Science.gov

Sample records for enhanced single-molecule detection

  1. Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Yin, Y. F.; Jiang, J. W.; Mo, Y. J.

    2009-02-01

    4-Dimethylaminoazobenzene (DAB) is anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals. The trace detection of DAB is of great significance in environmental protection and safe life of the people. To test the availability of DAB trace detection using surface-enhanced Raman scattering (SERS), the SERS spectra of DAB single molecules adsorbed on the silver particle aggregates in colloid were investigated. The phenomena of blinking, spectral diffusion, and intensity fluctuations of the vibrational lines in the SERS spectra were observed. Statistical analysis of spectral intensity fluctuations indicates a multimodal distribution of some specific Raman bands, which are consistent with the identification of single molecule detection. Our results demonstrated that SERS can be applied to the trace detection of DAB molecules and other azo dyes.

  2. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM.

    PubMed

    Puchkova, Anastasiya; Vietz, Carolin; Pibiri, Enrico; Wünsch, Bettina; Sanz Paz, María; Acuna, Guillermo P; Tinnefeld, Philip

    2015-12-01

    Optical nanoantennas are known to focus freely propagating light and reversely to mediate the emission of a light source located at the nanoantenna hotspot. These effects were previously exploited for fluorescence enhancement and single-molecule detection at elevated concentrations. We present a new generation of self-assembled DNA origami based optical nanoantennas with improved robustness, reduced interparticle distance, and optimized quantum-yield improvement to achieve more than 5000-fold fluorescence enhancement and single-molecule detection at 25 μM background fluorophore concentration. Besides outperforming lithographic optical antennas, DNA origami nanoantennas are additionally capable of incorporating single emitters or biomolecular assays at the antenna hotspot. PMID:26523768

  3. DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM.

    PubMed

    Puchkova, Anastasiya; Vietz, Carolin; Pibiri, Enrico; Wünsch, Bettina; Sanz Paz, María; Acuna, Guillermo P; Tinnefeld, Philip

    2015-12-01

    Optical nanoantennas are known to focus freely propagating light and reversely to mediate the emission of a light source located at the nanoantenna hotspot. These effects were previously exploited for fluorescence enhancement and single-molecule detection at elevated concentrations. We present a new generation of self-assembled DNA origami based optical nanoantennas with improved robustness, reduced interparticle distance, and optimized quantum-yield improvement to achieve more than 5000-fold fluorescence enhancement and single-molecule detection at 25 μM background fluorophore concentration. Besides outperforming lithographic optical antennas, DNA origami nanoantennas are additionally capable of incorporating single emitters or biomolecular assays at the antenna hotspot.

  4. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection

    NASA Astrophysics Data System (ADS)

    Uddin, Shiekh Zia; Tanvir, Mukhlasur Rahman; Talukder, Muhammad Anisuzzaman

    2016-05-01

    We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.

  5. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.

    PubMed

    Punj, Deep; Ghenuche, Petru; Moparthi, Satish Babu; de Torres, Juan; Grigoriev, Victor; Rigneault, Hervé; Wenger, Jérôme

    2014-01-01

    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as Förster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero-mode waveguides (ZMW) and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometer scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET, and FCS. Single molecule spectroscopy techniques greatly benefit from ZMW and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics to biological problems with FRET and FCS is an emerging and exciting field, and is promising to reveal new insights on biological functions and dynamics.

  6. Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection.

    PubMed

    Wu, Zhen; Zhou, Chuan-Hua; Pan, Liang-Jun; Zeng, Tao; Zhu, Lian; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-09-20

    Single molecule electrochemistry (SME) has gained much progress in fundamental studies, but it is difficult to use in practice due to its less reliability. We have solved the reliability of single molecule electrochemical detection by integration of digital analysis with efficient signal amplification of enzyme-induced metallization (EIM) together with high-throughput parallelism of microelectrode array (MA), establishing a digital single molecule electrochemical detection method (dSMED). Our dSMED has been successfully used for alkaline phosphatase (ALP) detection in the complex sample of liver cancer cells. Compared to direct measurement of the oxidation current of enzyme products, EIM can enhance signals by about 100 times, achieving signal-to-background ratio high enough for single molecule detection. The integration of digital analysis with SME can further decrease the detection limit of ALP to 1 aM relative to original 50 aM, enabling dSMED to be sensitively, specifically and reliably applied in liver cancer cells. The presented dSMED is enormously promising in exploring physical and chemical properties of single molecules, single biomolecular detection, or single-cell analysis.

  7. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  8. Detection of Steps in Single Molecule Data

    PubMed Central

    Aggarwal, Tanuj; Materassi, Donatello; Davison, Robert; Hays, Thomas; Salapaka, Murti

    2013-01-01

    Over the past few decades, single molecule investigations employing optical tweezers, AFM and TIRF microscopy have revealed that molecular behaviors are typically characterized by discrete steps or events that follow changes in protein conformation. These events, that manifest as steps or jumps, are short-lived transitions between otherwise more stable molecular states. A major limiting factor in determining the size and timing of the steps is the noise introduced by the measurement system. To address this impediment to the analysis of single molecule behaviors, step detection algorithms incorporate large records of data and provide objective analysis. However, existing algorithms are mostly based on heuristics that are not reliable and lack objectivity. Most of these step detection methods require the user to supply parameters that inform the search for steps. They work well, only when the signal to noise ratio (SNR) is high and stepping speed is low. In this report, we have developed a novel step detection method that performs an objective analysis on the data without input parameters, and based only on the noise statistics. The noise levels and characteristics can be estimated from the data providing reliable results for much smaller SNR and higher stepping speeds. An iterative learning process drives the optimization of step-size distributions for data that has unimodal step-size distribution, and produces extremely low false positive outcomes and high accuracy in finding true steps. Our novel methodology, also uniquely incorporates compensation for the smoothing affects of probe dynamics. A mechanical measurement probe typically takes a finite time to respond to step changes, and when steps occur faster than the probe response time, the sharp step transitions are smoothed out and can obscure the step events. To address probe dynamics we accept a model for the dynamic behavior of the probe and invert it to reveal the steps. No other existing method addresses

  9. Single Molecule Detection in Solution: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  10. Single-molecule surface- and tip-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno

    2010-08-01

    A review is given on single-molecule surface- and tip-enhanced Raman spectroscopy (SERS and TERS). It sketches the historical development along different routes toward huge near-field enhancements, the basis of single-molecule enhanced Raman spectroscopy; from SNOM to apertureless SNOM to tip-enhanced Raman spectroscopy (TERS) and microscopy; from SERS to single-molecule SERS to single-molecule TERS. The claim of extremely high enhancement factors of 1014 in single-molecule SERS is critically discussed, in particular in the view of recent experimental and theoretical results that limits the electromagnetic enhancement to ⩽ 1011. In the field of TERS only very few reports on single-molecule TERS exist: single-molecule TERS on dyes and on a protein (cytochrome c). In the latter case, TERS 'sees' even subunits of this protein, either amino-acids or the heme, depending on the orientation of the protein relative to the tip. The former case concerns the dye brilliant cresyl blue adsorbed either on a Au surface under ambient conditions or on a Au(111) surface in ultra high vacuum. These results indicate that significant progress is to be expected for TERS in general and for single-molecule TERS in particular.

  11. Figuration and detection of single molecules

    NASA Astrophysics Data System (ADS)

    Nevels, R.; Welch, G. R.; Cremer, P. S.; Hemmer, P.; Phillips, T.; Scully, S.; Sokolov, A. V.; Svidzinsky, A. A.; Xia, H.; Zheltikov, A.; Scully, M. O.

    2012-08-01

    Recent advances in the description of atoms and molecules based on Dimensional scaling analysis, developed by Dudley Herschbach and co-workers, provided new insights into visualization of molecular structure and chemical bonding. Prof. Herschbach is also a giant in the field of single molecule scattering. We here report on the engineering of molecular detectors. Such systems have a wide range of application from medical diagnostics to the monitoring of chemical, biological and environmental hazards. We discuss ways to identify preselected molecules, in particular, mycotoxin contaminants using coherent laser spectroscopy. Mycotoxin contaminants, e.g. aflatoxin B1 which is present in corn and peanuts, are usually analysed by time-consuming microscopic, chemical and biological assays. We present a new approach that derives from recent experiments in which molecules are prepared by one (or more) femtosecond laser(s) and probed by another set. We call this technique FAST CARS (femto second adaptive spectroscopic technique for coherent anti-Stokes Raman spectroscopy). We propose and analyse ways in which FAST CARS can be used to identify preselected molecules, e.g. aflatoxin, rapidly and economically.

  12. Single-molecule detection: applications to ultrasensitive biochemical analysis

    NASA Astrophysics Data System (ADS)

    Castro, Alonso; Shera, E. Brooks

    1995-06-01

    Recent developments in laser-based detection of fluorescent molecules have made possible the implementation of very sensitive techniques for biochemical analysis. We present and discuss our experiments on the applications of our recently developed technique of single-molecule detection to the analysis of molecules of biological interest. These newly developed methods are capable of detecting and identifying biomolecules at the single-molecule level of sensitivity. In one case, identification is based on measuring fluorescence brightness from single molecules. In another, molecules are classified by determining their electrophoretic velocities.

  13. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  14. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection.

    PubMed

    Zheng, Yuanhui; Soeriyadi, Alexander H; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  15. Single-molecule detection at high concentrations with optical aperture nanoantennas.

    PubMed

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-14

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  16. Single-molecule detection at high concentrations with optical aperture nanoantennas

    NASA Astrophysics Data System (ADS)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  17. Single-molecule detection at high concentrations with optical aperture nanoantennas.

    PubMed

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-14

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field. PMID:27120086

  18. Automated multidimensional single molecule fluorescence microscopy feature detection and tracking.

    PubMed

    Rolfe, Daniel J; McLachlan, Charles I; Hirsch, Michael; Needham, Sarah R; Tynan, Christopher J; Webb, Stephen E D; Martin-Fernandez, Marisa L; Hobson, Michael P

    2011-10-01

    Characterisation of multi-protein interactions in cellular networks can be achieved by optical microscopy using multidimensional single molecule fluorescence imaging. Proteins of different species, individually labelled with a single fluorophore, can be imaged as isolated spots (features) of different colour light in different channels, and their diffusive behaviour in cells directly measured through time. Challenges in data analysis have, however, thus far hindered its application in biology. A set of methods for the automated analysis of multidimensional single molecule microscopy data from cells is presented, incorporating Bayesian segmentation-based feature detection, image registration and particle tracking. Single molecules of different colours can be simultaneously detected in noisy, high background data with an arbitrary number of channels, acquired simultaneously or time-multiplexed, and then tracked through time. The resulting traces can be further analysed, for example to detect intensity steps, count discrete intensity levels, measure fluorescence resonance energy transfer (FRET) or changes in polarisation. Examples are shown illustrating the use of the algorithms in investigations of the epidermal growth factor receptor (EGFR) signalling network, a key target for cancer therapeutics, and with simulated data.

  19. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    PubMed

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  20. Detection of pathogenic DNA at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Yahiatène, Idir; Klamp, Tobias; Schüttpelz, Mark; Sauer, Markus

    2011-03-01

    We demonstrate ultrasensitive detection of pathogenic DNA in a homogeneous assay at the single-molecule level applying two-color coincidence analysis. The target molecule we quantify is a 100 nucleotide long synthetic single-stranded oligonucleotide adapted from Streptococcus pneumoniae, a bacterium causing lower respiratory tract infections. Using spontaneous hybridization of two differently fluorescing Molecular Beacons we demonstrate a detection sensitivity of 100 fM (10-13M) in 30 seconds applying a simple microfluidic device with a 100 μm channel and confocal two-color fluorescence microscopy.

  1. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  2. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    PubMed Central

    Vasdekis, Andreas E.; Laporte, Gregoire P.J.

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking. PMID:21954349

  3. Enhancing single molecule imaging in optofluidics and microfluidics.

    PubMed

    Vasdekis, Andreas E; Laporte, Gregoire P J

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  4. Single molecule targeted sequencing for cancer gene mutation detection.

    PubMed

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  5. Single molecule targeted sequencing for cancer gene mutation detection

    PubMed Central

    Gao, Yan; Deng, Liwei; Yan, Qin; Gao, Yongqian; Wu, Zengding; Cai, Jinsen; Ji, Daorui; Li, Gailing; Wu, Ping; Jin, Huan; Zhao, Luyang; Liu, Song; Ge, Liangjin; Deem, Michael W.; He, Jiankui

    2016-01-01

    With the rapid decline in cost of sequencing, it is now affordable to examine multiple genes in a single disease-targeted clinical test using next generation sequencing. Current targeted sequencing methods require a separate step of targeted capture enrichment during sample preparation before sequencing. Although there are fast sample preparation methods available in market, the library preparation process is still relatively complicated for physicians to use routinely. Here, we introduced an amplification-free Single Molecule Targeted Sequencing (SMTS) technology, which combined targeted capture and sequencing in one step. We demonstrated that this technology can detect low-frequency mutations using artificially synthesized DNA sample. SMTS has several potential advantages, including simple sample preparation thus no biases and errors are introduced by PCR reaction. SMTS has the potential to be an easy and quick sequencing technology for clinical diagnosis such as cancer gene mutation detection, infectious disease detection, inherited condition screening and noninvasive prenatal diagnosis. PMID:27193446

  6. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  7. Single molecule detection of direct, homologous, DNA/DNA pairing

    PubMed Central

    Danilowicz, C.; Lee, C. H.; Kim, K.; Hatch, K.; Coljee, V. W.; Kleckner, N.; Prentiss, M.

    2009-01-01

    Using a parallel single molecule magnetic tweezers assay we demonstrate homologous pairing of two double-stranded (ds) DNA molecules in the absence of proteins, divalent metal ions, crowding agents, or free DNA ends. Pairing is accurate and rapid under physiological conditions of temperature and monovalent salt, even at DNA molecule concentrations orders of magnitude below those found in vivo, and in the presence of a large excess of nonspecific competitor DNA. Crowding agents further increase the reaction rate. Pairing is readily detected between regions of homology of 5 kb or more. Detected pairs are stable against thermal forces and shear forces up to 10 pN. These results strongly suggest that direct recognition of homology between chemically intact B-DNA molecules should be possible in vivo. The robustness of the observed signal raises the possibility that pairing might even be the “default” option, limited to desired situations by specific features. Protein-independent homologous pairing of intact dsDNA has been predicted theoretically, but further studies are needed to determine whether existing theories fit sequence length, temperature, and salt dependencies described here. PMID:19903884

  8. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOEpatents

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  9. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    PubMed

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility. PMID:27399057

  10. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    PubMed

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.

  11. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  12. Single molecule surface enhanced resonance Raman scattering (SERRS) of the enhanced green fluorescent protein (EGFP)

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; De Schryver, Frans C.; Cotlet, Mircea; Habuchi, Satoshi

    2004-06-01

    One of the most intriguing findings in single molecule spectroscopy (SMS) is the observation of Raman spectra of individual molecules, despite the small cross section of the transitions involved. The observation of the spectra can be explained by the surface enhanced Raman scattering (SERRS) effect. At the single-molecule level, the SERRS-spectra recorded as a function of time reveal inhomogeneous behaviour such as on/off blinking, spectral diffusion, intensity fluctuations of vibrational line, and even splitting of some lines within the spectrum of one molecule. Single-molecule SERRS (SM-SERRS) spectroscopy opens up exciting opportunities in the field of biophysics and biomedical spectroscopy. The first example of single protein SERRS was performed on hemoglobin. However, the possibility of extracting the heme group by silver sols can not be excluded. Here we report on SM-SERRS spectra of enhanced green fluorescent protein (EGFP) in which the chromophore is kept in the protein. The time series of SM-SERRS spectra suggest the conversion of the EGFP chromophore between the deprotonated and the protonated form. Autocorrelation analysis of SM-SERRS trajectory reveals the presence of fast dynamics taking place in the protein. Our findings show the potential of the technique to study structural dynamics of protein molecules.

  13. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2014-07-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.

  14. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.

    PubMed

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P N; Dasgupta, Arindam; Kumar, G V Pavan

    2014-01-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms. PMID:25000476

  15. Single molecule transistor based nanopore for the detection of nicotine

    SciTech Connect

    Ray, S. J.

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  16. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  17. Rapid sequencing of DNA based on single-molecule detection

    NASA Astrophysics Data System (ADS)

    Soper, Steven A.; Davis, Lloyd M.; Fairfield, Frederick R.; Hammond, Mark L.; Harger, Carol A.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.; Nutter, Harvey L.; Shera, E. Brooks; Simpson, Daniel J.

    1991-07-01

    Sequencing the human genome is a major undertaking considering the large number of nucleotides present in the genome and the slow methods currently available to perform the task. The authors have recently reported on a scheme to sequence DNA rapidly using a non-gel based technique. The concept is based upon the incorporation of fluorescently labeled nucleotides into a strand of DNA, isolation and manipulation of a labeled DNA fragment and the detection of single nucleotides using ultra-sensitive laser-induced fluorescence detection following their cleavage from the fragment. Detection of individual fluorophores in the liquid phase was accomplished with time-gated detection following pulsed-laser excitation. The photon bursts from individual rhodamine 6G (R6G) molecules travelling through a laser beam have been observed, as have bursts from single fluorescently modified nucleotides. Using two different biotinylated nucleotides as a model system for fluorescently labeled nucleotides, the authors have observed synthesis of the complementary copy of M13 bacteriophage. Work with fluorescently labeled nucleotides is underway. Individual molecules of DNA attached to a microbead have been observed and manipulated with an epifluorescence microscope.

  18. Rapid sequencing of DNA based on single molecule detection

    SciTech Connect

    Soper, S.A.; Davis, L.M.; Fairfield, F.R.; Hammond, M.L.; Harger, C.A.; Jett, J.H.; Keller, R.A.; Marrone, B.L.; Martin, J.C.; Nutter, H.L.; Shera, E.B.; Simpson, D.J.

    1991-01-01

    Sequencing the human genome is a major undertaking considering the large number of nucleotides present in the genome and the slow methods currently available to perform the task. We have recently reported on a scheme to sequence DNA rapidly using a non-gel based technique. The concept is based upon the incorporation of fluorescently labeled nucleotides into a strand of DNA, isolation and manipulation of a labeled DNA fragment and the detection of single nucleotides using ultra-sensitive laser-induced fluorescence detection following their cleavage from the fragment. Detection of individual fluorophores in the liquid phase was accomplished with time-gated detection following pulsed-laser excitation. The photon bursts from individual rhodamine 6G (R6G) molecules travelling through a laser beam have been observed as have bursts from single fluorescently modified nucleotides. Using two different biotinylated nucleotides as a model system for fluorescently labeled nucleotides, we have observed synthesis of the complementary copy of M13 bacteriophage. Work with fluorescently labeled nucleotides is underway. We have observed and manipulated individual molecules of DNA attached to a microbead with an epifluorescence microscope. 16 refs., 3 figs., 1 tab.

  19. Single molecule detection using SERS study in PVP functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Garg, Parul; Dhara, S.

    2013-02-01

    Non-spherical functionalized Ag nanoparticles (NPs) with homogenous size ˜ 40 nm have been grown using soft chemical route. Solution of silver nitrate and polyvinylpyrrolidone is reduced in excess of ethylene glycol for the preparation of the NPs. Substrates has been prepared by dip coating of the NPs on c-Si for Raman studies. Rhodamine (R6G) is used as a test molecule to study the surface enhanced Raman spectroscopy (SERS) effect. A single molecule detection of R6G along with an enhancement factor of ˜ 4×103 orders of magnitude in the intensity, for the concentration as low as 10-12 M using polymer coated Ag NPs as SERS substrates, has been achieved.

  20. Single molecule detection: Applications to sizing of DNA fragments

    SciTech Connect

    Petty, J.T.; Johnson, M.E.; Affleck, R.L.

    1994-12-31

    Using, ultrasensitive fluorescence detection and flow cytometry, size determination of ds-DNA fragments is performed using the fluorescence intensity from samples stained with a thiazole orange homodimer TOTO-1. The stained fragments pass through a low-power (30 mW) continuous-wave laser beam. Using transit times of 1-5 ms, data were acquired in times ranging from 1 to 15 mins at a rate of 40 fragments/second. As little as 50 fg of DNA was needed for the analysis. The authors have demonstrated sizing of DNA fragments in the size range from 1.5 to 150 kbp. Future applications of this approach to DNA sizing require that the factors contributing to size resolution be understood, and the authors present simulations to address this issue. To aid in the modeling, the authors have measured the saturation intensity and the relative fluorescence quantum yield of the TOTO-1/DNA complex. Applications to physical mapping of the human genome are being investigated.

  1. Prospects for single-molecule detection in liquids by laser-induced fluorescence

    SciTech Connect

    Trkula, M.; Keller, R.A.; Martin, J.C.; Jett, J.H.; Dovichi, N.J.

    1983-01-01

    A laser-induced fluoresence determination of aqueous solutions of rhodamine 6G resulted in a detection limit of 18 attograms, or 22,000 molecules, of rhodamine 6G. These results allow the projection to single-molecule detection with reasonable improvements in the experimental apparatus.

  2. Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin.

    PubMed Central

    Peck, K; Stryer, L; Glazer, A N; Mathies, R A

    1989-01-01

    A theory for single-molecule fluorescence detection is developed and then used to analyze data from subpicomolar solutions of B-phycoerythrin (PE). The distribution of detected counts is the convolution of a Poissonian continuous background with bursts arising from the passage of individual fluorophores through the focused laser beam. The autocorrelation function reveals single-molecule events and provides a criterion for optimizing experimental parameters. The transit time of fluorescent molecules through the 120-fl imaged volume was 800 microseconds. The optimal laser power (32 mW at 514.5 nm) gave an incident intensity of 1.8 x 10(23) photons.cm-2.s-1, corresponding to a mean time of 1.1 ns between absorptions. The mean incremental count rate was 1.5 per 100 microseconds for PE monomers and 3.0 for PE dimers above a background count rate of 1.0. The distribution of counts and the autocorrelation function for 200 fM monomer and 100 fM dimer demonstrate that single-molecule detection was achieved. At this concentration, the mean occupancy was 0.014 monomer molecules in the probed volume. A hard-wired version of this detection system was used to measure the concentration of PE down to 1 fM. This single-molecule counter is 3 orders of magnitude more sensitive than conventional fluorescence detection systems. PMID:2726766

  3. High-throughput single-molecule fluorescence spectroscopy using parallel detection

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Kim, T.; Levi, Moran; Aharoni, Daniel; Cheng, Adrian; Guerrieri, F.; Arisaka, Katsushi; Millaud, Jacques; Rech, I.; Resnati, D.; Marangoni, S.; Gulinatti, A.; Ghioni, M.; Tisa, S.; Zappa, F.; Cova, S.; Weiss, S.

    2011-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements obtained with different novel multipixel single-photon counting detectors. PMID:21625288

  4. Conductance and Surface-Enhanced Raman Scattering of Single Molecules Utilizing Dimers of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dadosh, Tali

    conductance at certain voltage values. The position of peaks in the spectrum was affected by the electrostatic environment, resulting in random gating. In view of the above developments, my thesis focuses on surface-enhanced Raman scattering (SERS) measurement of single molecules. Single-molecule spectroscopy is an emerging field that provides detailed information on molecular response, which is unavailable in measurements performed on an assembly of molecules. The obvious problem, however, in implementing most spectroscopic techniques, such as Raman scattering, is the very weak signal obtained from a single molecule. Interestingly, the Raman signal from a molecule has been shown to increase dramatically when the molecule is adsorbed to metal particles of certain types having sub-wavelength dimensions [1, 2]. This enhancement technique, known as surface-enhanced Raman scattering, can increase the Raman signal by as much as 14--15 orders of magnitude, which has been shown to be sufficient for performing single-molecule spectroscopy successfully. Dimer structures are not only attractive for conductance measurements on single-molecule devices; they could also serve as an efficient antenna system that greatly enhances the electromagnetic field at the center of the dimer, where the molecule resides. Dimers provide a basic experimental model for studying the fundamentals of the SERS enhancement, which are not well understood. Dimers have the advantage of possessing a small gap (on the order of a nanometer) that is beyond the limit of today's sophisticated lithography techniques. By utilizing the dimer structures that contain a Rhodamine 123 molecule, we were able to resolve some fundamental questions regarding the SERS enhancement mechanism. The issue of how the nanoparticles' surface plasmon properties affects the SERS enhancement was addressed both experimentally and by calculations. Moreover, it was predicted by our calculations that when the dimers consist of large

  5. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed Central

    Enderlein, J

    2000-01-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions. PMID:10733992

  6. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.

    PubMed

    Enderlein, J

    2000-04-01

    In the present paper, the excitation and detection of single-molecule fluorescence over thin metallic films is studied theoretically within the framework of classical electrodynamics. The model takes into account the specific conditions of surface plasmon-assisted optical excitation, fluorescence quenching by the metal film, and detection geometry. Extensive numerical results are presented for gold, silver, and aluminum films, showing the detectable fluorescence intensities and their dependence on film thickness and the fluorescent molecule's position under optimal excitation conditions.

  7. Single molecule fluorescence burst detection of DNA separated by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Haab, Brian B.; Mathies, Richard A.

    1996-03-01

    A method has been developed for detecting DNA separated by capillary gel electrophoresis using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with a thiazole orange derivative as they passed through the approximately 2 micrometer diameter focused laser beam. Amplified photoelectron pulses from the photomultiplier are grouped into bins of from 360 - 450 microseconds in duration, and the resulting histogram stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then used to detect a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discrete fluorescence bursts were observed at the expected appearance time of each DNA band. These separations were easily detected when only 50 to 100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of approximately 100 DNA molecules per band or better.

  8. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R. V.; Ansell, D.; Thackray, B.; Novoselov, K. S.; Geim, A. K.; Kabashin, A. V.; Grigorenko, A. N.

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create ’twisted’ photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm-2 and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

  9. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-03-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe.

  10. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  11. Feasibility of Single Molecule DNA Sequencing using Surface-Enhanced Raman Scattering

    SciTech Connect

    Talley, C E; Reboredo, F; Chan, J; Lane, S M

    2006-02-03

    We have used a combined theoretical and experimental approach in order to assess the feasibility of using surface-enhanced Raman scattering (SERS) for DNA sequencing at the single molecule level. We have developed a numerical tool capable of calculating the E-field and resulting SERS enhancement factors for metallic structures of arbitrary size and shape. Measurements of the additional SERS enhancement by combining SERS with coherent antistokes Raman scattering (CARS) show that only modest increases in the signal are achievable due to thermal damage at higher laser powers. Finally, measurements of the SERS enhancement from nanoparticles coated with an insulating layer show that the SERS enhancement is decreased by as much as two orders of magnitude when the molecule is not in contact with the metal surface.

  12. PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis

    PubMed Central

    Kumar, Shiv; Tao, Chuanjuan; Chien, Minchen; Hellner, Brittney; Balijepalli, Arvind; Robertson, Joseph W. F.; Li, Zengmin; Russo, James J.; Reiner, Joseph E.; Kasianowicz, John J.; Ju, Jingyue

    2012-01-01

    We describe a novel single molecule nanopore-based sequencing by synthesis (Nano-SBS) strategy that can accurately distinguish four bases by detecting 4 different sized tags released from 5′-phosphate-modified nucleotides. The basic principle is as follows. As each nucleotide is incorporated into the growing DNA strand during the polymerase reaction, its tag is released and enters a nanopore in release order. This produces a unique ionic current blockade signature due to the tag's distinct chemical structure, thereby determining DNA sequence electronically at single molecule level with single base resolution. As proof of principle, we attached four different length PEG-coumarin tags to the terminal phosphate of 2′-deoxyguanosine-5′-tetraphosphate. We demonstrate efficient, accurate incorporation of the nucleotide analogs during the polymerase reaction, and excellent discrimination among the four tags based on nanopore ionic currents. This approach coupled with polymerase attached to the nanopores in an array format should yield a single-molecule electronic Nano-SBS platform. PMID:23002425

  13. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    NASA Astrophysics Data System (ADS)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  14. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    SciTech Connect

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu; Mukamel, Shaul; Harbola, Upendra

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  15. Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis

    SciTech Connect

    Haab, B.B.; Mathies, R.A.

    1995-09-15

    A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative TO6 as they passed through the nearly 2-{mu}m diameter focused laser beam. Amplified photo-electron pulses from the photomultiplier are grouped into bins of 360-450 {mu}s in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The auto-correlation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of nearly 100 DNA molecules/band or better. 45 refs., 10 figs.

  16. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation.

    PubMed

    Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan

    2015-08-01

    Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection. PMID:26180050

  17. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan

    2015-08-01

    Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection.

  18. An improved synthesis of a fluorescent gabapentin-choline conjugate for single molecule detection

    PubMed Central

    Wu, Haitao; Kaur, Gurpreet; Griffiths, Gary L.

    2009-01-01

    Voltage-gated calcium ion channels are comprised of pore-forming α1 and auxiliary α2δ, β and γ subunits. They are important molecular devices involved in a variety of cell functions. Fluorescently labeled acylcholine analogues are important in studies such as ion channel regulation. Cy3-3-acetylcholine has recently been synthesized for single molecule detection studies; albeit in an extremely low overall yield (0.06 %). In this work, an alternative route to that used in the previous Cy3-3-acetylcholine synthesis was developed with a 90 % yield at a significantly lower material cost. PMID:20161233

  19. Nanopores in solid-state membranes engineered for single molecule detection.

    PubMed

    Dimitrov, V; Mirsaidov, U; Wang, D; Sorsch, T; Mansfield, W; Miner, J; Klemens, F; Cirelli, R; Yemenicioglu, S; Timp, G

    2010-02-10

    A nanopore is an analytical tool with single molecule sensitivity. For detection, a nanopore relies on the electrical signal that develops when a molecule translocates through it. However, the detection sensitivity can be adversely affected by noise and the frequency response. Here, we report measurements of the frequency and noise performance of nanopores single molecules.

  20. Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study

    PubMed Central

    Chistiakova, Maria V.; Shi, Ce; Armani, Andrea M.

    2015-01-01

    Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms. PMID:25785307

  1. Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

    PubMed Central

    Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra

    2015-01-01

    Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150

  2. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    SciTech Connect

    Li, Jiangwei

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  3. Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry.

    PubMed

    Gunnarsson, Anders; Sjövall, Peter; Höök, Fredrik

    2010-02-10

    We report on a mass-spectrometry (time-of-flight secondary ion mass spectrometry, TOF-SIMS) based method for multiplexed DNA detection utilizing a random array, where the lipid composition of small unilamellar liposomes act as chemical barcodes to identify unique DNA target sequences down to the single molecule level. In a sandwich format, suspended target-DNA to be detected mediates the binding of capture-DNA modified liposomes to surface-immobilized probe-DNA. With the lipid composition of each liposome encoding a unique target-DNA sequence, TOF-SIMS analysis was used to determine the chemical fingerprint of the bound liposomes. Using high-resolution TOF-SIMS imaging, providing sub-200 nm spatial resolution, single DNA targets could be detected and identified via the chemical fingerprint of individual liposomes. The results also demonstrate the capability of TOF-SIMS to provide multiplexed detection of DNA targets on substrate areas in the micrometer range. Together with a high multiplexing capacity, this makes the concept an interesting alternative to existing barcode concepts based on fluorescence, Raman, or graphical codes for small-scale bioanalysis. PMID:20085369

  4. Fusion FISH Imaging: Single-Molecule Detection of Gene Fusion Transcripts In Situ

    PubMed Central

    Markey, Fatu Badiane; Ruezinsky, William; Tyagi, Sanjay; Batish, Mona

    2014-01-01

    Double-stranded DNA breaks occur on a regular basis in the human genome as a consequence of genotoxic stress and errors during replication. Usually these breaks are rapidly and faithfully repaired, but occasionally different chromosomes, or different regions of the same chromosome, are fused to each other. Some of these aberrant chromosomal translocations yield functional recombinant genes, which have been implicated as the cause of a number of lymphomas, leukemias, sarcomas, and solid tumors. Reliable methods are needed for the in situ detection of the transcripts encoded by these recombinant genes. We have developed just such a method, utilizing single-molecule fluorescence in situ hybridization (sm-FISH), in which approximately 50 short fluorescent probes bind to adjacent sites on the same mRNA molecule, rendering each target mRNA molecule visible as a diffraction-limited spot in a fluorescence microscope. Utilizing this method, gene fusion transcripts are detected with two differently colored probe sets, each specific for one of the two recombinant segments of a target mRNA; enabling the fusion transcripts to be seen in the microscope as distinct spots that fluoresce in both colors. We demonstrate this method by detecting the BCR-ABL fusion transcripts that occur in chronic myeloid leukemia cells, and by detecting the EWSR1-FLI1 fusion transcripts that occur in Ewing's sarcoma cells. This technology should pave the way for accurate in situ typing of many cancers that are associated with, or caused by, fusion transcripts. PMID:24675777

  5. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    NASA Astrophysics Data System (ADS)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  6. High-efficiency molecular counting in solution: Single-molecule detection in electrodynamically focused microdroplet streams

    SciTech Connect

    Lermer, N.; Barnes, M.D.; Kung, C.Y.; Whitten, W.B.; Ramsey, J.M.

    1997-06-01

    We report fluorescence detection of individual rhodamine 6G molecules using a linear quadrupole to focus streams of microdroplets through the waist of a counterpropagating cw Ar{sup +} laser. Since the terminal velocity scales as the square of the droplet diameter, the droplet-laser interaction time was `tunable` between 5 and 200 ms by using water samples spiked with a small, variable (2-5% v/v) amount of glycerol. Fluorescence bursts from droplets containing single molecules were clearly distinguished from the blanks in real time with an average signal-to-noise ratio of about 10, limited primarily by photobleaching and droplet size fluctuations (<1%). The volume throughput rates associated with this approach (approx. 10 pL/s) are roughly 10{sup 3} higher than those associated with particle levitation techniques, with minimal sacrifice in sensitivity. Total molecular detection efficiencies of about 80% (at >99% confidence) were obtained for 100 and 15 fM rhodamine 6G solutions, in good agreement with detailed theoretical calculations and statistical limitations. 39 refs., 7 figs., 1 tab.

