Sample records for enhanced structural integrity

  1. Short-Wavelength Light-Emitting Devices With Enhanced Hole Injection Currents

    DTIC Science & Technology

    2005-05-01

    hot-hole injector with appreciably enhancement of the injection current is proposed and developed to be integrated with commonly used vertical...structures of the emitting devices. Second, we develop the alternative design of UV-light sources on the base of lateral p+ - i - n+ superlattice structures...enhancement of the injection current is proposed and developed to be integrated with commonly used vertical structures of the emitting devices. Second

  2. Nanocrystalline silicon thin films and grating structures for solar cells

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil

    2016-03-01

    Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.

  3. Origin of the enhancement of tunneling probability in the nearly integrable system

    NASA Astrophysics Data System (ADS)

    Hanada, Yasutaka; Shudo, Akira; Ikeda, Kensuke S.

    2015-04-01

    The enhancement of tunneling probability in the nearly integrable system is closely examined, focusing on tunneling splittings plotted as a function of the inverse of the Planck's constant. On the basis of the analysis using the absorber which efficiently suppresses the coupling, creating spikes in the plot, we found that the splitting curve should be viewed as the staircase-shaped skeleton accompanied by spikes. We further introduce renormalized integrable Hamiltonians and explore the origin of such a staircase structure by investigating the nature of eigenfunctions closely. It is found that the origin of the staircase structure could trace back to the anomalous structure in tunneling tail which manifests itself in the representation using renormalized action bases. This also explains the reason why the staircase does not appear in the completely integrable system.

  4. DNA minicircles clarify the specific role of DNA structure on retroviral integration

    PubMed Central

    Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc

    2016-01-01

    Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712

  5. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.

    PubMed

    Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng

    2016-09-14

    Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g -1 vs. 28 mA h g -1 , 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g -1 vs. 59 mA h g -1 , -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li + -transportation, and alleviates the structure strain during the cycling procedure.

  6. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    driven life management to a damage tolerance approach similar to the current USAF method to ensure the integrity of metallic structure . Much of this...Service Inspection Flaw Assumptions for Metallic Structures , Air Force Structures Bulletin, 23 May 2013. [9] Forsyth, D.S., et.al., “The Air Force...AFRL-RX-WP-JA-2016-0028 RECENT AND FUTURE ENHANCEMENTS IN NDI FOR AIRCRAFT STRUCTURES (POSTPRINT) Eric A. Lindgren, John Brausch, and

  7. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays.

    PubMed

    Park, Haesung; Shin, Dongheok; Kang, Gumin; Baek, Seunghwa; Kim, Kyoungsik; Padilla, Willie J

    2011-12-22

    Based on conventional colloidal nanosphere lithography, we experimentally demonstrate novel graded-index nanostructures for broadband optical antireflection enhancement including the near-ultraviolet (NUV) region by integrating residual polystyrene antireflective (AR) nanoislands coating arrays with silicon nano-conical-frustum arrays. This is a feasible optimized integration method of two major approaches for antireflective surfaces: quarter-wavelength AR coating and biomimetic moth's eye structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural Integrity and Aging-Related Issues of Helicopters

    DTIC Science & Technology

    2000-10-01

    inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best

  9. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    USDA-ARS?s Scientific Manuscript database

    This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...

  10. Transposon integration enhances expression of stress response genes.

    PubMed

    Feng, Gang; Leem, Young-Eun; Levin, Henry L

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.

  11. Transposon integration enhances expression of stress response genes

    PubMed Central

    Feng, Gang; Leem, Young-Eun; Levin, Henry L.

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295

  12. Recent developments in OLED-based chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth

    2007-09-01

    Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.

  13. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.

    PubMed

    Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian

    2017-05-04

    The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.

  14. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  15. Tailoring Gut Microbiota for Enhanced Resilience and Performance Under Sleep-Deprived Conditions

    DTIC Science & Technology

    2016-08-01

    psychological disorders, we have developed a hypothesis that sleep deprivation initially degrades the functional and structural integrity of the...obesity. Interestingly, perturbation of gut microbiota presents a pattern of metabolic abnormalities mirroring those induced by sleep deprivation. In...sleep deprivation initially causes degradation in the functional and structural integrity of the gastrointestinal tract. Data generated will be

  16. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  17. The Next Step in Educational Program Budgets and Information Resource Management: Integrated Data Structures.

    ERIC Educational Resources Information Center

    Jackowski, Edward M.

    1988-01-01

    Discusses the role that information resource management (IRM) plays in educational program-oriented budgeting (POB), and presents a theoretical IRM model. Highlights include design considerations for integrated data systems; database management systems (DBMS); and how POB data can be integrated to enhance its value and use within an educational…

  18. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao; Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiacmore » TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.« less

  19. Field measurements on skewed semi-integral bridge with elastic inclusion : instrumentation report.

    DOT National Transportation Integrated Search

    2006-01-01

    This project was designed to enhance the Virginia Department of Transportation's expertise in the design of integral bridges, particularly as it applies to highly skewed structures. Specifically, the project involves extensive monitoring of a semi-in...

  20. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardes, Alexandre M.; Ahn, Sungmo; Rourke, Devin

    2016-12-01

    We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution-processed organic photovoltaic (OPV) devices. The tailored 'photonic electrode' nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantummore » efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure.« less

  2. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Changemore » Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.« less

  3. Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Di Napoli, Rosario; Soldovieri, Francesco; Bavusi, Massimo; Loperte, Antonio; Dumoulin, Jean

    2012-08-01

    Structural integrity assessment and monitoring of infrastructures are key factors to prevent and manage crisis events (natural disasters, terrorist attacks and so on) and ensure urban safety. This necessity motivates huge interest towards design, optimization and integration of non-invasive remote and in situ diagnostic techniques. In this framework, ground penetrating radar (GPR) is a well-assessed instrumentation, which allows one to attain information on the inner status of man-made structures while avoiding invasive tests. However, despite its potential, a more widespread use of GPR is actually affected by the difficulties in providing highly informative and easily interpretable images as an outcome of the overall diagnostics procedure. This drawback can be mitigated thanks to the use of microwave tomography (MT) as a data processing tool able to enhance the achievable reconstruction capabilities, and several proofs of its effectiveness have been already shown. In this paper, the potential of the MT approach is investigated in the framework of structural monitoring by an experiment carried out in the Montagnole test site in the French Alps, where the progressive damage of a one-scale concrete beam has been monitored thanks to the integration of several electromagnetic sensing techniques. In this framework, the capability of the MT-enhanced GPR strategy is examined with respect to the possibility of providing information about the damage of the rebar grid of the beam.

  4. Online CTE in the Community College

    ERIC Educational Resources Information Center

    Garza Mitchell, Regina L.; Etshim, Rachal; Dietz, Brian T.

    2016-01-01

    This single-site case study explored how one community college integrated online education into CTE courses and programs. Through semi-structured interviews and document analysis, the study explores how one college integrated online education (fully online, hybrid, and web-enhanced) into areas typically considered "hands-on".…

  5. IPAD applications to the design, analysis, and/or machining of aerospace structures. [Integrated Program for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.

    1981-01-01

    A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.

  6. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    NASA Astrophysics Data System (ADS)

    Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao

    2015-09-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  7. Novel technology for enhanced security and trust in communication networks

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander; Bukshpun, Leonid; Pradhan, Ranjit; Jannson, Tomasz

    2011-06-01

    A novel technology that significantly enhances security and trust in wireless and wired communication networks has been developed. It is based on integration of a novel encryption mechanism and novel data packet structure with enhanced security tools. This novel data packet structure results in an unprecedented level of security and trust, while at the same time reducing power consumption and computing/communication overhead in networks. As a result, networks are provided with protection against intrusion, exploitation, and cyber attacks and posses self-building, self-awareness, self-configuring, self-healing, and self-protecting intelligence.

  8. Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing.

    PubMed

    Arora, Pankaj; Talker, Eliran; Mazurski, Noa; Levy, Uriel

    2018-06-13

    We demonstrate numerically and experimentally the enhancement of Surface Plasmon Resonance (SPR) sensing via dispersion engineering of the plasmonic response using plasmonic nanograting. Following their design and optimization, the plasmonic nanograting structures are fabricated using e-beam lithography and lift-off process and integrated into conventional prism based Kretschmann configuration. The presence of absorptive nanograting near the metal film, provides strong field enhancement with localization and allows to control the dispersion relation which was originally dictated by a conventional SPR structure. This contributes to the enhancement in Q factor which is found to be 3-4 times higher as compared to the conventional Kretschmann configuration. The influence of the incident angle on resonance wavelength is also demonstrated both numerically and experimentally, where, only a negligible wavelength shift is observed with increasing the incident angles for plasmonic nanograting configuration. This surprising feature may be helpful for studying and utilizing light-matter interaction between plasmons and narrow linewidth media (e.g. Rb atom or molecule) having nonlocalities in their susceptibility-momentum relation. Finally, we analyze the role of plasmonic nanograting in enhancing the performance of an SPR sensor. Our results indicate that the integrated SPR-nanograting device shows a great promise as a sensor for various types of analytes.

  9. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  10. Enhancement of structural stiffness in MEMS structures

    NASA Astrophysics Data System (ADS)

    Ilias, Samir; Picard, Francis; Topart, Patrice; Larouche, Carl; Jerominek, Hubert

    2006-01-01

    Many optical applications require smooth micromirror reflective surfaces with large radius of curvature. Usually when using surface micromachining technology and as a result of residual stress and stress gradient in thin films, the control of residual curvature is a difficult task. In this work, two engineering approaches were developed to enhance structural stiffness of micromirrors. 1) By integrating stiffening structures and thermal annealing. The stiffening structures consist of U-shaped profiles integrated with the mirror (dimension 200×300 μm2). 2) By combining selective electroplating and flip-chip based technologies. Nickel was used as electroplated material with optimal stress values around +/-10 MPa for layer thicknesses of about 10 μm. With the former approach, typical curvature radii of about 1.5 cm and 0.6 cm along mirror width and length were obtained, respectively. With the latter approach, an important improvement in the micromirror planarity and flatness was achieved with curvature radius up to 23 cm and roughness lower than 5 nm rms for typical 1000×1000 μm2 micromirrors.

  11. Reduced caudate volume and enhanced striatal-DMN integration in chess experts.

    PubMed

    Duan, Xujun; He, Sheng; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Wei, Luqing; Li, Yuan; Liu, Chengyi; Gong, Qiyong; Chen, Huafu

    2012-04-02

    The superior capability of chess experts largely depends on quick automatic processing skills which are considered to be mediated by the caudate nucleus. We asked whether continued practice or rehearsal of the skill over a long period of time can lead to structural changes in this region. We found that, comparing to novice controls, grandmaster and master level Chinese chess players (GM/Ms), who had a mean period of over 10years of tournament and training practice, exhibited significant smaller gray-matter volume in the bilateral caudate nuclei. When these regions were used as seeds in functional connectivity analysis in resting-state fMRI, significantly enhanced integration was found in GM/Ms between the caudate and the default mode network (DMN), a constellation of brain areas important for goal-directed cognitive performance and theory of mind. These findings demonstrate the structural changes in the caudate nucleus in response to its extensive engagement in chess problem solving, and its enhanced functional integration with widely distributed circuitry to better support high-level cognitive control of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays

    PubMed Central

    Huh, Yun Suk; Erickson, David

    2009-01-01

    Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 μU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. PMID:19857952

  13. Compact optical filter for dual-wavelength fluorescence-spectrometry based on enhanced transmission through metallic nano-slit array

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zhan, L.; Xia, Y.

