Science.gov

Sample records for enhanced small molecule

  1. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  2. A small molecule enhances RNA interference and promotes microRNA processing

    PubMed Central

    Shan, Ge; Li, Yujing; Zhang, Junliang; Li, Wendi; Szulwach, Keith E; Duan, Ranhui; Faghihi, Mohammad A; Khalil, Ahmad M; Lu, Lianghua; Paroo, Zain; Chan, Anthony W S; Shi, Zhangjie; Liu, Qinghua; Wahlestedt, Claes; He, Chuan; Jin, Peng

    2010-01-01

    Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are sequence-specific post-transcriptional regulators of gene expression. Although major components of the RNA interference (RNAi) pathway have been identified, regulatory mechanisms for this pathway remain largely unknown. Here we demonstrate that the RNAi pathway can be modulated intracellularly by small molecules. We have developed a cell-based assay to monitor the activity of the RNAi pathway and find that the small-molecule enoxacin (Penetrex) enhances siRNA-mediated mRNA degradation and promotes the biogenesis of endogenous miRNAs. We show that this RNAi-enhancing activity depends on the trans-activation-responsive region RNA-binding protein. Our results provide a proof-of-principle demonstration that small molecules can be used to modulate the activity of the RNAi pathway. RNAi enhancers may be useful in the development of research tools and therapeutics. PMID:18641635

  3. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms

    PubMed Central

    Kovács, Tibor; Billes, Viktor; Komlós, Marcell; Hotzi, Bernadette; Manzéger, Anna; Tarnóci, Anna; Papp, Diána; Szikszai, Fanni; Szinyákovics, Janka; Rácz, Ákos; Noszál, Béla; Veszelka, Szilvia; Walter, Fruzsina R.; Deli, Mária A.; Hackler, Laszlo; Alfoldi, Robert; Huzian, Orsolya; Puskas, Laszlo G.; Liliom, Hanna; Tárnok, Krisztián; Schlett, Katalin; Borsy, Adrienn; Welker, Ervin; Kovács, Attila L.; Pádár, Zsolt; Erdős, Attila; Legradi, Adam; Bjelik, Annamaria; Gulya, Károly; Gulyás, Balázs; Vellai, Tibor

    2017-01-01

    Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson’s and Huntington’s diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging. PMID:28205624

  4. Introducing a high gravity field to enhance infiltration of small molecules into polyelectrolyte multilayers.

    PubMed

    Liu, Xiaolin; Zhao, Kun; Jiang, Chao; Wang, Yue; Shao, Lei; Zhang, Yajun; Shi, Feng

    2015-07-28

    Loading functional small molecules into nano-thin films is fundamental to various research fields such as membrane separation, molecular imprinting, interfacial reaction, drug delivery etc. Currently, a general demand for enhancing the loading rate without affecting the film structures exists in most infiltration phenomena. To handle this issue, we have introduced a process intensification method of a high gravity technique, which is a versatile energy form of mechanical field well-established in industry, into the investigations on diffusion/infiltration at the molecular level. By taking a polyelectrolyte multilayer as a model thin film and a photo-reactive molecule, 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt (DAS), as a model small functional molecule, we have demonstrated remarkably accelerated adsorption/infiltration of DAS into a poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer by as high as 20-fold; meanwhile, both the film property of the multilayer and photoresponsive-crosslinking function of DAS were not disturbed. Furthermore, the infiltration of DAS and the surface morphology of the multilayer could be tuned based on their high dependence on the intensity of the high gravity field regarding different rotating speeds. The mechanism of the accelerated adsorption/infiltration under the high gravity field was interpreted by the increased turbulence of the diffusing layer with the thinned laminar boundary layer and the stepwise delivery of the local concentration gradient from the solution to the interior of the multilayer. The introduction of mechanical field provides a simple and versatile strategy to address the paradox of the contradictory loading amount and loading rate, and thus to promote applications of various membrane processes.

  5. Clock-Enhancing Small Molecules and Potential Applications in Chronic Diseases and Aging

    PubMed Central

    Gloston, Gabrielle F.; Yoo, Seung-Hee; Chen, Zheng (Jake)

    2017-01-01

    Normal physiological functions require a robust biological timer called the circadian clock. When clocks are dysregulated, misaligned, or dampened, pathological consequences ensue, leading to chronic diseases and accelerated aging. An emerging research area is the development of clock-targeting compounds that may serve as drug candidates to correct dysregulated rhythms and hence mitigate disease symptoms and age-related decline. In this review, we first present a concise view of the circadian oscillator, physiological networks, and regulatory mechanisms of circadian amplitude. Given a close association of circadian amplitude dampening and disease progression, clock-enhancing small molecules (CEMs) are of particular interest as candidate chronotherapeutics. A recent proof-of-principle study illustrated that the natural polymethoxylated flavonoid nobiletin directly targets the circadian oscillator and elicits robust metabolic improvements in mice. We describe mood disorders and aging as potential therapeutic targets of CEMs. Future studies of CEMs will shed important insight into the regulation and disease relevance of circadian clocks. PMID:28360884

  6. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling.

    PubMed

    Phoa, Athena F; Browne, Stephen; Gurgis, Fadi M S; Åkerfeldt, Mia C; Döbber, Alexander; Renn, Christian; Peifer, Christian; Stringer, Brett W; Day, Bryan W; Wong, Chin; Chircop, Megan; Johns, Terrance G; Kassiou, Michael; Munoz, Lenka

    2015-12-15

    We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.

  7. An Fc Domain Protein–Small Molecule Conjugate as an Enhanced Immunomodulator

    PubMed Central

    2015-01-01

    Proteins as well as small molecules have demonstrated success as therapeutic agents, but their pharmacologic properties sometimes fall short against particular drug targets. Although the adenosine 2a receptor (A2AR) has been identified as a promising target for immunotherapy, small molecule A2AR agonists have suffered from short pharmacokinetic half-lives and the potential for toxicity by modulating nonimmune pathways. To overcome these limitations, we have tethered the A2AR agonist CGS-21680 to the immunoglobulin Fc domain using expressed protein ligation with Sf9 cell secreted protein. The protein small molecule conjugate Fc-CGS retained potent Fc receptor and A2AR interactions and showed superior properties as a therapeutic for the treatment of a mouse model of autoimmune pneumonitis. This approach may provide a general strategy for optimizing small molecule therapeutics. PMID:24533830

  8. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.

    PubMed

    Billin, Andrew N; Bantscheff, Marcus; Drewes, Gerard; Ghidelli-Disse, Sonja; Holt, Jason A; Kramer, Henning F; McDougal, Alan J; Smalley, Terry L; Wells, Carrow I; Zuercher, William J; Henke, Brad R

    2016-02-19

    Skeletal muscle progenitor stem cells (referred to as satellite cells) represent the primary pool of stem cells in adult skeletal muscle responsible for the generation of new skeletal muscle in response to injury. Satellite cells derived from aged muscle display a significant reduction in regenerative capacity to form functional muscle. This decrease in functional recovery has been attributed to a decrease in proliferative capacity of satellite cells. Hence, agents that enhance the proliferative abilities of satellite cells may hold promise as therapies for a variety of pathological settings, including repair of injured muscle and age- or disease-associated muscle wasting. Through phenotypic screening of isolated murine satellite cells, we identified a series of 2,4-diaminopyrimidines (e.g., 2) that increased satellite cell proliferation. Importantly, compound 2 was effective in accelerating repair of damaged skeletal muscle in an in vivo mouse model of skeletal muscle injury. While these compounds were originally prepared as c-Jun N-terminal kinase 1 (JNK-1) inhibitors, structure-activity analyses indicated JNK-1 inhibition does not correlate with satellite cell activity. Screening against a broad panel of kinases did not result in identification of an obvious molecular target, so we conducted cell-based proteomics experiments in an attempt to identify the molecular target(s) responsible for the potentiation of the satellite cell proliferation. These data provide the foundation for future efforts to design improved small molecules as potential therapeutics for muscle repair and regeneration.

  9. Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation.

    PubMed

    Hung, Andy H; Holbrook, Robert J; Rotz, Matthew W; Glasscock, Cameron J; Mansukhani, Nikhita D; MacRenaris, Keith W; Manus, Lisa M; Duch, Matthew C; Dam, Kevin T; Hersam, Mark C; Meade, Thomas J

    2014-10-28

    The delivery of bioactive molecules into cells has broad applications in biology and medicine. Polymer-modified graphene oxide (GO) has recently emerged as a de facto noncovalent vehicle for hydrophobic drugs. Here, we investigate a different approach using native GO to deliver hydrophilic molecules by co-incubation in culture. GO adsorption and delivery were systematically studied with a library of 15 molecules synthesized with Gd(III) labels to enable quantitation. Amines were revealed to be a key chemical group for adsorption, while delivery was shown to be quantitatively predictable by molecular adsorption, GO sedimentation, and GO size. GO co-incubation was shown to enhance delivery by up to 13-fold and allowed for a 100-fold increase in molecular incubation concentration compared to the alternative of nanoconjugation. When tested in the application of Gd(III) cellular MRI, these advantages led to a nearly 10-fold improvement in sensitivity over the state-of-the-art. GO co-incubation is an effective method of cellular delivery that is easily adoptable by researchers across all fields.

  10. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules.

    PubMed

    Levi-Polyachenko, Nicole; Jacob, Reuben; Day, Cynthia; Kuthirummal, Narayanan

    2016-06-01

    Chitosan films were synthesized with hexagonal silver nanoparticles (Ag NP). The unique shape and size of the Ag NP shift the optical absorption into the infrared. Stimulation of the nanoparticles with infrared light was used to generate heat and facilitate intracellular delivery of fluorescently-labeled dextran molecules. Chitosan films prepared with hexagonal or spherical Ag NP were characterized by optical and thermal analyses, and X-ray diffraction. There were found to be slight differences between how the chitosan molecular chains interface with the Ag NP depending upon shape of the nanoparticle. Viability of cells associated with dermal wound healing was evaluated on chitosan films prepared with hexagonal or spherical Ag NP, with both keratinocytes and fibroblasts having normal or moderately enhanced growth on films containing hexagonally-shaped nanoparticles.

  11. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation

    PubMed Central

    Yang, Zijiang; Concannon, John; Ng, Kelvin S.; Seyb, Kathleen; Mortensen, Luke J.; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P.; Glicksman, Marcie A.; Karp, Jeffrey M.

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  12. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  13. Enhancement of Small Molecule Delivery by Pulsed-High Intensity Focused Ultrasound (pHIFU): A Parameter Exploration

    PubMed Central

    Zhou, Yufeng; Wang, Yak-Nam; Farr, Navid; Zia, Jasmine; Chen, Hong; Ko, Bong Min; Khokhlova, Tatiana; Li, Tong; Hwang, Joo Ha

    2015-01-01

    Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drug in vivo and translation to clinical trial. In this study, the effects of pulsed-HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor, and pulse repetition frequency) to the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in over 40 times greater Evans blue content and 3.5 times the penetration depth compared to untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-minute pHIFU exposure. Altogether, pHIFU has shown to be an effective modality to enhance both the concentration and penetration depth of small molecules into tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue. PMID:26803389

  14. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms

    PubMed Central

    Dunham, Sage J. B.; Comi, Troy J.; Ko, Kyungwon; Li, Bin; Baig, Nameera F.; Morales-Soto, Nydia; Shrout, Joshua D.; Bohn, Paul W.; Sweedler, Jonathan V.

    2016-01-01

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques—polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization—are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems. PMID:26945568

  15. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms.

    PubMed

    Dunham, Sage J B; Comi, Troy J; Ko, Kyungwon; Li, Bin; Baig, Nameera F; Morales-Soto, Nydia; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2016-06-04

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems.

  16. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride.

  17. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  18. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    NASA Astrophysics Data System (ADS)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  19. A small molecule norspermidine in combination with silver ion enhances dispersal and disinfection of multi-species wastewater biofilms.

    PubMed

    Wu, Yachuan; Quan, Xiangchun; Si, Xiurong; Wang, Xinrui

    2016-06-01

    Detrimental biofilms have become a great concern in many areas due to their strong resistance and insensitivity to traditional antimicrobial agents. Norspermidine is a potent small molecule for biofilm dispersal. In this study, silver ion, a conventional inorganic biocide, was combined with norspermidine and used for control and removal of multi-species biofilms formed by a mixed culture from wastewater treatment systems. Results showed that silver ion (0.01-1 mg/L) treatment alone failed to remove the existing wastewater biofilms. Norspermidine at the concentrations of 500-1000 μM was capable to disrupt and disperse the existing biofilms with a biofilm reduction of 21-34 % after 24-h exposure. The combined treatment with norspermidine (500 μM) and silver ion (0.01 mg/L) increased biofilm reduction to 48 % (24-h exposure). The combined treatment also enhanced biofilm disinfection ratio (82 %, 2-h exposure) by 2.0- and 2.6-folds compared to norspermidine (27 %) or silver ion (23 %) treatment alone, respectively. Confocal laser scanning microscopic (CLSM) observations found that norspermidine could disrupt biofilm matrix and promote biofilm dispersal via breaking down exopolysaccharides. The combined treatment increased the reduction in biofilm cell density and viability, possibly due to the damage of biofilm matrix, enhanced silver ion diffusion in biofilms, and increased biofilm sensitivity. These findings indicate that the combination of a small molecule norspermidine with a traditional biocide silver ion presents a novel strategy to remove and kill biofilms, which have a potential application in addressing wastewater biofilm-related issues.

  20. A small molecule screen for enhanced homing of systemically infused cells

    PubMed Central

    Tong, Zhixiang; Perrault, Christelle; Benhamou, Brigitte; Zhang, Jidong; Stratton, Tara; Han, Edward; Safaee, Helia; Musabeyezu, Juliet; Yang, Zijiang; Multon, Marie-Christine; Rothblatt, Jonathan; Deleuze, Jean-Francois; Lin, Charles P.; Karp, Jeffrey M.

    2015-01-01

    SUMMARY Poor homing of systemically infused cells to disease sites may limit the success of exogenous cell-based therapy. In this study, we screened 9,000 signal transduction modulators to identify hits that increase mesenchymal stromal cell (MSC) surface expression of homing ligands that bind to ICAM-1, such as CD11a. Pretreatment of MSCs with Ro-31-8425, an identified hit from this screen, increased MSC firm adhesion to an ICAM-1-coated substrate in-vitro, and enabled targeted delivery of systemically administered MSCs to inflamed sites in-vivo in a CD11a (and other ICAM-1-binding domains)-dependent manner. This resulted in a heightened anti-inflammatory response. This represents a new strategy for engineering cell homing to enhance therapeutic efficacy and validates CD11a/ICAM-1 as potential targets. Altogether, this multi-step screening process may significantly improve clinical outcomes of cell-based therapies. PMID:25732817

  1. Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyan; Du, Qingguo; Peng, Bo; Xiong, Qihua; Hong, Lei; Demir, Hilmi Volkan; Wong, Terence K. S.; Ko Kyaw, Aung Ko; Sun, Xiao Wei

    2014-09-01

    Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm-10 nm were incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt. %) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power conversion efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simulation shows that the localized electric field intensity at the silica shell-organic layer interface decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity dependence measurement of the short-circuit current density shows that the silica shell reduces bimolecular recombination at the Au surface. As a result, both localized field intensity and light scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm.

  2. Ligand coupling symmetry correlates with thermopower enhancement in small-molecule/nanocrystal hybrid materials.

    PubMed

    Lynch, Jared; Kotiuga, Michele; Doan-Nguyen, Vicky V T; Queen, Wendy L; Forster, Jason D; Schlitz, Ruth A; Murray, Christopher B; Neaton, Jeffrey B; Chabinyc, Michael L; Urban, Jeffrey J

    2014-10-28

    We investigate the impact of the coupling symmetry and chemical nature of organic-inorganic interfaces on thermoelectric transport in Cu2-xSe nanocrystal thin films. By coupling ligand-exchange techniques with layer-by-layer assembly methods, we are able to systematically vary nanocrystal-organic linker interfaces, demonstrating how the functionality of the polar headgroup and the coupling symmetry of the organic linkers can change the power factor (S(2)σ) by nearly 2 orders of magnitude. Remarkably, we observe that ligand-coupling symmetry has a profound effect on thermoelectric transport in these hybrid materials. We shed light on these results using intuition from a simplified model for interparticle charge transport via tunneling through the frontier orbital of a bound ligand. Our analysis indicates that ligand-coupling symmetry and binding mechanisms correlate with enhanced conductivity approaching 2000 S/cm, and we employ this concept to demonstrate among the highest power factors measured for quantum-dot based thermoelectric inorganic-organic composite materials of ∼ 30 μW/m · K(2).

  3. Identification and Validation of Small Molecules That Enhance Recombinant Adeno-associated Virus Transduction following High-Throughput Screens

    PubMed Central

    Nicolson, Sarah C.; Li, Chengwen; Hirsch, Matthew L.; Setola, Vincent

    2016-01-01

    foundation based on the rAAV small-molecule screen methodology, which is ideally used for more-diverse libraries of compounds that can be tested for potentiating rAAV transduction. IMPORTANCE This study seeks to enhance the capability of adeno-associated viral vectors for therapeutic gene delivery applicable to the treatment of diverse diseases. To do this, a comprehensive panel of FDA-approved drugs were tested in human cells and in animal models to determine if they increased adeno-associated virus gene delivery. The results demonstrate that particular groups of drugs enhance adeno-associated virus gene delivery by unknown mechanisms. In particular, the enhancement of gene delivery was approximately 50 to 100 times better with than without teniposide, a compound that is also used as chemotherapy for cancer. Collectively, these results highlight the potential for FDA-approved drug enhancement of adeno-associated virus gene therapy, which could result in safe and effective treatments for diverse acquired or genetic diseases. PMID:27147738

  4. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha.

    PubMed

    Carter, P H; Scherle, P A; Muckelbauer, J K; Voss, M E; Liu, R Q; Thompson, L A; Tebben, A J; Solomon, K A; Lo, Y C; Li, Z; Strzemienski, P; Yang, G; Falahatpisheh, N; Xu, M; Wu, Z; Farrow, N A; Ramnarayan, K; Wang, J; Rideout, D; Yalamoori, V; Domaille, P; Underwood, D J; Trzaskos, J M; Friedman, S M; Newton, R C; Decicco, C P; Muckelbauer, J A

    2001-10-09

    The binding of tumor necrosis factor alpha (TNF-alpha) to the type-1 TNF receptor (TNFRc1) plays an important role in inflammation. Despite the clinical success of biologics (antibodies, soluble receptors) for treating TNF-based autoimmune conditions, no potent small molecule antagonists have been developed. Our screening of chemical libraries revealed that N-alkyl 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones were antagonists of this protein-protein interaction. After chemical optimization, we discovered IW927, which potently disrupted the binding of TNF-alpha to TNFRc1 (IC(50) = 50 nM) and also blocked TNF-stimulated phosphorylation of Ikappa-B in Ramos cells (IC(50) = 600 nM). This compound did not bind detectably to the related cytokine receptors TNFRc2 or CD40, and did not display any cytotoxicity at concentrations as high as 100 microM. Detailed evaluation of this and related molecules revealed that compounds in this class are "photochemically enhanced" inhibitors, in that they bind reversibly to the TNFRc1 with weak affinity (ca. 40-100 microM) and then covalently modify the receptor via a photochemical reaction. We obtained a crystal structure of IV703 (a close analog of IW927) bound to the TNFRc1. This structure clearly revealed that one of the aromatic rings of the inhibitor was covalently linked to the receptor through the main-chain nitrogen of Ala-62, a residue that has already been implicated in the binding of TNF-alpha to the TNFRc1. When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-alpha-TNFRc1 interaction.

  5. A small molecule deubiquitinase inhibitor increases localization of inducible nitric oxide synthase to the macrophage phagosome and enhances bacterial killing.

    PubMed

    Burkholder, Kristin M; Perry, Jeffrey W; Wobus, Christiane E; Donato, Nicholas J; Showalter, Hollis D; Kapuria, Vaibhav; O'Riordan, Mary X D

    2011-12-01

    Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking.

  6. "RaMassays": Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules.

    PubMed

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-04

    SiO2/TiO2 core/shell (T-rex) beads were exploited as "all-in-one" building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  7. Small Molecule CXCR3 Antagonists.

    PubMed

    Andrews, Stephen P; Cox, Rhona J

    2016-04-14

    Chemokines and their receptors are known to play important roles in disease. More than 40 chemokine ligands and 20 chemokine receptors have been identified, but, to date, only two small molecule chemokine receptor antagonists have been approved by the FDA. The chemokine receptor CXCR3 was identified in 1996, and nearly 20 years later, new areas of CXCR3 disease biology continue to emerge. Several classes of small molecule CXCR3 antagonists have been developed, and two have shown efficacy in preclinical models of inflammatory disease. However, only one CXCR3 antagonist has been evaluated in clinical trials, and there remain many opportunities to further investigate known classes of CXCR3 antagonists and to identify new chemotypes. This Perspective reviews the known CXCR3 antagonists and considers future opportunities for the development of small molecules for clinical evaluation.

  8. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGES

    Bi, Sheng; He, Zhengran; Chen, Jihua; ...

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is themore » highest mobility from SMDPPEH ever reported.« less

  9. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    SciTech Connect

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.

  10. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography.

  11. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing

    PubMed Central

    Pinder, Jordan; Salsman, Jayme; Dellaire, Graham

    2015-01-01

    CRISPR is a genome-editing platform that makes use of the bacterially-derived endonuclease Cas9 to introduce DNA double-strand breaks at precise locations in the genome using complementary guide RNAs. We developed a nuclear domain knock-in screen, whereby the insertion of a gene encoding the green fluorescent protein variant Clover is inserted by Cas9-mediated homology directed repair (HDR) within the first exon of genes that are required for the structural integrity of subnuclear domains such as the nuclear lamina and promyelocytic leukemia nuclear bodies (PML NBs). Using this approach, we compared strategies for enhancing CRISPR-mediated HDR, focusing on known genes and small molecules that impact non-homologous end joining (NHEJ) and homologous recombination (HR). Ultimately, we identified the small molecule RS-1 as a potent enhancer of CRISPR-based genome editing, enhancing HDR 3- to 6-fold depending on the locus and transfection method. We also characterized U2OS human osteosarcoma cells expressing Clover-tagged PML and demonstrate that this strategy generates cell lines with PML NBs that are structurally and functionally similar to bodies in the parental cell line. Thus, the nuclear domain knock-in screen that we describe provides a simple means of rapidly evaluating methods and small molecules that have the potential to enhance Cas9-mediated HDR. PMID:26429972

  12. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing.

    PubMed

    Pinder, Jordan; Salsman, Jayme; Dellaire, Graham

    2015-10-30

    CRISPR is a genome-editing platform that makes use of the bacterially-derived endonuclease Cas9 to introduce DNA double-strand breaks at precise locations in the genome using complementary guide RNAs. We developed a nuclear domain knock-in screen, whereby the insertion of a gene encoding the green fluorescent protein variant Clover is inserted by Cas9-mediated homology directed repair (HDR) within the first exon of genes that are required for the structural integrity of subnuclear domains such as the nuclear lamina and promyelocytic leukemia nuclear bodies (PML NBs). Using this approach, we compared strategies for enhancing CRISPR-mediated HDR, focusing on known genes and small molecules that impact non-homologous end joining (NHEJ) and homologous recombination (HR). Ultimately, we identified the small molecule RS-1 as a potent enhancer of CRISPR-based genome editing, enhancing HDR 3- to 6-fold depending on the locus and transfection method. We also characterized U2OS human osteosarcoma cells expressing Clover-tagged PML and demonstrate that this strategy generates cell lines with PML NBs that are structurally and functionally similar to bodies in the parental cell line. Thus, the nuclear domain knock-in screen that we describe provides a simple means of rapidly evaluating methods and small molecules that have the potential to enhance Cas9-mediated HDR.

  13. Small Molecules Target Carcinogenic Proteins

    NASA Astrophysics Data System (ADS)

    Gradinaru, Claudiu

    2009-03-01

    An ingenious cellular mechanism of effecting protein localization is prenylation: the covalent attachment of a hydrophobic prenyl group to a protein that facilitates protein association with cell membranes. Fluorescence microscopy was used to investigate whether the oncogenic Stat3 protein can undergo artificial prenylation via high-affinity prenylated small-molecule binding agents and thus be rendered inactive by localization at the plasma membrane instead of nucleus. The measurements were performed on a home-built instrument capable of recording simultaneously several optical parameters (lifetime, polarization, color, etc) and with single-molecule sensitivity. A pH-invariant fluorescein derivative with double moiety was designed to bridge a prenyl group and a small peptide that binds Stat3 with high affinity. Confocal fluorescence images show effective localization of the ligand to the membrane of liposomes. Stat3 predominantly localizes at the membrane only in the presence of the prenylated ligand. Single-molecule FRET (fluorescence resonance energy transfer) between donor-labeled prenylated agents and acceptor-labeled, surface tethered Stat3 protein is used to determine the dynamic heterogeneity of the protein-ligand interaction and follow individual binding-unbinding events in real time. The data indicates that molecules can effect protein localization, validating a therapeutic design that influences protein activity via induced localization.

  14. Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules.

    PubMed

    Amirpour, Noushin; Razavi, Shahnaz; Esfandiari, Ebrahim; Hashemibeni, Batoul; Kazemi, Mohammad; Salehi, Hossein

    2017-03-07

    Inspired by in vivo developmental process, several studies were conducted to design a protocol for differentiating of mesenchymal stem cells into neural cells in vitro. Human adipose-derived stem cells (hADSCs) as mesenchymal stem cells are a promising source for this purpose. At current study, we applied a defined neural induction medium by using small molecules for direct differentiation of hADSCs into anterior neuroectodermal cells. Anterior neuroectodermal differentiation of hADSCs was performed by hanging drop and monolayer protocols. At these methods, three small molecules were used to suppress the BMP, Nodal, and Wnt signaling pathways in order to obtain anterior neuroectodermal (eye field) cells from hADSCs. After two and three weeks of induction, the differentiated cells with neural morphology expressed anterior neuroectodermal markers such as OTX2, SIX3, β-TUB III and PAX6. The protein expression of such markers was confirmed by real time, RT-PCR and immunocytochemistry methods According to our data, it seems that the hanging drop method is a proper approach for neuroectodermal induction of hADSCs. Considering wide availability and immunosuppressive properties of hADSCs, these cells may open a way for autologous cell therapy of neurodegenerative disorders.

  15. Protein Scaffolding for Small Molecule Catalysts

    SciTech Connect

    Baker, David

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  16. Metagenomic small molecule discovery methods

    PubMed Central

    Charlop-Powers, Zachary; Milshteyn, Aleksandr; Brady, Sean F.

    2014-01-01

    Metagenomic approaches to natural product discovery provide the means of harvesting bioactive small molecules synthesized by environmental bacteria without the requirement of first culturing these organisms. Advances in sequencing technologies and general metagenomic methods are beginning to provide the tools necessary to unlock the unexplored biosynthetic potential encoded by the genomes of uncultured environmental bacteria. Here, we highlight recent advances in sequence- and functional- based metagenomic approaches that promise to facilitate antibiotic discovery from diverse environmental microbiomes. PMID:25000402

  17. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    SciTech Connect

    Tachikawa, Masanori

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  18. Small Molecule Immunosensing Using Surface Plasmon Resonance

    PubMed Central

    Mitchell, John

    2010-01-01

    Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained. PMID:22163605

  19. Membrane fusion catalyzed by a Rab, SNAREs, and SNARE chaperones is accompanied by enhanced permeability to small molecules and by lysis

    PubMed Central

    Zucchi, Paola C.; Zick, Michael

    2011-01-01

    The fusion of sealed biological membranes joins their enclosed aqueous compartments while mixing their membrane bilayers. Reconstituted fusion reactions are commonly assayed by lipid mixing, which can result from either true fusion or from lysis and its attendant reannealing of membranes. Fusion is also frequently assayed by the mixing of lumenal aqueous compartments, using probes of low molecular weight. With several probes (biotin, methylumbelliferyl-N-acetyl-α-d-neuraminic acid, and dithionite), we find that yeast vacuolar SNAREs (SNAP [Soluble NSF attachment protein] Receptors) increase the permeability of membranes to small molecules and that this permeabilization is enhanced by homotypic fusion and vacuole protein sorting complex (HOPS) and Sec17p/Sec18p, the vacuolar tethering and SNARE chaperone proteins. We now report the development of a novel assay that allows the parallel assessment of lipid mixing, the mixing of intact lumenal compartments, any lysis that occurs, and the membrane permeation of small molecules. Applying this assay to an all-purified reconstituted system consisting of vacuolar lipids, the four vacuolar SNAREs, the SNARE disassembly chaperones Sec17p and Sec18p, the Rab Ypt7p, and the Rab effector/SM protein complex HOPS, we show that true fusion is accompanied by strongly enhanced membrane permeability to small molecules and a measurable rate of lysis. PMID:21976702

  20. Small Molecules-Big Data.

    PubMed

    Császár, Attila G; Furtenbacher, Tibor; Árendás, Péter

    2016-11-17

    Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to "weakest links" of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational-Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling

  1. The Nonantibiotic Small Molecule Cyslabdan Enhances the Potency of β-Lactams against MRSA by Inhibiting Pentaglycine Interpeptide Bridge Synthesis

    PubMed Central

    Koyama, Nobuhiro; Tokura, Yuriko; Münch, Daniela; Sahl, Hans-Georg; Schneider, Tanja; Shibagaki, Yoshio; Ikeda, Haruo; Tomoda, Hiroshi

    2012-01-01

    The nonantibiotic small molecule cyslabdan, a labdan-type diterpene produced by Streptomyces sp. K04-0144, markedly potentiated the activity of the β-lactam drug imipenem against methicillin-resistant Staphylococcus aureus (MRSA). To study the mechanism of action of cyslabdan, the proteins that bind to cyslabdan were investigated in an MRSA lysate, which led to the identification of FemA, which is involved in the synthesis of the pentaglycine interpeptide bridge of the peptidoglycan of MRSA. Furthermore, binding assay of cyslabdan to FemB and FemX with the function similar to FemA revealed that cyslabdan had an affinity for FemB but not FemX. In an enzyme-based assay, cyslabdan inhibited FemA activity, where as did not affected FemX and FemB activities. Nonglycyl and monoglycyl murein monomers were accumulated by cyslabdan in the peptidoglycan of MRSA cell walls. These findings indicated that cyslabdan primarily inhibits FemA, thereby suppressing pentaglycine interpeptide bridge synthesis. This protein is a key factor in the determination of β-lactam resistance in MRSA, and our findings provide a new strategy for combating MRSA. PMID:23166602

  2. Enhanced Conversion Efficiency for Si Nanowire-Organic Hybrid Solar Cells through the Incorporation of Organic Small Molecule

    NASA Astrophysics Data System (ADS)

    He, Lining; Jiang, Changyun; Lai, Donny; Wang, Hao; Rusli

    2012-10-01

    We demonstrate high-efficiency hybrid solar cells based on heterojunctions formed between n-type silicon nanowires (SiNWs) and p-type organic semiconductors fabricated using a simple solution-based approach. Two types of devices have been fabricated with different organic materials used, namely poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and a small molecule, 2,2',7,7'-tetrakis(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD). The cells are characterized and compared in terms of their physical characteristics and photovoltaic performance. Using SiNWs of the same length of 0.35 µm, it is found that the SiNWs/Spiro cells exhibit a power conversion efficiency of 10.3%, which is higher than the 7.7% of SiNWs/PEDOT cells. The results are interpreted in terms of the ability of the two organic semiconductors to fill the gaps between the SiNWs and the optical reflectance of the samples. The degradation of the SiNWs/Spiro cells is also studied and presented.

  3. Enhancing the Thermoelectric Characteristics of PEDOT:PSS Through the Incorporation of a Redox-Active Small Molecule

    NASA Astrophysics Data System (ADS)

    Tomlinson, Edward; Willmore, Matthew; Zhu, Xiaoqin; Boudouris, Bryan

    2015-03-01

    The polymer blend composed of poly(3,4-ethylene dioxythiophene) and poly(styrene sulfonate) (PEDOT:PSS) is a leading organic thermoelectric material due to its high-performing properties. Here, we establish the effect of incorporating the redox-active small molecule4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO-OH) on the structural and thermoelectric properties of PEDOT:PSS. Specifically, the thermoelectric power factor (PF) was monitored as a function of TEMPO-OH loading, elucidating a clear trend in the PF. Importantly, at loadings as low as 5% TEMPO-OH, by mass, the thermopower of the sample was increased by a factor of two. Furthermore, the role of the TEMPO-OH on the thin film morphology of the composite material is examined through the use of grazing incidence-wide angle x-ray scattering (GI-WAXS) and atomic force microscopy (AFM). Despite the acidic conditions associated with the presence of PSS, the existence of radical functionality is confirmed through electron paramagnetic resonance (EPR) spectroscopy. Through careful tuning, the optimized conditions outlined within this work results in PF gains in excess of 40%.

  4. Small-molecule arginase inhibitors.

    PubMed

    Ivanenkov, Yan A; Chufarova, Nina V

    2014-01-01

    Arginase is an enzyme that metabolizes L-arginine to L-ornithine and urea. In addition to its fundamental role in the hepatic ornithine cycle, it also influences the immune systems in humans and mice. Arginase participates in many inflammatory disorders by decreasing the synthesis of nitric oxide and inducing fibrosis and tissue regeneration. L-arginine deficiency, which is modulated by myeloid cell arginase, suppresses T-cell immune response. This mechanism plays a fundamental role in inflammation-associated immunosuppression. Pathogens can synthesize their own arginase to elude immune reaction. Small-molecule arginase inhibitors are currently described as promising therapeutics for the treatment of several diseases, including allergic asthma, inflammatory bowel disease, ulcerative colitis, cardiovascular diseases (atherosclerosis and hypertension), diseases associated with pathogens (e.g., Helicobacter pylori, Trypanosoma cruzi, Leishmania, Mycobacterium tuberculosis and Salmonella), cancer and induced or spontaneous immune disorders. This article summarizes recent patents in the area of arginase inhibitors and discusses their properties.

  5. Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure.

    PubMed

    Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng

    2015-09-30

    Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.

  6. Water: a responsive small molecule.

    PubMed

    Shultz, Mary Jane; Vu, Tuan Hoang; Meyer, Bryce; Bisson, Patrick

    2012-01-17

    Unique among small molecules, water forms a nearly tetrahedral yet flexible hydrogen-bond network. In addition to its flexibility, this network is dynamic: bonds are formed or broken on a picosecond time scale. These unique features make probing the local structure of water challenging. Despite the challenges, there is intense interest in developing a picture of the local water structure due to water's fundamental importance in many fields of chemistry. Understanding changes in the local network structure of water near solutes likely holds the key to unlock problems from analyzing parameters that determine the three dimensional structure of proteins to modeling the fate of volatile materials released into the atmosphere. Pictures of the local structure of water are heavily influenced by what is known about the structure of ice. In hexagonal I(h) ice, the most stable form of solid water under ordinary conditions, water has an equal number of donor and acceptor bonds; a kind of symmetry. This symmetric tetrahedral coordination is only approximately preserved in the liquid. The most obvious manifestation of this altered tetrahedral bonding is the greater density in the liquid compared with the solid. Formation of an interface or addition of solutes further modifies the local bonding in water. Because the O-H stretching frequency is sensitive to the environment, vibrational spectroscopy provides an excellent probe for the hydrogen-bond structure in water. In this Account, we examine both local interactions between water and small solutes and longer range interactions at the aqueous surface. Locally, the results suggest that water is not a symmetric donor or acceptor, but rather has a propensity to act as an acceptor. In interactions with hydrocarbons, action is centered at the water oxygen. For soluble inorganic salts, interaction is greater with the cation than the anion. The vibrational spectrum of the surface of salt solutions is altered compared with that of neat

  7. A Surface-Enhanced Raman Scattering Sensor Integrated with Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules

    PubMed Central

    Zhou, Qitao; Meng, Guowen; Zheng, Peng; Cushing, Scott; Wu, Nianqiang; Huang, Qing; Zhu, Chuhong; Zhang, Zhuo; Wang, Zhiwei

    2015-01-01

    For surface-enhanced Raman scattering (SERS) sensors, one of the important issues is the development of substrates not only with high SERS-activity but also with strong ability to capture analytes. However, it is difficult to achieve the two goals simultaneously especially when detecting small molecules. Herein a compact battery-controlled nanostructure-assembled SERS system has been demonstrated for capture and detection of trace small molecule pollutants in water. In this SERS fluidic system, an electrical heating constantan wire covered with the vertically aligned ZnO nanotapers decorated with Ag-nanoparticles is inserted into a glass capillary. A mixture of thermo-responsive microgels, Au-nanorods colloids and analyte solution is then filled into the remnant space of the capillary. When the system is heated by switching on the battery, the thermo-responsive microgels shrink, which immobilizes the analyte and drives the Au-nanorod close to each other and close to the Ag-ZnO nanotapers. This process has also created high-density “hot spots” due to multi-type plasmonic couplings in three-dimensional space, amplifying the SERS signal. This integrated device has been successfully used to measure methyl parathion in lake water, showing a great potential in detection of aquatic pollutants. PMID:26238799

  8. Identification of Small-Molecule Enhancers of Arginine Methylation Catalyzed by Coactivator-Associated Arginine Methyltransferase 1

    PubMed Central

    Castellano, Sabrina; Spannhoff, Astrid; Milite, Ciro; Dal Piaz, Fabrizio; Cheng, Donghang; Tosco, Alessandra; Viviano, Monica; Yamani, Abdellah; Cianciulli, Agostino; Sala, Marina; Cura, Vincent; Cavarelli, Jean; Novellino, Ettore; Mai, Antonello; Bedford, Mark T.; Sbardella, Gianluca

    2012-01-01

    Arginine methylation is a common post-translational modification that is crucial in modulating gene expression at multiple critical levels. The arginine methyltransferases (PRMTs) are envisaged as promising druggable targets but their role in physiological and pathological pathways is far from being clear, due to the limited number of modulators reported to date. In this effort, enzyme activators can be invaluable tools useful as gain-of-function reagents to interrogate the biological roles in cells and in vivo of PRMTs. Yet the identification of such molecules is rarely pursued. Herein we describe a series of aryl ureido acetamido indole carboxylates (dubbed “uracandolates”), able to increase the methylation of histone- (H3) or non-histone (polyadenylate-binding protein 1, PABP1) substrates induced by coactivator-associated arginine methyltransferase 1 (CARM1), both in in vitro and cellular settings. To the best of our knowledge, this is the first report of compounds acting as CARM1 activators. PMID:23095008

  9. A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation.

    PubMed

    Li, Zhonghan; Rana, Tariq M

    2012-01-01

    Somatic cells can be reprogrammed to form embryonic stem cell-like induced pluripotent stem cells (iPSCs), but the process suffers from low efficiency and the underlying molecular mechanisms that control reprogramming remain poorly understood. Here we perform an inhibitor screen to identify kinases that enhance, or present a barrier to, reprogramming. In particular, inhibitors of p38, inositol trisphosphate 3-kinase, and Aurora A kinase potently enhance iPSC generation, and iPSCs derived from inhibitor-treated somatic cells are capable of reaching a fully reprogrammed state. Knockdown of target kinases by short interfering RNAs confirms that they function as barrier genes. We show that Aurora A kinase, which functions in centrosome activity and spindle assembly, is highly induced during reprogramming and inhibits Akt-mediated inactivation of GSK3β, resulting in compromised reprogramming efficiency. Together, our results not only identify new compounds that enhance iPSC generation but also shed new light on the function of Aurora A kinase in the reprogramming process.

  10. Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods.

    PubMed

    Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Boopathi, Karunakara Moorthy; Tu, Wei-Chen; Chang, Yia-Chung; Chu, Chih-Wei

    2016-08-08

    The ITO-free inverted SMPV1:PC71BM solar cells with an Al doped ZnO (AZO) transparent electrodes are fabricated. The AZO thin film prepared by pulsed laser deposition (PLD) technique exhibits high transmission (>85%) and low sheet resistance (~30 Ω/sq) and the power conversion efficiency (PCE) of devices based on AZO electrode can reach around 4%. To further enhance the light harvesting of the absorption layer of solar cells, ZnO nanorods interlayer is grown on the AZO layer before the deposition the active layer. The absorption spectrums of devices under various conditions are also simulated by RCWA method to identify the optical saturation length of the ZnO nanorods. The PCE of ITO-free inverted small molecule solar cell improved with ZnO nanorods can reach 6.6%.

  11. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle

    PubMed Central

    Bultot, Laurent; Jensen, Thomas E.; Lai, Yu-Chiang; Madsen, Agnete L. B.; Collodet, Caterina; Kviklyte, Samanta; Deak, Maria; Yavari, Arash; Foretz, Marc; Ghaffari, Sahar; Bellahcene, Mohamed; Ashrafian, Houman; Rider, Mark H.; Richter, Erik A.

    2016-01-01

    AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory β (β1 and β2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 μM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle. PMID:27577855

  12. Structure-Based Small Molecule Modulation of a Pre-Amyloid State: Pharmacological Enhancement of IAPP Membrane-Binding and Toxicity

    PubMed Central

    Nath, Abhinav; Schlamadinger, Diana E.; Rhoades, Elizabeth; Miranker, Andrew D.

    2015-01-01

    Islet amyloid polypeptide (IAPP) is a peptide hormone whose pathological self-assembly is a hallmark of the progression of type II diabetes. IAPP–membrane interactions catalyze its higher-order self-assembly and also underlie its toxic effects toward cells. While there is great interest in developing small molecule reagents capable of altering the structure and behavior of oligomeric, membrane-bound IAPP, the dynamic and heterogeneous nature of this ensemble makes it recalcitrant to traditional approaches. Here, we build on recent insights into the nature of membrane-bound states and develop a combined computational and experimental strategy to address this problem. The generalized structural approach efficiently identified diverse compounds from large commercial libraries with previously unrecognized activities toward the gain-of-function behaviors of IAPP. The use of appropriate computational prescreening reduced the experimental burden by orders of magnitude relative to unbiased high-throughput screening. We found that rationally targeting experimentally derived models of membrane-bound dimers identified several compounds that demonstrate the remarkable ability to enhance IAPP–membrane binding and one compound that enhances IAPP-mediated cytotoxicity. Taken together, these findings imply that membrane binding per se is insufficient to generate cytotoxicity; instead, enhanced sampling of rare states within the membrane-bound ensemble may potentiate IAPP’s toxic effects. PMID:25966003

  13. Small Molecules in the Cone Snail Arsenal.

    PubMed

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom.

  14. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  15. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    PubMed Central

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; Blancaflor, Elison B.