  7. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels.

    PubMed

    Ding, Yongshun; Liu, Xingti; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-07-01

    A highly sensitive method for single-molecule quantitative detection of human IgG is presented by the employment of a new fluorescent nanolabel. In this method, fluorescent nanolabels were assembled by inserting SYBR Green I into DNA tetrahedron nanostructure. The bio-nanolabels were attached to the streptavidin-antihuman antibody by a specific reaction between biotin and streptavidin. The antibody was combined with the target antigen, human IgG, which was immobilized on the silanized glass subtrate surface. Finally, epi-fluorescence microscopy (EFM) coupled with an electron multiplying charge-coupled device was employed for fluorescence imaging. The fluorescent spots corresponding to single protein molecule on images were counted and further used for the quantitative detection. It was found that the new nanolabel shows good photostability, biocompatiblity and exhibits no blinking compared to traditional labels like fluorescence dyes and quantum dot (QDs). In addition, the number of fluorescence spots on the images has a linear relationship with the concentration of human IgG in the range of 3.0×10(-14) to 1.0×10(-12)mol L(-1). What is more, this method showed an excellent specificity and a low matrix effect.

  8. Incorporation of Slow Off-Rate Modified Aptamers Reagents in Single Molecule Array Assays for Cytokine Detection with Ultrahigh Sensitivity.

    PubMed

    Wu, Danlu; Katilius, Evaldas; Olivas, Edgar; Dumont Milutinovic, Milena; Walt, David R

    2016-09-01

    Slow off-rate modified aptamers (SOMAmers) are attractive protein recognition reagents due to their high binding affinities, stable chemical structures, easy production, and established selection process. Here, biotinylated SOMAmer reagents were incorporated into single molecule array (Simoa)-based assays in place of traditional detection antibodies for six cytokine targets. Optimization and validation were conducted for TNF-α as a demonstration using a capture antibody/detection-SOMAmer detection scheme to highlight the performance of this approach. The optimized assay has a broad dynamic range (>4 log10 units) and an ultralow detection limit of 0.67 fM (0.012 pg/mL). These results show comparable sensitivity to our antibody pair-based Simoa assays, and tens to thousands-fold enhancement in sensitivity compared with conventional ELISAs. High recovery percentages were observed in a spike-recovery test using human sera, demonstrating the feasibility of this novel Simoa assay in detecting TNF-α in clinically relevant samples. Detection SOMAmers were also used to detect other cytokines, such as IFN-γ, IL-1β, IL-2, IL-6, and IL-10, in human samples. Although not yet demonstrated, in principle it should be possible to eventually replace both the capture and detector antibodies with corresponding SOMAmer pairs in sandwich immunoassays. The combination of the ultrasensitive Simoa platform with the higher reliability of SOMAmer binding reagents will greatly benefit both biomarker discovery and disease diagnostic fields. PMID:27529794

  9. Photoluminescence Enhancement in CdSe/ZnS–DNA linked–Au Nanoparticle Heterodimers Probed by Single Molecule Spectroscopy

    SciTech Connect

    Cotlet, M.; Maye, M.M.; Gang, O.

    2010-07-26

    Photoluminescence enhancement of up to 20 fold is demonstrated at the single molecule level for heterodimers composed of a core/shell CdSe/ZnS semiconductive quantum dot and a gold nanoparticle of 60 nm size separated by a 32 nm-long dsDNA linker when employing optical excitation at wavelengths near the surface plasmon resonance of the gold nanoparticle.

  10. Anisotropy barrier enhancement via ligand substitution in tetranuclear {Co(III)2Ln(III)2} single molecule magnets.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2013-08-11

    The replacement of coordinated acetylacetonate for nitrate around a Dy(III) ion results in the enhancement of the single molecule magnet properties of a {Co(III)2Dy(III)2} complex, resulting in a large thermal energy barrier and reduced quantum tunnelling at low temperatures. The analogous Tb(III) complex displays field induced SMM behaviour.

  11. Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export

    NASA Astrophysics Data System (ADS)

    Kong, Lingbing; Almond, Andrew; Bayley, Hagan; Davis, Benjamin G.

    2016-05-01

    The outermost protective layer of both Gram-positive and Gram-negative bacteria is composed of bacterial capsular polysaccharides. Insights into the interactions between the capsular polysaccharide and its transporter and the mechanism of sugar export would not only increase our understanding of this key process, but would also help in the design of novel therapeutics to block capsular polysaccharide export. Here, we report a nanolitre detection system that makes use of the bilayer interface between two droplets, and we use this system to study single-molecule recapitulation of sugar export. A synthetic strategy of polyglycosylation based on tetrasaccharide monomers enables ready synthetic access to extended fragments of K30 oligosaccharides and polysaccharides. Examination of the interactions between the Escherichia coli sugar transporter Wza and very small amounts of fragments of the K30 capsular polysaccharide substrate reveal the translocation of smaller but not larger fragments. We also observe capture events that occur only on the intracellular side of Wza, which would complement coordinated feeding by adjunct biosynthetic machinery.

  12. Single-molecule tracking of the transcription cycle by sub-second RNA detection

    PubMed Central

    Zhang, Zhengjian; Revyakin, Andrey; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert

    2014-01-01

    Transcription is an inherently stochastic, noisy, and multi-step process, in which fluctuations at every step can cause variations in RNA synthesis, and affect physiology and differentiation decisions in otherwise identical cells. However, it has been an experimental challenge to directly link the stochastic events at the promoter to transcript production. Here we established a fast fluorescence in situ hybridization (fastFISH) method that takes advantage of intrinsically unstructured nucleic acid sequences to achieve exceptionally fast rates of specific hybridization (∼10e7 M−1s−1), and allows deterministic detection of single nascent transcripts. Using a prototypical RNA polymerase, we demonstrated the use of fastFISH to measure the kinetic rates of promoter escape, elongation, and termination in one assay at the single-molecule level, at sub-second temporal resolution. The principles of fastFISH design can be used to study stochasticity in gene regulation, to select targets for gene silencing, and to design nucleic acid nanostructures. DOI: http://dx.doi.org/10.7554/eLife.01775.001 PMID:24473079

  13. Chemical polyglycosylation and nanolitre detection enables single-molecule recapitulation of bacterial sugar export.

    PubMed

    Kong, Lingbing; Almond, Andrew; Bayley, Hagan; Davis, Benjamin G

    2016-05-01

    The outermost protective layer of both Gram-positive and Gram-negative bacteria is composed of bacterial capsular polysaccharides. Insights into the interactions between the capsular polysaccharide and its transporter and the mechanism of sugar export would not only increase our understanding of this key process, but would also help in the design of novel therapeutics to block capsular polysaccharide export. Here, we report a nanolitre detection system that makes use of the bilayer interface between two droplets, and we use this system to study single-molecule recapitulation of sugar export. A synthetic strategy of polyglycosylation based on tetrasaccharide monomers enables ready synthetic access to extended fragments of K30 oligosaccharides and polysaccharides. Examination of the interactions between the Escherichia coli sugar transporter Wza and very small amounts of fragments of the K30 capsular polysaccharide substrate reveal the translocation of smaller but not larger fragments. We also observe capture events that occur only on the intracellular side of Wza, which would complement coordinated feeding by adjunct biosynthetic machinery. PMID:27102680

  14. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond

    PubMed Central

    Arjmandi-Tash, Hadi; Belyaeva, Liubov A.

    2016-01-01

    Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds – and because 2D materials are atomically thin – the information provided by the edge might be used to identify different segments – ideally single nucleotides – in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential. PMID:26612268

  15. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond.

    PubMed

    Arjmandi-Tash, Hadi; Belyaeva, Liubov A; Schneider, Grégory F

    2016-02-01

    Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may - one day - sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds - and because 2D materials are atomically thin - the information provided by the edge might be used to identify different segments - ideally single nucleotides - in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential.

  16. Enhanced vapor-phase processing in fluorinated Fe4 single-molecule magnets.

    PubMed

    Rigamonti, Luca; Piccioli, Marco; Malavolti, Luigi; Poggini, Lorenzo; Mannini, Matteo; Totti, Federico; Cortigiani, Brunetto; Magnani, Agnese; Sessoli, Roberta; Cornia, Andrea

    2013-05-20

    A new tetrairon(III) single-molecule magnet with enhanced volatility and processability was obtained by partial fluorination of the ancillary β-diketonato ligands. Fluorinated proligand Hpta = pivaloyltrifluoroacetone was used to assemble the bis(alkoxido)-bridged dimer [Fe2(OEt)2(pta)4] (1) in crystalline form, from which the new tetranuclear complex [Fe4(L)2(pta)6] (2) was synthesized in a one-pot reaction with H3L = 2-hydroxymethyl-2-phenylpropane-1,3-diol, NaOEt, and FeCl3 in a Et2O:EtOH solvent mixture. The structure of compound 2 was inferred from (1)H NMR, mass spectrometry, magnetic measurements, and DFT calculations. Direct current magnetic data are consistent with the expected metal-centered triangular topology for the iron(III) ions, with an antiferromagnetic coupling constant J = 16.20(6) cm(-1) between the central iron and the peripheral ones and consequent stabilization of an S = 5 spin ground state. Alternating current (ac) susceptibility measurements in 0 and 1 kOe static applied fields show the presence of a thermally activated process for magnetic relaxation, with τ0 = 2.3(1) 10(-7) s and U(eff)/kB = 9.9(1) K at zero static field and τ0 = 2.0(2) 10(-7) s and U(eff)/kB = 13.0(2) K at 1 kOe. At a pressure of 10(-7) mbar, compound 2 sublimates at (440 ± 5) K vs (500 ± 10) K for the nonfluorinated variant [Fe4(L)2(dpm)6] (Hdpm = dipivaloylmethane). According to XPS, ToF-SIMS, and ac susceptibility studies, the chemical composition, fragmentation pattern, and slow magnetic relaxation of the pristine material are retained in sublimated samples, suggesting that the molecular structure remains totally unaffected upon vapor-phase processing.

  17. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap.

    PubMed

    Chen, Bao-Qin; Zhang, Chao; Li, Jiafang; Li, Zhi-Yuan; Xia, Younan

    2016-08-25

    Electromagnetic and chemical enhancement mechanisms are commonly used to account for single-molecule surface-enhanced Raman scattering (SM-SERS). Due to many practical limitations, however, the overall enhancement factor summed up from these two mechanisms is typically 5-6 orders of magnitude below the level of 10(14)-10(15) required for SM-SERS. Here, we demonstrate that the multiple elastic Rayleigh scattering of a molecule could play a critical role in further enhancing the Raman signal, when the molecule is trapped in a 2 nm gap between two Ag nanoparticles, pushing the overall enhancement factor close to the level needed for SM-SERS. As a universal physical process for all molecules interacting with light, we believe that Rayleigh scattering plays a pivotal and as yet unrecognized role in SERS, in particular, for enabling single-molecule sensitivity. PMID:27526632

  18. Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point

    PubMed Central

    Dylla-Spears, Rebecca; Townsend, Jacqueline E.; Jen-Jacobson, Linda; Sohn, Lydia L.; Muller, Susan J.

    2012-01-01

    We demonstrate the use of a microfluidic stagnation point flow to trap and extend single molecules of double-stranded (ds) genomic DNA for detection of target sequences along the DNA backbone. Mutant EcoRI-based fluorescent markers are bound sequence-specifically to fluorescently labeled ds λ-DNA. The marker-DNA complexes are introduced into a microfluidic cross slot consisting of flow channels that intersect at ninety degrees. Buffered solution containing the marker-DNA complexes flows in one channel of the cross slot, pure buffer flows in the opposing channel at the same flow rate, and fluid exits the two channels at ninety degrees from the inlet channels. This creates a stagnation point at the center of a planar extensional flow, where marker-DNA complexes may be trapped and elongated along the outflow axis. The degree of elongation can be controlled using the flow strength (i.e., a non-dimensional flow rate) in the device. Both the DNA backbone and the markers bound along the stretched DNA are observed directly using fluorescence microscopy and the location of the markers along the DNA backbone is measured. We find that our method permits detection of each of the five expected target site positions to within 1.5 kb with standard deviations of <1.5 kb. We compare the method’s precision and accuracy at molecular extensions of 68% and 88% of the contour length to binding distributions from similar data obtained via molecular combing. We also provide evidence that increased mixing of the sample during binding of the marker to the DNA improves binding to internal target sequences of dsDNA, presumably by extending the DNA and making the internal binding sites more accessible. PMID:20358051

  19. Direct Detection of α-Synuclein Dimerization Dynamics: Single-Molecule Fluorescence Analysis

    PubMed Central

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V.; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean-Christophe; Blanchard, Scott C.; Lyubchenko, Yuri L.

    2015-01-01

    The aggregation of α-synuclein (α-Syn) is linked to Parkinson’s disease. The mechanism of early aggregation steps and the effect of pathogenic single-point mutations remain elusive. We report here a single-molecule fluorescence study of α-Syn dimerization and the effect of mutations. Specific interactions between tethered fluorophore-free α-Syn monomers on a substrate and fluorophore-labeled monomers diffusing freely in solution were observed using total internal reflection fluorescence microscopy. The results showed that wild-type (WT) α-Syn dimers adopt two types of dimers. The lifetimes of type 1 and type 2 dimers were determined to be 197 ± 3 ms and 3334 ± 145 ms, respectively. All three of the mutations used, A30P, E46K, and A53T, increased the lifetime of type 1 dimer and enhanced the relative population of type 2 dimer, with type 1 dimer constituting the major fraction. The kinetic stability of type 1 dimers (expressed in terms of lifetime) followed the order A30P (693 ± 14 ms) > E46K (292 ± 5 ms) > A53T (226 ± 6 ms) > WT (197 ± 3 ms). Type 2 dimers, which are more stable, had lifetimes in the range of several seconds. The strongest effect, observed for the A30P mutant, resulted in a lifetime 3.5 times higher than observed for the WT type 1 dimer. This mutation also doubled the relative fraction of type 2 dimer. These data show that single-point mutations promote dimerization, and they suggest that the structural heterogeneity of α-Syn dimers could lead to different aggregation pathways. PMID:25902443

  20. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting

    PubMed Central

    Kim, Kyung Lock; Kim, Daehyung; Lee, Seongsil; Kim, Su-Jeong; Noh, Jung Eun; Kim, Joung-Hun; Chae, Young Chan; Lee, Jong-Bong; Ryu, Sung Ho

    2016-01-01

    Post-translational modifications (PTMs) of receptor tyrosine kinases (RTKs) at the plasma membrane (PM) determine the signal transduction efficacy alone and in combination. However, current approaches to identify PTMs provide ensemble results, inherently overlooking combinatorial PTMs in a single polypeptide molecule. Here, we describe a single-molecule blotting (SiMBlot) assay that combines biotinylation of cell surface receptors with single-molecule fluorescence microscopy. This method enables quantitative measurement of the phosphorylation status of individual membrane receptor molecules and colocalization analysis of multiple immunofluorescence signals to directly visualize pairwise site-specific phosphorylation patterns at the single-molecule level. Strikingly, application of SiMBlot to study ligand-dependent epidermal growth factor receptor (EGFR) phosphorylation, which is widely thought to be multi-phosphorylated, reveals that EGFR on cell membranes is hardly multi-phosphorylated, unlike in vitro autophosphorylated EGFR. Therefore, we expect SiMBlot to aid understanding of vast combinatorial PTM patterns, which are concealed in ensemble methods, and to broaden knowledge of RTK signaling. PMID:27009355

  1. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2006-04-25

    An apparatus for carrying out the separation, detection, and/or counting of single molecules at nanometer scale. Molecular separation is achieved by driving single molecules through a microfluidic or nanofluidic medium using programmable and coordinated electric fields. In various embodiments, the fluidic medium is a strip of hydrophilic material on nonconductive hydrophobic surface, a trough produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base, or a covered passageway produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base together with a nonconductive cover on the parallel strips of hydrophobic nonconductive material. The molecules are detected and counted using nanoelectrode-gated electron tunneling methods, dielectric monitoring, and other methods.

  2. Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation

    PubMed Central

    Ramreddy, T.; Sachidanandam, R.; Strick, T. R.

    2011-01-01

    During cruciform extrusion, a DNA inverted repeat unwinds and forms a four-way junction in which two of the branches consist of hairpin structures obtained by self-pairing of the inverted repeats. Here, we use single-molecule DNA nanomanipulation to monitor in real-time cruciform extrusion and rewinding. This allows us to determine the size of the cruciform to nearly base pair accuracy and its kinetics with second-scale time resolution. We present data obtained with two different inverted repeats, one perfect and one imperfect, and extend single-molecule force spectroscopy to measure the torque dependence of cruciform extrusion and rewinding kinetics. Using mutational analysis and a simple two-state model, we find that in the transition state intermediate only the B-DNA located between the inverted repeats (and corresponding to the unpaired apical loop) is unwound, implying that initial stabilization of the four-way (or Holliday) junction is rate-limiting. We thus find that cruciform extrusion is kinetically regulated by features of the hairpin loop, while rewinding is kinetically regulated by features of the stem. These results provide mechanistic insight into cruciform extrusion and help understand the structural features that determine the relative stability of the cruciform and B-form states. PMID:21266478

  3. Hofmeister effect in confined spaces: halogen ions and single molecule detection.

    PubMed

    Rodrigues, Claudio G; Machado, Dijanah C; da Silva, Annielle M B; Júnior, Janilson J S; Krasilnikov, Oleg V

    2011-06-22

    Despite extensive research in the nanopore-sensing field, there is a paucity of experimental studies that investigate specific ion effects in confined spaces, such as in nanopores. Here, the effect of halogen anions on a simple bimolecular complexation reaction between monodisperse poly(ethylene glycol) (PEG) and α-hemolysin nanoscale pores have been investigated at the single-molecule level. The anions track the Hofmeister ranking according to their influence upon the on-rate constant. An inverse relationship was demonstrated for the off-rate and the solubility of PEG. The difference among anions spans several hundredfold. Halogen anions play a very significant role in the interaction of PEG with nanopores although, unlike K(+), they do not bind to PEG. The specific effect appears dominated by a hydration-dehydration process where ions and PEG compete for water. Our findings provide what we believe to be novel insights into physicochemical mechanisms involved in single-molecule interactions with nanopores and are clearly relevant to more complicated chemical and biological processes involving a transient association of two or more molecules (e.g., reception, signal transduction, enzyme catalysis). It is anticipated that these findings will advance the development of devices with nanopore-based sensors for chemical and biological applications.

  4. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  5. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking.

    PubMed

    Smith, Carlas S; Stallinga, Sjoerd; Lidke, Keith A; Rieger, Bernd; Grunwald, David

    2015-11-01

    Single-molecule detection in fluorescence nanoscopy has become a powerful tool in cell biology but can present vexing issues in image analysis, such as limited signal, unspecific background, empirically set thresholds, image filtering, and false-positive detection limiting overall detection efficiency. Here we present a framework in which expert knowledge and parameter tweaking are replaced with a probability-based hypothesis test. Our method delivers robust and threshold-free signal detection with a defined error estimate and improved detection of weaker signals. The probability value has consequences for downstream data analysis, such as weighing a series of detections and corresponding probabilities, Bayesian propagation of probability, or defining metrics in tracking applications. We show that the method outperforms all current approaches, yielding a detection efficiency of >70% and a false-positive detection rate of <5% under conditions down to 17 photons/pixel background and 180 photons/molecule signal, which is beneficial for any kind of photon-limited application. Examples include limited brightness and photostability, phototoxicity in live-cell single-molecule imaging, and use of new labels for nanoscopy. We present simulations, experimental data, and tracking of low-signal mRNAs in yeast cells.

  6. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking

    PubMed Central

    Smith, Carlas S.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd; Grunwald, David

    2015-01-01

    Single-molecule detection in fluorescence nanoscopy has become a powerful tool in cell biology but can present vexing issues in image analysis, such as limited signal, unspecific background, empirically set thresholds, image filtering, and false-positive detection limiting overall detection efficiency. Here we present a framework in which expert knowledge and parameter tweaking are replaced with a probability-based hypothesis test. Our method delivers robust and threshold-free signal detection with a defined error estimate and improved detection of weaker signals. The probability value has consequences for downstream data analysis, such as weighing a series of detections and corresponding probabilities, Bayesian propagation of probability, or defining metrics in tracking applications. We show that the method outperforms all current approaches, yielding a detection efficiency of >70% and a false-positive detection rate of <5% under conditions down to 17 photons/pixel background and 180 photons/molecule signal, which is beneficial for any kind of photon-limited application. Examples include limited brightness and photostability, phototoxicity in live-cell single-molecule imaging, and use of new labels for nanoscopy. We present simulations, experimental data, and tracking of low-signal mRNAs in yeast cells. PMID:26424801

  7. Point decoration of silicon nanowires: an approach toward single-molecule electrical detection.

    PubMed

    Wang, Jindong; Shen, Fangxia; Wang, Zhenxing; He, Gen; Qin, Jinwen; Cheng, Nongyi; Yao, Maosheng; Li, Lidong; Guo, Xuefeng

    2014-05-12

    Probing interactions of biological systems at the molecular level is of great importance to fundamental biology, diagnosis, and drug discovery. A rational bioassay design of lithographically integrating individual point scattering sites into electrical circuits is capable of realizing real-time, label-free biodetection of influenza H1N1 viruses with single-molecule sensitivity and high selectivity by using silicon nanowires as local reporters in combination with microfluidics. This nanocircuit-based architecture is complementary to more conventional optical techniques, but has the advantages of no bleaching problems and no fluorescent labeling. These advantages offer a promising platform for exploring dynamics of stochastic processes in biological systems and gaining information from genomics to proteomics to improve accurate molecular and even point-of-care clinical diagnosis.

  8. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes.

    PubMed

    Wunderlich, Bengt; Nettels, Daniel; Benke, Stephan; Clark, Jennifer; Weidner, Sascha; Hofmann, Hagen; Pfeil, Shawn H; Schuler, Benjamin

    2013-08-01

    Microfluidic mixing in combination with single-molecule spectroscopy allows the investigation of complex biomolecular processes under non-equilibrium conditions. Here we present a protocol for building, installing and operating microfluidic mixing devices optimized for this purpose. The mixer is fabricated by replica molding with polydimethylsiloxane (PDMS), which allows the production of large numbers of devices at a low cost using a single microfabricated silicon mold. The design is based on hydrodynamic focusing combined with diffusive mixing and allows single-molecule kinetics to be recorded over five orders of magnitude in time, from 1 ms to ∼100 s. Owing to microfabricated particle filters incorporated in the inlet channels, the devices provide stable flow for many hours to days without channel blockage, which allows reliable collection of high-quality data. Modular design enables rapid exchange of samples and mixing devices, which are mounted in a specifically designed holder for use with a confocal microscopy detection system. Integrated Peltier elements provide temperature control from 4 to 37 °C. The protocol includes the fabrication of a silicon master, production of the microfluidic devices, instrumentation setup and data acquisition. Once a silicon master is available, devices can be produced and experiments started within ∼1 d of preparation. We demonstrate the performance of the system with single-molecule Förster resonance energy transfer (FRET) measurements of kinetics of protein folding and conformational changes. The dead time of 1 ms, as predicted from finite element calculations, was confirmed by the measurements. PMID:23845960

  9. Enhancement of Tb(III) -Cu(II) Single-Molecule Magnet Performance through Structural Modification.

    PubMed

    Heras Ojea, María José; Milway, Victoria A; Velmurugan, Gunasekaran; Thomas, Lynne H; Coles, Simon J; Wilson, Claire; Wernsdorfer, Wolfgang; Rajaraman, Gopalan; Murrie, Mark

    2016-08-26

    We report a series of 3d-4f complexes {Ln2 Cu3 (H3 L)2 Xn } (X=OAc(-) , Ln=Gd, Tb or X=NO3 (-) , Ln=Gd, Tb, Dy, Ho, Er) using the 2,2'-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6 L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2 Cu3 (H3 L)2 Xn } complexes is seen by changing the auxiliary ligands (X=OAc(-) for NO3 (-) ). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear Tb(III) models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the Tb(III) coordination environment (C4v versus Cs ). PMID:27484259

  10. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing

    PubMed Central

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M. T.; Gradinaru, Viviana; Pierce, Niles A.

    2016-01-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas – from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. PMID:27342713

  11. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing.

    PubMed

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M T; Gradinaru, Viviana; Pierce, Niles A; Cai, Long

    2016-08-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. PMID:27342713

  12. Laser-induced fluorescence of flowing samples as an approach to single-molecule detection in liquids

    SciTech Connect

    Dovichi, N.J.; Martin, J.C.; Jett, J.H.; Trkula, M.; Keller, R.A.

    1984-03-01

    A flow cytometer system was used to detect aqueous rhodamine 6G by laser-induced fluorescence. Best results were obtained with careful spectral and spatial filtering. At the detection limit, the probability of a rhodamine 6G molecule being present in the detector's probed volume of 11 pL is about 0.6 . With a flow rate of 0.42 ..mu..L/s, a detection limit of 8.9 x 10/sup -14/ M was obtained for a 1-s time constant. At the detection limit, 18 ag or 22,000 molecules of rhodamine 6G flowed through the probed volume during the signal integration period. Signal linearity extends over greater than 5 orders of magnitude limited only by saturation of the detection electronics at high concentration. The results presented here allow a projection to single-molecule detection with reasonable improvements to the apparatus. 25 references, 5 figures, 7 tables.

  13. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids.

    PubMed

    Wang, Tza-Huei; Peng, Yahui; Zhang, Chunyang; Wong, Pak Kin; Ho, Chih-Ming

    2005-04-20

    Here, we report a method capable of quantitative detection of low-abundance DNA/RNA molecules by incorporating confocal fluorescence spectroscopy, molecular beacons, and a molecular-confinement microfluidic reactor. By using a combination of ac and dc fields via a trio of 3-D electrodes in the microreactor, we are able to precisely direct the transport of individual molecules to a minuscule laser-focused detection volume ( approximately 1 fL). A burst of fluorescence photons is detected whenever a molecular beacon-target hybrid flows through the detection region, and the amount of targets can be directly quantified according to the number of recorded single-molecule flow-through events. This assay consumes only attomoles of molecular probes and is able to quantitatively detect subpicomolar DNA targets. A measurement time of less than 2 min is sufficient to complete the detection.

  14. Gradual Folding of an Off-Pathway Molten Globule Detected at the Single-Molecule Level.

    PubMed

    Lindhoud, Simon; Pirchi, Menahem; Westphal, Adrie H; Haran, Gilad; van Mierlo, Carlo P M

    2015-09-25

    Molten globules (MGs) are compact, partially folded intermediates that are transiently present during folding of many proteins. These intermediates reside on or off the folding pathway to native protein. Conformational evolution during folding of off-pathway MGs is largely unexplored. Here, we characterize the denaturant-dependent structure of apoflavodoxin's off-pathway MG. Using single-molecule fluorescence resonance energy transfer (smFRET), we follow conversion of unfolded species into MG down to denaturant concentrations that favor formation of native protein. Under strongly denaturing conditions, fluorescence resonance energy transfer histograms show a single peak, arising from unfolded protein. The smFRET efficiency distribution shifts to higher value upon decreasing denaturant concentration because the MG folds. Strikingly, upon approaching native conditions, the fluorescence resonance energy transfer efficiency of the MG rises above that of native protein. Thus, smFRET exposes the misfolded nature of apoflavodoxin's off-pathway MG. We show that conversion of unfolded into MG protein is a gradual, second-order-like process that simultaneously involves separate regions within the polypeptide. PMID:26163276

  15. Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides

    NASA Astrophysics Data System (ADS)

    Rudenko, M. I.; Yin, D.; Holmes, M.; Hawkins, A. R.; Schmidt, H.

    2007-02-01

    We demonstrate a method for integrating silicon nitride nanopores in liquid core Anti Resonant Reflecting Optical Waveguides (ARROW) for single molecule electrical detection and control. We use a two-step integration process when a micropore is fabricated first, paving the way for subsequent nanopore integration in the first silicon nitride layer of the ARROW structure. Nanopores with dimensions as small as 11 nm were fabricated using a Focused Ion Beam shrinking process commensurate with single particle gating of viruses, proteins, ribosomes and other biomolecules.

  16. Silver-Gold Nanocomposite Substrates for Metal-Enhanced Fluorescence: Ensemble and Single-Molecule Spectroscopic Studies.

    PubMed

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R

    2012-03-01

    In recent years, there has been a growing interest in the studies involving the interactions of fluorophores with plasmonic nanostructures or nanoparticles. These interactions lead to several favorable effects such as increase in the fluorescence intensities, increased photostabilities, and reduced excited-state lifetimes that can be exploited to improve the capabilities of present fluorescence methodologies. In this regard, we report the use of newly developed silver-gold nanocomposite (Ag-Au-NC) structures as substrates for metal-enhanced fluorescence (MEF). The Ag-Au-NC substrates have been prepared by a one-step galvanic replacement reaction from thin silver films coated on glass slides. This approach is simple and suitable for the fabrication of MEF substrates with large area. We have observed about 15-fold enhancement in the fluorescence intensity of ATTO655 from ensemble fluorescence measurements using these substrates. The fluorescence enhancement on the Ag-Au-NC substrates is also accompanied by a reduction in the fluorescence lifetime of ATTO655, which is consistent with the fluorophore-plasmon coupling mechanism. Single-molecule fluorescence measurements have been performed to gain more insight into the metal-fluorophore interactions and to unravel the heterogeneity in the interaction of individual fluorophores with the fabricated substrates. The single-molecule studies are in good agreement with the ensemble measurements and show maximum enhancements of ~50-fold for molecules located in proximity to the "hotspots" on the substrates. In essence, the Ag-Au-NC substrates have a very good potential for various MEF applications.

  17. Silver–Gold Nanocomposite Substrates for Metal-Enhanced Fluorescence: Ensemble and Single-Molecule Spectroscopic Studies

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.

    2012-01-01

    In recent years, there has been a growing interest in the studies involving the interactions of fluorophores with plasmonic nanostructures or nanoparticles. These interactions lead to several favorable effects such as increase in the fluorescence intensities, increased photostabilities, and reduced excited-state lifetimes that can be exploited to improve the capabilities of present fluorescence methodologies. In this regard, we report the use of newly developed silver–gold nanocomposite (Ag–Au–NC) structures as substrates for metal-enhanced fluorescence (MEF). The Ag–Au–NC substrates have been prepared by a one-step galvanic replacement reaction from thin silver films coated on glass slides. This approach is simple and suitable for the fabrication of MEF substrates with large area. We have observed about 15-fold enhancement in the fluorescence intensity of ATTO655 from ensemble fluorescence measurements using these substrates. The fluorescence enhancement on the Ag–Au–NC substrates is also accompanied by a reduction in the fluorescence lifetime of ATTO655, which is consistent with the fluorophore–plasmon coupling mechanism. Single-molecule fluorescence measurements have been performed to gain more insight into the metal–fluorophore interactions and to unravel the heterogeneity in the interaction of individual fluorophores with the fabricated substrates. The single-molecule studies are in good agreement with the ensemble measurements and show maximum enhancements of ~50-fold for molecules located in proximity to the “hotspots” on the substrates. In essence, the Ag–Au–NC substrates have a very good potential for various MEF applications. PMID:22707999

  18. Detection of the barium daughter in 136Xe -->136Ba + 2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2015-10-01

    To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.

  19. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  20. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis. PMID:25479875

  1. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis.

  2. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    SciTech Connect

    Yasuike, Tomokazu; Nobusada, Katsuyuki

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  3. Detection of confinement and jumps in single-molecule membrane trajectories

    NASA Astrophysics Data System (ADS)

    Meilhac, N.; Le Guyader, L.; Salomé, L.; Destainville, N.

    2006-01-01

    We propose a variant of the algorithm by [R. Simson, E. D. Sheets, and K. Jacobson, Biophys. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single-particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes than that of Simson Furthermore, it enables to detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by membrane skeleton fence and picket models. In the case of experimental trajectories of μ -opioid receptors, which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this algorithm confirms that confinement cannot be explained solely by rigid fences.

  4. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  5. Approach to single-molecule detection by laser-induced fluorescence

    SciTech Connect

    Dovichi, N.J.; Martin, J.C.; Jett, J.H.; Trkula, M.; Keller, R.A.

    1983-08-01

    A sheath flow cuvette was evaluated in laser-induced fluorescence determination of aqueous rhodamine 6G. A detection limit of 18 attograms was obtained within a one-second signal integration time. The concentration detection limit was 8.9 x 10/sup -14/ mole per liter. An average of one-half rhodamine 6G molecule was present within the 11 pL excitation volume. However, during the signal integration time a total of 22,000 analyte molecules passed through the excitation in a 0.42 microliter volume.

  6. Detection of toxins in single molecule level using deoxyribonucleic acid aptamers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxins in foodstuffs are always a threat to food safety Among many toxins related to food, ricin (category B toxin) from castor beans has been mentioned in some poisoning cases happened. Atomic Force Microscopy (AFM) is a widely used nanotechnology to detect biospecies in vitro and in situ. The AFM...

  7. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  8. High-throughput, dual probe biological assays based on single molecule detection

    DOEpatents

    Hollars, Christopher W.; Huser, Thomas R.; Lane, Stephen M.; Balhorn, Rodney L.; Bakajin, Olgica; Darrow, Christopher; Satcher, Jr., Joe H.

    2006-07-11

    A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 .mu.m.times.100 .mu.m.times.100 .mu.m. A device using these methods would have 10.sup.3 10.sup.4 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 .mu.m.sup.3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (.about.10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.