    2009-03-01

    A novel optical filter based on enhanced transmission through metallic nano-slit is proposed for dual-wavelength fluorescence-spectrometry. A special structure, sampled-period slit array, is utilized to meet the requirement of dual-wavelength transmission in this system. Structure parameters on the transmission property are analyzed by means of Fourier transformation. With the features both to enhance the fluorescence generation and to enhance light transmission, in addition with the feasibility for miniaturization, integration on one chip, and mass production, the proposed filters are promising for the realization of dual-wavelength fluorescence-spectrometry in micro-total-analysis-system.

  14. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.

    PubMed

    Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen

    2013-06-10

    Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Integrating structure-based and ligand-based approaches for computational drug design.

    PubMed

    Wilson, Gregory L; Lill, Markus A

    2011-04-01

    Methods utilized in computer-aided drug design can be classified into two major categories: structure based and ligand based, using information on the structure of the protein or on the biological and physicochemical properties of bound ligands, respectively. In recent years there has been a trend towards integrating these two methods in order to enhance the reliability and efficiency of computer-aided drug-design approaches by combining information from both the ligand and the protein. This trend resulted in a variety of methods that include: pseudoreceptor methods, pharmacophore methods, fingerprint methods and approaches integrating docking with similarity-based methods. In this article, we will describe the concepts behind each method and selected applications.

  16. Enhanced cell attachment and hemocompatibility of titanium by nanoscale surface modification through severe plastic integration of magnesium-rich islands and porosification.

    PubMed

    Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali

    2017-10-11

    Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.

  17. Formation of integrated structural units using the systematic and integrated method when implementing high-rise construction projects

    NASA Astrophysics Data System (ADS)

    Abramov, Ivan

    2018-03-01

    Development of design documentation for a future construction project gives rise to a number of issues with the main one being selection of manpower for structural units of the project's overall implementation system. Well planned and competently staffed integrated structural construction units will help achieve a high level of reliability and labor productivity and avoid negative (extraordinary) situations during the construction period eventually ensuring improved project performance. Research priorities include the development of theoretical recommendations for enhancing reliability of a structural unit staffed as an integrated construction crew. The author focuses on identification of destabilizing factors affecting formation of an integrated construction crew; assessment of these destabilizing factors; based on the developed mathematical model, highlighting the impact of these factors on the integration criterion with subsequent identification of an efficiency and reliability criterion for the structural unit in general. The purpose of this article is to develop theoretical recommendations and scientific and methodological provisions of an organizational and technological nature in order to identify a reliability criterion for a structural unit based on manpower integration and productivity criteria. With this purpose in mind, complex scientific tasks have been defined requiring special research, development of corresponding provisions and recommendations based on the system analysis findings presented herein.

  18. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    PubMed

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  19. Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films

    PubMed Central

    Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph

    2017-01-01

    The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084

  20. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50.

    PubMed

    Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao

    2018-02-15

    Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.

  1. Computer aided design environment for the analysis and design of multi-body flexible structures

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant V.; Singh, Ramen P.

    1989-01-01

    A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.

  2. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federalmore » Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.« less

  3. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei, E-mail: yuxm@pku.edu.cn

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop themore » SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.« less

  4. Reading in healthy ageing: the influence of information structuring in sentences.

    PubMed

    Price, Jessica M; Sanford, Anthony J

    2012-06-01

    In three experiments, we investigated the cognitive effects of linguistic prominence to establish whether focus plays a similar or different role in modulating language processing in healthy ageing. Information structuring through the use of cleft sentences is known to increase the processing efficiency of anaphoric references to elements contained with a marked focus structure. It also protects these elements from becoming suppressed in the wake of subsequent information, suggesting selective mechanisms of enhancement and suppression. In Experiment 1 (using self-paced reading), we found that focus enhanced (faster) integration for anaphors referring to words contained within the scope of focus; but suppressed (slower) integration for anaphors to words contained outside of the scope of focus; and in some cases, the effects were larger in older adults. In Experiment 2 (using change detection), we showed that older adults relied more on the linguistic structure to enhance change detection when the changed word was in focus. In Experiment 3 (using delayed probe recognition and eye-tracking), we found that older adults recognized probes more accurately when they were made to elements within the scope of focus than when they were outside the scope of focus. These results indicate that older adults' ability to selectively attend or suppress concepts in a marked focus structure is preserved. PsycINFO Database Record (c) 2012 APA, all rights reserved

  5. Integration of Real-Time Intraoperative Contrast-Enhanced Ultrasound and Color Doppler Ultrasound in the Surgical Treatment of Spinal Cord Dural Arteriovenous Fistulas.

    PubMed

    Della Pepa, Giuseppe Maria; Sabatino, Giovanni; Sturiale, Carmelo Lucio; Marchese, Enrico; Puca, Alfredo; Olivi, Alessandro; Albanese, Alessio

    2018-04-01

    In the surgical treatment of spinal dural arteriovenous fistulas (DAVFs), intraoperative definition of anatomic characteristics of the DAVF and identification of the fistulous point is mandatory to effectively exclude the DAVF. Intraoperative ultrasound and contrast-enhanced ultrasound integrated with color Doppler ultrasound was applied in the surgical setting for a cervical DAVF to identify the fistulous point and evaluate correct occlusion of the fistula. Integration of intraoperative ultrasound and contrast-enhanced ultrasound is a simple, cost-effective technique that provides an opportunity for real-time dynamic visualization of DAVF vascular patterns, identification of the fistulous point, and assessment of correct exclusion. Compared with other intraoperative tools, such as indocyanine green videoangiography, it allows the surgeon to visualize hidden anatomic and vascular structures, minimizing surgical manipulation and guiding the surgeon during resection. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Enhancing Student Teachers' Epistemological Beliefs about Models and Conceptual Understanding through a Model-Based Inquiry Process

    ERIC Educational Resources Information Center

    Soulios, Ioannis; Psillos, Dimitris

    2016-01-01

    In this study we present the structure and implementation of a model-based inquiry teaching-learning sequence (TLS) integrating expressive, experimental and exploratory modelling pedagogies in a cyclic manner, with the aim of enhancing primary education student teachers' epistemological beliefs about the aspects, nature, purpose and change of…

  7. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  9. fMRI Syntactic and Lexical Repetition Effects Reveal the Initial Stages of Learning a New Language.

    PubMed

    Weber, Kirsten; Christiansen, Morten H; Petersson, Karl Magnus; Indefrey, Peter; Hagoort, Peter

    2016-06-29

    When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared with the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning on-line using functional magnetic resonance imaging. In left inferior frontal gyrus and posterior temporal cortex, the repetition of novel syntactic structures led to repetition enhancement, whereas repetition of known structures resulted in repetition suppression. Additional verb repetition led to an increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly, the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities. Acquiring a second language entails learning how to interpret novel words and relations between words, and to integrate them with existing language knowledge. To investigate the brain mechanisms involved in this particularly human skill, we combined an artificial language learning task with a syntactic repetition paradigm. We show that the repetition of novel syntactic structures, as well as words in contexts, leads to repetition enhancement, whereas repetition of known structures results in repetition suppression. We thus propose that repetition enhancement might reflect a brain mechanism to build and strengthen a neural network to process novel syntactic regularities and novel words. Importantly, the results also indicate an overlap in neural mechanisms for native and new language constructions with sufficient structural similarities. Copyright © 2016 the authors 0270-6474/16/366872-09$15.00/0.

  10. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    PubMed Central

    Wang, Alan X.; Kong, Xianming

    2015-01-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428

  11. Toughening mystery of natural rubber deciphered by double network incorporating hierarchical structures

    PubMed Central

    Zhou, Weiming; Li, Xiangyang; Lu, Jie; Huang, Ningdong; Chen, Liang; Qi, Zeming; Li, Liangbin; Liang, Haiyi

    2014-01-01

    As an indispensible material for modern society, natural rubber possesses peerless mechanical properties such as strength and toughness over its artificial analogues, which remains a mystery. Intensive experimental and theoretical investigations have revealed the self-enhancement of natural rubber due to strain-induced crystallization. However a rigorous model on the self-enhancement, elucidating natural rubber's extraordinary mechanical properties, is obscured by deficient understanding of the local hierarchical structure under strain. With spatially resolved synchrotron radiation micro-beam scanning X-ray diffraction we discover weak oscillation in distributions of strain-induced crystallinity around crack tip for stretched natural rubber film, demonstrating a soft-hard double network structure. The fracture energy enhancement factor obtained by utilizing the double network model indicates an enhancement of toughness by 3 orders. It's proposed that upon stretching spontaneously developed double network structures integrating hierarchy at multi length-scale in natural rubber play an essential role in its remarkable mechanical performance. PMID:25511479

  12. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

    PubMed

    Wang, Alan X; Kong, Xianming

    2015-06-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  13. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation1

    PubMed Central

    Tohge, Takayuki; Scossa, Federico; Fernie, Alisdair R.

    2015-01-01

    Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process. PMID:26371234

  14. The mechanism of protein export enhancement by the SecDF membrane component

    PubMed Central

    Tsukazaki, Tomoya; Nureki, Osamu

    2011-01-01

    Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified. PMID:27857601

  15. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.

    PubMed

    He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai

    2010-04-01

    An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.

  16. Dissemination of original NMR data enhances reproducibility and integrity in chemical research.

    PubMed

    Bisson, Jonathan; Simmler, Charlotte; Chen, Shao-Nong; Friesen, J Brent; Lankin, David C; McAlpine, James B; Pauli, Guido F

    2016-08-25

    The notion of data transparency is gaining a strong awareness among the scientific community. The availability of raw data is actually regarded as a fundamental way to advance science by promoting both integrity and reproducibility of research outcomes. Particularly, in the field of natural product and chemical research, NMR spectroscopy is a fundamental tool for structural elucidation and quantification (qNMR). As such, the accessibility of original NMR data, i.e., Free Induction Decays (FIDs), fosters transparency in chemical research and optimizes both peer review and reproducibility of reports by offering the fundamental tools to perform efficient structural verification. Although original NMR data are known to contain a wealth of information, they are rarely accessible along with published data. This viewpoint discusses the relevance of the availability of original NMR data as part of good research practices not only to promote structural correctness, but also to enhance traceability and reproducibility of both chemical and biological results.

  17. E-MSD: an integrated data resource for bioinformatics.

    PubMed

    Velankar, S; McNeil, P; Mittard-Runte, V; Suarez, A; Barrell, D; Apweiler, R; Henrick, K

    2005-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the 'Structure Integration with Function, Taxonomy and Sequences (SIFTS)' initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group.

  18. Integrating Case Topics in Medical School Curriculum to Enhance Multiple Skill Learning: Using Fetal Alcohol Spectrum Disorders as an Exemplary Case

    ERIC Educational Resources Information Center

    Paley, Blair; O'Connor, Mary J.; Baillie, Susan J.; Guiton, Gretchen; Stuber, Margaret L.

