voltage coupled with the present problem of improving the efficiency of power control points out the urgent need for improvement and advancement of higher current, voltage, and gain power semiconductors.

  8. High-performance wireless powering for peripheral nerve neuromodulation systems.

    PubMed

    Tanabe, Yuji; Ho, John S; Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S Y

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation.

  9. High-performance wireless powering for peripheral nerve neuromodulation systems

    PubMed Central

    Liu, Jiayin; Liao, Song-Yan; Zhen, Zhe; Hsu, Stephanie; Shuto, Chika; Zhu, Zi-Yi; Ma, Andrew; Vassos, Christopher; Chen, Peter; Tse, Hung Fat; Poon, Ada S. Y.

    2017-01-01

    Neuromodulation of peripheral nerves with bioelectronic devices is a promising approach for treating a wide range of disorders. Wireless powering could enable long-term operation of these devices, but achieving high performance for miniaturized and deeply placed devices remains a technological challenge. We report the miniaturized integration of a wireless powering system in soft neuromodulation device (15 mm length, 2.7 mm diameter) and demonstrate high performance (about 10%) during in vivo wireless stimulation of the vagus nerve in a porcine animal model. The increased performance is enabled by the generation of a focused and circularly polarized field that enhances efficiency and provides immunity to polarization misalignment. These performance characteristics establish the clinical potential of wireless powering for emerging therapies based on neuromodulation. PMID:29065141

  10. Efficient CsF interlayer for high and low bandgap polymer solar cell

    NASA Astrophysics Data System (ADS)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  11. Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier.

    PubMed

    Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo

    2008-02-04

    We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.

  12. Improving solar-pumped laser efficiency by a ring-array concentrator

    NASA Astrophysics Data System (ADS)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  13. Polymeric Materials for Aerospace Power and Propulsion-NASA Glenn Overview

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2008-01-01

    Use of lightweight materials in aerospace power and propulsion components can lead to significant reductions in vehicle weight and improvements in performance and efficiency. Polymeric materials are well suited for many of these applications, but improvements in processability, durability and performance are required for their successful use in these components. Polymers Research at NASA Glenn is focused on utilizing a combination of traditional polymer science and engineering approaches and nanotechnology to develop new materials with enhanced processability, performance and durability. An overview of these efforts will be presented.

  14. Grid-Level Application of Electrical Energy Storage: Example Use Cases in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia

    Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.

  15. Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

    PubMed Central

    2013-01-01

    In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526

  16. Synergistic doping of fullerene electron transport layer and colloidal quantum dot solids enhances solar cell performance.

    PubMed

    Yuan, Mingjian; Voznyy, Oleksandr; Zhitomirsky, David; Kanjanaboos, Pongsakorn; Sargent, Edward H

    2015-02-04

    The spatial location of the predominant source of performance-limiting recombination in today's best colloidal quantum dot (CQD) cells is identified, pinpointing the TiO2:CQD junction; then, a highly n-doped PCBM layer is introduced at the CQD:TiO2 heterointerface. An n-doped PCBM layer is essential to maintain the depletion region and allow for efficient current extraction, thereby producing a record 8.9% in overall power conversion efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO 2 nanocrystals as the robust electron-transporting layer

    DOE PAGES

    Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...

    2016-05-11

    Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.

  18. Current crowding and self-heating effects in AlGaN-based flip-chip deep-ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2018-01-01

    We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.

  19. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  20. A programmable and self-adjusting class E amplifier for efficient wireless powering of biomedical implants.

    PubMed

    Stoecklin, S; Volk, T; Yousaf, A; Reindl, L

    2015-01-01

    In this paper, an enhanced approach of a class E amplifier being insensitive to coil impedance variations is presented. While state of the art class E amplifiers widely being used to supply implanted systems show a strong degradation of efficiency when powering distance, coil orientation or the implant current consumption deviate from the nominal design, the presented concept is able to detect these deviations on-line and to reconfigure the amplifier automatically. The concept is facilitated by a new approach of sensing the load impedance without interruption of the power supply to the implant, while the main components of the class E amplifier are programmable by software. Therefore, the device is able to perform dynamic impedance matching. Besides presenting the operational principle and the design equations, we show an adaptive prototype reader system which achieves a drain efficiency of up to 92% for a wide range of reflected coil impedances from 1 to 40 Ω. The integrated communication concept allows downlink data rates of up to 500 kBit/s, while the load modulation based uplink from implant to reader was verified of providing up to 1.35 MBit/s.