  9. Detecting a single molecule using a micropore-nanopore hybrid chip

    PubMed Central

    2013-01-01

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing. PMID:24261484

  10. Single-molecule electrophoresis

    SciTech Connect

    Castro, A.; Shera, E.B.

    1995-09-15

    A novel method for the detection and identification of single molecules in solution has been devised, computer simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required for individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed before-hand in order to estimate the experimental feasibility of the method and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented. 20 refs., 8 figs.

  11. Quantum dots and microfluidic single-molecule detection for screening genetic and epigenetic cancer markers in clinical samples

    NASA Astrophysics Data System (ADS)

    Wang, Tza-Huei; Bailey, Vasudev; Liu, Kelvin

    2011-06-01

    Genomic analysis of biomarkers, including genetic markers such as point mutations and epigenetic markers such as DNA methylation, has become a central theme in modern disease diagnosis and prognosis. Recently there is an increasing interest in using single-molecule detection (SMD) for genomic detection. The driving force not only comes from its ultrahigh sensitivity that can allow the detection of low-abundance nucleic acids with reduced or without the need of amplification but also from its potential in achieving high-accuracy quantification of rare targets via singlemolecule sorting. The unique photophysical properties of semiconductor quantum dots (QDs) have made them ideal for use as spectral labels and luminescent probes. QDs also make excellent donors to pair with organic dyes in the fluorescence resonance energy transfer (FRET) process due to the features of narrow emission spectra and small Stokes shift. We have developed highly sensitive, quantitative and clinically relevant technologies for analysis of genomic markers based on the convergence of SMD, microfluidic manipulations, and quantum dot fluorescence resonance energy transfer technology (QD-FRET). Extraordinary performances of these new technologies have been exemplified by analysis of a variety of biomarkers including point mutations, DNA integrity and DNA methylation in clinical samples.

  12. Detecting the barium daughter in 136Xe 0-νββ decay using single-molecule fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Nygren, David R.

    2015-11-01

    Single-molecule fluorescent imaging may provide an avenue to efficiently detect the Ba++ daughter atom in the decay 136Xe → Ba + 2e-, and, unambiguously associate the birth point in space within the electron trajectories of the decay event. Chelation of doubly-charged alkaline earth elements such as calcium and barium by certain precursor molecules converts the resulting complex from a non-fluorescent to a fluorescent state. Repeated photo-excitation of a single fluorescent complex reveals both presence and location with high precision. This technique, widespread now in biochemistry, biophysics and biology, may permit a similar discriminating response in a large high-pressure xenon gas TPC for the Ba++ ion from xenon double-beta decay. The TPC measures the event time and energy of the two nascent electrons, as well as topology and position in 3-D from their trajectories in the gas. Measurement of the 2-D location of the molecular ion after arrival at the cathode plane permits an association of ion with the event. Demonstration of an efficient, highly specific detection of the barium daughter would provide a long-sought pathway to a background-free result in the search for this decay mode, of central importance for determining the nature of the neutrino.

  13. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  14. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories.

    PubMed

    Calderon, Christopher P

    2014-01-01

    Optical microscopes and nanoscale probes (AFM, optical tweezers, etc.) afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying systematic forces experienced by molecules change over time; these changes are obscured by "measurement noise" introduced by the experimental probe monitoring the system. In this article, we demonstrate how the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS) of Fox et al. [IEEE Transactions on Signal Processing 59] can be used to detect both subtle and abrupt state changes in time series containing "thermal" and "measurement" noise. The approach accounts for temporal dependencies induced by random and "systematic overdamped" forces. The technique does not require one to subjectively select the number of "hidden states" underlying a trajectory in an a priori fashion. The number of hidden states is simultaneously inferred along with change points and parameters characterizing molecular motion in a data-driven fashion. We use large scale simulations to study and compare the new approach to state-of-the-art Hidden Markov Modeling techniques. Simulations mimicking single particle tracking (SPT) experiments are the focus of this study. PMID:25397733

  15. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories.

    PubMed

    Calderon, Christopher P

    2014-01-01

    Optical microscopes and nanoscale probes (AFM, optical tweezers, etc.) afford researchers tools capable of quantitatively exploring how molecules interact with one another in live cells. The analysis of in vivo single-molecule experimental data faces numerous challenges due to the complex, crowded, and time changing environments associated with live cells. Fluctuations and spatially varying systematic forces experienced by molecules change over time; these changes are obscured by "measurement noise" introduced by the experimental probe monitoring the system. In this article, we demonstrate how the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS) of Fox et al. [IEEE Transactions on Signal Processing 59] can be used to detect both subtle and abrupt state changes in time series containing "thermal" and "measurement" noise. The approach accounts for temporal dependencies induced by random and "systematic overdamped" forces. The technique does not require one to subjectively select the number of "hidden states" underlying a trajectory in an a priori fashion. The number of hidden states is simultaneously inferred along with change points and parameters characterizing molecular motion in a data-driven fashion. We use large scale simulations to study and compare the new approach to state-of-the-art Hidden Markov Modeling techniques. Simulations mimicking single particle tracking (SPT) experiments are the focus of this study.

  16. Enhancing the blocking temperature in single-molecule magnets by incorporating 3d-5d exchange interactions.

    PubMed

    Pedersen, Kasper S; Schau-Magnussen, Magnus; Bendix, Jesper; Weihe, Høgni; Palii, Andrei V; Klokishner, Sophia I; Ostrovsky, Serghei; Reu, Oleg S; Mutka, Hannu; Tregenna-Piggott, Philip L W

    2010-12-01

    We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2). Both compounds exhibit a frequency-dependent out-of-phase χ''(T) alternating current (ac) susceptibility signal that is suggestive of SMM behaviour. From the Arrhenius expression, the effective barrier for 1 is found to be Δ(eff)/k(B)=19 K (τ(0)=5.0×10(-7) s; k(B)=Boltzmann constant), whereas only the onset (1.5 kHz, 1.8 K) of χ''(T) is observed for 2, thus indicating a higher blocking temperature for 1. The strong spin-orbit coupling present in Os(III) isolates the E'(1g(1/2))(O(h)*) Kramers doublet that exhibits orbital contributions to the single-ion anisotropy. Magnetic susceptibility and inelastic neutron-scattering measurements reveal that substitution of [Fe(CN)(6)](3-) by the [Os(CN)(6)](3-) anion results in larger ferromagnetic, anisotropic exchange interactions going from quasi-Ising exchange interactions in 2 to pure Ising exchange for 1 with J(parallel)(MnOs)=-30.6 cm(-1). The combination of diffuse magnetic orbitals and the Ising-type exchange interaction effectively contributes to a higher blocking temperature. This result is in accordance with theoretical predictions and paves the way for the design of a new generation of SMMs with enhanced SMM properties.

  17. Enhancing the magnetic blocking temperature and magnetic coercivity of {CrLn} single-molecule magnets via bridging ligand modification.

    PubMed

    Langley, Stuart K; Wielechowski, Daniel P; Moubaraki, Boujemaa; Murray, Keith S

    2016-09-21

    Replacing bridging benzoate ligands with 2-chloro-4,5-fluorobenzoate in a family of {CrLn} (Ln = Tb, Dy and Ho) single-molecule magnets result in significant improvements in magnetic relaxation time, magnetic hysteresis blocking temperature and magnetic coercivity. PMID:27532688

  18. Enhancing the magnetic blocking temperature and magnetic coercivity of {CrLn} single-molecule magnets via bridging ligand modification.

    PubMed

    Langley, Stuart K; Wielechowski, Daniel P; Moubaraki, Boujemaa; Murray, Keith S

    2016-09-21

    Replacing bridging benzoate ligands with 2-chloro-4,5-fluorobenzoate in a family of {CrLn} (Ln = Tb, Dy and Ho) single-molecule magnets result in significant improvements in magnetic relaxation time, magnetic hysteresis blocking temperature and magnetic coercivity.

  19. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies.

    PubMed

    Kan, Cheuk W; Rivnak, Andrew J; Campbell, Todd G; Piech, Tomasz; Rissin, David M; Mösl, Matthias; Peterça, Andrej; Niederberger, Hans-Peter; Minnehan, Kaitlin A; Patel, Purvish P; Ferrell, Evan P; Meyer, Raymond E; Chang, Lei; Wilson, David H; Fournier, David R; Duffy, David C

    2012-03-01

    We report a method for isolating individual paramagnetic beads in arrays of femtolitre-sized wells and detecting single enzyme-labeled proteins on these beads using sequential fluid flows in microfabricated polymer array assemblies. Arrays of femtolitre-sized wells were fabricated in cyclic olefin polymer (COP) using injection moulding based on DVD manufacturing. These arrays were bonded to a complementary fluidic structure that was also moulded in COP to create an enclosed device to allow delivery of liquids to the arrays. Enzyme-associated, paramagnetic beads suspended in aqueous solutions of enzyme substrate were delivered fluidically to the array such that one bead per well was loaded by gravity. A fluorocarbon oil was then flowed into the device to remove excess beads from the surface of the array, and to seal and isolate the femtolitre-sized wells containing beads and enzyme substrate. The device was then imaged using standard fluorescence imaging to determine which wells contained single enzyme molecules. The analytical performance of this device as the detector for digital ELISA compared favourably to the standard method, i.e., glass arrays mechanically sealed against a silicone gasket; prostate specific antigen (PSA) could be detected from 0.011 pg mL(-1) up to 100 pg mL(-1). The use of an enclosed fluidic device to isolate beads in single-molecule arrays offers a multitude of advantages for low-cost manufacturing, ease of automation, and instrument development to enable applications in biomarker validation and medical diagnosis. PMID:22179487

  20. Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection.

    PubMed

    Zhang, Chun-Yang; Yang, Kun

    2010-05-01

    Due to their unique optical and electronic properties, quantum dots (QDs) have been widely used in a variety of biosensors for sensitive detection of biomarkers and small molecules. However, single QD exhibits dynamic fluctuation of fluorescence intensity (i.e., blinking) with the transition between on and off states, which adversely influences the development of QD-based optical biosensors. Therefore, the methods for efficient evaluation of on-state QD are especially important and highly desirable. In this paper, a novel and unique approach based on single-molecule two-color coincidence detection is developed to simply and accurately evaluate the on-state QDs in a microfluidic flow. Our results demonstrate that improved QDs in the on state are detected in a microfluidic flow in comparison with that in the Brownian motion state, thus paving the way to the development of single QD-based biosensors for sensitive detection of low-abundance biomolecules. This single-molecule two-color coincidence detection has been applied for the homegeneous detection of nucleic acids in a microfluidic flow with the detection sensitivity of 5.0 fM.

  1. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    SciTech Connect

    Camden, Jon P

    2013-07-16

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures.; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS.; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  2. Amplification and detection of single-molecule conformational fluctuation through a protein interaction network with bimodal distributions.

    PubMed

    Wu, Zhanghan; Elgart, Vlad; Qian, Hong; Xing, Jianhua

    2009-09-10

    A protein undergoes conformational dynamics with multiple time scales, which results in fluctuating enzyme activities. Recent studies in single-molecule enzymology have observe this "age-old" dynamic disorder phenomenon directly. However, the single-molecule technique has its limitation. To be able to observe this molecular effect with real biochemical functions in situ, we propose to couple the fluctuations in enzymatic activity to noise propagations in small protein interaction networks such as a zeroth-order ultrasensitive phosphorylation-dephosphorylation cycle. We show that enzyme fluctuations can indeed be amplified by orders of magnitude into fluctuations in the level of substrate phosphorylation, a quantity of wide interest in cellular biology. Enzyme conformational fluctuations sufficiently slower than the catalytic reaction turnover rate result in a bimodal concentration distribution of the phosphorylated substrate. In return, this network-amplified single-enzyme fluctuation can be used as a novel biochemical "reporter" for measuring single-enzyme conformational fluctuation rates.

  3. Molecular Order in Buried Layers of TbPc2 Single-Molecule Magnets Detected by Torque Magnetometry.

    PubMed

    Perfetti, Mauro; Serri, Michele; Poggini, Lorenzo; Mannini, Matteo; Rovai, Donella; Sainctavit, Philippe; Heutz, Sandrine; Sessoli, Roberta

    2016-08-01

    Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride. PMID:27232580

  4. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    SciTech Connect

    Isailovic, Dragan

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  5. An ultra-sensitive nanoarray chip based on single-molecule sandwich immunoassay and TIRFM for protein detection in biologic fluids.

    PubMed

    Lee, Seungah; Cho, Nam-Pyo; Kim, Jung Dong; Jung, Hyungil; Kang, Seong Ho

    2009-05-01

    This paper describes a single-molecule sandwich immunoassay method that utilizes total internal reflection fluorescence microscopy (TIRFM) at the single-molecule level for nanoarray protein chip applications. Nanoarray patterning of a biotin-probe with a spot diameter of 179 +/- 1 nm was performed successfully on a (3-mercaptopropyl)trimethoxysilane (MPTMS)-coated glass substrate by atomic force microscopy (AFM). The formation of biotin patterns was confirmed directly by observing the heights of bound streptavidin and biotin-antibody on glass substrates using an AFM in contact mode. Target protein molecules (or antigen) at the zepto-molar (zM) concentration level (x 10(-21) M) were detected on MPTMS-coated glass nanoarray protein chips by TIRFM. Finally, cytokine clinical samples (i.e. TNF-alpha and IL-1alpha) as cancer marker protein molecules were applied to nanoarray protein chips, and detection limits were at 600 zM.

  6. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids.

    PubMed

    Aramesh, M; Shimoni, O; Fox, K; Karle, T J; Lohrmann, A; Ostrikov, K; Prawer, S; Cervenka, J

    2015-04-14

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 10(15) molecules per cm(2) down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers. PMID:25744416

  7. Watching single molecules dance

    NASA Astrophysics Data System (ADS)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  8. Single Molecule Manipulation

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2011-10-01

    Single-molecule manipulation studies open a door for a close-up investigation of complex biological interactions at the molecular level. In these studies, single biomolecules are pulled while their force response is being monitored. The process is often nonequilibrium, and interpretation of the results has been challenging. We used the atomic force microscope to pull proteins and DNA, and determined the equilibrium properties of the molecules using the recently derived nonequilibrium work theorem. I will present applications of the technique in areas ranging from fundamental biological problems such as DNA mechanics, to complex medical processes such as the mechanical activation of von Willebrand Factor, a key protein in blood coagulation.

  9. Detection of the barium daughter in 136Xe →136Ba+2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David R.

    2016-07-01

    A robust technique for rejection of all γ-ray induced backgrounds in the search for the decay 136Xe→136Ba+2e- is needed to proceed to ton-scale detection systems. Efficient detection of the barium daughter would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging may offer a new way to detect the barium daughter atom in a naturally ionized state. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection would be automatic, and is accomplished within the active volume of a xenon gas Time Projection Chamber operating at high pressure.

  10. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  11. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy.

    PubMed

    Saito, Masataka; Kamonprasertsuk, Supawich; Suzuki, Satomi; Nanatani, Kei; Oikawa, Hiroyuki; Kushiro, Keiichiro; Takai, Madoka; Chen, Po-Ting; Chen, Eric H-L; Chen, Rita P-Y; Takahashi, Satoshi

    2016-09-01

    The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded

  12. Single molecule sensing with carbon nanotube devices

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Sims, Patrick C.; Olsen, Tivoli J.; Iftikhar, Mariam; Corso, Brad L.; Gul, O. Tolga; Weiss, Gregory A.; Collins, Philip G.

    2013-09-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes have the requisite sensitivity to detect single molecule events and sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring the dynamic, single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. In each case, recordings resolved detailed trajectories of tens of thousands of individual chemical events and provided excellent statistics for single-molecule events. This electronic technique has a temporal resolution approaching 1 microsecond, which provides a new window for observing brief, intermediate transition states. In addition, the devices are indefinitely stable, so that the same molecule can be observed for minutes and hours. The extended recordings provide new insights into rare events like transitions to chemically-inactive conformations.

  13. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  14. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.; Weiss, Lucien E.; Moerner, W. E.

    2014-05-01

    Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x ,y (or x ,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium).

  15. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements.

    PubMed

    Calderon, Christopher P; Weiss, Lucien E; Moerner, W E

    2014-05-01

    Experimental advances have improved the two- (2D) and three-dimensional (3D) spatial resolution that can be extracted from in vivo single-molecule measurements. This enables researchers to quantitatively infer the magnitude and directionality of forces experienced by biomolecules in their native environment. Situations where such force information is relevant range from mitosis to directed transport of protein cargo along cytoskeletal structures. Models commonly applied to quantify single-molecule dynamics assume that effective forces and velocity in the x,y (or x,y,z) directions are statistically independent, but this assumption is physically unrealistic in many situations. We present a hypothesis testing approach capable of determining if there is evidence of statistical dependence between positional coordinates in experimentally measured trajectories; if the hypothesis of independence between spatial coordinates is rejected, then a new model accounting for 2D (3D) interactions can and should be considered. Our hypothesis testing technique is robust, meaning it can detect interactions, even if the noise statistics are not well captured by the model. The approach is demonstrated on control simulations and on experimental data (directed transport of intraflagellar transport protein 88 homolog in the primary cilium). PMID:25353827

  16. Structural anisotropy of cyanido-bridged {CoII9WV6} single-molecule magnets induced by bidentate ligands: towards the rational enhancement of an energy barrier.

    PubMed

    Chorazy, Szymon; Rams, Michał; Hoczek, Anna; Czarnecki, Bernard; Sieklucka, Barbara; Ohkoshi, Shin-ichi; Podgajny, Robert

    2016-04-01

    Pentadecanuclear {CII9[W(V)(CN)8]6} clusters were combined with bidentate 2,2'-bipyridine N,N'-dioxide (2,2'-bpdo) ligands resulting in two distinct molecules, {Co9W6(2,2'-bpdo)7} (cluster A) and {Co9W6(2,2'-bpdo)6} (cluster B), capped by seven and six 2,2'-bpdo ligands, respectively. They crystallize within a single {Co9W6(2,2'-bpdo)7}·{Co9W6(2,2'-bpdo)6}·solvent (1) supramolecular network, and reveal single-molecule magnet behaviour with an enhanced energy barrier, a ΔE/kB of 30.0(8) K, which was tentatively ascribed to seven-capped axially deformed cluster A. PMID:26933695

  17. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.

    PubMed

    Sharma, Amit; Leach, Robert N; Gell, Christopher; Zhang, Nan; Burrows, Patricia C; Shepherd, Dale A; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G; Tuma, Roman

    2014-04-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase. PMID:24553251

  18. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies

    PubMed Central

    Sharma, Amit; Leach, Robert N.; Gell, Christopher; Zhang, Nan; Burrows, Patricia C.; Shepherd, Dale A.; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G.; Tuma, Roman

    2014-01-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase. PMID:24553251

  19. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.

    PubMed

    Sharma, Amit; Leach, Robert N; Gell, Christopher; Zhang, Nan; Burrows, Patricia C; Shepherd, Dale A; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G; Tuma, Roman

    2014-04-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase.

  20. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism.

    PubMed

    Itoh, Tamitake; Yamamoto, Yuko S

    2016-08-15

    Surface-enhanced Raman scattering (SERS) spectroscopy has become an ultrasensitive tool for clarifying molecular functions on plasmonic metal nanoparticles (NPs). SERS has been used for in situ probing of detailed behaviors of few or single molecules (SMs) at plasmonic NP junctions. SM SERS signals are commonly observed with temporal and spectral changes known as "blinking", which are related to various physical and chemical interactions between molecules and NP junctions. These temporal and spectral changes simultaneously take place, therefore resulting in serious complexities in interpretations of the SM SERS results. Dual contributions of Raman enhancement mechanisms in SERS (i.e., electromagnetic (EM) and chemical enhancements) also make interpretations more difficult. To resolve these issues and reduce the degree of complexities in SM SERS analyses, the present review is focused on the recent studies of probing SM behaviors using SERS exclusively within the framework of the EM mechanism. The EM mechanism is briefly introduced, and several recent topics on SM SERS blinking analysis are discussed in light of the EM mechanism. This review will provide a basis for clarification of complex SERS fluctuations of various molecules.

  1. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A. ); Haces, A.; Shih, P.J.; Harding, J.D. )

    1993-01-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  2. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A.; Haces, A.; Shih, P.J.; Harding, J.D.

    1993-02-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  3. Correlative Synchrotron Fourier Transform Infrared Spectroscopy and Single Molecule Super Resolution Microscopy for the Detection of Composition and Ultrastructure Alterations in Single Cells.

    PubMed

    Whelan, Donna R; Bell, Toby D M

    2015-12-18

    Single molecule localization microscopy (SMLM) and synchrotron Fourier transform infrared (S-FTIR) spectroscopy are two techniques capable of elucidating unique and valuable biological detail. SMLM provides images of the structures and distributions of targeted biomolecules at spatial resolutions up to an order of magnitude better than the diffraction limit, whereas IR spectroscopy objectively measures the holistic biochemistry of an entire sample, thereby revealing any variations in overall composition. Both tools are currently applied extensively to detect cellular response to disease, chemical treatment, and environmental change. Here, these two techniques have been applied correlatively at the single cell level to probe the biochemistry of common fixation methods and have detected various fixation-induced losses of biomolecular composition and cellular ultrastructure. Furthermore, by extensive honing and optimizing of fixation protocols, many fixation artifacts previously considered pervasive and regularly identified using IR spectroscopy and fluorescence techniques have been avoided. Both paraformaldehyde and two-step glutaraldehyde fixation were identified as best preserving biochemistry for both SMLM and IR studies while other glutaraldehyde and methanol fixation protocols were demonstrated to cause significant biochemical changes and higher variability between samples. Moreover, the potential complementarity of the two techniques was strikingly demonstrated in the correlated detection of biochemical changes as well as in the detection of fixation-induced damage that was only revealed by one of the two techniques.

  4. Single molecule tracking

    DOEpatents

    Shera, E.B.

    1987-10-07

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photons are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions. 3 figs.

  5. Single molecule tracking

    DOEpatents

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  6. Optical interfacing single molecules with atomic vapor

    NASA Astrophysics Data System (ADS)

    Siyushev, Petr; Stein, Guilherme; Wrachtrup, Jörg; Gerhardt, Ilja

    2013-05-01

    Organic molecules at liquid Helium temperatures can constitute high-brightness and narrow-band single photon sources. Thus, they might form an important building block for quantum information processing. A number of quantum optical experiments were conducted with single photon sources based on single molecules. It was shown that it is possible to spectrally detune the molecules, and optical interaction between several molecules could be shown. Another important ingredient for quantum information processing is the implementation of quantum memory. Atomic vapors do not only allow for slowing down light, but also for its storage and can be used as an efficient quantum memory. In the past it was impossible to utilize the high brightness of single molecules in combination with an efficient quantum memory, since the lack of spectral overlap. Here, we present spectral tuning of a single molecule to match the resonance of the sodium D-line. We reach up to 6 ×105 detected 30 MHz narrow-band single photons per second. We are able to slow down near-resonant photons from a single molecule, and simultaneous show its single photon properties. We are further able to explore the properties of atomic vapor for its use as a narrow-band filter for single molecule studies.

  7. Ultrafast dynamics of single molecules.

    PubMed

    Brinks, Daan; Hildner, Richard; van Dijk, Erik M H P; Stefani, Fernando D; Nieder, Jana B; Hernando, Jordi; van Hulst, Niek F

    2014-04-21

    The detection of individual molecules has found widespread application in molecular biology, photochemistry, polymer chemistry, quantum optics and super-resolution microscopy. Tracking of an individual molecule in time has allowed identifying discrete molecular photodynamic steps, action of molecular motors, protein folding, diffusion, etc. down to the picosecond level. However, methods to study the ultrafast electronic and vibrational molecular dynamics at the level of individual molecules have emerged only recently. In this review we present several examples of femtosecond single molecule spectroscopy. Starting with basic pump-probe spectroscopy in a confocal detection scheme, we move towards deterministic coherent control approaches using pulse shapers and ultra-broad band laser systems. We present the detection of both electronic and vibrational femtosecond dynamics of individual fluorophores at room temperature, showing electronic (de)coherence, vibrational wavepacket interference and quantum control. Finally, two colour phase shaping applied to photosynthetic light-harvesting complexes is presented, which allows investigation of the persistent coherence in photosynthetic complexes under physiological conditions at the level of individual complexes. PMID:24473271

  8. Single molecule nanometry for biological physics

    PubMed Central

    Kim, Hajin; Ha, Taekjip

    2013-01-01

    Precision measurement is a hallmark of physics but the small length scale (~ nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ~ 0.3 nm precision at ~ 1 millisecond time resolution, and how these new tools are providing fundamental insights on how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate movements of multiple components. Finally, we will discuss recent progress in combining angstrom precision optical tweezers with single molecule fluorescent detection, opening new windows for multi-dimensional single molecule nanometry for biological physics. PMID:23249673

  9. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  10. The molecular yo-yo method: Live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions

    NASA Astrophysics Data System (ADS)

    Mack, A. H.; Schlingman, D. J.; Kamenetska, M.; Collins, R.; Regan, L.; Mochrie, S. G. J.

    2013-08-01

    By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specifically, we have implemented a live jump detection and force-clamp algorithm that intelligently adjusts and maintains the force on a single molecule in response to the measured state of that molecule. We are able to collect hundreds of individual molecular transitions at different forces, many times faster than previously, permitting us to accurately determine force-dependent lifetime distributions and reaction rates. Application of our method to unwinding and rewinding the nucleosome inner turn, using optical tweezers reveals experimental lifetime distributions that comprise a statistically meaningful number of transitions, and that are accurately single exponential. These measurements significantly reduce the error in the previously measured rates, and demonstrate the existence of a single, dominant free energy barrier at each force studied. A key benefit of the molecular yo-yo method for nucleosomes is that it reduces as far as possible the time spent in the tangentially bound state, which minimizes the loss of nucleosomes by dissociation.

  11. Designer Plasmonics Nanostructures Approaching Single Molecule Raman Scattering

    NASA Astrophysics Data System (ADS)

    Gordon, Reuven; Min, Qiao; Andrade, Gustavo F. S.; Brolo, Alexandre G.

    2010-03-01

    Since the early reports of single molecule Raman scattering detection using randomly roughened metal substrates [Phys. Rev. Lett. 78, 1667 - 1670 (1997), Science 21, 275(5303), 1102 - 1106 (1997)], there has been considerable interest in achieving single molecule Raman spectroscopy from fabricated nanostructures that are not random. Such designer plasmonic nanostructures have the advantages of improved control over the near-field enhancement magnitude, deterministic placement of the local-field hot-spots, optimized collection efficiency and greater reproducibility. Previously, we have created a metal nanostructures with measured 20 molecule Raman signal limit of detection [J. Phys. Chem. C 112 (39), 15098-15101, (2008)]. To achieve the desired near-field electric field enhancements, those nanostructures contained familiar elements to the plasmonic community: concentric focusing rings and subwavelength focusing tapers. Here, we will describe improved designs that have enabled us to improve those results by a factor of 6. We will also show polarization dependent studies that clearly demonstrate the plasmonic nature of the subwavelength focusing structures, including experimental polarization-resolved Raman spectroscopy maps. We are beginning statistical analysis experiments to determine if single molecule Raman is present in these nanostructures.

  12. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    PubMed

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored.

  13. Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis.

    PubMed

    Gooding, J Justin; Gaus, Katharina

    2016-09-12

    Measurement science has been converging to smaller and smaller samples, such that it is now possible to detect single molecules. This Review focuses on the next generation of analytical tools that combine single-molecule detection with the ability to measure many single molecules simultaneously and/or process larger and more complex samples. Such single-molecule sensors constitute a new type of quantitative analytical tool, as they perform analysis by molecular counting and thus potentially capture the heterogeneity of the sample. This Review outlines the advantages and potential of these new, quantitative single-molecule sensors, the measurement challenges in making single-molecule devices suitable for analysis, the inspiration biology provides for overcoming these challenges, and some of the solutions currently being explored. PMID:27444661

  14. Plasmonic nanopore-based platforms for single-molecule Raman scattering

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Wang, Yixin; Liu, Chen; Hu, Dora Juan Juan; Shum, Perry Ping; Su, Lei

    2016-08-01

    We propose and demonstrate a novel plasmonic nanopore platform based on a bowtie-nanopore structure, for single-molecule sensing. In this nano-structure, nano-bowties are integrated with solid-state nanopores to provide localized surface plasmon resonances for signal enhancement. We design and optimize the nano-structure by tuning both the bowtie gap and the bowtie angle, and investigate their influences on field enhancement, thereby achieving single-molecule sensitivity. In addition, we study the field enhancement by introducing an engineered photonic nano-cavity. This further strengthens the electric enhancement. An overall Raman enhancement factor of 2×108 is achieved in our simulation. This is believed to be sufficient for single-molecule sensing. The proposed bowtie-nanopore structure can be multiplexed on a single substrate for simultaneous multi-channel detection, paving the way for demanding applications such as DNA sequencing.

  15. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  16. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  17. Geometry-mediated enhancement of single-ion anisotropy: a route to single-molecule magnets with a high blocking temperature.

    PubMed

    Dey, Mamon; Gogoi, Nayanmoni

    2013-12-01

    Not just any old iron ion: A linear, two-coordinate ionic Fe(I) complex with a S=3/2 ground state has a large energy barrier for magnetization reversal, Ueff =226 cm(-1) , and undergoes slow magnetic relaxation in the absence of an applied magnetic field. The preparation of complexes with these properties is a step towards the eventual practical application of single-molecule magnets.

  18. Recording Single Molecule Dynamics and Function using Carbon Nanotube Circuits

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Sims, Patrick; Moody, Issa; Olsen, Tivoli; Corso, Brad L.; Tolga Gul, O.; Weiss, Gregory A.; Collins, Philip G.

    2013-03-01

    Nanoscale electronic devices like field-effect transistors (FETs) have long promised to provide sensitive, label-free detection of biomolecules. In particular, single-walled carbon nanotubes (SWNTs) have the requisite sensitivity to detect single molecule events, and have sufficient bandwidth to directly monitor single molecule dynamics in real time. Recent measurements have demonstrated this premise by monitoring the dynamic, single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of polymerase I. Initial successes in each case indicate the generality and attractiveness of SWNT FETs as a new tool to complement other single molecule techniques. Furthermore, our focused research on transduction mechanisms provides the design rules necessary to further generalize this SWNT FET technique. This presentation will summarize these rules, and demonstrate how the purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule nanocircuits from a wide range of enzymes or proteins.

  19. Trapping and manipulating single molecules of DNA

    NASA Astrophysics Data System (ADS)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  20. Single-molecule spectroscopy and imaging over the decades.

    PubMed

    Moerner, W E; Shechtman, Yoav; Wang, Quan

    2015-01-01

    As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many

  1. Single-molecule electrophoresis. Final report

    SciTech Connect

    Castro, A.; Shera, E.B.

    1996-05-22

    A novel method for the detection and identification of single molecules in solution has been devised, computer-simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required by individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed beforehand in order to estimate the experimental feasibility of the method, and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented.

  2. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules.

    PubMed

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; Petkiewicz, Shayne; Smith, Jessica M; Ferry, Vivian E; Correia, Ana Luisa; Alivisatos, A Paul; Bissell, Mina J

    2015-07-01

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  3. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules

    DOE PAGES

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; Petkiewicz, Shayne; Smith, Jessica M.; Ferry, Vivian E.; Correia, Ana Luisa; Alivisatos, A. Paul; Bissell, Mina J.

    2015-06-03

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Lastly, such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  4. Theory of single molecule emission spectroscopy

    SciTech Connect

    Bel, Golan; Brown, Frank L. H.

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  5. Room temperature single molecule microscopes

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Enderlein, G.; Semin, D.J.; Keller, R.A.

    1997-12-31

    We have developed three capabilities to image the locations of and interrogate immobilized single fluorescent molecules: near-field scanning optical, confocal scanning optical, and wide-field epi-fluorescence microscopy. Each microscopy has its own advantages. Near-field illumination can beat the diffraction limit. Confocal microscopy has high brightness and temporal resolution. Wide-field has the quickest (parallel) imaging capability. With confocal microscopy, we have verified that single fluorescent spots in our images are due to single molecules by observing photon antibunching. Using all three microscopies, we have observed that xanthene molecules dispersed on dry silica curiously exhibit intensity fluctuations on millisecond to minute time scales. We are exploring the connection between the intensity fluctuations and fluctuations in individual photophysical parameters. The fluorescence lifetimes of Rhodamine 6G on silica fluctuate. The complex nature of the intensity and lifetime fluctuations is consistent with a mechanism that perturbs more than one photophysical parameter.

  6. Cobalt single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Yang, En-Che; Hendrickson, David N.; Wernsdorfer, Wolfgang; Nakano, Motohiro; Zakharov, Lev N.; Sommer, Roger D.; Rheingold, Arnold L.; Ledezma-Gairaud, Marisol; Christou, George

    2002-05-01

    A cobalt molecule that functions as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atom ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single crystal of the compound was studied by means of a micro-superconducting quantum interference device magnetometer in the range of 0.040-1.0 K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal.

  7. Single molecule microscopy and spectroscopy: concluding remarks.

    PubMed

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives. PMID:26606461

  8. Single molecule microscopy and spectroscopy: concluding remarks.

    PubMed

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  9. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  10. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging

    PubMed Central

    Sukhanova, Maria V.; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M.; Anarbaev, Rashid O.; Curmi, Patrick A.; Hamon, Loic; Lavrik, Olga I.

    2016-01-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  11. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging.

    PubMed

    Sukhanova, Maria V; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M; Anarbaev, Rashid O; Curmi, Patrick A; Hamon, Loic; Lavrik, Olga I

    2016-04-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages.