    2009-01-01

    Objectives: This article describes the use of fetal alcohol spectrum disorders (FASDs) as a theme to connect the learning of basic neurosciences with clinical applications across the age span within a systems-based, integrated curricular structure that emphasizes problem-based learning. Methods: In collaboration with the Centers for Disease…

  19. SIGMA Release v1.2 - Capabilities, Enhancements and Fixes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Vijay; Grindeanu, Iulian R.; Ray, Navamita

    In this report, we present details on SIGMA toolkit along with its component structure, capabilities, and feature additions in FY15, release cycles, and continuous integration process. These software processes along with updated documentation are imperative to successfully integrate and utilize in several applications including the SHARP coupled analysis toolkit for reactor core systems funded under the NEAMS DOE-NE program.

  20. Technology Education Professional Enhancement Project

    NASA Technical Reports Server (NTRS)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  1. Long-term effects of neonatal hypoxia-ischemia on structural and physiological integrity of the eye and visual pathway by multimodal MRI.

    PubMed

    Chan, Kevin C; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X

    2014-12-09

    Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  2. Long-Term Effects of Neonatal Hypoxia-Ischemia on Structural and Physiological Integrity of the Eye and Visual Pathway by Multimodal MRI

    PubMed Central

    Chan, Kevin C.; Kancherla, Swarupa; Fan, Shu-Juan; Wu, Ed X.

    2015-01-01

    Purpose. Neonatal hypoxia-ischemia is a major cause of brain damage in infants and may frequently present visual impairments. Although advancements in perinatal care have increased survival, the pathogenesis of hypoxic-ischemic injury and the long-term consequences to the visual system remain unclear. We hypothesized that neonatal hypoxia-ischemia can lead to chronic, MRI-detectable structural and physiological alterations in both the eye and the brain's visual pathways. Methods. Eight Sprague-Dawley rats underwent ligation of the left common carotid artery followed by hypoxia for 2 hours at postnatal day 7. One year later, T2-weighted MRI, gadolinium-enhanced MRI, chromium-enhanced MRI, manganese-enhanced MRI, and diffusion tensor MRI (DTI) of the visual system were evaluated and compared between opposite hemispheres using a 7-Tesla scanner. Results. Within the eyeball, systemic gadolinium administration revealed aqueous-vitreous or blood-ocular barrier leakage only in the ipsilesional left eye despite comparable aqueous humor dynamics in the anterior chamber of both eyes. Binocular intravitreal chromium injection showed compromised retinal integrity in the ipsilesional eye. Despite total loss of the ipsilesional visual cortex, both retinocollicular and retinogeniculate pathways projected from the contralesional eye toward ipsilesional visual cortex possessed stronger anterograde manganese transport and less disrupted structural integrity in DTI compared with the opposite hemispheres. Conclusions. High-field, multimodal MRI demonstrated in vivo the long-term structural and physiological deficits in the eye and brain's visual pathways after unilateral neonatal hypoxic-ischemic injury. The remaining retinocollicular and retinogeniculate pathways appeared to be more vulnerable to anterograde degeneration from eye injury than retrograde, transsynaptic degeneration from visual cortex injury. PMID:25491295

  3. Multisensory integration in the basal ganglia.

    PubMed

    Nagy, Attila; Eördegh, Gabriella; Paróczy, Zsuzsanna; Márkus, Zita; Benedek, György

    2006-08-01

    Sensorimotor co-ordination in mammals is achieved predominantly via the activity of the basal ganglia. To investigate the underlying multisensory information processing, we recorded the neuronal responses in the caudate nucleus (CN) and substantia nigra (SN) of anaesthetized cats to visual, auditory or somatosensory stimulation alone and also to their combinations, i.e. multisensory stimuli. The main goal of the study was to ascertain whether multisensory information provides more information to the neurons than do the individual sensory components. A majority of the investigated SN and CN multisensory units exhibited significant cross-modal interactions. The multisensory response enhancements were either additive or superadditive; multisensory response depressions were also detected. CN and SN cells with facilitatory and inhibitory interactions were found in each multisensory combination. The strengths of the multisensory interactions did not differ in the two structures. A significant inverse correlation was found between the strengths of the best unimodal responses and the magnitudes of the multisensory response enhancements, i.e. the neurons with the weakest net unimodal responses exhibited the strongest enhancement effects. The onset latencies of the responses of the integrative CN and SN neurons to the multisensory stimuli were significantly shorter than those to the unimodal stimuli. These results provide evidence that the multisensory CN and SN neurons, similarly to those in the superior colliculus and related structures, have the ability to integrate multisensory information. Multisensory integration may help in the effective processing of sensory events and the changes in the environment during motor actions controlled by the basal ganglia.

  4. Integration of retinal image sequences

    NASA Astrophysics Data System (ADS)

    Ballerini, Lucia

    1998-10-01

    In this paper a method for noise reduction in ocular fundus image sequences is described. The eye is the only part of the human body where the capillary network can be observed along with the arterial and venous circulation using a non invasive technique. The study of the retinal vessels is very important both for the study of the local pathology (retinal disease) and for the large amount of information it offers on systematic haemodynamics, such as hypertension, arteriosclerosis, and diabetes. In this paper a method for image integration of ocular fundus image sequences is described. The procedure can be divided in two step: registration and fusion. First we describe an automatic alignment algorithm for registration of ocular fundus images. In order to enhance vessel structures, we used a spatially oriented bank of filters designed to match the properties of the objects of interest. To evaluate interframe misalignment we adopted a fast cross-correlation algorithm. The performances of the alignment method have been estimated by simulating shifts between image pairs and by using a cross-validation approach. Then we propose a temporal integration technique of image sequences so as to compute enhanced pictures of the overall capillary network. Image registration is combined with image enhancement by fusing subsequent frames of a same region. To evaluate the attainable results, the signal-to-noise ratio was estimated before and after integration. Experimental results on synthetic images of vessel-like structures with different kind of Gaussian additive noise as well as on real fundus images are reported.

  5. Quantum structural fluctuation in para-hydrogen clusters revealed by the variational path integral method

    NASA Astrophysics Data System (ADS)

    Miura, Shinichi

    2018-03-01

    In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.

  6. Quantum structural fluctuation in para-hydrogen clusters revealed by the variational path integral method.

    PubMed

    Miura, Shinichi

    2018-03-14

    In this paper, the ground state of para-hydrogen clusters for size regime N ≤ 40 has been studied by our variational path integral molecular dynamics method. Long molecular dynamics calculations have been performed to accurately evaluate ground state properties. The chemical potential of the hydrogen molecule is found to have a zigzag size dependence, indicating the magic number stability for the clusters of the size N = 13, 26, 29, 34, and 39. One-body density of the hydrogen molecule is demonstrated to have a structured profile, not a melted one. The observed magic number stability is examined using the inherent structure analysis. We also have developed a novel method combining our variational path integral hybrid Monte Carlo method with the replica exchange technique. We introduce replicas of the original system bridging from the structured to the melted cluster, which is realized by scaling the potential energy of the system. Using the enhanced sampling method, the clusters are demonstrated to have the structured density profile in the ground state.

  7. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  8. Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration

    PubMed Central

    Miller, Thomas F.

    2017-01-01

    We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency. PMID:28328943

  9. Hypogeal geological survey in the "Grotta del Re Tiberio" natural cave (Apennines, Italy): a valid tool for reconstructing the structural setting

    NASA Astrophysics Data System (ADS)

    Ghiselli, Alice; Merazzi, Marzio; Strini, Andrea; Margutti, Roberto; Mercuriali, Michele

    2011-06-01

    As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the "Grotta del Re Tiberio" cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors' surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area ( e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures ( e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping gypsum is more exposed to dissolution and recrystallization. The hypogeal geological survey, therefore, can be considered a powerful tool for integrating the surface and log data in order to enhance the reconstruction of the deformational history and to get a three-dimensional model of the bedrock in karst areas.

  10. Sustainable landscaping practices for enhancing vegetation establishment : research summary.

    DOT National Transportation Integrated Search

    2016-02-01

    This research supports the integration of new practices and procedures to improve soil : structure that will help turf, meadow, forest and landscape plantings to thrive. It sought : to (1) demonstrate the effectiveness of innovative soil decompaction...

  11. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications

    PubMed Central

    Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.

    2017-01-01

    This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308

  12. The effect of illumination and electrode adjustment on the carrier behavior in special multilayer devices

    NASA Astrophysics Data System (ADS)

    Deng, Yanhong; Ou, Qingdong; Wang, Jinjiang; Zhang, Dengyu; Chen, Liezun; Li, Yanqing

    2017-08-01

    Intermediate connectors play an important role in semiconductor devices, especially in tandem devices. In this paper, four types of different intermediate connectors (e.g. Mg:Alq3/MoO3, MoO3, Mg:Alq3, and none) and two kinds of modified electrode materials (LiF and MoO3) integrated into the special multilayer devices are proposed, with the aim of studying the impact of light illumination and electrode adjustment on the carrier behavior of intermediate connectors through the current density-voltage characteristics, interfacial electronic structures, and capacitance-voltage characteristics. The results show that the illumination enhances the charge generation and separation in intermediate connectors, and further electrode interface modifications enhance the functionality of intermediate connectors. In addition, the device with an efficient intermediate connector structure shows a photoelectric effect, which paves the way for organic photovoltaic devices to realize optical-electrical integration transformation.

  13. Tuning metal-insulator behavior in LaTiO3/SrTiO3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    NASA Astrophysics Data System (ADS)

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; Conlin, Patrick; Hensley, Ricky; Chrysler, Matthew; Su, Dong; Chen, Hanghui; Kumah, Divine P.; Ngai, Joseph H.

    2018-05-01

    We present electrical and structural characterization of epitaxial LaTiO3/SrTiO3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near an occupation of 1 electron per Ti site within the SrTiO3, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulator behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.

  14. Tuning metal-insulator behavior in LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    DOE PAGES

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; ...

    2018-05-07

    Here, we present electrical and structural characterization of epitaxial LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near 1 electron per Ti occupation within the SrTiO 3 well, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulatormore » behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.« less

  15. Tuning metal-insulator behavior in LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui

    Here, we present electrical and structural characterization of epitaxial LaTiO 3/SrTiO 3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near 1 electron per Ti occupation within the SrTiO 3 well, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulatormore » behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.« less

  16. Topic Structure Affects Semantic Integration: Evidence from Event-Related Potentials

    PubMed Central

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated. PMID:24348994

  17. Topic structure affects semantic integration: evidence from event-related potentials.

    PubMed

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated.

  18. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  19. Successful Development of Satiety Enhancing Food Products: Towards a Multidisciplinary Agenda of Research Challenges

    PubMed Central

    Van Kleef, E.; Van Trijp, J.C.M.; Van Den Borne, J.J.G.C.; Zondervan, C.

    2012-01-01

    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined. PMID:22530713

  20. Successful development of satiety enhancing food products: towards a multidisciplinary agenda of research challenges.