    2017-01-01

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. Fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH have been used for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, in part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Collectively, our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants. PMID:28112243

  16. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    PubMed Central

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-01-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation. PMID:27282931

  17. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    DOE PAGES

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.; ...

    2017-01-23

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. We used fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, inmore » part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Furthermore, structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.« less

  18. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    NASA Astrophysics Data System (ADS)

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-06-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.

  19. Small-molecule delivery by nanoparticles for anticancer therapy

    PubMed Central

    Chen, Zhuo (Georgia)

    2013-01-01

    Using nanoparticles for the delivery of small molecules in anticancer therapy is a rapidly growing area of research. The advantages of using nanoparticles for drug delivery include enhanced water solubility, tumor-specific accumulation and improved antitumor efficacy, while reducing nonspecific toxicity. Current research in this field focuses on understanding precisely how small molecules are released from nanoparticles and delivered to the targeted tumor tissues or cells, and how the unique biodistribution of the drug-carrying nanoparticles limits toxicity in major organs. Here, we discuss existing nanoparticles for the delivery of small-molecule anticancer agents and recent advances in this field. PMID:20846905

  20. Small-Molecule Carbohydrate-Based Immunostimulants.

    PubMed

    Marzabadi, Cecilia H; Franck, Richard W

    2017-02-03

    In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.

  1. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    NASA Astrophysics Data System (ADS)

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  2. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    PubMed Central

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-01-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices. PMID:27698368

  3. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  4. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  5. Small molecule inhibitors of ebola virus infection.

    PubMed

    Picazo, Edwige; Giordanetto, Fabrizio

    2015-02-01

    Ebola viruses are extremely virulent and highly transmissible. They are responsible for sporadic outbreaks of severe hemorrhagic fevers with human mortality rates of up to 90%. No prophylactic or therapeutic treatments in the form of vaccine, biologicals or small molecule, currently exist. Yet, a wealth of antiviral research on ebola virus is being generated and potential inhibitors have been identified in biological screening and medicinal chemistry programs. Here, we detail the state-of-the-art in small molecule inhibitors of ebola virus infection, with >60 examples, including approved drugs, compounds currently in clinical trials, and more exploratory leads, and summarize the associated in vitro and in vivo evidence for their effectiveness.

  6. Small molecule modifiers of circadian clocks.

    PubMed

    Chen, Zheng; Yoo, Seung-Hee; Takahashi, Joseph S

    2013-08-01

    Circadian clocks orchestrate 24-h oscillations of essential physiological and behavioral processes in response to daily environmental changes. These clocks are remarkably precise under constant conditions yet highly responsive to resetting signals. With the molecular composition of the core oscillator largely established, recent research has increasingly focused on clock-modifying mechanisms/molecules. In particular, small molecule modifiers, intrinsic or extrinsic, are emerging as powerful tools for understanding basic clock biology as well as developing putative therapeutic agents for clock-associated diseases. In this review, we will focus on synthetic compounds capable of modifying the period, phase, or amplitude of circadian clocks, with particular emphasis on the mammalian clock. We will discuss the potential of exploiting these small molecule modifiers in both basic and translational research.

  7. Small molecule control of bacterial biofilms

    PubMed Central

    Worthington, Roberta J.; Richards, Justin J.

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: 1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, 2) chemical library screening for compounds with anti-biofilm activity, and 3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity. PMID:22733439

  8. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power.

  9. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  10. Organic small molecule-based optical coatings

    NASA Astrophysics Data System (ADS)

    Schulz, U.; Präfke, C.; Munzert, P.; Kaiser, N.

    2011-09-01

    A small molecule is a low molecular weight organic compound which is by definition not a polymer. Therefore, physical vapor deposition by evaporation as common for inorganic oxides is often possible. Organic layers can be useful as components of interference stacks for different functions. A number of organic compounds have interesting UV absorption characteristics and can be used to protect UV-sensitive polymers such as polycarbonate. In addition, organic layers can be applied to generate nanostructured thin films with a very low effective refractive index, as shown recently for polymers. A structured organic single layer can be applied as an antireflective (AR) coating for a glass lens. The applicability of several small molecule compounds will be discussed in this paper.

  11. Targeted Protein Degradation by Small Molecules.

    PubMed

    Bondeson, Daniel P; Crews, Craig M

    2017-01-06

    Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of disease-relevant proteins. Here, we review recent advances in the use of small molecules to degrade proteins in a selective manner. First, we highlight all-small-molecule techniques with direct clinical application. Second, we describe techniques that may find broader acceptance in the biomedical research community that require little or no synthetic chemistry. In addition to serving as innovative research tools, these new approaches to control intracellular protein levels offer the potential to develop novel therapeutics targeting proteins that are not currently pharmaceutically vulnerable.

  12. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  13. Designing a small molecule erythropoietin mimetic.

    PubMed

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  14. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine

    PubMed Central

    Grixti, Justine M.; O'Hagan, Steve; Day, Philip J.; Kell, Douglas B.

    2017-01-01

    The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM

  15. Carbon nanotubes for delivery of small molecule drugs.

    PubMed

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.

  16. Physiological roles of small RNA molecules.

    PubMed

    Michaux, Charlotte; Verneuil, Nicolas; Hartke, Axel; Giard, Jean-Christophe

    2014-06-01

    Unlike proteins, RNA molecules have emerged lately as key players in regulation in bacteria. Most reviews hitherto focused on the experimental and/or in silico methods used to identify genes encoding small RNAs (sRNAs) or on the diverse mechanisms of these RNA regulators to modulate expression of their targets. However, less is known about their biological functions and their implications in various physiological responses. This review aims to compile what is known presently about the diverse roles of sRNA transcripts in the regulation of metabolic processes, in different growth conditions, in adaptation to stress and in microbial pathogenesis. Several recent studies revealed that sRNA molecules are implicated in carbon metabolism and transport, amino acid metabolism or metal sensing. Moreover, regulatory RNAs participate in cellular adaptation to environmental changes, e.g. through quorum sensing systems or development of biofilms, and analyses of several sRNAs under various physiological stresses and culture conditions have already been performed. In addition, recent experiments performed with Gram-positive and Gram-negative pathogens showed that regulatory RNAs play important roles in microbial virulence and during infection. The combined results show the diversity of regulation mechanisms and physiological processes in which sRNA molecules are key actors.

  17. Small molecule phagocytosis inhibitors for immune cytopenias.

    PubMed

    Neschadim, Anton; Kotra, Lakshmi P; Branch, Donald R

    2016-08-01

    Immune cytopenias are conditions characterized by low blood cell counts, such as platelets in immune thrombocytopenia (ITP) and red blood cells in autoimmune hemolytic anemia (AIHA). Chronic ITP affects approximately 4 in 100,000 adults annually while AIHA is much less common. Extravascular phagocytosis and massive destruction of autoantibody-opsonized blood cells by macrophages in the spleen and liver are the hallmark of these conditions. Current treatment modalities for ITP and AIHA include the first-line use of corticosteroids; whereas, IVIg shows efficacy in ITP but not AIHA. One main mechanism of action by which IVIg treatment leads to the reduction in platelet destruction rates in ITP is thought to involve Fcγ receptor (FcγR) blockade, ultimately leading to the inhibition of extravascular platelet phagocytosis. IVIg, which is manufactured from the human plasma of thousands of donors, is a limited resource, and alternative treatments, particularly those based on bioavailable small molecules, are needed. In this review, we overview the pathophysiology of ITP, the role of Fcγ receptors, and the mechanisms of action of IVIg in treating ITP, and outline the efforts and progress towards developing novel, first-in-class inhibitors of phagocytosis as synthetic, small molecule substitutes for IVIg in ITP and other conditions where the pathobiology of the disease involves phagocytosis.

  18. Subdiffusion in Membrane Permeation of Small Molecules

    PubMed Central

    Chipot, Christophe; Comer, Jeffrey

    2016-01-01

    Within the solubility–diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t0.7, in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids. PMID:27805049

  19. Subdiffusion in Membrane Permeation of Small Molecules.

    PubMed

    Chipot, Christophe; Comer, Jeffrey

    2016-11-02

    Within the solubility-diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t(0.7), in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids.

  20. Enhancement of Radiation Sensitivity in Lung Cancer Cells by a Novel Small Molecule Inhibitor That Targets the β-Catenin/Tcf4 Interaction.

    PubMed

    Zhang, Qinghao; Gao, Mei; Luo, Guifen; Han, Xiaofeng; Bao, Wenjing; Cheng, Yanyan; Tian, Wang; Yan, Maocai; Yang, Guanlin; An, Jing

    2016-01-01

    Radiation therapy is an important treatment choice for unresectable advanced human lung cancers, and a critical adjuvant treatment for surgery. However, radiation as a lung cancer treatment remains far from satisfactory due to problems associated with radiation resistance in cancer cells and severe cytotoxicity to non-cancer cells, which arise at doses typically administered to patients. We have recently identified a promising novel inhibitor of β-catenin/Tcf4 interaction, named BC-23 (C21H14ClN3O4S), which acts as a potent cell death enhancer when used in combination with radiation. Sequential exposure of human p53-null non-small cell lung cancer (NSCLC) H1299 cells to low doses of x-ray radiation, followed 1 hour later by administration of minimally cytotoxic concentrations of BC-23, resulted in a highly synergistic induction of clonogenic cell death (combination index <1.0). Co-treatment with BC-23 at low concentrations effectively inhibits Wnt/β-catenin signaling and down-regulates c-Myc and cyclin D1 expression. S phase arrest and ROS generation are also involved in the enhancement of radiation effectiveness mediated by BC-23. BC-23 therefore represents a promising new class of radiation enhancer.

  1. Development of novel small molecules for imaging and drug release

    NASA Astrophysics Data System (ADS)

    Cao, Yanting

    last part, a new photo-initiated fluorescent anticancer prodrug for DNA alkylating agent mechlorethamine releasing and monitoring has been developed. The theranostic prodrug consists a photolabile NPE group, an inactive form of mechlorethamine and a nonfluorescent coumarin in one small molecule. It is demonstrated that the prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, while the original parent drug mechlorethamine can be photocontrol-released and induces effective DNA cross-linking activity. Importantly, the drug release progress can be conveniently monitored by the 'off-on' fluorescence enhancement in cells. Moreover, the selective prodrug is not only cell permeable but also nuclear permeable. Therefore, the prodrug serves as a promising drug delivery system for spatiotemporal control release and monitoring of an anticancer drug to obtain the optimal treatment efficacy.

  2. The small-molecule TNF-alpha modulator, UTL-5g, reduces side effects induced by cisplatin and enhances the therapeutic effect of cisplatin in vivo.

    PubMed

    Shaw, JiaJiu; Chen, Ben; Huang, Wen-Hsin; Lee, An-Rong; Media, Joseph; Valeriote, Frederick A

    2011-01-01

    We investigated a small-molecule modulator of tumor necrosis factor alpha (TNF-alpha), UTL-5g (also referred to as GBL-5g), as a potential chemoprotective agent against cisplatin-induced side effects including nephrotoxicity, hepatotoxicity and hematotoxicity. Pretreatment of UTL-5g i.p. in BDF1 mice reduced the levels of blood urea nitrogen (BUN) and creatinine induced by cisplatin treatment. The levels of both aspartate transaminase (AST) and alanine transaminase (ALT) in these animals were also reduced by UTL-5g. Pretreatment of UTL-5g did not significantly affect the number of white blood cells (WBC) under current experimental conditions, yet it markedly increased blood platelet counts by more than threefold. Therapeutic assessment in SCID mice inoculated with human HCT-15 tumor cells showed that UTL-5g did not attenuate the anti-tumor effect of cisplatin but increased the therapeutic efficacy of cisplatin. The LD50 of UTL-5g was determined to be > 2,000 mg/kg by an acute toxicity study. In summary, our studies showed that 1) UTL-5g significantly reduces nephrotoxicity and hepatotoxicity induced by cisplatin in mice, presumably by lowering the levels of TNF-alpha, 2) UTL-5g markedly increased blood platelet counts in mice and 3) UTL-5g treatment increased the therapeutic efficacy of cisplatin against HCT-15 cells inoculated in SCID mice.

  3. Recent advances in developing small molecules targeting RNA.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  4. Small molecule regulators of protein arginine methyltransferases.

    PubMed

    Cheng, Donghang; Yadav, Neelu; King, Randall W; Swanson, Maurice S; Weinstein, Edward J; Bedford, Mark T

    2004-06-04

    Here we report the identification of small molecules that specifically inhibit protein arginine N-methyltransferase (PRMT) activity. PRMTs are a family of proteins that either monomethylate or dimethylate the guanidino nitrogen atoms of arginine side chains. This common post-translational modification is implicated in protein trafficking, signal transduction, and transcriptional regulation. Most methyltransferases use the methyl donor, S-adenosyl-L-methionine (AdoMet), as a cofactor. Current methyltransferase inhibitors display limited specificity, indiscriminately targeting all enzymes that use AdoMet. In this screen we have identified a primary compound, AMI-1, that specifically inhibits arginine, but not lysine, methyltransferase activity in vitro and does not compete for the AdoMet binding site. Furthermore, AMI-1 prevents in vivo arginine methylation of cellular proteins and can modulate nuclear receptor-regulated transcription from estrogen and androgen response elements, thus operating as a brake on certain hormone actions.

  5. Small Molecule Docking from Theoretical Structural Models

    NASA Astrophysics Data System (ADS)

    Novoa, Eva Maria; de Pouplana, Lluis Ribas; Orozco, Modesto

    Structural approaches to rational drug design rely on the basic assumption that pharmacological activity requires, as necessary but not sufficient condition, the binding of a drug to one or several cellular targets, proteins in most cases. The traditional paradigm assumes that drugs that interact only with a single cellular target are specific and accordingly have little secondary effects, while promiscuous molecules are more likely to generate undesirable side effects. However, current examples indicate that often efficient drugs are able to interact with several biological targets [1] and in fact some dirty drugs, such as chlorpromazine, dextromethorphan, and ibogaine exhibit desired pharmacological properties [2]. These considerations highlight the tremendous difficulty of designing small molecules that both have satisfactory ADME properties and the ability of interacting with a limited set of target proteins with a high affinity, avoiding at the same time undesirable interactions with other proteins. In this complex and challenging scenario, computer simulations emerge as the basic tool to guide medicinal chemists during the drug discovery process.

  6. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets.

  7. Captides: rigid junctions between beta sheets and small molecules.

    PubMed

    Kier, Brandon L; Andersen, Niels H

    2014-09-01

    An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped-beta hairpin motif is reported. The constructs can be prepared by standard solid-phase Fmoc chemistry with one to four peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short but fully structured peptide chain(s). Most of this study employs a minimalist nine residue 'captide', a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from the currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed.

  8. Captides: Rigid Junctions between Beta Sheets and Small Molecules

    PubMed Central

    Kier, Brandon L.; Andersen, Niels H.

    2014-01-01

    An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped beta hairpin motif is reported. The constructs can be prepared by standard solid-phase fmoc chemistry with 1 to 4 peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short, but fully structured peptide chain(s). Most of this study employs a minimalist 9 residue “captide”, a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed. PMID:24909552

  9. Proteins and Small Molecules for Cellular Regenerative Medicine

    PubMed Central

    Green, Eric M.

    2013-01-01

    Regenerative medicine seeks to understand tissue development and homeostasis and build on that knowledge to enhance regeneration of injured tissues. By replenishing lost functional tissues and cells, regenerative medicine could change the treatment paradigm for a broad range of degenerative and ischemic diseases. Multipotent cells hold promise as potential building blocks for regenerating lost tissues, but successful tissue regeneration will depend on comprehensive control of multipotent cells–differentiation into a target cell type, delivery to a desired tissue, and integration into a durable functional structure. At each step of this process, proteins and small molecules provide essential signals and, in some cases, may themselves act as effective therapies. Identifying these signals is thus a fundamental goal of regenerative medicine. In this review we discuss current progress using proteins and small molecules to regulate tissue regeneration, both in combination with cellular therapies and as monotherapy. PMID:23303911

  10. Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules.

    PubMed

    Wang, Jianlong; Munir, Ahsan; Zhu, Zanzan; Zhou, H Susan

    2010-08-15

    Magnetic nanoparticles (MNPs) have been frequently used in bioseparation, but their applicability in bioassays is limited due to their extremely small size so that sensitive detection is difficult to achieve using a general technique. Here, we present an amplification technique using MNPs for an enhanced surface plasmon resonance (SPR) bioassay. The amplification effect of carboxyl group modified Fe(3)O(4) MNPs of two sizes on SPR spectroscopy is first demonstrated by assembling MNPs on amino group modified SPR gold substrate. To further evaluate the feasibility of the use of Fe(3)O(4) MNPs in enhancing a SPR bioassay, a novel SPR sensor based on an indirect competitive inhibition assay (ICIA) is developed for detecting adenosine by employing Fe(3)O(4) MNP-antiadenosine aptamer conjugates as the amplification reagent. The results confirm that Fe(3)O(4) MNPs can be used as a powerful amplification agent to provide a sensitive approach to detect adenosine by SPR within the range of 10-10,000 nM, which is much superior to the detection result obtained by a general SPR sensor. Importantly, the present detection methodology could be easily extended to detect other biomolecules of interest by changing the corresponding aptamer in Fe(3)O(4) MNP-aptamer conjugates. This novel technique not only explores the possibility of the use of SPR spectroscopy in a highly sensitive detection of an MNP-based separation product but also offers a new direction in the use of Fe(3)O(4) MNPs as an amplification agent to design high performance SPR biosensors.

  11. First-in-class small molecule potentiators of cancer virotherapy

    PubMed Central

    Dornan, Mark H.; Krishnan, Ramya; Macklin, Andrew M.; Selman, Mohammed; El Sayes, Nader; Son, Hwan Hee; Davis, Colin; Chen, Andrew; Keillor, Kerkeslin; Le, Penny J.; Moi, Christina; Ou, Paula; Pardin, Christophe; Canez, Carlos R.; Le Boeuf, Fabrice; Bell, John C.; Smith, Jeffrey C.; Diallo, Jean-Simon; Boddy, Christopher N.

    2016-01-01

    The use of engineered viral strains such as gene therapy vectors and oncolytic viruses (OV) to selectively destroy cancer cells is poised to make a major impact in the clinic and revolutionize cancer therapy. In particular, several studies have shown that OV therapy is safe and well tolerated in humans and can infect a broad range of cancers. Yet in clinical studies OV therapy has highly variable response rates. The heterogeneous nature of tumors is widely accepted to be a major obstacle for OV therapeutics and highlights a need for strategies to improve viral replication efficacy. Here, we describe the development of a new class of small molecules for selectively enhancing OV replication in cancer tissue. Medicinal chemistry studies led to the identification of compounds that enhance multiple OVs and gene therapy vectors. Lead compounds increase OV growth up to 2000-fold in vitro and demonstrate remarkable selectivity for cancer cells over normal tissue ex vivo and in vivo. These small molecules also demonstrate enhanced stability with reduced electrophilicity and are highly tolerated in animals. This pharmacoviral approach expands the scope of OVs to include resistant tumors, further potentiating this transformative therapy. It is easily foreseeable that this approach can be applied to therapeutically enhance other attenuated viral vectors. PMID:27226390

  12. Database of small molecule thermochemistry for combustion.

    PubMed

    Goldsmith, C Franklin; Magoon, Gregory R; Green, William H

    2012-09-13

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems.

  13. Finding small molecules for the ‘next Ebola’

    PubMed Central

    Ekins, Sean; Southan, Christopher; Coffee, Megan

    2015-01-01

    The current Ebola virus epidemic may provide some suggestions of how we can better prepare for the next pathogen outbreak. We propose several cost effective steps that could be taken that would impact the discovery and use of small molecule therapeutics including: 1. text mine the literature, 2. patent assignees and/or inventors should openly declare their relevant filings, 3. reagents and assays could be commoditized, 4. using manual curation to enhance database links, 5. engage database and curation teams, 6. consider open science approaches, 7. adapt the “box” model for shareable reference compounds, and 8. involve the physician’s perspective. PMID:25949804

  14. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  15. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  16. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA.

  17. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer

    PubMed Central

    Ren, Tao; Shan, Jinlu; Li, Mengxia; Qing, Yi; Qian, Chengyuan; Wang, Guangjie; Li, Qing; Lu, Guoshou; Li, Chongyi; Peng, Yu; Luo, Hao; Zhang, Shiheng; Yang, Yuxing; Cheng, Yi; Wang, Dong; Zhou, Shu-Feng

    2015-01-01

    AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients. PMID:26089640

  18. TSH Receptor Signaling Abrogation by a Novel Small Molecule

    PubMed Central

    Latif, Rauf; Realubit, Ronald B.; Karan, Charles; Mezei, Mihaly; Davies, Terry F.

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves’ disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3–0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin – a post receptor activator of adenylyl cyclase – confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has

  19. X-ray characterization of solid small molecule organic materials

    SciTech Connect

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  20. Bioinspired assembly of small molecules in cell milieu.

    PubMed

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-03-30

    Self-assembly, the autonomous organization of components to form patterns or structures, is a prevalent process in nature at all scales. Particularly, biological systems offer remarkable examples of diverse structures (as well as building blocks) and processes resulting from self-assembly. The exploration of bioinspired assemblies not only allows for mimicking the structures of living systems, but it also leads to functions for applications in different fields that benefit humans. In the last several decades, efforts on understanding and controlling self-assembly of small molecules have produced a large library of candidates for developing the biomedical applications of assemblies of small molecules. Moreover, recent findings in biology have provided new insights on the assemblies of small molecules to modulate essential cellular processes (such as apoptosis). These observations indicate that the self-assembly of small molecules, as multifaceted entities and processes to interact with multiple proteins, can have profound biological impacts on cells. In this review, we illustrate that the generation of assemblies of small molecules in cell milieu with their interactions with multiple cellular proteins for regulating cellular processes can result in primary phenotypes, thus providing a fundamentally new molecular approach for controlling cell behavior. By discussing the correlation between molecular assemblies in nature and the assemblies of small molecules in cell milieu, illustrating the functions of the assemblies of small molecules, and summarizing some guiding principles, we hope this review will stimulate more molecular scientists to explore the bioinspired self-assembly of small molecules in cell milieu.

  1. Omnidirectional and broadband optical absorption enhancement in small molecule organic solar cells by a patterned MoO3/Ag/MoO3 transparent anode

    NASA Astrophysics Data System (ADS)

    Tian, Ximin; Hao, Yuying; Zhang, Ye; Cui, Yanxia; Ji, Ting; Wang, Hua; Wei, Bin; Huang, Wei

    2015-03-01

    We designed and calculated a novel organic solar cell (OSC) with MoO3/Ag/MoO3 (MAM) grating as transparent anode and the patterned copper phthalocyanine (CuPc)/fullerence (C60) as active layer. The numerical results indicate that a broadband, omnidirectional light absorption enhancement is realized by utilizing such a one-dimensional (1D) grating with core-shell structure. The total absorption efficiency of the active layer over the wavelength range from 400 to 900 nm is enhanced by 178.88%, 19.44% and 99.16% relative to the equivalent planar cell considering the weight of air-mass 1.5 global (AM 1.5G) solar spectrum at normally incident transverse magnetic (TM), transverse electric (TE) and TM/TE hybrid polarized light, respectively. The improved light trapping is attributed to the multiple modes hybridization of propagating surface plasmon polaritons (SPPs), localized surface plasmons (LSPs) and the strong coupling of SPP waves at TM polarization along with the Floquet modes at TE polarization. Furthermore, the proposed optimized architecture also exhibits an expected short-circuit current density (Jsc) with the value of 11.11 mA/cm2 in theory, which is increased by 116.6% compared with that of the planar control device.

  2. Targeting the undruggable proteome: the small molecules of my dreams.

    PubMed

    Crews, Craig M

    2010-06-25

    Biologically active small molecules have long proven useful in the exploration of cell biology. Although many early compounds were by-products of drug development efforts, recent increased small molecule screening efforts in academia have expanded the repertoire of biological processes investigated to include areas of biology that are not of immediate pharmaceutical interest. Many of these new bioassays score for small molecule-induced phenotypic changes at the cellular or even organismal level and thus have been described as "chemical genetic" screens. However, this analogy with traditional genetic screens is misleading; although each gene has roughly an equivalent chance of being mutated in a traditional genetic screen, the amount of "proteomic space" that a chemical genetics approach can reach using current small molecule libraries is considerably smaller. Thus, new chemical biology methodologies are needed to target the remaining "undruggable proteome" with small druglike molecules.

  3. Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using 'click chemistry'.

    PubMed

    Kaschani, Farnusch; Verhelst, Steven H L; van Swieten, Paul F; Verdoes, Martijn; Wong, Chung-Sing; Wang, Zheming; Kaiser, Markus; Overkleeft, Herman S; Bogyo, Matthew; van der Hoorn, Renier A L

    2009-01-01

    Small molecules offer unprecedented opportunities for plant research since plants respond to, metabolize, and react with a diverse range of endogenous and exogenous small molecules. Many of these small molecules become covalently attached to proteins. To display these small molecule targets in plants, we introduce a two-step labelling method for minitagged small molecules. Minitags are small chemical moieties (azide or alkyne) that are inert under biological conditions and have little influence on the membrane permeability and specificity of the small molecule. After labelling, proteomes are extracted under denaturing conditions and minitagged proteins are coupled to reporter tags through a 'click chemistry' reaction. We introduce this two-step labelling procedure in plants by studying the well-characterized targets of E-64, a small molecule cysteine protease inhibitor. In contrast to biotinylated E-64, minitagged E-64 efficiently labels vacuolar proteases in vivo. We displayed, purified and identified targets of a minitagged inhibitor that targets the proteasome and cysteine proteases in living plant cells. Chemical interference assays with inhibitors showed that MG132, a frequently used proteasome inhibitor, preferentially inhibits cysteine proteases in vivo. The two-step labelling procedure can be applied on detached leaves, cell cultures, seedlings and other living plant tissues and, when combined with photoreactive groups, can be used to identify targets of herbicides, phytohormones and reactive small molecules selected from chemical genetic screens.

  4. Small Talk: Children's Everyday `Molecule' Ideas

    NASA Astrophysics Data System (ADS)

    Jakab, Cheryl

    2013-08-01

    This paper reports on 6-11-year-old children's `sayings and doings' (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, Cultural Studies of Science Education 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's everyday awareness of and meaning-making with cultural molecular artefacts. Our everyday world is populated with an ever increasing range of molecular or nanoworld words, symbols, images, and games. What do children today say about these artefacts that are used to represent molecular world entities? What are the material and social resources that can influence a child's everyday and developing scientific ideas about `molecules'? How do children interact with these cognitive tools when given expert assistance? What meaning-making is afforded when children are socially and materially assisted in using molecular tools in early chemical and nanoworld thinking? Tool-dependent discursive studies show that provision of cultural artefacts can assist and direct developmental thinking across many domains of science (Schoultz et al., Human Development 44:103-118, 2001; Siegal 2008). Young children's use of molecular artefacts as cognitive tools has not received much attention to date (Jakab 2009a, b). This study shows 6-11-year-old children expressing everyday ideas of molecular artefacts and raising their own questions about the artefacts. They are seen beginning to domesticate (Erneling 2010) the words, symbols, and images to their own purposes when given the opportunity to interact with such artefacts in supported activity. Discursive analysis supports the notion that using `molecules' as cultural tools can help young children to begin `putting on molecular spectacles' (Kind 2004). Playing with an interactive game (ICT) is shown to be particularly helpful in assisting children's early meaning-making with representations of molecules, atoms, and their chemical symbols.

  5. Novel Small-Molecule Antibacterial Agents

    DTIC Science & Technology

    2014-07-01

    Molecules, Reversible Inhibitors, Irreversible Inhibitors, Therapeutics, Antidotes, Countermeasures, Botulism , and Neurotoxins. REPORT DOCUMENTATION...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 W911NF-09-1-0095 507-266-7991 Final Report 56085-LS.6 a. REPORT 14. ABSTRACT 16...8,404,728 B2) is 71 ± 26 nM (2 independent experiments with chi square 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES

  6. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  7. Sorption of small molecules in polymeric media

    NASA Astrophysics Data System (ADS)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  8. Highly Parallel Translation of DNA Sequences into Small Molecules

    PubMed Central

    Weisinger, Rebecca M.; Wrenn, S. Jarrett; Harbury, Pehr B.

    2012-01-01

    A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 1010 to 1015 distinct molecules for the discovery of nanomolar-affinity ligands to proteins.[1], [2], [3], [4], [5] Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands.[6], [7] Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons.[8] Creating a collection of 1010 to 1015 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments. PMID:22479303

  9. The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency1[OPEN

    PubMed Central

    Poretska, Olena; Yang, Saiqi; Rozhon, Wilfried; Zwerger, Karin; Uribe, Marcos Castellanos; May, Sean; McCourt, Peter

    2016-01-01

    ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. In this work we evaluated the level of functional conservation between AMP1 and its human homolog HsGCPII, a tumor marker of medical interest. We show that HsGCPII cannot substitute AMP1 in planta and that an HsGCPII-specific inhibitor does not evoke amp1-specific phenotypes. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. We assessed the structural requirements of HP activity and excluded that it is a cytokinin analog. HP-treated wild-type plants showed amp1-related tissue-specific changes of various marker genes and a significant transcriptomic overlap with the mutant. HP was ineffective in amp1 and elevated the protein levels of PHAVOLUTA, consistent with the postulated role of AMP1 in miRNA-controlled translation, further supporting an AMP1-related mode of action. Our work suggests that plant and animal members of the M28 family of proteases adopted unrelated functions. With HP we provide a tool to characterize the plant-specific functions of this important class of proteins. PMID:27208298

  10. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Ruscito, Annamaria; DeRosa, Maria

    2016-05-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  11. The Bichromatic Force on Small Molecules

    NASA Astrophysics Data System (ADS)

    Aldridge, Leland M.; Galica, Scott E.; Sheets, Donal; Eyler, Edward E.

    2016-06-01

    The bichromatic force is a coherent optical force that has been demonstrated to exceed the saturated radiative force from a monochromatic cw laser by orders of magnitude in atomic systems. By stimulating photon emission between two states, the bichromatic force allows us to increase the photon scattering rate beyond the spontaneous emission rate while also suppressing decays into dark states. We present studies of the efficacy of the bichromatic force on molecular systems using the test cases of B-X (0,0), P11(1.5)/^PQ12(0.5) in CaF and tilde{A}(000)-tilde{X}(000), P11(1.5)/^PQ12(0.5) in the linear triatomic molecule SrOH. Computational results from detailed multilevel models indicate that both of these molecular systems are suitable for the use of the bichromatic force, with neither repumping nor magnetic destabilization of dark states interrupting the coherent cycling at the heart of the force. We comment on the applicability of the bichromatic force to arbitrary polyatomic molecules, and present our experimental progress in demonstrating the bichromatic force on CaF and possibly on SrOH. Supported by the National Science Foundation.

  12. Molecular Responses to Small Regulating Molecules against Huanglongbing Disease

    PubMed Central

    Martinelli, Federico; Dolan, David; Fileccia, Veronica; Reagan, Russell L.; Phu, My; Spann, Timothy M.; McCollum, Thomas G.; Dandekar, Abhaya M.

    2016-01-01

    Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. Two trials were conducted: one in the greenhouse and the other in the orchard. In the greenhouse study, responses of 42 key genes involved in sugar and starch metabolism, hormone-related pathways, biotic stress responses, and secondary metabolism in treated and untreated mature leaves were analyzed. TGA5 was significantly induced by arginine. Benzyladenine and gibberellins enhanced two important genes involved in biotic stress responses: WRKY54 and WRKY59. Sucrose combined with atrazine mainly upregulated key genes involved in carbohydrate metabolism such as sucrose-phosphate synthase, sucrose synthase, starch synthase, and α-amylase. Atrazine also affected expression of some key genes involved in systemic acquired resistance such as EDS1, TGA6, WRKY33, and MYC2. Several treatments upregulated HSP82, which might help protect protein folding and integrity. A subset of key genes was chosen as biomarkers for molecular responses to treatments under field conditions. GPT2 was downregulated by all small-molecule treatments. Arginine-induced genes involved in systemic acquired resistance included PR1, WRKY70, and EDS1. These molecular data encourage long-term application of treatments that combine these regulating molecules in field trials. PMID:27459099

  13. Coacervate delivery systems for proteins and small molecule drugs

    PubMed Central

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future. PMID:25138695

  14. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery.

  15. Selection and Biosensor Application of Aptamers for Small Molecules

    PubMed Central

    Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging. PMID:27379229

  16. Probing translation using small molecule inhibitors

    PubMed Central

    Blanchard, Scott C.; Cooperman, Barry S.; Wilson, Daniel N.

    2010-01-01

    Summary The translational apparatus of the bacterial cell remains one of the principal targets of antibiotics for the clinical treatment of infection worldwide. Since the introduction of specific translation inhibitors into clinical practise in the late 1940’s, intense efforts have been made to understand their precise mechanisms of action. Such research has often revealed significant and sometimes unexpected insights into many fundamental aspects of the translation mechanism. Central to progress in this area, high-resolution crystal structures of the bacterial ribosome identifying the sites of antibiotic binding are now available, which, together with recent developments in single-molecule and fast-kinetic approaches, provide an integrated view of the dynamic translation process. Assays employing these approaches and focusing on specific steps of the overall translation process are amenable for drug-screening. Such assays, coupled with structural studies, have the potential not only to accelerate the discovery of novel and effective antimicrobial agents, but also to refine our understanding of the translation mechanism, since antibiotics often stabilize specific functional states of the ribosome and allow distinct translation steps to be dissected in molecular detail. PMID:20609413

  17. Small molecules as therapeutic agents for inborn errors of metabolism.

    PubMed

    Matalonga, Leslie; Gort, Laura; Ribes, Antonia

    2017-03-01

    Most inborn errors of metabolism (IEM) remain without effective treatment mainly due to the incapacity of conventional therapeutic approaches to target the neurological symptomatology and to ameliorate the multisystemic involvement frequently observed in these patients. However, in recent years, the therapeutic use of small molecules has emerged as a promising approach for treating this heterogeneous group of disorders. In this review, we focus on the use of therapeutically active small molecules to treat IEM, including readthrough agents, pharmacological chaperones, proteostasis regulators, substrate inhibitors, and autophagy inducers. The small molecules reviewed herein act at different cellular levels, and this knowledge provides new tools to set up innovative treatment approaches for particular IEM. We review the molecular mechanism underlying therapeutic properties of small molecules, methodologies used to screen for these compounds, and their applicability in preclinical and clinical practice.

  18. A Prospective Method to Guide Small Molecule Drug Design

    ERIC Educational Resources Information Center

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  19. Biocatalysts and their small molecule products from metagenomic studies

    PubMed Central

    Iqbal, Hala A.; Feng, Zhiyang; Brady, Sean F.

    2012-01-01

    The vast majority of bacteria present in environmental samples have never been cultured and therefore they have not been available to exploit their ability to produce useful biocatalysts or collections of biocatalysts that can biosynthesize interesting small molecules. Metagenomic libraries constructed using DNA extracted directly from natural bacterial communities offer access to the genetic information present in the genomes of these as yet uncultured bacteria. This review highlights recent efforts to recover both discrete enzymes and small molecules from metagenomic libraries. PMID:22455793

  20. The dynamics of small molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Posthumus, J. H.

    2004-05-01

    In the past decade, the understanding of the dynamics of small molecules in intense laser fields has advanced enormously. At the same time, the technology of ultra-short pulsed lasers has equally progressed to such an extent that femtosecond lasers are now widely available. This review is written from an experimentalist's point of view and begins by discussing the value of this research and defining the meaning of the word 'intense'. It continues with describing the Ti : sapphire laser, including topics such as pulse compression, chirped pulse amplification, optical parametric amplification, laser-pulse diagnostics and the absolute phase. Further aspects include focusing, the focal volume effect and space charge. The discussion of physics begins with the Keldysh parameter and the three regimes of ionization, i.e. multi-photon, tunnelling and over-the-barrier. Direct-double ionization (non-sequential ionization), high-harmonic generation, above-threshold ionization and attosecond pulses are briefly mentioned. Subsequently, a theoretical calculation, which solves the time-dependent Schrödinger equation, is compared with an experimental result. The dynamics of H_{2}^{ + } in an intense laser field is interpreted in terms of bond-softening, vibrational trapping (bond-hardening), below-threshold dissociation and laser-induced alignment of the molecular axis. The final section discusses the modified Franck-Condon principle, enhanced ionization at critical distances and Coulomb explosion of diatomic and triatomic molecules.

  1. Incorporation of labeled small molecules into rubratoxin.

    PubMed

    Emeh, C O; Marth, E H

    1978-07-01

    A sterile glucose-mineral salts broth was inoculated with conidia of Penicillium rubrum P-13 and P-3290. Radiolabeled compounds were added to some cultures, these being incubated quiescently at 28 degrees C for 14 days. Other stationary cultures were grown for 21 days, received labeled compounds, and were then grown for 5 more days. The remaining cultures were inoculated with 72-h-old mycelial pellets, received labeled materials and were incubated with shaking for 60 h. Rubratoxin was resolved by thin-layer chromatography. Labeled [1(14)C]acetate, [1,5(14)C]citrate, [2(14)C]malonate, [1(14)C]glucose, [U14C]glucose or [1(14)C]hexanoate were incorporated into rubratoxins A and B by P. rubrum 3290 and into rubratoxin B by P. rubrum 13. Incorporation of [1(14)C]acetate and [2(14)C]malonate increased when exogenous unlabeled acetate, malonate, pyruvate, or phosphoenol-pyruvate was added. Acetate incorporation was influenced by cultural conditions, attaining maximum amounts in quiescent cultures which received labeled acetate after 21 days of incubation. Acetate incorporation in shake cultures was enhanced by reduced nicotinamide adenine dinucleotide phosphate (NADPH) and by unlabeled exogenous citrate.

  2. Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

    PubMed Central

    2017-01-01

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs. PMID:28386598

  3. FDA-approved small-molecule kinase inhibitors.

    PubMed

    Wu, Peng; Nielsen, Thomas E; Clausen, Mads H

    2015-07-01

    Kinases have emerged as one of the most intensively pursued targets in current pharmacological research, especially for cancer, due to their critical roles in cellular signaling. To date, the US FDA has approved 28 small-molecule kinase inhibitors, half of which were approved in the past 3 years. While the clinical data of these approved molecules are widely presented and structure-activity relationship (SAR) has been reported for individual molecules, an updated review that analyzes all approved molecules and summarizes current achievements and trends in the field has yet to be found. Here we present all approved small-molecule kinase inhibitors with an emphasis on binding mechanism and structural features, summarize current challenges, and discuss future directions in this field.

  4. Discovery of small molecule cancer drugs: successes, challenges and opportunities.

    PubMed

    Hoelder, Swen; Clarke, Paul A; Workman, Paul

    2012-04-01

    The discovery and development of small molecule cancer drugs has been revolutionised over the last decade. Most notably, we have moved from a one-size-fits-all approach that emphasized cytotoxic chemotherapy to a personalised medicine strategy that focuses on the discovery and development of molecularly targeted drugs that exploit the particular genetic addictions, dependencies and vulnerabilities of cancer cells. These exploitable characteristics are increasingly being revealed by our expanding understanding of the abnormal biology and genetics of cancer cells, accelerated by cancer genome sequencing and other high-throughput genome-wide campaigns, including functional screens using RNA interference. In this review we provide an overview of contemporary approaches to the discovery of small molecule cancer drugs, highlighting successes, current challenges and future opportunities. We focus in particular on four key steps: Target validation and selection; chemical hit and lead generation; lead optimization to identify a clinical drug candidate; and finally hypothesis-driven, biomarker-led clinical trials. Although all of these steps are critical, we view target validation and selection and the conduct of biology-directed clinical trials as especially important areas upon which to focus to speed progress from gene to drug and to reduce the unacceptably high attrition rate during clinical development. Other challenges include expanding the envelope of druggability for less tractable targets, understanding and overcoming drug resistance, and designing intelligent and effective drug combinations. We discuss not only scientific and technical challenges, but also the assessment and mitigation of risks as well as organizational, cultural and funding problems for cancer drug discovery and development, together with solutions to overcome the 'Valley of Death' between basic research and approved medicines. We envisage a future in which addressing these challenges will enhance

  5. Discovery of small molecule cancer drugs: Successes, challenges and opportunities

    PubMed Central

    Hoelder, Swen; Clarke, Paul A.; Workman, Paul

    2012-01-01

    The discovery and development of small molecule cancer drugs has been revolutionised over the last decade. Most notably, we have moved from a one-size-fits-all approach that emphasized cytotoxic chemotherapy to a personalised medicine strategy that focuses on the discovery and development of molecularly targeted drugs that exploit the particular genetic addictions, dependencies and vulnerabilities of cancer cells. These exploitable characteristics are increasingly being revealed by our expanding understanding of the abnormal biology and genetics of cancer cells, accelerated by cancer genome sequencing and other high-throughput genome-wide campaigns, including functional screens using RNA interference. In this review we provide an overview of contemporary approaches to the discovery of small molecule cancer drugs, highlighting successes, current challenges and future opportunities. We focus in particular on four key steps: Target validation and selection; chemical hit and lead generation; lead optimization to identify a clinical drug candidate; and finally hypothesis-driven, biomarker-led clinical trials. Although all of these steps are critical, we view target validation and selection and the conduct of biology-directed clinical trials as especially important areas upon which to focus to speed progress from gene to drug and to reduce the unacceptably high attrition rate during clinical development. Other challenges include expanding the envelope of druggability for less tractable targets, understanding and overcoming drug resistance, and designing intelligent and effective drug combinations. We discuss not only scientific and technical challenges, but also the assessment and mitigation of risks as well as organizational, cultural and funding problems for cancer drug discovery and development, together with solutions to overcome the ‘Valley of Death’ between basic research and approved medicines. We envisage a future in which addressing these challenges will

  6. Integrated Analysis Identifies Interaction Patterns between Small Molecules and Pathways

    PubMed Central

    Li, Yan; Li, Weiguo; Chen, Xin; Sun, Jiatong; Chen, Huan; Lv, Sali

    2014-01-01

    Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy. PMID:25114931

  7. Design and applications of bifunctional small molecules: Why two heads are better than one

    PubMed Central

    Corson, Timothy W.; Aberle, Nicholas; Crews, Craig M.