  12. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  13. Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements

    PubMed Central

    WOŹNIAK, ANNA K.; NOTTROTT, STEPHANIE; KÜHN-HÖLSKEN, EVA; SCHRÖDER, GUNNAR F.; GRUBMÜLLER, HELMUT; LÜHRMANN, REINHARD; SEIDEL, CLAUS A.M.; OESTERHELT, FILIPP

    2005-01-01

    The kink-turn (k-turn), a new RNA structural motif found in the spliceosome and the ribosome, serves as a specific protein recognition element and as a structural building block. While the structure of the spliceosomal U4 snRNA k-turn/15.5K complex is known from a crystal structure, it is unclear whether the k-turn also exists in this folded conformation in the free U4 snRNA. Thus, we investigated the U4 snRNA k-turn by single-molecule FRET measurements in the absence and presence of the 15.5K protein and its dependence on the Na+ and Mg2+ ion concentration. We show that the unfolded U4 snRNA k-turn introduces a kink of 85° ± 15° in an RNA double helix. While Na+ and Mg2+ ions induce this more open conformation of the k-turn, binding of the 15.5K protein was found to induce the tightly kinked conformation in the RNA that increases the kink to 52° ± 15°. By comparison of the measured FRET distances with a computer-modeled structure, we show that this strong kink is due to the k-turn motif adopting its folded conformation. Thus, in the free U4 snRNA, the k-turn exists only in an unfolded conformation, and its folding is induced by binding of the 15.5K protein. PMID:16199764

  14. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  15. Fluorescent Biosensors Based on Single-Molecule Counting.

    PubMed

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  16. Fluorescent Biosensors Based on Single-Molecule Counting.

    PubMed

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  17. Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions.

    PubMed

    Singh, Pradyumna S; Kätelhön, Enno; Mathwig, Klaus; Wolfrum, Bernhard; Lemay, Serge G

    2012-11-27

    Electrochemical detection of single molecules is being actively pursued as an enabler of new fundamental experiments and sensitive analytical capabilities. Most attempts to date have relied on redox cycling in a nanogap, which consists of two parallel electrodes separated by a nanoscale distance. While these initial experiments have demonstrated single-molecule detection at the proof-of-concept level, several fundamental obstacles need to be overcome to transform the technique into a realistic detection tool suitable for use in more complex settings (e.g., studying enzyme dynamics at single catalytic event level, probing neuronal exocytosis, etc.). In particular, it has become clearer that stochasticity--the hallmark of most single-molecule measurements--can become the key limiting factor on the quality of the information that can be obtained from single-molecule electrochemical assays. Here we employ random-walk simulations to show that this stochasticity is a universal feature of all single-molecule experiments in the diffusively coupled regime and emerges due to the inherent properties of brownian motion. We further investigate the intrinsic coupling between stochasticity and detection capability, paying particular attention to the role of the geometry of the detection device and the finite time resolution of measurement systems. We suggest concrete, realizable experimental modifications and approaches to mitigate these limitations. Overall, our theoretical analyses offer a roadmap for optimizing single-molecule electrochemical experiments, which is not only desirable but also indispensable for their wider employment as experimental tools for electrochemical research and as realistic sensing or detection systems. PMID:23106647

  18. Chemical principles of single-molecule electronics

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Neupane, Madhav; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2016-03-01

    The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure-property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

  19. Single-molecule mechanochemical sensing using DNA origami nanostructures.

    PubMed

    Koirala, Deepak; Shrestha, Prakash; Emura, Tomoko; Hidaka, Kumi; Mandal, Shankar; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2014-07-28

    While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

  20. Applications of capillary electrophoresis and laser-induced fluorescence detection to the analysis of trace species: From single cells to single molecules

    SciTech Connect

    Qifeng, X.

    1995-11-01

    This Ph.D. Thesis describes several separation and detection schemes for the analysis of small volume and amount of samples, such as intracellular components and single enzymes developed during research. Indirect Laser-induced fluorescence detection and capillary electrophoresis were used to quantify lactate and pyruvate in single red blood cells. The assay of specific enzyme activities was achieved by monitoring the highly fluorescent enzymatic reaction product, NADH. LDH activity was found not to be a unique marker for diagnosis of leukemia. Reactions of single LDH-1 molecules were investigated by monitoring the reaction product with LIF detection.

  1. Design and construction of wall-less nano-electrophoretic and nano in micro array high throughput devices for single cell ‘omics' single molecule detection analyses

    NASA Astrophysics Data System (ADS)

    Misevic, Gradimir N.; BenAssayag, Gerard; Rasser, Bernard; Sales, Philippe; Simic-Krstic, Jovana; Misevic, Nikola J.; Popescu, Octavian

    2014-09-01

    Single cell ‘omics' requires a technological platform with reliable and high throughput single cell analyses with single molecular detection and quantification. Presently available options are to either to detect many different macromolecules and metabolites extracted from many cells, thus obtaining partial ‘omics' of an average cell or to study only few single cells and be limited to semi-quantitative analyses and detection of a few abundant molecules. Here we present a new design and prototype proof of concept construction of high throughput nano-electrophoretic separation (NEA) device and nano in micro array (NiMA) affinity probe device for a complete single cell ‘omics' single bio-molecule polymers detection and quantification analyses. Prototype devices were constructed using gallium ion Focus Ion Beam (FIB), Gas Injection System (GIS) and Scanning Electron Microscope (SEM) crossbeam instruments. The NEA device accommodates 100 different cell samplings per 1 cm2 chip with arrays of open nano-electrophoretic guides. The NiMA bio-sensor device on 1 cm2 can accommodate 2500 cells in a micro-well array which consists of 250,000 probe markers in nano-well array located in each micro-well. Using Secondary Ion Mass Spectrometry (SIMS) we have demonstrated the direct detection of a single protein molecule and proved the feasibility of single bio-molecular detection and quantification concept for NEA and NIMA. Our concept validates high throughput and complete and quantitative single cell ‘omics' with single molecular detection analyses without labeling. Thus, it is superior to commonly used microfluidics, capillary electrophoresis and micro-arrays using mass spectrometry and fluorescent labeling for molecular detection.

  2. Flow-through Capture and in Situ Amplification Can Enable Rapid Detection of a Few Single Molecules of Nucleic Acids from Several Milliliters of Solution.

    PubMed

    Schlappi, Travis S; McCalla, Stephanie E; Schoepp, Nathan G; Ismagilov, Rustem F

    2016-08-01

    Detecting nucleic acids (NAs) at zeptomolar concentrations (few molecules per milliliter) currently requires expensive equipment and lengthy processing times to isolate and concentrate the NAs into a volume that is amenable to amplification processes, such as PCR or LAMP. Shortening the time required to concentrate NAs and integrating this procedure with amplification on-device would be invaluable to a number of analytical fields, including environmental monitoring and clinical diagnostics. Microfluidic point-of-care (POC) devices have been designed to address these needs, but they are not able to detect NAs present in zeptomolar concentrations in short time frames because they require slow flow rates and/or they are unable to handle milliliter-scale volumes. In this paper, we theoretically and experimentally investigate a flow-through capture membrane that solves this problem by capturing NAs with high sensitivity in a short time period, followed by direct detection via amplification. Theoretical predictions guided the choice of physical parameters for a chitosan-coated nylon membrane; these predictions can also be applied generally to other capture situations with different requirements. The membrane is also compatible with in situ amplification, which, by eliminating an elution step enables high sensitivity and will facilitate integration of this method into sample-to-answer detection devices. We tested a wide range of combinations of sample volumes and concentrations of DNA molecules using a capture membrane with a 2 mm radius. We show that for nucleic acid detection, this approach can concentrate and detect as few as ∼10 molecules of DNA with flow rates as high as 1 mL/min, handling samples as large as 50 mL. In a specific example, this method reliably concentrated and detected ∼25 molecules of DNA from 50 mL of sample. PMID:27429181

  3. Observing single-molecule chemical reactions on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Emory, Steven R.; Ambrose, W. Patrick; Goodwin, Peter M.; Keller, Richard A.

    2001-06-01

    We report on the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scatters (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of bread SERS vibrational bands at 1592 cm-1 and 1340 cm-1 observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurement of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  4. Observing single molecule chemical reactions on metal nanoparticles.

    SciTech Connect

    Emory, S. R.; Ambrose, W. Patrick; Goodwin, P. M.; Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  5. Simultaneous time and frequency resolved fluorescence microscopy of single molecules.

    SciTech Connect

    Hayden, Carl C.; Gradinaru, Claudiu C.; Chandler, David W.; Luong, A. Khai

    2005-01-01

    Single molecule fluorophores were studied for the first time with a new confocal fluorescence microscope that allows the wavelength and emission time to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive detector. This detector records the wavelength and emission time of each detected photon relative to an excitation laser pulse. A histogram of many events for any selected spatial region or time interval can generate a full fluorescence spectrum and correlated decay plot for the given selection. At the single molecule level, this approach makes entirely new types of temporal and spectral correlation spectroscopy of possible. This report presents the results of simultaneous time- and frequency-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 embedded in thin films of polymethylmethacrylate (PMMA).

  6. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    SciTech Connect

    Hollingsworth, Jennifer A; Vela, Javier; Htoon, Han; Klimov, Victor I; Casson, Amy R; Chen, Yongfen

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  7. 'Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking: Novel fluorescent probes for real-time detection of single-molecule events.

    PubMed

    Hollingsworth, Jennifer A; Vela, Javier; Chen, Yongfen; Htoon, Han; Klimov, Victor I; Casson, Amy R

    2009-03-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent of NQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell (Chen, et al. J. Am. Chem. Soc. 2008). Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and that on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd(x)Zn(1-x)S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  8. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  9. Broadband single-molecule excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy.

  10. Microarray analysis at single molecule resolution

    PubMed Central

    Mureşan, Leila; Jacak, Jarosław; Klement, Erich Peter; Hesse, Jan; Schütz, Gerhard J.

    2010-01-01

    Bioanalytical chip-based assays have been enormously improved in sensitivity in the recent years; detection of trace amounts of substances down to the level of individual fluorescent molecules has become state of the art technology. The impact of such detection methods, however, has yet not fully been exploited, mainly due to a lack in appropriate mathematical tools for robust data analysis. One particular example relates to the analysis of microarray data. While classical microarray analysis works at resolutions of two to 20 micrometers and quantifies the abundance of target molecules by determining average pixel intensities, a novel high resolution approach [1] directly visualizes individual bound molecules as diffraction limited peaks. The now possible quantification via counting is less susceptible to labeling artifacts and background noise. We have developed an approach for the analysis of high-resolution microarray images. It consists first of a single molecule detection step, based on undecimated wavelet transforms, and second, of a spot identification step via spatial statistics approach (corresponding to the segmentation step in the classical microarray analysis). The detection method was tested on simulated images with a concentration range of 0.001 to 0.5 molecules per square micron and signal-to-noise ratio (SNR) between 0.9 and 31.6. For SNR above 15 the false negatives relative error was below 15%. Separation of foreground/background proved reliable, in case foreground density exceeds background by a factor of 2. The method has also been applied to real data from high-resolution microarray measurements. PMID:20123580

  11. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites

    PubMed Central

    Peleg, Gadi; Lewis, Aaron; Linial, Michal; Loew, Leslie M.

    1999-01-01

    Membrane potential around single molecules has been measured by using the nonlinear optical phenomenon of second harmonic generation. This advance results from the interaction between a highly dipolar molecule with a selectively directed highly polarizable 1-nm gold particle. With this approach, a second harmonic signal, which is enhanced by the nanoparticle, is detected from a volume of nanometric dimensions. This present work clearly shows that functional cellular imaging around single molecules is possible by selectively directing an antibody with a 1-nm gold label to a specific membrane protein. The results of this work open the way for three-dimensional, high resolution functional imaging of membrane electrophysiology in cells and cellular networks. PMID:10359775

  12. Intracellular bottom-up generation of targeted nanosensors for single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Hou, Yanyan; Arai, Satoshi; Kitaguchi, Tetsuya; Suzuki, Madoka

    2016-02-01

    Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local temperature changes in response to external heat pulses. Our approach is potentially a suitable tool for visualizing localized cellular activities with single probe sensitivity in living cells.Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local

  13. Single Molecule Spectroscopy of Electron Transfer

    SciTech Connect

    Michael Holman; Ling Zang; Ruchuan Liu; David M. Adams

    2009-10-20

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  14. Enhanced photoacoustic detection using photonic crystal substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Yunfei; Liu, Kaiyang; McClelland, John; Lu, Meng

    2014-04-01

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  15. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect

    Zhao, Yunfei; Liu, Kaiyang; McClelland, John; Lu, Meng

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  16. Single Molecule Fluorescence Microscopy on Planar Supported Bilayers

    PubMed Central

    Axmann, Markus; Schütz, Gerhard J.; Huppa, Johannes B.

    2015-01-01

    In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues 1. This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light 2. Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode 3,4. They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment. PMID:26555335

  17. Single-Molecule Studies in Live Cells

    NASA Astrophysics Data System (ADS)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  18. Life at the Single Molecule Level

    SciTech Connect

    Xie, Xiaoliang Sunny

    2011-03-04

    In a living cell, gene expression—the transcription of DNA to messenger RNA followed by translation to protein—occurs stochastically, as a consequence of the low copy number of DNA and mRNA molecules involved. Can one monitor these processes in a living cell in real time? How do cells with identical genes exhibit different phenotypes? Recent advances in single-molecule imaging in living bacterial cells allow these questions to be answered at the molecular level in a quantitative manner. It was found that rare events of single molecules can have important biological consequences.

  19. Single-molecule junctions beyond electronic transport.

    PubMed

    Aradhya, Sriharsha V; Venkataraman, Latha

    2013-06-01

    The idea of using individual molecules as active electronic components provided the impetus to develop a variety of experimental platforms to probe their electronic transport properties. Among these, single-molecule junctions in a metal-molecule-metal motif have contributed significantly to our fundamental understanding of the principles required to realize molecular-scale electronic components from resistive wires to reversible switches. The success of these techniques and the growing interest of other disciplines in single-molecule-level characterization are prompting new approaches to investigate metal-molecule-metal junctions with multiple probes. Going beyond electronic transport characterization, these new studies are highlighting both the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the atomic and molecular scales. Furthermore, experimental demonstrations of quantum interference and manipulation of electronic and nuclear spins in single-molecule circuits are heralding new device concepts with no classical analogues. In this Review, we present the emerging methods being used to interrogate multiple properties in single molecule-based devices, detail how these measurements have advanced our understanding of the structure-function relationships in molecular junctions, and discuss the potential for future research and applications.

  20. Relating single-molecule measurements to thermodynamics.

    PubMed

    Keller, David; Swigon, David; Bustamante, Carlos

    2003-02-01

    Measurements made on large ensembles of molecules are routinely interpreted using thermodynamics, but the normal rules of thermodynamics may not apply to measurements made on single molecules. Using a polymer stretching experiment as an example, it is shown that in the limit of a single, short molecule the outcome of experimental measurements may depend on which variables are held fixed and which are allowed to fluctuate. Thus an experiment in which the end-to-end distance of the polymer molecule is fixed and the tension fluctuates yields a different result than an experiment where the force is fixed and the end-to-end distance fluctuates. It is further shown that this difference is due to asymmetry in the distribution of end-to-end distances for a single molecule, and that the difference vanishes in the appropriate thermodynamic limit; that is, as the polymer molecule becomes long compared to its persistence length. Despite these differences, much of the thermodynamic formalism still applies on the single-molecule level if the thermodynamic free energies are replaced with appropriate potentials of mean force. The primary remaining differences are consequences of the fact that unlike the free energies, the potentials of mean force are not in general homogeneous functions of their variables. The basic thermodynamic concepts of an intensive or extensive quantity, and the thermodynamic relationships that follow from them, are therefore less useful for interpreting single-molecule experiments.

  1. High thermopower of mechanically stretched single-molecule junctions.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide; Taniguchi, Masateru

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  2. Visualizing Cellular Machines with Colocalization Single Molecule Microscopy

    PubMed Central

    Larson, Joshua D.; Rodgers, Margaret L.

    2013-01-01

    Many of the cell's macromolecular machines contain multiple components that transiently associate with one another. This compositional and dynamic complexity presents a challenge for understanding how these machines are constructed and function. Colocalization single molecule spectroscopy enables simultaneous observation of individual components of these machines in real-time and grants a unique window into processes that are typically obscured in ensemble assays. Colocalization experiments can yield valuable information about assembly pathways, compositional heterogeneity, and kinetics that together contribute to the development of richly detailed reaction mechanisms. This review focuses on recent advances in colocalization single molecule spectroscopy and how this technique has been applied to enhance our understanding of transcription, RNA splicing, and translation. PMID:23970346

  3. High thermopower of mechanically stretched single-molecule junctions

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  4. Single-Molecule Observation of Prokaryotic DNA Replication

    PubMed Central

    Tanner, Nathan A.; van Oijen, Antoine M.

    2010-01-01

    Recent advances in optical imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and study the dynamic properties of processes that are challenging to elucidate using ensemble-averaging techniques. The use of single-molecule approaches has proven to be particularly successful in the study of the dynamic interactions between the components at the replication fork. In this section, we describe the methods necessary for in vitro single-molecule studies of prokaryotic replication systems. Through these experiments, accurate information can be obtained on the rates and processivities of DNA unwinding and polymerization. The ability to monitor in real time the progress of a single replication fork allows for the detection of short-lived, intermediate states that would be difficult to visualize in bulk-phase assays. PMID:19563119

  5. High-throughput multispot single-molecule spectroscopy

    PubMed Central

    Colyer, Ryan A.; Scalia, Giuseppe; Kim, Taiho; Rech, Ivan; Resnati, Daniele; Marangoni, Stefano; Ghioni, Massimo; Cova, Sergio; Weiss, Shimon; Michalet, Xavier

    2011-01-01

    Solution-based single-molecule spectroscopy and fluorescence correlation spectroscopy (FCS) are powerful techniques to access a variety of molecular properties such as size, brightness, conformation, and binding constants. However, this is limited to low concentrations, which results in long acquisition times in order to achieve good statistical accuracy. Data can be acquired more quickly by using parallelization. We present a new approach using a multispot excitation and detection geometry made possible by the combination of three powerful new technologies: (i) a liquid crystal spatial light modulator to produce multiple diffraction-limited excitation spots; (ii) a multipixel detector array matching the excitation pattern and (iii) a low-cost reconfigurable multichannel counting board. We demonstrate the capabilities of this technique by reporting FCS measurements of various calibrated samples as well as single-molecule burst measurements. PMID:21643532

  6. The symmetry of single-molecule conduction.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  7. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  8. Artifacts in single-molecule localization microscopy.

    PubMed

    Burgert, Anne; Letschert, Sebastian; Doose, Sören; Sauer, Markus

    2015-08-01

    Single-molecule localization microscopy provides subdiffraction resolution images with virtually molecular resolution. Through the availability of commercial instruments and open-source reconstruction software, achieving super resolution is now public domain. However, despite its conceptual simplicity, localization microscopy remains prone to user errors. Using direct stochastic optical reconstruction microscopy, we investigate the impact of irradiation intensity, label density and photoswitching behavior on the distribution of membrane proteins in reconstructed super-resolution images. We demonstrate that high emitter densities in combination with inappropriate photoswitching rates give rise to the appearance of artificial membrane clusters. Especially, two-dimensional imaging of intrinsically three-dimensional membrane structures like microvilli, filopodia, overlapping membranes and vesicles with high local emitter densities is prone to generate artifacts. To judge the quality and reliability of super-resolution images, the single-molecule movies recorded to reconstruct the images have to be carefully investigated especially when investigating membrane organization and cluster analysis.

  9. Challenges in quantitative single molecule localization microscopy.

    PubMed

    Shivanandan, A; Deschout, H; Scarselli, M; Radenovic, A

    2014-10-01

    Single molecule localization microscopy (SMLM), which can provide up to an order of magnitude improvement in spatial resolution over conventional fluorescence microscopy, has the potential to be a highly useful tool for quantitative biological experiments. It has already been used for this purpose in varied fields in biology, ranging from molecular biology to neuroscience. In this review article, we briefly review the applications of SMLM in quantitative biology, and also the challenges involved and some of the solutions that have been proposed. Due to its advantages in labeling specificity and the relatively low overcounting caused by photoblinking when photo-activable fluorescent proteins (PA-FPs) are used as labels, we focus specifically on Photo-Activated Localization Microscopy (PALM), even though the ideas presented might be applicable to SMLM in general. Also, we focus on the following three quantitative measurements: single molecule counting, analysis of protein spatial distribution heterogeneity and co-localization analysis.

  10. Single Molecule as a Local Acoustic Detector for Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Tian, Yuxi; Navarro, Pedro; Orrit, Michel

    2014-09-01

    A single molecule can serve as a nanometer-sized detector of acoustic strain. Such a nanomicrophone has the great advantage that it can be placed very close to acoustic signal sources and high sensitivities can be achieved. We demonstrate this scheme by monitoring the fluorescence intensity of a single dibenzoterrylene molecule in an anthracene crystal attached to an oscillating tuning fork. The characterization of the vibration amplitude and of the detection sensitivity is a first step towards detection and control of nanomechanical oscillators through optical detection and feedback.

  11. Single Molecule Dynamics of Branched DNA Polymers

    NASA Astrophysics Data System (ADS)

    Mai, Danielle; Sing, Charles; Schroeder, Charles

    This work focuses on extending the field of single polymer dynamics to topologically complex polymers. Here, we report the direct observation of DNA-based branched polymers. Recently, we recently demonstrated a two-step synthesis method to generate star, H-shaped, and comb polymers for single molecule visualization. Following synthesis, we use single-color or dual-color single molecule fluorescence microscopy to directly visualize branched polymer dynamics in flow, in particular tracking side branches and backbones independently. In this way, our imaging method allows for characterization of molecular properties, including quantification of polymer contour length and branch distributions. Moving beyond characterization, we use molecular rheology and single molecule techniques to study the dynamics of single branched polymers in flow. Here, we utilize precision microfluidics to directly observe branched DNA polymer conformations during transient stretching, steady-state extension, and relaxation from high stretch. We specifically measure backbone end-to-end distance as a function of time. Experiments and Brownian dynamics simulations show that branched polymer relaxation is a strong function of the number of branches and position of branch points along the main chain backbone.

  12. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  13. Single-Molecule Imaging of Cellular Signaling

    NASA Astrophysics Data System (ADS)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  14. Single-molecule sensing electrode embedded in-plane nanopore

    PubMed Central

    Tsutsui, Makusu; Rahong, Sakon; Iizumi, Yoko; Okazaki, Toshiya; Taniguchi, Masateru; Kawai, Tomoji

    2011-01-01

    Electrode-embedded nanopore is considered as a promising device structure for label-free single-molecule sequencing, the principle of which is based on nucleotide identification via transverse electron tunnelling current flowing through a DNA translocating through the pore. Yet, fabrication of a molecular-scale electrode-nanopore detector has been a formidable task that requires atomic-level alignment of a few nanometer sized pore and an electrode gap. Here, we report single-molecule detection using a nucleotide-sized sensing electrode embedded in-plane nanopore. We developed a self-alignment technique to form a nanopore-nanoelectrode solid-state device consisting of a sub-nanometer scale electrode gap in a 15 nm-sized SiO2 pore. We demonstrate single-molecule counting of nucleotide-sized metal-encapsulated fullerenes in a liquid using the electrode-integrated nanopore sensor. We also performed electrical identification of nucleobases in a DNA oligomer, thereby suggesting the potential use of this synthetic electrode-in-nanopore as a platform for electrical DNA sequencing. PMID:22355565

  15. Application of Recognition Tunneling in Single Molecule Identification

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan

    Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate of a conventional Scanning Tunneling Microscope with recognition molecules ("tethered molecule-pair" configuration), analyte molecules trapped in the gap that is formed by probe and substrate will bond with the reagent molecules. The stochastic bond formation/breakage fluctuations give insight into the nature of the intermolecular bonding at a single molecule-pair level. The distinct time domain and frequency domain features of tunneling signals were extracted from raw signals of analytes such as amino acids and their enantiomers. The Support Vector Machine (a machine-learning method) was used to do classification and predication based on the signal features generated by analytes, giving over 90% accuracy of separation of up to seven analytes. This opens up a new interface between chemistry and electronics with immediate implications for rapid Peptide/DNA sequencing and molecule identification at single molecule level.

  16. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; van Grondelle, Rienk; Mančal, Tomáš

    2016-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII. PMID:27189196

  17. Modular stitching to image single-molecule DNA transport.

    PubMed

    Guan, Juan; Wang, Bo; Bae, Sung Chul; Granick, Steve

    2013-04-24

    For study of time-dependent conformation, all previous single-molecule imaging studies of polymer transport involve fluorescence labeling uniformly along the chain, which suffers from limited resolution due to the diffraction limit. Here we demonstrate the concept of submolecular single-molecule imaging with DNA chains assembled from DNA fragments such that a chain is labeled at designated spots with covalently attached fluorescent dyes and the chain backbone with dyes of different color. High density of dyes ensures good signal-to-noise ratio to localize the designated spots in real time with nanometer precision and prevents significant photobleaching for long-time tracking purposes. To demonstrate usefulness of this approach, we image electrophoretic transport of λ-DNA through agarose gels. The unexpected pattern is observed that one end of each molecule tends to stretch out in the electric field while the other end remains quiescent for some time before it snaps forward and the stretch-recoil cycle repeats. These features are neither predicted by prevailing theories of electrophoresis mechanism nor detectable by conventional whole-chain labeling methods, which demonstrate pragmatically the usefulness of modular stitching to reveal internal chain dynamics of single molecules.

  18. Comment on ``Scanning-probe Raman spectroscopy with single-molecule sensitivity''

    NASA Astrophysics Data System (ADS)

    Domke, Katrin F.; Pettinger, Bruno

    2007-06-01

    We reinterpret the scanning-probe Raman spectra shown in the paper of Neacsu [Phys. Rev. B 73, 193406 (2006)] and compare it to a variety of single-molecule surface-enhanced Raman studies. The observed blinking behavior and spectral features must be attributed to carbon contaminations rather than to malachite green single molecules, because, under the given experimental conditions, the extremely high-field enhancement of 5×109 will inevitably lead to a quick (photo)decomposition of the adsorbate.

  19. Molecular spintronics using single-molecule magnets.

    PubMed

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  20. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of

  1. Single Molecule and Single Cell Epigenomics

    PubMed Central

    Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.

    2014-01-01

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781

  2. Single-molecule studies of collagen mechanics

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Rezaei, Naghmeh; Kirkness, Michael

    Collagen is the fundamental structural protein in vertebrates. Its triple helical structure at the molecular level is believed to be strongly related to its mechanical role in connective tissues. However, the mechanics of collagen at the single-molecule level remain contentious. Estimates of its persistence length span an order of magnitude, from 15-180 nm for this biopolymer of 300 nm contour length. How collagen responds to applied force is also controversial, with different single-molecule studies suggesting one of three different responses: extending entropically, overwinding, or unwinding, all at forces below 10 pN. Using atomic force microscopy to image collagens deposited from solution, we find that their flexibility depends strongly on ionic strength and pH. To study force-dependent structural changes, we are performing highly parallelized enzymatic cleavage assays of triple helical collagen in our new compact centrifuge force microscope. Because proteolytic cleavage requires a locally unwound triple helix, these experiments are revealing how local collagen structure changes in response to applied force. Our results can help to resolve long-standing debates about collagen mechanics and structure at the molecular level.

  3. Single molecule and single cell epigenomics.

    PubMed

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells.

  4. Medium Effects in Single Molecule Electronics

    NASA Astrophysics Data System (ADS)

    Higgins, Simon

    2010-03-01

    We use STM-based techniques for measuring the electrical properties of metal|molecule|metal junctions. For a family of molecules HS(CH2)6-Ar-(CH2)6SH (Ar = substituted benzene), we found that the single molecule conductances varied significantly with substituent, being higher for electron-donating substituents [1]. Later, we studied the effect of increasing conjugation on this system by examining oligothiophenes HS(CH2)6-[C4H4S]x-(CH2)6SH (x = 1, 2, 3, 5). We found that the conductances of junctions involving these molecules depended upon the medium in which the measurements were made. In fact, for x = 3, the conductance was two orders of magnitude higher in the presence of water than in anhydrous conditions [2]. This presentation will outline these studies, together with the results of transport calculations that rationalise these unusual findings, and will set the results in the context of existing literature on medium effects in single molecule conductance determinations. In collaboration with Edmund Leary and Richard Nichols, University of Liverpool; Colin Lambert, Iain Grace, and Chris Finch, University of Lancaster; and Wolfgang Haiss, University of Liverpool.

  5. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  6. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  7. Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids

    PubMed Central

    2016-01-01

    The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson’s disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders. PMID:26800462

  8. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level performance

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takatoki; Fujii, Teruo

    2010-10-01

    Separation and separation-based analysis of biomolecules are fundamentally important techniques in the field of biotechnology. These techniques, however, depend on stochastic processes that intrinsically involve uncertainty, and thus it is not possible to achieve 100% separation accuracy. Theoretically, the ultimate resolution and sensitivity should be realized in a single-molecule system because of the deterministic nature of single-molecule manipulation. Here, we have proposed and experimentally demonstrated the concept of a 'single-molecule sorter' that detects and correctly identifies individual single molecules, realizing the ultimate level of resolution and sensitivity for any separation-based technology. The single-molecule sorter was created using a nanofluidic network consisting of a single inlet channel that branches off into multiple outlet channels. It includes two major functional elements, namely a single-molecule detection and identification element and a flow path switching element to accurately separate single molecules. With this system we have successfully demonstrated the world's first single-molecule sorting using DNA as a sample molecule. In the future, we hope to expand the application of such devices to comprehensive sorting of single-proteins from a single cell. We also believe that in addition to the single-molecule sorting method reported here, other types of single-molecule based processes will emerge and find use in a wide variety of applications.

  9. Quality control in single-molecule studies of kinesins and microtubule-associated proteins.

    PubMed

    Brouhard, Gary J

    2010-01-01

    Commercial microscopes capable of single-molecule experiments have made it simple for researchers to adopt these powerful techniques. This chapter is meant to help newcomers assess whether their data is of sufficient quality to warrant time-intensive analysis. Two problems can hamper single-molecule experiments: (1) non-specific aggregation of the proteins of interest and (2) detection thresholds from a poor microscope setup. I outline four steps that researchers can take to overcome these problems and convince themselves that they are observing bona fide single molecules.

  10. DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Dunning, James E.; Huang, Albert P.-H.; Nyamwanda, Jacqueline A.; Branton, Daniel

    2004-09-01

    Broad-spectrum analysis of DNA and RNA samples is of increasing importance in the growing field of biotechnology. We show that nanopore measurements may be used to assess the purity, phosphorylation state, and chemical integrity of nucleic acid preparations. In contrast with gel electrophoresis and mass spectrometry, an unprecedented dynamic range of DNA sizes and concentrations can be evaluated in a single data acquisition process that spans minutes. Because the molecule information is quantized and digitally recorded with single-molecule resolution, the sensitivity of the system can be adjusted in real time to detect trace amounts of a particular DNA species.

  11. Single Molecule Studies on Dynamics in Liquid Crystals

    PubMed Central

    Täuber, Daniela; von Borczyskowski, Christian

    2013-01-01

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC. PMID:24077123

  12. Synthesis of single-molecule nanocars.

    PubMed

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new

  13. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  14. Single-molecule observations of ribosome function.

    PubMed

    Blanchard, Scott C

    2009-02-01

    Single-molecule investigations promise to greatly advance our understanding of basic and regulated ribosome functions during the process of translation. Here, recent progress towards directly imaging the elemental translation elongation steps using fluorescence resonance energy transfer (FRET)-based imaging methods is discussed, which provide striking evidence of the highly dynamic nature of the ribosome. In this view, global rates and fidelities of protein synthesis reactions may be regulated by interactions of the ribosome with mRNA, tRNA, translation factors and potentially many other cellular ligands that modify intrinsic conformational equilibria in the translating particle. Future investigations probing this model must aim to visualize translation processes from multiple structural and kinetic perspectives simultaneously, to provide direct correlations between factor binding and conformational events.

  15. Single-Molecule Microscopy of Nanocatalysis

    NASA Astrophysics Data System (ADS)

    Chen, Peng

    2014-06-01

    Nanoparticles are important catalysts. Understanding their structure-activity correlation is paramount for developing better catalysts, but hampered by their inherent inhomogeneity: individual nanoparticles differ from one to another, and for every nanoparticle, it can change from time to time, especially during catalysis. Furthermore, each nanoparticle presents on its surface various types of sites, which are often unequal in catalytic activity. I will present our work of using single-molecule fluorescence microscopy to overcome these challenges and study single-nanoparticle catalysis at the single-turnover resolution and nanometer precision. I will present how we interrogate the catalytic activity and dynamics of individual metal nanoparticles, map the reactivity of different surface sites, and uncover surprising spatial reactivity patterns within single facets at the nanoscale. This spatiotemporally resolved catalysis mapping also enables us to probe the communication between catalytic reactions at different locations on a single nanocatalyst, in much relation to allosteric effects in enzymes.

  16. Single molecule measurements and biological motors.

    PubMed

    Knight, Alex E; Mashanov, Gregory; Molloy, Justin E

    2005-12-01

    Recent technological advances in lasers and optical detectors have enabled a variety of new, single molecule technologies to be developed. Using intense and highly collimated laser light sources in addition to super-sensitive cameras, the fluorescence of single fluorophores can now be imaged in aqueous solution. Also, laser optical tweezers have enabled the piconewton forces produced by pair of interacting biomolecules to be measured directly. However, for a researcher new to the field to begin to use such techniques in their own research might seem a daunting prospect. Most of the equipment that is in use is custom-built. However, most of the equipment is essence fairly simple and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on those practical aspects which are not particularly well covered in the literature, and aims to provide an overview of the field as a whole with references and web links to more detailed sources elsewhere. Indeed, the opportunity to publish an article such as this on the Internet affords many new opportunities (and more space!) for presenting scientific ideas and information. For example, we have illustrated the nature of optical trap data with an interactive Java simulation; provided links to relevant web sites and technical documents, and included a large number of colour figures and plots. Our group's research focuses on molecular motors, and the bias of this article reflects this. It turns out that molecular motors have been a paradigm (or prototype) for single molecule research and the field has seen a rapid development in the techniques. It is hoped that the methods described here will be broadly applicable to other biological systems.