  1. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  2. Observation of enhanced thermal lensing due to near-Gaussian pump energy deposition in a laser-diode side-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Welford, David; Rines, David M.; Dinerman, Bradley J.; Martinsen, Robert

    1992-01-01

    The authors report operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM00 mode. Significant enhancement of thermally induced lensing due to the near-Gaussian energy deposition profile of the pump radiation was observed. An induced lens of approximately 3.2-m focal length was measured at average incident pump powers of only 3.2 W (corresponding to a 0.6 W heat load).

  3. Optical design applications for enhanced illumination performance

    NASA Astrophysics Data System (ADS)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  4. Roles of Fullerene-Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells

    DOE PAGES

    Liang, Po-Wei; Chueh, Chu-Chen; Williams, Spencer T.; ...

    2015-02-27

    Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells are elucidated. By studying various fullerenes, a clear correlation between the electron mobility of fullerenes and the resulting performance of derived devices is determined. The metallic characteristics of the bilayer perovskite/fullerene field-effect transistor indicates an effective charge redistribution occurring at the corresponding interface. Lastly, a conventional perovskite thin-film solar cell derived from the C 60 electron-transporting layer (ETL) affords a high power conversion efficiency of 15.4%.

  5. Facile solution-processed aqueous MoOx for feasible application in organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zheng, Qinghong; Qu, Disui; Zhang, Yan; Li, Wanshu; Xiong, Jian; Cai, Ping; Xue, Xiaogang; Liu, Liming; Wang, Honghang; Zhang, Xiaowen

    2018-05-01

    Solution-processed techniques attract increasing attentions in organic electronics for their low-cost and scalable manufacturing. We demonstrate the favorite hole injection material of solution-processed aqueous MoOx (s-MoOx) with facile fabrication process and cast successful application to constructing efficient organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray photoelectron spectroscopy analysis show that s-MoOx behaves superior film morphology and non-stoichiometry with slight oxygen deficiency. With tris(8-hydroxy-quinolinato)aluminium as emitting layer, s-MoOx based OLED shows maximum luminous efficiency of 7.9 cd/A and power efficiency of 5.9 lm/W, which have been enhanced by 43.6% and 73.5%, respectively, in comparison with the counterpart using conventional vacuum thermal evaporation MoOx. Current-voltage, impedance-voltage, phase-voltage and capacitance-voltage characteristics of hole-only devices indicate that s-MoOx with two processes of "spin-coating/annealing" shows mostly enhanced hole injection capacity and thus promoting device performance. Our experiments provide an alternative approach for constructing efficient OLED with solution process.

  6. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.

    PubMed

    Roy, Arnab; Bernier, Rachel A; Wang, Jianli; Benson, Monica; French, Jerry J; Good, David C; Hillary, Frank G

    2017-01-01

    A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.

  7. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury

    PubMed Central

    Roy, Arnab; Bernier, Rachel A.; Wang, Jianli; Benson, Monica; French, Jerry J.; Good, David C.; Hillary, Frank G.

    2017-01-01

    A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs. PMID:28422992

  8. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.