    PubMed

    Van Kleef, E; Van Trijp, J C M; Van Den Borne, J J G C; Zondervan, C

    2012-01-01

    In the context of increasing prevalence of overweight and obesity in societies worldwide, enhancing the satiating capacity of foods may help people control their energy intake and weight. This requires an integrated approach between various food-related disciplines. By structuring this approach around the new product development process, this paper aims to present the contours of such an integrative approach by going through the current state of the art around satiety enhancing foods. It portrays actual food choice as the end result of a complex interaction between internal satiety signals, other food benefits, and environmental cues. Three interrelated routes to satiating enhancement are to change the food composition to develop stronger physiological satiation and satiety signals, anticipate and build on smart external stimuli at the moment of purchase and consumption, and improve palatability and acceptance of satiety enhanced foods. Key research challenges in achieving these routes in the field of nutrition, food technology, consumer, marketing, and communication are outlined.

  1. Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling

    PubMed Central

    Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.

    2017-01-01

    Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications. PMID:28134260

  2. E-MSD: an integrated data resource for bioinformatics

    PubMed Central

    Velankar, S.; McNeil, P.; Mittard-Runte, V.; Suarez, A.; Barrell, D.; Apweiler, R.; Henrick, K.

    2005-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the worldwide Protein Data Bank (wwPDB) and to work towards the integration of various bioinformatics data resources. One of the major obstacles to the improved integration of structural databases such as MSD and sequence databases like UniProt is the absence of up to date and well-maintained mapping between corresponding entries. We have worked closely with the UniProt group at the EBI to clean up the taxonomy and sequence cross-reference information in the MSD and UniProt databases. This information is vital for the reliable integration of the sequence family databases such as Pfam and Interpro with the structure-oriented databases of SCOP and CATH. This information has been made available to the eFamily group (http://www.efamily.org.uk/) and now forms the basis of the regular interchange of information between the member databases (MSD, UniProt, Pfam, Interpro, SCOP and CATH). This exchange of annotation information has enriched the structural information in the MSD database with annotation from wider sequence-oriented resources. This work was carried out under the ‘Structure Integration with Function, Taxonomy and Sequences (SIFTS)’ initiative (http://www.ebi.ac.uk/msd-srv/docs/sifts) in the MSD group. PMID:15608192

  3. Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors

    NASA Astrophysics Data System (ADS)

    Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.

    2016-03-01

    Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.

  4. Studying the Microanatomy of the Heart in Three Dimensions: A Practical Update

    PubMed Central

    Jarvis, Jonathan C.; Stephenson, Robert

    2013-01-01

    The structure and function of the heart needs to be understood in three dimensions. We give a brief historical summary of the methods by which such an understanding has been sought, and some practical details of the relatively new technique of micro-CT with iodine contrast enhancement in samples from rat and rabbit. We discuss how the improved anatomical detail available in fixed cadaveric hearts will enhance our ability to model and to understand the integrated function of the cardiomyocytes, conducting tissues, and fibrous supporting structures that generate the pumping function of the heart. PMID:24400272

  5. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    DOE PAGES

    Bardella, Paolo; Chow, Weng; Montrosset, Ivo

    2016-01-08

    In the last decades, various solutions have been proposed to increase the modulation bandwidth and consequently the transmission bit rate of integrated semiconductor lasers. In this manuscript we discuss a design procedure for a recently proposed laser structure realized with the integration of two DBR lasers. Design guidelines will be proposed and dynamic small and large signal simulations, calculated using a Finite Difference Traveling Wave numerical simulator, will be performed to confirm the design results and the effectiveness of the analyzed integrated configuration to achieve a direct modulation bandwidth up to 80 GHz

  6. SMART Layer and SMART Suitcase for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  7. The path dependency theory: analytical framework to study institutional integration. The case of France.

    PubMed

    Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique

    2010-06-30

    The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France.

  8. Integrating Model-Based Learning and Animations for Enhancing Students' Understanding of Proteins Structure and Function

    ERIC Educational Resources Information Center

    Barak, Miri; Hussein-Farraj, Rania

    2013-01-01

    This paper describes a study conducted in the context of chemistry education reforms in Israel. The study examined a new biochemistry learning unit that was developed to promote in-depth understanding of 3D structures and functions of proteins and nucleic acids. Our goal was to examine whether, and to what extent teaching and learning via…

  9. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  10. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.

    PubMed

    Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace

    2017-05-25

    Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers

    DTIC Science & Technology

    2017-03-20

    the linewidth in two ways: (1) increasing the photon lifetime due to effective cavity length enhancement, and (2) providing negative optical...structures. Some devices are also labeled. Figure 1. Microscope image of the photonic microwave generator comprising of two tunable lasers, a coupler...Integrated Photodiodes on Silicon,” IEEE JQE, vol.51, no.11, pp.1-6, Nov. 2015 Figure 9. (left) Optical spectra of two lasers comprising a photonic

  12. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    PubMed

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  13. A functional probe with bowtie aperture and bull's eye structure for nanolithograph

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Li, Xu-Feng; Wang, Qiao; Guo, Ying-Yan; Pan, Shi

    2012-10-01

    The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.

  14. A nanoporous gold membrane for sensing applications

    PubMed Central

    Oo, Swe Zin; Silva, Gloria; Carpignano, Francesca; Noual, Adnane; Pechstedt, Katrin; Mateos, Luis; Grant-Jacob, James A.; Brocklesby, Bill; Horak, Peter; Charlton, Martin; Boden, Stuart A.; Melvin, Tracy

    2016-01-01

    Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. PMID:26973809

  15. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  16. Multi-stage phononic crystal structure for anchor-loss reduction of thin-film piezoelectric-on-silicon microelectromechanical-system resonator

    NASA Astrophysics Data System (ADS)

    Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng

    2018-06-01

    Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.

  17. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  18. Field validation of polyurethane technology in remediating rail substructure and enhancing rail freight capacity.

    DOT National Transportation Integrated Search

    2016-10-01

    Railways are an important component of a multi-modal freight transport network. The structural integrity of rail substructure and problematic railway elements can be compromised leading to track instability and ultimately, train derailments. Because ...

  19. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  20. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    PubMed

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  1. Enhancement of photovoltaic cell performance using periodic triangular gratings

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Dey, Rajat

    2014-01-01

    The solar energy industry strives to produce more efficient and yet cost effective solar panels each consisting of an array of photovoltaic (PV) cells. The goal of this study was to enhance the performance of PV cells through increasing the cells' optical efficiency defined as a percentage of surface incident light that reaches the PV material. This was achieved through the reduction of waveguide decoupling loss and Fresnel reflection losses by integrating specific nonimaging micro-optical structures on the top surface of existing PV cells. Due to this integration, optical efficiency and performance were increased through the enhancement of light trapping, light guiding, and in-coupling functionalities. Periodic triangular gratings (PTGs) were designed, nonsequentially modeled, optimized, and fabricated in polydimethylsiloxane as proposed micro-optical structures. Then the performance of PV cells with and without integrated PTGs was evaluated and compared. Initial optical simulation results show that an original PV cell (without PTG) exhibits an average optical efficiency of 32.7% over a range of incident light angles between 15 and 90 deg. Integration of the PTG allows the capture of incoming sunlight by total internal reflection (TIR), whence it is reflected back onto the PV cell for multiple consecutive chances for absorption and PV conversion. Geometry of the PTG was optimized with respect to an angle of light incidence of {15, 30, 45, 60, 75, 90} deg. Optical efficiency of the geometrically optimized PTGs was then analyzed under the same set of incident light angles and a maximum optical efficiency of 54.1% was observed for a PV cell with integrated PTG optimized at 90 deg. This is a 53.3% relative improvement in optical performance when compared to an original PV cell. Functional PTG prototypes were then fabricated with optical surface quality (below 10 nm Ra) and integrated with PV cells demonstrating an increase in maximum power by 1.08 mW/cm (7.6% improvement in PV performance) and in short circuit current by 2.39 mA/cm (6.4% improvement).

  2. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.

    PubMed

    Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe

    2017-05-05

    Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

  3. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures

    NASA Astrophysics Data System (ADS)

    Rahbany, Nancy; Geng, Wei; Bachelot, Renaud; Couteau, Christophe

    2017-05-01

    Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

  4. Enhancing frontline clinical leadership in an acute hospital trust.

    PubMed

    Phillips, Natasha; Byrne, Geraldine

    2013-09-01

    To report on a leadership programme for ward managers in one National Health Service Trust that aimed to enhance their contribution to the delivery of the organisation's key objectives to support excellent patient experience. Effective ward leadership has been recognised as vital to the quality of care, resource management and interprofessional working. However, there is evidence that, at present, front-line nurse leaders are ill equipped to lead effectively and lack confidence in their ability to do so. The project aimed to provide a tailored programme for ward managers to develop their portfolio of skills to perform this pivotal role. The course contained two key elements: an integrated teaching programme to enhance leadership knowledge and skills and action learning to facilitate application to individual's own leadership practice. Both were underpinned by a change project where each individual identified, undertook and evaluated an innovation in practice. Twenty-two ward managers completed the leadership programme. Participants completed semi-structured questionnaires after each taught module. Action learning was evaluated through a combined structured and semi-structured questionnaire. All participants evaluated the programme as increasing their repertoire of leadership skills. Following completion of the programme, ward managers continue to work together as an evolving community of practice. Ward managers' development is enhanced by a programme integrating theory, action learning and completion of a ward-based project. Ward managers cannot be effectively developed in isolation. Leadership development is best supported where the organisation is also committed to developing. A leadership development programme that incorporates knowledge from within the organisation with external expertise can be an effective method to enhance front-line clinical leadership. © 2013 Blackwell Publishing Ltd.

  5. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics.

    PubMed

    Chen, Che; Youngblood, Nathan; Peng, Ruoming; Yoo, Daehan; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Li, Mo

    2017-02-08

    We demonstrate the integration of a black phosphorus photodetector in a hybrid, three-dimensional architecture of silicon photonics and metallic nanoplasmonics structures. This integration approach combines the advantages of the low propagation loss of silicon waveguides, high-field confinement of a plasmonic nanogap, and the narrow bandgap of black phosphorus to achieve high responsivity for detection of telecom-band, near-infrared light. Benefiting from an ultrashort channel (∼60 nm) and near-field enhancement enabled by the nanogap structure, the photodetector shows an intrinsic responsivity as high as 10 A/W afforded by internal gain mechanisms, and a 3 dB roll-off frequency of 150 MHz. This device demonstrates a promising approach for on-chip integration of three distinctive photonic systems, which, as a generic platform, may lead to future nanophotonic applications for biosensing, nonlinear optics, and optical signal processing.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei, E-mail: wguo2@ncsu.edu; Kirste, Ronny; Bryan, Zachary

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher lightmore » extraction efficiency in deep-ultra-violet light-emitting diodes.« less

  7. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  8. An integrated map of structural variation in 2,504 human genomes.