  17. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  18. Spectroscopic characterization of Venus at the single molecule level.

    PubMed

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments.

  19. Cavity optomechanical spring sensing of single molecules.

    PubMed

    Yu, Wenyan; Jiang, Wei C; Lin, Qiang; Lu, Tao

    2016-01-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters. PMID:27460277

  20. Cavity optomechanical spring sensing of single molecules

    PubMed Central

    Yu, Wenyan; Jiang, Wei C; Lin, Qiang; Lu, Tao

    2016-01-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters. PMID:27460277

  1. Cavity optomechanical spring sensing of single molecules

    NASA Astrophysics Data System (ADS)

    Yu, Wenyan; Jiang, Wei C.; Lin, Qiang; Lu, Tao

    2016-07-01

    Label-free bio-sensing is a critical functionality underlying a variety of health- and security-related applications. Micro-/nano-photonic devices are well suited for this purpose and have emerged as promising platforms in recent years. Here we propose and demonstrate an approach that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional approaches, allowing us to detect single bovine serum albumin proteins with a molecular weight of 66 kDa at a signal-to-noise ratio of 16.8. The unique optical spring sensing approach opens up a distinctive avenue that not only enables biomolecule sensing and recognition at individual level, but is also of great promise for broad physical sensing applications that rely on sensitive detection of optical cavity resonance shift to probe external physical parameters.

  2. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.

    PubMed

    Choi, Han-Kyu; Park, Won-Hwa; Park, Chan-Gyu; Shin, Hyun-Hang; Lee, Kang Sup; Kim, Zee Hwan

    2016-04-01

    The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions.

  3. Progress towards DNA sequencing at the single molecule level

    SciTech Connect

    Goodwin, P.M.; Affleck, R.L.; Ambrose, W.P.

    1995-12-01

    We describe progress towards sequencing DNA at the single molecule level. Our technique involves incorporation of fluorescently tagged nucleotides into a targeted sequence, anchoring the labeled DNA strand in a flowing stream, sequential exonuclease digestion of the DNA strand, and efficient detection and identification of single tagged nucleotides. Experiments demonstrating strand specific exonuclease digestion of fluorescently labeled DNA anchored in flow as well as the detection of single cleaved fluorescently tagged nucleotides from a small number of anchored DNA fragments axe described. We find that the turnover rate of Esherichia coli exonuclease III on fluorescently labeled DNA in flow at 36{degree}C is {approximately}7 nucleotides per DNA strand per second, which is approximately the same as that measured for this enzyme on native DNA under static, saturated (excess enzyme) conditions. Experiments demonstrating the efficient detection of single fluorescent molecules delivered electrokinetically to a {approximately}3 pL probe volume are also described.

  4. SMART Timing: Principles of Single Molecule Techniques Course at the University of Michigan 2014

    PubMed Central

    Bartke, Rebecca M.; Cameron, Elizabeth L.; Cristie-David, Ajitha S.; Custer, Thomas C.; Denies, Maxwell S.; Farhat, May Daher; Dhakal, Soma; Ghosh, Soumi; Heinicke, Laurie A.; Hoff, J. Damon; Hou, Qian; Kahlscheuer, Matthew L.; Karslake, Joshua; Krieger, Adam G.; Li, Jieming; Li, Xiang; Lund, Paul E.; Vo, Nguyen N.; Park, Jun; Pitchiaya, Sethuramasundaram; Rai, Victoria; Smith, David J.; Suddala, Krishna C.; Wang, Jiarui; Widom, Julia R.; Walter, Nils G.

    2015-01-01

    Four days after the announcement of the 2014 Nobel Prize in Chemistry for “the development of super-resolved fluorescence microscopy” based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a “Principles of Single Molecule Techniques 2014” course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines. PMID:25546606

  5. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction.

    PubMed

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J; Hirjibehedin, Cyrus F

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications. PMID:25622229

  6. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    NASA Astrophysics Data System (ADS)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  7. Ultra-Stable Organic Fluorophores for Single-Molecule Research

    PubMed Central

    Zheng, Qinsi; Juette, Manuel F.; Jockusch, Steffen; Wasserman, Michael R.; Zhou, Zhou; Altman, Roger B.; Blanchard, Scott C.

    2013-01-01

    Fluorescence provides a mechanism for achieving contrast in biological imaging that enables investigations of molecular structure, dynamics, and function at high spatial and temporal resolution. Small-molecule organic fluorophores have proven essential for such efforts and are widely used in advanced applications such as single-molecule and super-resolution microscopy. Yet, organic fluorophores, like all fluorescent species, exhibit instabilities in their emission characteristics, including blinking and photobleaching that limit their utility and performance. Here, we review the photophysics and photochemistry of organic fluorophores as they pertain to mitigating such instabilities, with a specific focus on the development of stabilized fluorophores through derivatization. Self-healing organic fluorophores, wherein the triplet state is intramolecularly quenched by a covalently attached protective agent, exhibit markedly improved photostabilities. We discuss the potential for further enhancements towards the goal of developing “ultra-stable” fluorophores spanning the visible spectrum and how such fluorophores are likely to impact the future of single-molecule research. PMID:24177677

  8. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  9. Stretched polyethylene films probed by single molecules.

    PubMed

    Wirtz, Alexander C; Hofmann, Clemens; Groenen, Edgar J J

    2011-06-01

    Stretched films of low-density polyethylene (LDPE) doped with 2.3,8.9-dibenzanthanthrene (DBATT) were studied using polarization-selective single-molecule spectroscopy at 1.8 K. By measuring the in-plane component of the electronic transition-dipole moments of individual chromophores, the alignment of dopant molecules is determined without averaging. The distributions of chromophore orientations reveal the presence of two fractions of dopant molecules: those oriented along the stretching direction and randomly oriented molecules. With increasing drawing ratio of the polyethylene films, the ratio of oriented to randomly oriented guest molecules increases, whereas the extent of chromophore orientation, that is, the width of the orientation distribution, remains the same. The results are consistent with the interpretation that oriented chromophores reside on the surfaces of polyethylene crystals, instead of in the amorphous polyethylene regions. Guest molecules in stretched polyethylene are oriented due to the alignment of the crystallites on which they are adsorbed. As such, the shape and width of the distributions of chromophore orientations are determined by the interaction of guest molecules with the crystal surfaces.

  10. Single-molecule methods to quantify adsorptive separations (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Landes, Christy

    2015-08-01

    Interfacial adsorption and transport are the chemical and physical processes that underlie separations. Although separations technology accounts for hundreds of billions of dollars in the global economy, the process is not well-understood at the mechanistic level and instead is almost always optimized empirically. One of the reasons is that access to the underlying molecular phenomena has only been available recently via single-molecule methods. There are still interesting challenges because adsorption, desorption, and transport are all dynamic processes, whereas much of the advances in super-resolution imaging have focused on imaging static materials. Our lab has focused in recent years on developing and optimizing data analysis methods for quantifying the dynamics of adsorption and transport in porous materials at nanometer-resolution spatial scales. Our methods include maximizing information content in dynamic single-molecule data and developing methods to detect change-points in binned data. My talk will outline these methods, and will address how and when they can be applied to extract dynamic details in heterogeneous materials such as porous membranes.

  11. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    SciTech Connect

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  12. Single-molecule electronics: from chemical design to functional devices.

    PubMed

    Sun, Lanlan; Diaz-Fernandez, Yuri A; Gschneidtner, Tina A; Westerlund, Fredrik; Lara-Avila, Samuel; Moth-Poulsen, Kasper

    2014-11-01

    The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

  13. 'Single molecule': theory and experiments, an introduction.

    PubMed

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  14. 'Single molecule': theory and experiments, an introduction

    PubMed Central

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins - molecular motors - have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'. PMID:24565227

  15. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  16. Single-Molecule Fluorescence Studies of RNA: A Decade's Progress

    PubMed Central

    Karunatilaka, Krishanthi S.; Rueda, David

    2009-01-01

    Over the past decade, single-molecule fluorescence studies have elucidated the structure-function relationship of RNA molecules. The real-time observation of individual RNAs by single-molecule fluorescence has unveiled the dynamic behavior of complex RNA systems in unprecedented detail, revealing the presence of transient intermediate states and their kinetic pathways. This review provides an overview of how single-molecule fluorescence has been used to explore the dynamics of RNA folding and catalysis. PMID:20161154

  17. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    PubMed

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  18. Nonlinear coherent spectroscopy in the single molecule limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.

    2015-10-01

    Detecting coherent anti-Stokes Raman scattering (CARS) signals from signal molecules is a longstanding experimental challenge. Driving the vibrational CARS response with surface plasmon fields has proven notoriously difficult due to strong background contributions, unfavorable heat dissipation and the phase dispersion of the plasmon modes in the ensemble. In this work we overcome previous experimental limitations and demonstrate time-resolved, vibrational CARS from molecules in the low copy number limit, down to the single molecule level. Our measurements, which are performed under ambient and non-electronic resonance conditions, establish that the coherent response from vibrational modes of individual molecules can be studied experimentally, opening up a new realm of molecular spectroscopic investigations.

  19. Automatic Bayesian single molecule identification for localization microscopy

    PubMed Central

    Tang, Yunqing; Hendriks, Johnny; Gensch, Thomas; Dai, Luru; Li, Junbai

    2016-01-01

    Single molecule localization microscopy (SMLM) is on its way to become a mainstream imaging technique in the life sciences. However, analysis of SMLM data is biased by user provided subjective parameters required by the analysis software. To remove this human bias we introduce here the Auto-Bayes method that executes the analysis of SMLM data automatically. We demonstrate the success of the method using the photoelectron count of an emitter as selection characteristic. Moreover, the principle can be used for any characteristic that is bimodally distributed with respect to false and true emitters. The method also allows generation of an emitter reliability map for estimating quality of SMLM-based structures. The potential of the Auto-Bayes method is shown by the fact that our first basic implementation was able to outperform all software packages that were compared in the ISBI online challenge in 2015, with respect to molecule detection (Jaccard index). PMID:27641933

  20. Automatic Bayesian single molecule identification for localization microscopy.

    PubMed

    Tang, Yunqing; Hendriks, Johnny; Gensch, Thomas; Dai, Luru; Li, Junbai

    2016-01-01

    Single molecule localization microscopy (SMLM) is on its way to become a mainstream imaging technique in the life sciences. However, analysis of SMLM data is biased by user provided subjective parameters required by the analysis software. To remove this human bias we introduce here the Auto-Bayes method that executes the analysis of SMLM data automatically. We demonstrate the success of the method using the photoelectron count of an emitter as selection characteristic. Moreover, the principle can be used for any characteristic that is bimodally distributed with respect to false and true emitters. The method also allows generation of an emitter reliability map for estimating quality of SMLM-based structures. The potential of the Auto-Bayes method is shown by the fact that our first basic implementation was able to outperform all software packages that were compared in the ISBI online challenge in 2015, with respect to molecule detection (Jaccard index). PMID:27641933

  1. Ultrasensitive surface-enhanced Raman scattering detection in common fluids

    PubMed Central

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-01

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10−15 mol⋅L−1). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10−18 mol⋅L−1) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  2. Ultrasensitive surface-enhanced Raman scattering detection in common fluids.

    PubMed

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-12

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10(-15) mol⋅L(-1)). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10(-18) mol⋅L(-1)) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  3. Single-molecule experiments in biological physics: methods and applications.

    PubMed

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  4. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    NASA Astrophysics Data System (ADS)

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108-1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.

  5. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    PubMed Central

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. PMID:26732171

  6. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis. PMID:27409708

  7. Electrical, Mechanical and Thermal Properties of Single Molecules

    SciTech Connect

    Tao, Nongjian

    2014-08-20

    The specific aims of the prior DOE grant are to determine the stability of a single molecule bound to two electrodes, study local heating in single molecule junctions due to electron-phonon and electron-electron interactions, measure electron-phonon interactions in single molecule wires; and explore piezoelectric properties of single molecules. We have completed all the major tasks, and also expanded naturally the scope of the project to address several other critical issues in single molecule properties, developed new experimental capabilities, and observed a number of unexpected phenomena. We summarized here some of the findings that are most relevant to the present renewal proposal. More details can be found in the publications resulted from this grant and annual progress reports.

  8. Single Molecule Screening of Disease DNA Without Amplification

    SciTech Connect

    Lee, Ji-Young

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  9. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.

    PubMed

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-11-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements.

  10. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  11. Surface enhanced Raman scattering detection of single R6G molecules on nanoporous gold films

    NASA Astrophysics Data System (ADS)

    Liu, Hongwen; Zhang, L.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W.

    2011-03-01

    Detecting single molecules with high sensitivity and molecular specificity is of great practical interest in many fields such as chemistry, biology, medicine, and pharmacology. For this purpose, cheap and highly active substrates are of crucial importance. Recently, nanoporous metals (NPMs), with a three-dimensional continuous network structure and pore channels usually much smaller than the wavelength of visible light, revealed outstanding optical properties in surface enhanced Raman scattering (SERS). In this work, we further modify the nanoporous gold films by growing a high density of gold nano-tips on the surface. Extremely focused electromagnetic fields can be produced at the apex of the nano-tips, resulting in so-called hot spots. With this NPM-based and affordable substrate, single molecule-detection is achievable with ultrahigh enhancement in SERS.

  12. Optical microcavity: sensing down to single molecules and atoms.

    PubMed

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  13. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  14. Analysis of the Role of Peripheral Ligands Coordinated to Zn(II) in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets.

    PubMed

    Costes, Jean Pierre; Titos-Padilla, Silvia; Oyarzabal, Itziar; Gupta, Tulika; Duhayon, Carine; Rajaraman, Gopalan; Colacio, Enrique

    2015-10-26

    Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L(2-) is the di-deprotonated form of the N2 O2 compartmental N,N'-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2 O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2 O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff ) for the reversal of the magnetization of 96.9(6) K with τ0 =2.4×10(-7)  s, 146.8(5) K with τ0 =9.2×10(-8)  s, and 146.1(10) K with τ0 =9.9×10(-8)  s for compounds with ZnOH2 , ZnBr, and ZnCl motifs, respectively. The Cole-Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff =128.6(5) K and τ0 =1.8×10(-8)  s for 1, Ueff =214.7 K and τ0 =9.8×10(-9)  s for 2, and Ueff =202.4 K and τ0 =1.5×10(-8)  s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy(3+) ion, which thus creates a strong crystal field that stabilizes the axial MJ =±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination

  15. Dye lipophilicity and retention in lipid membranes: implications for single-molecule spectroscopy.

    PubMed

    Godin, Robert; Liu, Hsiao-Wei; Smith, Laura; Cosa, Gonzalo

    2014-09-23

    Fluorescence studies of individual lipid vesicles rely on the proper positioning of probes in the lipid milieu. This is true for both positional tags and chemoselective fluorogenic probes that undergo chemical modification following reaction with an analyte of interest within the lipid environment. The present report describes lipophilicity and localization estimations for a series of BODIPY dyes bearing substituents of varying hydrophobicity. We also studied fluorogenic trap-reporter probes that undergo fluorescence emission enhancement upon trapping of reactive oxygen species (ROS), including lipid peroxyl radicals. We show that caution has to be taken to extrapolate ensemble partition measurements of dyes to the single-molecule regime as a result of the dramatically different lipid concentration prevailing in ensemble versus single-molecule experiments. We show that the mole fraction of dyes that remains embedded in liposomes during a typical single-molecule experiment may be accurately determined from a ratiometric single-particle imaging analysis. We further demonstrate that fluorescence correlation spectroscopy (FCS) provides a very rapid and reliable estimate of the lipophilic nature of a given dye under highly dilute single-molecule-like conditions. Our combined single-particle spectroscopy and FCS experiments suggest that the minimal mole fraction of membrane-associated dyes (x(m)) as determined from FCS experiments is about 0.5 for adequate dye retention during single-molecule imaging in lipid membranes. Our work further highlights the dramatic effect that chemical modifications can have on chemoselective fluorogenic probe localization.

  16. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    PubMed Central

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  17. Intersystem Crossing Mechanisms and Single Molecule Fluorescence: Terrylene in Anthracene Crystals

    SciTech Connect

    Kol'chenko, M.A.; Nicolet, A.; Orrit, M.; Kozankiewicz, B.

    2005-05-15

    Single molecule spectroscopy requires molecules with low triplet yields and/or short triplet lifetimes. The intersystem crossing (ISC) rate may be dramatically enhanced by the host matrix. Comparing the fluorescence intensity of single terrylene molecules in para-terphenyl, naphthalene, and anthracene crystals, we found a reduction of the saturation intensity by three orders of magnitude in the latter case. The fluorescence autocorrelation function indicates that the bottleneck state is the terrylene triplet. We propose a ping-pong mechanism between host and guest. This intermolecular ISC mechanism, which can open whenever the host triplet lies lower than the guest singlet, was overlooked in previous single molecule investigations.

  18. Bifunctional nanoarrays for probing the immune response at the single-molecule level

    PubMed Central

    Cai, Haogang; Depoil, David; Palma, Matteo; Sheetz, Michael P.; Dustin, Michael L.; Wind, Shalom J.

    2013-01-01

    Bifunctional nanoarrays were created to simulate the immunological synapse and probe the T-cell immune response at the single-molecule level. Sub-5 nm AuPd nanodot arrays were fabricated using both e-beam and nanoimprint lithography. The nanoarrays were then functionalized by two costimulatory molecules: antibody UCHT1 Fab, which binds to the T-cell receptor (TCR) and activates the immune response, bound to metallic nanodots; and intercellular adhesion molecule-1, which enhances cell adhesion, on the surrounding area. Initial T-cell experiments show successful attachment and activation on the bifunctional nanoarrays. This nanoscale platform for single-molecule control of TCR in living T-cells provides a new approach to explore how its geometric arrangement affects T-cell activation and behavior, with potential applications in immunotherapy. This platform also serves as a general model for single-molecule nanoarrays where more than one molecular species is required. PMID:24353927

  19. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    PubMed

    Moerner, W E William E

    2015-07-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  20. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    NASA Astrophysics Data System (ADS)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  1. Gap size dependent transition from direct tunneling to field emission in single molecule junctions.

    PubMed

    Xiang, Dong; Zhang, Yi; Pyatkov, Feliks; Offenhäusser, Andreas; Mayer, Dirk

    2011-04-28

    I/V characteristics recorded in mechanically controllable break junctions revealed that field emission transport is enhanced in single molecule junctions as the gap size between two nanoelectrodes is reduced. This observation indicates that Fowler-Nordheim tunneling occurs not only for intermolecular but also for intramolecular electron transport driven by a reduced energy barrier at short tunneling distances.

  2. Single-molecule Measurements of DNA Topology and Topoisomerases*

    PubMed Central

    Neuman, Keir C.

    2010-01-01

    Topological properties of DNA influence its mechanical and biochemical interactions. Genomic DNA is maintained in a state of topological homeostasis by topoisomerases and is subjected to mechanical stress arising from replication and segregation. Despite their fundamental roles, the effects of topology and force have been difficult to ascertain. Developments in single-molecule manipulation techniques have enabled precise control and measurement of the topology of individual DNA molecules under tension. This minireview provides an overview of these single-molecule techniques and illustrates their unique capabilities through a number of specific examples of single-molecule measurements of DNA topology and topoisomerase activity. PMID:20382732

  3. Single-molecule imaging at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vass, Hugh; Lucas Black, S.; Flors, Cristina; Lloyd, Diarmuid; Bruce Ward, F.; Allen, Rosalind J.

    2013-04-01

    Direct microscopic fluorescence imaging of single molecules can provide a wealth of mechanistic information, but up to now, it has not been possible under high pressure conditions, due to limitations in microscope pressure cell design. We describe a pressure cell window design that makes it possible to image directly single molecules at high hydrostatic pressure. We demonstrate our design by imaging single molecules of Alexa Fluor 647 dye bound to DNA, at 120 and 210 bar, and following their fluorescence photodynamics. We further show that the failure pressure of this type of pressure cell window can be in excess of 1 kbar.

  4. Single Molecule and Collective Dynamics of Motor Protein Coupled with Mechano-Sensitive Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Iwaki, Mitsuhiro; Marcucci, Lorenzo; Togashi, Yuichi; Yanagida, Toshio

    2013-12-01

    Motor proteins such as myosin and kinesin hydrolyze ATP into ADP and Pi to convert chemical energy into mechanical work. This resultsin various motile processes like muscle contraction, vesicle transport and cell division. Recent single molecule experiments have revealed that external load applied to these motor proteins perturb not only the mechanical motion, but the ATP hydrolysis cycle as well, making these molecules mechano-enzymes. Here, we describe our single molecule detection techniques to reveal the mechano-enzymatic properties of myosin and introduce recent progress from both experimental and theoretical approaches at the single- and multiple-molecule level.

  5. Whole-mount single molecule FISH method for zebrafish embryo.

    PubMed

    Oka, Yuma; Sato, Thomas N

    2015-01-01

    Noise in gene expression renders cells more adaptable to changing environment by imposing phenotypic and functional heterogeneity on genetically identical individual cells. Hence, quantitative measurement of noise in gene expression is essential for the study of biological processes in cells. Currently, there are two complementary methods for quantitatively measuring noise in gene expression at the single cell level: single molecule FISH (smFISH) and single cell qRT-PCR (or single cell RNA-seq). While smFISH has been developed for culture cells, tissue sections and whole-mount invertebrate organisms, the method has not been reported for whole-mount vertebrate organisms. Here, we report an smFISH method that is suitable for whole-mount zebrafish embryo, a popular vertebrate model organism for the studies of development, physiology and disease. We show the detection of individual transcripts for several cell-type specific and ubiquitously expressed genes at the single cell level in whole-mount zebrafish embryo. We also demonstrate that the method can be adapted to detect two different genes in individual cells simultaneously. The whole-mount smFISH method described in this report is expected to facilitate the study of noise in gene expression and its role in zebrafish, a vertebrate animal model relevant to human biology. PMID:25711926

  6. Approaching the single molecule. Interview by Kristie Nybo.

    PubMed

    Soloway, Paul

    2013-04-01

    Paul Soloway's development of single molecule approaches to study epigenetics caught our attention. Curious to know more, BioTechniques contacted him to find out about the ambition, character, and motivation that led to his success.

  7. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  8. Understanding Enzyme Activity Using Single Molecule Tracking (Poster)

    SciTech Connect

    Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

    2009-06-01

    This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

  9. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved. PMID:26192667

  10. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved.

  11. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.

    PubMed

    Su, Liang; Yuan, Haifeng; Lu, Gang; Rocha, Susana; Orrit, Michel; Hofkens, Johan; Uji-i, Hiroshi

    2016-02-23

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule-antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip's vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method.

  12. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids

    PubMed Central

    2016-01-01

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule–antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip’s vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method. PMID:26815168

  13. Probing molecular choreography through single-molecule biochemistry.

    PubMed

    van Oijen, Antoine M; Dixon, Nicholas E

    2015-12-01

    Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro-reconstituted systems of increasing complexity.

  14. An Improved Surface Passivation Method for Single-Molecule Studies

    PubMed Central

    Hua, Boyang; Young Han, Kyu; Zhou, Ruobo; Kim, Hajin; Shi, Xinghua; Abeysirigunawardena, Sanjaya C.; Jain, Ankur; Singh, Digvijay; Aggarwal, Vasudha; Woodson, Sarah A.; Ha, Taekjip

    2014-01-01

    We herein report a surface passivation method for in vitro single-molecule studies, which more efficiently prevents non-specific binding of biomolecules as compared to the polyethylene glycol surface. The new surface does not perturb the behavior and activities of tethered biomolecules. It can also be used for single-molecule imaging in the presence of high concentrations of labeled species in solution. Reduction in preparation time and cost is another major advantage. PMID:25306544

  15. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  16. Design and development of a field-deployable single-molecule detector (SMD) for the analysis of molecular markers†

    PubMed Central

    Emory, Jason M.; Peng, Zhiyong; Young, Brandon; Hupert, Mateusz L.; Rousselet, Arnold; Patterson, Donald; Ellison, Brad; Soper, Steven A.

    2012-01-01

    Single-molecule detection (SMD) has demonstrated some attractive benefits for many types of biomolecular analyses including enhanced processing speed by eliminating processing steps, elimination of ensemble averaging and single-molecule sensitivity. However, it's wide spread use has been hampered by the complex instrumentation required for its implementation when using fluorescence as the readout modality. We report herein a simple and compact fluorescence single-molecule instrument that is straightforward to operate and consisted of fiber optics directly coupled to a microfluidic device. The integrated fiber optics served as waveguides to deliver the laser excitation light to the sample and collecting the resulting emission, simplifying the optical requirements associated with traditional SMD instruments by eliminating the need for optical alignment and simplification of the optical train. Additionally, the use of a vertical cavity surface emitting laser and a single photon avalanche diode serving as the excitation source and photon transducer, respectively, as well as a field programmable gate array (FPGA) integrated into the processing electronics assisted in reducing the instrument footprint. This small footprint SMD platform was tested using fluorescent microspheres and single AlexaFluor 660 molecules to determine the optimal operating parameters and system performance. As a demonstration of the utility of this instrument for biomolecular analyses, molecular beacons (MBs) were designed to probe bacterial cells for the gene encoding Gram-positive species. The ability to monitor biomarkers using this simple and portable instrument will have a number of important applications, such as strain-specific detection of pathogenic bacteria or the molecular diagnosis of diseases requiring rapid turn-around-times directly at the point-of-use. PMID:22005669

  17. Detailed analysis of complex single molecule FRET data with the software MASH

    NASA Astrophysics Data System (ADS)

    Hadzic, Mélodie C. A. S.; Kowerko, Danny; Börner, Richard; Zelger-Paulus, Susann; Sigel, Roland K. O.

    2016-04-01

    The processing and analysis of surface-immobilized single molecule FRET (Förster resonance energy transfer) data follows systematic steps (e.g. single molecule localization, clearance of different sources of noise, selection of the conformational and kinetic model, etc.) that require a solid knowledge in optics, photophysics, signal processing and statistics. The present proceeding aims at standardizing and facilitating procedures for single molecule detection by guiding the reader through an optimization protocol for a particular experimental data set. Relevant features were determined from single molecule movies (SMM) imaging Cy3- and Cy5-labeled Sc.ai5γ group II intron molecules synthetically recreated, to test the performances of four different detection algorithms. Up to 120 different parameterizations per method were routinely evaluated to finally establish an optimum detection procedure. The present protocol is adaptable to any movie displaying surface-immobilized molecules, and can be easily reproduced with our home-written software MASH (multifunctional analysis software for heterogeneous data) and script routines (both available in the download section of www.chem.uzh.ch/rna).

  18. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    PubMed Central

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  19. Quantum dots for quantitative imaging: from single molecules to tissue

    PubMed Central

    Vu, Tania Q.; Lam, Wai Yan; Hatch, Ellen W.; Lidke, Diane S.

    2015-01-01

    Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities that were previously not possible. In this review, we focus on QD applications that provide enhanced quantitative information on protein dynamics and localization, including single particle tracking (SPT) and immunohistochemistry (IHC), and finish by examining prospects of upcoming applications, such as correlative light and electron microscopy (CLEM) and super-resolution. Advances in single molecule imaging, including multi-color and 3D QD tracking, have provided new insights into the mechanisms of cell signaling and protein trafficking. New forms of QD tracking in vivo have allowed for observation of biological processes with molecular level resolution in the physiological context of the whole animal. Further methodological development of multiplexed QD-based immunohistochemistry assays are allowing more quantitative analysis of key proteins in tissue samples. These advances highlight the unique quantitative data sets that QDs can provide to further our understanding of biological and disease processes. PMID:25620410

  20. Single Molecule Epigenetic Analysis in a Nanofluidic Channel

    PubMed Central

    Cipriany, Benjamin R.; Zhao, Ruqian; Murphy, Patrick J.; Levy, Stephen L.; Tan, Christine P.; Craighead, Harold G.; Soloway, Paul D.

    2010-01-01

    Epigenetic states are governed by DNA methylation and a host of modifications to histones bound with DNA. These states are essential for proper developmentally regulated gene expression and are perturbed in many diseases. There is great interest in identifying epigenetic mark placement genome-wide and understanding how these marks vary among cell types, with changes in environment or according to health and disease status. Current epigenomic analyses employ bisulfite sequencing and chromatin immunoprecipitation, but query only one type of epigenetic mark at a time, DNA methylation or histone modifications, and often require substantial input material. To overcome these limitations, we established a method using nanofluidics and multi-color fluorescence microscopy to detect DNA and histones in individual chromatin fragments at about 10 Mbp/min. We demonstrated its utility for epigenetic analysis by identifying DNA methylation on individual molecules. This technique will provide the unprecedented opportunity for genome-wide, simultaneous analysis of multiple epigenetic states on single molecules using femtogram quantities of material. PMID:20184350

  1. Single-Molecule Spectroscopic Investigations of RNA Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Fiore, Julie L.; Nesbitt, David J.

    2007-03-01

    To function properly, catalytic RNAs (ribozymes) fold into specific three-dimensional shapes stabilized by multiple tertiary interactions. However, only limited information is available on the contributions of individual tertiary contacts to RNA conformational dynamics. The Tetrahymena ribozymes's P4--P6 domain forms a hinged, ``candy-cane'' structure with parallel helices clamped by two motifs, the GAAA tetraloop-tetraloop receptor and adenosine (A)-rich bulge--P4 helix interactions. Previously, we characterized RNA folding due to a tetraloop-receptor interaction. In this study, we employ time-resolved single-molecule FRET methods to probe A-rich bulge induced structural dynamics. Specifically, fluorescently labeled RNA constructs excited by a pulsed 532 nm laser are detected in the confocal region of an inverted microscope, with each photon sorted by arrival time, color and polarization. We resolve the kinetic dependence of A-rich bulge-P4 helix docking/undocking on cationic environment (e.g. Na^+ and Mg^2+ concentration.) At saturating [Mg^2+], the docked structure appears only weakly stabilized, while only 50% of the molecules exhibit efficient folding.

  2. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    PubMed

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  3. Single molecule analysis of Trypanosoma brucei DNA replication dynamics

    PubMed Central

    Calderano, Simone Guedes; Drosopoulos, William C.; Quaresma, Marina Mônaco; Marques, Catarina A.; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L.; Elias, Maria Carolina

    2015-01-01

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894

  4. Single-Molecule Mechanical Identification and Sequencing: Proof of Principle

    PubMed Central

    Ding, Fangyuan; Manosas, Maria; Spiering, Michelle M.; Benkovic, Stephen J.; Bensimon, David; Allemand, Jean-François; Croquette, Vincent

    2012-01-01

    High-throughput low-cost DNA sequencing has emerged as one of the challenges of the post-genomic era. Here we present the proof of concept for a new single-molecule platform that allows for DNA identification and sequencing. In contrast with most present methods, our scheme is not based on the detection of the fluorescence of incorporated nucleotides, but rather on the measurement of a DNA hairpin length. By cyclically modulating the force pulling on small magnetic beads tethered by a hairpin to a surface, one can unzip and rezip the molecule. In the presence of complementary oligonucleotides in solution, reziping may be transiently interrupted by the hybrids they form with the hairpin. By measuring the extension of the blocked hairpin, one can determine the position of the hybrid along the molecule with nearly single base precision. Our approach, well adapted to a high-throughput scheme, can be used to identify a DNA fragment of known sequence among a sample of various fragments and to sequence an unknown DNA fragment by hybridization or ligation. PMID:22406857

  5. Active Microfluidic Devices for Single-Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Meiners, Jens-Christian

    2003-03-01

    Microfluidic chips have become an increasingly powerful and versatile tool in the life sciences. Multilayer devices fabricated from soft silicone elastomers in a replication molding technique are especially promising, because they permit flexible integration of active elements such as valves and pumps. In addition, they are fairly easy and inexpensive to produce. In a wide range of applications, microfluidic chips are used in conjunction with optical detection and manipulation techniques. However their widespread use has been hampered due to problems with interconnect stability, optical accessibility, and ability to perform surface chemistry. We have developed a packaging technique that encapsulates the elastomer in an epoxy resin of high optical quality. This stabilizes the interconnects so that a chip can be repeatedly plugged in and out of a socket. Our technique also eliminates the need for a baking step that is conventionally used to attach a glass cover slip to the elastomer surface. This allows us to assemble devices that contain a cover slip coated with proteins, thereby permitting subsequent in situ attachment of DNA molecules to the bottom of the flow channels. We demonstrate the utility of our chips in single-molecule applications involving tethered-particles and optical tweezers. Support: NIH R01 GM065934 & Research Corporation

  6. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    NASA Astrophysics Data System (ADS)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  7. Real-time single-molecule imaging of quantum interference.

    PubMed

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-03-25

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  8. New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Villa, F.; Guerrieri, F.; Rech, I.; Gulinatti, A.; Tisa, S.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain. PMID:24729836

  9. Single-molecule analysis enables free solution hydrodynamic separation using yoctomole levels of DNA.

    PubMed

    Liu, Kelvin J; Rane, Tushar D; Zhang, Yi; Wang, Tza-Huei

    2011-05-11

    Single-molecule free solution hydrodynamic separation (SML-FSHS) cohesively integrates cylindrical illumination confocal spectroscopy with free solution hydrodynamic separation. This technique enables single-molecule analysis of size separated DNA with 100% mass detection efficiency, high sizing resolution and wide dynamic range, surpassing the performance of single molecule capillary electrophoresis. Furthermore, SML-FSHS required only a bare fused silica microcapillary and simple pressure control rather than complex high voltage power supplies, sieving matrices, and wall coatings. The wide dynamic range and high sizing resolution of SML-FSHS was demonstrated by separating both large DNA (23 vs 27 kbp) and small DNA (100 vs 200 bp) under identical conditions. Separations were successfully performed with near zero sample consumption using as little as 5 pL of sample and 240 yoctomoles (∼150 molecules) of DNA. Quantitative accuracy was predominantly limited by molecular shot noise. Furthermore, the ability of this method to analyze of single molecule nanosensors was investigated. SML-FSHS was used to examine the thermodynamic equilibrium between stochastically open molecular beacon and target-bound molecular beacon in the detection of E. coli 16s rRNA targets.