    2009-01-01

    Induction of protein-protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based “Chemical Inducers of Dimerization”, but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACS), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This review discusses these and other advances in the design and use of bifunctional small molecules, and potential strategies for future systems. PMID:19112665

  8. Nanoscale Assemblies of Small Molecules Control the Fate of Cells.

    PubMed

    Shi, Junfeng; Xu, Bing

    2015-10-01

    Being driven by non-covalent interactions, the formation of functional assemblies (or aggregates) of small molecules at nanoscale is a more common process in water than one would think. While most efforts on self-assembly in cellular environment concentrate on the assemblies of proteins (e.g., microtubules or amyloid fibers), nanoscale assemblies of small molecules are emerging functional entities that exhibit important biological function in cellular environments. This review describes the increasing efforts on the exploration of nanoscale assemblies of small molecules that largely originate from the serendipitous observations in research fields other than nanoscience and technology. Specifically, we describe that nanoscale assemblies of small molecules exhibit unique biological functions in extracellular and intracellular environment, thus inducing various cellular responses, like causing cell death or promoting cell proliferation. We first survey certain common feature of nanoscale molecular assemblies, then discuss several specific examples, such as, nanoscale assemblies of small peptides accumulated in the cells for selectively inhibiting cancer cells via promiscuous interactions with proteins, and nanoscale assemblies of a glycoconjugate for promoting the proliferation of stem cells or for suppressing immune responses. Subsequently, we emphasize the spatiotemporal control of nanoscale assemblies for controlling the cell fate, particularly illustrate a paradigm-shifting approach-enzyme-instructed self-assembly (EISA), that is, the integration of enzymatic reaction and self-assembly-for generating nanoscale assemblies from innocuous monomers for selectively inhibiting cancer cells. Moreover, we introduce a convenient assay for proteomic study of the proteins that interact with nanoscale assemblies of small molecules in cellular environment. Furthermore, we introduce the use of ligand-receptor interaction to catalyze the formation of nanoscale assemblies. By

  9. Strongly enhanced field-dependent single-molecule electroluminescence

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Gonzalez, Jose I.; Dickson, Robert M.

    2002-08-01

    Individual, strongly electroluminescent Agn molecules (n = 28 atoms) have been electrically written within otherwise nonemissive silver oxide films. Exhibiting characteristic single-molecule behavior, these individual room-temperature molecules exhibit extreme electroluminescence enhancements (>104 vs. bulk and dc excitation on a per molecule basis) when excited with specific ac frequencies. Occurring through field extraction of electrons with subsequent reinjection and radiative recombination, single-molecule electroluminescence is enhanced by a general mechanism that avoids slow bulk material response. Thus, while we detail strong electroluminescence from single, highly fluorescent Agn molecules, this mechanism also yields strong ac-excited electroluminescence from similarly prepared, but otherwise nonemissive, individual Cu nanoclusters.

  10. Strategy to discover diverse optimal molecules in the small molecule universe.

    PubMed

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  11. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of

  12. Augmented-plane-wave calculations on small molecules

    SciTech Connect

    Serena, P.A.; Baratoff, A. ); Soler, J.M. )

    1993-07-15

    We have performed [ital ab] [ital initio] calculations on a wide range of small molecules, demonstrating the accuracy and flexibility of an alternative method for calculating the electronic structure of molecules, solids, and surfaces. It is based on the local-density approximation (LDA) for exchange and correlation and the nonlinear augmented-plane-wave method. Very accurate atomic forces are obtained directly. This allows for implementation of Car-Parrinello-like techniques to determine simultaneously the self-consistent electron wave functions and the equilibrium atomic positions within an iterative scheme. We find excellent agreement with the best existing LDA-based calculations and remarkable agreement with experiment for the equilibrium geometries, vibrational frequencies, and dipole moments of a wide variety of molecules, including strongly bound homopolar and polar molecules, hydrogen-bound and electron-deficient molecules, and weakly bound alkali and noble-metal dimers, although binding energies are overestimated.

  13. Cancer Immunotherapy: Selected Targets and Small-Molecule Modulators.

    PubMed

    Weinmann, Hilmar

    2016-03-04

    There is a significant amount of excitement in the scientific community around cancer immunotherapy, as this approach has renewed hope for many cancer patients owing to some recent successes in the clinic. Currently available immuno-oncology therapeutics under clinical development and on the market are mostly biologics (antibodies, proteins, engineered cells, and oncolytic viruses). However, modulation of the immune system with small molecules offers several advantages that may be complementary and potentially synergistic to the use of large biologicals. Therefore, the discovery and development of novel small-molecule modulators is a rapidly growing research area for medicinal chemists working in cancer immunotherapy. This review provides a brief introduction into recent trends related to selected targets and pathways for cancer immunotherapy and their small-molecule pharmacological modulators.

  14. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery.

  15. Near-Infrared Lasing from Small-Molecule Organic Hemispheres.

    PubMed

    Wang, Xuedong; Liao, Qing; Li, Hui; Bai, Shuming; Wu, Yishi; Lu, Xiaomei; Hu, Huaiyuan; Shi, Qiang; Fu, Hongbing

    2015-07-29

    Near-infrared (NIR) lasers are key components for applications, such as telecommunication, spectroscopy, display, and biomedical tissue imaging. Inorganic III-V semiconductor (GaAs) NIR lasers have achieved great successes but require expensive and sophisticated device fabrication techniques. Organic semiconductors exhibit chemically tunable optoelectronic properties together with self-assembling features that are well suitable for low-temperature solution processing. Major blocks in realizing NIR organic lasing include low stimulated emission of narrow-bandgap molecules due to fast nonradiative decay and exciton-exciton annihilation, which is considered as a main loss channel of population inversion for organic lasers under high carrier densities. Here we designed and synthesized the small organic molecule (E)-3-(4-(di-p-tolylamino)phenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one (DPHP) with amphiphilic nature, which elaborately self-assembles into micrometer-sized hemispheres that simultaneously serves as the NIR emission medium with a photoluminescence quantum efficiency of ∼15.2%, and the high-Q (∼1.4 × 10(3)) whispering gallery mode microcavity. Moreover, the radiative rate of DPHP hemispheres is enhanced up to ∼1.98 × 10(9) s(-1) on account of the exciton-vibrational coupling in the solid state with the J-type molecular-coupling component, and meanwhile the exciton-exciton annihilation process is eliminated. As a result, NIR lasing with a low threshold of ∼610 nJ/cm(2) is achieved in the single DPHP hemisphere at room temperature. Our demonstration is a major step toward incorporating the organic coherent light sources into the compact optoelectronic devices at NIR wavelengths.

  16. Small-molecule discovery from DNA-encoded chemical libraries.

    PubMed

    Kleiner, Ralph E; Dumelin, Christoph E; Liu, David R

    2011-12-01

    Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.

  17. Diffusion of small molecules into medaka embryos improved by electroporation

    PubMed Central

    2013-01-01

    Background Diffusion of small molecules into fish embryos is essential for many experimental procedures in developmental biology and toxicology. Since we observed a weak uptake of lithium into medaka eggs we started a detailed analysis of its diffusion properties using small fluorescent molecules. Results Contrary to our expectations, not the rigid outer chorion but instead membrane systems surrounding the embryo/yolk turned out to be the limiting factor for diffusion into medaka eggs. The consequence is a bi-phasic uptake of small molecules first reaching the pervitelline space with a diffusion half-time in the range of a few minutes. This is followed by a slow second phase (half-time in the range of several hours) during which accumulation in the embryo/yolk takes place. Treatment with detergents improved the uptake, but strongly affected the internal distribution of the molecules. Testing electroporation we could establish conditions to overcome the diffusion barrier. Applying this method to lithium chloride we observed anterior truncations in medaka embryos in agreement with its proposed activation of Wnt signalling. Conclusions The diffusion of small molecules into medaka embryos is slow, caused by membrane systems underneath the chorion. These results have important implications for pharmacologic/toxicologic techniques like the fish embryo test, which therefore require extended incubation times in order to reach sufficient concentrations in the embryos. PMID:23815821

  18. Recent Advances in Developing Small Molecules Targeting Nucleic Acid

    PubMed Central

    Wang, Maolin; Yu, Yuanyuan; Liang, Chao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids. PMID:27248995

  19. Design of Catalytically Amplified Sensors for Small Molecules

    PubMed Central

    Makhlynets, Olga V.; Korendovych, Ivan V.

    2014-01-01

    Catalytically amplified sensors link an allosteric analyte binding site with a reactive site to catalytically convert substrate into colored or fluorescent product that can be easily measured. Such an arrangement greatly improves a sensor’s detection limit as illustrated by successful application of ELISA-based approaches. The ability to engineer synthetic catalytic sites into non-enzymatic proteins expands the repertoire of analytes as well as readout reactions. Here we review recent examples of small molecule sensors based on allosterically controlled enzymes and organometallic catalysts. The focus of this paper is on biocompatible, switchable enzymes regulated by small molecules to track analytes both in vivo and in the environment. PMID:24970222

  20. Color-Coded Super-Resolution Small-Molecule Imaging.

    PubMed

    Beuzer, Paolo; La Clair, James J; Cang, Hu

    2016-06-02

    Although the development of super-resolution microscopy dates back to 1994, its applications have been primarily focused on visualizing cellular structures and targets, including proteins, DNA and sugars. We now report on a system that allows both monitoring of the localization of exogenous small molecules in live cells at low resolution and subsequent super-resolution imaging by using stochastic optical reconstruction microscopy (STORM) on fixed cells. This represents a powerful new tool to understand the dynamics of subcellular trafficking associated with the mode and mechanism of action of exogenous small molecules.

  1. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  2. Selection of small molecules by the Tetrahymena catalytic center.

    PubMed Central

    Yarus, M; Illangesekare, M; Christian, E

    1991-01-01

    The catalytic center in group I RNAs contains a selective binding site that accommodates both guanosine and L-arginine. In order to understand the specificity of the RNA for small molecules, we analyzed 6 RNAs that vary in this region. Specificity for nucleotides resides substantially in G264 rather than its paired nucleotide C311, and is expressed substantially in Km, with comparatively little variation in kcat. kcat is not notably perturbed even for RNAs with mispairs in the active-site helix. For 5 of 6 sequences, effects of RNA substitutions on arginine binding and GTP reactivity are proportional, confirming that arginine contacts a subset of the groups occupied by G. As a result of particular mutations, reaction with GTP is decreased, and reaction with the natural nucleotides UTP and ATP is enhanced. Molecular modeling of these effects suggests that exceptionally flexible placement of reactants may be an essential quality of RNA-catalyzed splicing. The specificity of the intron can be rationalized by a type of binding model not previously considered, in which the G/arginine site includes adjacent nucleotides (an 'axial' site), rather than a single nucleotide, G264. PMID:2030946

  3. Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors.

    PubMed

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K; Ekins, Sean; Nagaraja, Valakunja

    2015-03-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.

  4. Small Molecule-Mediated Cleavage of RNA in Living Cells

    PubMed Central

    Guan, Lirui

    2013-01-01

    Antisense oligonucleotides and small interfering RNAs (siRNAs) control gene expression by triggering the degradation of a mRNA via recruitment of RNase H or the RNA-induced silencing complex (RISC), respectively.[1] These approaches are hampered, however, by the poor cellular permeability of oligonucleotides. A small molecule approach to cleave RNA targets could obviate uptake issues. Several compounds can induce RNA cleavage in vitro,[2] however, to the best of our knowledge no small molecules have been previously described to cleave RNA in living cells. Herein, we describe the development of a potentially general approach to design small molecules that specifically cleave an RNA in a living cell, affecting biological function. Specifically, a designed, modularly assembled small molecule that binds the RNA that causes myotonic dystrophy type 1 (DM1)[3] was appended with a moiety that generates hydroxyl radicals upon irradiation. Cleavage of the transcript improves DM1-associated defects in cell culture, and compounds are non-toxic at an efficacious dose as determined by a MTT viability assay. This approach may allow for the site-specific cleavage and inactivation of other cellular RNAs.[4] Compounds that bind to and cleave RNA have the potential to serve as chemical genetics probes of function or lead therapeutics with spatial and temporal control. PMID:23280953

  5. A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin.

    PubMed

    Inoue, Akira; Kikuchi, Sotaro; Hishiki, Asami; Shao, Youming; Heath, Richard; Evison, Benjamin J; Actis, Marcelo; Canman, Christine E; Hashimoto, Hiroshi; Fujii, Naoaki

    2014-03-07

    Small molecule inhibitors of proliferating cell nuclear antigen (PCNA)/PCNA interacting protein box (PIP-Box) interactions, including T2 amino alcohol (T2AA), inhibit translesion DNA synthesis. The crystal structure of PCNA in complex with T2AA revealed that T2AA bound to the surface adjacent to the subunit interface of the homotrimer of PCNA in addition to the PIP-box binding cavity. Because this site is close to Lys-164, which is monoubiquitinated by RAD18, we postulated that T2AA would affect monoubiquitinated PCNA interactions. Binding of monoubiquitinated PCNA and a purified pol η fragment containing the UBZ and PIP-box was inhibited by T2AA in vitro. T2AA decreased PCNA/pol η and PCNA/REV1 chromatin colocalization but did not inhibit PCNA monoubiquitination, suggesting that T2AA hinders interactions of pol η and REV1 with monoubiquitinated PCNA. Interstrand DNA cross-links (ICLs) are repaired by mechanisms using translesion DNA synthesis that is regulated by monoubiquitinated PCNA. T2AA significantly delayed reactivation of a reporter plasmid containing an ICL. Neutral comet analysis of cells receiving T2AA in addition to cisplatin revealed that T2AA significantly enhanced formation of DNA double strand breaks (DSBs) by cisplatin. T2AA promoted colocalized foci formation of phospho-ATM and 53BP1 and up-regulated phospho-BRCA1 in cisplatin-treated cells, suggesting that T2AA increases DSBs. When cells were treated by cisplatin and T2AA, their clonogenic survival was significantly less than that of those treated by cisplatin only. These findings show that the inhibitors of monoubiquitinated PCNA chemosensitize cells by inhibiting repair of ICLs and DSBs.

  6. Design, synthesis, and evaluation of bioactive small molecules.

    PubMed

    Hua, Duy H

    2013-02-01

    Collaborative research projects between chemists, biologists, and medical scientists have inevitably produced many useful drugs, biosensors, and medical instrumentation. Organic chemistry lies at the heart of drug discovery and development. The current range of organic synthetic methodologies allows for the construction of unlimited libraries of small organic molecules for drug screening. In translational research projects, we have focused on the discovery of lead compounds for three major diseases: Alzheimer's disease (AD), breast cancer, and viral infections. In the AD project, we have taken a rational-design approach and synthesized a new class of tricyclic pyrone (TP) compounds that preserve memory and motor functions in amyloid precursor protein (APP)/presenilin-1 (PS1) mice. TPs could protect neuronal death through several possible mechanisms, including their ability to inhibit the formation of both intraneuronal and extracellular amyloid β (Aβ) aggregates, to increase cholesterol efflux, to restore axonal trafficking, and to enhance long-term potentiation (LTP) and restored LTP following treatment with Aβ oligomers. We have also synthesized a new class of gap-junction enhancers, based on substituted quinolines, that possess potent inhibitory activities against breast-cancer cells in vitro and in vivo. Although various antiviral drugs are available, the emergence of viral resistance to existing antiviral drugs and various understudied viral infections, such as norovirus and rotavirus, emphasizes the demand for the development of new antiviral agents against such infections and others. Our laboratories have undertaken these projects for the discovery of new antiviral inhibitors. The discussion of these aforementioned projects may shed light on the future development of drug candidates in the fields of AD, cancer, and viral infections.

  7. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Robert J.

    1990-04-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ``doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules.

  8. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    SciTech Connect

    Gordon, R.J. )

    1990-04-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules.

  9. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    2016-11-11

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  10. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency.

    PubMed

    Kim, Woong-Hee; Jung, Da-Woon; Kim, Jinmi; Im, Sin-Hyeog; Hwang, Seung Yong; Williams, Darren R

    2012-04-20

    In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.

  11. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    PubMed

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  12. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed.

  13. Structural insights into the transport of small molecules across membranes

    PubMed Central

    Noinaj, Nicholas; Buchanan, Susan K.

    2014-01-01

    While hydrophobic small molecules often can freely permeate a lipid bilayer, ions and other polar molecules cannot and require transporters to mediate their transport. Recently, a number of important structures have been reported which have advanced our understanding of how membrane protein transporters function to transport small molecules. Structures of TbpA/B and HmuUV provided new insight into iron uptake by pathogenic bacteria while the structures of NarK, ASBT, and VcINDY revealed molecular details about the transport of nitrate, bile acids and dicarboxylates, respectively. The structure of the folate ECF transporter indicated that the S component likely undergoes a large conformational shift to mediate folate transport, while the cellulose synthase/transporter contains an elongated translocation pore for passage through the inner membrane. PMID:24681594

  14. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  15. Chemical genetics: a small molecule approach to neurobiology.

    PubMed

    Koh, Brian; Crews, Craig M

    2002-11-14

    Chemical genetics, or the specific modulation of cellular systems by small molecules, has complemented classical genetic analysis throughout the history of neurobiology. We outline several of its contributions to the understanding of ion channel biology, heat and cold signal transduction, sleep and diurnal rhythm regulation, effects of immunophilin ligands, and cell surface oligosaccharides with respect to neurobiology.

  16. Small molecule MALDI MS imaging: Current technologies and future challenges.

    PubMed

    Trim, Paul J; Snel, Marten F

    2016-07-15

    Imaging of specific small molecules is particularly challenging using conventional optical microscopy techniques. This has led to the development of alternative imaging modalities, including mass spectrometry (MS)-based methods. This review aims to provide an overview of the technologies, methods and future directions of laser-based mass spectrometry imaging (MSI) of small molecules. In particular it will focus on matrix-assisted laser desorption/ionization (MALDI) as the ion source, although other laser mass spectrometry methods will also be discussed to provide context, both historical and current. Small molecule MALDI MSI has been performed on a wide variety of instrument platforms: these are reviewed, as are the laser systems that are commonly used in this technique. Instrumentation and methodology cross over in the areas of achieving optimal spatial resolution, a key parameter in obtaining meaningful data. Also discussed is sample preparation, which is pivotal in maintaining sample integrity, providing a true reflection of the distribution of analytes, spatial resolution and sensitivity. Like all developing analytical techniques there are challenges to be overcome. Two of these are dealing with sample complexity and obtaining quantitative information from an imaging experiment. Both of these topics are addressed. Finally, novel experiments including non-MALDI laser ionization techniques are highlighted and a future perspective on the role of MALDI MSI in the small molecule arena is provided.

  17. Caenorhabditis elegans chemical biology: lessons from small molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  18. Design of a small molecule against an oncogenic noncoding RNA

    PubMed Central

    Velagapudi, Sai Pradeep; Cameron, Michael D.; Haga, Christopher L.; Rosenberg, Laura H.; Lafitte, Marie; Duckett, Derek R.; Phinney, Donald G.; Disney, Matthew D.

    2016-01-01

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif–small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187

  19. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  20. Enhancing single-molecule fluorescence with nanophotonics.

    PubMed

    Acuna, Guillermo; Grohmann, Dina; Tinnefeld, Philip

    2014-10-01

    Single-molecule fluorescence spectroscopy has become an important research tool in the life sciences but a number of limitations hinder the widespread use as a standard technique. The limited dynamic concentration range is one of the major hurdles. Recent developments in the nanophotonic field promise to alleviate these restrictions to an extent that even low affinity biomolecular interactions can be studied. After motivating the need for nanophotonics we introduce the basic concepts of nanophotonic devices such as zero mode waveguides and nanoantennas. We highlight current applications and the future potential of nanophotonic approaches when combined with biological systems and single-molecule spectroscopy.

  1. SEC-TID: A Label-Free Method for Small-Molecule Target Identification.

    PubMed

    Salcius, Michael; Bauer, Andras J; Hao, Qin; Li, Shu; Tutter, Antonin; Raphael, Jacob; Jahnke, Wolfgang; Rondeau, Jean-Michel; Bourgier, Emmanuelle; Tallarico, John; Michaud, Gregory A

    2014-07-01

    Bioactive small molecules are an invaluable source of therapeutics and chemical probes for exploring biological pathways. Yet, significant hurdles in drug discovery often come from lacking a comprehensive view of the target(s) for both early tool molecules and even late-stage drugs. To address this challenge, a method is provided that allows for assessing the interactions of small molecules with thousands of targets without any need to modify the small molecule of interest or attach any component to a surface. We describe size-exclusion chromatography for target identification (SEC-TID), a method for accurately and reproducibly detecting ligand-macromolecular interactions for small molecules targeting nucleic acid and several protein classes. We report the use of SEC-TID, with a library consisting of approximately 1000 purified proteins derived from the protein databank (PDB), to identify the efficacy targets tankyrase 1 and 2 for the Wnt inhibitor XAV939. In addition, we report novel interactions for the tumor-vascular disrupting agent vadimezan/ASA404 (interacting with farnesyl pyrophosphate synthase) and the diuretic mefruside (interacting with carbonic anhydrase XIII). We believe this method can dramatically enhance our understanding of the mechanism of action and potential liabilities for small molecules in drug discovery pipelines through comprehensive profiling of candidate druggable targets.

  2. Disordered Binding of Small Molecules to Aβ(12–28)*

    PubMed Central

    Convertino, Marino; Vitalis, Andreas; Caflisch, Amedeo

    2011-01-01

    In recent years, an increasing number of small molecules and short peptides have been identified that interfere with aggregation and/or oligomerization of the Alzheimer β-amyloid peptide (Aβ). Many of them possess aromatic moieties, suggesting a dominant role for those in interacting with Aβ along various stages of the aggregation process. In this study, we attempt to elucidate whether interactions of such aromatic inhibitors with monomeric Aβ(12–28) point to a common mechanism of action by performing atomistic molecular dynamics simulations at equilibrium. Our results suggest that, independently of the presence of inhibitors, monomeric Aβ(12–28) populates a partially collapsed ensemble that is largely devoid of canonical secondary structure at 300 K and neutral pH. The small molecules have different affinities for Aβ(12–28) that can be partially rationalized by the balance of aromatic and charged moieties constituting the molecules. There are no predominant binding modes, although aggregation inhibitors preferentially interact with the N-terminal portion of the fragment (residues 13–20). Analysis of the free energy landscape of Aβ(12–28) reveals differences highlighted by altered populations of a looplike conformer in the presence of inhibitors. We conclude that intrinsic disorder of Aβ persists at the level of binding small molecules and that inhibitors can significantly alter properties of monomeric Aβ via multiple routes of differing specificity. PMID:21969380

  3. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    SciTech Connect

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  4. Managing missing measurements in small-molecule screens

    NASA Astrophysics Data System (ADS)

    Browning, Michael R.; Calhoun, Bradley T.; Swamidass, S. Joshua.

    2013-05-01

    In a typical high-throughput screening (HTS) campaign, less than 1 % of the small-molecule library is characterized by confirmatory experiments. As much as 99 % of the library's molecules are set aside—and not included in downstream analysis—although some of these molecules would prove active were they sent for confirmatory testing. These missing experimental measurements prevent active molecules from being identified by screeners. In this study, we propose managing missing measurements using imputation—a powerful technique from the machine learning community—to fill in accurate guesses where measurements are missing. We then use these imputed measurements to construct an imputed visualization of HTS results, based on the scaffold tree visualization from the literature. This imputed visualization identifies almost all groups of active molecules from a HTS, even those that would otherwise be missed. We validate our methodology by simulating HTS experiments using the data from eight quantitative HTS campaigns, and the implications for drug discovery are discussed. In particular, this method can rapidly and economically identify novel active molecules, each of which could have novel function in either binding or selectivity in addition to representing new intellectual property.

  5. Small and Large Molecules in the Diffuse Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Huang, Jane

    2014-06-01

    Although molecules with a wide range of sizes exist in dense clouds (e.g. H(C≡C)_nC≡N with n = 0 - 5), molecules identified in diffuse clouds are all small ones. Since the initial discovery of CH, CN, and CH^+, all molecules detected in the optical region are diatomics except for H_3^+ in the infrared and C_3 in the visible. Radio observations have been limited up to triatomic molecules except for H_2CO and the ubiquitous C_3H_2. The column densities of all molecules are less than 1014 cm-2 with the two exceptions of CO and H_3^+ as well as CH and C_2 in a few special sightlines. Larger molecules with many carbon atoms have been searched for but have not been detected. On the other hand, the observations of a great many diffuse interstellar bands (380 toward HD 204827 and 414 toward HD 183143) with equivalent widths from 1 to 5700 m Å indicate high column densities of many heavy molecules. If an electronic transition dipole moment of 1 Debye is assumed, the observed equivalent widths translate to column densities from 5 × 1011 cm-2 to 3 × 1015 cm-2. It seems impossible that these large molecules are formed from chemical reactions in space from small molecules. It is more likely that they are fragments of aggregates, perhaps mixed aromatic/aliphatic organic nanoparticles (MAONS). MAONS and their large fragment molecules are stable against photodissociation in the diffuse ISM because the energy of absorbed photons is divided into statistical distributions of vibrational energy and emitted in the infrared rather than breaking a chemical bond. We use a simple Rice-Ramsperger-Kassel-Marcus theory to estimate the molecular size required for the stabilization. Snow, T. P. & McCall, B. J. 2006, ARA&A, 44 367 Hobbs, L. M., York, D. G., Snow, T. P., Oka, T., Thorburn, J. A., et al. 2008, ApJ, 680 1256 Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., et al. 2009, ApJ, 705 32 Kwok, S. & Zhang, S. 2013, ApJ, 771 5 Freed, K. F., Oka, T., & Suzuki, H

  6. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins

    PubMed Central

    Yang, Nicole J.; Hinner, Marlon J.

    2016-01-01

    The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome. PMID:25560066

  7. Graphene-Enhanced Raman Scattering from the Adenine Molecules

    NASA Astrophysics Data System (ADS)

    Dolgov, Leonid; Pidhirnyi, Denys; Dovbeshko, Galyna; Lebedieva, Tetiana; Kiisk, Valter; Heinsalu, Siim; Lange, Sven; Jaaniso, Raivo; Sildos, Ilmo

    2016-04-01

    An enhanced Raman scattering from a thin layer of adenine molecules deposited on graphene substrate was detected. The value of enhancement depends on the photon energy of the exciting light. The benzene ring in the structure of adenine molecule suggests π-stacking of adenine molecule on top of graphene. So, it is proposed that the enhancement in the adenine Raman signal is explained by the resonance electron transfer from the Fermi level of graphene to the lowest unoccupied molecular orbital (LUMO) level of adenine.

  8. Hard and soft acids and bases: small molecules.

    PubMed

    Reed, James L

    2009-08-03

    The operational chemical hardness has been determined for the hydride, chloride, and fluoride derivatives of the anionic atomic bases of the second period. Of interest is the identification of the structure and associated processes that give rise to hard-soft behavior in small molecules. The Pearson Principle of Hard and Soft Acids and Bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. Similar to the case for atoms, the molecule's responding electrons have been identified as the structure giving rise to hard-soft behavior, and a relaxation described by a modified Slater model has been identified as the associated process. The responding electrons are the molecule's valence electrons that are not undergoing electron transfer in an acid-base interaction. However, it has been demonstrated that chemical hardness is a local property, and only those responding electrons that are associated with the base's binding atom directly impact chemical hardness.

  9. Predicting and Improving the Membrane Permeability of Peptidic Small Molecules

    PubMed Central

    Rafi, Salma B.; Hearn, Brian R.; Vedantham, Punitha; Jacobson, Matthew P.; Renslo, Adam R.

    2012-01-01

    We evaluate experimentally and computationally the membrane permeability of matched sets of peptidic small molecules bearing natural or bioisosteric unnatural amino acids. We find that the intentional introduction of hydrogen bond acceptor-donor pairs in such molecules can improve membrane permeability while retaining or improving other favorable drug-like properties. We employ an all-atom force-field based method to calculate changes in free energy associated with the transfer of the peptidic molecules from water to membrane. This computational method correctly predicts rank-order experimental permeability trends within congeneric series and is much more predictive than calculations (e.g. clogP) that do not consider three-dimensional conformation. PMID:22394492

  10. A general strategy to construct small molecule biosensors in eukaryotes.

    PubMed

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  11. A general strategy to construct small molecule biosensors in eukaryotes

    DOE PAGES

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.; ...

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  12. Interactive endogenous small molecule (gaseous) signaling: implications for teratogenesis.

    PubMed

    Fukuto, Jon M; Collins, Michael D

    2007-01-01

    Dioxygen (O2) is an exogenously supplied gas with a number of properties that make it valuable as a biological source of energy and as a result much of life has become dependent on this molecule. Nitric oxide (NO), carbon dioxide (CO) and hydrogen sulfide (H2S) are small molecules that are sometimes in a gaseous state and that can be either exogenously or endogenously supplied. The chemistry of these four molecules allows them to share some common biological targets and signal transduction pathways as well as providing for unique aspects to the biochemistry of each one. Dioxygen can be teratogenic either in excess (hyperoxia) or in deficiency (hypoxia). Although there is a great deal known about the chemistry and physiology of dioxygen, the mechanisms by which it induces toxic endpoints, such as teratogenesis, are unknown. This review examines some fundamental concepts of these four signaling molecules and considers some of the molecular targets and pathways by which they interact. The information regarding the teratogenicity of either excess or deficiency of the four gases is summarized. Interaction information is generally unavailable for teratogenicity endpoints with the four gases and also a mechanistic understanding of the toxicodynamics of the compounds is lacking. Although it could be theoretically predicted that certain interactions would be additive, for example carbon monoxide and hypoxia, based on the physiological role of these molecules, the data is unavailable. Consequently, these small (gaseous) signaling molecules have been demonstrated to interact with respect to signaling pathways, but whether this indicates a similar result for teratogenesis remains unevaluated.

  13. Small Molecule Probes for Plant Cell Wall Polysaccharide Imaging

    PubMed Central

    Wallace, Ian S.; Anderson, Charles T.

    2012-01-01

    Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics. PMID:22639673

  14. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses.

  15. Small-molecule SMAC mimetics as new cancer therapeutics.

    PubMed

    Bai, Longchuan; Smith, David C; Wang, Shaomeng

    2014-10-01

    Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments.

  16. What is next for small-molecule drug discovery?

    PubMed

    Doweyko, Arthur M; Doweyko, Lidia M

    2009-09-01

    Humankind has been in the business of discovering drugs for thousands of years. At present, small-molecule drug design is based on specific macromolecular receptors as targets for inhibition or modulation. To this end, a number of clever approaches have evolved over time: computer-aided techniques including structure-activity relationships and synthesis, high-throughput screening, quantitative structure-activity relationships, hypotheses derived from ligand- and/or structure-based information and focused library approaches. In recent years, several alternative strategies have appeared in the form of the emerging paradigms of polypharmacology, systems biology and personalized medicine. These innovations point to key challenges and breakthroughs likely to affect the future of small-molecule drug discovery.

  17. Computational Design of Druglike Small Molecule Plk1 PBD Inhibitors

    NASA Astrophysics Data System (ADS)

    Vanadia, Sean

    2012-02-01

    Polo-like Kinase 1 (Plk1) participates in regulation of the cell cycle and is often overexpressed in cancers. Inhibition of Plk1 was found to suppress cancer development. Most known kinase inhibitors interact with highly conserved ATP binding sites of the kinases. This makes the design of Plk1-specific inhibitors difficult. However, Plk1 has another active site, the Polo-Box Domain (PBD). PBD is not present in other kinases that were studied here. In this research, the PBD site of Plk1 was used as a target for designing small molecules that could potentially bind Plk1. A previously designed small molecule, Purpurogallin (PPG), was found to bind only the PBD of Plk1 and a highly similar site of LYN kinase, but no other kinases. The PPG structure was used as a template to design new putative Plk1-specific inhibitors. Druglike properties of the new molecules were evaluated with the Osiris Property Explorer program. Interactions of the molecules with Plk1, LYN, and eight other kinases were studied using the Argus Lab docking program. Further search for Plk1-specific inhibitors that could potentially target cancers with overexpressed Plk1 is discussed.

  18. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy.

    PubMed

    Dyle, Michael C; Ebert, Scott M; Cook, Daniel P; Kunkel, Steven D; Fox, Daniel K; Bongers, Kale S; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M

    2014-05-23

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.

  19. Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus

    PubMed Central

    Mike, Laura A.; Dutter, Brendan F.; Stauff, Devin L.; Moore, Jessica L.; Vitko, Nicholas P.; Aranmolate, Olusegun; Kehl-Fie, Thomas E.; Sullivan, Sarah; Reid, Paul R.; DuBois, Jennifer L.; Richardson, Anthony R.; Caprioli, Richard M.; Sulikowski, Gary A.; Skaar, Eric P.

    2013-01-01

    Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy. PMID:23630262

  20. Systems-based Discovery of Tomatidine as a Natural Small Molecule Inhibitor of Skeletal Muscle Atrophy*

    PubMed Central

    Dyle, Michael C.; Ebert, Scott M.; Cook, Daniel P.; Kunkel, Steven D.; Fox, Daniel K.; Bongers, Kale S.; Bullard, Steven A.; Dierdorff, Jason M.; Adams, Christopher M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  1. High resolution studies of atoms and small molecules

    SciTech Connect

    Bushaw, B.A.; Tonkyn, R.G.; Miller, R.J.

    1992-10-01

    High resolution, continuous wave lasers have been utilized successfully in studies of small molecules. Examples of two-photon excitation schemes and of multiple resonance excitation sequences will be discussed within the framework of the spectroscopy and dynamics of selected Rydberg states of nitric oxide. Initial results on the circular dichroism of angular distributions in photoelectron spectra of individual hyperfine states of cesium will also be discussed, but no data given.

  2. Polymer and small molecule based hybrid light source

    DOEpatents

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  3. Chemical detoxification of small molecules by Caenorhabditis elegans.

    PubMed

    Stupp, Gregory S; von Reuss, Stephan H; Izrayelit, Yevgeniy; Ajredini, Ramadan; Schroeder, Frank C; Edison, Arthur S

    2013-02-15

    Caenorhabditis elegans lives in compost and decaying fruit, eats bacteria and is exposed to pathogenic microbes. We show that C. elegans is able to modify diverse microbial small-molecule toxins via both O- and N-glucosylation as well as unusual 3'-O-phosphorylation of the resulting glucosides. The resulting glucosylated derivatives have significantly reduced toxicity to C. elegans, suggesting that these chemical modifications represent a general mechanism for worms to detoxify their environments.

  4. Light-assisted small molecule screening against protein kinases

    PubMed Central

    Inglés-Prieto, Álvaro; Reichhart, Eva; Muellner, Markus K.; Nowak, Matthias; Nijman, Sebastian M.; Grusch, Michael; Janovjak, Harald

    2015-01-01

    High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that obviates the addition of chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small molecule screen against human protein kinases including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes. PMID:26457372

  5. Key elements of bioanalytical method validation for small molecules.

    PubMed

    Bansal, Surendra; DeStefano, Anthony

    2007-03-30

    Method validation is a process that demonstrates that a method will successfully meet or exceed the minimum standards recommended in the Food and Drug Administration (FDA) guidance for accuracy, precision, selectivity, sensitivity, reproducibility, and stability. This article discusses the validation of bioanalytical methods for small molecules with emphasis on chromatographic techniques. We present current thinking on validation requirements as described in the current FDA Guidance and subsequent 2006 Bioanalytical Methods Validation Workshop white paper.

  6. Recent advances in small molecule OLED-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  7. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  8. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  9. Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity.

    PubMed

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J; Showalter, Hollis D; Donato, Nicholas J; Wobus, Christiane E; O'Riordan, Mary X D

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.

  10. Multimonth controlled small molecule release from biodegradable thin films

    PubMed Central

    Hsu, Bryan B.; Park, Myoung-Hwan; Hagerman, Samantha R.; Hammond, Paula T.

    2014-01-01

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate high therapeutic levels in specific regions of the body while significantly reducing the toxicity to vital organs typically caused by systemic administration and decreasing the need for medical intervention because of its long-lasting release. Also important is the ability to achieve high drug loadings in thin film coatings to allow incorporation of significant drug amounts on implant surfaces. Here we report a sustained release formulation for small molecules based on a soluble charged polymer–drug conjugate that is immobilized into nanoscale, conformal, layer-by-layer assembled films applicable to a variety of substrate surfaces. We measured a highly predictable sustained drug release from a polymer thin film coating of 0.5–2.7 μm that continued for more than 14 mo with physiologically relevant drug concentrations, providing an important drug delivery advance. We demonstrated this effect with a potent small molecule nonsteroidal anti-inflammatory drug, diclofenac, because this drug can be used to address chronic pain, osteoarthritis, and a range of other critical medical issues. PMID:25092310

  11. Mapping human metabolic pathways in the small molecule chemical space.

    PubMed

    Macchiarulo, Antonio; Thornton, Janet M; Nobeli, Irene

    2009-10-01

    The work presented here is a study of human metabolic pathways, as projected in the chemical space of the small molecules they comprise, and it is composed of three parts: a) a study of the extent of clustering and overlap of these pathways in chemical space, b) the development and assessment of a statistical model for estimating the proximity to a given pathway of any small molecule, and c) the use of the above model in estimating the proximity of marketed drugs to human metabolic pathways. The distribution, overlap, and relationships of human metabolic pathways in this space are revealed using both visual and quantitative approaches. A set of selected physicochemical and topological descriptors is used to build a classifier, whose aim is to predict metabolic class and pathway membership of any small molecule. The classifier performs well for tightly clustered, isolated pathways but is, naturally, much less accurate for strongly overlapping pathways. Finally, the extent of overlap of a set of known drugs with the human metabolome is examined, and the classifier is used to predict likely cross-interactions between drugs and the major metabolic pathways in humans.

  12. Screening for small molecule disruptors of AKAP-PKA interactions.

    PubMed

    Schächterle, Carolin; Christian, Frank; Fernandes, João Miguel Parente; Klussmann, Enno

    2015-01-01

    Protein-protein interactions (PPIs) are highly specific and diverse. Their selective inhibition with peptides, peptidomimetics, or small molecules allows determination of functions of individual PPIs. Moreover, inhibition of disease-associated PPIs may lead to new concepts for the treatment of diseases with an unmet medical need. Protein kinase A (PKA) is an ubiquitously expressed protein kinase that controls a plethora of cellular functions. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that directly interact with PKA. AKAPs spatially and temporally restrict PKA activity to defined cellular compartments and thereby contribute to the specificity of PKA signaling. However, it is largely unknown which of the plethora of PKA-dependent signaling events involve interactions of PKA with AKAPs. Moreover, AKAP-PKA interactions appear to play a role in a variety of cardiovascular, neuronal, and inflammatory diseases, but it is unclear whether these interactions are suitable drug targets. Here we describe an enzyme-linked immunosorbent assay (ELISA) for the screening of small molecule libraries for inhibitors of AKAP-PKA interactions. In addition, we describe a homogenous time-resolved fluorescence (HTRF) assay for use in secondary validation screens. Small molecule inhibitors are invaluable molecular tools for elucidating the functions of AKAP-PKA interactions and may eventually lead to new concepts for the treatment of diseases where AKAP-PKA interactions represent potential drug targets.

  13. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    PubMed Central

    Ruscito, Annamaria; DeRosa, Maria C.

    2016-01-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994

  14. Small molecule antagonists for chemokine CCR3 receptors.

    PubMed

    Willems, Lianne I; Ijzerman, Ad P

    2010-09-01

    The chemokine receptor CCR3 is believed to play a role in the development of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis. Despite the conflicting results that have been reported regarding the importance of eosinophils and CCR3 in allergic inflammation, inhibition of this receptor with small molecule antagonists is thought to provide a valuable approach for the treatment of these diseases. This review describes the structure-activity relationships (SAR) of small molecule CCR3 antagonists as reported in the scientific and patent literature. Various chemical classes of small molecule CCR3 antagonists have been described so far, including (bi)piperidine and piperazine derivatives, N-arylalkylpiperidine urea derivatives and (N-ureidoalkyl)benzylpiperidines, phenylalanine derivatives, morpholinyl derivatives, pyrrolidinohydroquinazolines, arylsulfonamides, amino-alkyl amides, imidazole- and pyrimidine-based antagonists, and bicyclic diamines. The (N-ureidoalkyl)benzylpiperidines are the best studied class in view of their generally high affinity and antagonizing potential. For many of these antagonists subnanomolar IC(50) values were reported for binding to CCR3 along with the ability to effectively inhibit intracellular calcium mobilization and eosinophil chemotaxis induced by CCR3 agonist ligands in vitro.

  15. Recent Advances on Small-Molecule Survivin Inhibitors

    PubMed Central

    Xiao, Min; Li, Wei

    2017-01-01

    Survivin, a member of the inhibitor of apoptosis proteins family, is highly expressed in most human neoplasms, but its expression is very low or undetectable in terminally differentiated normal tissues. Survivin has been shown to inhibit cancer cell apoptosis and promote cell proliferation. The overexpression of survivin closely correlates with tumor progression and drug resistance. Because of its key role in tumor formation and maintenance, survivin is considered as an ideal target for anticancer treatment. However, the development of small-molecule survivin inhibitors has been challenging due to the requirement to disrupt the protein-protein interactions. Currently only a limited number of survivin inhibitors have been developed in recent years, and most of these inhibitors reduce survivin levels by interacting with other biomolecules instead of directly interacting with survivin protein. Despite these challenges, developing potent and selective small-molecule survivin inhibitors will be important in both basic science to better understand survivin biology and in translational research to develop potentially more effective, broad-spectrum anticancer agents. In this review, the functions of survivin and its role in cancer are summarized. Recent developments, challenges, and future direction of small-molecule survivin inhibitors are also discussed in detail. PMID:25613234

  16. Turning on caspases with genetics and small molecules.

    PubMed

    Morgan, Charles W; Julien, Olivier; Unger, Elizabeth K; Shah, Nirao M; Wells, James A

    2014-01-01

    Caspases, aspartate-specific cysteine proteases, have fate-determining roles in many cellular processes including apoptosis, differentiation, neuronal remodeling, and inflammation (for review, see Yuan & Kroemer, 2010). There are a dozen caspases in humans alone, yet their individual contributions toward these phenotypes are not well understood. Thus, there has been considerable interest in activating individual caspases or using their activity to drive these processes in cells and animals. We envision that such experimental control of caspase activity can not only afford novel insights into fundamental biological problems but may also enable new models for disease and suggest possible routes to therapeutic intervention. In particular, localized, genetic, and small-molecule-controlled caspase activation has the potential to target the desired cell type in a tissue. Suppression of caspase activation is one of the hallmarks of cancer and thus there has been significant enthusiasm for generating selective small-molecule activators that could bypass upstream mutational events that prevent apoptosis. Here, we provide a practical guide that investigators have devised, using genetics or small molecules, to activate specific caspases in cells or animals. Additionally, we show genetically controlled activation of an executioner caspase to target the function of a defined group of neurons in the adult mammalian brain.