    PubMed

    Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Fritz, Markus Hsi-Yang; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Casale, Francesco Paolo; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Mu, Xinmeng Jasmine; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O

    2015-10-01

    Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

  9. Structural Integrity of Intelligent Materials and Structures

    DTIC Science & Technology

    1998-03-01

    Fortunately, one of the best biocompatible alloys in the class we are concerned with is NiTi . The main concern with regard to biocompatibility or...buildings, bridges and lifelines, and sensitive biocompatible medical instrumentation. The rebuilding and enhancement of our Nation’s...recoverable deflections. In addition, shape memory alloys are relatively lightweight, biocompatible , easy to manufacture and have a high force to weight ratio

  10. Turning up the heat on aircraft structures. [design and analysis for high-temperature conditions

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Saff, Charles; Johns, Robert

    1992-01-01

    An overview is presented of the current effort in design and development of aircraft structures to achieve the lowest cost for best performance. Enhancements in this area are focused on integrated design, improved design analysis tools, low-cost fabrication techniques, and more sophisticated test methods. 3D CAD/CAM data are becoming the method through which design, manufacturing, and engineering communicate.

  11. An integrated damping and strengthening strategy for performance-based seismic design and retrofit for highway bridges.

    DOT National Transportation Integrated Search

    2009-05-01

    In this study, a damping-enhanced strengthening (DES) strategy was introduced to retrofit bridge structures for multiple : performance objectives. The main objectives of this study are (1) to numerically demonstrate the effectiveness of the anchoring...

  12. Enhancement of Structured Reporting - an Integration Reporting Module with Radiation Dose Collection Supporting.

    PubMed

    Lee, Ming-Che; Chuang, Kei-Shih; Hsu, Tien-Cheng; Lee, Chien-Ding

    2016-11-01

    Collection of radiation dose derived from radiological examination is necessary not only for radiation protection, but also for fulfillment of structured reports. However, the material regarding of radiation dose cannot be directly utilized by the Radiological Information System (RIS) since it is generated and only stored in the Picture Archiving and Communication System (PACS). In this paper, an integration reporting module is proposed to facilitate handling of dose information and structured reporting by providing two functionalities. First, a gateway is established to automatically collect the related information from PACS for further analyzing and monitoring the accumulated radiation. Second, the designated structured reporting patterns with corresponding radiation dose measurements can be acquired by radiologists as necessary. In the design, the radiation dose collection gateway and the well-established pattern are collocated to achieve that there is no need to do manual entry for structured reporting, thus increasing productivity and medical quality.

  13. Multidisciplinary analysis and design of printed wiring boards

    NASA Astrophysics Data System (ADS)

    Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin

    1991-04-01

    Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.

  14. Psychophysiological correlates of aggression and violence: an integrative review.

    PubMed

    Patrick, Christopher J

    2008-08-12

    This paper reviews existing psychophysiological studies of aggression and violent behaviour including research employing autonomic, electrocortical and neuroimaging measures. Robust physiological correlates of persistent aggressive behaviour evident in this literature include low baseline heart rate, enhanced autonomic reactivity to stressful or aversive stimuli, enhanced EEG slow wave activity, reduced P300 brain potential response and indications from structural and functional neuroimaging studies of dysfunction in frontocortical and limbic brain regions that mediate emotional processing and regulation. The findings are interpreted within a conceptual framework that draws on two integrative models in the literature. The first is a recently developed hierarchical model of impulse control (externalizing) problems, in which various disinhibitory syndromes including aggressive and addictive behaviours of different kinds are seen as arising from common as well as distinctive aetiologic factors. This model represents an approach to organizing these various interrelated phenotypes and investigating their common and distinctive aetiologic substrates. The other is a neurobiological model that posits impairments in affective regulatory circuits in the brain as a key mechanism for impulsive aggressive behaviour. This model provides a perspective for integrating findings from studies employing different measures that have implicated varying brain structures and physiological systems in violent and aggressive behaviour.

  15. Design and fabrication of conductive polyaniline transducers via computer controlled direct ink writing

    NASA Astrophysics Data System (ADS)

    Holness, F. Benjamin; Price, Aaron D.

    2017-04-01

    The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.

  16. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    PubMed

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.

    PubMed

    Sun, Shao-Long; Wen, Jia-Long; Ma, Ming-Guo; Sun, Run-Cang

    2014-08-13

    An integrated process based on hydrothermal pretreatment (HTP) (i.e., 110-230 °C, 0.5-2.0 h) and alkaline post-treatment (2% NaOH at 90 °C for 2.0 h) has been performed for the production of xylooligosaccharide, lignin, and digestible substrate from sweet sorghum stems. The yield, purity, dissociation mechanisms, structural features, and structural transformations of alkali lignins obtained from the integrated process were investigated. It was found that the HTP process facilitated the subsequent alkaline delignification, releasing lignin with the highest yield (79.3%) and purity from the HTP residue obtained at 190 °C for 0.5 h. All of the results indicated that the cleavage of the β-O-4 linkages and degradation of β-β and β-5 linkages occurred under the harsh HTP conditions. Depolymerization and condensation reactions simultaneously occurred at higher temperatures (≥ 170 °C). Moreover, the thermostability of lignin was positively related to its molecular weight, but was also affected by the inherent structures, such as β-O-4 linkages and condensed units. These findings will enhance the understanding of structural transformations of the lignins during the integrated process and maximize the potential utilizations of the lignins in a current biorefinery process.

  18. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering

    PubMed Central

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments. PMID:29599954

  19. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering.

    PubMed

    Liu, Guohua; Wang, Ziyu; Mu, Guoying; Li, Peijin

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments.

  20. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.

  1. Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhichao; Wu, Shuang; Liu, Bo, E-mail: lbo@tongji.edu.cn

    2015-06-15

    Soft-X-ray interference lithography is utilized in combination with atomic layer deposition to prepare photonic crystal structures on the surface of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillator in order to extract the light otherwise trapped in the internal of scintillator due to total internal reflection. An enhancement with wavelength- and emergence angle-integration by 95.1% has been achieved. This method is advantageous to fabricate photonic crystal structures with large-area and high-index-contrast which enable a high-efficient coupling of evanescent field and the photonic crystal structures. Generally, the method demonstrated in this work is also suitable for many other light emitting devices where amore » large-area is required in the practical applications.« less

  2. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments.

    PubMed

    Li, Han-Yin; Wang, Chen-Zhou; Chen, Xue; Cao, Xue-Fei; Sun, Shao-Ni; Sun, Run-Cang

    2016-12-01

    An integrated process based on ionic liquids ([Bmim]Cl and [Bmim]OAc) pretreatment and successive alkali post-treatments (0.5, 2.0, and 4.0% NaOH at 90°C for 2h) was performed to isolate lignins from Eucalyptus. The structural features and spatial distribution of lignin in the Eucalyptus cell wall were investigated thoroughly. Results revealed that the ionic liquids pretreatment promoted the isolation of alkaline lignin from the pretreated samples without obvious structural changes. Additionally, the integrated process resulted in syringyl-rich lignin macromolecules with more β-O-4' linkages and less phenolic hydroxyl groups. Confocal Raman microscopy analysis showed that the dissolution behavior of lignin was varied in the morphologically distinct regions during the successive alkali treatments, and lignin dissolved was mainly stemmed from the secondary wall regions. These results provided some useful information for understanding the mechanisms of delignification during the integrated process and enhancing the potential utilizations of lignin in future biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Unicorn Collection Management System: Its Structure and Features.

    ERIC Educational Resources Information Center

    Young, Jacky; Veatch, James R., Jr.

    1988-01-01

    Discusses the design principles behind the Unicorn Collection Management System, an integrated library system which includes modules for bibliographic and inventory control, circulation, academic reserves, serials control, authority control, acquisition, electronic mail, bulletin board, and enhanced public access. The flexibility of the system is…

  4. Transformational electronics are now reconfiguring

    NASA Astrophysics Data System (ADS)

    Rojas, Jhonathan P.; Hussain, Aftab M.; Arevalo, A.; Foulds, I. G.; Torres Sevilla, Galo A.; Nassar, Joanna M.; Hussain, Muhammad M.

    2015-05-01

    Current developments on enhancing our smart living experience are leveraging the increased interest for novel systems that can be compatible with foldable, wrinkled, wavy and complex geometries and surfaces, and thus become truly ubiquitous and easy to deploy. Therefore, relying on innovative structural designs we have been able to reconfigure the physical form of various materials, to achieve remarkable mechanical flexibility and stretchability, which provides us with the perfect platform to develop enhanced electronic systems for application in entertainment, healthcare, fitness and wellness, military and manufacturing industry. Based on these novel structural designs we have developed a siliconbased network of hexagonal islands connected through double-spiral springs, forming an ultra-stretchable (~1000%) array for full compliance to highly asymmetric shapes and surfaces, as well as a serpentine design used to show an ultrastretchable (~800%) and flexible, spatially reconfigurable, mobile, metallic thin film copper (Cu)-based, body-integrated and non-invasive thermal heater with wireless controlling capability, reusability, heating-adaptability and affordability due to low-cost complementary metal oxide semiconductor (CMOS)-compatible integration.

  5. A new axi-symmetric element for thin walled structures

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Yoon, Jeong Whan; Dick, Robert E.

    2010-03-01

    A new axi-symmetric finite element for thin walled structures is presented in this work. It uses the solid-shell element’s concept with only a single element and multiple integration points along the thickness direction. The cross-section of the element is composed of four nodes with two degrees of freedom each. The proposed formulation overcomes many locking pathologies including transverse shear locking, Poisson’s locking and volumetric locking. For transverse shear locking, the formulation uses the selective reduced integration technique, for Poisson’s locking it uses the enhanced assumed strain (EAS) method with only one enhancing variable. The B-bar approach is used to eliminate the isochoric deformations in the hourglass field while the EAS method is used to alleviate the volumetric locking in the constant part of the deformation tensor. Several examples are shown to demonstrate the performance and accuracy of the proposed element with special focus on the numerical simulations for the beverage can industry.

  6. The path dependency theory: analytical framework to study institutional integration. The case of France

    PubMed Central

    Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique

    2010-01-01

    Background The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. Purpose PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. Methods A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Results Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Conclusion Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France. PMID:20689740

  7. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-09-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.

  8. A suite of optical fibre sensors for structural condition monitoring

    NASA Astrophysics Data System (ADS)

    Sun, T.; Grattan, K. T. V.; Carlton, J.

    2015-05-01

    This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.

  9. The home hemodialysis hub: physical infrastructure and integrated governance structure.

    PubMed

    Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M

    2015-04-01

    An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.

  10. Depicting surgical anatomy of the porta hepatis in living donor liver transplantation.

    PubMed

    Kelly, Paul; Fung, Albert; Qu, Joy; Greig, Paul; Tait, Gordon; Jenkinson, Jodie; McGilvray, Ian; Agur, Anne

    2017-01-01

    Visualizing the complex anatomy of vascular and biliary structures of the liver on a case-by-case basis has been challenging. A living donor liver transplant (LDLT) right hepatectomy case, with focus on the porta hepatis, was used to demonstrate an innovative method to visualize anatomy with the purpose of refining preoperative planning and teaching of complex surgical procedures. The production of an animation-enhanced video consisted of many stages including the integration of pre-surgical planning; case-specific footage and 3D models of the liver and associated vasculature, reconstructed from contrast-enhanced CTs. Reconstructions of the biliary system were modeled from intraoperative cholangiograms. The distribution of the donor portal veins, hepatic arteries and bile ducts was defined from the porta hepatis intrahepatically to the point of surgical division. Each step of the surgery was enhanced with 3D animation to provide sequential and seamless visualization from pre-surgical planning to outcome. Use of visualization techniques such as transparency and overlays allows viewers not only to see the operative field, but also the origin and course of segmental branches and their spatial relationships. This novel educational approach enables integrating case-based operative footage with advanced editing techniques for visualizing not only the surgical procedure, but also complex anatomy such as vascular and biliary structures. The surgical team has found this approach to be beneficial for preoperative planning and clinical teaching, especially for complex cases. Each animation-enhanced video case is posted to the open-access Toronto Video Atlas of Surgery (TVASurg), an education resource with a global clinical and patient user base. The novel educational system described in this paper enables integrating operative footage with 3D animation and cinematic editing techniques for seamless sequential organization from pre-surgical planning to outcome.