  10. Monitoring Single-Molecule Protein Dynamics with a Carbon Nanotube Transistor

    NASA Astrophysics Data System (ADS)

    Collins, Philip G.

    2014-03-01

    Nanoscale electronic devices like field-effect transistors have long promised to provide sensitive, label-free detection of biomolecules. Single-walled carbon nanotubes press this concept further by not just detecting molecules but also monitoring their dynamics in real time. Recent measurements have demonstrated this premise by monitoring the single-molecule processivity of three different enzymes: lysozyme, protein Kinase A, and the Klenow fragment of DNA polymerase I. With all three enzymes, single molecules tethered to nanotube transistors were electronically monitored for 10 or more minutes, allowing us to directly observe a range of activity including rare transitions to chemically inactive and hyperactive conformations. The high bandwidth of the nanotube transistors further allow every individual chemical event to be clearly resolved, providing excellent statistics from tens of thousands of turnovers by a single enzyme. Initial success with three different enzymes indicates the generality and attractiveness of the nanotube devices as a new tool to complement other single-molecule techniques. Research on transduction mechanisms provides the design rules necessary to further generalize this architecture and apply it to other proteins. The purposeful incorporation of just one amino acid is sufficient to fabricate effective, single molecule sensors from a wide range of enzymes or proteins.

  11. Quantitative study of single molecule location estimation techniques.

    PubMed

    Abraham, Anish V; Ram, Sripad; Chao, Jerry; Ward, E S; Ober, Raimund J

    2009-12-21

    Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

  12. THEORY OF SINGLE-MOLECULE SPECTROSCOPY: Beyond the Ensemble Average

    NASA Astrophysics Data System (ADS)

    Barkai, Eli; Jung, Younjoon; Silbey, Robert

    2004-01-01

    Single-molecule spectroscopy (SMS) is a powerful experimental technique used to investigate a wide range of physical, chemical, and biophysical phenomena. The merit of SMS is that it does not require ensemble averaging, which is found in standard spectroscopic techniques. Thus SMS yields insight into complex fluctuation phenomena that cannot be observed using standard ensemble techniques. We investigate theoretical aspects of SMS, emphasizing (a) dynamical fluctuations (e.g., spectral diffusion, photon-counting statistics, antibunching, quantum jumps, triplet blinking, and nonergodic blinking) and (b) single-molecule fluctuations in disordered systems, specifically distribution of line shapes of single molecules in low-temperature glasses. Special emphasis is given to single-molecule systems that reveal surprising connections to Levy statistics (i.e., blinking of quantum dots and single molecules in glasses). We compare theory with experiment and mention open problems. Our work demonstrates that the theory of SMS is a complementary field of research for describing optical spectroscopy in the condensed phase.

  13. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    NASA Astrophysics Data System (ADS)

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.

  14. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  15. Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays.

    PubMed

    Norris, Stephen R; Núñez, Marcos F; Verhey, Kristen J

    2015-03-10

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  16. Influence of Fluorescent Tag on the Motility Properties of Kinesin-1 in Single-Molecule Assays

    PubMed Central

    Norris, Stephen R.; Núñez, Marcos F.; Verhey, Kristen J.

    2015-01-01

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  17. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology.

    PubMed

    Tinnefeld, Philip; Sauer, Markus

    2005-04-29

    In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells. PMID:15849689

  18. Quantum dots find their stride in single molecule tracking

    PubMed Central

    Bruchez, Marcel P.

    2011-01-01

    Thirteen years after the demonstration of quantum dots as biological imaging agents, and nine years after the initial commercial introduction of bioconjugated quantum dots, the brightness and photostability of the quantum dots has enabled a range of investigations using single molecule tracking. These materials are being routinely utilized by a number of groups to track the dynamics of single molecules in reconstituted biophysical systems and on living cells, and are especially powerful for investigations of single molecules over long timescales with short exposure times and high pointing accuracy. New approaches are emerging where the quantum dots are used as “hard-sphere” probes for intracellular compartments. Innovations in quantum dot surface modification are poised to substantially expand the utility of these materials. PMID:22055494

  19. Single-molecule decoding of combinatorially modified nucleosomes.

    PubMed

    Shema, Efrat; Jones, Daniel; Shoresh, Noam; Donohue, Laura; Ram, Oren; Bernstein, Bradley E

    2016-05-01

    Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation. PMID:27151869

  20. Single-Molecule Experiments in Vitro and in Silico

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Schulten, Klaus

    2007-05-01

    Single-molecule force experiments in vitro enable the characterization of the mechanical response of biological matter at the nanometer scale. However, they do not reveal the molecular mechanisms underlying mechanical function. These can only be readily studied through molecular dynamics simulations of atomic structural models: “in silico” (by computer analysis) single-molecule experiments. Steered molecular dynamics simulations, in which external forces are used to explore the response and function of macromolecules, have become a powerful tool complementing and guiding in vitro single-molecule experiments. The insights provided by in silico experiments are illustrated here through a review of recent research in three areas of protein mechanics: elasticity of the muscle protein titin and the extracellular matrix protein fibronectin; linker-mediated elasticity of the cytoskeleton protein spectrin; and elasticity of ankyrin repeats, a protein module found ubiquitously in cells but with an as-yet unclear function.

  1. The importance of surfaces in single-molecule bioscience

    PubMed Central

    Visnapuu, Mari-Liis; Duzdevich, Daniel

    2011-01-01

    The last ten years have witnessed an explosion of new techniques that can be used to probe the dynamic behavior of individual biological molecules, leading to discoveries that would not have been possible with more traditional biochemical methods. A common feature among these single-molecule approaches is the need for the biological molecules to be anchored to a solid support surface. This must be done under conditions that minimize nonspecific adsorption without compromising the biological integrity of the sample. In this review we highlight why surface attachments are a critical aspect of many single-molecule studies and we discuss current methods for anchoring biomolecules. Finally, we provide a detailed description of a new method developed by our laboratory for anchoring and organizing hundreds of individual DNA molecules on a surface, allowing “high-throughput” studies of protein–DNA interactions at the single-molecule level. PMID:18414737

  2. Single-molecule junctions with epitaxial graphene nanoelectrodes.

    PubMed

    Ullmann, Konrad; Coto, Pedro B; Leitherer, Susanne; Molina-Ontoria, Agustín; Martín, Nazario; Thoss, Michael; Weber, Heiko B

    2015-05-13

    On the way to ultraflat single-molecule junctions with transparent electrodes, we present a fabrication scheme based on epitaxial graphene nanoelectrodes. As a suitable molecule, we identified a molecular wire with fullerene anchor groups. With these two components, stable electrical characteristics could be recorded. Electrical measurements show that single-molecule junctions with graphene and with gold electrodes display a striking agreement. This motivated a hypothesis that the differential conductance spectra are rather insensitive to the electrode material. It is further corroborated by the assignment of asymmetries and spectral features to internal molecular degrees of freedom. The demonstrated open-access graphene electrodes and the electrode-insensitive molecules provide a model system that will allow for a thorough investigation of an individual single-molecule contact with additional probes.

  3. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  4. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  5. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media.

  6. Single-molecule junctions with epitaxial graphene nanoelectrodes.

    PubMed

    Ullmann, Konrad; Coto, Pedro B; Leitherer, Susanne; Molina-Ontoria, Agustín; Martín, Nazario; Thoss, Michael; Weber, Heiko B

    2015-05-13

    On the way to ultraflat single-molecule junctions with transparent electrodes, we present a fabrication scheme based on epitaxial graphene nanoelectrodes. As a suitable molecule, we identified a molecular wire with fullerene anchor groups. With these two components, stable electrical characteristics could be recorded. Electrical measurements show that single-molecule junctions with graphene and with gold electrodes display a striking agreement. This motivated a hypothesis that the differential conductance spectra are rather insensitive to the electrode material. It is further corroborated by the assignment of asymmetries and spectral features to internal molecular degrees of freedom. The demonstrated open-access graphene electrodes and the electrode-insensitive molecules provide a model system that will allow for a thorough investigation of an individual single-molecule contact with additional probes. PMID:25923590

  7. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling.

    PubMed

    Osorio, Henrry M; Catarelli, Samantha; Cea, Pilar; Gluyas, Josef B G; Hartl, František; Higgins, Simon J; Leary, Edmund; Low, Paul J; Martín, Santiago; Nichols, Richard J; Tory, Joanne; Ulstrup, Jens; Vezzoli, Andrea; Milan, David C; Zeng, Qiang

    2015-11-18

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media. PMID:26488257

  8. Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example.

    PubMed

    Cogdell, Richard J; Köhler, Jürgen

    2009-08-13

    Optical single-molecule techniques can be used in two modes to investigate fundamental questions in biochemistry, namely single-molecule detection and single-molecule spectroscopy. This review provides an overview of how single-molecule spectroscopy can be used to gain detailed information on the electronic structure of purple bacterial antenna complexes and to draw conclusions about the underlying physical structure. This information can be used to understand the energy-transfer reactions that are responsible for the earliest reactions in photosynthesis.

  9. Exploring one-state downhill protein folding in single molecules

    PubMed Central

    Liu, Jianwei; Campos, Luis A.; Cerminara, Michele; Wang, Xiang; Ramanathan, Ravishankar; English, Douglas S.; Muñoz, Victor

    2012-01-01

    A one-state downhill protein folding process is barrierless at all conditions, resulting in gradual melting of native structure that permits resolving folding mechanisms step-by-step at atomic resolution. Experimental studies of one-state downhill folding have typically focused on the thermal denaturation of proteins that fold near the speed limit (ca. 106 s-1) at their unfolding temperature, thus being several orders of magnitude too fast for current single-molecule methods, such as single-molecule FRET. An important open question is whether one-state downhill folding kinetics can be slowed down to make them accessible to single-molecule approaches without turning the protein into a conventional activated folder. Here we address this question on the small helical protein BBL, a paradigm of one-state downhill thermal (un)folding. We decreased 200-fold the BBL folding-unfolding rate by combining chemical denaturation and low temperature, and carried out free-diffusion single-molecule FRET experiments with 50-μs resolution and maximal photoprotection using a recently developed Trolox-cysteamine cocktail. These experiments revealed a single conformational ensemble at all denaturing conditions. The chemical unfolding of BBL was then manifested by the gradual change of this unique ensemble, which shifts from high to low FRET efficiency and becomes broader at increasing denaturant. Furthermore, using detailed quantitative analysis, we could rule out the possibility that the BBL single-molecule data are produced by partly overlapping folded and unfolded peaks. Thus, our results demonstrate the one-state downhill folding regime at the single-molecule level and highlight that this folding scenario is not necessarily associated with ultrafast kinetics. PMID:22184219

  10. Lucky imaging: improved localization accuracy for single molecule imaging.

    PubMed

    Cronin, Bríd; de Wet, Ben; Wallace, Mark I

    2009-04-01

    We apply the astronomical data-analysis technique, Lucky imaging, to improve resolution in single molecule fluorescence microscopy. We show that by selectively discarding data points from individual single-molecule trajectories, imaging resolution can be improved by a factor of 1.6 for individual fluorophores and up to 5.6 for more complex images. The method is illustrated using images of fluorescent dye molecules and quantum dots, and the in vivo imaging of fluorescently labeled linker for activation of T cells.

  11. Deciphering Complexity in Molecular Biophysics with Single-Molecule Resolution.

    PubMed

    Deniz, Ashok A

    2016-01-29

    The structural features and dynamics of biological macromolecules underlie the molecular biology and correct functioning of cells. However, heterogeneity and other complexity of these molecules and their interactions often lead to loss of important information in traditional biophysical experiments. Single-molecule methods have dramatically altered the conceptual thinking and experimental tests available for such studies, leveraging their ability to avoid ensemble averaging. Here, I discuss briefly the rise of fluorescence single-molecule methods over the past two decades, a few key applications, and end with a view to challenges and future prospects. PMID:26707199

  12. Structural dynamics of nucleosomes at single molecule resolution

    PubMed Central

    Choy, John S.; Lee, Tae-Hee

    2013-01-01

    The detailed mechanisms of how DNA that is assembled around a histone core can be accessed by DNA-binding proteins for transcription, replication, or repair, remain elusive nearly 40 years after Kornberg's nucleosome model was proposed. Uncovering the structural dynamics of nucleosomes is a crucial step in elucidating the mechanisms regulating genome accessibility. This requires the deconvolultion of multiple structural states within an ensemble. Recent advances in single molecule methods enable unprecedented efficiency in examining subpopulation dynamics. In this review, we summarize studies of nucleosome structure and dynamics from single molecule approaches and how they advance our understanding of the mechanisms that govern DNA transactions. PMID:22831768

  13. An improved surface passivation method for single-molecule studies.

    PubMed

    Hua, Boyang; Han, Kyu Young; Zhou, Ruobo; Kim, Hajin; Shi, Xinghua; Abeysirigunawardena, Sanjaya C; Jain, Ankur; Singh, Digvijay; Aggarwal, Vasudha; Woodson, Sarah A; Ha, Taekjip

    2014-12-01

    We report a surface passivation method based on dichlorodimethylsilane (DDS)-Tween-20 for in vitro single-molecule studies, which, under the conditions tested here, more efficiently prevented nonspecific binding of biomolecules than the standard poly(ethylene glycol) surface. The DDS-Tween-20 surface was simple and inexpensive to prepare and did not perturb the behavior and activities of tethered biomolecules. It can also be used for single-molecule imaging in the presence of high concentrations of labeled species in solution.

  14. Localization microscopy: mapping cellular dynamics with single molecules.

    PubMed

    Nelson, A J; Hess, S T

    2014-04-01

    Resolution describes the smallest details within a sample that can be recovered by a microscope lens system. For optical microscopes detecting visible light, diffraction limits the resolution to ∼200-250 nm. In contrast, localization measures the position of an isolated object using its image. Single fluorescent molecules can be localized with an uncertainty of a few tens of nanometres, and in some cases less than one nanometre. Superresolution fluorescence localization microscopy (SRFLM) images and localizes fluorescent molecules in a sample. By controlling the visibility of the fluorescent molecules with light, it is possible to cause a sparse subset of the tags to fluoresce and be spatially separated from each other. A movie is acquired with a camera, capturing images of many sets of visible fluorescent tags over a period of time. The movie is then analysed by a computer whereby all of the single molecules are independently measured, and their positions are recorded. When the coordinates of a sufficient number of molecules are collected, an image can be rendered by plotting the coordinates of the localized molecules. The spatial resolution of these rendered images can be better than 20 nm, roughly an order of magnitude better than the diffraction limited resolution. The invention of SRFLM has led to an explosion of related techniques. Through the use of specialized optics, the fluorescent signal can be split into multiple detection channels. These channels can capture additional information such as colour (emission wavelength), orientation and three-dimensional position of the detected molecules. Measurement of the colour of the detected fluorescence can allow researchers to distinguish multiple types of fluorescent tags and to study the interaction between multiple molecules of interest. Three-dimensional imaging and determination of molecular orientations offer insight into structural organization of the sample. SRFLM is compatible with living samples and

  15. Single-Molecule Electronic Measurements with Metal Electrodes

    ERIC Educational Resources Information Center

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  16. Effects of fixed pattern noise on single molecule localization microscopy.

    PubMed

    Long, F; Zeng, S Q; Huang, Z L

    2014-10-21

    The newly developed scientific complementary metal oxide semiconductor (sCMOS) cameras are capable of realizing fast single molecule localization microscopy without sacrificing field-of-view, benefiting from their readout speed which is significantly higher than that of conventional charge-coupled device (CCD) cameras. However, the poor image uniformity (suffered from fixed pattern noise, FPN) is a major obstruction for widespread use of sCMOS cameras in single molecule localization microscopy. Here we present a quantitative investigation on the effects of FPN on single molecule localization microscopy via localization precision and localization bias. We found that FPN leads to almost no effect on localization precision, but introduces a certain amount of localization bias. However, for a commercial Hamamatsu Flash 4.0 sCMOS camera, such localization bias is usually <2 nm and thus can be neglected for most localization microscopy experiments. This study addresses the FPN concern which worries researchers, and thus will promote the application of sCMOS cameras in single molecule localization microscopy.

  17. Single-molecule photophysics, from cryogenic to ambient conditions.

    PubMed

    Kozankiewicz, Bolesław; Orrit, Michel

    2014-02-21

    We review recent progress in characterizing and understanding the photophysics of single molecules in condensed matter, mostly at cryogenic temperatures. We discuss the central role of the triplet state in limiting the number of useful host-guest systems, notably a new channel, intermolecular intersystem crossing. Another important limitation to the use of single molecules is their photo-reactivity, leading to blinking of the fluorescence signal, and eventually to its loss by photo-bleaching. These processes are at the heart of modern super-resolution schemes. We then examine some of the new host-guest systems recently discovered following these general principles, and the mechanisms of spectral diffusion and dephasing that they have revealed. When charges are injected into organic conductors, they get trapped and influence single molecules via the local fields they create in the material, and via their coupling to localized vibrations. Understanding these processes is necessary for better control of spectral diffusion and dephasing of single molecules. We finally conclude by giving some outlook on future directions of this fascinating field.

  18. Single-molecule Studies of RNA Polymerase: Motoring Along

    PubMed Central

    Herbert, Kristina M.; Greenleaf, William J.; Block, Steven M.

    2010-01-01

    Single-molecule techniques have advanced our understanding of transcription by RNA polymerase. A new arsenal of approaches, including single-molecule fluorescence, atomic-force microscopy, magnetic tweezers, and optical traps have been employed to probe the many facets of the transcription cycle. These approaches supply fresh insights into the means by which RNA polymerase identifies a promoter; initiates transcription, translocates and pauses along the DNA template, proofreads errors, and ultimately terminates transcription. Results from single-molecule experiments complement knowledge gained from biochemical and genetic assays by facilitating the observation of states that are otherwise obscured by ensemble averaging, such as those resulting from heterogeneity in molecular structure, elongation rate, or pause propensity. Most studies to date have been performed with bacterial RNA polymerase, but work is also being carried out with eukaryotic polymerase (Pol II) and single-subunit polymerases from bacteriophages. We discuss recent progress achieved by single-molecule studies, highlighting some of the unresolved questions and ongoing debates. PMID:18410247

  19. Giant single-molecule anisotropic magnetoresistance at room temperature.

    PubMed

    Li, Ji-Jun; Bai, Mei-Lin; Chen, Zhao-Bin; Zhou, Xiao-Shun; Shi, Zhan; Zhang, Meng; Ding, Song-Yuan; Hou, Shi-Min; Schwarzacher, Walther; Nichols, Richard J; Mao, Bing-Wei

    2015-05-13

    We report an electrochemically assisted jump-to-contact scanning tunneling microscopy (STM) break junction approach to create reproducible and well-defined single-molecule spintronic junctions. The STM break junction is equipped with an external magnetic field either parallel or perpendicular to the electron transport direction. The conductance of Fe-terephthalic acid (TPA)-Fe single-molecule junctions is measured and a giant single-molecule tunneling anisotropic magnetoresistance (T-AMR) up to 53% is observed at room temperature. Theoretical calculations based on first-principles quantum simulations show that the observed AMR of Fe-TPA-Fe junctions originates from electronic coupling at the TPA-Fe interfaces modified by the magnetic orientation of the Fe electrodes with respect to the direction of current flow. The present study highlights new opportunities for obtaining detailed understanding of mechanisms of charge and spin transport in molecular junctions and the role of interfaces in determining the MR of single-molecule junctions. PMID:25894840

  20. Statistics and Related Topics in Single-Molecule Biophysics

    PubMed Central

    Qian, Hong; Kou, S. C.

    2014-01-01

    Since the universal acceptance of atoms and molecules as the fundamental constituents of matter in the early twentieth century, molecular physics, chemistry and molecular biology have all experienced major theoretical breakthroughs. To be able to actually “see” biological macromolecules, one at a time in action, one has to wait until the 1970s. Since then the field of single-molecule biophysics has witnessed extensive growth both in experiments and theory. A distinct feature of single-molecule biophysics is that the motions and interactions of molecules and the transformation of molecular species are necessarily described in the language of stochastic processes, whether one investigates equilibrium or nonequilibrium living behavior. For laboratory measurements following a biological process, if it is sampled over time on individual participating molecules, then the analysis of experimental data naturally calls for the inference of stochastic processes. The theoretical and experimental developments of single-molecule biophysics thus present interesting questions and unique opportunity for applied statisticians and probabilists. In this article, we review some important statistical developments in connection to single-molecule biophysics, emphasizing the application of stochastic-process theory and the statistical questions arising from modeling and analyzing experimental data. PMID:25009825

  1. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  2. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  3. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  4. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  5. Magnetic behaviour of TbPc2 single-molecule magnets chemically grafted on silicon surface

    PubMed Central

    Mannini, Matteo; Bertani, Federico; Tudisco, Cristina; Malavolti, Luigi; Poggini, Lorenzo; Misztal, Kasjan; Menozzi, Daniela; Motta, Alessandro; Otero, Edwige; Ohresser, Philippe; Sainctavit, Philippe; Condorelli, Guglielmo G.; Dalcanale, Enrico; Sessoli, Roberta

    2014-01-01

    Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on the spin transport. Going beyond the investigations focused on physisorbed SMMs, in this work the robust grafting of Terbium(III) bis(phthalocyaninato) complexes to silicon surface from a diluted solution is achieved by rational chemical design yielding the formation of a partially oriented monolayer on the conducting substrate. Here, by exploiting the surface sensitivity of X-ray circular magnetic dichroism we evidence an enhancement of the magnetic bistability of this single-molecule magnet, in contrast to the dramatic reduction of the magnetic hysteresis that characterises monolayer deposits evaporated on noble and ferromagnetic metals. Photoelectron spectroscopy investigations and density functional theory analysis suggest a non-innocent role played by the silicon substrate, evidencing the potentiality of this approach for robust integration of bistable magnetic molecules in electronic devices. PMID:25109254

  6. A gate-tunable single-molecule diode

    NASA Astrophysics Data System (ADS)

    Perrin, Mickael L.; Galán, Elena; Eelkema, Rienk; Thijssen, Joseph M.; Grozema, Ferdinand; van der Zant, Herre S. J.

    2016-04-01

    In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram-Ratner rectifier that exploits the orbital structure of the molecule. The experimental realization of single-molecule rectifiers, however, has proven to be challenging. In this work, we report on the experimental realization of a gate-tunable single-molecule rectifier with rectification ratios as high as 600. The rectification mechanism arises from the molecular structure and relies on the presence of two conjugated sites that are weakly coupled through a saturated linker. The observed gate dependence not only demonstrates tunability of the rectification ratio, it also shows that the proposed rectification mechanism based on the orbital structure is operative in the molecule.In the pursuit of down-sizing electronic components, the ultimate limit is the use of single molecules as functional devices. The first theoretical proposal of such a device, predicted more than four decades ago, is the seminal Aviram-Ratner rectifier that exploits the orbital structure of the molecule. The experimental realization of single-molecule rectifiers, however, has proven to be challenging. In this work, we report on the experimental realization of a gate-tunable single-molecule rectifier with rectification ratios as high as 600. The rectification mechanism arises from the molecular structure and relies on the presence of two conjugated sites that are weakly coupled through a saturated linker. The observed gate dependence not only demonstrates tunability of the rectification ratio, it also shows that the proposed rectification mechanism based on the orbital structure is operative in the molecule. Electronic supplementary information (ESI) available: DFT calculations on the DPE molecule, three-terminal measurements on the DPE molecule, additional analysis

  7. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  8. Noise-resilient quantum metrology for single-molecule spectroscopy with low light levels

    NASA Astrophysics Data System (ADS)

    Herrera, Felipe; Aspuru-Guzik, Alan

    2015-03-01

    Continuous observation of biological processes over long timescales exceeding seconds is challenging using standard fluorescence techniques due to technical issues such as photodamage. Current photonic technology can be exploited to overcome those challenges while preserving sensitivity at the single molecule level. We show that using a simple quantum metrology scheme involving periodic driving for optical state preparation, it is possible to perform spectroscopy of a single chiral molecule in a condensed phase environment, with low photon fluxes. We show that for certain non-classical optical probes and measurement settings, it is possible to exceed the standard quantum limit of precision for a range of driving parameters, even in the presence of high transmission losses due to background absorption. We compare the proposed scheme with fluorescence spectroscopy for single molecule detection, and discuss possible applications of quantum metrology in systems biology. Now at Department of Physics, Universidad de Santiago de Chile.

  9. Single molecule spin resonance spectroscopy and imaging by diamond-sensor

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng

    Single-molecule magnetic resonance spectroscopy and imaging is one of the ultimate goals in magnetic resonance and will has great applications in a broad range of scientific areas, from life science to physics and chemistry. The spin of a single nitrogen vacancy (NV) center in diamond is a highly sensitive magnetic-field sensor, which has been proposed for detection of single molecules or nanoscale targets. We and co-workers have successfully obtained the first single-protein spin resonance spectroscopy under ambient conditions, high-resolution vector microwave imaging, and realized atomic-scale structure analysis of single nuclear-spin clusters in diamond. Moreover, we have tried to improve the quantum control technique and succeed to achieve fault-tolerant universal quantum gates. As the last part, I will briefly introduce our most recently work on single protein imaging in situ in cell.

  10. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    PubMed

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics.

  11. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells.

    PubMed

    König, Iwo; Zarrine-Afsar, Arash; Aznauryan, Mikayel; Soranno, Andrea; Wunderlich, Bengt; Dingfelder, Fabian; Stüber, Jakob C; Plückthun, Andreas; Nettels, Daniel; Schuler, Benjamin

    2015-08-01

    Single-molecule methods have become widely used for quantifying the conformational heterogeneity and structural dynamics of biomolecules in vitro. Their application in vivo, however, has remained challenging owing to shortcomings in the design and reproducible delivery of labeled molecules, the range of applicable analysis methods, and suboptimal cell culture conditions. By addressing these limitations in an integrated approach, we demonstrate the feasibility of probing protein dynamics from milliseconds down to the nanosecond regime in live eukaryotic cells with confocal single-molecule Förster resonance energy transfer (FRET) spectroscopy. We illustrate the versatility of the approach by determining the dimensions and submicrosecond chain dynamics of an intrinsically disordered protein; by detecting even subtle changes in the temperature dependence of protein stability, including in-cell cold denaturation; and by quantifying the folding dynamics of a small protein. The methodology opens possibilities for assessing the effect of the cellular environment on biomolecular conformation, dynamics and function.

  12. PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2016-02-01

    Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.

  13. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets.

    PubMed

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2013-07-23

    Due to outstanding mechanical and electronic properties, carbon nanotube nanoelectromechanical systems (NEMS) were recently proposed as ultrasensitive magnetometers for single-molecule magnets (SMM). In this article, we describe a noninvasive grafting of a SMM on a carbon nanotube NEMS, which conserves both the mechanical properties of the carbon nanotube NEMS and the magnetic properties of the SMM. We will demonstrate that the nonlinearity of a carbon nanotube's mechanical motion can be used to probe the reversal of a molecular spin, associated with a bis(phthalocyaninato)terbium(III) single-molecule magnet, providing an experimental evidence for the detection of a single spin by a mechanical degree of freedom on a molecular level.

  14. Real-time single-molecule coimmunoprecipitation of weak protein-protein interactions.

    PubMed

    Lee, Hong-Won; Ryu, Ji Young; Yoo, Janghyun; Choi, Byungsan; Kim, Kipom; Yoon, Tae-Young

    2013-10-01

    Coimmunoprecipitation (co-IP) analysis is a useful method for studying protein-protein interactions. It currently involves electrophoresis and western blotting, which are not optimized for detecting weak and transient interactions. In this protocol we describe an advanced version of co-IP analysis that uses real-time, single-molecule fluorescence imaging as its detection scheme. Bait proteins are pulled down onto the imaging plane of a total internal reflection (TIR) microscope. With unpurified cells or tissue extracts kept in reaction chambers, we observe single protein-protein interactions between the surface-immobilized bait and the fluorescent protein-labeled prey proteins in real time. Such direct recording provides an improvement of five orders of magnitude in the time resolution of co-IP analysis. With the single-molecule sensitivity and millisecond time resolution, which distinguish our method from other methods for measuring weak protein-protein interactions, it is possible to quantify the interaction kinetics and active fraction of native, unlabeled bait proteins. Real-time single-molecule co-IP analysis, which takes ∼4 h to complete from lysate preparation to kinetic analysis, provides a general avenue for revealing the rich kinetic picture of target protein-protein interactions, and it can be used, for example, to investigate the molecular lesions that drive individual cancers at the level of protein-protein interactions.

  15. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry.

    PubMed

    Lee, Joongoo; Boersma, Arnold J; Boudreau, Marc A; Cheley, Stephen; Daltrop, Oliver; Li, Jianwei; Tamagaki, Hiroko; Bayley, Hagan

    2016-09-27

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  16. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    PubMed Central

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  17. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    SciTech Connect

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  18. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  19. Light Sheet Microscopy for Single Molecule Tracking in Living Tissue

    PubMed Central

    Ritter, Jörg Gerhard; Veith, Roman; Veenendaal, Andreas; Siebrasse, Jan Peter; Kubitscheck, Ulrich

    2010-01-01

    Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 µm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems. PMID:20668517

  20. Microsecond protein dynamics observed at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-07-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.

  1. A Single-Molecule Study of RNA Catalysis and Folding

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaowei; Bartley, Laura E.; Babcock, Hazen P.; Russell, Rick; Ha, Taekjip; Herschlag, Daniel; Chu, Steven

    2000-06-01

    Using fluorescence microscopy, we studied the catalysis by and folding of individual Tetrahymena thermophila ribozyme molecules . The dye-labeled and surface-immobilized ribozymes used were shown to be functionally indistinguishable from the unmodified free ribozyme in solution. A reversible local folding step in which a duplex docks and undocks from the ribozyme core was observed directly in single-molecule time trajectories, allowing the determination of the rate constants and characterization of the transition state. A rarely populated docked state, not measurable by ensemble methods, was observed. In the overall folding process, intermediate folding states and multiple folding pathways were observed. In addition to observing previously established folding pathways, a pathway with an observed folding rate constant of 1 per second was discovered. These results establish single-molecule fluorescence as a powerful tool for examining RNA folding.

  2. Single molecule insights on conformational selection and induced fit mechanism.

    PubMed

    Hatzakis, Nikos S

    2014-02-01

    Biomolecular interactions regulate a plethora of vital cellular processes, including signal transduction, metabolism, catalysis and gene regulation. Regulation is encoded in the molecular properties of the constituent proteins; distinct conformations correspond to different functional outcomes. To describe the molecular basis of this behavior, two main mechanisms have been advanced: 'induced fit' and 'conformational selection'. Our understanding of these models relies primarily on NMR, computational studies and kinetic measurements. These techniques report the average behavior of a large ensemble of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition. PMID:24342874

  3. Controlling single-molecule junction conductance by molecular interactions

    PubMed Central

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  4. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    NASA Astrophysics Data System (ADS)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  5. Single molecule study of ClpP enzymatic activity

    NASA Astrophysics Data System (ADS)

    Mazouchi, Amir; Yu, Angela; Houry, Walid; Gradinaru, Claudiu

    2009-03-01

    Elementary processes that form the basis of biological activities pass through a number of short-lived intermediate states while progressing from initial state to final state. Single-molecule techniques, unlike ensemble averaging measurements, are often able to resolve these transient states. ClpP, a known target of antibacterial drugs like acydepsipeptides (ADEPs), is a classical representative of serine proteases, enzymes that cleave peptide bonds in proteins. We performed single-molecule fluorescence measurements including burst spectroscopy and fluorescence correlation spectroscopy (FCS) to address unknown aspects of this degradation process. Our study reveals important molecular details of protein degradation, such as the enzyme-substrate binding rate, the lifetime distribution of the conjugated state and the probability of substrate cleavage upon conjugation.

  6. Controlling single-molecule junction conductance by molecular interactions

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-07-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment.

  7. Density Functional Theory with Dissipation: Transport through Single Molecules

    SciTech Connect

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  8. Single molecule imaging of NGF axonal transport in microfluidic devices

    PubMed Central

    Zhang, Kai; Osakada, Yasuko; Vrljic, Marija; Chen, Liang; Mudrakola, Harsha V.

    2010-01-01

    Nerve growth factor (NGF) signaling begins at the nerve terminal, where it binds and activates membrane receptors and subsequently carries the cell-survival signal to the cell body through the axon. A recent study revealed that the majority of endosomes contain a single NGF molecule, which makes single molecule imaging an essential tool for NGF studies. Despite being an increasingly popular technique, single molecule imaging in live cells is often limited by background fluorescence. Here, we employed a microfluidic culture platform to achieve background reduction for single molecule imaging in live neurons. Microfluidic devices guide the growth of neurons and allow separately-controlled microenvironment for cell bodies or axon termini. Designs of microfluidic devices were optimized and a three-compartment device successfully achieved direct observation of axonal transport of single NGF when quantum dot labeled NGF (Qdot-NGF) was applied only to the distal-axon compartment while imaging was carried out exclusively in the cell-body compartment. Qdot-NGF was shown to move exclusively toward the cell body with a characteristic stop-and-go pattern of movements. Measurements at various temperatures show that the rate of NGF retrograde transport decreased exponentially over the range of 36–14°C. A 10°C decrease in temperature resulted in a threefold decrease in the rate of NGF retrograde transport. Our successful measurements of NGF transport suggest that the microfluidic device can serve as a unique platform for single molecule imaging of molecular processes in neurons. PMID:20623041

  9. Single molecule conductance: Role of electrode morphology at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ravi, Divakar; Karthika, C. P.; Sen, Arijit

    2013-02-01

    We investigate the effect of nanoelectrode morphology on the charge transport in σ-saturated molecular junctions. Single-molecule conductance through coaxial gold nanowires turns out to be about three times higher than that through hollow gold nanotubes with similar chirality. However, the device conductance remains the same for molecular junctions with electrodes comprising planar and tubular gold nanowires, respectively. Manipulation of nanoelectrodes could thus open up new possibilities for more flexible yet stable nanoelectronic devices.