  17. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  18. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  19. Small molecule screening at Helmholtz Zentrum München - from biology to molecules.

    PubMed

    Schorpp, Kenji; Hadian, Kamyar

    2014-03-01

    Within the last few years the Helmholtz Zentrum München has established several initiatives enabling the translation of basic research results into discovery of novel small molecules that affect pathomechanisms of chronic and complex diseases. Here, one of the main operations is the Assay Development and Screening Platform (ADSP) that has state-of-the-art equipment for compound screening and provides knowledge in a variety of biochemical or cell-based phenotypic assays. In particular, ADSP has a strong focus on complex assays such as high-content screening in stem cells that are likely to provide an innovative approach complementary to biochemical assays for the discovery of novel small molecules modulating key biological processes.

  20. Enhanced Raman scattering of biological molecules

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph R.

    The results presented in this thesis, originate from the aspiration to develop an identification algorithm for Salmonella enterica Serovar Enteritidis (S. enterica), Escherichia coli (E. coli), Bacillus globigii ( B. globigii), and Bacillus megaterium ( B. megaterium) using "enhanced" Raman scattering. We realized our goal, with a method utilizing an immunoassay process in a spectroscopic technique, and the direct use of the enhanced spectral response due to bacterial surface elements. The enhanced Raman signal originates from Surface Enhanced Raman Scattering (SERS) and/or Morphological Dependent Resonances (MDR's). We utilized a modified Lee-Meisel colloidal production method to produce a SERS active substrate, which was applied to a SERS application for the amino acid Glycine. The comparison indicates that the SERS/FRACTAL/MDR process can produce an increase of 107 times more signal than the bulk Raman signal from Glycine. In the extension of the Glycine results, we studied the use of SERS related to S. enterica, where we have shown that the aromatic amino acid contribution from Phenylalanine, Tyrosine, and Tryptophan produces a SERS response that can be used to identify the associated SERS vibrational modes of a S. enterica one or two antibody complexes. The "fingerprint" associated with the spectral signature in conjunction with an enhanced Raman signal allows conclusions to be made: (1) about the orientation of the secondary structure on the metal; (2) whether bound/unbound antibody can be neglected; (3) whether we can lower the detection limit. We have lowered the detection limit of S. enterica to 106 bacteria/ml. We also show a profound difference between S. enterica and E. coli SERS spectra even when there exists non-specific binding on E. coli indicating a protein conformation change induced by the addition of the antigen S. enterica. We confirm TEM imagery data, indicating that the source of the aromatic amino acid SERS response is originating from

  1. Effects of small halocarbon molecules on reverse osmosis membrane performance

    SciTech Connect

    Cheng, R.C.; Glater, J.; Neethling, J.B. )

    1990-01-01

    The reverse osmosis (RO) membrane industry has long been concerned with problems of performance decline due to fouling. Colloidal and biological fouling have been discussed to some extent in the literature but little is known about the effect of small organic molecules on membrane performance. The work reported in this paper involved controlled laboratory experiments with three small halocarbons and three different types of commercial RO membranes. The compounds used were CHCl{sub 3}, CHBr{sub 3} and CCl{sub 4}. The first two represent typical small and large THM's. Carbon tetrachloride was selected as a non-polar model compound. Membranes representing three different polymer systems were provided by E. I. du Pont Inc.

  2. NMR study of small molecule adsorption in MOF-74-Mg

    NASA Astrophysics Data System (ADS)

    Lopez, M. G.; Canepa, Pieremanuele; Thonhauser, T.

    2013-04-01

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  3. A synthetic small molecule that can walk down a track

    NASA Astrophysics Data System (ADS)

    von Delius, Max; Geertsema, Edzard M.; Leigh, David A.

    2010-02-01

    Although chemists have made small-molecule rotary motors, to date there have been no reports of small-molecule linear motors. Here we describe the synthesis and operation of a 21-atom two-legged molecular unit that is able to walk up and down a four-foothold molecular track. High processivity is conferred by designing the track-binding interactions of the two feet to be labile under different sets of conditions such that each foot can act as a temporarily fixed pivot for the other. The walker randomly and processively takes zero or one step along the track using a `passing-leg' gait each time the environment is switched between acid and base. Replacing the basic step with a redox-mediated, disulfide-exchange reaction directionally transports the bipedal molecules away from the minimum-energy distribution by a Brownian ratchet mechanism. The ultimate goal of such studies is to produce artificial, linear molecular motors that move directionally along polymeric tracks to transport cargoes and perform tasks in a manner reminiscent of biological motor proteins.

  4. Translocation of Small Interfering RNA and Cholesterol Molecules in Biomembranes

    NASA Astrophysics Data System (ADS)

    Kalia, Rajiv

    2013-03-01

    This presentation will focus on all-atom molecular dynamics (MD) simulation studies of (1) structural and mechanical barriers to translocation of small interfering RNA (siRNA) across a phospholipid bilayer, and (2) flip-flop dynamics of cholesterol (CHOL) molecules across a phospholipid bilayer. In the first case, we find that the siRNA induces a liquid-to-gel phase transformation. In the gel phase we find large compressive lateral stresses in the hydrocarbon chains of lipid molecules, which present a considerable barrier to siRNA passage across the bilayer. In the second case, we study spontaneous CHOL inter-leaflet transport (flip-flop), the effect of this process on mechanical stresses across the bilayer, and the role of CHOL in inducing molecular order in bilayer leaflets. The simulation was run for 15 microseconds and we found 24 CHOL flip-flop events over that duration. On average, a CHOL molecule migrates across the lipid bilayer in about 73 ns after a flip-flop event is triggered. We have calculated diffusion maps and determined free energy surfaces and flip-flop mechanisms for CHOL molecules. Work supported by NSF-OCI-0749360 and NSF-IOS-125317.

  5. Laser Spectroscopy of Small Metal and Semiconductor Molecules

    NASA Astrophysics Data System (ADS)

    Winstead, Christopher Brooks

    1995-01-01

    An apparatus consisting of a laser vaporization cluster source coupled to a time-of-flight mass spectrometer has been implemented to facilitate the mass-selected spectroscopy of small silver and silicon molecules. Resonantly enhanced multiphoton ionization (REMPI) studies have revealed a previously unknown silver dimer excited electronic state via a forbidden transition near 46870 cm^ {-1}. This state lies in near perfect double resonance with the lower energy A ^1 Sigma_sp{rm u}{+}( rm v^' = 3) >= X ^Sigma_sp{rm g}{+}({rm v^{' '}} = 0) transition, leading to an anomalously large single color Ag_2 ionization signal near 426.7 nm. Symmetry selection rules allow an identification of the new state symmetry as 1_{rm g} or 0 _sp{rm g}{+}. Additional REMPI investigations of the A ^1Sigma _sp{rm u}{+} >=ts X ^1Sigma_sp {rm g}{+} transition yield a new measurement of the Ag_2 ionization potential (IP) and resolve a discrepancy in the reported Ag_2 IP values. The importance of field ionization effects on the observed REMPI spectra is also demonstrated. The spectroscopy of the H ^3Sigma _sp{rm u}{-} state of silicon dimer has been investigated using a combination of laser induced fluorescence and resonant two-photon ionization techniques. Measurements of the isotope induced bandhead shifts for the Si_2 H ^3 Sigma_sp{rm u}{-} >=ts X ^3Sigma_sp {rm g}{-} transition reveal that the previously accepted vibrational numbering of the H ^3Sigma_sp{rm u}{-} state is incorrect. Revised molecular constants based on the new vibrational numbering scheme are T_{rm e} = 24151.86 cm^{-1}, omega_{rm e} = 279.28 cm^{-1}, omega _{rm e}chi_{rm e} = 1.99 cm^{-1} , B_{rm e} = 0.17255 cm^{-1}, and alpha_{rm e} = 0.00135 cm^{-1}. A comparison of experimentally obtained and simulated dispersed laser induced fluorescence spectra demonstrates the improved accuracy of these new constants. Resonant two-photon ionization studies of the H ^3Sigma_sp {rm u}{-} state have also allowed the most accurate

  6. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    PubMed Central

    Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2016-01-01

    Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications. PMID:26977286

  7. Mass Spectrometry-Based Tissue Imaging of Small Molecules

    PubMed Central

    Ferguson, Carly N.; Fowler, Joseph W.M.; Waxer, Jonathan F.; Gatti, Richard A.; Loo, Joseph A.

    2014-01-01

    Mass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques, and provides accurate, histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant. Many examples of its utility in the study of peptides and proteins have been reported; here we discuss its value in the mass range of small molecules. We explore its success and potential in the analysis of lipids, medicinals, and metal-based compounds by featuring representative studies from mass spectrometry imaging laboratories around the globe. PMID:24952187

  8. Saccharide sensing molecules having enhanced fluorescent properties

    DOEpatents

    Satcher Jr., Joe H.; Lane, Stephen M.; Darrow, Christopher B.; Cary, Douglas R.; Tran, Joe Anh

    2004-01-06

    The present invention provides formulae for fluorescent compounds that have a number of properties which make them uniquely suited for use in sensors of analytes such as saccharides. The advantageous fluorescent properties include favorable excitation wavelengths, emission wavelengths, fluorescence lifetimes, and photostability. Additional advantageous properties include enhanced aqueous solubility, as well as temperature and pH sensitivity. The compound comprises an aryl or a substituted phenyl botonic acid that acts as a substrate recognition component, a fluorescence switch component, and a fluorophore. Fluorescent compounds are described that are excited at wavelengths greater than 400 nm and emit at wavelengths greater than 450 nm, which is advantageous for optical transmission through skin. The fluorophore is typically selected from transition metal-ligand complexes and thiazine, oxazine, oxazone, or oxazine-one as well as anthracene compounds. The fluorescent compound can be immobilized in a glucose permeable biocompatible polymer matrix that is implantable below the skin.

  9. Small molecule-sensing strategy and techniques for understanding the functionality of green tea.

    PubMed

    Fujimura, Yoshinori

    2015-01-01

    Various low-molecular-weight phytochemicals in green tea (Camellia sinensis L.), especially (-)-epigallocatechin-3-O-gallate (EGCG), are known to be involved in health promotion and disease risk reduction. However, the underlying mechanism has remained elusive because of the absence of an analytical technique that can easily detect the precise behavior of such a small molecule. Recently, we have identified a cell-surface EGCG-sensing receptor and the related signaling molecules that control the physiological functions of EGCG. We also developed a novel in situ label-free imaging technique for visualizing spatially resolved biotransformations based on simultaneous mapping of EGCG and its phase II metabolites. Furthermore, we established a chemometric method capable of evaluating the functionality of multicomponent green tea extracts by focusing on their compositional balances. This review highlights our proposed small molecule-sensing techniques for detecting the complex behavior of green tea components and linking such information to an enhanced understanding of green tea functionality.

  10. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  11. An autonomous chemically fuelled small-molecule motor.

    PubMed

    Wilson, Miriam R; Solà, Jordi; Carlone, Armando; Goldup, Stephen M; Lebrasseur, Nathalie; Leigh, David A

    2016-06-09

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  12. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  13. Small molecule therapeutics targeting F-Box proteins in cancer

    PubMed Central

    Liu, Yuan; Mallampalli, Rama K.

    2015-01-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy. PMID:26427329

  14. Small Molecule Activators of the Trk Receptors for Neuroprotection

    DTIC Science & Technology

    2009-05-01

    μm. Graphical presentation of average volumes of brain lesions in control lines 1 (brown) and 2 (green). Markers depict mean volume, whiskers SEM. P ...compounds are all small molecules with a 0.0 0.5 1.0 0 500 1000 1500 2000 2500 2 4 6 8 Time (hr) C p 5E 5 (n g/ m L) Figure 7 Plasma...Zeps N, Iacopetta B, Linke SP, Olson AH, Reed JC, Krajewski S (2009). Image Analysis Algorithms for Immunohistochemical Assessment of Cell Death

  15. Fourier transform vibrational circular dichroism of small pharmaceutical molecules

    NASA Astrophysics Data System (ADS)

    Long, Fujin; Freedman, Teresa B.; Nafie, Laurence A.

    1998-06-01

    Fourier transform vibrational circular dichroism (FT-VCD) spectra of the small pharmaceutical molecules propanolol, ibuprofen and naproxen have been measured in the hydrogen stretching and mid-infrared regions to obtain information on solution conformation and to identify markers for absolute configuration determination. Ab initio molecular orbital calculations of low energy conformations, vibrational frequencies and VCD intensities for fragments of the drugs were utilized in interpreting the spectra. Features characteristic of five conformers of propranolol were identified. The weak positive CH stretching VCD signal in ibuprofen and naproxen is characteristic of the S-configuration of the chiral center common to these two analgesics.

  16. Small molecule therapeutics targeting F-box proteins in cancer.

    PubMed

    Liu, Yuan; Mallampalli, Rama K

    2016-02-01

    The ubiquitin proteasome system (UPS) plays vital roles in maintaining protein equilibrium mainly through proteolytic degradation of targeted substrates. The archetypical SCF ubiquitin E3 ligase complex contains a substrate recognition subunit F-box protein that recruits substrates to the catalytic ligase core for its polyubiquitylation and subsequent proteasomal degradation. Several well-characterized F-box proteins have been demonstrated that are tightly linked to neoplasia. There is mounting information characterizing F-box protein-substrate interactions with the rationale to develop unique therapeutics for cancer treatment. Here we review that how F-box proteins function in cancer and summarize potential small molecule inhibitors for cancer therapy.

  17. Computer Simulations of Small Molecules in Membranes: Insights from Computer Simulations into the Interactions of Small Molecules with Lipid Bilayers

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; New, Michael H.; Schweighofer, Karl; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Two of Ernest Overton's lasting contributions to biology are the Meyer-Overton relationship between the potency of an anesthetic and its solubility in oil, and the Overton rule which relates the permeability of a membrane to the oil-water partition coefficient of the permeating molecule. A growing body of experimental evidence, however, cannot be reconciled with these theories. In particular, the molecular nature of membranes, unknown to Overton, needs to be included in any description of these phenomena. Computer simulations are ideally suited for providing atomic-level information about the behavior of small molecules in membranes. The authors discuss simulation studies relevant to Overton's ideas. Through simulations it was found that anesthetics tend to concentrate at interfaces and their anesthetic potency correlates better with solubility at the water-membrane interface than with solubility in oil. Simulation studies of membrane permeation revealed the anisotropic nature of the membranes, as evidenced, for example, by the highly nonuniform distribution of free volume in the bilayer. This, in turn, influences the diffusion rates of solutes, which increase with the depth in the membrane. Small solutes tend to move by hopping between voids in the bilayer, and this hopping motion may be responsible for the deviation from the Overton rule of the permeation rates of these molecules.

  18. Affinity constants for small molecules from SPR competition experiments.

    PubMed

    de Mol, Nico J

    2010-01-01

    Direct assay of small molecules by SPR in general is troublesome and at least tedious procedures have to be applied. Competition experiments offer an attractive alternative. A small ligand known to bind to the analyte is immobilized on an SPR sensor surface, and the binding of the larger analyte in the presence of compounds under investigation in a concentration range is assayed. The resulting inhibition curves of the equilibrium SPR signal as function of the compound concentration can be analyzed to yield thermodynamic binding constants for the interaction in solution between analyte and the compounds under investigation. An additional advantage of this method is that series of compounds can be analyzed using the same sensor surface, so there is no immobilization needed for each compound. An adaptation of the method to analyze interactions with bivalent analytes (e.g., antibodies) is also included. Some observed different affinities in solution compared to that on the SPR surface are discussed.

  19. Transport mechanisms of small molecules through polyamide 12/montmorillonite nanocomposites.

    PubMed

    Alexandre, B; Colasse, L; Langevin, D; Médéric, P; Aubry, T; Chappey, C; Marais, S

    2010-07-15

    The aim of this work is to study the transport of small molecules through the hybrid systems polyamide 12 (PA12)/organo-modified montmorillonite (Cloisite 30B, C30B) prepared by melt blending, using two blending conditions. The transport mechanisms were investigated by using three probe molecules: nitrogen, water, and toluene. While a barrier effect appears clearly with nitrogen, this effect changes with the amount of fillers for water and disappears for toluene. The reduction of permeability for nitrogen is mainly due to the increase of tortuosity. For water and toluene, the permeation kinetics reveals many concomitant phenomena responsible for the permeation behavior. Despite the tortuosity effect, the toluene permeability of nanocomposites increases with C30B fraction. The water and toluene molecules interact differently with fillers according to their hydrophilic/hydrophobic character. Moreover, the plasticization effect of water and toluene in the matrix, involving a concentration-dependent diffusion coefficient, is correctly described by the law D = D(0)e(gammaC). On the basis of Nielsen's tortuosity concept, we suggest a new approach for relative permeability modeling, not only based on the geometrical parameters (aspect ratio, orientation, recovery) but also including phenomenological parameters deduced from structural characterization and permeation kinetics.

  20. A general strategy to construct small molecule biosensors in eukaryotes

    PubMed Central

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-01-01

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.10606.001 PMID:26714111

  1. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; ...

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  2. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting.

    PubMed

    Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C

    2013-11-26

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM.

  3. Biophysical methods in drug discovery from small molecule to pharmaceutical.

    PubMed

    Holdgate, Geoffrey; Geschwindner, Stefan; Breeze, Alex; Davies, Gareth; Colclough, Nicola; Temesi, David; Ward, Lara

    2013-01-01

    Biophysical methods have become established in many areas of drug discovery. Application of these methods was once restricted to a relatively small number of scientists using specialized, low throughput technologies and methods. Now, automated high-throughput instruments are to be found in a growing number of laboratories. Many biophysical methods are capable of measuring the equilibrium binding constants between pairs of molecules crucial for molecular recognition processes, encompassing protein-protein, protein-small molecule, and protein-nucleic acid interactions, and several can be used to measure the kinetic or thermodynamic components controlling these biological processes. For a full characterization of a binding process, determinations of stoichiometry, binding mode, and any conformational changes associated with such interactions are also required. The suite of biophysical methods that are now available represents a powerful toolbox of techniques which can effectively deliver this full characterization.The aim of this chapter is to provide the reader with an overview of the drug discovery process and how biophysical methods, such as surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), nuclear magnetic resonance, mass spectrometry (MS), and thermal unfolding methods can answer specific questions in order to influence project progression and outcomes. The selection of these examples is based upon the experiences of the authors at AstraZeneca, and relevant approaches are highlighted where they have utility in a particular drug discovery scenario.

  4. Small Molecule Ligands of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.

    2011-01-01

    Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280

  5. Small-molecule ligands of methyl-lysine binding proteins.

    PubMed

    Herold, J Martin; Wigle, Tim J; Norris, Jacqueline L; Lam, Robert; Korboukh, Victoria K; Gao, Cen; Ingerman, Lindsey A; Kireev, Dmitri B; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J; Arrowsmith, Cheryl H; Jin, Jian; Janzen, William P; Frye, Stephen V

    2011-04-14

    Proteins which bind methylated lysines ("readers" of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small-molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first cocrystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design.

  6. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses.

    PubMed

    Lee, Andrew M; Rojek, Jillian M; Spiropoulou, Christina F; Gundersen, Anette T; Jin, Wei; Shaginian, Alex; York, Joanne; Nunberg, Jack H; Boger, Dale L; Oldstone, Michael B A; Kunz, Stefan

    2008-07-04

    Viral hemorrhagic fevers caused by the arenaviruses Lassa virus in Africa and Machupo, Guanarito, Junin, and Sabia virus in South America are among the most devastating emerging human diseases with fatality rates of 15-35% and a limited antiviral therapeutic repertoire available. Here we used high throughput screening of synthetic combinatorial small molecule libraries to identify inhibitors of arenavirus infection using pseudotyped virion particles bearing the glycoproteins (GPs) of highly pathogenic arenaviruses. Our screening efforts resulted in the discovery of a series of novel small molecule inhibitors of viral entry that are highly active against both Old World and New World hemorrhagic arenaviruses. We observed potent inhibition of infection of human and primate cells with live hemorrhagic arenaviruses (IC(50)=500-800 nm). Investigations of the mechanism of action revealed that the candidate compounds efficiently block pH-dependent fusion by the arenavirus GPs (IC(50) of 200-350 nm). Although our lead compounds were potent against phylogenetically distant arenaviruses, they did not show activity against other enveloped viruses with class I viral fusion proteins, indicating specificity for arenavirus GP-mediated membrane fusion.

  7. Rapid parameterization of small molecules using the Force Field Toolkit

    PubMed Central

    Mayne, Christopher G.; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C.

    2013-01-01

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics (MD) simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, e.g., GAFF and CGenFF, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, set up multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). PMID:24000174

  8. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  9. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis*

    PubMed Central

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M.; Concepcion, Erlinda; David, Chella S.; Kastrinsky, David B.; Ohlmeyer, Michael; Tomer, Yaron

    2016-01-01

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. PMID:26703475

  10. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  11. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD.

  12. Biosensor-based small molecule fragment screening with biolayer interferometry

    NASA Astrophysics Data System (ADS)

    Wartchow, Charles A.; Podlaski, Frank; Li, Shirley; Rowan, Karen; Zhang, Xiaolei; Mark, David; Huang, Kuo-Sen

    2011-07-01

    Biosensor-based fragment screening is a valuable tool in the drug discovery process. This method is advantageous over many biochemical methods because primary hits can be distinguished from non-specific or non-ideal interactions by examining binding profiles and responses, resulting in reduced false-positive rates. Biolayer interferometry (BLI), a technique that measures changes in an interference pattern generated from visible light reflected from an optical layer and a biolayer containing proteins of interest, is a relatively new method for monitoring small molecule interactions. The BLI format is based on a disposable sensor that is immersed in 96-well or 384-well plates. BLI has been validated for small molecule detection and fragment screening with model systems and well-characterized targets where affinity constants and binding profiles are generally similar to those obtained with surface plasmon resonsance (SPR). Screens with challenging targets involved in protein-protein interactions including BCL-2, JNK1, and eIF4E were performed with a fragment library of 6,500 compounds, and hit rates were compared for these targets. For eIF4E, a protein containing a PPI site and a nucleotide binding site, results from a BLI fragment screen were compared to results obtained in biochemical HTS screens. Overlapping hits were observed for the PPI site, and hits unique to the BLI screen were identified. Hit assessments with SPR and BLI are described.

  13. Roles of small molecules in somatic cell reprogramming.

    PubMed

    Su, Jian-bin; Pei, Duan-qing; Qin, Bao-ming

    2013-06-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent. This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine. Indeed, reprogramming technology has developed at a dazzling speed within the past 6 years, yet we are still at the early stages of understanding the mechanisms of cell fate identity. This is particularly true in the case of human induced pluripotent stem cells (iPSCs), which lack reliable standards in the evaluation of their fidelity and safety prior to their application. Along with the genetic approaches, small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes, including the mesenchymal-to-epithelial transition, metabolism, signal transduction and epigenetics. Moreover, small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells. With increasing availability of such chemicals, we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  14. Reprogramming the assembly of unmodified DNA with a small molecule

    NASA Astrophysics Data System (ADS)

    Avakyan, Nicole; Greschner, Andrea A.; Aldaye, Faisal; Serpell, Christopher J.; Toader, Violeta; Petitjean, Anne; Sleiman, Hanadi F.

    2016-04-01

    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.

  15. Moving atoms and small molecules out of open containers.

    PubMed

    McKee, Michael L

    2013-03-21

    Density functional theory with the M05-2X exchange/correlation functional is used to study the barriers for expulsion of atoms and small molecules (N2, CO, H2, Ar, Kr, Xe, H2O) out of open fullerenes (I20) and related molecular containers (C40H20, [5]beltene, cucurbit[5]uril). The reactions are examples where dispersion plays a critical role in determining the barrier heights. Calculations are compared with experimental kinetic data for N2@I20, CO@I20, and Xe@cucurbit[5]uril (Xe@CB[5]). Comparing the four molecular containers, the activation barriers for escape of an atom or small molecule correlate with the binding energies. A new open-fullerene model container C40H20 (C40) was constructed from C60 with a constriction at both ends formed by five methylene groups around the rim. The activation barriers for escape of N2 and CO from the model container are similar to those from the I20 open-cage fullerene. In the case of H2O@C40, charge analysis reveals an interesting charge transfer at the transition state as the escaping guest is "squeezed" out of the host container.

  16. Small and Innovative Molecules as New Strategy to Revert MDR.

    PubMed

    Zinzi, Laura; Capparelli, Elena; Cantore, Mariangela; Contino, Marialessandra; Leopoldo, Marcello; Colabufo, Nicola Antonio

    2014-01-01

    Multidrug resistance (MDR) is a complex phenomenon principally due to the overexpression of some transmembrane proteins belonging to the ATP binding cassette (ABC) transporter family. Among these transporters, P-glycoprotein (P-gp) is mostly involved in MDR and its overexpression is the major cause of cancer therapy failure. The classical approach used to overcome MDR is the co-administration of a P-gp inhibitor and the classic antineoplastic drugs, although the results were often unsatisfactory. Different classes of P-gp ligands have been developed and, among them, Tariquidar has been extensively studied both in vitro and in vivo. Although Tariquidar has been considered for several years as the lead compound for the development of P-gp inhibitors, recent studies demonstrated it to be a substrate and inhibitor, in a dose-dependent manner. Moreover, Tariquidar structure-activity relationship studies were difficult to carry out because of the complexity of the structure that does not allow establishing the role of each moiety for P-gp activity. For this purpose, SMALL molecules bearing different scaffolds such as tetralin, biphenyl, arylthiazole, furoxane, furazan have been developed. Many of these ligands have been tested both in in vitro assays and in in vivo PET studies. These preliminary evaluations lead to obtain a library of P-gp interacting agents useful to conjugate chemotherapeutic agents displaying reduced pharmacological activity and appropriate small molecules. These molecules could get over the limits due to the antineoplastic-P-gp inhibitor co-administration since pharmacokinetic and pharmacodynamic profiles are related to a dual innovative drug.

  17. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.

    PubMed

    Harder, Edward; Damm, Wolfgang; Maple, Jon; Wu, Chuanjie; Reboul, Mark; Xiang, Jin Yu; Wang, Lingle; Lupyan, Dmitry; Dahlgren, Markus K; Knight, Jennifer L; Kaus, Joseph W; Cerutti, David S; Krilov, Goran; Jorgensen, William L; Abel, Robert; Friesner, Richard A

    2016-01-12

    The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.

  18. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules.

    PubMed

    Subramanian, Deepa; Boughter, Christopher T; Klauda, Jeffery B; Hammouda, Boualem; Anisimov, Mikhail A

    2013-01-01

    Small amphiphilic molecules, also known as hydrotropes, are too small to form micelles in aqueous solutions. However, aqueous solutions of nonionic hydrotropes show the presence of a dynamic, loose, non-covalent clustering in the water-rich region, This clustering can be viewed as "micelle-like structural fluctuations". Although these fluctuations are short ranged (approximately 1 nm) and short lived (10 ps-50 ps), they may lead to thermodynamic anomalies. In addition, many experiments on aqueous solutions of hydrotropes show the occasional presence of mesoscale (approximately 100 nm) inhomogeneities. We have combined results obtained from molecular dynamics simulations, small-angle neutron scattering, and dynamic light-scattering experiments carried out on tertiary butyl alcohol (hydrotrope)-water solutions and on tertiary butyl alcohol-water-cyclohexane (hydrophobe) solutions to elucidate the nature and structure of these inhomogeneities. We have shown that stable mesoscale inhomogeneities occur in aqueous solutions of nonionic hydrotropes only when the solution contains a third, more hydrophobic, component. Moreover, these inhomogeneities exist in ternary systems only in the concentration range where structural fluctuations and thermodynamic anomalies are observed in the binary water-hydrotrope solutions. Addition of a hydrophobe seems to stabilize the water-hydrotrope structural fluctuations, and leads to the formation of larger (mesoscopic) droplets. The structure of these mesoscopic droplets is such that they have a hydrophobe-rich core, surrounded by a hydrogen-bonded shell of water and hydrotrope molecules. These droplets can be extremely long-lived, being stable for over a year. We refer to the phenomenon of formation of mesoscopic droplets in aqueous solutions of nonionic hydrotropes containing hydrophobes, as mesoscale solubilization. This phenomenon may represent a ubiquitous feature of nonionic hydrotropes that exhibit clustering in water, and may have

  19. System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants

    PubMed Central

    Veyel, Daniel; Kierszniowska, Sylwia; Kosmacz, Monika; Sokolowska, Ewelina Maria; Michaelis, Aenne; Luzarowski, Marcin; Szlachetko, Jagoda; Willmitzer, Lothar; Skirycz, Aleksandra

    2017-01-01

    Protein small molecule interactions are at the core of cell regulation controlling metabolism and development. We reasoned that due to the lack of system wide approaches only a minority of those regulatory molecules are known. In order to see whether or not this assumption is true we developed an effective approach for the identification of small molecules having potential regulatory role that obviates the need of protein or small molecule baits. At the core of this approach is a simple biochemical co-fractionation taking advantage of size differences between proteins and small molecules. Metabolomics based analysis of small molecules co-fractionating with proteins identified a multitude of small molecules in Arabidopsis suggesting the existence of numerous, small molecules/metabolites bound to proteins representing potential regulatory molecules. The approach presented here uses Arabidopsis cell cultures, but is generic and hence applicable to all biological systems. PMID:28205532

  20. Small molecule semiconductors for high-efficiency organic photovoltaics.

    PubMed

    Lin, Yuze; Li, Yongfang; Zhan, Xiaowei

    2012-06-07

    Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

  1. Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters.

    PubMed

    Mutlugun, Evren; Guzelturk, Burak; Abiyasa, Agus Putu; Gao, Yuan; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-08-21

    Nonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.

  2. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids

    NASA Astrophysics Data System (ADS)

    Wang, D.-S.; Kerker, M.

    1981-08-01

    Equations are derived and calculations are presented for the electrodynamic mechanism of enhanced Raman scattering by molecules at the surface of prolate and oblate spheroids in the small-particle limit. The molecules may be arbitrarily distributed; the particles may be arbitrarily oriented. Calculations are presented for a monolayer distributed over randomly oriented spheroids. The effects of particle shape are considered for Ag, Au, and Cu hydrosols. The peak enhancement moves to longer wavelengths, and in the case of Au and Cu the magnitude of the enhancement increases strikingly as the eccentricity increases. The relation between the dependence of the Raman enhancement upon excitation wavelength and the extinction spectra is discussed, including the precariousness of extrapolating such relations beyond the small-particle limit.

  3. Feshbach-Resonance-Enhanced Coherent Atom-Molecule Conversion with Ultranarrow Photoassociation Resonance

    NASA Astrophysics Data System (ADS)

    Taie, Shintaro; Watanabe, Shunsuke; Ichinose, Tomohiro; Takahashi, Yoshiro

    2016-01-01

    We reveal the existence of high-density Feshbach resonances in the collision between the ground and metastable states of 171Yb and coherently produce the associated Feshbach molecules by photoassociation. The extremely small transition rate is overcome by the enhanced Franck-Condon factor of the weakly bound Feshbach molecule, allowing us to observe Rabi oscillations with long decay time between an atom pair and a molecule in an optical lattice. We also perform the precision measurement of the binding energies, which characterizes the observed resonances. The ultranarrow photoassociation will be a basis for practical implementation of optical Feshbach resonances.

  4. Optimization of Donor-Acceptor Substitution for Large Optical Non-linearities in Small Organic Molecules

    NASA Astrophysics Data System (ADS)

    Beels, Marten

    The determination of the wavelength dependence of the complex third-order polarizability of organic molecules delivers information on the mechanisms of resonance enhancement and allows for comparison of the two-photon absorption cross sections on their peak to the off-resonant third-order polarizabilities. The experimental technique of degenerate four-wave mixing offers several advantages over other comparable techniques, including sensitivity, background-free signal, automatization, and information on excited state lifetimes. This work uses experimental data, computational chemistry, and analysis of the relevant terms in the sum-over-states quantum mechanics expression to analyze the significant contributions to the third-order polarizability, mechanisms of resonance enhancement, and comparison of the off resonant values, to peak resonant values. This information provides insight to the structure-property relationships for the third-order polarizability, allows for comparison to fundamental limits, and assessment of the potential for molecules to form solid state materials with a large third-order susceptibility. The use of donor-acceptor (D/A) substitution allows for the realization of small molecules with large third-order polarizabilities. However, in contrast to symmetric non-D/A oligomers that have third-order polarizabilities which scale by a power law as the molecule is made larger, D/A substituted molecules only scale up to a certain length, beyond which the molecule is over-extended and the third-order polarizability does not increase further. This work will analyze the scaling of non-D/A and D/A substituted molecules, determine the optimum length for D/A substituted molecules, and explain the physics of the saturation.

  5. Identification and characterization of small-molecule inhibitors of hepsin

    PubMed Central

    Chevillet, John R.; Park, Gemma J.; Bedalov, Antonio; Simon, Julian A.; Vasioukhin, Valeri I.

    2009-01-01

    Hepsin is a type-II transmembrane serine protease overexpressed in the majority of human prostate cancers. We recently demonstrated that hepsin promotes prostate cancer progression and metastasis and thus represents a potential therapeutic target. Here we report the identification of novel small-molecule inhibitors of hepsin catalytic activity. We utilized purified human hepsin for high-throughput screening of established drug and chemical diversity libraries and identified sixteen inhibitory compounds with IC50 values against hepsin ranging from 0.23–2.31μM and relative selectivity of up to 86-fold or greater. Two compounds are orally administered drugs established for human use. Four compounds attenuated hepsin-dependent pericellular serine protease activity in a dose dependent manner with limited or no cytotoxicity to a range of cell types. These compounds may be used as leads to develop even more potent and specific inhibitors of hepsin to prevent prostate cancer progression and metastasis. PMID:18852137

  6. Small molecule modulators of Wnt/β-catenin signaling.

    PubMed

    Mook, Robert A; Chen, Minyong; Lu, Jiuyi; Barak, Larry S; Lyerly, H Kim; Chen, Wei

    2013-04-01

    The Wnt signal transduction pathway is dysregulated in many highly prevalent diseases, including cancer. Unfortunately, drug discovery efforts have been hampered by the paucity of targets and drug-like lead molecules amenable to drug discovery. Recently, we reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling by a unique mechanism, though the target responsible remains unknown. We interrogated the mechanism and structure-activity relationships to understand drivers of potency and to assist target identification efforts. We found inhibition of Wnt signaling by Niclosamide appears unique among the structurally-related anthelmintic agents tested and found the potency and functional response was dependent on small changes in the chemical structure of Niclosamide. Overall, these findings support efforts to identify the target of Niclosamide inhibition of Wnt/β-catenin signaling and the discovery of potent and selective modulators to treat human disease.

  7. Small-molecule modulators of PXR and CAR.

    PubMed

    Chai, Sergio C; Cherian, Milu T; Wang, Yue-Ming; Chen, Taosheng

    2016-09-01

    Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

  8. Targeting RSV with Vaccines and Small Molecule Drugs

    PubMed Central

    Costello, Heather M.; Ray, William C.; Chaiwatpongsakorn, Supranee; Peeples, Mark E.

    2012-01-01

    Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates. PMID:22335496

  9. Branched terthiophenes in organic electronics: from small molecules to polymers.

    PubMed

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article.

  10. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  11. Detection of small molecules with a flow immunosensor

    NASA Technical Reports Server (NTRS)

    Kusterbeck, Anne W.; Ligler, Frances S.

    1991-01-01

    We describe the development of an easy-to-use sensor with widespread applications for detecting small molecules. The flow immunosensor can analyze discrete samples in under one minute or continuously monitor a flowing stream for the presence of specific analytes. This detection system is extremely specific, and achieves a level of sensitivity which meets or exceeds the detection limits reported for rival assays. Because the system is also compact, transportable, and automated, it has the potential to impact diverse areas. For example, the flow immunosensor has successfully detected drugs of abuse and explosives, and may well address many of the needs of the environmental community with respect to continuous monitoring for pollutants. Efforts are underway to engineer a portable device in the field.

  12. Small molecule-based approaches to adult stem cell therapies.

    PubMed

    Lairson, Luke L; Lyssiotis, Costas A; Zhu, Shoutian; Schultz, Peter G

    2013-01-01

    There is considerable interest in the development of stem cell-based strategies for the treatment of a broad range of human diseases, including neurodegenerative, autoimmune, cardiovascular, and musculoskeletal diseases. To date, such regenerative approaches have focused largely on the development of cell transplantation therapies using cells derived from pluripotent embryonic stem cells (ESCs). Although there have been exciting preliminary reports describing the efficacy of ESC-derived replacement therapies, approaches involving ex vivo manipulated ESCs are hindered by issues of mutation, immune rejection, and ethical controversy. An alternative approach involves direct in vivo modulation or ex vivo expansion of endogenous adult stem cell populations using drug-like small molecules. Here we describe chemical approaches to the regulation of somatic stem cell biology that are yielding new biological insights and that may ultimately lead to innovative new medicines.

  13. Microbial modulation of host immunity with the small molecule phosphorylcholine.

    PubMed

    Clark, Sarah E; Weiser, Jeffrey N

    2013-02-01

    All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.

  14. Inhibition of HIV-1 Reverse Transcriptase Dimerization by Small Molecules.

    PubMed

    Tintori, Cristina; Corona, Angela; Esposito, Francesca; Brai, Annalaura; Grandi, Nicole; Ceresola, Elisa Rita; Clementi, Massimo; Canducci, Filippo; Tramontano, Enzo; Botta, Maurizio

    2016-04-15

    Because HIV-1 reverse transcriptase is an enzyme whose catalytic activity depends on its heterodimeric structure, this system could be a target for inhibitors that perturb the interactions between the protein subunits, p51 and p66. We previously demonstrated that the small molecule MAS0 reduced the association of the two RT subunits and simultaneously inhibited both the polymerase and ribonuclease H activities. In this study, some analogues of MAS0 were rationally selected by docking studies and evaluated in vitro for their ability to disrupt dimeric assembly. Two inhibitors were identified with improved activity compared to MAS0. This study lays the basis for the rational design of more potent inhibitors of RT dimerization.

  15. Small molecule interactions were central to the origin of life.

    PubMed

    Shapiro, Robert

    2006-06-01

    Many scientists believe life began with the spontaneous formation of a replicator. This idea has been supported by "prebiotic" syntheses carried out by chemists using modern apparatus and purified reagents. The probability that such reactions would take place spontaneously on the early Earth is minute. These points are illustrated here by considering the often cited oligomerization of activated RNA components by clay minerals. A more likely alternative for the origin of life is one in which a collection of small organic molecules multiply their numbers through catalyzed reaction cycles, driven by a flow of available free energy. Although a number of possible systems of this type have been discussed, no experimental demonstration has been made. The inclusion of a "driver" reaction, directly coupled to the energy source, may lead to a solution.

  16. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  17. Functional silver coated colloidosomes as targeted carriers for small molecules.

    PubMed

    Sun, Qian; Du, Yao; Zhao, Ziyan; Hall, Elizabeth Anne Howlett; Gao, Hui; Sukhorukov, Gleb B; Routh, Alexander Francis

    2017-03-30

    Colloidosomes have attracted great interest in recent years because of their capability for storage and delivery of small molecules for medical and pharmaceutical applications. However, traditional polymer shell colloidosomes leak low molecular weight drugs due to their intrinsic shell permeability. Here, we report aqueous core colloidosomes with a silver shell, which seals the core and makes the shell impermeable. The silver coated colloidosomes were prepared by reacting L-Ascorbic acid in the microcapsule core with silver nitrate in the wash solution. The silver shell colloidosomes were then modified by using 4,4'-dithiodibutyric acid and linked with rabbit Immunoglobulin G (IgG). Label-free Surface Plasmon Resonance was used to test the specific targeting of the functional silver shell with rabbit antigen. To break the shells, ultrasound treatment was used. The results demonstrate that a new type of functional silver coated colloidosome with immunoassay targeting, non-permeability, and ultrasound sensitivity could be applied to many medical applications.

  18. Small-Molecule PROTACS: New Approaches to Protein Degradation.

    PubMed

    Toure, Momar; Crews, Craig M

    2016-02-05

    The current inhibitor-based approach to therapeutics has inherent limitations owing to its occupancy-based model: 1) there is a need to maintain high systemic exposure to ensure sufficient in vivo inhibition, 2) high in vivo concentrations bring potential for off-target side effects, and 3) there is a need to bind to an active site, thus limiting the drug target space. As an alternative, induced protein degradation lacks these limitations. Based on an event-driven model, this approach offers a novel catalytic mechanism to irreversibly inhibit protein function by targeting protein destruction through recruitment to the cellular quality control machinery. Prior protein degrading strategies have lacked therapeutic potential. However, recent reports of small-molecule-based proteolysis-targeting chimeras (PROTACs) have demonstrated that this technology can effectively decrease the cellular levels of several protein classes.

  19. Small molecule inhibitors targeting activator protein 1 (AP-1).

    PubMed

    Ye, Na; Ding, Ye; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2014-08-28

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases.

  20. Current status of the prebiotic synthesis of small molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1986-01-01

    Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.

  1. Small molecule inhibitors of HCV replication from Pomegranate

    NASA Astrophysics Data System (ADS)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  2. Construction of DNA Hemicatenanes from Two Small Circular DNA Molecules

    PubMed Central

    Gaillard, Claire; Strauss, François

    2015-01-01

    DNA hemicatenanes, one of the simplest possible junctions between two double stranded DNA molecules, have frequently been mentioned in the literature for their possible function in DNA replication, recombination, repair, and organization in chromosomes. They have been little studied experimentally, however, due to the lack of an appropriate method for their preparation. Here we have designed a method to build hemicatenanes from two small circular DNA molecules. The method involves, first, the assembly of two linear single strands and their circularization to form a catenane of two single stranded circles, and, second, the addition and base-pairing of the two single stranded circles complementary to the first ones, followed by their annealing using DNA topoisomerase I. The product was purified by gel electrophoresis and characterized. The arrangement of strands was as expected for a hemicatenane and clearly distinct from a full catenane. In addition, each circle was unwound by an average of half a double helical turn, also in excellent agreement with the structure of a hemicatenane. It was also observed that hemicatenanes are quickly destabilized by a single cut on either of the two strands passing inside the junction, strongly suggesting that DNA strands are able to slide easily inside the hemicatenane. This method should make it possible to study the biochemical properties of hemicatenanes and to test some of the hypotheses that have been proposed about their function, including a possible role for this structure in the organization of complex genomes in loops and chromosomal domains. PMID:25799010

  3. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  4. Targeting Th17 Cells with Small Molecules and Small Interference RNA.