  11. Depicting surgical anatomy of the porta hepatis in living donor liver transplantation

    PubMed Central

    Fung, Albert; Qu, Joy; Greig, Paul; Tait, Gordon; Jenkinson, Jodie; McGilvray, Ian; Agur, Anne

    2017-01-01

    Visualizing the complex anatomy of vascular and biliary structures of the liver on a case-by-case basis has been challenging. A living donor liver transplant (LDLT) right hepatectomy case, with focus on the porta hepatis, was used to demonstrate an innovative method to visualize anatomy with the purpose of refining preoperative planning and teaching of complex surgical procedures. The production of an animation-enhanced video consisted of many stages including the integration of pre-surgical planning; case-specific footage and 3D models of the liver and associated vasculature, reconstructed from contrast-enhanced CTs. Reconstructions of the biliary system were modeled from intraoperative cholangiograms. The distribution of the donor portal veins, hepatic arteries and bile ducts was defined from the porta hepatis intrahepatically to the point of surgical division. Each step of the surgery was enhanced with 3D animation to provide sequential and seamless visualization from pre-surgical planning to outcome. Use of visualization techniques such as transparency and overlays allows viewers not only to see the operative field, but also the origin and course of segmental branches and their spatial relationships. This novel educational approach enables integrating case-based operative footage with advanced editing techniques for visualizing not only the surgical procedure, but also complex anatomy such as vascular and biliary structures. The surgical team has found this approach to be beneficial for preoperative planning and clinical teaching, especially for complex cases. Each animation-enhanced video case is posted to the open-access Toronto Video Atlas of Surgery (TVASurg), an education resource with a global clinical and patient user base. The novel educational system described in this paper enables integrating operative footage with 3D animation and cinematic editing techniques for seamless sequential organization from pre-surgical planning to outcome. PMID:29078606

  12. Study and Analyses on the Structural Performance of a Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.; Hope, D. J.

    2004-01-01

    Strain-gauge balances for use in wind tunnels have been designed at Langley Research Center (LaRC) since its inception. Currently Langley has more than 300 balances available for its researchers. A force balance is inherently a critically stressed component due to the requirements of measurement sensitivity. The strain-gauge balances have been used in Langley s wind tunnels for a wide variety of aerodynamic tests, and the designs encompass a large array of sizes, loads, and environmental effects. There are six degrees of freedom that a balance has to measure. The balance s task to measure these six degrees of freedom has introduced challenging work in transducer development technology areas. As the emphasis increases on improving aerodynamic performance of all types of aircraft and spacecraft, the demand for improved balances is at the forefront. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses and research done at LaRC that influence structural integrity of the balances. The analyses are helpful in understanding the overall behavior of existing balances and can be used in the design of new balances to enhance performance. Initially, a maximum load combination was used for a linear structural analysis. When nonlinear effects were encountered, the analysis was extended to include nonlinearities using MSC.Nastran . Because most of the balances are designed using Pro/Mechanica , it is desirable and efficient to use Pro/Mechanica for stress analysis. However, Pro/Mechanica is limited to linear analysis. Both Pro/Mechanica and MSC.Nastran are used for analyses in the present work. The structural integrity of balances and the possibility of modifying existing balances to enhance structural integrity are investigated.

  13. Student-centered integrated anatomy resource sessions at Alfaisal University.

    PubMed

    Cowan, Michèle; Arain, Nasir Nisar; Assale, Tawfic Samer Abu; Assi, Abdulelah Hassan; Albar, Raed Alwai; Ganguly, Paul K

    2010-01-01

    Alfaisal University is a new medical school in Riyadh, Kingdom of Saudi Arabia that matriculates eligible students directly from high school and requires them to participate in a hybrid problem-based learning (PBL) curriculum. PBL is a well-established student-centered approach, and the authors have sought to examine if a student-centered, integrated approach to learn human structures leads to positive perceptions of learning outcomes. Ten students were divided into four groups to rotate through wet and dry laboratory stations (integrated resource sessions, IRSs) that engaged them in imaging techniques, embryology, histology, gross anatomy (dissections and prosections), surface anatomy, and self-directed learning questions. All IRSs were primarily directed by students. During two second-semester organ system blocks, forty students responded to a structured questionnaire designed to poll students' perceptions of changes in their knowledge, skills, and attitudes as a result of IRS. The majority (60%) of students felt that the student-centered approach to learning enhanced their medical knowledge. Most students also felt that the IRS approach was advantageous for formulating clear learning objectives (55%) and in preparing for examinations (65%). Despite their positive feelings toward IRS, students did not view this learning approach as an adequate replacement for the knowledge gained from lectures and textbooks. Students' performance on objective structured practical examinations improved significantly for the two curricular blocks that included IRS compared with earlier non-IRS blocks. A student-centered approach to teach human structure in a hybrid PBL curriculum may enhance understanding of the basic sciences in first-year medical students.

  14. The Web-Driven Learning Ecosystem: Its Structure and Benefits

    ERIC Educational Resources Information Center

    Raska, David; Shaw, Doris; Keller, Eileen Weisenbach

    2012-01-01

    We have devised a Web-based learning ecosystem (LECOS) that aligns marketing curriculum, course design, technology, instructors, students, as well as external stakeholders--a system that integrates traditional teaching methods with technological advancements in an attempt to enhance marketing students' motivation, engagement, and performance. A…

  15. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  16. An emerging integration between ionic liquids and nanotechnology: general uses and future prospects in drug delivery.

    PubMed

    de Almeida, Tânia Santos; Júlio, Ana; Mota, Joana Portugal; Rijo, Patrícia; Reis, Catarina Pinto

    2017-06-01

    There is a growing need to develop drug-delivery systems that overcome drawbacks such as poor drug solubility/loading/release, systemic side effects and limited stability. Ionic liquids (ILs) offer many advantages and their tailoring represents a valuable tuning tool. Nano-based systems are also prized materials that prevent drug degradation, enhance their transport/distribution and extend their release. Consequently, structures containing ILs and nanoparticles (NPs) have been developed to attain synergistic effects. This overview on the properties of ILs, NPs and of their combined structures, reveals the recent advances in these areas through a review of pertinent literature. The IL-NP structures present enhanced properties and the subsequent performance upgrade proves to be useful in drug delivery, although much is yet to be done.

  17. E-MSD: an integrated data resource for bioinformatics.

    PubMed

    Golovin, A; Oldfield, T J; Tate, J G; Velankar, S; Barton, G J; Boutselakis, H; Dimitropoulos, D; Fillon, J; Hussain, A; Ionides, J M C; John, M; Keller, P A; Krissinel, E; McNeil, P; Naim, A; Newman, R; Pajon, A; Pineda, J; Rachedi, A; Copeland, J; Sitnov, A; Sobhany, S; Suarez-Uruena, A; Swaminathan, G J; Tagari, M; Tromm, S; Vranken, W; Henrick, K

    2004-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the Protein Data Bank (PDB) and to work towards the integration of various bioinformatics data resources. We have implemented a simple form-based interface that allows users to query the MSD directly. The MSD 'atlas pages' show all of the information in the MSD for a particular PDB entry. The group has designed new search interfaces aimed at specific areas of interest, such as the environment of ligands and the secondary structures of proteins. We have also implemented a novel search interface that begins to integrate separate MSD search services in a single graphical tool. We have worked closely with collaborators to build a new visualization tool that can present both structure and sequence data in a unified interface, and this data viewer is now used throughout the MSD services for the visualization and presentation of search results. Examples showcasing the functionality and power of these tools are available from tutorial webpages (http://www. ebi.ac.uk/msd-srv/docs/roadshow_tutorial/).

  18. E-MSD: an integrated data resource for bioinformatics

    PubMed Central

    Golovin, A.; Oldfield, T. J.; Tate, J. G.; Velankar, S.; Barton, G. J.; Boutselakis, H.; Dimitropoulos, D.; Fillon, J.; Hussain, A.; Ionides, J. M. C.; John, M.; Keller, P. A.; Krissinel, E.; McNeil, P.; Naim, A.; Newman, R.; Pajon, A.; Pineda, J.; Rachedi, A.; Copeland, J.; Sitnov, A.; Sobhany, S.; Suarez-Uruena, A.; Swaminathan, G. J.; Tagari, M.; Tromm, S.; Vranken, W.; Henrick, K.

    2004-01-01

    The Macromolecular Structure Database (MSD) group (http://www.ebi.ac.uk/msd/) continues to enhance the quality and consistency of macromolecular structure data in the Protein Data Bank (PDB) and to work towards the integration of various bioinformatics data resources. We have implemented a simple form-based interface that allows users to query the MSD directly. The MSD ‘atlas pages’ show all of the information in the MSD for a particular PDB entry. The group has designed new search interfaces aimed at specific areas of interest, such as the environment of ligands and the secondary structures of proteins. We have also implemented a novel search interface that begins to integrate separate MSD search services in a single graphical tool. We have worked closely with collaborators to build a new visualization tool that can present both structure and sequence data in a unified interface, and this data viewer is now used throughout the MSD services for the visualization and presentation of search results. Examples showcasing the functionality and power of these tools are available from tutorial webpages (http://www.ebi.ac.uk/msd-srv/docs/roadshow_tutorial/). PMID:14681397

  19. The RCSB protein data bank: integrative view of protein, gene and 3D structural information

    PubMed Central

    Rose, Peter W.; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R.; Christie, Cole H.; Costanzo, Luigi Di; Duarte, Jose M.; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S.; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S.; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D.; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y.; Zardecki, Christine; Berman, Helen M.; Burley, Stephen K.

    2017-01-01

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a ‘Structural View of Biology.’ Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. PMID:27794042

  20. Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2003-01-01

    This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.

  1. Stability of the iterative solutions of integral equations as one phase freezing criterion.

    PubMed

    Fantoni, R; Pastore, G

    2003-10-01

    A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of hypernetted chain and Percus-Yevick integral equations for the one-dimensional (1D) hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.

  2. Curricular Integration in Pharmacy Education

    PubMed Central

    Pearson, Marion L.; Hubball, Harry T.

    2012-01-01

    This article reviews the concepts of curricular integration and integrative learning. These concepts have reemerged in contemporary higher education reforms and are crucial in pharmacy programs where students are expected to acquire the knowledge, skills, and abilities needed for competent practice in a complex environment. Enhancing integration requires negotiating obstacles, including institutional traditions of disciplinary structures and disciplinary differences in understandings of knowledge and approaches to teaching and learning; investing the time and effort to design and implement integrated curricula; and using learning-centered pedagogical strategies. Evidence supporting the value of such efforts is not compelling, as much because of insufficient research as lackluster findings. Future avenues of scholarly inquiry are suggested to evaluate curricular integration, distinguishing between the curriculum espoused by planners, the curriculum enacted by instructors, and the curriculum experienced by students. PMID:23275669

  3. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  4. Brain structural connectivity and context-dependent extinction memory.