  10. Origin of discrete current fluctuations in a single molecule junction.

    PubMed

    Xiang, Dong; Lee, Takhee; Kim, Youngsang; Mei, Tingting; Wang, Qingling

    2014-11-21

    A series of fresh molecular junctions at a single molecule level were created and the current fluctuations were studied as electrons passed through them. Our results indicate that telegraph-like current fluctuations at room temperature neither originate from electron trapping/detrapping processes nor from molecule re-conformation. Our results will be helpful in better understanding the mechanism of current fluctuations. PMID:25271483

  11. Predicting single-molecule conductance through machine learning

    NASA Astrophysics Data System (ADS)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-10-01

    We present a robust machine learning model that is trained on the experimentally determined electrical conductance values of approximately 120 single-molecule junctions used in scanning tunnelling microscope molecular break junction (STM-MBJ) experiments. Quantum mechanical, chemical, and topological descriptors are used to correlate each molecular structure with a conductance value, and the resulting machine-learning model can predict the corresponding value of conductance with correlation coefficients of r 2 = 0.95 for the training set and r 2 = 0.78 for a blind testing set. While neglecting entirely the effects of the metal contacts, this work demonstrates that single molecule conductance can be qualitatively correlated with a number of molecular descriptors through a suitably trained machine learning model. The dominant features in the machine learning model include those based on the electronic wavefunction, the geometry/topology of the molecule as well as the surface chemistry of the molecule. This model can be used to identify promising molecular structures for use in single-molecule electronic circuits and can guide synthesis and experiments in the future.

  12. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    NASA Astrophysics Data System (ADS)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  13. Viruses and Tetraspanins: Lessons from Single Molecule Approaches

    PubMed Central

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-01-01

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed. PMID:24800676

  14. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. PMID:27653486

  15. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique.

  16. Semisynthetic protein nanoreactor for single-molecule chemistry

    PubMed Central

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203

  17. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  18. Single-molecule observation of prokaryotic DNA replication.

    PubMed

    Geertsema, Hylkje J; Duderstadt, Karl E; van Oijen, Antoine M

    2015-01-01

    Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems.

  19. Single-molecule imaging studies of protein dynamics

    NASA Astrophysics Data System (ADS)

    Zareh, Shannon Kian G.

    2011-12-01

    Single-molecule fluorescence imaging is a powerful method for studying biological events. The work of this thesis primarily focuses on single molecule studies of the dynamics of Green Fluorescent Protein (GFP) and other fluorescent-labeled proteins by utilizing Total Internal Reflection Fluorescence (TIRF) microscopy and imaging. The single molecule experiments of this thesis covered three broad topics. First, the adsorption mechanisms of proteins onto hydrophobic and hydrophilic fused silica surfaces were imaged and reversible and irreversible adsorption mechanisms were observed. The second topic covered a new technique for measuring the diffusion coefficient of Brownian diffusing proteins, in particular GFP, in solution via a single image. The corresponding experiments showed a relationship between the intensity profile width and the diffusion coefficient of the diffusing molecules. The third topic covered an in vivo experiment involving imaging and quantifying prokaryotic cell metabolism protein dynamics inside the Bacillus subtilis bacteria, in which a helical diffusion pattern for the protein was observed. These topics are presented in the chronological order of the experiments conducted.

  20. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  1. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  2. Single-molecule studies of unconventional motor protein myosin VI

    NASA Astrophysics Data System (ADS)

    Kim, HyeongJun

    Myosin VI is one of the myosin superfamily members that are actin-based molecular motors. It has received special attention due to its distinct features as compared to other myosins, such as its opposite directionality and a much larger step size than expected given the length of its "leg". This dissertation presents the author.s graduate work of several single-molecule studies on myosin VI. Special attention was paid to some of myosin VI.s tail domains that consist of proximal tail (PT), medial tail (MT), distal tail (DT) domains and cargo-binding domain (CBD). The functional form of myosin VI in cells is still under debate. Although full length myosin VI proteins in cytosolic extracts of cells were monomers from earlier studies, there are several reasons why it is now believed that myosin VI could exist as a dimer. If this is true and dimerization occurs, the next logical question would be which parts of myosin VI are dimerization regions? One model claimed that the CBD is the sole dimerization region. A competing model claimed that there must be another region that could be involved in dimerization, based on their observation that a construct without the CBD could still dimerize. Our single-molecule experiment with progressively truncated myosin VI constructs showed that the MT domain is a dimerization region, supporting the latter model. Additional single-molecule experiments and molecular dynamics (MD) simulation done with our collaborators suggest that electrostatic salt bridges formed between positive and negative amino acid residues are mainly responsible for the MT domain dimerization. After resolving this, we are left with another important question which is how myosin VI can take such a large step. Recent crystal structure showed that one of the tail domains preceding the MT domain, called the PT domain, is a three-helix bundle. The most easily conceivable way might be an unfolding of the three-helix bundle upon dimerization, allowing the protein to

  3. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  4. Fisher information theory for parameter estimation in single molecule microscopy: tutorial.

    PubMed

    Chao, Jerry; Sally Ward, E; Ober, Raimund J

    2016-07-01

    Estimation of a parameter of interest from image data represents a task that is commonly carried out in single molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image, for example, forms the basis of standard applications such as single molecule tracking and localization-based super-resolution image reconstruction. Assuming that the estimator used recovers, on average, the true value of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér-Rao lower bound. The Cramér-Rao lower bound can therefore be used as a benchmark in the evaluation of the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has been specifically developed to calculate the Cramér-Rao lower bound for estimation problems in single molecule microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon detection process that underlies all image data, various image data models that describe images acquired with different detector types, and Fisher information expressions that are necessary for the calculation of the lower bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects of various factors on the accuracy of parameter estimation and, more generally, to demonstrate the flexibility of the mathematical framework. PMID:27409706

  5. Massively parallel haplotyping on microscopic beads for the high-throughput phase analysis of single molecules.

    PubMed

    Boulanger, Jérôme; Muresan, Leila; Tiemann-Boege, Irene

    2012-01-01

    In spite of the many advances in haplotyping methods, it is still very difficult to characterize rare haplotypes in tissues and different environmental samples or to accurately assess the haplotype diversity in large mixtures. This would require a haplotyping method capable of analyzing the phase of single molecules with an unprecedented throughput. Here we describe such a haplotyping method capable of analyzing in parallel hundreds of thousands single molecules in one experiment. In this method, multiple PCR reactions amplify different polymorphic regions of a single DNA molecule on a magnetic bead compartmentalized in an emulsion drop. The allelic states of the amplified polymorphisms are identified with fluorescently labeled probes that are then decoded from images taken of the arrayed beads by a microscope. This method can evaluate the phase of up to 3 polymorphisms separated by up to 5 kilobases in hundreds of thousands single molecules. We tested the sensitivity of the method by measuring the number of mutant haplotypes synthesized by four different commercially available enzymes: Phusion, Platinum Taq, Titanium Taq, and Phire. The digital nature of the method makes it highly sensitive to detecting haplotype ratios of less than 1:10,000. We also accurately quantified chimera formation during the exponential phase of PCR by different DNA polymerases. PMID:22558329

  6. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing

    PubMed Central

    Bafna, Jayesh A.; Soni, Gautam V.

    2016-01-01

    We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM) of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform. PMID:27285088

  7. Fisher information theory for parameter estimation in single molecule microscopy: tutorial.

    PubMed

    Chao, Jerry; Sally Ward, E; Ober, Raimund J

    2016-07-01

    Estimation of a parameter of interest from image data represents a task that is commonly carried out in single molecule microscopy data analysis. The determination of the positional coordinates of a molecule from its image, for example, forms the basis of standard applications such as single molecule tracking and localization-based super-resolution image reconstruction. Assuming that the estimator used recovers, on average, the true value of the parameter, its accuracy, or standard deviation, is then at best equal to the square root of the Cramér-Rao lower bound. The Cramér-Rao lower bound can therefore be used as a benchmark in the evaluation of the accuracy of an estimator. Additionally, as its value can be computed and assessed for different experimental settings, it is useful as an experimental design tool. This tutorial demonstrates a mathematical framework that has been specifically developed to calculate the Cramér-Rao lower bound for estimation problems in single molecule microscopy and, more broadly, fluorescence microscopy. The material includes a presentation of the photon detection process that underlies all image data, various image data models that describe images acquired with different detector types, and Fisher information expressions that are necessary for the calculation of the lower bound. Throughout the tutorial, examples involving concrete estimation problems are used to illustrate the effects of various factors on the accuracy of parameter estimation and, more generally, to demonstrate the flexibility of the mathematical framework.

  8. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis

    NASA Astrophysics Data System (ADS)

    Dhakal, Soma; Adendorff, Matthew R.; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G.

    2016-01-01

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational

  9. Promising anchoring groups for single-molecule conductance measurements.

    PubMed

    Kaliginedi, Veerabhadrarao; Rudnev, Alexander V; Moreno-García, Pavel; Baghernejad, Masoud; Huang, Cancan; Hong, Wenjing; Wandlowski, Thomas

    2014-11-21

    The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction conductance by employing two complementary techniques, namely scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques, based on the studies published in the literature and important results from our own work. We compared conductance studies for conventional anchoring groups described earlier with the molecular junctions formed through π-interactions with the electrode surface (Au, Pt, Ag) and we also summarized recent developments in the formation of highly conducting covalent Au-C σ-bonds using oligophenyleneethynylene (OPE) and an alkane molecular backbone. Specifically, we focus on the electron transport properties of diaryloligoyne, oligophenyleneethynylene (OPE) and/or alkane molecular junctions composed of several traditional anchoring groups, (dihydrobenzo[b]thiophene (BT), 5-benzothienyl analogue (BTh), thiol (SH), pyridyl (PY), amine (NH2), cyano (CN), methyl sulphide (SMe), nitro (NO2)) and other anchoring groups at the solid/liquid interface. The qualitative and quantitative comparison of the results obtained with different anchoring groups reveals structural and mechanistic details of the different types of single molecular junctions. The results reported in this prospective may serve as a guideline for the design and synthesis of molecular systems to be used in molecule-based electronic devices.

  10. Single-molecule studies of kinesin family motor proteins

    NASA Astrophysics Data System (ADS)

    Fordyce, Polly

    Kinesin family motor proteins drive many essential cellular processes, including cargo transport and mitotic spindle assembly and regulation. They accomplish these tasks by converting the chemical energy released from the hydrolysis of adenosine triphosphate (ATP) directly into mechanical motion along microtubules in cells. Optical traps allow us to track and apply force to individual motor proteins, and have already revealed many details of the movement of conventional kinesin, although the precise mechanism by which chemical energy is converted into mechanical motion is unclear. Other kinesin family members remain largely uncharacterized. This dissertation details the use of a novel optical-trapping assay to study Eg5, a Kinesin-5 family member involved in both spindle assembly and pole separation during mitosis. We demonstrate that individual Eg5 dimers are relatively slow and force-insensitive motors that take about 8 steps, on average, before detaching from the microtubule. Key differences in processivity and force-response between Eg5 and conventional kinesin suggest ways in which the two motors might have evolved to perform very different tasks in cells. This dissertation also details efforts to unravel how chemical energy is converted into mechanical motion by simultaneously measuring mechanical transitions (with an optical trap) and nucleotide binding and release (with single-molecule fluorescence) for individual conventional kinesin motors. We constructed a combined instrument, demonstrated its capabilities by unzipping fluorescently-labeled DNA duplexes, and used this instrument to record the motion of individual conventional kinesin motors powered by the hydrolysis of fluorescent nucleotides. Preliminary data reveal the challenges inherent in such measurements and guide proposals for future experimental approaches. Finally, this dissertation includes several chapters intended to serve as practical guides to understanding, constructing, and maintaining

  11. Analytical tools for single-molecule fluorescence imaging in cellulo.

    PubMed

    Leake, M C

    2014-07-01

    Recent technological advances in cutting-edge ultrasensitive fluorescence microscopy have allowed single-molecule imaging experiments in living cells across all three domains of life to become commonplace. Single-molecule live-cell data is typically obtained in a low signal-to-noise ratio (SNR) regime sometimes only marginally in excess of 1, in which a combination of detector shot noise, sub-optimal probe photophysics, native cell autofluorescence and intrinsically underlying stochasticity of molecules result in highly noisy datasets for which underlying true molecular behaviour is non-trivial to discern. The ability to elucidate real molecular phenomena is essential in relating experimental single-molecule observations to both the biological system under study as well as offering insight into the fine details of the physical and chemical environments of the living cell. To confront this problem of faithful signal extraction and analysis in a noise-dominated regime, the 'needle in a haystack' challenge, such experiments benefit enormously from a suite of objective, automated, high-throughput analysis tools that can home in on the underlying 'molecular signature' and generate meaningful statistics across a large population of individual cells and molecules. Here, I discuss the development and application of several analytical methods applied to real case studies, including objective methods of segmenting cellular images from light microscopy data, tools to robustly localize and track single fluorescently-labelled molecules, algorithms to objectively interpret molecular mobility, analysis protocols to reliably estimate molecular stoichiometry and turnover, and methods to objectively render distributions of molecular parameters.

  12. Memory effects and oscillations in single-molecule kinetics.

    PubMed

    Vlad, Marcel O; Moran, Federico; Schneider, Friedemann W; Ross, John

    2002-10-01

    An exactly solvable model for single-molecule kinetics is suggested, based on the following assumptions: (i) A single molecule can exist in different chemical states and the random transitions from one chemical state to another can be described by a local master equation with time-dependent transition rates. (ii) Because of conformational and other intramolecular fluctuations the rate coefficients in the master equation are random functions of time; their stochastic properties are represented in terms of a set of control parameters. We assume that the fluctuating rate coefficients fulfill a separability condition, that is, they are made up of the multiplicative contributions of two factors: (a) a universal factor, which depends on the vector of control parameters and is the same for all chemical transformation processes and (b) process-dependent factors, which depend on the initial and final chemical states of the molecule but are independent of the control parameters. For systems with two chemical states the condition of separability is automatically fulfilled. We introduce an intrinsic time scale, which makes it possible to compute theoretically various experimental observables, such as the correlation functions of the fluorescent signal. We analyze the connections between the condition of separability and detailed balance, and discuss the possible cause of chemical oscillations in single molecule kinetics. We show that the intrinsic dynamics of the molecule, expressed by the fluctuations of the control parameters, may lead to damped oscillations of the correlation functions of the fluorescent signal. The influence of the random fluctuations on the control parameters may be described by a renormalized master equation with nonfluctuating apparent rate coefficients. The apparent rate coefficients do not have to obey a condition of detailed balance, even though the real rate coefficients do obey such a condition. It follows that the renormalized master equation may

  13. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical

  14. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical

  15. Characterizing 3D RNA structure by single molecule FRET.

    PubMed

    Stephenson, James D; Kenyon, Julia C; Symmons, Martyn F; Lever, Andrew M L

    2016-07-01

    The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.

  16. Hybrid photodetector for single-molecule spectroscopy and microscopy

    PubMed Central

    Michalet, X.; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2011-01-01

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications. PMID:21822361

  17. Single molecule studies of RNA polymerase II transcription in vitro.

    PubMed

    Horn, Abigail E; Goodrich, James A; Kugel, Jennifer F

    2014-01-01

    Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.

  18. Single Molecule Spectroscopy Illuminating the Molecular Dynamics of Life

    NASA Astrophysics Data System (ADS)

    Webb, Watt W.

    This chapter summarizes a series of new single-molecule spectroscopy investigations in the life sciences at Cornell University that began with our invention of Fluorescence Correlation Spectroscopy (FCS) about 1970. Our invention of FCS became my first focus on the "Molecular Dynamics of Life." It motivated my transition from research on quantum fluctuations and transport in condensed matter physics including superconductivity and in the molecular dynamics of coherent fluctuations and nano-transport in inanimate physical and chemical systems subject to the nonlinear dynamics of continuous phase transitions. These interdisciplinary transitions exemplify the productivity of such interdisciplinary interactions in science.

  19. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies. PMID:27371121

  20. Multiplexed single-molecule force spectroscopy using a centrifuge

    NASA Astrophysics Data System (ADS)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-03-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  1. Multiplexed single-molecule force spectroscopy using a centrifuge.

    PubMed

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  2. Multiphoton cascade absorption in single molecule fluorescence saturation spectroscopy.

    PubMed

    Winckler, Pascale; Jaffiol, Rodolphe

    2013-05-01

    Saturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution.

  3. Theoretical investigation on single-molecule chiroptical spectroscopy

    SciTech Connect

    Wakabayashi, M.; Yokojima, S.; Fukaminato, T.; Ogata, K.; Nakamura, S.

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  4. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  5. Single molecule studies of helicases with magnetic tweezers.

    PubMed

    Hodeib, Samar; Raj, Saurabh; Manosas, M; Zhang, Weiting; Bagchi, Debjani; Ducos, Bertrand; Allemand, Jean-François; Bensimon, David; Croquette, Vincent

    2016-08-01

    Helicases are a broad family of enzymes that perform crucial functions in DNA replication and in the maintenance of DNA and RNA integrity. A detailed mechanical study of helicases on DNA and RNA is possible using single molecule manipulation methods. Among those, magnetic tweezers (or traps) present a convenient, moderate throughput assay (tens of enzymes can be monitored simultaneously) that allow for high resolution (single base-pair) studies of these enzymes in various conditions and on various substrates (double and single stranded DNA and RNA). Here we discuss various implementation of the basic assay relevant for these studies.

  6. Recent developments in single-molecule DNA mechanics

    PubMed Central

    Bryant, Zev; Oberstrass, Florian C.; Basu, Aakash

    2013-01-01

    Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology. PMID:22658779

  7. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  8. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  9. Resolving metal-molecule interfaces at single-molecule junctions

    PubMed Central

    Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu

    2016-01-01

    Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT. PMID:27221947

  10. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  11. Large negative differential conductance in single-molecule break junctions

    NASA Astrophysics Data System (ADS)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulić, Diana; van der Zant, Herre S. J.

    2014-10-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes and the electronic coupling with those electrodes. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other and molecules in which quantum interference effects are possible. Here, we report the experimental observation of pronounced negative differential conductance in the current-voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

  12. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  13. Single-molecule microscopy using tunable nanoscale confinement

    NASA Astrophysics Data System (ADS)

    McFaul, Christopher M. J.; Leith, Jason; Jia, Bojing; Michaud, François; Arsenault, Adriel; Martin, Andrew; Berard, Daniel; Leslie, Sabrina

    2013-09-01

    We present the design, construction and implementation of a modular microscopy device that transforms a basic inverted fluorescence microscope into a versatile single-molecule imaging system. The device uses Convex Lens- Induced Confinement (CLIC) to improve background rejection and extend diffusion-limited observation time. To facilitate its integration into a wide range of laboratories, this implementation of the CLIC device can use a standard flow-cell, into which the sample is loaded. By mechanically deforming the flow-cell, the device creates a tunable, wedge-shaped imaging chamber which we have modeled using finite element analysis simulations and characterized experimentally using interferometry. A powerful feature of CLIC imaging technology is the ability to examine single molecules under a continuum of applied confinement, from the nanometer to the micrometer scale. We demonstrate, using freely diffusing λ-phage DNA, that when the imposed confinement is on the scale of individual molecules their molecular conformations and diffusivity are altered significantly. To improve the flow-cell stiffness, seal, and re-usability, we have innovated the fabrication of thin PDMS-bonded flow-cells. The presented flow-cell CLIC technology can be combined with surface-lithography to provide an accessible and powerful approach to tune, trap, and image individual molecules under an extended range of imaging conditions. It is well-suited to tackling open problems in biophysics, biotechnology, nanotechnology, materials science, and chemistry.

  14. Surface passivation for single-molecule protein studies.

    PubMed

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  15. Information Bounds and Optimal Analysis of Dynamic Single Molecule Measurements

    PubMed Central

    Watkins, Lucas P.; Yang, Haw

    2004-01-01

    Time-resolved single molecule fluorescence measurements may be used to probe the conformational dynamics of biological macromolecules. The best time resolution in such techniques will only be achieved by measuring the arrival times of individual photons at the detector. A general approach to the estimation of molecular parameters based on individual photon arrival times is presented. The amount of information present in a data set is quantified by the Fisher information, thereby providing a guide to deriving the basic equations relating measurement uncertainties and time resolution. Based on these information-theoretical considerations, a data analysis algorithm is presented that details the optimal analysis of single-molecule data. This method natively accounts and corrects for background photons and cross talk, and can scale to an arbitrary number of channels. By construction, and with corroboration from computer simulations, we show that this algorithm reaches the theoretical limit, extracting the maximal information out of the data. The bias inherent in the algorithm is considered and its implications for experimental design are discussed. The ideas underlying this approach are general and are expected to be applicable to any information-limited measurement. PMID:15189897

  16. Variation in the Single-Molecule Conductance of Oligothiophenes

    NASA Astrophysics Data System (ADS)

    Capozzi, Brian; Dell, Emma; Dubay, Kateri; Moreno, Jose; Berkelbach, Timothy; Reichman, David; Campos, Luis; Venkataraman, Latha

    2013-03-01

    Thiophenes are ubiquitous in organic electronic and photovoltaic applications; yet, they have received minimal attention in single molecule transport studies. Here, we carry out single molecule conductance measurements on a family of methyl sulfide-terminated oligothiophenes using the scanning tunneling microscope based break-junction technique. We find a non-exponential decay in conductance with the number of thiophene units (2 through 6) in the chain, which cannot be explained by a simple tunneling or hopping mechanism. We also find that the oligothiophenes exhibit a rather broad conductance distribution when compared to oligophenyls. Using a combination of experiment and molecular dynamics simulations, we show that this increased breadth is most likely due to different thiophene confomers sampled in the experiments, which do not necessarily maintain conjugation along the backbone. These measurements therefore reinforce the importance of conformation and conjugation effects in thiophene-based organic electronic devices where highly conducting molecular components are required. The experimental work was funded by NSF-DMR-1206202 and the theory was funded by the EFRC program of the U.S. Department of Energy under Award No. DESC0001085.

  17. Probing Protein Channel Dynamics At The Single Molecule Level.

    NASA Astrophysics Data System (ADS)

    Lee, M. Ann; Dunn, Robert C.

    1997-03-01

    It would be difficult to overstate the importance played by protein ion channels in cellular function. These macromolecular pores allow the passage of ions across the cellular membrane and play indispensable roles in all aspects of neurophysiology. While the patch-clamp technique continues to provide elegant descriptions of the kinetic processes involved in ion channel gating, the associated conformational changes remain a mystery. We are using the spectroscopic capabilities and single molecule fluorescence sensitivity of near-field scanning optical microscopy (NSOM) to probe these dynamics at the single channel level. Using a newly developed cantilevered NSOM probe capable of probing soft biological samples with single molecule fluorescence sensitivity, we have begun mapping the location of single NMDA receptors in intact rat cortical neurons with <100 nm spatial resolution. We will also present recent results exploring the conformational changes accompanying activation of nuclear pore channels located in the nuclear membrane of Xenopus oocytes. Our recent NSOM and AFM measurements on single nuclear pore complexes reveal large conformational changes taking place upon activation, providing rich, new molecular level details of channel function.

  18. From single molecules to life: microscopy at the nanoscale.

    PubMed

    Turkowyd, Bartosz; Virant, David; Endesfelder, Ulrike

    2016-10-01

    Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Graphical Abstract Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). PMID:27613013

  19. Watching Individual Proteins Acting on Single Molecules of DNA

    PubMed Central

    Amitani, Ichiro; Liu, Bian; Dombrowski, Christopher C.; Baskin, Ronald J.; Kowalczykowski, Stephen C.

    2011-01-01

    In traditional biochemical experiments, the behavior of individual proteins is obscured by ensemble averaging. To better understand the behavior of proteins that bind to and/or translocate on DNA, we have developed instrumentation that uses optical trapping, microfluidic solution delivery, and fluorescent microscopy to visualize either individual proteins or assemblies of proteins acting on single molecules of DNA. The general experimental design involves attaching a single DNA molecule to a polystyrene microsphere that is then used as a microscopic handle to manipulate individual DNA molecules with a laser trap. Visualization is achieved by fluorescently labeling either the DNA or the protein of interest, followed by direct imaging using high-sensitivity fluorescence microscopy. We describe the sample preparation and instrumentation used to visualize the interaction of individual proteins with single molecules of DNA. As examples, we describe the application of these methods to the study of proteins involved in recombination-mediated DNA repair, a process essential for the maintenance of genomic integrity. PMID:20580968

  20. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  1. New assay for multiple single molecule enzyme kinetics

    NASA Astrophysics Data System (ADS)

    Lee, Alan I.; Brody, James P.

    2005-03-01

    A population of identical proteins has the same amino acid sequence, but there may be subtle differences in local folding that lead to variations in activity. Single molecule studies allow us to understand these subtle differences. Single molecule experiments are usually time consuming and difficult because only a few molecules are observed in one experiment. To address this problem, we have developed an assay where we can simultaneously measure the activity of multiple individual molecules of a protease, α-chymotrypsin. The assay utilizes a synthetic chymotrypsin substrate that is non-fluorescent before cleavage by chymotrypsin, but is intensely fluorescent after. To study the activity of individual enzymes, the enzyme and substrate are encapsulated in micron-sized droplets of water surrounded by silicone oil. On average, each micro-droplet contains less than one enzyme. The fluorescence of these droplets is recorded over time using a microscope and a CCD camera system. Software tracks individual droplets over time and records fluorescence. The kinetics of individual chymotrypsin molecules is calculated through the increase of fluorescence intensity of the same individual droplet over time. The activity profiles of the individual enzymes and the bulk sample of the enzyme are very similar. This validates the assay and demonstrates that the average of a few individual molecules can be representative of the behavior of the bulk population.

  2. DCDHF Fluorophores for Single-Molecule Imaging in Cells**

    PubMed Central

    Lord, Samuel J.; Conley, Nicholas R.; Lee, Hsiao-lu D.; Nishimura, Stefanie Y.; Pomerantz, Andrea K.; Willets, Katherine A.; Lu, Zhikuan; Wang, Hui; Liu, Na; Samuel, Reichel; Weber, Ryan; Semyonov, Alexander; He, Meng; Twieg, Robert J.; Moerner, W. E.

    2009-01-01

    There is a persistent need for small-molecule fluorescent labels optimized for single-molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red-shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed “DCDHF” fluorophores, for use in live-cell imaging based on the push–pull design: an amine donor group and a 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF) acceptor group, separated by a π-rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red-emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small-molecule fluorophores, which are needed for super-resolution imaging schemes that require active control (here turning-on) of single-molecule emission. PMID:19025732

  3. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    PubMed

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits.

  4. DCDHF fluorophores for single-molecule imaging in cells.

    PubMed

    Lord, Samuel J; Conley, Nicholas R; Lee, Hsiao-Lu D; Nishimura, Stefanie Y; Pomerantz, Andrea K; Willets, Katherine A; Lu, Zhikuan; Wang, Hui; Liu, Na; Samuel, Reichel; Weber, Ryan; Semyonov, Alexander; He, Meng; Twieg, Robert J; Moerner, W E

    2009-01-12

    There is a persistent need for small-molecule fluorescent labels optimized for single-molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red-shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed "DCDHF" fluorophores, for use in live-cell imaging based on the push-pull design: an amine donor group and a 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF) acceptor group, separated by a pi-rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red-emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small-molecule fluorophores, which are needed for super-resolution imaging schemes that require active control (here turning-on) of single-molecule emission.

  5. High contrast single molecule tracking in the pericellular coat

    NASA Astrophysics Data System (ADS)

    Scrimgeour, Jan; McLane, Louis T.; Curtis, Jennifer E.

    2014-03-01

    The pericellular coat is a robust, hydrated, polymer brush-like structure that can extend several micrometers into the extracellular space around living cells. By controlling access to the cell surface, acting as a filter and storage reservoir for proteins, and actively controlling tissue-immune system interactions, the cell coat performs many important functions at scales ranging from the single cell to whole tissues. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronic acid (HA) - with its structure, material properties, and ultimately its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands to the coat To probe the dynamic behavior of this soft biomaterial we have used high contrast single molecule imaging, based on highly inclined laser illumination, to observe individual fluorescently labeled HA binding proteins within the cell coat. Our work focuses on the cell coat of living chondrocyte (cartilage) cells, and in particular the effect of the large, highly charged, protein aggrecan on the properties of the coat. Through single molecule imaging we observe that aggrecan is tightly tethered to HA, and plays an important role in cell coat extension and stiffening.

  6. Single-molecule correlated chemical probing of RNA.

    PubMed

    Homan, Philip J; Favorov, Oleg V; Lavender, Christopher A; Kursun, Olcay; Ge, Xiyuan; Busan, Steven; Dokholyan, Nikolay V; Weeks, Kevin M

    2014-09-23

    Complex higher-order RNA structures play critical roles in all facets of gene expression; however, the through-space interaction networks that define tertiary structures and govern sampling of multiple conformations are poorly understood. Here we describe single-molecule RNA structure analysis in which multiple sites of chemical modification are identified in single RNA strands by massively parallel sequencing and then analyzed for correlated and clustered interactions. The strategy thus identifies RNA interaction groups by mutational profiling (RING-MaP) and makes possible two expansive applications. First, we identify through-space interactions, create 3D models for RNAs spanning 80-265 nucleotides, and characterize broad classes of intramolecular interactions that stabilize RNA. Second, we distinguish distinct conformations in solution ensembles and reveal previously undetected hidden states and large-scale structural reconfigurations that occur in unfolded RNAs relative to native states. RING-MaP single-molecule nucleic acid structure interrogation enables concise and facile analysis of the global architectures and multiple conformations that govern function in RNA. PMID:25205807

  7. A three-camera imaging microscope for high-speed single-molecule tracking and super-resolution imaging in living cells

    NASA Astrophysics Data System (ADS)

    English, Brian P.; Singer, Robert H.

    2015-08-01

    Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics.

  8. A three-camera imaging microscope for high-speed single-molecule tracking and super-resolution imaging in living cells

    PubMed Central

    English, Brian P.; Singer, Robert H.

    2016-01-01

    Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics. PMID:26819489

  9. Investigation of bacterial nucleotide excision repair using single-molecule techniques

    PubMed Central

    Van Houten, Bennett; Kad, Neil

    2016-01-01

    Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER. PMID:24472181

  10. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations

    PubMed Central

    Mlodzianoski, Michael J.; Curthoys, Nikki M.; Gunewardene, Mudalige S.; Carter, Sean; Hess, Samuel T.

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  11. Using Amino-Labeled Nucleotide Probes for Simultaneous Single Molecule RNA-DNA FISH

    PubMed Central

    Wu, Jun; Shao, Fangwei; Zhang, Li-Feng

    2014-01-01

    Using amino-labeled oligonucleotide probes, we established a simple, robust and low-noise method for simultaneous detection of RNA and DNA by fluorescence in situ hybridization, a highly useful tool to study the large pool of long non-coding RNAs being identified in the current research. With probes either chemically or biologically synthesized, we demonstrate that the method can be applied to study a wide range of RNA and DNA targets at the single-cell and single-molecule level in cellular contexts. PMID:25226542

  12. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations.

    PubMed

    Mlodzianoski, Michael J; Curthoys, Nikki M; Gunewardene, Mudalige S; Carter, Sean; Hess, Samuel T

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  13. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    PubMed

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  14. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    NASA Astrophysics Data System (ADS)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  15. Pushing The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscopy: From Monolayer Towards Single molecule sensitivity

    SciTech Connect

    Xu, Xiaoji G.; Rang, Matthias; Craig, Ian M.; Rashcke, Markus B.

    2012-06-18

    While scattering-scanning near-field optical microscopy (s-SNOM) has demonstrated its potential to extend infrared (IR) spectroscopy into the nanometer scale, it has not yet reached its full potential in terms of spectroscopic sensitivity. We combine broadband femtosecond mid-IR excitation with an optimized spectral irradiance of 2 W/cm2/ cm–1 (power/area/bandwidth) and a combination of tip- and substrate enhancement to demonstrate single-monolayer sensitivity with exceptional signal-to-noise ratio. Using interferometric time domain detection, the near-field IR s-SNOM spectral phase directly reflects the molecular vibrational resonances and their intrinsic line shapes. We probe the stretching resonance of 1000 carbonyl groups at 1700 cm–1 in a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) on an evaporated gold substrate with spectroscopic contrast and sensitivity of 100 vibrational oscillators. From these results we provide a roadmap for achieving true single-molecule IR vibrational spectroscopy in s-SNOM by implementing optical antenna resonant enhancement, increased spectral pump power, and improved detection schemes.

  16. Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Widawsky, Jonathan R.