    PubMed

    Lin, Hui; Song, Pingfang; Zhao, Yi; Xue, Li-Jia; Liu, Yi; Chu, Cong-Qiu

    2015-01-01

    T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.

  5. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-12-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule.

  6. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells.

    PubMed

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-12-19

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule.

  7. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    PubMed Central

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-01-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486

  8. A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death.

    PubMed

    Bucur, Octavian; Gaidos, Gabriel; Yatawara, Achani; Pennarun, Bodvael; Rupasinghe, Chamila; Roux, Jérémie; Andrei, Stefan; Guo, Bingqian; Panaitiu, Alexandra; Pellegrini, Maria; Mierke, Dale F; Khosravi-Far, Roya

    2015-05-11

    Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, but not alone. The molecule was identified through an in silico chemical screen for compounds with affinity for the caspase 8 homodimer's interface. The compound was experimentally validated to directly bind caspase 8, and to promote caspase 8 activation and cell death in single living cells or population of cells, upon TRAIL stimulation. Our approach is a proof-of-concept strategy leading to the discovery of a novel small molecule that not only stimulates TRAIL-induced apoptosis in cancer cells, but may also provide insights into the structure-function relationship of caspase 8 homodimers as putative targets in cancer.

  9. A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death

    PubMed Central

    Bucur, Octavian; Gaidos, Gabriel; Yatawara, Achani; Pennarun, Bodvael; Rupasinghe, Chamila; Roux, Jérémie; Andrei, Stefan; Guo, Bingqian; Panaitiu, Alexandra; Pellegrini, Maria; Mierke, Dale F.; Khosravi-Far, Roya

    2015-01-01

    Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, but not alone. The molecule was identified through an in silico chemical screen for compounds with affinity for the caspase 8 homodimer’s interface. The compound was experimentally validated to directly bind caspase 8, and to promote caspase 8 activation and cell death in single living cells or population of cells, upon TRAIL stimulation. Our approach is a proof-of-concept strategy leading to the discovery of a novel small molecule that not only stimulates TRAIL-induced apoptosis in cancer cells, but may also provide insights into the structure-function relationship of caspase 8 homodimers as putative targets in cancer. PMID:25962125

  10. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways.

    PubMed

    Abetov, Danysh; Mustapova, Zhanar; Saliev, Timur; Bulanin, Denis; Batyrbekov, Kanat; Gilman, Charles P

    2015-12-01

    The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.

  11. Multiscale Modelling of Small Molecules Absorbed in Zeolite-4A

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Chandross, Michael; Jaramillo, Eugenio

    2003-03-01

    Confinement within the nanoscale pores of a zeolite strongly modifies the physical and chemical behavior of small molecules such as water, ammonia, and carbon dioxide. Realistic modeling of such phenomena requires simultaneously capturing the detailed behavior of chemical bonds and the possibility of collective dynamics occurring in a complex unit cell (672 atoms in the case of Zeolite-4A). Classical simulations alone cannot reliably model the breaking and formation of chemical bonds, while quantum methods alone are incapable of treating the extended length and time scales characteristic of complex dynamics. Therefore, we have taken a mixed quantum/classical approach. We report our progress in developing an efficient algorithm for embedding a small region treated with density functional theory within a larger system represented by classical potentials. We discuss interesting initial results for the behavior of water and ammonia in Zeolite-4A. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE- AC04-94AL85000.

  12. Perspective: Accurate ro-vibrational calculations on small molecules

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan

    2016-09-01

    In what has been described as the fourth age of quantum chemistry, variational nuclear motion programs are now routinely being used to obtain the vibration-rotation levels and corresponding wavefunctions of small molecules to the sort of high accuracy demanded by comparison with spectroscopy. In this perspective, I will discuss the current state-of-the-art which, for example, shows that these calculations are increasingly competitive with measurements or, indeed, replacing them and thus becoming the primary source of data on key processes. To achieve this accuracy ab initio requires consideration of small effects, routinely ignored in standard calculations, such as those due to quantum electrodynamics. Variational calculations are being used to generate huge lists of transitions which provide the input for models of radiative transport through hot atmospheres and to fill in or even replace measured transition intensities. Future prospects such as the study of molecular states near dissociation, which can provide a link with low-energy chemical reactions, are discussed.

  13. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates. PMID:26676770

  14. Zirconium silicate assisted removal of residual proteins after organic solvent deproteinization of human plasma, enhancing the stability of the LC-ESI-MS response for the bioanalysis of small molecules.

    PubMed

    Hussain, Shah; Pezzei, Cornelia; Güzel, Yüksel; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2014-12-10

    An efficient blood plasma clean-up method was developed, where methanol protein precipitation was applied, followed by zirconium silicate assisted exclusion of residual proteins. A strong binding of zirconium (IV) silicate to the proteins enabled the elimination of remaining proteins after solvent deproteinization through a rapid solid-phase extraction (SPE) procedure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF MS) was used for monitoring the proteins during clean-up practice applied to human plasma samples. The proteins were quantified by colorimetric detection using the bicinchoninic acid (BCA) assay. The presented analytical strategy resulted in the depletion of >99.6% proteins from human plasma samples. Furthermore, high-performance liquid chromatography hyphenated to diode-array and electrospray ionization mass spectrometric detection (HPLC-DAD/ESI MS) was applied for qualitative and quantitative analysis of the caffeoylquinic acids (CQAs) and their metabolites in human plasma. The procedure demonstrated high recoveries for the standard compounds spiked at different concentrations. Cynarin and chlorogenic acid were recovered in the range of 81-86% and 78-83%, respectively. Caffeic acid was extracted in the excess of 89-92%, while ferulic acid and dihydroxyhydrocinnamic acid showed a recovery of 87-91% and 92-95%, respectively. The method was partially validated in accordance with FDA-Industry Guidelines for Bioanalytical Method Validation (2001). The presented scheme improves the clean-up efficacy of the methanol deproteinization, significantly reduces the matrix effects and provides a great analytical tool for the isolation of small molecules from human plasma.

  15. High performance photovoltaic applications using solution-processed small molecules.

    PubMed

    Chen, Yongsheng; Wan, Xiangjian; Long, Guankui

    2013-11-19

    Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we

  16. Enhancement of Raman scattering from molecules placed near metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.

    2017-01-01

    Large Raman scattering cross sections from molecules on surfaces of metallic nanoparticles are described within a renormalization-group theory. In this approach the valence electrons of the molecules are embedded in an effective medium described by a dielectric function, which integrates out the effect of the plasmonic excitations of the metallic nanoparticles. The source of the enhanced photon inelastic scattering is produced by the resonant excitation of surface plasmons at the metallic nanoparticles. A similar theory has been successfully used to explain the resonant x-ray inelastic scattering and the behavior of nonlinear susceptibilities at the x-ray edges.

  17. Characterization of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases.

    PubMed

    Onesto, Cercina; Shutes, Adam; Picard, Virginie; Schweighoffer, Fabien; Der, Channing J

    2008-01-01

    There is now considerable experimental evidence that aberrant activation of Rho family small GTPases promotes uncontrolled proliferation, invasion, and metastatic properties of human cancer cells. Therefore, there is considerable interest in the development of small molecule inhibitors of Rho GTPase function. However, to date, most efforts have focused on inhibitors that block Rho GTPase function indirectly, either by targeting enzymes involved in post-translational processing or downstream protein kinase effectors. We have reported the identification and characterization of the EHT 1864 small molecule as an inhibitor of Rac family small GTPases, placing Rac1 in an inert and inactive state and then impairing Rac1-mediated functions in vivo. Our work suggests that EHT 1864 selectively inhibits Rac1 downstream signaling and cellular transformation by a novel mechanism involving guanine nucleotide displacement. This chapter provides the details for some of the biochemical and biological methods used to characterize the mode of action of EHT 1864 on Rac1 and its impact on Rac1-dependent cellular functions.

  18. Small-Molecule Screening Identifies Modulators of Aquaporin-2 Trafficking

    PubMed Central

    Bogum, Jana; Faust, Dörte; Zühlke, Kerstin; Eichhorst, Jenny; Moutty, Marie C.; Furkert, Jens; Eldahshan, Adeeb; Neuenschwander, Martin; von Kries, Jens Peter; Wiesner, Burkhard; Trimpert, Christiane; Deen, Peter M.T.; Valenti, Giovanna; Rosenthal, Walter

    2013-01-01

    In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H+-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking. PMID:23559583

  19. A chemical screen identifies small molecules that regulate hepcidin expression.

    PubMed

    Gaun, Vera; Patchen, Bonnie; Volovetz, Josephine; Zhen, Aileen W; Andreev, Aleksandr; Pollastri, Michael P; Fraenkel, Paula G

    2014-12-01

    Hepcidin, a peptide hormone produced in the liver, decreases intestinal iron absorption and macrophage iron release via effects on ferroportin. Bone morphogenic protein and Stat3 signaling regulate Hepcidin's transcription. Hepcidin is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. To generate a tool for identifying small molecules that modulate Hepcidin expression, we stably transfected human hepatocytes (HepG2) cells with a reporter construct containing 2.7kb of the human Hepcidin promoter upstream of a firefly reporter gene. We used high throughput methods to screen 10,169 chemicals in duplicate for their effect on Hepcidin expression and cell viability. Regulators were identified as chemicals that caused a change >3 standard deviations above or >1 standard deviation below the mean of the other chemicals (z-score >3 or <1), while not adversely affecting cell viability, quantified by fluorescence assay. Following validation assays, we identified 16 chemicals in a broad range of functional classes that promote Hepcidin expression. All of the chemicals identified increased expression of bone morphogenic protein-dependent and/or Stat3-dependent genes, however none of them strongly increased phosphorylation of Smad1,5,8 or Stat3.

  20. Progress in Small Molecule and Biologic Therapeutics Targeting Ghrelin Signaling.

    PubMed

    McGovern, Kayleigh R; Darling, Joseph E; Hougland, James L

    2016-01-01

    Ghrelin is a circulating peptide hormone involved in regulation of a wide array of physiological processes. As an endogenous ligand for growth hormone secretagogue receptor (GHSR1a), ghrelin is responsible for signaling involved in energy homeostasis, including appetite stimulation, glucose metabolism, insulin signaling, and adiposity. Ghrelin has also been implicated in modulation of several neurological processes. Dysregulation of ghrelin signaling is implicated in diseases related to these pathways, including obesity, type II diabetes, and regulation of appetite and body weight in patients with Prader-Willi syndrome. Multiple steps in the ghrelin signaling pathway are available for targeting in the development of therapeutics for these diseases. Agonists and antagonists of GHS-R1a have been widely studied and have shown varying levels of effectiveness within ghrelin-related physiological pathways. Agents targeting ghrelin directly, either through depletion of ghrelin levels in circulation or inhibitors of ghrelin O-acyltransferase whose action is required for ghrelin to become biologically active, are receiving increasing attention as potential therapeutic options. We discuss the approaches utilized to target ghrelin signaling and highlight the current challenges toward developing small-molecule agents as potential therapeutics for ghrelin-related diseases.

  1. Capping of Aβ42 Oligomers by Small Molecule Inhibitors

    PubMed Central

    2015-01-01

    Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer’s disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1–2 nm and high MW oligomers with heights of 3–5 nm. In both cases, the oligomers are disc-shaped with diameters of ∼10–15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5–20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1–2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation. PMID:25422864

  2. Small-Molecule Inhibitors of the Myc Oncoprotein

    PubMed Central

    Fletcher, Steven; Prochownik, Edward V.

    2014-01-01

    The c-Myc (Myc) oncoprotein is among the most attractive of cancer targets given that is deregulated in the majority of tumors and that its inhibition profoundly affects their growth and/or survival. However, its role as a seldom-mutated transcription factor, its lack of enzymatic activity for which suitable pharmaceutical inhibitors could be crafted and its expression by normal cells have largely been responsible for its being viewed as “undruggable”. Work over the past several years, however, has begun to reverse this idea by allowing us to view Myc within the larger context of global gene regulatory control. Thus, Myc and its obligate heterodimeric partner, Max, are integral to the coordinated recruitment and post-translational modification of components of the core transcriptional machinery. Moreover, Myc over-expression re-programs numerous critical cellular functions and alters the cell’s susceptibility to their inhibition. This new knowledge has therefore served as a framework upon which to develop new pharmaceutical approaches. These include the continuing development of small molecules which act directly to inhibit the critical Myc-Max interaction, those which act indirectly to prevent Myc-directed post-translational modifications necessary to initiate productive transcription and those which inhibit vital pathways upon which the Myc-transformed cell is particularly reliant. PMID:24657798

  3. Analysis of imprecision in incurred sample reanalysis for small molecules.

    PubMed

    Subramaniam, Sriram; Patel, Devvrat; Davit, Barbara M; Conner, Dale P

    2015-01-01

    Over the years, incurred sample (IS) reanalysis (ISR) has become a tool to confirm the reliability of bioanalytical measurements. The recommendation for ISR acceptance criterion for small molecules is at least 67% of ISR samples that have reanalyzed concentrations within 20% of their original concentrations when normalized to their means. To understand the relevance of the ISR acceptance criterion and sample size requirements, simulated ISR studies evaluated the probability of ISR studies passing the acceptance criterion (ISR pass rate) as a function of IS imprecision and sample size. When IS imprecision (percent coefficient of variation: %CV) is low (≤ 10 or 1-10% CV), high ISR pass rate (≥ 99%) is attained with <50 samples. At intermediate IS imprecision (e.g., 12% CV or 7-12% CV range), 80-160 samples are required for a high ISR pass rate. When IS imprecision is at the higher end of the acceptance limit, ISR pass rate decreases significantly, and increasing sample size fails to achieve high ISR pass rate. The effect of systematic bias (e.g., instability, interconversion) on ISR pass rate is strongly dependent on sample size at intermediate IS imprecision. The results provide an understanding of the effect of IS imprecision on ISR pass rates and a framework for selection of ISR sample sizes.

  4. Epigenetic Modulation using Small Molecules - Targeting Histone Acetyltransferases in Disease.

    PubMed

    Richters, André; Koehler, Angela N

    2017-02-23

    Histone acetyltransferases (HATs) are epigenetic drivers that catalyze the acetyl transfer from acetyl-CoA to lysines of both histone and non-histone substrates and thereby induce transcription either by chromatin remodeling or direct transcription factor activation. Histone deacetylases (HDACs) conduct the reverse reaction to counter HAT activity. Physiological processes such as cell cycle progression or apoptosis require a thoroughly balanced equilibrium of the interplay between acetylation and deacetylation processes to maintain or, if required, alter the global acetylome status. Aberrant HAT activity has recently been demonstrated to play a crucial role in the progression of various diseases such as prostate, lung, and colon cancers as well as glioblastomas and neurodegenerative diseases. Recent investigations have aimed for the identification of HAT modulators to further decipher the complexity of acetyl transferase related signaling cascades and discover potential leads for drug design approaches. HDACs have been extensively characterized and targeted by small molecules, including four FDA-approved HDAC inhibitors; in contrast, HATs have not been active targets for therapeutic development. This review will summarize the status of HAT associated diseases and the arsenal of currently known and available HAT inhibitors with respect to their discovery, further improvements, and current applications.

  5. Small molecules increase direct neural conversion of human fibroblasts

    PubMed Central

    Pfisterer, Ulrich; Ek, Fredrik; Lang, Stefan; Soneji, Shamit; Olsson, Roger; Parmar, Malin

    2016-01-01

    The generation of human induced neurons (hiNs) via exogenous delivery of neural transcription factors represents a novel technique to obtain disease and patient specific neurons. These cells have the potential to be used for disease modeling, diagnostics and drug screening, and also to be further developed for brain repair. In the present study, we utilized hiNs to develop an unbiased screening assay for small molecules that increase the conversion efficiency. Using this assay, we screened 307 compounds from five annotated libraries and identified six compounds that were very potent in potentiating the reprogramming process. When combined in an optimal combination and dose, these compounds increased the reprogramming efficiency of human fibroblasts more than 6-fold. Global gene expression and CellNet analysis at different timepoints during the reprogramming process revealed that neuron-specific genes and gene regulatory networks (GRNs) became progressively more activated while converting cells shut down fibroblast-specific GRNs. Further bioinformatics analysis revealed that the addition of the six compound resulted in the accelerated upregulation of a subset of neuronal genes, and also increased expression of genes associated with transcriptional activity and mediation of cellular stress response. PMID:27917895

  6. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma.

    PubMed

    Pritchard, Eleanor M; Dyer, Michael A; Guy, R Kiplin

    2016-01-01

    While mortality is low for intraocular retinoblastoma patients in the developed world who receive aggressive multimodal therapy, partial or full loss of vision occurs in approximately 50% of patients with advanced bilateral retinoblastoma. Therapies that preserve vision and reduce late effects are needed. Because clinical trials for retinoblastoma are difficult due to the young age of the patient population and relative rarity of the disease, robust preclinical testing of new therapies is critical. The last decade has seen advances towards identifying new therapies including the development of animal models of retinoblastoma for preclinical testing, progress in local drug delivery to reach intraocular targets, and improved understanding of the underlying biological mechanisms that give rise to retinoblastoma. This review discusses advances in these areas, with a focus on discovery and development of small molecules for the treatment of retinoblastoma, including novel targeted therapeutics such as inhibitors of the MDMX-p53 interaction (nutlin-3a), histone deacetylase (HDAC) inhibitors, and spleen tyrosine kinase (SYK) inhibitors.

  7. Discovery of a small molecule that inhibits bacterial ribosome biogenesis

    PubMed Central

    Stokes, Jonathan M; Davis, Joseph H; Mangat, Chand S; Williamson, James R; Brown, Eric D

    2014-01-01

    While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 15°C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing protein synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine activity mapped solely to the poorly characterized domain II of translation initiation factor IF2 and prevented the binding of lamotrigine to IF2 in vitro. This work establishes lamotrigine as a widely available chemical probe of bacterial ribosome biogenesis and suggests a role for E. coli IF2 in ribosome assembly. DOI: http://dx.doi.org/10.7554/eLife.03574.001 PMID:25233066

  8. 2-Quinolinecarboxaldehyde: Polymorphic behavior of a small rigid molecule

    NASA Astrophysics Data System (ADS)

    Maria, Teresa M. R.; Ermelinda S. Eusébio, M.; Almeida e Silva, J.; Sobral, Abílio J. F. N.; Cardoso, C.; Paixão, J. A.; Ramos Silva, M.

    2012-12-01

    This work reports an investigation on the polymorphism of 2-quinolinecarboxaldehyde, a quinoline derivative, frequently used as a ligand in the synthesis of metal complexes. 2-Quinolinecarboxaldehyde lacks both molecular flexibility and the ability to form strong hydrogen bonds, two characteristics often seen as driving forces for the occurrence of polymorphism. Nevertheless, a rich polymorphic behavior was found for this substance. Polymorphic forms were generated by crystallization from solutions, and by melt cooling. Four polymorphic forms could be clearly identified by thermal analysis investigation and the crystalline structures of forms I and III were solved by single-crystal X-ray diffraction, at room temperature. In polymorph I, molecules are joined by π-π and weak C-H⋯O interactions while in polymorph III helicoidal chiral chains are formed and very weak C-H⋯O intermolecular interactions can be identified. Neither of these intermolecular interactions involves the formyl hydrogen atom. Concomitant polymorph crystallization from the melt was often observed. XRPD diffractograms which showed similarities to that of polymorph I but presented striking differences were obtained in some experiments. In certain cases the discrepancies may be ascribed to effects of preferential orientation. However, the existence of multiple but slightly different structures with small differences seems to be a better explanation for these experimental observations.

  9. Small-molecule inhibitors of human LDH5

    PubMed Central

    Granchi, Carlotta; Paterni, Ilaria; Rani, Reshma; Minutolo, Filippo

    2014-01-01

    The latest findings on the role played by human LDH5 (hLDH5) in the promotion of glycolysis in invasive tumor cells indicates that this enzyme subtype is a promising therapeutic target for invasive cancer. Compounds able to selectively inhibit hLDH5 hold promise for the cure of neoplastic diseases. hLDH5 has so far been a rather unexplored target, since its importance in the promotion of cancer progression has been neglected for decades. This enzyme should also be considered as a challenging target due the high polar character (mostly cationic) of its ligand cavity. Recently, significant progresses have been reached with small-molecule inhibitors of hLDH5 displaying remarkable potencies and selectivities. This review provides an overview of the newly developed hLDH5 inhibitors. The roles of hLDH isoforms will be briefly discussed, and then the inhibitors will be grouped into chemical classes. Furthermore, general pharmacophore features will be emphasized throughout the structural subgroups analyzed. PMID:24175747

  10. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-03

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.

  11. Targeting Drivers of Melanoma with Synthetic Small Molecules and Phytochemicals

    PubMed Central

    Strickland, Leah Ray; Pal, Harish Chandra; Elmets, Craig A.; Afaq, Farrukh

    2015-01-01

    Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway—the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib—have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies. PMID:25597784

  12. Ion Momentum Imaging of Dissociative Electron Attachment to Small Molecules

    NASA Astrophysics Data System (ADS)

    Fogle, Michael

    2015-09-01

    In recent years, low energy dissociative electron attachment (DEA) interactions have been of interest to varying biological and technological applications. To study the dynamics resulting from DEA, we used an ion-momentum imaging apparatus based on the Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) technique in which a molecular beam is crossed by a pulsed electron beam. The beam interaction takes place in a 4 π pulsed electrostatic spectrometer that collects the anion fragments resulting from DEA. The molecular beam is formed by a supersonic expansion which results in a well-localized and cold target. Using this apparatus we have investigated the DEA dynamics for several small molecules: CO2 at the 4 eV shape resonance and the 8 eV Feshbach resonance; N2O at the 2.3 eV shape resonance; HCCH at the 3 eV shape resonance; and CF4 near the 7 eV resonance. An overview of these experimental ion-momentum results will be compared to ab initio electronic structure and fixed-nuclei scattering calculations to gauge the resulting dynamics driven by DEA. In many cases, conical intersections play a pivotal role in driving the dynamics. Some of these systems exhibit non-axial recoil conditions indicative of a bending dynamics in the transitory negative ion state while others exhibit a direct axial recoil dissociation without any bending. This work is supported by the National Science Foundation under Contract NSF-PHYS1404366.

  13. A Chemical Screen Identifies Small Molecules that Regulate Hepcidin Expression

    PubMed Central

    Gaun, Vera; Patchen, Bonnie; Volovetz, Josephine; Zhen, Aileen W.; Andreev, Aleksandr; Pollastri, Michael P.; Fraenkel, Paula G.

    2014-01-01

    Hepcidin, a peptide hormone produced in the liver, decreases intestinal iron absorption and macrophage iron release via effects on ferroportin. Bone morphogenic protein and Stat3 signaling regulate Hepcidin's transcription. Hepcidin is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. To generate a tool for identifying small molecules that modulate Hepcidin expression, we stably transfected human hepatocytes (HepG2) cells with a reporter construct containing 2.7 kilobases of the human Hepcidin promoter upstream of a firefly reporter gene. We used high throughput methods to screen 10,169 chemicals in duplicate for their effect on Hepcidin expression and cell viability. Regulators were identified as chemicals that caused a change >3 standard deviations above or >1.5 standard deviations below the mean of the other chemicals (z-score >3 or <-1.5), while not adversely affecting cell viability, quantified by fluorescence assay. Following validation assays, we identified 16 chemicals in a broad range of functional classes that promote Hepcidin expression. All of the chemicals identified increased expression of bone morphogenic protein-dependent and/or Stat3-dependent genes, however none of them strongly increased phosphorylation of Smad1,5,8 or Stat3. PMID:24998898

  14. Novel Small Molecule Entry Inhibitors of Ebola Virus

    PubMed Central

    Basu, Arnab; Mills, Debra M.; Mitchell, Daniel; Ndungo, Esther; Williams, John D.; Herbert, Andrew S.; Dye, John M.; Moir, Donald T.; Chandran, Kartik; Patterson, Jean L.; Rong, Lijun; Bowlin, Terry L.

    2015-01-01

    Background. The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. Methods. To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus–based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. Results. We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP–Niemann-Pick C1 (NPC1) protein interaction. Conclusions. We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target. PMID:26206510

  15. Small-molecule inhibitors of JC polyomavirus infection

    PubMed Central

    Yatawara, Achani; Gaidos, Gabriel; Rupasinghe, Chamila N.; O’Hara, Bethany A.; Pellegrini, Maria; Atwood, Walter J.; Mierke, Dale F.

    2015-01-01

    The JC polyomavirus (JCPyV) infects approximately 50% of the human population. In healthy individuals the infection remains dormant and asymptomatic, but in immuno-suppressed patients it can cause progressive multifocal leukoencephalopathy (PML), a potentially fatal demyelinating disease. Currently, there are no drugs against JCPyV infection, nor for the treatment of PML. Here, we report the development of small molecule inhibitors of JCPyV that target the initial interaction between the virus and host cell and thereby block viral entry. Utilizing a combination of computational and NMR-based screening techniques, we target the LSTc tetrasaccharide binding site within the VP1 pentameric coat protein of JCPyV. Four of the compounds from the screen effectively block viral infection in our in vitro assays using SVG-A cells. For the most potent compound, we used saturation transfer difference NMR to determine the mode of binding to purified pentamers of JCPyV VP1. Collectively these results demonstrate the viability of this class of compounds for eventual development of JCPyV-antiviral therapeutics. PMID:25522925

  16. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5.

    PubMed

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J

    2014-06-06

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.

  17. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements.

    PubMed

    Saito, Toshiro; Takahashi, Satoshi; Obara, Takayuki; Itabashi, Naoshi; Imai, Kazumichi

    2011-11-04

    We fabricated platinum bowtie nanostructure arrays producing fluorescence enhancement and evaluated their performance using two-photon photoluminescence and single-molecule fluorescence measurements. A comprehensive selection of suitable materials was explored by electromagnetic simulation and Pt was chosen as the plasmonic material for visible light excitation near 500 nm, which is preferable for multicolor dye-labeling applications like DNA sequencing. The observation of bright photoluminescence (λ = 500-600 nm) from each Pt nanostructure, induced by irradiation at 800 nm with a femtosecond laser pulse, clearly indicates that a highly enhanced local field is created near the Pt nanostructure. The attachment of a single dye molecule was attempted between the Pt triangles of each nanostructure by using selective immobilization chemistry. The fluorescence intensities of the single dye molecule localized on the nanostructures were measured. A highly enhanced fluorescence, which was increased by a factor of 30, was observed. The two-photon photoluminescence intensity and fluorescence intensity showed qualitatively consistent gap size dependence. However, the average fluorescence enhancement factor was rather repressed even in the nanostructure with the smallest gap size compared to the large growth of photoluminescence. The variation of the position of the dye molecule attached to the nanostructure may influence the wide distribution of the fluorescence enhancement factor and cause the rather small average value of the fluorescence enhancement factor.

  18. Phosphate binding energy and catalysis by small and large molecules.

    PubMed

    Morrow, Janet R; Amyes, Tina L; Richard, John P

    2008-04-01

    Catalysis is an important process in chemistry and enzymology. The rate acceleration for any catalyzed reaction is the difference between the activation barriers for the uncatalyzed (Delta G(HO)(#)) and catalyzed (Delta G(Me)(#)) reactions, which corresponds to the binding energy (Delta G(S)(#) = Delta G(Me)(#)-Delta G(HO)(#)) for transfer of the reaction transition state from solution to the catalyst. This transition state binding energy is a fundamental descriptor of catalyzed reactions, and its evaluation is necessary for an understanding of any and all catalytic processes. We have evaluated the transition state binding energies obtained from interactions between low molecular weight metal ion complexes or high molecular weight protein catalysts and the phosphate group of bound substrate. Work on catalysis by small molecules is exemplified by studies on the mechanism of action of Zn2(1)(H2O). A binding energy of Delta G(S)(#) = -9.6 kcal/mol was determined for Zn2(1)(H2O)-catalyzed cleavage of the RNA analogue HpPNP. The pH-rate profile for this cleavage reaction showed that there is optimal catalytic activity at high pH, where the catalyst is in the basic form [Zn2(1)(HO-)]. However, it was also shown that the active form of the catalyst is Zn2(1)(H2O) and that this recognizes the C2-oxygen-ionized substrate in the cleavage reaction. The active catalyst Zn2(1)(H2O) shows a high affinity for oxyphosphorane transition state dianions and a stable methyl phosphate transition state analogue, compared with the affinity for phosphate monoanion substrates. The transition state binding energies, Delta G(S)(#), for cleavage of HpPNP catalyzed by a variety of Zn2+ and Eu3+ metal ion complexes reflect the increase in the catalytic activity with increasing total positive charge at the catalyst. These values of Delta G(S)(#) are affected by interactions between the metal ion and its ligands, but these effects are small in comparison with Delta G(S)(#) observed for catalysis

  19. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    PubMed

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  20. Lessons from the swamp: developing small molecules that confer salamander muscle cellularization in mammals.

    PubMed

    Um, JungIn; Jung, Da-Woon; Williams, Darren Reece

    2017-12-01

    The ability of salamanders, such as newts, to regenerate damaged tissues has been studied for centuries. A prominent example of this regenerative power is the ability to re-grow entire amputated limbs. One important step in this regeneration process is skeletal muscle cellularization, in which the muscle fibers break down into dedifferentiated, mononuclear cells that proliferate and form new muscle in the replacement limb. In contrast, mammalian skeletal muscle does not undergo cellularization after injury. A significant proportion of research about tissue regeneration in salamanders aims to characterize regulatory genes that may have mammalian homologs. A less mainstream approach is to develop small molecule compounds that induce regeneration-related mechanisms in mammals. In this commentary, we discuss progress in discovering small molecules that induce cellularization in mammalian muscle. New research findings using these compounds has also shed light on cellular processes that regulate cellularization, such as apoptotic signaling. Although formidable technical hurdles remain, this progress increases our understanding of tissue regeneration and provide opportunities for developing small molecules that may enhance tissue repair in humans.

  1. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview.

    PubMed

    Swaminathan, Amrutha; Kumar, Manoj; Halder Sinha, Sarmistha; Schneider-Anthony, Anne; Boutillier, Anne-Laurence; Kundu, Tapas K

    2014-12-17

    Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.

  2. Enhanced Thermoelectric Performance of Hybrid Nanoparticle-Single-Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Zerah-Harush, Elinor; Dubi, Yonatan

    2015-06-01

    It was recently suggested that molecular junctions would be excellent elements for efficient and high-power thermoelectric energy-conversion devices. However, experimental measurements of thermoelectric conversion in molecular junctions indicate rather poor efficiency, raising the question of whether it is indeed possible to design a setup for molecular junctions that will exhibit enhanced thermoelectric performance. Here we suggest that hybrid single-molecule-nanoparticle junctions can serve as efficient thermoelectric converters. The introduction of a semiconducting nanoparticle introduces new tuning capabilities, which are absent in conventional metal-molecule-metal junctions. Using a generic model for the molecule and nanoparticle with realistic parameters, we demonstrate that the thermopower can be of the order of hundreds of microvolts per degree kelvin and that the thermoelectric figure of merit can reach values close to 1, an improvement of 4 orders of magnitude over existing measurements. This favorable performance persists over a wide range of experimentally relevant parameters and is robust against disorder (in the form of surface-attached molecules) and against electron decoherence at the nanoparticle-molecule interface.

  3. Allosteric "beta-blocker" isolated from a DNA-encoded small molecule library.

    PubMed

    Ahn, Seungkirl; Kahsai, Alem W; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L; Strachan, Ryan T; Staus, Dean P; Wingler, Laura M; Sun, Lillian D; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T; Hansen, Gwenn M; Burnett, Michael B; Lamerdin, Jane E; Bassoni, Daniel L; Gavino, Bryant J; Husemoen, Gitte; Olsen, Eva K; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J

    2017-02-14

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.

  4. Identification of small molecule binding sites within proteins using phage display technology.

    SciTech Connect

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  5. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    PubMed Central

    Ahn, Seungkirl; Kahsai, Alem W.; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L.; Strachan, Ryan T.; Staus, Dean P.; Wingler, Laura M.; Sun, Lillian D.; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T.; Hansen, Gwenn M.; Burnett, Michael B.; Lamerdin, Jane E.; Bassoni, Daniel L.; Gavino, Bryant J.; Husemoen, Gitte; Olsen, Eva K.; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J.

    2017-01-01

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein–coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects. PMID:28130548

  6. An Unbiased Cell Morphology–Based Screen for New, Biologically Active Small Molecules

    PubMed Central

    Tanaka, Masahiro; Bateman, Raynard; Rauh, Daniel; Vaisberg, Eugeni; Ramachandani, Shyam; Zhang, Chao; Hansen, Kirk C; Burlingame, Alma L; Trautman, Jay K; Adams, Cynthia L

    2005-01-01

    We have implemented an unbiased cell morphology–based screen to identify small-molecule modulators of cellular processes using the Cytometrix (TM) automated imaging and analysis system. This assay format provides unbiased analysis of morphological effects induced by small molecules by capturing phenotypic readouts of most known classes of pharmacological agents and has the potential to read out pathways for which little is known. Four human-cancer cell lines and one noncancerous primary cell type were treated with 107 small molecules comprising four different protein kinase–inhibitor scaffolds. Cellular phenotypes induced by each compound were quantified by multivariate statistical analysis of the morphology, staining intensity, and spatial attributes of the cellular nuclei, microtubules, and Golgi compartments. Principal component analysis was used to identify inhibitors of cellular components not targeted by known protein kinase inhibitors. Here we focus on a hydroxyl-substituted analog (hydroxy-PP) of the known Src-family kinase inhibitor PP2 because it induced cell-specific morphological features distinct from all known kinase inhibitors in the collection. We used affinity purification to identify a target of hydroxy-PP, carbonyl reductase 1 (CBR1), a short-chain dehydrogenase-reductase. We solved the X-ray crystal structure of the CBR1/hydroxy-PP complex to 1.24 Å resolution. Structure-based design of more potent and selective CBR1 inhibitors provided probes for analyzing the biological function of CBR1 in A549 cells. These studies revealed a previously unknown function for CBR1 in serum-withdrawal-induced apoptosis. Further studies indicate CBR1 inhibitors may enhance the effectiveness of anticancer anthracyclines. Morphology-based screening of diverse cancer cell types has provided a method for discovering potent new small-molecule probes for cell biological studies and anticancer drug candidates. PMID:15799708

  7. Clinical Experience with (18)F-Labeled Small Molecule Inhibitors of Prostate-Specific Membrane Antigen.

    PubMed

    Rowe, Steven P; Gorin, Michael A; Salas Fragomeni, Roberto A; Drzezga, Alexander; Pomper, Martin G

    2017-04-01

    Prostate cancer (PCa) is the most common noncutaneous malignancy diagnosed in men. Despite the large number of men who will suffer from PCa at some point during their lives, conventional imaging modalities for this important disease (contrast-enhanced computed tomography, bone scan, and MR imaging) have provided only marginal to moderate success in appropriately guiding patient management in certain clinical contexts. In this review, the authors discuss radiofluorinated small molecule radiotracers that have been developed to bind to the transmembrane glycoprotein prostate-specific membrane antigen, a target that is nearly universally overexpressed on PCa epithelial cells.

  8. Structure, Dynamics, and Thermodynamics of Small Molecules Adsorbed in Zeolite Micropores: Simulation and Statistical Mechanics.

    NASA Astrophysics Data System (ADS)

    van Tassel, Paul Robert

    1993-01-01

    This thesis describes a fully detailed molecular simulation and modeling effort aimed at understanding the fundamentals of adsorption and diffusion of small molecules in zeolite micropores. The primary emphasis is on determining the relationship between the structure and chemistry of the zeolite adsorbent and the structure, dynamics, and thermodynamics of the adsorbed phase. Further emphasis is on developing simple, predictive models of zeolite adsorption and diffusion. We begin by presenting a Monte Carlo simulation of single component adsorption of xenon, methane, and argon in zeolite NaA. The form of the adsorbate density distribution indicates the presence of discrete adsorption sites which arrange in polyhedra whose geometry depends on the number and position of zeolite framework ions. Isotherm plateaus are attributed to either (i) a low energy adsorbate configuration or (ii) the saturation of polyhedral sites. Viewing the adsorbed phase as an ordered arrangement differs from the conventional delocalized model, yet it helps explain certain experimental observations. Next, a study of binary mixtures of small molecules in zeolite NaA using the Monte Carlo method is presented. The mixing in the pore is determined to be highly nonideal by comparison to a simple pore volume filling model. Strong selectivity for a more polarizable molecule (xenon) is observed only at low pore loading. At higher pore loading, a smaller, less polarizable molecule (argon) adsorbs selectively at a significantly lower pressure than predicted by the model. This enhanced selectivity is due to the ability of the smaller molecule to pack more efficiently inside of the pore. Finally, we present two simple lattice models whose forms are arrived at following careful consideration of simulation results. The first describes the adsorption of small molecules in a zeolite. A polyhedral lattice is postulated whose neighboring sites interact energetically and entropically. The second model describes

  9. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    NASA Astrophysics Data System (ADS)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  10. Bacterial infections in cynomolgus monkeys given small molecule immunomodulatory antagonists.

    PubMed

    Price, Karen D

    2010-01-01

    Opportunistic infections (OIs) during the course of non-clinical toxicity studies can serve as a clinical indicator of immunosuppression. In monkeys, severity may be magnified since the possibility for fecal-oral and cage-to-cage transmission of bacteria exists, reserve capacity is low, and clinical signs of infection are not easily detected until the infectious process is well underway. This review summarizes a case study presented at the HESI-ILSI ITC-Sponsored workshop on Naturally Occurring Infections in Non-human Primates and Immunotoxicity Implications. It gives an overview on the impact of bacterial infections in monkeys on the development and regulatory assessment of three closely-related representative small molecule immunomodulatory (anti-inflammatory) drug candidates all inhibiting the same drug target. The infections, which sometimes progressed to bacteremia and death, originally manifested in the skin, upper respiratory tract, gastrointestinal tract, and less frequently as soft tissue abscesses. Infections were sporadic and not observed in all studies despite coverage of equivalent or higher systemic exposures or longer durations of treatment. To address concerns regarding inconsistency in the presentation and type of findings and their potential relationship to infection, steps were taken to identify causative agents (via culture, microscopy), implement various intervention and treatment regimens (supportive care, antibiotics, drug holiday), demonstrate reversibility of clinical and immune effects, and study major immune components/mechanisms affected (cytokine/stress protein profiling, immune cell phenotyping, and humoral/innate immune cell function tests). Appropriate diagnosis and characterization of the infection was critical to discrimination of these findings as a secondary pharmacologic effect rather than a direct drug-related target organ effect, and also guided clinical protocol design and regulatory acceptance.

  11. Theoretical studies of photodissociation of small molecules of astrophysical importance

    NASA Technical Reports Server (NTRS)

    Saxon, R. P.

    1983-01-01

    The radicals and ions observed in comets result from photodissociation and photoionization of molecules. According to current models, a comet is composed chiefly of a large, solid nucelus of frozen gases (parent molecules) such as H2O, HCN, and NH3. It is believed comets were formed at the same time and in the same region of space as the major planets and that their chemical composition is the same as that of the early solar system. As the comet nears the Sun, the surface heats up, liberating the frozen gases as well as dust particles. Solar radiation photodissociates the parent molecules into fragments that are observed by resonance fluorescence. Both polyatomic molecules, present in the interstellar medium, and cometary radicals were observed. Using laboratory photo-dissociation data and computer models, astronomers are attempting to identify the parent molecules that account for all observed radicals and ions.

  12. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  13. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs.

    PubMed

    Huh, Yeamin; Smith, David E; Feng, Meihau Rose

    2011-11-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis. Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally. The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW). Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs.

  14. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Cancer.gov

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  15. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule

    PubMed Central

    Petrik, David; Jiang, Yindi; Birnbaum, Shari G.; Powell, Craig M.; Kim, Mi-Sung; Hsieh, Jenny; Eisch, Amelia J.

    2012-01-01

    Adult neurogenesis occurs throughout life in the mammalian hippocampus and is essential for memory and mood control. There is significant interest in identifying ways to promote neurogenesis and ensure maintenance of these hippocampal functions. Previous work with a synthetic small molecule, isoxazole 9 (Isx-9), highlighted its neuronal-differentiating properties in vitro. However, the ability of Isx-9 to drive neurogenesis in vivo or improve hippocampal function was unknown. Here we show that Isx-9 promotes neurogenesis in vivo, enhancing the proliferation and differentiation of hippocampal subgranular zone (SGZ) neuroblasts, and the dendritic arborization of adult-generated dentate gyrus neurons. Isx-9 also improves hippocampal function, enhancing memory in the Morris water maze. Notably, Isx-9 enhances neurogenesis and memory without detectable increases in cellular or animal activity or vascularization. Molecular exploration of Isx-9-induced regulation of neurogenesis (via FACS and microarray of SGZ stem and progenitor cells) suggested the involvement of the myocyte-enhancer family of proteins (Mef2). Indeed, transgenic-mediated inducible knockout of all brain-enriched Mef2 isoforms (Mef2a/c/d) specifically from neural stem cells and their progeny confirmed Mef2's requirement for Isx-9-induced increase in hippocampal neurogenesis. Thus, Isx-9 enhances hippocampal neurogenesis and memory in vivo, and its effects are reliant on Mef2, revealing a novel cell-intrinsic molecular pathway regulating adult neurogenesis.—Petrik, D., Jiang, Y., Birnbaum, S. G., Powell, C. M., Kim, M.-S., Hsieh, J., Eisch, A. J. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. PMID:22542682

  16. The small-voxel tracking algorithm for simulating chemical reactions among diffusing molecules

    NASA Astrophysics Data System (ADS)

    Gillespie, Daniel T.; Seitaridou, Effrosyni; Gillespie, Carol A.

    2014-12-01

    Simulating the evolution of a chemically reacting system using the bimolecular propensity function, as is done by the stochastic simulation algorithm and its reaction-diffusion extension, entails making statistically inspired guesses as to where the reactant molecules are at any given time. Those guesses will be physically justified if the system is dilute and well-mixed in the reactant molecules. Otherwise, an accurate simulation will require the extra effort and expense of keeping track of the positions of the reactant molecules as the system evolves. One molecule-tracking algorithm that pays careful attention to the physics of molecular diffusion is the enhanced Green's function reaction dynamics (eGFRD) of Takahashi, Tănase-Nicola, and ten Wolde [Proc. Natl. Acad. Sci. U.S.A. 107, 2473 (2010)]. We introduce here a molecule-tracking algorithm that has the same theoretical underpinnings and strategic aims as eGFRD, but a different implementation procedure. Called the small-voxel tracking algorithm (SVTA), it combines the well known voxel-hopping method for simulating molecular diffusion with a novel procedure for rectifying the unphysical predictions of the diffusion equation on the small spatiotemporal scale of molecular collisions. Indications are that the SVTA might be more computationally efficient than eGFRD for the problematic class of non-dilute systems. A widely applicable, user-friendly software implementation of the SVTA has yet to be developed, but we exhibit some simple examples which show that the algorithm is computationally feasible and gives plausible results.