    PubMed

    Hermann, Andrea; Stark, Rudolf; Blecker, Carlo R; Milad, Mohammed R; Merz, Christian J

    2017-08-01

    Extinction of conditioned fear represents an important mechanism in the treatment of anxiety disorders. Return of fear after successful extinction or exposure therapy in patients with anxiety disorders might be linked to poor temporal or contextual generalization of extinction due to individual differences in brain structural connectivity. The goal of this magnetic resonance imaging study was therefore to investigate the association of context-dependent extinction recall with brain structural connectivity. Diffusion-tensor imaging was used to determine the fractional anisotropy as a measure of white matter structural integrity of fiber tracts connecting central brain regions of the fear and extinction circuit (uncinate fasciculus, cingulum). Forty-five healthy men participated in a two-day fear conditioning experiment with fear acquisition in context A and extinction learning in context B on the first day. Extinction recall in the extinction context as well as renewal in the acquisition context and a novel context C took place one day later. Renewal of conditioned fear (skin conductance responses) in the acquisition context was associated with higher structural integrity of the hippocampal part of the cingulum. Enhanced structural integrity of the cingulum might be related to stronger hippocampal modulation of the dorsal anterior cingulate cortex, a region important for modulating conditioned fear output by excitatory projections to the amygdala. This finding underpins the crucial role of individual differences in the structural integrity of relevant fiber tracts for context-dependent extinction recall and return of fear after exposure therapy in anxiety disorders. © 2017 Wiley Periodicals, Inc.

  5. Increase in cytosolic calcium maintains plasma membrane integrity through the formation of microtubule ring structure in apoptotic cervical cancer cells induced by trichosanthin.

    PubMed

    Wang, Ping; Xu, Shujun; Zhao, Kai; Xiao, Bingxiu; Guo, Junming

    2009-11-01

    This study investigates the role of dysregulated cytosolic free calcium ([Ca(2+)]c) homeostasis on microtubule (MT) ring structure in apoptotic cervical cancer (HeLa) cells induced by trichosanthin (TCS), a type I ribosome inactivating protein (RIP). The TCS-induced decrease in cell viability was significantly enhanced in combination with the specific calcium chelator, EGTA-AM. Sequestration of [Ca(2+)]c markedly disrupted the special MT ring structure. Furthermore, TCS tended to increase LDH release, whereas no significant differences were observed until 48 h of the treatment. In contrast, combined addition of EGTA-AM or colchicine (an inhibitor of tubulin polymerization) significantly reinforced LDH release. The data suggest that TCS-elevated [Ca(2+)]c maintains plasma membrane integrity via the formation of the MT ring structure in apoptotic HeLa cells.

  6. Computer codes developed and under development at Lewis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1992-01-01

    The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.

  7. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian

    2015-03-01

    Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

  8. The Value of Significant Learning Strategies in Undergraduate Education

    ERIC Educational Resources Information Center

    Coco, Charles M.

    2012-01-01

    Learning taxonomies can assist faculty in developing course structures that promote enhanced student learning in the cognitive and affective domains. Significant Learning is one approach to course design that allows for development in six key areas: Foundational Knowledge, Application, Integration, Human Dimension, Caring, and Learning How to…

  9. Integrated reclamation: Approaching ecological function?

    Treesearch

    Ann L. Hild; Nancy L. Shaw; Ginger B. Paige

    2009-01-01

    Attempts to reclaim arid and semiarid lands have traditionally targeted plant species composition. Much research attention has been directed to seeding rates, species mixes and timing of seeding. However, in order to attain functioning systems, attention to structure and process must compliment existing efforts. We ask how to use a systems approach to enhance...

  10. Enhancing Professional Learning Communities through Knowledge Artefacts in Mainland China

    ERIC Educational Resources Information Center

    Qiao, Xuefeng; Yu, Shulin

    2016-01-01

    This qualitative case study examines the perspectives and experiences of seven Chinese primary teachers on the integration of shared knowledge artefacts into teaching in professional learning communities. The analysis of the semi-structured interviews and observation data revealed that using knowledge artefacts, such as preview sheets, flowing…

  11. An Integrative Concept for Technical, Personnel and Organizational Development for Professional Skill Enhancement.

    ERIC Educational Resources Information Center

    Kroll, Martin

    1997-01-01

    Training needed to implement technological and organizational change in small- and medium-sized enterprises is restrained by lack of systematic organization, negative effects of organizational and personnel structures, and different interpretations of managerial tasks. Article suggests that managers should strive to create the necessary…

  12. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine

    PubMed Central

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868

  13. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine.

    PubMed

    Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.

  14. Using concept mapping to evaluate knowledge structure in problem-based learning.

    PubMed

    Hung, Chia-Hui; Lin, Chen-Yung

    2015-11-27

    Many educational programs incorporate problem-based learning (PBL) to promote students' learning; however, the knowledge structure developed in PBL remains unclear. The aim of this study was to use concept mapping to generate an understanding of the use of PBL in the development of knowledge structures. Using a quasi-experimental study design, we employed concept mapping to illustrate the effects of PBL by examining the patterns of concepts and differences in the knowledge structures of students taught with and without a PBL approach. Fifty-two occupational therapy undergraduates were involved in the study and were randomly divided into PBL and control groups. The PBL group was given two case scenarios for small group discussion, while the control group continued with ordinary teaching and learning. Students were asked to make concept maps after being taught about knowledge structure. A descriptive analysis of the morphology of concept maps was conducted in order to compare the integration of the students' knowledge structures, and statistical analyses were done to understand the differences between groups. Three categories of concept maps were identified as follows: isolated, departmental, and integrated. The students in the control group constructed more isolated maps, while the students in the PBL group tended toward integrated mapping. Concept Relationships, Hierarchy Levels, and Cross Linkages in the concept maps were significantly greater in the PBL group; however, examples of concept maps did not differ significantly between the two groups. The data indicated that PBL had a strong effect on the acquisition and integration of knowledge. The important properties of PBL, including situational learning, problem spaces, and small group interactions, can help students to acquire more concepts, achieve an integrated knowledge structure, and enhance clinical reasoning.

  15. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  16. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAST RS; RINKER MW; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford SSTs is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65-year-old tank is being tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar testing ongoing. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide continuing indication of Hanford SST structural integrity.« less

  17. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.« less

  18. The effect of nanoparticle enhanced sizing on the structural health monitoring sensitivity and mechanical properties of carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Bowland, Christopher C.; Nguyen, Ngoc A.; Naskar, Amit K.

    2018-03-01

    With current carbon composites being introduced into new commercial market sectors, there is an opportunity to develop multifunctional composites, which are poised to be the next generation of composites that will see future commercial applications. This multifunctional attribute can be achieved via integrated nanomaterials, which are currently under-utilized in real-world applications despite significant research efforts focused on their synthesis. This research utilizes a simple, scalable approach to integrate various nanomaterials into carbon fiber composites by embedding the nanomaterials in the epoxy fiber sizing. Illustrated in this work is the effect of silicon carbide nanoparticle concentrations and dimensions on the structural health monitoring sensitivity of unidirectional carbon fiber composites. Additionally, the nanoparticles contribute to the overall damping property of the composites thus enabling tunable damping through simple variations in nanoparticle concentration and size. Not only does this nanoparticle sizing offer enhanced sensitivity and tunable damping, but it also maintains the mechanical integrity and performance of the composites, which demonstrates a truly multifunctional composite. Therefore, this research establishes an efficient route for combining nanomaterials research with real-world multifunctional composite applications using a technique that is easily scalable to the commercial level and is compatible with a wide range of fibers and nanomaterials.

  19. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  20. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.

    PubMed

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-05

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  1. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  2. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  3. Development of an electromagnetic imaging system for well bore integrity inspection

    NASA Astrophysics Data System (ADS)

    Plotnikov, Yuri; Wheeler, Frederick W.; Mandal, Sudeep; Climent, Helene C.; Kasten, A. Matthias; Ross, William

    2017-02-01

    State-of-the-art imaging technologies for monitoring the integrity of oil and gas well bores are typically limited to the inspection of metal casings and cement bond interfaces close to the first casing region. The objective of this study is to develop and evaluate a novel well-integrity inspection system that is capable of providing enhanced information about the flaw structure and topology of hydrocarbon producing well bores. In order to achieve this, we propose the development of a multi-element electromagnetic (EM) inspection tool that can provide information about material loss in the first and second casing structure as well as information about eccentricity between multiple casing strings. Furthermore, the information gathered from the EM inspection tool will be combined with other imaging modalities (e.g. data from an x-ray backscatter imaging device). The independently acquired data are then fused to achieve a comprehensive assessment of integrity with greater accuracy. A test rig composed of several concentric metal casings with various defect structures was assembled and imaged. Initial test results were obtained with a scanning system design that includes a single transmitting coil and several receiving coils mounted on a single rod. A mechanical linear translation stage was used to move the EM sensors in the axial direction during data acquisition. For simplicity, a single receiving coil and repetitive scans were employed to simulate performance of the designed receiving sensor array system. The resulting electromagnetic images enable the detection of the metal defects in the steel pipes. Responses from several sensors were used to assess the location and amount of material loss in the first and second metal pipe as well as the relative eccentric position between these two pipes. The results from EM measurements and x-ray backscatter simulations demonstrate that data fusion from several sensing modalities can provide an enhanced assessment of flaw structures in producing well bores and potentially allow for early detection of anomalies that if undetected might lead to catastrophic failures.

  4. Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe.

    PubMed

    Guo, Jingshu; Wu, Zhiwei; Zhao, Yanli

    2017-05-01

    We investigate the light absorption enhancement in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe, which can provide high internal quantum efficiency. By using aab0-quasi-TE hybrid modes for the first time, a high absorptance of 95.6% is achieved in 5 nm thick Au stripe with area of only 0.14 μm2, without using resonance structure. In theory, the responsivity, dark current, and 3dB bandwidth of the corresponding device are 0.146 A/W, 8.03 nA, and 88 GHz, respectively. For most silicides, the quasi-TM mode should be used in this device, and an optimized PtSi device has a responsivity of 0.71 A/W and a dark current of 35.9 μA.

  5. Plasmon-enhanced Raman detection of body-fluid components

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Banchelli, Martina; De Angelis, Marella; D'Andrea, Cristiano; Pini, Roberto

    2018-02-01

    Plasmon-enhanced spectroscopies such as surface-enhanced Raman spectroscopy (SERS) concern the detection of enhanced optical responses of molecules in close proximity to plasmonic structures, which results in a strong increase in sensitivity. Recent advancements in nanofabrication methods have paved the way for a controlled design of tailor-made nanostructures with fine-tuning of their optical and surface properties. Among these, silver nanocubes (AgNCs) represent a convenient choice in SERS owing to intense electromagnetic fields localized at their extremities, which are further intensified in the gap regions between closely spaced nanoparticles. The integration of AgNCs assemblies within an optofluidic platform may confer potential for superior optical investigation due to a molecular enrichment on the plasmonic structures to collect an enhanced photonic response. We developed a novel sensing platform based on an optofluidic system involving assembled silver nanocubes of 50 nm in size for ultrasensitive SERS detection of biomolecules in wet conditions. The proposed system offers the perspective of advanced biochemical and biological characterizations of molecules as well as of effective detection of body fluid components and other molecules of biomedical interest in their own environment.