    In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport -- molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine

  17. Fluorescence spectroscopy of single molecules at room temperature and its applications

    SciTech Connect

    Ha, Taekjip

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  18. Single cell and single molecule techniques for the analysis of the epigenome

    NASA Astrophysics Data System (ADS)

    Wallin, Christopher Benjamin

    Epigenetic regulation is a critical biological process for the health and development of a cell. Epigenetic regulation is facilitated by covalent modifications to the underlying DNA and chromatin proteins. A fundamental understanding of these epigenetic modifications and their associated interactions at the molecular scale is necessary to explain phenomena including cellular identity, stem cell plasticity, and neoplastic transformation. It is widely known that abnormal epigenetic profiles have been linked to many diseases, most notably cancer. While the field of epigenetics has progressed rapidly with conventional techniques, significant advances remain to be made with respect to combinatoric analysis of epigenetic marks and single cell epigenetics. Therefore, in this dissertation, I will discuss our development of devices and methodologies to address these pertinent issues. First, we designed a preparatory polydimethylsiloxane (PDMS) microdevice for the extraction, purification, and stretching of human chromosomal DNA and chromatin from small cell populations down to a single cell. The valveless device captures cells by size exclusion within the micropillars, entraps the DNA or chromatin in the micropillars after cell lysis, purifies away the cellular debris, and fluorescently labels the DNA and/or chromatin all within a single reaction chamber. With the device, we achieve nearly 100% extraction efficiency of the DNA. The device is also used for in-channel immunostaining of chromatin followed by downstream single molecule chromatin analysis in nanochannels (SCAN). Second, using multi-color, time-correlated single molecule measurements in nanochannels, simultaneous coincidence detection of 2 epigenetic marks is demonstrated. Coincidence detection of 3 epigenetic marks is also established using a pulsed interleaved excitation scheme. With these two promising results, genome-wide quantification of epigenetic marks was pursued. Unfortunately, quantitative SCAN never

  19. Single-molecule enzymology based on the principle of the Millikan oil drop experiment.

    PubMed

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-03-01

    The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity.

  20. Capturing Single Molecules of Immunoglobulin and Ricin with an Aptamer-Encoded Glass Nanopore

    PubMed Central

    Ding, Shu; Gao, Changlu; Gu, Li-Qun

    2010-01-01

    Nanopore-based single-molecule biosensors have been extensively studied. Protein pores that have receptors attached to them are target-selective, but their real-time applications are limited by the fragility of the lipid membrane into which the protein pores are embedded. Synthetic nanopores are more stable and provide flexible pore sizes, but the selectivity is low when detecting in the translocation mode. In spite of modifications with probing molecules, such as antibodies, to potentiate specific targeting, these nanopores fail to bind individual target molecules. Distinguishing between binding and translocation blocks remains unsolved. Here, we propose an aptamer-encoded nanopore that overcomes these challenges. Aptamers are well-known probing oligonucleotides that have high sensitivity and selectivity. In contrast to antibodies, aptamers are much smaller than their targets, rendering target blockades in the nanopore much more distinguishable. We used aptamer-encoded nanopores to detect single molecules of immunoglobulin E and the bioterrorist agent ricin, sequentially captured by the immobilized aptamer in the sensing zone of the pore. The functional nanopore also probed sequence-dependent aptamer-protein interactions. These findings will facilitate the development of a universal nanopore for multitarget detection. PMID:19627120

  1. Linear trinuclear cobalt(II) single molecule magnet.

    PubMed

    Zhang, Yuan-Zhu; Brown, Andrew J; Meng, Yin-Shan; Sun, Hao-Ling; Gao, Song

    2015-02-14

    The introduction of NaBPh(4) into a methanolic solution of CoCl(2)·(6)H(2)O and 2-[(pyridine-2-ylimine)-methyl]phenol (Hpymp) afforded {[Co(II)(3)(pymp)(4)(MeOH)(2)][BPh(4)](2)}·(2)MeOH (1) with a centro-symmetrically linear trinuclear structure. Magnetic analysis of 1 exhibited significant intracluster ferromagnetic exchange (2.4 cm(-1)) and slow relaxation of magnetization in both zero and non-zero static fields below 5 K, giving the first [Co(II)(3)] single molecule magnet with an effective energy barrier of 17.2(3) cm(-1) under a 500 Oe dc field.

  2. Tracking electrons in biological macromolecules: from ensemble to single molecule.

    PubMed

    Tabares, Leandro C; Gupta, Ankur; Aartsma, Thijs J; Canters, Gerard W

    2014-08-06

    Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level.

  3. Force-induced tautomerization in a single molecule.

    PubMed

    Ladenthin, Janina N; Frederiksen, Thomas; Persson, Mats; Sharp, John C; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

  4. Force-induced tautomerization in a single molecule.

    PubMed

    Ladenthin, Janina N; Frederiksen, Thomas; Persson, Mats; Sharp, John C; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed. PMID:27657869

  5. Kinesin regulation dynamics through cargo delivery, a single molecule investigation

    NASA Astrophysics Data System (ADS)

    Kovacs, Anthony; Kessler, Jonathan; Lin, Huawen; Dutcher, Susan; Wang, Yan Mei

    2015-03-01

    Kinesins are microtubule-based motors that deliver cargo to their destinations in a highly regulated manner. Although in recent years numerous regulators of cargo delivery have been identified, the regulation mechanism of kinesin through the cargo delivery and recycling process is not known. By performing single molecule fluorescence imaging measurements in Chlamydomonas flagella, which are 200 nm in diameter, 10 microns in length, and contain 9 sets of microtubule doublets, we tracked the intraflagellar transport (IFT) trains, BBSome cargo, and kinesin-2 motors through the cargo delivery process and determined the aforementioned dynamics. Upon arrival at the microtubule plus end at the flagellar tip, (1) IFT trains and BBSome cargo remain intact, dissociate together from kinesins and microtubules, and diffuse along flagellar membrane for a mean of 2.3 sec before commencing retrograde travel. (2) Kinesin motors remain bound to and diffuse along microtubules for 1.3 sec before dissociating into the flagellar lumen for recycling.

  6. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  7. New Insights into the Spliceosome by Single Molecule Fluorescence Microscopy

    PubMed Central

    Hoskins, Aaron A.; Gelles, Jeff; Moore, Melissa J.

    2011-01-01

    Splicing is an essential eukaryotic process in which introns are excised from precursors to messenger RNAs and exons ligated together. This reaction is catalyzed by a multi-MegaDalton machine called the spliceosome, composed of 5 small nuclear RNAs (snRNAs) and a core set of ~100 proteins minimally required for activity. Due to the spliceosome’s size, its low abundance in cellular extracts, and its highly dynamic assembly pathway, analysis of the kinetics of splicing and the conformational rearrangements occurring during spliceosome assembly and disassembly has proven extraordinarily challenging. Here, we review recent progress in combining chemical biology methodologies with single molecule fluorescence techniques to provide a window into splicing in real time. These methods complement ensemble measurements of splicing in vivo and in vitro to facilitate kinetic dissection of pre-mRNA splicing. PMID:22057211

  8. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes

    PubMed Central

    Perez-Jimenez, Raul; Inglés-Prieto, Alvaro; Zhao, Zi-Ming; Sanchez-Romero, Inmaculada; Alegre-Cebollada, Jorge; Kosuri, Pallav; Garcia-Manyes, Sergi; Kappock, T. Joseph; Tanokura, Masaru; Holmgren, Arne; Sanchez-Ruiz, Jose M.; Gaucher, Eric A.; Fernandez, Julio M.

    2011-01-01

    A journey back in time is possible at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx), dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32° C more stable than modern enzymes and the oldest show significantly higher activity than extant ones at pH 5. We probed their mechanisms of reduction using single-molecule force spectroscopy. From the force-dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs utilize chemical mechanisms of reduction similar to those of modern enzymes. While Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over a 4 Gyr time span to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth. PMID:21460845

  9. A molecular tuning fork in single-molecule mechanochemical sensing.

    PubMed

    Mandal, Shankar; Koirala, Deepak; Selvam, Sangeetha; Ghimire, Chiran; Mao, Hanbin

    2015-06-22

    The separate arrangement of target recognition and signal transduction in conventional biosensors often compromises the real-time response and can introduce additional noise. To address these issues, we combined analyte recognition and signal reporting by mechanochemical coupling in a single-molecule DNA template. We incorporated a DNA hairpin as a mechanophore in the template, which, under a specific force, undergoes stochastic transitions between folded and unfolded hairpin structures (mechanoescence). Reminiscent of a tuning fork that vibrates at a fixed frequency, the device was classified as a molecular tuning fork (MTF). By monitoring the lifetime of the folded and unfolded hairpins with equal populations, we were able to differentiate between the mono- and bivalent binding modes during individual antibody-antigen binding events. We anticipate these mechanospectroscopic concepts and methods will be instrumental for the development of novel bioanalyses.

  10. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    PubMed Central

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  11. Eukaryotic transcriptional dynamics: from single molecules to cell populations

    PubMed Central

    Coulon, Antoine; Chow, Carson C.; Singer, Robert H.; Larson, Daniel R.

    2013-01-01

    Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time-and energy-dependence at the molecular level. PMID:23835438

  12. Single molecule thermodynamics of ATP synthesis by F1-ATPase

    NASA Astrophysics Data System (ADS)

    Toyabe, Shoichi; Muneyuki, Eiro

    2015-01-01

    FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. The isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central γ -shaft. When a strong opposing torque is imposed, the γ -shaft rotates in the opposite direction and drives the F1-motor to synthesize ATP. This mechanical-to-chemical free-energy transduction is the final and central step of the multistep cellular ATP-synthetic pathway. Here, we determined the amount of mechanical work exploited by the F1-motor to synthesize an ATP molecule during forced rotations using a methodology combining a nonequilibrium theory and single molecule measurements of responses to external torque. We found that the internal dissipation of the motor is negligible even during rotations far from a quasistatic process.

  13. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  14. X-ray induced demagnetization of single-molecule magnets

    SciTech Connect

    Dreiser, Jan; Westerström, Rasmus; Piamonteze, Cinthia; Nolting, Frithjof; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Dunsch, Lothar; Greber, Thomas

    2014-07-21

    Low-temperature x-ray magnetic circular dichroism measurements on the endohedral single-molecule magnet DySc{sub 2}N@C{sub 80} at the Dy M{sub 4,5} edges reveal a shrinking of the opening of the observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure of the molecules to x-rays resonant with the Dy M{sub 5} edge accelerates the relaxation of magnetization more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that the resonant absorption of one x-ray photon induces the demagnetization of many molecules.

  15. n and p type character of single molecule diodes.

    PubMed

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  16. n and p type character of single molecule diodes

    PubMed Central

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  17. Single-molecule protein sequencing through fingerprinting: computational assessment

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Docter, Margreet; van Ginkel, Jetty; de Ridder, Dick; Joo, Chirlmin

    2015-10-01

    Proteins are vital in all biological systems as they constitute the main structural and functional components of cells. Recent advances in mass spectrometry have brought the promise of complete proteomics by helping draft the human proteome. Yet, this commonly used protein sequencing technique has fundamental limitations in sensitivity. Here we propose a method for single-molecule (SM) protein sequencing. A major challenge lies in the fact that proteins are composed of 20 different amino acids, which demands 20 molecular reporters. We computationally demonstrate that it suffices to measure only two types of amino acids to identify proteins and suggest an experimental scheme using SM fluorescence. When achieved, this highly sensitive approach will result in a paradigm shift in proteomics, with major impact in the biological and medical sciences.

  18. Three dimensional single molecule localization using a phase retrieved pupilfunction

    PubMed Central

    Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.

    2013-01-01

    Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501

  19. Force-induced tautomerization in a single molecule

    NASA Astrophysics Data System (ADS)

    Ladenthin, Janina N.; Frederiksen, Thomas; Persson, Mats; Sharp, John C.; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

  20. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    PubMed

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs. PMID:27139335

  1. Mechanisms of Cellular Proteostasis: Insights from Single-Molecule Approaches

    PubMed Central

    Bustamante, Carlos J.; Kaiser, Christian M.; Maillard, Rodrigo A.; Goldman, Daniel H.; Wilson, Christian A.M.

    2015-01-01

    Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins. PMID:24895851

  2. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy.

    PubMed

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-24

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  3. Reconstructing folding energy landscapes by single-molecule force spectroscopy.

    PubMed

    Woodside, Michael T; Block, Steven M

    2014-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate.

  4. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes.

    PubMed

    Perez-Jimenez, Raul; Inglés-Prieto, Alvaro; Zhao, Zi-Ming; Sanchez-Romero, Inmaculada; Alegre-Cebollada, Jorge; Kosuri, Pallav; Garcia-Manyes, Sergi; Kappock, T Joseph; Tanokura, Masaru; Holmgren, Arne; Sanchez-Ruiz, Jose M; Gaucher, Eric A; Fernandez, Julio M

    2011-05-01

    It is possible to travel back in time at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx) dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32 °C more stable than modern enzymes, and the oldest show markedly higher activity than extant ones at pH 5. We probed the mechanisms of reduction of these enzymes using single-molecule force spectroscopy. From the force dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs use chemical mechanisms of reduction similar to those of modern enzymes. Although Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over 4 Gyr to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth. PMID:21460845

  5. Lipid mobility in supported lipid bilayers by single molecule tracking

    NASA Astrophysics Data System (ADS)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  6. Visualizing Cyclic Peptide Hydration at the Single-Molecule Level

    NASA Astrophysics Data System (ADS)

    Chen, Yumin; Deng, Ke; Qiu, Xiaohui; Wang, Chen

    2013-08-01

    The role of water molecules in the selective transport of potassium ions across cell membranes is important. Experimental investigations of valinomycin-water interactions remain huge challenge due to the poor solubility of valinomycin in water. Herein, we removed this experimental obstacle by introducing gaseous water and valinomycin onto a Cu(111) surface to investigate the hydration of valinomycin. By combining scanning tunneling microscopy (STM) with density functional theory (DFT) calculations, we revealed that water could affect the adsorption structure of valinomycin. Hydrogen bond interactions occurred primarily at the carbonyl oxygen of valinomycin and resulted in the formation of valinomycin hydrates. The single-molecule perspective revealed in our investigation could provide new insight into the role of water on the conformation transition of valinomycin, which might provide a new molecular basis for the ion transport mechanism at the water/membrane interface.

  7. Single-molecule mechanics of protein-labelled DNA handles.

    PubMed

    Jadhav, Vivek S; Brüggemann, Dorothea; Wruck, Florian; Hegner, Martin

    2016-01-01

    DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA-protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot-streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein-DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition in time

  8. Structure and mechanics of proteins from single molecules to cells

    NASA Astrophysics Data System (ADS)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  9. Single-molecule mechanics of protein-labelled DNA handles

    PubMed Central

    Wruck, Florian

    2016-01-01

    Summary DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition

  10. Plasmonic band structure controls single-molecule fluorescence.

    PubMed

    Langguth, Lutz; Punj, Deep; Wenger, Jérôme; Koenderink, A Femius

    2013-10-22

    Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that already small lattices enable highly directional and enhanced emission from single fluorescent molecules in the central aperture. Even for clusters just four unit cells across, the directionality is set by the plasmonic crystal band structure, as confirmed by full-wave numerical simulations. This realization of plasmonic phase array antennas driven by single quantum emitters opens a flexible toolbox to engineer fluorescence and its detection.

  11. Single-molecule TPM studies on the conversion of human telomeric DNA.

    PubMed

    Chu, Jen-Fei; Chang, Ta-Chau; Li, Hung-Wen

    2010-04-21

    Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.

  12. Observation of vibrational overtones by single-molecule resonant photodissociation

    PubMed Central

    Khanyile, Ncamiso B.; Shu, Gang; Brown, Kenneth R.

    2015-01-01

    Molecular ions can be held in a chain of laser-cooled atomic ions by sympathetic cooling. This system is ideal for performing high-precision molecular spectroscopy with applications in astrochemistry and fundamental physics. Here we show that this same system can be coupled with a broadband laser to discover new molecular transitions. We use three-ion chains of Ca+ and CaH+ to observe vibrational transitions via resonance-enhanced multiphoton dissociation detected by Ca+ fluorescence. On the basis of theoretical calculations, we assign the observed peaks to the transition from the ground vibrational state, ν=0 to ν=9 and 10. Our method allows us to track single-molecular events, and it can be extended to work with any molecule by using normal mode frequency shifts to detect the dissociation. This survey spectroscopy serves as a bridge to the precision spectroscopy required for molecular ion control. PMID:26197787

  13. Microfluidic mixing for non-equilibrium single-molecule optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Pfeil, Shawn H.

    We describe a series of experiments made possible by the combination of single-molecule fluorescence spectroscopy and microfluidic mixing. To perform these measurements, a microfluidic sample handling system was developed and characterized. This system allows observation at times as early as 2.4 ms after a reaction is triggered, which is an more than an order of magnitude earlier than previous microfabricated devices. Dilutions as high as 1:19 (v/v) are achieved, allowing measurements of molecular refolding in native conditions. The interconversion of subpopulations, masked by averaging in ensemble measurements, is observed. This technology also facilitates ultra-sensitive chemiluminescence measurements, using only microliters of sample. Microfluidics are designed and fabricated to extend single-molecule measurements to samples out of equilibrium. The system is optimized for sensitive optical detection and experimental convenience. Channels are replica-molded in poly-dimethyl-siloxane (PDMS) elastomer and sealed to coverglass. The resulting devices are compatible with a broad range of chemicals, and exhibit low background fluorescence. The combination of continuous flow, which decouples reaction progress from measurement duration, with low background enables single molecules to be probed at well defined times after a reaction is triggered. Fluid delivery and pressure connections are made using an interface optimized for rapid assembly, rapid sample exchange, and modular device replacement, while providing access for high numerical aperture optics. The kinetics of Csp, the cold shock protein from Thermotoga maritima, are studied with the mixer. An order of magnitude decrease in deadtime puts a new upper limit of 4.6 ms on the time required for collapse after mixing. This result is in agreement with indirect measurements of chain reconfiguration time, which suggest collapse happens on the timescale of 10--100 ns. Measurements of the kinetics of a DNA sequence that

  14. Developing DNA nanotechnology using single-molecule fluorescence.

    PubMed

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  15. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis.

    PubMed

    Tomov, Toma E; Tsukanov, Roman; Masoud, Rula; Liber, Miran; Plavner, Noa; Nir, Eyal

    2012-03-01

    Among the advantages of the single-molecule approach when used to study biomolecular structural dynamics and interaction is its ability to distinguish between and independently observe minor subpopulations. In a single-molecule Förster resonance energy transfer (FRET) and alternating laser excitation diffusion experiment, the various populations are apparent in the resultant histograms. However, because histograms are calculated based on the per-burst mean FRET and stoichiometry ratio and not on the internal photon distribution, much of the acquired information is lost, thereby reducing the capabilities of the method. Here we suggest what to our knowledge is a novel statistical analysis tool that significantly enhances these capabilities, and we use it to identify and isolate static and dynamic subpopulations. Based on a kernel density estimator and a proper photon distribution analysis, for each individual burst, we calculate scores that reflect properties of interest. Specifically, we determine the FRET efficiency and brightness ratio distributions and use them to reveal 1), the underlying structure of a two-state DNA-hairpin and a DNA hairpin that is bound to DNA origami; 2), a minor doubly labeled dsDNA subpopulation concealed in a larger singly labeled dsDNA; and 3), functioning DNA origami motors concealed within a larger subpopulation of defective motors. Altogether, these findings demonstrate the usefulness of the proposed approach. The method was developed and tested using simulations, its rationality is described, and a computer algorithm is provided.

  16. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis.

    PubMed

    Dhakal, Soma; Adendorff, Matthew R; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G

    2016-02-01

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies--incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.

  17. Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.

    PubMed

    Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu

    2016-02-01

    Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.

  18. Quantum yield and excitation rate of single molecules close to metallic nanostructures.

    PubMed

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J; Sen, Tapasi; Acuna, Guillermo P; Tinnefeld, Philip

    2014-01-01

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments. PMID:25370834

  19. Quantum yield and excitation rate of single molecules close to metallic nanostructures.

    PubMed

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J; Sen, Tapasi; Acuna, Guillermo P; Tinnefeld, Philip

    2014-11-05

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments.

  20. Quantum yield and excitation rate of single molecules close to metallic nanostructures

    PubMed Central

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J.; Sen, Tapasi; Acuna, Guillermo P.; Tinnefeld, Philip

    2014-01-01

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments. PMID:25370834

  1. Temperature-cycle microscopy reveals single-molecule conformational heterogeneity.

    PubMed

    Yuan, Haifeng; Gaiduk, Alexander; Siekierzycka, Joanna R; Fujiyoshi, Satoru; Matsushita, Michio; Nettels, Daniel; Schuler, Benjamin; Seidel, Claus A M; Orrit, Michel

    2015-03-01

    Our previous temperature-cycle study reported FRET transitions between different states on FRET-labeled polyprolines [Yuan et al., PCCP, 2011, 13, 1762]. The conformational origin of such transitions, however, was left open. In this work, we apply temperature-cycle microscopy of single FRET-labeled polyproline and dsDNA molecules and compare their responses to resolve the conformational origin of different FRET states. We observe different steady-state FRET distributions and different temperature-cycle responses in the two samples. Our temperature-cycle results on single molecules resemble the results in steady-state measurements but reveal a dark state which could not be observed otherwise. By comparing the timescales and probabilities of different FRET states in temperature-cycle traces, we assign the conformational heterogeneity reflected by different FRET states to linker dynamics, dye-chain and dye-dye interactions. The dark state and low-FRET state are likely due to dye-dye interactions at short separations.

  2. Quantitative structural information from single-molecule FRET.

    PubMed

    Beckers, M; Drechsler, F; Eilert, T; Nagy, J; Michaelis, J

    2015-01-01

    Single-molecule studies can be used to study biological processes directly and in real-time. In particular, the fluorescence energy transfer between reporter dye molecules attached to specific sites on macromolecular complexes can be used to infer distance information. When several measurements are combined, the information can be used to determine the position and conformation of certain domains with respect to the complex. However, data analysis schemes that include all experimental uncertainties are highly complex, and the outcome depends on assumptions about the state of the dye molecules. Here, we present a new analysis algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering termed Fast-NPS that can analyse large smFRET networks in a relatively short time and yields the position of the dye molecules together with their respective uncertainties. Moreover, we show what effects different assumptions about the dye molecules have on the outcome. We discuss the possibilities and pitfalls in structure determination based on smFRET using experimental data for an archaeal transcription pre-initiation complex, whose architecture has recently been unravelled by smFRET measurements. PMID:26407323

  3. Gold plasmonic effects on charge transport through single molecule junctions

    NASA Astrophysics Data System (ADS)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  4. Analysis and Interpretation of Single Molecule Protein Unfolding Kinetics

    NASA Astrophysics Data System (ADS)

    Lannon, Herbert; Brujic, Jasna

    2012-02-01

    The kinetics of protein unfolding under a stretching force has been extensively studied by atomic force microscopy (AFM) over the past decade [1]. Experimental artifacts at the single molecule level introduce uncertainties in the data analysis that have led to several competing physical models for the unfolding process. For example, the unfolding dynamics of the protein ubiquitin under constant force has been described by probability distributions as diverse as exponential [2,3], a sum of exponentials, log-normal [4], and more recently a function describing static disorder in the Arrhenius model [5]. A new method for data analysis is presented that utilizes maximum likelihood estimation (MLE) combined with other traditional statistical tests to unambiguously rank the consistency of these and other models with the experimental data. These techniques applied to the ubiquitin unfolding data shows that the probability of unfolding is best fit with a stretched exponential distribution, with important implications on the complexity of the mechanism of protein unfolding. [4pt] [1] Carrion-Vazquez, et. al. Springer Series in Biophys. 2006 [0pt] [2] Fernandez et. al. Science 2004 [0pt] [3] Brujic et. al. Nat. Phys 2006 [0pt] [4] Garcia-Manyes et. al. Biophys. J. 2007 [0pt] [5] Kuo et. al. PNAS 2010

  5. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  6. Single-molecule dissection of stacking forces in DNA.

    PubMed

    Kilchherr, Fabian; Wachauf, Christian; Pelz, Benjamin; Rief, Matthias; Zacharias, Martin; Dietz, Hendrik

    2016-09-01

    We directly measured at the single-molecule level the forces and lifetimes of DNA base-pair stacking interactions for all stack sequence combinations. Our experimental approach combined dual-beam optical tweezers with DNA origami components to allow positioning of blunt-end DNA helices so that the weak stacking force could be isolated. Base-pair stack arrays that lacked a covalent backbone connection spontaneously dissociated at average rates ranging from 0.02 to 500 per second, depending on the sequence combination and stack array size. Forces in the range from 2 to 8 piconewtons that act along the helical direction only mildly accelerated the stochastic unstacking process. The free-energy increments per stack that we estimate from the measured forward and backward kinetic rates ranged from -0.8 to -3.4 kilocalories per mole, depending on the sequence combination. Our data contributes to understanding the mechanics of DNA processing in biology, and it is helpful for designing the kinetics of DNA-based nanoscale devices according to user specifications.

  7. Single-molecule localization microscopy using mCherry.

    PubMed

    Winterflood, Christian M; Ewers, Helge

    2014-11-10

    We demonstrate the potential of the commonly used red fluorescent protein mCherry for single-molecule super-resolution imaging. mCherry can be driven into a light-induced dark state in the presence of a thiol from which it can recover spontaneously or by irradiation with near UV light. We show imaging of subcellular protein structures such as microtubules and the nuclear pore complex with a resolution below 40 nm. We were able to image the C-terminus of the nuclear pore protein POM121, which is on the inside of the pore and not readily accessible for external labeling. The photon yield for mCherry is comparable to that of the latest optical highlighter fluorescent proteins. Our findings show that the widely used mCherry red fluorescent protein and the vast number of existing mCherry fusion proteins are readily amenable to super-resolution imaging. This obviates the need for generating novel protein fusions that may compromise function or the need for external fluorescent labeling.

  8. Experimental demonstration of a single-molecule electric motor.

    PubMed

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-10-01

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices. PMID:21892165

  9. Extracting Conformational Memory from Single-Molecule Kinetic Data

    PubMed Central

    Lee, Julian; Dill, Ken A.

    2013-01-01

    Single-molecule data often comes in the form of stochastic time trajectories. A key question is how to extract an underlying kinetic model from the data. A traditional approach is to assume some discrete state model, i.e. a model topology, and to assume that transitions between states are Markovian. The transition rates are then selected according to which best fit the data. However in experiments, each apparent state can be a broad ensemble of states or can be hiding multiple inter-converting states. Here we describe a more general approach called the non-Markov Memory Kernel (NMMK) method. The idea is to begin with a very broad class of non-Markov models and to let the data directly select for the best possible model. To do so, we adapt an image reconstruction approach that is grounded in Maximum Entropy. The NMMK method is not limited to discrete state models for the data; it yields a unique model given the data; it gives error bars for the model; it does not assume Markov dynamics. Furthermore, NMMK is less wasteful of data by letting the entire data set determine the model. When the data warrants, the NMMK gives a memory kernel that is Markovian. We highlight, by numerical example, how conformational memory extracted using this method can be translated into useful mechanistic insight. PMID:23259771

  10. Mechanical fatigue in repetitively stretched single molecules of titin.

    PubMed Central

    Kellermayer, M S; Smith, S B; Bustamante, C; Granzier, H L

    2001-01-01

    Relaxed striated muscle cells exhibit mechanical fatigue when exposed to repeated stretch and release cycles. To understand the molecular basis of such mechanical fatigue, single molecules of the giant filamentous protein titin, which is the main determinant of sarcomeric elasticity, were repetitively stretched and released while their force response was characterized with optical tweezers. During repeated stretch-release cycles titin becomes mechanically worn out in a process we call molecular fatigue. The process is characterized by a progressive shift of the stretch-force curve toward increasing end-to-end lengths, indicating that repeated mechanical cycles increase titin's effective contour length. Molecular fatigue occurs only in a restricted force range (0-25 pN) during the initial part of the stretch half-cycle, whereas the rest of the force response is repeated from one mechanical cycle to the other. Protein-folding models fail to explain molecular fatigue on the basis of an incomplete refolding of titin's globular domains. Rather, the process apparently derives from the formation of labile nonspecific bonds cross-linking various sites along a pre-unfolded titin segment. Because titin's molecular fatigue occurs in a physiologically relevant force range, the process may play an important role in dynamically adjusting muscle's response to the recent history of mechanical perturbations. PMID:11159452

  11. Single molecule studies reveal new mechanisms for microtubule severing

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Diaz-Valencia, Juan Daniel; Morelli, Margaret; Zhang, Dong; Sharp, David

    2011-03-01

    Microtubule-severing enzymes are hexameric complexes made from monomeric enzyme subunits that remove tubulin dimers from the microtubule lattice. Severing proteins are known to remodel the cytoskeleton during interphase and mitosis, and are required in proper axon morphology and mammalian bone and cartilage development. We have performed the first single molecule imaging to determine where and how severing enzymes act to cut microtubules. We have focused on the original member of the group, katanin, and the newest member, fidgetin to compare their biophysical activities in vitro. We find that, as expected, severing proteins localize to areas of activity. Interestingly, the association is very brief: they do not stay bound nor do they bind cooperatively at active sites. The association duration changes with the nucleotide content, implying that the state in the catalytic cycle dictates binding affinity with the microtubule. We also discovered that, at lower concentrations, both katanin and fidgetin can depolymerize taxol-stabilized microtubules by removing terminal dimers. These studies reveal the physical regulation schemes to control severing activity in cells, and ultimately regulate cytoskeletal architecture. This work is supported by the March of Dimes Grant #5-FY09-46.

  12. Single-Molecule Manipulation Studies of a Mechanically Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-10-01

    Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.

  13. Mechanics and Single-Molecule Interrogation of DNA Recombination.

    PubMed

    Bell, Jason C; Kowalczykowski, Stephen C

    2016-06-01

    The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.

  14. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  15. A single-molecule view of gene regulation in cancer

    NASA Astrophysics Data System (ADS)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  16. Mapping the Transmission Functions of Single-Molecule Junctions.

    PubMed

    Capozzi, Brian; Low, Jonathan Z; Xia, Jianlong; Liu, Zhen-Fei; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha

    2016-06-01

    Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction's transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale. PMID:27186894

  17. Developing Single-Molecule Technique with Microsecond Resolution

    NASA Astrophysics Data System (ADS)

    Akhterov, Maxim V.

    Molecular machines like proteins are responsible for many regulatory and catalytic functions. Specifically, molecular motions of proteins and their flexibility determine conformational states required for enzyme catalysis, signal transduction, and protein-protein interactions. However, the mechanisms for protein transitions between conformational states are often poorly understood, especially in the milli- to microsecond ranges where conventional optical techniques and computational modeling are most limited. This work describes development of an electronic single-molecule technique for monitoring microsecond motions of biological molecules. Dynamic changes of conductance through a transistor made of a single-walled carbon nanotube (SWNT-FET) report conformational changes of a protein molecule tethered to the SWNT sidewall. In principle, the high operating speed of SWNT-FETs could allow this technique to resolve molecular events with nanosecond resolution. This project focused on improving the technique to a 200 kHz effective bandwidth in order to resolve microsecond-scale dynamics. The improvement was achieved with a home-built electrochemical flow cell. By minimizing parasitic capacitance due to liquid coupling to electrodes and eliminating noise pickup, the flow cell enabled low-noise, high bandwidth measurement of molecular events as short as 2 mus. The apparatus was used to observe closing and opening motions of lysozyme. Preliminary results suggest that lysozyme has a distribution of possible velocities with the most probable speed approaching our experimental resolution of 2 mus.

  18. Single-molecule dissection of stacking forces in DNA.

    PubMed

    Kilchherr, Fabian; Wachauf, Christian; Pelz, Benjamin; Rief, Matthias; Zacharias, Martin; Dietz, Hendrik

    2016-09-01

    We directly measured at the single-molecule level the forces and lifetimes of DNA base-pair stacking interactions for all stack sequence combinations. Our experimental approach combined dual-beam optical tweezers with DNA origami components to allow positioning of blunt-end DNA helices so that the weak stacking force could be isolated. Base-pair stack arrays that lacked a covalent backbone connection spontaneously dissociated at average rates ranging from 0.02 to 500 per second, depending on the sequence combination and stack array size. Forces in the range from 2 to 8 piconewtons that act along the helical direction only mildly accelerated the stochastic unstacking process. The free-energy increments per stack that we estimate from the measured forward and backward kinetic rates ranged from -0.8 to -3.4 kilocalories per mole, depending on the sequence combination. Our data contributes to understanding the mechanics of DNA processing in biology, and it is helpful for designing the kinetics of DNA-based nanoscale devices according to user specifications. PMID:27609897

  19. A single molecule study of cellulase hydrolysis of crystalline cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  20. Single Molecule Visualization of DNA in Pure Shear Flow

    NASA Astrophysics Data System (ADS)

    Smith, Connie; Duggal, Rajat; Pasquali, Matteo

    2003-03-01

    Polymers are ever-present in society from plastic bottles to DNA. The study of single molecule dynamics will provide the opportunity for advances in fields from synthetic polymer coatings to gene therapy. Many applications involve flow of dilute polymer solutions in viscous solvents. These long, flexible polymer chains (DNA) are coiled at rest in solution. The configuration of the molecules is altered by the applied flow which, in turn, affects the dynamics of the flow. Control of flow allows for manipulation of the DNA molecules. Our apparatus consists of a rectangular channel that has been plasma etched into a silicon wafer with pressure driven flow (pulse-free syringe pump). The dynamics of the DNA molecules in flow are monitored using fluorescence microscopy and digital imaging. The flow channel was designed to allow for visualization of the molecules in the plane defined by velocity and velocity gradient instead of the plane identified by the velocity and the vorticity (previously studied by Smith et al (1999) and LeDuc et al (1999)). Moreover, we can visualize the DNA in a flow where the velocity gradient is not uniform. The individual and average conformations (size and orientation) of the flowing DNA molecules are being studied as a function of the Weissenberg number (product of strain rate and DNA relaxation time) and distance from the channel walls.