  17. Novel small molecule EGFR inhibitors as candidate drugs in non-small cell lung cancer

    PubMed Central

    Berardi, Rossana; Santoni, Matteo; Morgese, Francesca; Ballatore, Zelmira; Savini, Agnese; Onofri, Azzurra; Mazzanti, Paola; Pistelli, Mirco; Pierantoni, Chiara; De Lisa, Mariagrazia; Caramanti, Miriam; Pagliaretta, Silvia; Pellei, Chiara; Cascinu, Stefano

    2013-01-01

    In the last decade, better understanding of the role of epidermal growth factor receptor in the pathogenesis and progression of non-small cell lung cancer has led to a revolution in the work-up of these neoplasms. Tyrosine kinase inhibitors, such as erlotinib and gefitinib, have been approved for the treatment of non-small cell lung cancer, demonstrating an improvement in progression-free and overall survival, particularly in patients harboring activating EGFR mutations. Nevertheless, despite initial responses and long-lasting remissions, resistance to tyrosine kinase inhibitors invariably develops, most commonly due to the emergence of secondary T790M mutations or to the amplification of mesenchymal–epithelial transition factor (c-Met), which inevitably leads to treatment failure. Several clinical studies are ongoing (http://www.clinicaltrials.gov), aimed to evaluate the efficacy and toxicity of combined approaches and to develop novel irreversible or multitargeted tyrosine kinase inhibitors and mutant-selective inhibitors to overcome such resistance. This review is an overview of ongoing Phase I, II, and III trials of novel small molecule epidermal growth factor receptor inhibitors and combinations in non-small cell lung cancer patients. PMID:23723712

  18. Immunoaffinity Ultrafiltration with Ion Spray HPLC/MS for Screening Small-Molecule Libraries.

    PubMed

    Wieboldt, R; Zweigenbaum, J; Henion, J

    1997-05-01

    A solution-phase screening method for libraries of pharmaceutically relevant molecules is presented. The technique is applicable to screening combinatorial libraries of 20-30 closely related molecules. In this report, individual benzodiazepines are selected from a multicomponent library mixture by formation in solution of noncovalent immunoaffinity complexes with antibodies raised to therapeutically proven drugs such as nitrazepam, temazepam, or oxazepam. Captured compounds are separated from nonspecifically bound library components by centrifugal ultrafiltration. The specifically selected molecules retained on the filter are subsequently liberated from the antibodies by acidification and analyzed by HPLC coupled with pneumatically assisted electrospray (ion spray) ionization mass spectrometric detection. Competition by the benzodiazepines for limited antibody binding sites is controlled by varying the stoichiometry of the complexation mixture. This procedure selects library components with the greatest affinity for a particular antibody. Specific capture of benzodiazepines is demonstrated by screening both a pool of structurally similar benzodiazepines and a more complex mixture of benzodiazepines with an additional set of unrelated compounds. Affinity ultrafiltration and electrospray mass spectrometry complement each other to enhance screening and identification of pooled drug candidates and potentially can be extended to other small-molecule combinatorial libraries and macromolecular receptor preparations.

  19. Characteristics of product recalls of biopharmaceuticals and small-molecule drugs in the USA.

    PubMed

    Ebbers, Hans C; de Tienda, Nina Fuentes; Hoefnagel, Marcel C; Nibbeling, Ria; Mantel-Teeuwisse, Aukje K

    2016-04-01

    Compared with chemically synthesized small-molecule drugs, the manufacturing process of biopharmaceuticals is more complex. Unexpected changes to product characteristics following manufacturing changes have given rise to calls for robust systems to monitor the postauthorization safety of biopharmaceuticals. We compared quality-related product recalls in the USA of biopharmaceuticals and of small molecules. Although the reasons for recalls for biopharmaceuticals differed from those for small molecules, adverse events were rarely reported. The relative contribution of recalls that could cause serious adverse health consequences was not greater for biopharmaceuticals than for small molecules. Therefore, these data do not give rise to concerns that biopharmaceuticals are more frequently associated with unexpected safety concerns.

  20. Reactions of small organic molecules on silver(110)

    SciTech Connect

    Ayre, C.R.

    1992-01-01

    The interaction of two pairs of molecules (1) acetone (CH[sub 3])[sub 2]C=O and isobutylene (CH[sub 3])[sub 2] C=CH[sub 2] and (2) 1,2-propanediol CH[sub 3] CH (OH)CH[sub 2]OH and 1,3-propanediol HOCH[sub 2]CH[sub 2]CH[sub 2]OH with clean and oxygen-activated Ag(110) has been explored to investigate the effects of molecular structure on reactivity. Experimental techniques employed include temperature programmed reaction spectroscopy, isotopic labelling, surface displacement reactions, and electron energy loss spectroscopy. Acetone and isobutylene were studied to explore the relative importance of C=O and C=C bonds in governing the reactivity of structurally similar compounds. Nucleophilic attack by oxygen at the electron-deficient carbonyl carbon in acetone results in reversible formation of the metallacycle (CH[sub 3])[sub 2]COO[sub (a)] at 110 K. Upon heating C-H bond activation by O[sub (a)] occurs near 215 K to yield acetone enolate CH[sub 2]=C(CH[sub 3])O[sub (a)] and evolve H[sub 2]O[sub (g)]. Atomic oxygen activates methyl C-H bonds in isobutylene via an acid-base mechanism. Although the major products are CO[sub 2(g)] and H[sub 2]O[sub (g)], a small amount of (CH[sub 3])[sub 2]C=CH[sub 2(g)] evolves near 310 K. Evidence for the formation of [pi]-2-methylallyl CH[sub 3]C(CH[sub 2])[sub 2(a)] and trimethylenementhane C(CH[sub 2])[sub 3(a)] is presented. The reaction of 1,2-propanediol CH[sub 3] CH(OH)CH[sub 2] OH with oxygen-activated Ag(110) has been compared with that of 1,3-propanediol HOCH[sub 2]CH[sub 2]CH[sub 2]OH to evaluate the effects of varying the position of O-H bonds in both diols to produce the corresponding dialkoxides.

  1. Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells.

    PubMed

    Freitas, Flavio S; Clifford, John N; Palomares, Emilio; Nogueira, Ana F

    2012-09-14

    In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO(2)/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH(2)- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO(2) surface wettability, improving the TiO(2)/polymer contact. This effect is important to enhance exciton splitting and charge separation.

  2. Enhancing the low frequency THz resonances (< 1 THz) of organic molecules via electronegative atom substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2015-03-01

    Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.

  3. Small Talk: Children's Everyday "Molecule" Ideas

    ERIC Educational Resources Information Center

    Jakab, Cheryl

    2013-01-01

    This paper reports on 6-11-year-old children's "sayings and doings" (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, "Cultural Studies of Science Education" 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's…

  4. Evaluation of Small Molecules as Front Cell Donor Materials for High-Efficiency Tandem Solar Cells.

    PubMed

    Zhang, Qian; Wan, Xiangjian; Liu, Feng; Kan, Bin; Li, Miaomiao; Feng, Huanran; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-08-01

    Three small molecules as front cell donors for tandem cells are thoroughly evaluated and a high power conversion efficiency of 11.47% is achieved, which demonstrates that the oligomer-like small molecules offer a good choice for high-performance tandem solar cells.

  5. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13.

    PubMed

    Blum, Lorenz C; Reymond, Jean-Louis

    2009-07-01

    GDB-13 enumerates small organic molecules containing up to 13 atoms of C, N, O, S, and Cl following simple chemical stability and synthetic feasibility rules. With 977,468,314 structures, GDB-13 is the largest publicly available small organic molecule database to date.

  6. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    DOEpatents

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  7. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules.

    PubMed

    Bui, Tung S; Dao, Thang D; Dang, Luu H; Vu, Lam D; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V

    2016-08-24

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  8. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    PubMed Central

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V.

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  9. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    NASA Astrophysics Data System (ADS)

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, Youngpak; Nagao, Tadaaki; Hoang, Chung V.

    2016-08-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3‧-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  10. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  11. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment.

    PubMed

    Gao, Yuan; Kuang, Yi; Du, Xuewen; Zhou, Jie; Chandran, Preethi; Horkay, Ferenc; Xu, Bing

    2013-12-10

    Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in a cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on the side chain of the lysine residue of the peptidic motif. These molecules, however, exhibit a different ability of self-assembly before and after enzymatic transformation (e.g., dephosphorylation). Fluorescent imaging reveals that self-assembly directly affects the distribution of these small molecules in a cellular environment. Moreover, cell viability tests suggest that the states and the locations of the molecular assemblies in the cellular environment control the phenotypes of the cells. For example, the molecular nanofibers of one of the small molecules apparently stabilize actin filaments and alleviate the insult of an F-actin toxin (e.g., latrunculin A). Combining fluorescent imaging and enzyme-instructed self-assembly of small peptidic molecules, this work demonstrates self-assembly as a key factor for dictating the spatial distribution of small molecules in a cellular environment. In addition, it illustrates a useful approach, based on enzyme-instructed self-assembly of small molecules, to modulate spatiotemporal profiles of small molecules in a cellular environment, which allows the use of the emergent properties of small molecules to control the fate of cells.

  12. Small-Molecule Modulators of Listeria monocytogenes Biofilm Development

    PubMed Central

    Nguyen, Uyen T.; Wenderska, Iwona B.; Chong, Matthew A.; Koteva, Kalinka; Wright, Gerard D.

    2012-01-01

    Listeria monocytogenes is an important food-borne pathogen whose ability to form disinfectant-tolerant biofilms on a variety of surfaces presents a food safety challenge for manufacturers of ready-to-eat products. We developed here a high-throughput biofilm assay for L. monocytogenes and, as a proof of principle, used it to screen an 80-compound protein kinase inhibitor library to identify molecules that perturb biofilm development. The screen yielded molecules toxic to multiple strains of Listeria at micromolar concentrations, as well as molecules that decreased (≤50% of vehicle control) or increased (≥200%) biofilm formation in a dose-dependent manner without affecting planktonic cell density. Toxic molecules—including the protein kinase C antagonist sphingosine—had antibiofilm activity at sub-MIC concentrations. Structure-activity studies of the biofilm inhibitory compound palmitoyl-d,l-carnitine showed that while Listeria biofilm formation was inhibited with a 50% inhibitory concentration of 5.85 ± 0.24 μM, d,l-carnitine had no effect, whereas palmitic acid had stimulatory effects. Saturated fatty acids between C9:0 and C14:0 were Listeria biofilm inhibitors, whereas fatty acids of C16:0 or longer were stimulators, showing chain length specificity. De novo-synthesized short-chain acyl carnitines were less effective biofilm inhibitors than the palmitoyl forms. These molecules, whose activities against bacteria have not been previously established, are both useful probes of L. monocytogenes biology and promising leads for the further development of antibiofilm strategies. PMID:22194285

  13. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  14. Encapsulation of small ionic molecules within alpha-cyclodextrins.

    PubMed

    Rodriguez, Javier; Elola, M Dolores

    2009-02-05

    Results from molecular dynamics experiments pertaining to the encapsulation of ClO4- within the hydrophobic cavity of an aqueous alpha-cyclodextrin (alpha-CD) are presented. Using a biased sampling procedure, we constructed the Gibbs free energy profile associated with the complexation process. The profile presents a global minimum at the vicinity of the primary hydroxyl groups, where the ion remains tightly coordinated to four water molecules via hydrogen bonds. Our estimate for the global free energy of encapsulation yields DeltaGenc approximately -2.5 kBT. The decomposition of the average forces acting on the trapped ion reveals that the encapsulation is controlled by Coulomb interactions between the ion and OH groups in the CD, with a much smaller contribution from the solvent molecules. Changes in the previous results, arising from the partial methylation of the host CD and modifications in the charge distribution of the guest molecule are also discussed. The global picture that emerges from our results suggests that the stability of the ClO4- encapsulation involves not only the individual ion but also its first solvation shell.

  15. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  16. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  17. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  18. Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics

    PubMed Central

    Chauhan, Jamal; Cardinale, Steven; Fang, Lei; Huang, Jing; Kwasny, Steven M.; Pennington, M. Ross; Basi, Kelly; diTargiani, Robert; Capacio, Benedict R.; MacKerell, Alexander D.; Opperman, Timothy J.; Fletcher, Steven; de Leeuw, Erik P. H.

    2016-01-01

    Recently we described a novel di-benzene-pyrylium-indolene (BAS00127538) inhibitor of Lipid II. BAS00127538 (1-Methyl-2,4-diphenyl-6-((1E,3E)-3-(1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)pyryl-1-ium) tetrafluoroborate is the first small molecule Lipid II inhibitor and is structurally distinct from natural agents that bind Lipid II, such as vancomycin. Here, we describe the synthesis and biological evaluation of 50 new analogs of BAS00127538 designed to explore the structure-activity relationships of the scaffold. The results of this study indicate an activity map of the scaffold, identifying regions that are critical to cytotoxicity, Lipid II binding and range of anti-bacterial action. One compound, 6jc48-1, showed significantly enhanced drug-like properties compared to BAS00127538. 6jc48-1 has reduced cytotoxicity, while retaining specific Lipid II binding and activity against Enterococcus spp. in vitro and in vivo. Further, this compound showed a markedly improved pharmacokinetic profile with a half-life of over 13 hours upon intravenous and oral administration and was stable in plasma. These results suggest that scaffolds like that of 6jc48-1 can be developed into small molecule antibiotic drugs that target Lipid II. PMID:27776124

  19. Chemogenomics and parasitology: small molecules and cell-based assays to study infectious processes.

    PubMed

    Muskavitch, Marc A T; Barteneva, Natasha; Gubbels, Marc-Jan

    2008-09-01

    Infectious diseases caused by protozoan parasites--malaria, sleeping sickness, leishmaniasis, Chagas' disease, toxoplasmosis--remain chronic problems for humanity. We lack vaccines and have limited drug options effective against protozoa. Research into anti-protozoan drugs has accelerated with improved in vitro cultivation methods, enhanced genetic accessibility, completed genome sequences for key protozoa, and increased prominence of protozoan diseases on the agendas of well-resourced public figures and foundations. Concurrent advances in high-throughput screening (HTS) technologies and availability of diverse small molecule libraries offer the promise of accelerated discovery of new drug targets and new drugs that will reduce disease burdens imposed on humanity by parasitic protozoa. We provide a status report on HTS technologies in hand and cell-based assays under development for biological investigations and drug discovery directed toward the three best-characterized parasitic protozoa: Trypanosoma brucei, Plasmodium falciparum, and Toxoplasma gondii. We emphasize cell growth assays and new insights into parasite cell biology speeding development of better cell-based assays, useful in primary screens for anti-protozoan drug leads and secondary screens to decipher mechanisms of action of leads identified in growth assays. Small molecules that interfere with specific aspects of protozoan biology, identified in such screens, will be valuable tools for dissecting parasite cell biology and developing anti-protozoan drugs. We discuss potential impacts on drug development of new consortia among academic, corporate, and public partners committed to discovery of new, effective anti-protozoan drugs.

  20. Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist

    PubMed Central

    Cao, Benjamin; Zhang, Zhen; Grassinger, Jochen; Williams, Brenda; Heazlewood, Chad K.; Churches, Quentin I.; James, Simon A.; Li, Songhui; Papayannopoulou, Thalia; Nilsson, Susan K.

    2016-01-01

    The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9β1/α4β1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ−/− model, demonstrated by a significant increase in PB CD34+ cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9β1/α4β1 within the endosteal niche. These results support using dual α9β1/α4β1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications. PMID:26975966

  1. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    PubMed

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed.

  2. Aptamer-based Nanosensors: Juglone as an Attached-Redox Molecule for Detection of Small Molecules

    PubMed Central

    Saberian, Mehdi; Hamzeiy, Hossein; Aghanejad, Ayuob; Asgari, Davoud

    2011-01-01

    Introduction Among several biosensing approaches, electrochemical-based procedures have been described as one of the most common and useful methods for sensing because of their simplicity, sensitivity, accuracy, and low cost. The electroactive species, which called redox, play a main role in the electrochemical-based approaches. Among several redox molecules used for electrochemical experiments, ferrocene is one of the commonly used redox molecules. However, instability of ferrocenium ion in the chloride containing solutions appeared to be weakness of this redox molecule limiting its utilization. Methods In the current study, Juglone was attached (using EDC/NHS coupling method) to the 3'-amino-modified terminus of the immobilized specific aptamer of codeine, which was successfully used in a cyclic electrochemical voltammetry procedure. Results The cyclic voltammogram peak of aptamer-attached Juglone was observed in the potential range of +0.4 to +0.9 V and the fabricated aptamer-based sensor was used for detection of different concentrations of codeine in the phosphate buffer 0.1 M solution containing 2 M NaCl. Conclusion Based on these findings, it can be suggested that the new aptamer-attached Juglone could be considered as an effective alternative redox molecule in particular with oligonucleotide-based sensing systems. PMID:23678405

  3. Enhanced Flow in Small-World Networks

    NASA Astrophysics Data System (ADS)

    Oliveira, Cláudio L. N.; Morais, Pablo A.; Moreira, André A.; Andrade, José S.

    2014-04-01

    The proper addition of shortcuts to a regular substrate can lead to the formation of a complex network with a highly efficient structure for navigation [J. M. Kleinberg, Nature 406, 845 (2000)]. Here we show that enhanced flow properties can also be observed in these small-world topologies. Precisely, our model is a network built from an underlying regular lattice over which long-range connections are randomly added according to the probability, Pij˜rij-α, where rij is the Manhattan distance between nodes i and j, and the exponent α is a controlling parameter. The mean two-point global conductance of the system is computed by considering that each link has a local conductance given by gij∝rij-C, where C determines the extent of the geographical limitations (costs) on the long-range connections. Our results show that the best flow conditions are obtained for C =0 with α=0, while for C≫1 the overall conductance always increases with α. For C≈1, α=d becomes the optimal exponent, where d is the topological dimension of the substrate. Interestingly, this exponent is identical to the one obtained for optimal navigation in small-world networks using decentralized algorithms.

  4. Small-Molecule Procaspase-3 Activation Sensitizes Cancer to Treatment with Diverse Chemotherapeutics

    PubMed Central

    2016-01-01

    Conventional chemotherapeutics remain essential treatments for most cancers, but their combination with other anticancer drugs (including targeted therapeutics) is often complicated by unpredictable synergies and multiplicative toxicities. As cytotoxic anticancer chemotherapeutics generally function through induction of apoptosis, we hypothesized that a molecularly targeted small molecule capable of facilitating a central and defining step in the apoptotic cascade, the activation of procaspase-3 to caspase-3, would broadly and predictably enhance activity of cytotoxic drugs. Here we show that procaspase-activating compound 1 (PAC-1) enhances cancer cell death induced by 15 different FDA-approved chemotherapeutics, across many cancer types and chemotherapeutic targets. In particular, the promising combination of PAC-1 and doxorubicin induces a synergistic reduction in tumor burden and enhances survival in murine tumor models of osteosarcoma and lymphoma. This PAC-1/doxorubicin combination was evaluated in 10 pet dogs with naturally occurring metastatic osteosarcoma or lymphoma, eliciting a biologic response in 3 of 6 osteosarcoma patients and 4 of 4 lymphoma patients. Importantly, in both mice and dogs, coadministration of PAC-1 with doxorubicin resulted in no additional toxicity. On the basis of the mode of action of PAC-1 and the high expression of procaspase-3 in many cancers, these results suggest the combination of PAC-1 with cytotoxic anticancer drugs as a potent and general strategy to enhance therapeutic response. PMID:27610416

  5. Targeted delivery as key for the success of small osteoinductive molecules.

    PubMed

    Balmayor, Elizabeth R

    2015-11-01

    Molecules such as growth factors, peptides and small molecules can guide cellular behavior and are thus important for tissue engineering. They are rapidly emerging as promising compounds for the regeneration of tissues of the musculoskeletal system. Growth factors have disadvantages such as high cost, short half-life, supraphysiological amounts needed, etc. Therefore, small molecules may be an alternative. These molecules have been discovered using high throughput screening. Small osteoinductive molecules exhibit several advantages over growth factors owing to their small sizes, such as high stability and non-immunogenicity. These molecules may stimulate directly signaling pathways that are important for osteogenesis. However, systemic application doesn't induce osteogenesis in most cases. Therefore, local administration is needed. This may be achieved by using a bone graft material providing additional osteoconductive properties. These graft materials can also act by themselves as a delivery matrix for targeted and local delivery. Furthermore, vascularization is necessary in the process of osteogenesis. Many of the small molecules are also capable of promoting vascularization of the tissue to be regenerated. Thus, in this review, special attention is given to molecules that are capable of inducing both angiogenesis and osteogenesis simultaneously. Finally, more recent preclinical and clinical uses in bone regeneration of those molecules are described, highlighting the needs for the clinical translation of these promising compounds.

  6. Enhancing single molecule imaging in optofluidics and microfluidics.

    PubMed

    Vasdekis, Andreas E; Laporte, Gregoire P J

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  7. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

    PubMed

    Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole

    2015-07-14

    Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.

  8. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    PubMed

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule.

  9. Aurones: Small Molecule Visible Range Fluorescent Probes Suitable for Biomacromolecules

    PubMed Central

    Shanker, Natasha; Dilek, Ozlem; Mukherjee, Kamalika; McGee, Dennis W.; Bane, Susan L.

    2017-01-01

    Aurones, derivatives of 2-benylidenebenzofuran-3 (2H)-one, are natural products that serve as plant pigments. There have been reports that some of these substances fluoresce, but little information about their optical properties is in the literature. In this report, series of aurone derivatives were synthesized as possible fluorescent probes that can be excited by visible light. We found that an amine substituent shifted the lowest energy absorption band from the near-UV to the visible region of the electromagnetic spectrum. Four amine-substituted aurone derivatives were synthesized to explore the effect of this substituent on the absorption and emission properties of the aurone chromophore. The emission maxima and intensities of the molecules are strongly dependent on the nature of the substituent and the solvent polarity. Overall, the emission intensity increases and the maximum wavelength decreases in less polar solvents; thus, the aurones may be useful probes for hydrophobic sites on biological molecules. A limited investigation with model protein, nucleic acid and fixed cells supports this idea. It is known that the sulfur analog of aurone can undergo photoinduced E/Z isomerization. This possibility was investigated for one of the aminoaurones, which was observed to reversible photoisomerize. The two isomers have similar absorption spectra, but the emission properties are distinct. We conclude that appropriately substituted aurones are potentially useful as biological probes and photoswitches. PMID:21748237

  10. Identification of associations between small molecule drugs and miRNAs based on functional similarity

    PubMed Central

    Dai, EnYu; Yang, Feng; Wang, Shuyuan; Chen, Xiaowen; Yang, Lei; Wang, Yuwen; Jiang, Wei

    2016-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression at post-transcriptional level. Increasing evidences show aberrant expression of miRNAs in varieties of diseases. Targeting the dysregulated miRNAs with small molecule drugs has become a novel therapy for many human diseases, especially cancer. Here, we proposed a novel computational approach to identify associations between small molecules and miRNAs based on functional similarity of differentially expressed genes. At the significance level of p < 0.01, we constructed the small molecule and miRNA functional similarity network involving 111 small molecules and 20 miRNAs. Moreover, we also predicted associations between drugs and diseases through integrating our identified small molecule-miRNA associations with experimentally validated disease related miRNAs. As a result, we identified 2265 associations between FDA approved drugs and diseases, in which ~35% associations have been validated by comprehensive literature reviews. For breast cancer, we identified 19 potential drugs, in which 12 drugs were supported by previous studies. In addition, we performed survival analysis for the patients from TCGA and GEO database, which indicated that the associated miRNAs of 4 drugs might be good prognosis markers in breast cancer. Collectively, this study proposed a novel approach to predict small molecule and miRNA associations based on functional similarity, which may pave a new way for miRNA-targeted therapy and drug repositioning. PMID:27232942

  11. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    SciTech Connect

    Kim, Sun Young; Song, Kyung-A; Kieff, Elliott; Kang, Myung-Soo

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with

  12. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.

    PubMed

    Green, Eric M; Wakimoto, Hiroko; Anderson, Robert L; Evanchik, Marc J; Gorham, Joshua M; Harrison, Brooke C; Henze, Marcus; Kawas, Raja; Oslob, Johan D; Rodriguez, Hector M; Song, Yonghong; Wan, William; Leinwand, Leslie A; Spudich, James A; McDowell, Robert S; Seidman, J G; Seidman, Christine E

    2016-02-05

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.

  13. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice

    PubMed Central

    Green, Eric M.; Wakimoto, Hiroko; Anderson, Robert L.; Evanchik, Marc J.; Gorham, Joshua M.; Harrison, Brooke C.; Henze, Marcus; Kawas, Raja; Oslob, Johan D.; Rodriguez, Hector M.; Song, Yonghong; Wan, William; Leinwand, Leslie A.; Spudich, James A.; McDowell, Robert S.; Seidman, J. G.; Seidman, Christine E.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM. PMID:26912705

  14. Exceptionally Small Statistical Variations in the Transport Properties of Metal-Molecule-Metal Junctions Composed of 80 Oligophenylene Dithiol Molecules.

    PubMed

    Xie, Zuoti; Bâldea, Ioan; Demissie, Abel T; Smith, Christopher E; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2017-04-14

    Strong stochastic fluctuations witnessed as very broad resistance (R) histograms with widths comparable to or even larger than the most probable values characterize many measurements in the field of molecular electronics, particularly those measurements based on single molecule junctions at room temperature. Here we show that molecular junctions containing 80 oligophenylene dithiol molecules (OPDn, 1 ≤ n ≤ 4) connected in parallel display small relative statistical deviations-δR/R ≈ 25% after only ∼200 independent measurements-and we analyze the sources of these deviations quantitatively. The junctions are made by conducting probe atomic force microscopy (CP-AFM) in which an Au-coated tip contacts a self-assembled monolayer (SAM) of OPDs on Au. Using contact mechanics and direct measurements of the molecular surface coverage, the tip radius, tip-SAM adhesion force (F), and sample elastic modulus (E), we find that the tip-SAM contact area is approximately 25 nm(2), corresponding to about 80 molecules in the junction. Supplementing this information with I-V data and an analytic transport model, we are able to quantitatively describe the sources of deviations δR in R: namely, δN (deviations in the number of molecules in the junction), δε (deviations in energetic position of the dominant molecular orbital), and δΓ (deviations in molecule-electrode coupling). Our main results are (1) direct determination of N; (2) demonstration that δN/N for CP-AFM junctions is remarkably small (≤2%) and that the largest contributions to δR are δε and δΓ; (3) demonstration that δR/R after only ∼200 measurements is substantially smaller than most reports based on >1000 measurements for single molecule break junctions. Overall, these results highlight the excellent reproducibility of junctions composed of tens of parallel molecules, which may be important for continued efforts to build robust molecular devices.

  15. [Progress in sample preparation and analytical methods for trace polar small molecules in complex samples].

    PubMed

    Zhang, Qianchun; Luo, Xialin; Li, Gongke; Xiao, Xiaohua

    2015-09-01

    Small polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper. Meanwhile, the applications and developments of analytical methods of polar small molecules, such as reversed-phase liquid chromatography, hydrophilic interaction chromatography, etc., are also reviewed.

  16. Efficacy of the small molecule inhibitor of Lipid II BAS00127538 against Acinetobacter baumannii

    PubMed Central

    de Leeuw, Erik PH

    2014-01-01

    Objective To test the activity of a small molecule compound that targets Lipid II against Acinetobacter baumannii. Methods Susceptibility to small molecule Lipid II inhibitor BAS00127538 was assessed using carbapenem- and colistin-resistant clinical isolates of A. baumannii. In addition, synergy between colisitin and this compound was assessed. Results Small molecule Lipid II inhibitor BAS00127538 potently acts against A. baumannii and acts synergistically with colistin. Conclusion For the first time, a compound that targets Lipid II is described that acts against multi-drug resistant isolates of A. baumannii. The synergy with colistin warrants further lead development of BAS00127538. PMID:25143710

  17. Identification of Small Molecule Modulators of MicroRNA by Library Screening.

    PubMed

    Xiao, Zhangang; Chen, Yangchao

    2017-01-01

    MicroRNAs (miRNAs) function as oncogenes or tumor suppressors and are dysregulated in cancer. miRNAs therefore represent promising therapeutic targets for cancer. Small molecules that could modulate the expression of miRNAs would thus have potential as anticancer agents. Library screening of small molecules targeting miRNAs is a useful technology platform for anticancer drug development. Here, we describe a hepatocellular carcinoma (HCC) cell-based luciferase reporter system which could be used to screen for small molecule modulators of tumor suppressor microRNA-34a.

  18. Sustained Small Molecule Delivery from Injectable Hyaluronic Acid Hydrogels through Host-Guest Mediated Retention

    PubMed Central

    Mealy, Joshua E.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Self-assembled and injectable hydrogels have many beneficial properties for the local delivery of therapeutics; however, challenges still exist in the sustained release of small molecules from these highly hydrated networks. Host-guest chemistry between cyclodextrin and adamantane has been used to create supramolecular hydrogels from modified polymers. Beyond assembly, this chemistry may also provide increased drug retention and sustained release through the formation of inclusion complexes between drugs and cyclodextrin. Here, we engineered a two-component system from adamantane-modified and β-cyclodextrin (CD)-modified hyaluronic acid (HA), a natural component of the extracellular matrix, to produce hydrogels that are both injectable and able to sustain the release of small molecules. The conjugation of cyclodextrin to HA dramatically altered its affinity for hydrophobic small molecules, such as tryptophan. This interaction led to lower molecule diffusivity and the release of small molecules for up to 21 days with release profiles dependent on CD concentration and drug-CD affinity. There was significant attenuation of release from the supramolecular hydrogels (~20% release in 24h) when compared to hydrogels without CD (~90% release in 24h). The loading of small molecules also had no effect on hydrogel mechanics or self-assembly properties. Finally, to illustrate this controlled delivery approach with clinically used small molecule pharmaceuticals, we sustained the release of two widely used drugs (i.e., doxycycline and doxorubicin) from these hydrogels. PMID:26693019

  19. Chemical and electrochemical oxidation of small organic molecules

    NASA Astrophysics Data System (ADS)

    Smart, Marshall C.

    Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be

  20. Inhibition of Transglutaminase 2, a Novel Target for Pulmonary Fibrosis, by Two Small Electrophilic Molecules

    PubMed Central

    Olsen, Keith C.; Epa, Amali P.; Kulkarni, Ajit A.; Kottmann, R. Matthew; McCarthy, Claire E.; Johnson, Gail V.; Thatcher, Thomas H.; Phipps, Richard P.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor γ or generation of reactive oxidative species. CDDO and 15d-PGJ2 inhibited the extracellular signal–regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease. PMID:24175906

  1. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules.

    PubMed

    Olsen, Keith C; Epa, Amali P; Kulkarni, Ajit A; Kottmann, R Matthew; McCarthy, Claire E; Johnson, Gail V; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor γ or generation of reactive oxidative species. CDDO and 15d-PGJ2 inhibited the extracellular signal-regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease.

  2. The Free Energy Landscape of Small Molecule Unbinding

    PubMed Central

    Huang, Danzhi; Caflisch, Amedeo

    2011-01-01

    The spontaneous dissociation of six small ligands from the active site of FKBP (the FK506 binding protein) is investigated by explicit water molecular dynamics simulations and network analysis. The ligands have between four (dimethylsulphoxide) and eleven (5-diethylamino-2-pentanone) non-hydrogen atoms, and an affinity for FKBP ranging from 20 to 0.2 mM. The conformations of the FKBP/ligand complex saved along multiple trajectories (50 runs at 310 K for each ligand) are grouped according to a set of intermolecular distances into nodes of a network, and the direct transitions between them are the links. The network analysis reveals that the bound state consists of several subbasins, i.e., binding modes characterized by distinct intermolecular hydrogen bonds and hydrophobic contacts. The dissociation kinetics show a simple (i.e., single-exponential) time dependence because the unbinding barrier is much higher than the barriers between subbasins in the bound state. The unbinding transition state is made up of heterogeneous positions and orientations of the ligand in the FKBP active site, which correspond to multiple pathways of dissociation. For the six small ligands of FKBP, the weaker the binding affinity the closer to the bound state (along the intermolecular distance) are the transition state structures, which is a new manifestation of Hammond behavior. Experimental approaches to the study of fragment binding to proteins have limitations in temporal and spatial resolution. Our network analysis of the unbinding simulations of small inhibitors from an enzyme paints a clear picture of the free energy landscape (both thermodynamics and kinetics) of ligand unbinding. PMID:21390201

  3. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  4. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    PubMed Central

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P.; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-01-01

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%. PMID:26999137

  5. Femtosecond XUV transient absorption spectroscopy of small organic molecules

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    High-order harmonic generation has evolved as a powerful method for the generation of femtosecond XUV pulses with table-top laser systems. Femtosecond XUV transient absorption spectroscopy is an emerging application of these novel light sources for the investigation of molecular dynamics. Recording time-dependent XUV induced core-to-valence transitions traces a molecular response to an initial perturbation with IR, VIS or UV laser pulses from the perspective of distinct atomic sites. Preliminary results for sulfur and selenium containing organic molecules, such as thiophene (C4H4S) and selenophene(C4H4Se), are presented. While molecular orbital dynamics in thiophene will be monitored at the sulfur 2p edge around 165 eV, experiments at the Se 3d (57 eV) and Se 3p (163 eV) edges of selenophene will provide insight about the impact of specific inner-shell transitions within the same atom on the spectroscopic fingerprint of similar dynamics. The method's element-specificity and sensitivity to local valance electronic structures will be exploited to monitor the photo-induced opening of the aromatic rings at the S-C and Se-C bonds, thereby shining new light on the primary steps of photochemical reaction pathways in organic compounds.

  6. Wnt/beta-Catenin Signaling and Small Molecule Inhibitors

    PubMed Central

    Voronkov, Andrey; Krauss, Stefan

    2012-01-01

    Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions. PMID:23016862

  7. A small-molecule dye for NIR-II imaging

    NASA Astrophysics Data System (ADS)

    Antaris, Alexander L.; Chen, Hao; Cheng, Kai; Sun, Yao; Hong, Guosong; Qu, Chunrong; Diao, Shuo; Deng, Zixin; Hu, Xianming; Zhang, Bo; Zhang, Xiaodong; Yaghi, Omar K.; Alamparambil, Zita R.; Hong, Xuechuan; Cheng, Zhen; Dai, Hongjie

    2016-02-01

    Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (~90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)--a clinically approved NIR-I dye--in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ~4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.

  8. Novel apigenin based small molecule that targets snake venom metalloproteases.

    PubMed

    Srinivasa, Venkatachalaiah; Sundaram, Mahalingam S; Anusha, Sebastian; Hemshekhar, Mahadevappa; Chandra Nayaka, Siddaiah; Kemparaju, Kempaiah; Basappa; Girish, Kesturu S; Rangappa, Kanchugarakoppal S

    2014-01-01

    The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management.

  9. Ethylene and Metal Stress: Small Molecule, Big Impact

    PubMed Central

    Keunen, Els; Schellingen, Kerim; Vangronsveld, Jaco; Cuypers, Ann

    2016-01-01

    The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress. PMID:26870052

  10. Carbohydrate Recognition by Boronolectins, Small Molecules, and Lectins

    PubMed Central

    Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe

    2009-01-01

    Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of “binders” capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and “binders/receptors,” and their applications. The focus is on discoveries during the last five years. PMID:19291708

  11. Carbohydrate recognition by boronolectins, small molecules, and lectins.

    PubMed

    Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe

    2010-03-01

    Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of "binders" capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and "binders/receptors," and their applications. The focus is on discoveries during the last 5 years.

  12. Structure-property relationships: asymmetric alkylphenyl-substituted anthracene molecules for use in small-molecule solar cells.

    PubMed

    Kim, Yu Jin; Ahn, Eun Soo; Jang, Sang Hun; An, Tae Kyu; Kwon, Soon-Ki; Chung, Dae Sung; Kim, Yun-Hi; Park, Chan Eon

    2015-05-11

    Two asymmetric anthracene-based organic molecules, NDHPEA and TNDHPEA, were prepared without or with a thiophene spacer between the anthracene and naphthalene units. These asymmetric oligomers displayed different degrees of coplanarity, as evidenced by differences in the dihedral angles calculated by using DFT. Differential scanning calorimetry and XRD studies were used to probe the crystallization characteristics and molecular packing structures in the active layers. The coplanarity of the molecules in the asymmetric structure significantly affected the crystallization behavior and the formation of crystalline domains in the solid state. The small-molecule crystalline properties were correlated with the device physics by determining the J-V characteristics and hole mobilities of the devices.

  13. Single-molecule study of the CUG repeat–MBNL1 interaction and its inhibition by small molecules

    PubMed Central

    Haghighat Jahromi, Amin; Honda, Masayoshi; Zimmerman, Steven C.; Spies, Maria

    2013-01-01

    Effective drug discovery and optimization can be accelerated by techniques capable of deconvoluting the complexities often present in targeted biological systems. We report a single-molecule approach to study the binding of an alternative splicing regulator, muscleblind-like 1 protein (MBNL1), to (CUG)n = 4,6 and the effect of small molecules on this interaction. Expanded CUG repeats (CUGexp) are the causative agent of myotonic dystrophy type 1 by sequestering MBNL1. MBNL1 is able to bind to the (CUG)n–inhibitor complex, indicating that the inhibition is not a straightforward competitive process. A simple ligand, highly selective for CUGexp, was used to design a new dimeric ligand that binds to (CUG)n almost 50-fold more tightly and is more effective in destabilizing MBNL1–(CUG)4. The single-molecule method and the analysis framework might be extended to the study of other biomolecular interactions. PMID:23661680

  14. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    SciTech Connect

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  15. Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways.

    PubMed

    Ladiwala, Ali Reza A; Dordick, Jonathan S; Tessier, Peter M

    2011-02-04

    In protein conformational disorders ranging from Alzheimer to Parkinson disease, proteins of unrelated sequence misfold into a similar array of aggregated conformers ranging from small oligomers to large amyloid fibrils. Substantial evidence suggests that small, prefibrillar oligomers are the most toxic species, yet to what extent they can be selectively targeted and remodeled into non-toxic conformers using small molecules is poorly understood. We have evaluated the conformational specificity and remodeling pathways of a diverse panel of aromatic small molecules against mature soluble oligomers of the Aβ42 peptide associated with Alzheimer disease. We find that small molecule antagonists can be grouped into three classes, which we herein define as Class I, II, and III molecules, based on the distinct pathways they utilize to remodel soluble oligomers into multiple conformers with reduced toxicity. Class I molecules remodel soluble oligomers into large, off-pathway aggregates that are non-toxic. Moreover, Class IA molecules also remodel amyloid fibrils into the same off-pathway structures, whereas Class IB molecules fail to remodel fibrils but accelerate aggregation of freshly disaggregated Aβ. In contrast, a Class II molecule converts soluble Aβ oligomers into fibrils, but is inactive against disaggregated and fibrillar Aβ. Class III molecules disassemble soluble oligomers (as well as fibrils) into low molecular weight species that are non-toxic. Strikingly, Aβ non-toxic oligomers (which are morphologically indistinguishable from toxic soluble oligomers) are significantly more resistant to being remodeled than Aβ soluble oligomers or amyloid fibrils. Our findings reveal that relatively subtle differences in small molecule structure encipher surprisingly large differences in the pathways they employ to remodel Aβ soluble oligomers and related aggregated conformers.

  16. BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library.

    PubMed

    Kothiwale, Sandeepkumar; Mendenhall, Jeffrey L; Meiler, Jens

    2015-01-01

    The interaction of a small molecule with a protein target depends on its ability to adopt a three-dimensional structure that is complementary. Therefore, complete and rapid prediction of the conformational space a small molecule can sample is critical for both structure- and ligand-based drug discovery algorithms such as small molecule docking or three-dimensional quantitative structure-activity relationships. Here we have derived a database of small molecule fragments frequently sampled in experimental structures within the Cambridge Structure Database and the Protein Data Bank. Likely conformations of these fragments are stored as 'rotamers' in analogy to amino acid side chain rotamer libraries used for rapid sampling of protein conformational space. Explicit fragments take into account correlations between multiple torsion bonds and effect of substituents on torsional profiles. A conformational ensemble for small molecules can then be generated by recombining fragment rotamers with a Monte Carlo search strategy. BCL::Conf was benchmarked against other conformer generator methods including Confgen, Moe, Omega and RDKit in its ability to recover experimentally determined protein bound conformations of small molecules, diversity of conformational ensembles, and sampling rate. BCL::Conf recovers at least one conformation with a root mean square deviation of 2 Å or better to the experimental structure for 99 % of the small molecules in the Vernalis benchmark dataset. The 'rotamer' approach will allow integration of BCL::Conf into respective computational biology programs such as Rosetta.Graphical abstract:Conformation sampling is carried out using explicit fragment conformations derived from crystallographic structure databases. Molecules from the database are decomposed into fragments and most likely conformations/rotamers are used to sample correspondng sub-structure of a molecule of interest.

  17. Methods to enable the design of bioactive small molecules targeting RNA

    PubMed Central

    Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.

    2014-01-01

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181

  18. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  19. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    SciTech Connect

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; Reichert, Malinda D.; Vela, Javier; Lee, Young Jin

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

  20. Chemocavity: specific concavity in protein reserved for the binding of biologically functional small molecules.

    PubMed

    Soga, Shinji; Shirai, Hiroki; Kobori, Masato; Hirayama, Noriaki

    2008-08-01

    The idea that there should be a specific site on a protein for a particular functional small molecule is widespread. It is, however, usually not so easy to understand what characteristics of the site determine the binding ability of the functional small molecule. We have focused on the concurrence rate of the 20 standard amino acids at such binding sites. In order to correlate the concurrence rate and the specific binding site, we have analyzed high-quality X-ray structures of complexes between proteins and small molecules. A novel index characterizing the binding site based on the concurrency rate has been introduced. Using this index we have identified that there is a specific concavity designated as a chemocavity where a specific group of small molecules, i.e., canonical molecular group, is highly inclined to be bound. This study has demonstrated that a chemocavity is reserved for a specific canonical molecular group, and the prevalent idea has been confirmed.