    PubMed

    Hu, Zixuan; Engel, Gregory S; Alharbi, Fahhad H; Kais, Sabre

    2018-02-14

    Natural light harvesting systems exploit electronic coupling of identical chromophores to generate efficient and robust excitation transfer and conversion. Dark states created by strong coupling between chromophores in the antenna structure can significantly reduce radiative recombination and enhance energy conversion efficiency. Increasing the number of the chromophores increases the number of dark states and the associated enhanced energy conversion efficiency yet also delocalizes excitations away from the trapping center and reduces the energy conversion rate. Therefore, a competition between dark state protection and delocalization must be considered when designing the optimal size of a light harvesting system. In this study, we explore the two competing mechanisms in a chain-structured antenna and show that dark state protection is the dominant mechanism, with an intriguing dependence on the parity of the number of chromophores. This dependence is linked to the exciton distribution among eigenstates, which is strongly affected by the coupling strength between chromophores and the temperature. Combining these findings, we propose that increasing the coupling strength between the chromophores can significantly increase the power output of the light harvesting system.

  9. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.

    2017-05-01

    In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.

  10. Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Sheng; Li, Shin-Ming; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Yang, Shin-Yi; Tien, Hsi-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang

    2014-08-01

    A powerful synthesis strategy is proposed for fabricating porous polyaniline-reduced graphene oxide (PANI-RGO) composites with transparency up to 80% and thickness from 300 to 1000 nm for the counter electrode (CE) of bifacial dye-sensitizing solar cells (DSSCs). The first step is to combine the in-situ positive charge transformation of graphene oxide (GO) through aniline (ANI) prepolymerization and the electrostatic adsorption of ANI oligomer-GO to effectively control the thickness of ultrathin PANI-GO films by adjusting pH of the polymerization media. In the second step, PANI-GO films are reduced with hydroiodic acid to simultaneously enhance the apparent redox activity for the I3-/I- couple and their electronic conductivity. Incorporating the RGO increases the transparency of PANI and facilitates the light-harvesting from the rear side. A DSSC assembled with such a transparent PANI-RGO CE exhibits an excellent efficiency of 7.84%, comparable to 8.19% for a semi-transparent Pt-based DSSC. The high light-harvesting ability of PANI-RGO enhances the efficiency retention between rear- and front-illumination modes to 76.7%, compared with 69.1% for a PANI-based DSSC. The higher retention reduces the power-to-weight ratio and the total cost of bifacial DSSCs, which is also promising in other applications, such as windows, power generators, and panel screens.

  11. Capacity planning in a transitional economy: What issues? Which models?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example)more » within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.« less

  12. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    PubMed

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  13. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  14. Indium-tin-oxide-free tris(8-hydroxyquinoline) Al organic light-emitting diodes with 80% enhanced power efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Min; Xiao, Teng; Liu, Rui

    2011-10-11

    Efficient indium tin oxide (ITO)-free small molecule organic light-emitting diodes (SMOLEDs) with multilayered highly conductive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) as the anode are demonstrated. PEDOT:PSS/MoO{sub 3}/N,N'-diphenyl- N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPD)/tris(8-hydroxyquinoline) Al (Alq{sub 3})/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al SMOLEDs exhibited a peak power efficiency of 3.82 lm/W, 81% higher than that of similar ITO-based SMOLEDs (2.11 lm/W). The improved performance is believed to be due to the higher work function, lower refractive index, and decreased surface roughness of PEDOT:PSS vs ITO, and to Ohmic hole injection from PEDOT:PSS to the NPD layer via the MoO{sub 3} interlayer. The results demonstrate that PEDOT:PSS can substitute ITO in SMOLEDsmore » with strongly improved device performance.« less

  15. High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.

    PubMed

    Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Soh, Ai Kah; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi

    2016-12-02

    A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm -2 ) for a single mechanical knock (∼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.

  16. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.

  17. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies >10%

    DOE PAGES

    Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...

    2016-08-11

    The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less

  18. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance

    PubMed Central

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Jang, Gil Su; Nam, Seunghoon; Park, Byungwoo

    2016-01-01

    High power conversion efficiency and device stabilization are two major challenges for CH3NH3PbI3 (MAPbI3) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C2H5OH into the PbCl2 film was observed to be more favorable than that of MAI/C3H7OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl2 converting into MAPbI3. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition. PMID:27156481

  20. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.

    PubMed

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue

    2018-06-06

    The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.

Top