  1. Synthesis of many different types of organic small molecules using one automated process.

    PubMed

    Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D

    2015-03-13

    Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis.

  2. Methods to enable the design of bioactive small molecules targeting RNA.

    PubMed

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  3. Small Molecule Radiopharmaceuticals – A Review of Current Approaches

    PubMed Central

    Chaturvedi, Shubhra; Mishra, Anil K.

    2016-01-01

    Radiopharmaceuticals are an integral component of nuclear medicine and are widely applied in diagnostics and therapy. Though widely applied, the development of an “ideal” radiopharmaceutical can be challenging. Issues such as specificity, selectivity, sensitivity, and feasible chemistry challenge the design and synthesis of radiopharmaceuticals. Over time, strategies to address the issues have evolved by making use of new technological advances in the fields of biology and chemistry. This review presents the application of few advances in design and synthesis of radiopharmaceuticals. The topics covered are bivalent ligand approach and lipidization as part of design modifications for enhanced selectivity and sensitivity and novel synthetic strategies for optimized chemistry and radiolabeling of radiopharmaceuticals. PMID:26942181

  4. Elasticity Dominated Surface Segregation of Small Molecules in Polymer Mixtures

    NASA Astrophysics Data System (ADS)

    Krawczyk, Jarosław; Croce, Salvatore; McLeish, T. C. B.; Chakrabarti, Buddhapriya

    2016-05-01

    We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.

  5. Molecular entrapment of small molecules within the interior of horse spleen ferritin.

    PubMed

    Webb, B; Frame, J; Zhao, Z; Lee, M L; Watt, G D

    1994-02-15

    A procedure for trapping small molecules inside the interior of horse spleen ferritin (HoSF) and methods for characterizing HoSF and its small entrapped molecules are described. HoSF is first dissociated into subunits by adjustment to pH 2 in the presence of the small molecules to be trapped. The pH of the dissociated HoSF is then increased to 7 at which time the dissociated subunits reassemble reforming the 24-mer HoSF, thereby trapping solvent within its interior. HoSF is then separated from unbound molecules by dialysis, ultrafiltration, and/or ammonium sulfate precipitation. Sephadex G-25 and DEAE chromatographic methods were also used to separate HoSF from unbound small molecules. Capillary electrophoresis (CE) was used to demonstrate the association of small molecules with HoSF after the pH-induced unfolding-refolding process. The pH indicator neutral red was clearly associated with HoSF and presumed trapped within the ferritin interior. Acid/base titrations suggested that the trapped indicator had a different pKa than the free indicator, a result which indicates that the ferritin interior is different than the external solution. The utility of using trapped molecules for gaining information on ferritin function is proposed and discussed.

  6. A surfactant-based, regularly arrayed nanostructure gel matrix for migration of small molecules.

    PubMed

    Kato, Masaru; Suwanai, Yusuke; Shimojima, Atsushi; Santa, Tomofumi

    2012-11-01

    The preparation of nanometer-scale pores, or nanopores, has become easy because of the progress in nanotechnology. Surfactants are promising materials for the preparation of nanostructures containing nanopores, because surfactants form many different phase structures, including cubic, micellar, and lamellar structures. We prepared a gel matrix with a cubic structure from a commercially available surfactant, polyoxyethylene(50) lauryl ether (C12EO50, Adekatol LA-50). This gel matrix had regularly arrayed nanopores between the packed spherical micelles. We used the gel to separate biomolecules by means of slab gel electrophoresis. The gel was applicable to migration of amino acids and peptides; however, larger molecules, such as proteins and single-walled carbon nanotubes, did not migrate through the gel. We concluded that the pore size was too small for the penetration of large molecules, and that only small molecules could penetrate the gel matrix. The migration mechanism of small molecules was similar to that observed in conventional gel electrophoresis. We concluded that the gel matrix prepared from surfactant is a promising matrix for migration and purification of small molecules. We also expect that the gel can be used as a nanoscale filter to trap large molecules, allowing only small molecules to pass.

  7. Evaluation of efficiency and trapping capacity of restricted access media trap columns for the online trapping of small molecules.

    PubMed

    Baghdady, Yehia Z; Schug, Kevin A

    2016-11-01

    Restricted access media are generally composed from multi-modal particles that combine a size excluding outer surface and an inner-pore retention mechanism for small molecules. Such materials can be used for either online isolation and pre-concentration of target small molecules or removal of small molecule interferences from large macromolecules, such as proteins in complex biological matrices. Thus, they are considered as enhanced online solid-phase extraction materials. We evaluated the efficiency and trapping capacity of different semi-permeable surface restricted access media columns (C18 , C8 , and C4 inner pores) for four model small molecule compounds (dopamine hydrochloride, acetaminophen, 4-hydroxybenzoic acid, and diethyl phthalate) having variable physicochemical properties. We further studied the effect of mobile phase flow rate (0.25, 0.5, 1, and 2 mL/min) and pH, using 98:2 0.5% acetic acid in water/ methanol (pH 2.88) and 5 mM ammonium acetate in 98:2 water/methanol (pH 6.61) as mobile phases. Breakthrough curves generated using frontal analysis were analyzed to determine important chromatographic parameters specific for each of the studied compounds. Experimental determination of these parameters allowed selection of the most efficient trap column and the best loading mobile phase conditions for maximal solute enrichment and pre-concentration on restricted access media trap columns.

  8. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    SciTech Connect

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  9. A-D-A small molecules for solution-processed organic photovoltaic cells.

    PubMed

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  10. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification

    DTIC Science & Technology

    2014-08-01

    AFRL-RH-WP-TR-2014-0107 PLASMONIC APTAMER-GOLD NANOPARTICLE SENSORS FOR SMALL MOLECULE FINGERPRINT IDENTIFICATION Jorge Chávez Grant Slusher...Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM...The utilization of the plasmonic response of aptamer -gold nanoparticle conjugates (Apt-AuNPs) to design cross- reactive arrays for fingerprint

  11. Prdm4 induction by the small molecule butein promotes white adipose tissue browning

    PubMed Central

    Song, No-Joon; Choi, Seri; Rajbhandari, Prashant; Chang, Seo-Hyuk; Kim, Suji; Vergnes, Laurent; Kwon, So-Mi; Yoon, Jung-Hoon; Lee, Suk-Chan; Ku, Jin-Mo; Lee, Jeong-Soo; Reue, Karen; Koo, Seung-Hoi; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Increasing the thermogenic activity of adipocytes holds promise as an approach to combating human obesity and its related metabolic diseases. We identified PR domain containing 4 (Prdm4) induction by the small molecule butein as a means to induce uncoupling protein 1 expression, increase energy expenditure, and stimulate the generation of thermogenic adipocytes. This study highlights a Prdm4-dependent pathway, modulated by small molecules, that stimulates white adipose tissue browning. PMID:27159578

  12. Therapeutic Delivery of H2S via COS: Small Molecule and Polymeric Donors with Benign Byproducts.

    PubMed

    Powell, Chadwick R; Foster, Jeffrey C; Okyere, Benjamin; Theus, Michelle H; Matson, John B

    2016-10-07

    Carbonyl sulfide (COS) is a gas that may play important roles in mammalian and bacterial biology, but its study is limited by a lack of suitable donor molecules. We report here the use of N-thiocarboxyanhydrides (NTAs) as COS donors that release the gas in a sustained manner under biologically relevant conditions with innocuous peptide byproducts. Carbonic anhydrase converts COS into H2S, allowing NTAs to serve as either COS or H2S donors, depending on the availability of the enzyme. Analysis of the pseudo-first-order H2S release rate under biologically relevant conditions revealed a release half-life of 75 min for the small molecule NTA under investigation. A polynorbornene bearing pendant NTAs made by ring-opening metathesis polymerization was also synthesized to generate a polymeric COS/H2S donor. A half-life of 280 min was measured for the polymeric donor. Endothelial cell proliferation studies revealed an enhanced rate of proliferation for cells treated with the NTA over untreated controls.

  13. Small molecules as tracers in atmospheric secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  14. Isomerization of one molecule observed through tip enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxing; Lee, Joonhee; Apkarian, Vartkess A.; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Joonhee Lee, Vartkess A. Apkarian Team

    While exploring photoisomerization of azobenzyl thiols (ABT) adsorbed on Au(111), through joint scanning tunneling microscopy (STM) and tip-enhanced Raman scattering (TERS) studies, the reversible photoisomerization of one molecule is captured in TERS trajectories. The apparently heterogeneously photo-catalyzed reaction is assigned to cis-trans isomerization of an outlier, which is chemisorbed on the silver tip of the STM. In order to clarify the role of the silver tip of the STM, we perform systematic density functional theory (DFT) calculations. The results show that compared with the case on the flat Ag(111) surface, the energy difference between trans and cis states of ABT decrease as we add one silver atom or a tetrahedron silver cluster on Ag(111) surface which mimic the geometry of a silver tip. In particular, the trans stretches away from the surface on the tetrahedral silver cluster, and the energy difference between trans and cis decreases to 0.27 eV, from ~1 eV for ABT on the flat Ag(111) surface. This significantly increases the possibility of cis-trans isomerization, as observed in our experiments. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  15. Novel small molecules potentiate premature termination codon readthrough by aminoglycosides

    PubMed Central

    Baradaran-Heravi, Alireza; Balgi, Aruna D.; Zimmerman, Carla; Choi, Kunho; Shidmoossavee, Fahimeh S.; Tan, Jason S.; Bergeaud, Célia; Krause, Alexandra; Flibotte, Stéphane; Shimizu, Yoko; Anderson, Hilary J.; Mouly, Vincent; Jan, Eric; Pfeifer, Tom; Jaquith, James B.; Roberge, Michel

    2016-01-01

    Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations. PMID:27407112

  16. Integration of β-carotene molecules in small liposomes

    NASA Astrophysics Data System (ADS)

    Andreeva, Atanaska; Popova, Antoaneta

    2010-11-01

    The most typical feature of carotenoids is the long polyene chain with conjugated double bonds suggesting that they can serve as conductors of electrons, acting as ''molecular wires'', important elements in the molecular electronic devices. Carotenoids are essential components of photosynthetic systems, performing different functions as light harvesting, photoprotection and electron transfer. They act also as natural antioxidants. In addition they perform structural role stabilizing the three-dimensional organization of photosynthetic membranes. Carotenoids contribute to the stability of the lipid phase, preserving the membrane integrity under potentially harmful environmental conditions. Carotenoids can be easily integrated into model membranes, facilitating the investigation of their functional roles. In carotenoid-egg phosphatidylcholine (EPC) liposomes ß-carotene is randomly distributed in the hydrocarbon interior of the bilayer, without any preferred, well defined orientation and retains a substantial degree of mobility. Here we investigate the degree of integration of ß-carotene in small unilamellar EPC liposomes and the changes in ß-carotene absorption and Raman spectra due to the lipid-pigment interaction. All observed changes in ß-carotene absorption and Raman spectra may be regarded as a result of the lipid-pigment interactions leading to the polyene geometry distortion and increasing of the environment heterogenety in the liposomes as compared to the solutions.

  17. 2016 White Paper on recent issues in bioanalysis: focus on biomarker assay validation (BAV) (Part 1 - small molecules, peptides and small molecule biomarkers by LCMS).

    PubMed

    Yang, Eric; Welink, Jan; Cape, Stephanie; Woolf, Eric; Sydor, Jens; James, Christopher; Goykhman, Dina; Arnold, Mark; Addock, Neil; Bauer, Ronald; Buonarati, Michael; Ciccimaro, Eugene; Dodda, Raj; Evans, Christopher; Garofolo, Fabio; Hughes, Nicola; Islam, Rafiq; Nehls, Corey; Wilson, Amanda; Briscoe, Chad; Bustard, Mark; Coppola, Laura; Croft, Stephanie; Drexler, Dieter; Ferrari, Luca; Fraier, Daniela; Jenkins, Rand; Kadavil, John; King, Lloyd; Li, Wenkui; Lima Santos, Gustavo Mendes; Musuku, Adrien; Ramanathan, Ragu; Saito, Yoshiro; Savoie, Natasha; Summerfield, Scott; Sun, Rachel; Tampal, Nilufer; Vinter, Steve; Wakelin-Smith, Jason; Yue, Qin

    2016-10-07

    The 2016 10(th) Workshop on Recent Issues in Bioanalysis (10(th) WRIB) took place in Orlando, Florida with participation of close to 700 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis including Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS, and LBA approaches, with the focus on biomarkers and immunogenicity. This 2016 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. This white paper is published in 3 parts due to length. This part (Part 1) discusses the recommendations for small molecules, peptides and small molecule biomarkers by LCMS. Part 2 (Hybrid LBA/LCMS and regulatory inputs from major global health authorities) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will be published in the Bioanalysis journal, issue 23.

  18. Nonclinical Evaluations of Small-Molecule Oncology Drugs: Integration into Clinical Dose Optimization and Toxicity Management.

    PubMed

    Dambach, Donna M; Simpson, Natalie E; Jones, Thomas W; Brennan, Richard J; Pazdur, Richard; Palmby, Todd R

    2016-06-01

    Multidisciplinary approaches that incorporate nonclinical pharmacologic and toxicologic characterization of small-molecule oncology drugs into clinical development programs may facilitate improved benefit-risk profiles and clinical toxicity management in patients. The performance of the current nonclinical safety-testing scheme was discussed, highlighting current strengths and areas for improvement. While current nonclinical testing appears to predict the clinical outcome where the prevalence of specific adverse effects are high, nonclinical testing becomes less reliable for predicting clinical adverse effects that occur infrequently, as with some kinase inhibitors. Although adverse effects associated with kinase inhibitors can often be predicted on the basis of target biology, drugs can be promiscuous and inhibit targets with poorly defined function and associated risks. Improvements in adverse effect databases and better characterization of the biologic activities of drug targets may enable better use of computational modeling approaches in predicting adverse effects with kinase inhibitors. Assessing safety of a lead candidate in parallel with other drug properties enables incorporation of a molecule's best features during chemical design, eliminates the worst molecules early, and permits timely investigation/characterization of toxicity mechanisms for identified liabilities. A safety lead optimization and candidate identification strategy that reduces intrinsic toxicity and metabolic risk and enhances selectivity can deliver selective kinase inhibitors that demonstrate on-target adverse effects identified nonclinically. Integrating clinical and nonclinical data during drug development can facilitate better identification and management of oncology drugs. Follow-up nonclinical studies may be used to better understand the risks in a given patient population and minimize or manage these risks more appropriately. Clin Cancer Res; 22(11); 2618-22. ©2016 AACR SEE ALL

  19. Mechanism of the action of SMTP-7, a novel small-molecule modulator of plasminogen activation.

    PubMed

    Koyanagi, Keiji; Narasaki, Ritsuko; Yamamichi, Shingo; Suzuki, Eriko; Hasumi, Keiji

    2014-06-01

    SMTP-7 is a small molecule that promotes the proteolytic activation of plasminogen by relaxing its conformation. SMTP-7 has excellent therapeutic activities against thrombotic stroke in several rodent models. The objective of this study was to elucidate detailed mechanism of the action of SMTP-7 in vitro. We report here that the action of SMTP-7 requires a cofactor with a long-chain alkyl or alkenyl group, and that the fifth kringle domain (kringle 5) of plasminogen is involved in the SMTP-7 action. In this study, we found that the SMTP-7 action to enhance plasminogen activation depended on the presence of a certain type of surfactant, and we screened biologically relevant molecules for their cofactor activity for the SMTP action. As a result, phospholipids, sphingolipids, and oleic acid were found to be active in assisting the SMTP-7 action. On the contrary, stearic acid and bile acids were inactive. Thus, a certain structural element, not only the surface-activating potential, is required for a compound to act as a cofactor for the SMTP-7 action. The plasminogen molecule consists of a PAN domain, five kringle domains, and a serine protease domain. The cofactor-dependent effects of SMTP-7 was observed with plasminogen species including kringle 5 such as intact plasminogen (Glu-plasminogen), des-PAN plasminogen (Lys-plasminogen), and des-[PAN - (kringles 1-4)] plasminogen (mini-plasminogen). However, SMTP-7 effect was not observed with the smallest plasminogen species des-[PAN - (kringles 1-4) and a half of kringle 5)] plasminogen (micro-plasminogen). Thus, kringle 5 is crucial for the action of SMTP-7.

  20. TIMBAL v2: update of a database holding small molecules modulating protein-protein interactions.

    PubMed

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-01-01

    TIMBAL is a database holding molecules of molecular weight <1200 Daltons that modulate protein-protein interactions. Since its first release, the database has been extended to cover 50 known protein-protein interactions drug targets, including protein complexes that can be stabilized by small molecules with therapeutic effect. The resource contains 14 890 data points for 6896 distinct small molecules. UniProt codes and Protein Data Bank entries are also included. Database URL: http://www-cryst.bioc.cam.ac.uk/timbal

  1. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    PubMed

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).

  2. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo

    PubMed Central

    Smith, Jesse J; Kenney, Renée Deehan; Gagne, David J; Frushour, Brian P; Ladd, William; Galonek, Heidi L; Israelian, Kristine; Song, Jeffrey; Razvadauskaite, Giedre; Lynch, Amy V; Carney, David P; Johnson, Robin J; Lavu, Siva; Iffland, Andre; Elliott, Peter J; Lambert, Philip D; Elliston, Keith O; Jirousek, Michael R; Milne, Jill C; Boss, Olivier

    2009-01-01

    Background Calorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation. Results Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet. Conclusion CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials. PMID:19284563

  3. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1).

  4. Recent advances in inorganic materials for LDI-MS analysis of small molecules.

    PubMed

    Shi, C Y; Deng, C H

    2016-05-10

    In this review, various inorganic materials were summarized for the analysis of small molecules by laser desorption/ionization mass spectrometry (LDI-MS). Due to its tremendous advantages, such as simplicity, high speed, high throughput, small analyte volumes and tolerance towards salts, LDI-MS has been widely used in various analytes. During the ionization process, a suitable agent is required to assist the ionization, such as an appropriate matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, it is normally difficult to analyze small molecules with the MALDI technique because conventional organic matrices may produce matrix-related peaks in the low molecular-weight region, which limits the detection of small molecules (m/z < 700 Da). Therefore, more and more inorganic materials, including carbon-based materials, silicon-based materials and metal-based materials, have been developed to assist the ionization of small molecules. These inorganic materials can transfer energy and improve the ionization efficiency of analytes. In addition, functionalized inorganic materials can act as both an adsorbent and an agent in the enrichment and ionization of small molecules. In this review, we mainly focus on present advances in inorganic materials for the LDI-MS analysis of small molecules in the last five years, which contains the synthetic protocols of novel inorganic materials and the detailed results achieved by inorganic materials. On the other hand, this review also summarizes the application of inorganic materials as adsorbents in the selective enrichment of small molecules, which provides a new field for the application of inorganic materials.

  5. Comparison of Different Time of Flight-Mass Spectrometry Modes for Small Molecule Quantitative Analysis.

    PubMed

    Chindarkar, Nandkishor S; Park, Hyung-Doo; Stone, Judith A; Fitzgerald, Robert L

    2015-01-01

    Currently, the use of time of flight (TOF)-mass spectrometry (MS) in quantitative analysis of small molecules is rare. Recently, the quantitative performance of TOF mass analyzers has improved due to the advancements in TOF technology. We evaluated a Q-TOF-MS in different modes, i.e., Q-TOF-full scan (Q-TOF-FS), Q-TOF-enhanced-full scan (Q-TOF-En-FS), MS(E), Q-TOF-targeted (Q-TOF-TGT), Q-TOF-enhanced-targeted (Q-TOF-En-TGT), and compared their quantitative performance against a unit resolution LC-MS-MS (tandem quadrupole) platform. The five modes were investigated for sensitivity, linearity, signal-to-noise ratio, recovery and precision using 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) as a model compound in electrospray ionization (ESI) with negative polarity. Preliminary studies indicated that Q-TOF-FS mode was the least linear and precise; hence, it was eliminated from further investigation. Total imprecision in remaining four modes was <10%. The Q-TOF-En-FS and Q-TOF-En-TGT showed better signal intensity than their respective modes without enhancement. Overall, peak signal intensity was the highest in MS(E) mode, whereas the signal-to-noise ratio was the best in the Q-TOF-En-TGT mode. Relatively, MS(E) and Q-TOF-En-TGT modes were the best overall performers compared with the other modes. Both MS(E) and Q-TOF-En-TGT modes showed excellent precision (coefficient of variation <6%), patient correlation (r > 0.99) and linearity (range, 5-455 ng/mL) for THC-COOH analysis when compared with LC-MS-MS. We also investigated the performance of the same four modes using methamphetamine in positive ESI. Quantitative data obtained by Q-TOF-En-TGT and MS(E), using both positive and negative ESI, suggest that these modes performed better than the other modes. While unit resolution LC-MS-MS remains the optimal technique for quantification, our data showed that Q-TOF-MS can also be used to quantify small molecules in complex biological specimens.

  6. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules.

    PubMed

    Vizcaino, Maria I; Engel, Philipp; Trautman, Eric; Crawford, Jason M

    2014-07-02

    The gene cluster responsible for synthesis of the unknown molecule "colibactin" has been identified in mutualistic and pathogenic Escherichia coli. The pathway endows its producer with a long-term persistence phenotype in the human bowel, a probiotic activity used in the treatment of ulcerative colitis, and a carcinogenic activity under host inflammatory conditions. To date, functional small molecules from this pathway have not been reported. Here we implemented a comparative metabolomics and targeted structural network analyses approach to identify a catalog of small molecules dependent on the colibactin pathway from the meningitis isolate E. coli IHE3034 and the probiotic E. coli Nissle 1917. The structures of 10 pathway-dependent small molecules are proposed based on structural characterizations and network relationships. The network will provide a roadmap for the structural and functional elucidation of a variety of other small molecules encoded by the pathway. From the characterized small molecule set, in vitro bacterial growth inhibitory and mammalian CNS receptor antagonist activities are presented.

  7. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    SciTech Connect

    Sharma, G. D.

    2011-10-20

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm{sup 2} has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  8. Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis.

    PubMed

    Medina-Rodríguez, Eva María; Bribián, Ana; Boyd, Amanda; Palomo, Valle; Pastor, Jesús; Lagares, Alfonso; Gil, Carmen; Martínez, Ana; Williams, Anna; de Castro, Fernando

    2017-03-03

    Multiple Sclerosis (MS) is a neurodegenerative disease where immune-driven demyelination occurs with inefficient remyelination, but therapies are limited, especially those to enhance repair. Here, we show that the dual phosphodiesterase (PDE)7- glycogen synthase kinase (GSK)3 inhibitor, VP3.15, a heterocyclic small molecule with good pharmacokinetic properties and safety profile, improves in vivo remyelination in mouse and increases both adult mouse and adult human oligodendrocyte progenitor cell (OPC) differentiation, in addition to its immune regulatory action. The dual inhibition is synergistic, as increasing intracellular levels of cAMP by cyclic nucleotide PDE inhibition both suppresses the immune response and increases remyelination, and in addition, inhibition of GSK3 limits experimental autoimmune encephalomyelitis in mice. This combination of an advantageous effect on the immune response and an enhancement of repair, plus demonstration of its activity on adult human OPCs, leads us to propose dual PDE7-GSK3 inhibition, and specifically VP3.15, as a neuroprotective and neuroreparative disease-modifying treatment for MS.

  9. Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis

    PubMed Central

    Medina-Rodríguez, Eva María; Bribián, Ana; Boyd, Amanda; Palomo, Valle; Pastor, Jesús; Lagares, Alfonso; Gil, Carmen; Martínez, Ana; Williams, Anna; de Castro, Fernando

    2017-01-01

    Multiple Sclerosis (MS) is a neurodegenerative disease where immune-driven demyelination occurs with inefficient remyelination, but therapies are limited, especially those to enhance repair. Here, we show that the dual phosphodiesterase (PDE)7- glycogen synthase kinase (GSK)3 inhibitor, VP3.15, a heterocyclic small molecule with good pharmacokinetic properties and safety profile, improves in vivo remyelination in mouse and increases both adult mouse and adult human oligodendrocyte progenitor cell (OPC) differentiation, in addition to its immune regulatory action. The dual inhibition is synergistic, as increasing intracellular levels of cAMP by cyclic nucleotide PDE inhibition both suppresses the immune response and increases remyelination, and in addition, inhibition of GSK3 limits experimental autoimmune encephalomyelitis in mice. This combination of an advantageous effect on the immune response and an enhancement of repair, plus demonstration of its activity on adult human OPCs, leads us to propose dual PDE7-GSK3 inhibition, and specifically VP3.15, as a neuroprotective and neuroreparative disease-modifying treatment for MS. PMID:28256546

  10. Activation of Pim Kinases Is Sufficient to Promote Resistance to MET Small Molecule Inhibitors

    PubMed Central

    An, Ningfei; Xiong, Ying; LaRue, Amanda C.; Kraft, Andrew S.; Cen, Bo

    2015-01-01

    MET blockade offers a new targeted therapy particularly in those cancers with MET amplification. However, the efficacy and the duration of the response to MET inhibitors are limited by the emergence of drug resistance. Here we report that resistance to small molecule inhibitors of MET can arise from increased expression of the pro-survival Pim protein kinases. This resistance mechanism was documented in non-small cell lung cancer and gastric cancer cells with MET amplification. Inhibition of Pim kinases enhanced cell death triggered by short-term treatment with MET inhibitors. Pim kinases control the translation of anti-apoptotic protein Bcl-2 at an internal ribosome entry site and this mechanism was identified as the basis for Pim-mediated resistance to MET inhibitors. Protein synthesis was increased in drug-resistant cells, secondary to a Pim-mediated increase in cap-independent translation. In cells rendered drug resistant by chronic treatment with MET inhibitors, genetic or pharmacological inhibition of Pim kinases was sufficient to restore sensitivity in vitro and in vivo. Taken together, our results rationalize Pim inhibition as a strategy to augment responses and blunt acquired resistance to MET inhibitors in cancer. PMID:26670562

  11. A small molecule inhibitor of XIAP induces apoptosis and synergises with vinorelbine and cisplatin in NSCLC

    PubMed Central

    Dean, E J; Ward, T; Pinilla, C; Houghten, R; Welsh, K; Makin, G; Ranson, M; Dive, C

    2009-01-01

    Background: Evasion of apoptosis contributes to the pathogenesis of solid tumours including non-small cell lung cancer (NSCLC). Malignant cells resist apoptosis through over-expression of inhibitor of apoptosis proteins (IAPs), such as X-linked IAP (XIAP). Methods: A phenylurea-based small molecule inhibitor of XIAP, XIAP antagonist compound (XAC) 1396-11, was investigated preclincally to determine its ability to sensitise to clinically relevant cytotoxics, potentially allowing dose reduction while maintaining therapeutic efficacy. Results: XIAP protein expression was detected in six NSCLC cell lines examined. The cytotoxicity of XAC 1396-11 against cultured NSCLC cell lines in vitro was concentration- and time-dependent in both short-term and clonogenic assays. XAC 1396-11-induced apoptosis was confirmed by PARP cleavage and characteristic nuclear morphology. XAC 1396-11 synergised with vinorelbine±cisplatin in H460 and A549 NSCLC cells. The mechanism of synergy was enhanced apoptosis, shown by increased cleavage of caspase-3 and PARP and by the reversal of synergy by a pan-caspase inhibitor. Synergy between XAC 1396-11 and vinorelbine was augmented by optimising drug scheduling with superior effects when XAC 1396-11 was administered before vinorelbine. Conclusion: These preclinical data suggest that XIAP inhibition in combination with vinorelbine holds potential as a therapeutic strategy in NSCLC. PMID:19904270

  12. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Jiang, Xingyu

    2017-02-21

    As one of the major tools for and by chemical science, biochemical analysis is becoming increasingly important in fields like clinical diagnosis, food safety, environmental monitoring, and the development of chemistry and biochemistry. The advancement of nanotechnology boosts the development of analytical chemistry, particularly the nanoparticle (NP)-based approaches for biochemical assays. Functional NPs can greatly improve the performance of biochemical analysis because they can accelerate signal transduction, enhance the signal intensity, and enable convenient signal readout due to their unique physical and chemical properties. Surface chemistry is a widely used tool to functionalize NPs, and the strategy for surface modification is of great significance to the application of NP-mediated biochemical assays. Surface chemistry not only affects the quality of NPs (stability, monodispersity, and biocompatibility) but also provides functional groups (-COO(-), -NH3(+), -CHO, and so on) or charges that can be exploited for bioconjugation or ligand exchange. Surface chemistry also dictates the sensitivity and specificity of the NP-mediated biochemical assays, since it is vital to the orientation, accessibility, and bioactivity of the functionalized ligands on the NPs. In this Account, we will focus on surface chemistry for functionalization of gold nanoparticles (AuNPs) with small organic molecules for biochemical analysis. Compared to other NPs, AuNPs have many merits including controllable synthesis, easy surface modification and high molar absorption coefficient, making them ideal probes for biochemical assays. Small-molecule functionalized AuNPs are widely employed to develop sensors for biochemical analysis, considering that small molecules, such as amino acids and sulfhydryl compounds, are more easily and controllably bioconjugated to the surface of AuNPs than biomacromolecules due to their less complex structure and steric hindrance. The orientation and

  13. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.

    PubMed

    Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng

    2014-08-01

    Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer.

  14. Inhibition of Antiapoptotic BCL-XL, BCL-2, and MCL-1 Proteins by Small Molecule Mimetics

    PubMed Central

    Dalafave, D.S.; Prisco, G.

    2010-01-01

    Informatics and computational design methods were used to create new molecules that could potentially bind antiapoptotic proteins, thus promoting death of cancer cells. Apoptosis is a cellular process that leads to the death of damaged cells. Its malfunction can cause cancer and poor response to conventional chemotherapy. After being activated by cellular stress signals, proapoptotic proteins bind antiapoptotic proteins, thus allowing apoptosis to go forward. An excess of antiapoptotic proteins can prevent apoptosis. Designed molecules that mimic the roles of proapoptotic proteins can promote the death of cancer cells. The goal of our study was to create new putative mimetics that could simultaneously bind several antiapoptotic proteins. Five new small molecules were designed that formed stable complexes with BCL-2, BCL-XL, and MCL-1 antiapoptotic proteins. These results are novel because, to our knowledge, there are not many, if any, small molecules known to bind all three proteins. Drug-likeness studies performed on the designed molecules, as well as previous experimental and preclinical studies on similar agents, strongly suggest that the designed molecules may indeed be promising drug candidates. All five molecules showed “drug-like” properties and had overall drug-likeness scores between 81% and 96%. A single drug based on these mimetics should cost less and cause fewer side effects than a combination of drugs each aimed at a single protein. Computer-based molecular design promises to accelerate drug research by predicting potential effectiveness of designed molecules prior to laborious experiments and costly preclinical trials. PMID:20838611

  15. Adsorption of small molecules on helical gold nanorods: a relativistic density functional study.

    PubMed

    Liu, Xiao-Jing; Hamilton, Ian

    2014-10-15

    We study the adsorption of a variety of small molecules on helical gold nanorods using relativistic density functional theory. We focus on Au40 which consists of a central linear strand of five gold atoms with seven helical strands of five gold atoms on a coaxial tube. All molecules preferentially adsorb at a single low-coordinated gold atom on the coaxial tube at an end of Au40. In most cases, there is significant charge transfer (CT) between Au40 and the adsorbate, for CO and NO2, there is CT from the Au40 to adsorbate while for all other molecules there is CT from the adsorbate to Au40. Thus, Au40-adsorbate can be described as a donor-accepter complex and we use charge decomposition analysis to better understand the adsorption process. We determine the adsorption energy order to be C5H5N >NO2  > CO > NH3  > CH2=CH2  > CH2=CH-CHO > NO > HC≡CH > H2S > SO2  > HCN > CH3OH > H2C=O > O2  > H2O > CH4  > N2. We find that the Au-C, Au-N, Au-S, and Au-O bonds are surprisingly strong, with clear implications for reactivity enhancement of the adsorbate. The Au-H bond is relatively weak but, for interactions via an H atom that is bonded to a carbon atom (e.g., CH4), we find that there is large charge polarization of the Au-H-C moiety and partial activation of the inert C-H bond. Although the Au-S and Au-O bonds are generally weaker than the Au-C and Au-N bonds, we find that adsorption of H2S or H2O causes greater distortion of Au40 in the binding region. However, the degree of distortion is small and the helical structure is retained, demonstrating the stability of the helical Au40 nanorod under perturbations.

  16. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    PubMed

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  17. Identification and biological activities of a new antiangiogenic small molecule that suppresses mitochondrial reactive oxygen species

    SciTech Connect

    Kim, Ki Hyun; Park, Ju Yeol; Jung, Hye Jin; Kwon, Ho Jeong

    2011-01-07

    Research highlights: {yields} YCG063 was screened as a new angiogenesis inhibitor which suppresses mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library. {yields} The compound inhibited in vitro and in vivo angiogenesis in a dose-dependent manner. {yields} This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions. -- Abstract: Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1{alpha} and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.

  18. Predicting metabolic pathways of small molecules and enzymes based on interaction information of chemicals and proteins.

    PubMed

    Gao, Yu-Fei; Chen, Lei; Cai, Yu-Dong; Feng, Kai-Yan; Huang, Tao; Jiang, Yang

    2012-01-01

    Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.

  19. Case Study of Small Molecules As Antimalarials: 2-Amino-1-phenylethanol (APE) Derivatives

    PubMed Central

    2014-01-01

    Antiparasitic oral drugs have been associated to lipophilic molecules due to their intrinsic permeability. However, these kind of molecules are associated to numerous adverse effects, which have been extensively studied. Within the Tres Cantos Antimalarial Set (TCAMS) we have identified two small, soluble and simple hits that even presenting antiplasmodial activities in the range of 0.4–0.5 μM are able to show in vivo activity. PMID:24944739

  20. Complex Small-Molecule Architectures Regulate Phenotypic Plasticity in a Nematode**

    PubMed Central

    Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H.; Yim, Joshua J.; Ragsdale, Erik J.; Sommer, Ralf J.; Schroeder, Frank C.

    2013-01-01

    Microorganisms and plants produce a large diversity of secondary metabolites, whereas analyses of metazoan metabolomes have yielded comparatively few types of small molecules. We show that the nematode Pristionchus pacificus constructs elaborate molecular architectures from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside. These compounds act as signaling molecules controlling adult phenotypic plasticity and development and provide striking examples for modular generation of structural diversity in metazoans. PMID:23161728

  1. A unified sensor architecture for isothermal detection of double-stranded DNA, oligonucleotides, and small molecules.

    PubMed

    Brown, Carl W; Lakin, Matthew R; Fabry-Wood, Aurora; Horwitz, Eli K; Baker, Nicholas A; Stefanovic, Darko; Graves, Steven W

    2015-03-23

    Pathogen detection is an important problem in many areas of medicine and agriculture, which can involve genomic or transcriptomic signatures or small-molecule metabolites. We report a unified, DNA-based sensor architecture capable of isothermal detection of double-stranded DNA targets, single-stranded oligonucleotides, and small molecules. Each sensor contains independent target detection and reporter modules, enabling rapid design. We detected gene variants on plasmids by using a straightforward isothermal denaturation protocol. The sensors were highly specific, even with a randomized DNA background. We achieved a limit of detection of ∼15 pM for single-stranded targets and ∼5 nM for targets on denatured plasmids. By incorporating a blocked aptamer sequence, we also detected small molecules using the same sensor architecture. This work provides a starting point for multiplexed detection of multi-strain pathogens, and disease states caused by genetic variants (e.g., sickle cell anemia).

  2. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics.

    PubMed

    Maschinot, C A; Pace, J R; Hadden, M K

    2015-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds.

  3. Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures

    PubMed Central

    Lee, Anna Y.; St.Onge, Robert P.; Proctor, Michael J.; Wallace, Iain M.; Nile, Aaron H.; Spagnuolo, Paul A.; Jitkova, Yulia; Gronda, Marcela; Wu, Yan; Kim, Moshe K.; Cheung-Ong, Kahlin; Torres, Nikko P.; Spear, Eric D.; Han, Mitchell K. L.; Schlecht, Ulrich; Suresh, Sundari; Duby, Geoffrey; Heisler, Lawrence E.; Surendra, Anuradha; Fung, Eula; Urbanus, Malene L.; Gebbia, Marinella; Lissina, Elena; Miranda, Molly; Chiang, Jennifer H.; Aparicio, Ana Maria; Zeghouf, Mahel; Davis, Ronald W.; Cherfils, Jacqueline; Boutry, Marc; Kaiser, Chris A.; Cummins, Carolyn L.; Trimble, William S.; Brown, Grant W.; Schimmer, Aaron D.; Bankaitis, Vytas A.; Nislow, Corey; Bader, Gary D.; Giaever, Guri

    2014-01-01

    Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes. PMID:24723613

  4. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    PubMed Central

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  5. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1)

    PubMed Central

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Guzik, Katarzyna; Zieba, Bartosz J.; Musielak, Bogdan; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2016-01-01

    Targeting the PD-1/PD-L1 immunologic checkpoint with monoclonal antibodies has provided unprecedented results in cancer treatment in the recent years. Development of chemical inhibitors for this pathway lags the antibody development because of insufficient structural information. The first nonpeptidic chemical inhibitors that target the PD-1/PD-L1 interaction have only been recently disclosed by Bristol-Myers Squibb. Here, we show that these small-molecule compounds bind directly to PD-L1 and that they potently block PD-1 binding. Structural studies reveal a dimeric protein complex with a single small molecule which stabilizes the dimer thus occluding the PD-1 interaction surface of PD-L1s. The small-molecule interaction “hot spots” on PD-L1 surfaces suggest approaches for the PD-1/PD-L1 antagonist drug discovery. PMID:27083005

  6. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  7. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    PubMed

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)(exp)) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)(exp). In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)(exp) and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)(exp) in its natural context.

  8. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  9. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  10. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    PubMed Central

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  11. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  12. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    SciTech Connect

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).

  13. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    DOE PAGES

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; ...

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups ofmore » small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  14. Small Business Export Enhancement Act of 2010

    THOMAS, 111th Congress

    Rep. Dahlkemper, Kathleen A. [D-PA-3

    2010-07-22

    07/22/2010 Referred to the House Committee on Small Business. (All Actions) Notes: For further action, see H.R.5297, which became Public Law 111-240 on 9/27/2010. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Veterans Small Business Enhancement Act of 2014

    THOMAS, 113th Congress

    Sen. Durbin, Richard [D-IL

    2014-09-11

    09/11/2014 Read twice and referred to the Committee on Small Business and Entrepreneurship. (text of measure as introduced: CR S5565) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    PubMed

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  17. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes.

    PubMed

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-28

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.

  18. Development of small molecules designed to modulate protein-protein interactions.

    PubMed

    Che, Ye; Brooks, Bernard R; Marshall, Garland R

    2006-02-01

    Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Developing small molecules that modulate protein-protein interactions is challenging, owing to the large size of protein-complex interface, the lack of well-defined binding pockets, etc. We describe a general approach based on the "privileged-structure hypothesis" [Che, Ph.D. Thesis, Washington University, 2003] - that any organic templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as protein-complex antagonists--to address the challenges inherent in the discovery of small-molecule inhibitors of protein-protein interactions.

  19. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  20. New blue emissive conjugated small molecules with low lying HOMO energy levels for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Trupthi Devaiah, C.; Hemavathi, B.; Ahipa, T. N.

    2017-03-01

    Versatile conjugated small molecules bearing cyanopyridone core (CP1-5), composed of various donor/acceptor moieties at position - 4 and - 6 have been designed, developed and characterized. Their solvatochromic studies were conducted and analyzed using Lippert-Mataga, Kamlet-Taft and Catalan solvent scales and interesting results were obtained. The polarizability/dipolarity of the solvent greatly influenced the spectra. The electrochemical studies were carried out using cyclic voltammetry to calculate the HOMO-LUMO energy levels. The study revealed that the synthesized conjugated small molecules possess low lying HOMO energy levels which can be exploited for application in various fields of optoelectronics.

  1. A complex task? Direct modulation of transcription factors with small molecules

    PubMed Central

    Koehler, Angela N.

    2010-01-01

    Transcription factors with aberrant activity in disease are promising yet untested targets for therapeutic development, particularly in oncology. Directly inhibiting or activating the function of a transcription factor requires specific disruption or recruitment of protein-protein or protein-DNA interactions. The discovery or design of small molecules that specifically modulate these interactions has thus far proven to be a significant challenge and the protein class is often perceived to be ‘undruggable.’ This review will summarize recent progress in the development of small-molecule probes of transcription factors and provide evidence to challenge the notion that this important protein class is chemically intractable. PMID:20395165

  2. Small-molecule library screening by docking with PyRx.

    PubMed

    Dallakyan, Sargis; Olson, Arthur J

    2015-01-01

    Virtual molecular screening is used to dock small-molecule libraries to a macromolecule in order to find lead compounds with desired biological function. This in silico method is well known for its application in computer-aided drug design. This chapter describes how to perform small-molecule virtual screening by docking with PyRx, which is open-source software with an intuitive user interface that runs on all major operating systems (Linux, Windows, and Mac OS). Specific steps for using PyRx, as well as considerations for data preparation, docking, and data analysis, are also described.

  3. A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis

    PubMed Central

    2012-01-01

    Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds. PMID:23158586

  4. Identification of small molecule inhibitors that block the Toxoplasma gondii rhoptry kinase ROP18.

    PubMed

    Simpson, Catherine; Jones, Nathaniel G; Hull-Ryde, Emily A; Kireev, Dmitri; Stashko, Michael; Tang, Keliang; Janetka, Jim; Wildman, Scott A; Zuercher, William J; Schapira, Matthieu; Hui, Raymond; Janzen, William; Sibley, L David

    2016-03-11

    The protozoan parasite Toxoplasma gondii secretes a family of serine-threonine protein kinases into its host cell in order to disrupt signaling and alter immune responses. One prominent secretory effector is the rhoptry protein 18 (ROP18), a serine-threonine kinase that phosphorylates immunity related GTPases (IRGs) and hence blocks interferon gamma-mediated responses in rodent cells. Previous genetic studies show that ROP18 is a major virulence component of T. gondii strains from North and South America. Here, we implemented a high throughput screen to identify small molecule inhibitors of ROP18 in vitro and subsequently validated their specificity within infected cells. Although ROP18 was not susceptible to many kinase-directed inhibitors that affect mammalian kinases, the screen identified several sub micromolar inhibitors that belong to three chemical scaffolds: oxindoles, 6-azaquinazolines, and pyrazolopyridines. Treatment of interferon gamma-activated cells with one of these inhibitors enhanced immunity related GTPase recruitment to wild type parasites, recapitulating the defect of Δrop18 mutant parasites, consistent with targeting ROP18 within infected cells. These compounds provide useful starting points for chemical biology experiments or as leads for therapeutic interventions designed to reduce parasite virulence.

  5. A novel small molecule, LAS-0811, inhibits alcohol-induced apoptosis in VL-17A cells.

    PubMed

    Kim, Tae-Hun; Venugopal, Senthil K; Zhu, Ming; Wang, Si-Si; Lau, Derick; Lam, Kit S; Clemens, Dahn L; Zern, Mark A

    2009-02-20

    One of the pathways by which alcohol induces hepatocyte apoptosis is via oxidative stress. We screened several chemically-synthesized small molecules and found LAS-0811, which inhibits oxidative stress. In this study, we elucidated its role in inhibiting alcohol-induced apoptosis in hepatocyte-like VL-17A cells. VL-17A cells were pre-incubated with LAS-0811, followed by ethanol incubation. Ethanol-induced reactive oxygen species and apoptosis were significantly inhibited in LAS-0811 pre-treated cells. VL-17A cells were transfected with a reporter (ARE/TK-GFP) plasmid containing green fluorescent protein (GFP) as a reporter gene and the anti-oxidant response element as the promoter. LAS-0811 pre-treatment significantly induced the GFP expression compared to the cells treated with ethanol alone. LAS-0811 induced the activation of nrf2 and enhanced the expression and activity of glutathione peroxidase, one of the downstream targets of nrf2. The results indicate that LAS-0811 protects VL-17A cells against ethanol-induced oxidative stress and apoptosis at least in part via nrf2 activation.

  6. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection.

    PubMed

    Kong, Qiongman; Chang, Ling-Chu; Takahashi, Kou; Liu, Qibing; Schulte, Delanie A; Lai, Liching; Ibabao, Brian; Lin, Yuchen; Stouffer, Nathan; Das Mukhopadhyay, Chitra; Xing, Xuechao; Seyb, Kathleen I; Cuny, Gregory D; Glicksman, Marcie A; Lin, Chien-Liang Glenn

    2014-03-01

    Glial glutamate transporter EAAT2 plays a major role in glutamate clearance in synaptic clefts. Several lines of evidence indicate that strategies designed to increase EAAT2 expression have potential for preventing excitotoxicity, which contributes to neuronal injury and death in neurodegenerative diseases. We previously discovered several classes of compounds that can increase EAAT2 expression through translational activation. Here, we present efficacy studies of the compound LDN/OSU-0212320, which is a pyridazine derivative from one of our lead series. In a murine model, LDN/OSU-0212320 had good potency, adequate pharmacokinetic properties, no observed toxicity at the doses examined, and low side effect/toxicity potential. Additionally, LDN/OSU-0212320 protected cultured neurons from glutamate-mediated excitotoxic injury and death via EAAT2 activation. Importantly, LDN/OSU-0212320 markedly delayed motor function decline and extended lifespan in an animal model of amyotrophic lateral sclerosis (ALS). We also found that LDN/OSU-0212320 substantially reduced mortality, neuronal death, and spontaneous recurrent seizures in a pilocarpine-induced temporal lobe epilepsy model. Moreover, our study demonstrated that LDN/OSU-0212320 treatment results in activation of PKC and subsequent Y-box-binding protein 1 (YB-1) activation, which regulates activation of EAAT2 translation. Our data indicate that the use of small molecules to enhance EAAT2 translation may be a therapeutic strategy for the treatment of neurodegenerative diseases.

  7. Functional Rescue of F508del-CFTR Using Small Molecule Correctors

    PubMed Central

    Molinski, Steven; Eckford, Paul D. W.; Pasyk, Stan; Ahmadi, Saumel; Chin, Stephanie; Bear, Christine E.

    2012-01-01

    High-throughput screens for small molecules that are effective in “correcting” the functional expression of F508del-CFTR have yielded several promising hits. Two such compounds are currently in clinical trial. Despite this success, it is clear that further advances will be required in order to restore 50% or greater of wild-type CFTR function to the airways of patients harboring the F508del-CFTR protein. Progress will be enhanced by our better understanding of the molecular and cellular defects caused by the F508del mutation, present in 90% of CF patients. The goal of this chapter is to review the current understanding of defects caused by F508del in the CFTR protein and in CFTR-mediated interactions important for its biosynthesis, trafficking, channel function, and stability at the cell surface. Finally, we will discuss the gaps in our knowledge regarding the mechanism of action of existing correctors, the unmet need to discover compounds which restore proper CFTR structure and function in CF affected tissues and new strategies for therapy development. PMID:23055971

  8. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

    PubMed Central

    Ojha, Shreesh; Al Taee, Hasan; Goyal, Sameer; Mahajan, Umesh B.; Patil, Chandrgouda R.; Arya, D. S.; Rajesh, Mohanraj

    2016-01-01

    Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity. PMID:27313831

  9. SMPDB 2.0: big improvements to the Small Molecule Pathway Database.

    PubMed

    Jewison, Timothy; Su, Yilu; Disfany, Fatemeh Miri; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Poelzer, Jenna; Huynh, Jessica; Zhou, You; Arndt, David; Djoumbou, Yannick; Liu, Yifeng; Deng, Lu; Guo, An Chi; Han, Beomsoo; Pon, Allison; Wilson, Michael; Rafatnia, Shahrzad; Liu, Philip; Wishart, David S

    2014-01-01

    The Small Molecule Pathway Database (SMPDB, http://www.smpdb.ca) is a comprehensive, colorful, fully searchable and highly interactive database for visualizing human metabolic, drug action, drug metabolism, physiological activity and metabolic disease pathways. SMPDB contains >600 pathways with nearly 75% of its pathways not found in any other database. All SMPDB pathway diagrams are extensively hyperlinked and include detailed information on the relevant tissues, organs, organelles, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Since its last release in 2010, SMPDB has undergone substantial upgrades and significant expansion. In particular, the total number of pathways in SMPDB has grown by >70%. Additionally, every previously entered pathway has been completely redrawn, standardized, corrected, updated and enhanced with additional molecular or cellular information. Many SMPDB pathways now include transporter proteins as well as much more physiological, tissue, target organ and reaction compartment data. Thanks to the development of a standardized pathway drawing tool (called PathWhiz) all SMPDB pathways are now much more easily drawn and far more rapidly updated. PathWhiz has also allowed all SMPDB pathways to be saved in a BioPAX format. Significant improvements to SMPDB's visualization interface now make the browsing, selection, recoloring and zooming of pathways far easier and far more intuitive. Because of its utility and breadth of coverage, SMPDB is now integrated into several other databases including HMDB and DrugBank.

  10. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming.

    PubMed

    Smith, Derek K; Yang, Jianjing; Liu, Meng-Lu; Zhang, Chun-Li

    2016-11-08

    Pro-neural transcription factors and small molecules can induce the reprogramming of fibroblasts into functional neurons; however, the immediate-early molecular events that catalyze this conversion have not been well defined. We previously demonstrated that neurogenin 2 (NEUROG2), forskolin (F), and dorsomorphin (D) can reprogram fibroblasts into functional neurons with high efficiency. Here, we used this model to define the genetic and epigenetic events that initiate an acquisition of neuronal identity. We demonstrate that NEUROG2 is a pioneer factor, FD enhances chromatin accessibility and H3K27 acetylation, and synergistic transcription activated by these factors is essential to successful reprogramming. CREB1 promotes neuron survival and acts with NEUROG2 to upregulate SOX4, which co-activates NEUROD1 and NEUROD4. In addition, SOX4 targets SWI/SNF subunits and SOX4 knockdown results in extensive loss of open chromatin and abolishes reprogramming. Applying these insights, adult human glioblastoma cell and skin fibroblast reprogramming can be improved using SOX4 or chromatin-modifying chemicals.

  11. Fluorescence response profiling for small molecule sensors utilizing the green fluorescent protein chromophore and its derivatives.

    PubMed

    Lee, Jun-Seok; Baldridge, Anthony; Feng, Suihan; SiQiang, Yang; Kim, Yun Kyung; Tolbert, Laren M; Chang, Young-Tae

    2011-01-10

    Using a fluorescence response profile, a systematic examination was performed for synthetic chromophores of the green fluorescent protein (GFP) to discover new small molecule sensors. A group of 41 benzylideneimidazolinone compounds (BDI) was prepared and screened toward 94 biologically relevant analytes to generate fluorescence response profiles. From the response pattern, compounds containing aminobenzyl and heteroaromatic cyclic substructures revealed a pH dependent emission decrease effect, and unlike other fluorescence scaffolds, most BDIs showed fluorescence quenching when mixed with proteins. On the basis of the primary response profile, we obtained three selective fluorescence turn-on sensors for pH, human serum albumin (HSA), and total ribonucleic acid (RNA). Following analysis, a fluorescence response profile testing four nucleic acids revealed the alkyloxy (Ph-OR) functional group in the para position of benzyl analogues contributes to RNA selectivity. Among the primary hit compounds, BDI 2 showed outstanding selectivity toward total RNA with 5-fold emission enhancement. Finally, BDI 24 showed selective fluorescence increase to HSA (K(d) = 3.57 μM) with a blue-shifted emission max wavelength (Δλ(em) = 15 nm). These examples of fluorescence sensor discovery by large-scale fluorescence response profiling demonstrate the general applicability of this approach and the usefulness of the response profiles.

  12. Small-molecule modulation of HDAC6 activity: The propitious therapeutic strategy to vanquish neurodegenerative disorders.

    PubMed

    Ganai, Shabir Ahmad

    2017-02-08

    Histone deacetylases (HDACs) are epigenetic enzymes creating the transcriptionally inactive state of chromatin by erasing acetyl moiety from histone and non-histone substrates. HDAC6 modulates several biological pathways in dividing cells as well as in post-mitotic neurons, and has been implicated in the pathophysiology of neurodegeneration. The distinct cellular functions and survival in these cells are reliant on HDAC6-mediated processes including intracellular trafficking, chaperone-mediated stress responses, anti-oxidation and protein degradation. Consequently, the interest in HDAC6 as a promising therapeutic target to tackle neurodegenerative disorders has escalated markedly over the last decade. Taking these grim facts into consideration the current article focuses on structural organization of HDAC6. Importantly, we discuss the general role of HDACs in cognition and neuronal death. Further, we describe the unique involvement of HDAC6 in eliminating protein aggregates, oxidative stress and mitochondrial transport. Moreover, the article rigorously details how the impaired activity of HDAC6 culminates in neurodegenerative complications like Alzheimer disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Lastly, we provide crystal clear view regarding the fascinating research areas which may lead to development of novel small-molecules for enhanced therapeutic benefit against these therapeutically arduous neurodegenerative maladies.

  13. Human Sarcoma Growth Is Sensitive to Small-Molecule Mediated AXIN Stabilization

    PubMed Central

    Rossi, Marco; Valensin, Silvia; Tunici, Patrizia; Mori, Elisa; Caradonna, Nicola; Varrone, Maurizio; Salerno, Massimiliano

    2014-01-01

    Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas. PMID:24842792

  14. A Competitive Bio-Barcode Amplification Immunoassay for Small Molecules Based on Nanoparticles

    PubMed Central

    Du, Pengfei; Jin, Maojun; Chen, Ge; Zhang, Chan; Jiang, Zejun; Zhang, Yanxin; Zou, Pan; She, Yongxin; Jin, Fen; Shao, Hua; Wang, Shanshan; Zheng, Lufei; Wang, Jing

    2016-01-01

    A novel detection method of small molecules, competitive bio-barcode amplification immunoassay, was developed and described in this report. Through the gold nanoparticles (AuNPs) probe and magnetic nanoparticles (MNPs) probe we prepared, only one monoclonal antibody can be used to detect small molecules. The competitive bio-barcode amplification immunoassay overcomes the obstacle that the bio-barcode assay cannot be used in small molecular detection, as two antibodies are unable to combine to one small molecule due to its small molecular structure. The small molecular compounds, triazophos, were selected as targets for the competitive bio-barcode amplification immunoassay. The linear range of detection was from 0.04 ng mL−1 to 10 ng mL−1, and the limit of detection (LOD) was 0.02 ng mL−1, which was 10–20 folds lower than ELISA (Enzyme Linked Immunosorbent Assay). A practical application of the proposed immunoassay was evaluated by detecting triazophos in real samples. The recovery rate ranged from 72.5% to 110.5%, and the RSD was less than 20%. These results were validated by GC-MS, which indicated that this convenient and sensitive method has great potential for small molecular in real samples. PMID:27924952

  15. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules

    PubMed Central

    Kim, Sung-Yon; Cho, Jae Hun; Murray, Evan; Bakh, Naveed; Choi, Heejin; Ohn, Kimberly; Ruelas, Luzdary; Hubbert, Austin; McCue, Meg; Vassallo, Sara L.; Keller, Philipp J.; Chung, Kwanghun

    2015-01-01

    Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1–3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion. PMID:26578787

  16. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs

    NASA Astrophysics Data System (ADS)

    Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong

    2015-11-01

    The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.

  17. Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy.

    PubMed

    Hu, Wenbo; He, Tingchao; Jiang, Rongcui; Yin, Jun; Li, Lin; Lu, Xiaomei; Zhao, Hui; Zhang, Lei; Huang, Ling; Sun, Handong; Huang, Wei; Fan, Quli

    2017-02-04

    Herein, we experimentally and theoretically demonstrate an unprecedentedly enhanced two-photon absorption in a small organic molecule by a simple introduction of an inner salt-shaped structure. Moreover, such an inner salt-shaped small molecule also exhibits superior singlet oxygen quantum yield and fascinating structure-inherent mitochondrial-targeting ability for highly efficient two-photon photodynamic therapy via a mitochondrial apoptosis pathway.

  18. Identification of a Small Molecule that Increases Hemoglobin Oxygen Affinity and Reduces SS Erythrocyte Sickling

    PubMed Central

    2015-01-01

    Small molecules that increase the oxygen affinity of human hemoglobin may reduce sickling of red blood cells in patients with sickle cell disease. We screened 38 700 compounds using small molecule microarrays and identified 427 molecules that bind to hemoglobin. We developed a high-throughput assay for evaluating the ability of the 427 small molecules to modulate the oxygen affinity of hemoglobin. We identified a novel allosteric effector of hemoglobin, di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide (TD-1). TD-1 induced a greater increase in oxygen affinity of human hemoglobin in solution and in red blood cells than did 5-hydroxymethyl-2-furfural (5-HMF), N-ethylmaleimide (NEM), or diformamidine disulfide. The three-dimensional structure of hemoglobin complexed with TD-1 revealed that monomeric units of TD-1 bound covalently to β-Cys93 and β-Cys112, as well as noncovalently to the central water cavity of the hemoglobin tetramer. The binding of TD-1 to hemoglobin stabilized the relaxed state (R3-state) of hemoglobin. TD-1 increased the oxygen affinity of sickle hemoglobin and inhibited in vitro hypoxia-induced sickling of red blood cells in patients with sickle cell disease without causing hemolysis. Our study indicates that TD-1 represents a novel lead molecule for the treatment of patients with sickle cell disease. PMID:25061917

  19. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells.

    PubMed

    Yamakoshi, Hiroyuki; Dodo, Kosuke; Palonpon, Almar; Ando, Jun; Fujita, Katsumasa; Kawata, Satoshi; Sodeoka, Mikiko

    2012-12-26

    Alkyne has a unique Raman band that does not overlap with Raman scattering from any endogenous molecule in live cells. Here, we show that alkyne-tag Raman imaging (ATRI) is a promising approach for visualizing nonimmobilized small molecules in live cells. An examination of structure-Raman shift/intensity relationships revealed that alkynes conjugated to an aromatic ring and/or to a second alkyne (conjugated diynes) have strong Raman signals in the cellular silent region and can be excellent tags. Using these design guidelines, we synthesized and imaged a series of alkyne-tagged coenzyme Q (CoQ) analogues in live cells. Cellular concentrations of diyne-tagged CoQ analogues could be semiquantitatively estimated. Finally, simultaneous imaging of two small molecules, 5-ethynyl-2'-deoxyuridine (EdU) and a CoQ analogue, with distinct Raman tags was demonstrated.

  20. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    PubMed

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented.

  1. Involvement of secondary messengers and small organic molecules in auxin perception and signaling.

    PubMed

    Di, Dong-Wei; Zhang, Caiguo; Guo, Guang-Qin

    2015-06-01

    Auxin is a major phytohormone involved in most aspects of plant growth and development. Generally, auxin is perceived by three distinct receptors: TRANSPORT INHIBITOR RESISTANT1-Auxin/INDOLE ACETIC ACID, S-Phase Kinase-Associated Protein 2A and AUXIN-BINDING PROTEIN1. The auxin perception is regulated by a variety of secondary messenger molecules, including nitric oxide, reactive oxygen species, calcium, cyclic GMP, cyclic AMP, inositol triphosphate, diacylglycerol and by physiological pH. In addition, some small organic molecules, including inositol hexakisphosphate, yokonolide B, p-chlorophenoxyisobutyric acid, toyocamycin and terfestatin A, are involved in auxin signaling. In this review, we summarize and discuss the recent progress in understanding the functions of these secondary messengers and small organic molecules, which are now thoroughly demonstrated to be pervasive and important in auxin perception and signal transduction.

  2. Radiation tolerant polymeric films through the incorporation of small molecule dopants in the polymer matrix

    SciTech Connect

    Lenhart, Joseph L.; Cole, Phillip J.; Cole, Shannon M.; Schroeder, John L.; Belcher, Michael E.

    2008-01-15

    Radiation induced conductivity (RIC) in semicrystalline polyethylene terephthalate (PET) films can be reduced by incorporating small molecule electron traps into the polymer. The electron traps contained an aromatic core with strong electron withdrawing functionality pendant to the core and were incorporated into the PET film by immersing the polymer in a solution of dopant and solvent at elevated temperatures. The chemical functionality of the electron trapping molecule and the number of pendant functional groups had a strong impact on the equilibrium doping level and the most effective doping solvent. In addition, all of the electron traps exhibited effectiveness at reducing the RIC. The technique of incorporating small molecule dopants into the polymer matrix in order to reduce the RIC can potentially be exploited with other polymers films and coatings utilized in electronics devices such as encapsulants, conformal coatings, and polymeric underfills.

  3. UV and VUV spectroscopy and photochemistry of small molecules in a supersonic jet

    NASA Technical Reports Server (NTRS)

    Ruehl, E.; Vaida, V.

    1990-01-01

    UV and VUV absorption and emission spectroscopy is used to probe jet cooled molecules, free radicals, and clusters in the gas phase. Due to efficient cooling inhomogeneous effects on spectral line widths are eliminated. Therefore from these spectra, both structural and dynamical information is obtained. The photoproducts of these reactions are probed by resonance enhanced multiphoton ionization.

  4. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  5. A physicist's view of biotechnology. [small molecule crystal growth in space

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1987-01-01

    Theories and techniques for small molecule crystal growth are reviewed, with emphasis on space processing possibilities, particularly for protein crystal growth. The general principles of nucleation, growth, and mass and heat transport are first discussed. Optical systems using schlieren, shadowgraph, and holographic techniques are considered, and are illustrated with the example of the NASA developed Fluids Experiment System flow aboard Spacelab 3.

  6. A blend of small molecules regulates both mating and development in Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many organisms, population density sensing and sexual attraction rely on small molecule-based signaling systems. In the nematode Caenorhabditis elegans, population density is monitored via specific glycosides of the dideoxysugar ascarylose that promote entry into an alternate larval stage, the no...

  7. Identification of a small molecule [beta]-secretase inhibitor that binds without catalytic aspartate engagement

    SciTech Connect

    Steele, Thomas G.; Hills, Ivory D.; Nomland, Ashley A.; de León, Pablo; Allison, Timothy; McGaughey, Georgia; Colussi, Dennis; Tugusheva, Katherine; Haugabook, Sharie J.; Espeseth, Amy S.; Zuck, Paul; Graham, Samuel L.; Stachel, Shawn J.

    2010-09-02

    A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.

  8. TNF Superfamily Protein–Protein Interactions: Feasibility of Small-Molecule Modulation

    PubMed Central

    Song, Yun; Buchwald, Peter

    2015-01-01

    The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates. PMID:25706111

  9. Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels.

    PubMed

    Min, Kyoung Ah; Zhang, Xinyuan; Yu, Jing-yu; Rosania, Gus R

    2014-01-01

    Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analysing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful for interpreting experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyse the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next step for the advancement of systems pharmacology research.

  10. Efficient small-molecule photovoltaic cells using a crystalline diindenoperylene film as a nanostructured template.

    PubMed

    Zhou, Ying; Taima, Tetsuya; Kuwabara, Takayuki; Takahashi, Kohshin

    2013-11-13

    A cascade-type small-molecule organic photovoltaic cell using a crystalline diindenoperylene film as a nanostructured template is demonstrated. This cell architecture simultaneously realizes organic nanostructure and cascade energy concepts, which significantly improves the photocurrent generation and fill factor, leading to a power conversion efficiency of 5.2±0.3%.

  11. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Gyeomuk; Lee, Bo Ram; Ji, Sangyoon; Kim, So-Yun; An, Byeong Wan; Song, Myoung Hoon; Park, Jang-Ung

    2015-08-01

    The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers.The development of alternative organic light-emitting diode (OLED) fabrication technologies for high-definition and low-cost displays is an important research topic as conventional fine metal mask-assisted vacuum evaporation has reached its limit to reduce pixel sizes and manufacturing costs. Here, we report an electrohydrodynamic jet (e-jet) printing method to fabricate small-molecule OLED pixels with high resolution (pixel width of 5 μm), which significantly exceeds the resolutions of conventional inkjet or commercial OLED display pixels. In addition, we print small-molecule emitting materials which provide a significant advantage in terms of device efficiency and lifetime compared to those with polymers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03034j

  12. Treatment of Prostate Cancer using Anti-androgen Small Molecules | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute seeks parties interested in collaborative research to co-develop and commercialize a new class of small molecules for the treatment of prostate cancer. General information on co-development research collaborations, can be found on our web site (http://ttc.nci.nih.gov/forms).

  13. Small Molecule Inhibitors of ERG and ETV1 in Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    potential novel targets for treatment of primary and/or metastatic disease in prostate cancer. We developed small molecule inhibitors that target...3396-400. 6. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in

  14. Small Molecule Inhibitors of the Interaction Between the E3 Ligase VHL and HIF1α

    PubMed Central

    Buckley, Dennis L.; Gustafson, Jeffrey L.; Van Molle, Inge; Roth, Anke G.; Tae, Hyun Seop; Gareiss, Peter C.; Jorgensen, William L.; Ciulli, Alessio

    2012-01-01

    E3 ubiquitin ligases, such as the therapeutically relevant VHL, are challenging targets for traditional medicinal chemistry, as their modulation requires targeting protein-protein interactions. We report novel small-molecule inhibitors of the interaction between VHL and its molecular target HIF1α, a transcription factor involved in oxygen sensing. PMID:23065727

  15. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells.

    PubMed

    Kim, Yu Jin; Park, Chan Eon

    2016-04-14

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not. The improved performance of the DR3TBDTT-based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control.

  16. Targeting Micrornas With Small Molecules: A Novel Approach to Treating Breast Cancer

    DTIC Science & Technology

    2010-10-01

    ribozymes and the DNAzymes, small interfering RNAs and short hairpin RNAs, and anti-miRNA agents such as antisense oligo- nucleotides, locked nucleic...of the antagomir Preclinical studies Ribozymes or DNAzymes A ribozyme , or RNA enzyme, is an RNA molecule that can catalyze a chemical reaction. A

  17. Small-molecule probe using dual signals to monitor leucine aminopeptidase activity.

    PubMed

    Yoon, Hey Young; Shim, So Hee; Baek, Luck Ju; Hong, Jong-In

    2011-04-15

    Leucine aminopeptidases (LAPs) are widely distributed in organisms from bacteria to humans, and play crucial roles in cell maintenance and cell growth. Thus, assays for LAP are necessary for measuring its activity and inhibitor potency. In this Letter, we report a small-molecule probe which exhibits colorimetric and fluorogenic changes according to LAP activity.

  18. A semantic web ontology for small molecules and their biological targets.

    PubMed

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  19. A Mechanofluorochromic Push-Pull Small Molecule with Aggregation-Controlled Linear and Nonlinear Optical Properties.

    PubMed

    Jiang, Yue; Gindre, Denis; Allain, Magali; Liu, Ping; Cabanetos, Clément; Roncali, Jean

    2015-08-05

    A small push-pull molecule involving a diphenylamine substituted by an oligo-oxyethylene chain is described. The compound exhibits aggregation-induced emission with solvent-dependent emission wavelength. Spin-cast deep-red amorphous films rapidly self-reorganize into colorless crystalline films which exhibit mechanofluorochromism and aggregation-induced second-harmonic generation.

  20. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10

    PubMed Central

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S.; Disney, Matthew D.

    2016-01-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. PMID:27248057

  1. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example.

  2. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  3. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening.

    PubMed

    Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M; Thomas, Craig J

    The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition.

  4. Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers

    PubMed Central

    Scaria, Vinod

    2016-01-01

    Background The dynamic and differential regulation and expression of genes is majorly governed by the complex interactions of a subset of biomolecules in the cell operating at multiple levels starting from genome organisation to protein post-translational regulation. The regulatory layer contributed by the epigenetic layer has been one of the favourite areas of interest recently. This layer of regulation as we know today largely comprises of DNA modifications, histone modifications and noncoding RNA regulation and the interplay between each of these major components. Epigenetic regulation has been recently shown to be central to development of a number of disease processes. The availability of datasets of high-throughput screens for molecules for biological properties offer a new opportunity to develop computational methodologies which would enable in-silico screening of large molecular libraries. Methods In the present study, we have used data from high throughput screens for the inhibitors of epigenetic modifiers. Computational predictive models were constructed based on the molecular descriptors. Machine learning algorithms for supervised training, Naive Bayes and Random Forest, were used to generate predictive models for the small molecule inhibitors of histone methyl-transferases and demethylases. Random forest, with the accuracy of 80%, was identified as the most accurate classifier. Further we complemented the study with substructure search approach filtering out the probable pharmacophores from the active molecules leading to drug molecules. Results We show that effective use of appropriate computational algorithms could be used to learn molecular and structural correlates of biological activities of small molecules. The computational models developed could be potentially used to screen and identify potential new biological activities of molecules from large molecular libraries and prioritise them for in-depth biological assays. To the best of our knowledge

  5. Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores

    PubMed Central

    Cermak, Nathan; Feijó Delgado, Francisco; Setlow, Barbara; Setlow, Peter

    2015-01-01

    ABSTRACT We use a suspended microchannel resonator to characterize the water and small-molecule permeability of Bacillus subtilis spores based on spores' buoyant mass in different solutions. Consistent with previous results, we found that the spore coat is not a significant barrier to small molecules, and the extent to which small molecules may enter the spore is size dependent. We have developed a method to directly observe the exchange kinetics of intraspore water with deuterium oxide, and we applied this method to wild-type spores and a panel of congenic mutants with deficiencies in the assembly or structure of the coat. Compared to wild-type spores, which exchange in approximately 1 s, several coat mutant spores were found to have relatively high water permeability with exchange times below the ∼200-ms temporal resolution of our assay. In addition, we found that the water permeability of the spore correlates with the ability of spores to germinate with dodecylamine and with the ability of TbCl3 to inhibit germination with l-valine. These results suggest that the structure of the coat may be necessary for maintaining low water permeability. IMPORTANCE Spores of Bacillus species cause food spoilage and disease and are extremely resistant to standard decontamination methods. This hardiness is partly due to spores' extremely low permeability to chemicals, including water. We present a method to directly monitor the uptake of molecules into B. subtilis spores by weighing spores in fluid. The results demonstrate the exchange of core water with subsecond resolution and show a correlation between water permeability and the rate at which small molecules can initiate or inhibit germination in coat-damaged spores. The ability to directly measure the uptake of molecules in the context of spores with known structural or genetic deficiencies is expected to provide insight into the determinants of spores' extreme resistance. PMID:26483518

  6. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  7. Group 14 hydrides with low valent elements for activation of small molecules.

    PubMed

    Mandal, Swadhin K; Roesky, Herbert W

    2012-02-21

    Transition metal compounds are well known as activators of small molecules, and they serve as efficient catalysts for a variety of homogeneous and heterogeneous transformations. In contrast, there is a general feeling that main group compounds cannot act as efficient catalysts because of their inability to activate small molecules. Traditionally, the activation of small molecules is considered one of the key steps during a catalytic cycle with transition metals. As a consequence, researchers have long neglected the full range of possibilities in harnessing main group elements for the design of efficient catalysts. Recent developments, however, have made it possible to synthesize main group compounds with low-valent elements capable of activating small molecules. In particular, the judicious use of sterically appropriate ligands has been successful in preparing and stabilizing a variety of Group 14 hydrides with low-valent elements. In this Account, we discuss recent advances in the synthesis of Group 14 hydrides with low-valent elements and assess their potential as small-molecule activators. Group 14, which comprises the nonmetal C, the semimetals Si and Ge, and the metals Sn and Pb, was for years a source of hydrides with the Group 14 element almost exclusively in tetravalent form. Synthetic difficulties and the low stability of Group 14 hydrides in lower oxidation states were difficult to overcome. But in 2000, a divalent Sn(II) hydride was prepared as a stable compound through the incorporation of sterically encumbered aromatic ligands. More recently, the stabilization of GeH(2) and SnH(2) complexes using an N-heterocyclic carbene (NHC) as a donor and BH(3) or a metal carbonyl complex as an acceptor was reported. A similar strategy was also employed to synthesize the Si(II) hydride. This class of hydrides may be considered coordinatively saturated, with the lone pair of electrons on the Group 14 elements taking part in coordination. We discuss the large

  8. Self-assembly of neuroprotective carbazolium based small molecules at octane/water interface: A simulation investigation

    NASA Astrophysics Data System (ADS)

    Zolghadr, Amin Reza; Heydari Dokoohaki, Maryam

    2016-11-01

    The self-assembly of dibromocarbazole based small molecule (P7C3) and its analogues is studied at the octane/water interface by using molecular dynamics simulations. P7C3 protects newborn neurons from apoptotic cell death and enhances neurogenesis. The bromines on the carbazole appear particularly important, as the derivatives with dichloro and parent carbazole did not appear active at the concentrations tested. We are mainly focused on the question that why is dibromocarbazole derivative an effective neuroprotective drug, but not dichlorocarbazole or parent carbazole? It was found that P7C3 and P7C3-Cl were concentrated in the interfacial region, whereas the parent carbazole derivative were distributed throughout the water phase. The diffusion of P7C3 molecules in the interfacial region are higher than P7C3-Cl. This approach could use by experimentalist to evaluate the permeability of drug candidates prior to their synthesis.

  9. Small-molecule screen in adult Drosophila identifies VMAT as a regulator of sleep.

    PubMed

    Nall, Aleksandra H; Sehgal, Amita

    2013-05-08

    Sleep is an important physiological state, but its function and regulation remain elusive. In Drosophila melanogaster, a useful model organism for studying sleep, forward genetic screens have identified important sleep-modulating genes and pathways; however, the results of such screens may be limited by developmental abnormalities or lethality associated with mutation of certain genes. To circumvent these limitations, we used a small-molecule screen to identify sleep-modulating genes and pathways. We administered 1280 pharmacologically active small molecules to adult flies and monitored their sleep. We found that administration of reserpine, a small-molecule inhibitor of the vesicular monoamine transporter (VMAT) that repackages monoamines into presynaptic vesicles, resulted in an increase in sleep. Supporting the idea that VMAT is the sleep-relevant target of reserpine, we found that VMAT-null mutants have an increased sleep phenotype, as well as an increased arousal threshold and resistance to the effects of reserpine. However, although the VMAT mutants are consistently resistant to reserpine, other aspects of their sleep phenotype are dependent on genetic background. These findings indicate that small-molecule screens can be used effectively to identify sleep-modulating genes whose phenotypes may be suppressed in traditional genetic screens. Mutations affecting single monoamine pathways did not affect reserpine sensitivity, suggesting that effects of VMAT/reserpine on sleep are mediated by multiple monoamines. Overall, we identify VMAT as an important regulator of sleep in Drosophila and demonstrate that small-molecule screens provide an effective approach to identify genes and pathways that impact adult Drosophila behavior.

  10. Small genomic insertions form enhancers that misregulate oncogenes

    PubMed Central

    Abraham, Brian J.; Hnisz, Denes; Weintraub, Abraham S.; Kwiatkowski, Nicholas; Li, Charles H.; Li, Zhaodong; Weichert-Leahey, Nina; Rahman, Sunniyat; Liu, Yu; Etchin, Julia; Li, Benshang; Shen, Shuhong; Lee, Tong Ihn; Zhang, Jinghui; Look, A. Thomas; Mansour, Marc R.; Young, Richard A.

    2017-01-01

    The non-coding regions of tumour cell genomes harbour a considerable fraction of total DNA sequence variation, but the functional contribution of these variants to tumorigenesis is ill-defined. Among these non-coding variants, somatic insertions are among the least well characterized due to challenges with interpreting short-read DNA sequences. Here, using a combination of Chip-seq to enrich enhancer DNA and a computational approach with multiple DNA alignment procedures, we identify enhancer-associated small insertion variants. Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an active enhancer that drives expression of the LMO2 oncogene. The approach described here to identify enhancer-associated small insertion variants provides a foundation for further study of these abnormalities across human cancers. PMID:28181482

  11. Identification of a small molecule that stabilizes lipoprotein lipase in vitro and lowers triglycerides in vivo.

    PubMed

    Larsson, Mikael; Caraballo, Rémi; Ericsson, Madelene; Lookene, Aivar; Enquist, Per-Anders; Elofsson, Mikael; Nilsson, Stefan K; Olivecrona, Gunilla

    2014-07-25

    Patients at increased cardiovascular risk commonly display high levels of plasma triglycerides (TGs), elevated LDL cholesterol, small dense LDL particles and low levels of HDL-cholesterol. Many remain at high risk even after successful statin therapy, presumably because TG levels remain high. Lipoprotein lipase (LPL) maintains TG homeostasis in blood by hydrolysis of TG-rich lipoproteins. Efficient clearance of TGs is accompanied by increased levels of HDL-cholesterol and decreased levels of small dense LDL. Given the central role of LPL in lipid metabolism we sought to find small molecules that could increase LPL activity and serve as starting points for drug development efforts against cardiovascular disease. Using a small molecule screening approach we have identified small molecules that can protect LPL from inactivation by the controller protein angiopoietin-like protein 4 during incubations in vitro. One of the selected compounds, 50F10, was directly shown to preserve the active homodimer structure of LPL, as demonstrated by heparin-Sepharose chromatography. On injection to hypertriglyceridemic apolipoprotein A-V deficient mice the compound ameliorated the postprandial response after an olive oil gavage. This is a potential lead compound for the development of drugs that could reduce the residual risk associated with elevated plasma TGs in dyslipidemia.

  12. Phage Anti-Immune complex Assay (PHAIA): a general strategy for noncompetitive immunodetection of small molecules

    PubMed Central

    González-Techera, A; Vanrell, L; Last, J.; Hammock, B.D; González-Sapienza, G.

    2008-01-01

    Due to their size, small molecules can not be simultaneously bound by two antibodies precluding their detection by noncompetitive two-site immunoassays, which are superior to competitive ones in terms of sensitivity, kinetics, and working range. This has prompted the development of anti-immune complex antibodies, but these are difficult to produce, and often exhibit high cross-reactivity with the unliganded primary antibody. This work demonstrates that anti-immune complex antibodies can be substituted by phage particles isolated from phage display peptide libraries. Phages bearing specific small peptide loops allowed to focus the recognition to changes in the binding area of the immune complex. The concept was tested using environmental and drug analytes; with improved sensitivity and ready adaptation into onsite formats. Peptides specific for different immune complexes can be isolated from different peptide libraries in a simple and systematic fashion allowing the rapid development of noncompetitive assays for small molecules PMID:17845007

  13. Phage anti-immune complex assay: general strategy for noncompetitive immunodetection of small molecules.

    PubMed

    González-Techera, A; Vanrell, L; Last, J A; Hammock, B D; González-Sapienza, G

    2007-10-15

    Due to their size, small molecules cannot be simultaneously bound by two antibodies, precluding their detection by noncompetitive two-site immunoassays, which are superior to competitive ones in terms of sensitivity, kinetics, and working range. This has prompted the development of anti-immune complex antibodies, but these are difficult to produce, and often exhibit high cross-reactivity with the unliganded primary antibody. This work demonstrates that anti-immune complex antibodies can be substituted by phage particles isolated from phage display peptide libraries. Phages bearing specific small peptide loops allowed to focus the recognition to changes in the binding area of the immune complex. The concept was tested using environmental and drug analytes; with improved sensitivity and ready adaptation into on-site formats. Peptides specific for different immune complexes can be isolated from different peptide libraries in a simple and systematic fashion allowing the rapid development of noncompetitive assays for small molecules.

  14. A high throughput screening assay system for the identification of small molecule inhibitors of gsp.

    PubMed

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z; Mathews Griner, Lesley A; Zheng, Wei; Inglese, James; Austin, Christopher P; Marugan, Juan J; Southall, Noel; Neumann, Susanne; Northup, John K; Ferrer, Marc; Collins, Michael T

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)-based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.

  15. Donor-acceptor small molecules for organic photovoltaics: single-atom substitution (Se or S).

    PubMed

    He, Xiaoming; Cao, Bing; Hauger, Tate C; Kang, Minkyu; Gusarov, Sergey; Luber, Erik J; Buriak, Jillian M

    2015-04-22

    Two isostructural low-band-gap small molecules that contain a one-atom substitution, S for Se, were designed and synthesized. The molecule 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]thiadiazole] (1) and its selenium analogue 7,7'-[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene]bis[6-fluoro-4-(5'-hexyl-2,2'-bithiophen-5-yl)benzo[c][1,2,5]selenodiazole] (2) are both based on the electron-rich central unit benzo[1,2-b:4,5-b']dithiophene. The aim of this work was to investigate the effect of one-atom substitution on the optoelectronic properties and photovoltaic performance of devices. Theoretical calculations revealed that this one-atom variation has a small but measurable effect on the energy of frontier molecular orbital (HOMO and LUMO), which, in turn, can affect the absorption profile of the molecules, both neat and when mixed in a bulk heterojunction (BHJ) with PC71BM. The Se-containing variant 2 led to higher efficiencies [highest power conversion efficiency (PCE) of 2.6%] in a standard organic photovoltaic architecture, when combined with PC71BM after a brief thermal annealing, than the S-containing molecule 1 (highest PCE of 1.0%). Studies of the resulting morphologies of BHJs based on 1 and 2 showed that one-atom substitution could engender important differences in the solubilities, which then influenced the crystal orientations of the small molecules within this thin layer. Brief thermal annealing resulted in rotation of the crystalline grains of both molecules to more energetically favorable configurations.

  16. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  17. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling.

    PubMed

    Hayashi, Ken-Ichiro; Tan, Xu; Zheng, Ning; Hatate, Tatsuya; Kimura, Yoshio; Kepinski, Stefan; Nozaki, Hiroshi

    2008-04-08

    The regulation of gene expression by the hormone auxin is a crucial mechanism in plant development. We have shown that the Arabidopsis F-box protein TIR1 is a receptor for auxin, and our recent structural work has revealed the molecular mechanism of auxin perception. TIR1 is the substrate receptor of the ubiquitin-ligase complex SCF(TIR1). Auxin binding enhances the interaction between TIR1 and its substrates, the Aux/IAA repressors, thereby promoting the ubiquitination and degradation of Aux/IAAs, altering the expression of hundreds of genes. TIR1 is the prototype of a new class of hormone receptor and the first example of an SCF ubiquitin-ligase modulated by a small molecule. Here, we describe the design, synthesis, and characterization of a series of auxin agonists and antagonists. We show these molecules are specific to TIR1-mediated events in Arabidopsis, and their mode of action in binding to TIR1 is confirmed by x-ray crystallographic analysis. Further, we demonstrate the utility of these probes for the analysis of TIR1-mediated auxin signaling in the moss Physcomitrella patens. Our work not only provides a useful tool for plant chemical biology but also demonstrates an example of a specific small-molecule inhibitor of F-box protein-substrate recruitment. Substrate recognition and subsequent ubiquitination by SCF-type ubiquitin ligases are central to many cellular processes in eukaryotes, and ubiquitin-ligase function is affected in several human diseases. Our work supports the idea that it may be possible to design small-molecule agents to modulate ubiquitin-ligase function therapeutically.

  18. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anasuya; O’Connor, Cornelius J.; Zhang, Fengzhi; Galvagnion, Celine; Galloway, Warren R. J. D.; Tan, Yaw Sing; Stokes, Jamie E.; Rahman, Taufiq; Verma, Chandra; Spring, David R.; Itzhaki, Laura S.

    2016-04-01

    Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a “druggable” target with small molecules.

  19. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell

    PubMed Central

    Chattopadhyay, Anasuya; O’Connor, Cornelius J.; Zhang, Fengzhi; Galvagnion, Celine; Galloway, Warren R. J. D.; Tan, Yaw Sing; Stokes, Jamie E.; Rahman, Taufiq; Verma, Chandra; Spring, David R.; Itzhaki, Laura S.

    2016-01-01

    Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a “druggable” target with small molecules. PMID:27046077

  20. A Small Molecule Inhibitor of Human RAD51 Potentiates Breast Cancer Cell Killing by Therapeutic Agents in Mouse Xenografts

    PubMed Central

    Huang, Fei; Mazin, Alexander V.

    2014-01-01

    The homologous recombination pathway is responsible for the repair of DNA double strand breaks. RAD51, a key homologous recombination protein, promotes the search for homology and DNA strand exchange between homologous DNA molecules. RAD51 is overexpressed in a variety of cancer cells. Downregulation of RAD51 by siRNA increases radio- or chemo-sensitivity of cancer cells. We recently developed a specific RAD51 small molecule inhibitor, B02, which inhibits DNA strand exchange activity of RAD51 in vitro. In this study, we used human breast cancer cells MDA-MB-231 to investigate the ability of B02 to inhibit RAD51 and to potentiate an anti-cancer effect of chemotherapeutic agents including doxorubicin, etoposide, topotecan, and cisplatin. We found that the combination of B02 with cisplatin has the strongest killing effect on the cancer cells. We then tested the effect of B02 and cisplatin on the MDA-MB-231 cell proliferation in mouse xenografts. Our results showed that B02 significantly enhances the therapeutic effect of cisplatin on tumor cells in vivo. Our current data demonstrate that use of RAD51-specific small molecule inhibitor represents a feasible strategy of a combination anti-cancer therapy. PMID:24971740