  6. Photonic integrated circuits based on sampled-grating distributed-Bragg-reflector lasers

    NASA Astrophysics Data System (ADS)

    Barton, Jonathon S.; Skogen, Erik J.; Masanovic, Milan L.; Raring, James; Sysak, Matt N.; Johansson, Leif; DenBaars, Steven P.; Coldren, Larry A.

    2003-07-01

    The Sampled-Grating Distributed-Bragg-Reflector laser(SGDBR) provides wide tunability (>40nm), and high output power (>10mW). Driven by the demand for network reconfigurability and ease of implementation, the SGDBR has moved from the research lab to be commercially viable in the marketplace. The SGDBR is most often implemented using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections. Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical gain and the potential for multiple bandgaps along the device structure. These epitaxial "platforms" provide the basis for more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity for analog applications. This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform including: integrated Mach-Zehnder modulators, and integrated electro-absorption modulators.

  7. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  8. Reservoir characterization and seal integrity of Jemir field in Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Adagunodo, Theophilus Aanuoluwa; Sunmonu, Lukman Ayobami; Adabanija, Moruffdeen Adedapo

    2017-05-01

    Ignoring fault seal and depending solely on reservoir parameters and estimated hydrocarbon contacts can lead to extremely unequal division of reserves especially in oil fields dominated by structural traps where faults play an important role in trapping of hydrocarbons. These faults may be sealing or as conduit to fluid flow. In this study; three-dimensional seismic and well log data has been used to characterize the reservoirs and investigate the seal integrity of fault plane trending NW-SE and dip towards south in Jemir field, Niger-Delta for enhanced oil recovery. The petrophysical and volumetric analysis of the six reservoirs that were mapped as well as structural interpretation of the faults were done both qualitatively and quantitatively. In order to know the sealing potential of individual hydrocarbon bearing sand, horizon-fault intersection was done, volume of shale was determined, thickness of individual bed was estimated, and quality control involving throw analysis was done. Shale Gouge Ratio (SGR) and Hydrocarbon Column Height (HCH) (supportable and structure-supported) were also determined to assess the seal integrity of the faults in Jemir field. The petrophysical analysis indicated the porosity of traps on Jemir field ranged from 0.20 to 0.29 and the volumetric analyses showed that the Stock Tank Original Oil in Place varied between 5.5 and 173.4 Mbbl. The SGR ranged from leaking (<20%) to sealing (>60%) fault plane suggesting poor to moderate sealing. The supportable HCH of Jemir field ranged from 98.3 to 446.2 m while its Structure-supported HCH ranged from 12.1 to 101.7 m. The porosities of Jemir field are good enough for hydrocarbon production as exemplified by its oil reserve estimates. However, improper sealing of the fault plane might enhance hydrocarbon leakage.

  9. Space Construction Experiment Definition Study (SCEDS), part 3. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The essential controls and dynamics community needs for a large space structures is addressed by the basic Space Construction Experiments (SCE)/MAST configuration and enhanced configurations for follow-on flights. The SCE/MAST can be integrated on a single structures technology experiments platform (STEP). The experiment objectives can be accomplished without the need for EVA and it is anticipated that further design refinements will eliminate the requirement to use the remote manipulator system.

  10. E-Learning as an Emerging Technology in India

    ERIC Educational Resources Information Center

    Grover, Pooja; Gupta, Nehta

    2010-01-01

    E-learning is a combination of learning services and technology that allow us to provide high value integrated learning any time, any place. It is about a new blend of resources, interactivity, performance support and structured learning activities. This methodology makes use of various types of technologies in order to enhance or transform the…

  11. Psychiatric Input as Part of a Comprehensive Evaluation Program for Socially and Emotionally Disturbed Children.

    ERIC Educational Resources Information Center

    Mendelsohn, Sylvia R.; And Others

    1985-01-01

    The paper describes a multidisciplinary team approach that enhances communication between the school and the team regarding services for socially and emotionaly disturbed children. A program integrating assessment and consultation services is provided. The program includes structured observations of the child at school. (Author/CL)

  12. Three integrated projects to enhance non-contact rail inspection technology for application to substructure health evaluation on both rail and road bridges : final project report.

    DOT National Transportation Integrated Search

    2014-01-01

    Causing loss of use and sometimes life, bridge collapses are always high profile and hit many wallets. The economic benefits of condition-based maintenance are well established, including reduced visual inspection and potentially longer structural li...

  13. Fostering Structurally Transformative Teacher Agency through Science Professional Development

    ERIC Educational Resources Information Center

    Rivera Maulucci, Maria S.; Brotman, Jennie S.; Fain, Shoshana Sprague

    2015-01-01

    This study draws on data from a 10-month critical narrative inquiry of science teaching and learning in a third grade, dual language, integrated co-teaching classroom. The teachers were participants in a 14-week science professional development seminar that enrolled inservice and preservice teachers and focused on enhancing science teaching and…

  14. Integrating Structured and Unstructured EHR Data Using an FHIR-based Type System: A Case Study with Medication Data.

    PubMed

    Hong, Na; Wen, Andrew; Shen, Feichen; Sohn, Sunghwan; Liu, Sijia; Liu, Hongfang; Jiang, Guoqian

    2018-01-01

    Standards-based modeling of electronic health records (EHR) data holds great significance for data interoperability and large-scale usage. Integration of unstructured data into a standard data model, however, poses unique challenges partially due to heterogeneous type systems used in existing clinical NLP systems. We introduce a scalable and standards-based framework for integrating structured and unstructured EHR data leveraging the HL7 Fast Healthcare Interoperability Resources (FHIR) specification. We implemented a clinical NLP pipeline enhanced with an FHIR-based type system and performed a case study using medication data from Mayo Clinic's EHR. Two UIMA-based NLP tools known as MedXN and MedTime were integrated in the pipeline to extract FHIR MedicationStatement resources and related attributes from unstructured medication lists. We developed a rule-based approach for assigning the NLP output types to the FHIR elements represented in the type system, whereas we investigated the FHIR elements belonging to the source of the structured EMR data. We used the FHIR resource "MedicationStatement" as an example to illustrate our integration framework and methods. For evaluation, we manually annotated FHIR elements in 166 medication statements from 14 clinical notes generated by Mayo Clinic in the course of patient care, and used standard performance measures (precision, recall and f-measure). The F-scores achieved ranged from 0.73 to 0.99 for the various FHIR element representations. The results demonstrated that our framework based on the FHIR type system is feasible for normalizing and integrating both structured and unstructured EHR data.

  15. Integrating cost information with health management support system: an enhanced methodology to assess health care quality drivers.

    PubMed

    Kohli, R; Tan, J K; Piontek, F A; Ziege, D E; Groot, H

    1999-08-01

    Changes in health care delivery, reimbursement schemes, and organizational structure have required health organizations to manage the costs of providing patient care while maintaining high levels of clinical and patient satisfaction outcomes. Today, cost information, clinical outcomes, and patient satisfaction results must become more fully integrated if strategic competitiveness and benefits are to be realized in health management decision making, especially in multi-entity organizational settings. Unfortunately, traditional administrative and financial systems are not well equipped to cater to such information needs. This article presents a framework for the acquisition, generation, analysis, and reporting of cost information with clinical outcomes and patient satisfaction in the context of evolving health management and decision-support system technology. More specifically, the article focuses on an enhanced costing methodology for determining and producing improved, integrated cost-outcomes information. Implementation issues and areas for future research in cost-information management and decision-support domains are also discussed.

  16. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    PubMed Central

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  17. Integration of system identification and finite element modelling of nonlinear vibrating structures

    NASA Astrophysics Data System (ADS)

    Cooper, Samson B.; DiMaio, Dario; Ewins, David J.

    2018-03-01

    The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.

  18. Organizational and Clinical Implications of Integrating an Alcohol Screening and Brief Intervention Within Non-Substance Abuse Serving Agencies

    PubMed Central

    PATTERSON, DAVID A.; WOLF (ADELV UNEGV WAYA), SILVER; McKIERNAN, PATRICK M.

    2012-01-01

    Although there have been efforts to advance evidenced-based practices into community-based organizations the limited successes of dissemination and poor implementation of efficacious treatments within these organizations are beginning to be documented. This article builds on the knowledge gained from organizational research and those internal structures (e.g., culture and climate), which possibly impede or enhance evidenced-based practice implementation within community-based organizations. While there are many evidenced-based practices available to human services organizations, there seems to be a gap between research and the implementation of these clinical practices. Recommendations are provided to better enable community-based organizations to integrate evidenced-based practice into its existing service structures. PMID:20799131

  19. Organizational and clinical implications of integrating an alcohol screening and brief intervention within non-substance abuse serving agencies.

    PubMed

    Patterson, David A; Wolf Adelv Unegv Waya, Silver; McKiernan, Patrick M

    2010-07-01

    Although there have been efforts to advance evidenced-based practices into community-based organizations the limited successes of dissemination and poor implementation of efficacious treatments within these organizations are beginning to be documented. This article builds on the knowledge gained from organizational research and those internal structures (e.g., culture and climate), which possibly impede or enhance evidenced-based practice implementation within community-based organizations. While there are many evidenced-based practices available to human services organizations, there seems to be a gap between research and the implementation of these clinical practices. Recommendations are provided to better enable community-based organizations to integrate evidenced-based practice into its existing service structures.

  20. Design of Planar Leaky Wave Antenna Fed by Substrate Integrated Waveguide Horn

    NASA Astrophysics Data System (ADS)

    Cai, Yang; Zhang, Yingsong; Qian, Zuping

    2017-12-01

    A metal strip grating leaky wave antenna (MSG-LWA) fed by substrate integrated waveguide (SIW) horn is proposed. The planar horn shares the same substrate with the MSG-LWA, which leads to a compact structure of the proposed antenna. Furthermore, through introducing phase-corrected structure by embedding metallized vias into the SIW horn, a nearly uniform phase distribution at the horn aperture is obtained, which effectively enhances the radiating performance of the MSG-LWA. Results indicate that the proposed antenna scans from -50° to -25° in the frequency band ranging from 15.3 GHz to 17.3 GHz. Besides, effectiveness of the proposed design is validated by comparing with a same MSG-LWA fed by an ideal rectangular waveguide.

  1. Shuttle Program Loads Integration: Going From Concept to Operations and Staying Successful

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen; James, George; Mackey, alden; Murphy, Neil C.; Brolliar, Steve

    2011-01-01

    From the beginning of the Shuttle Program to its end, integrated loads and dynamics analyses and tests have been critical in shaping the vehicle design and operational decisions for NASA and its customers. Starting with scaled models and simple mathematical simulations of the structural dynamics, engineers defined the required structural stiffness and predicted the limit loads for each element of the system. Early structural tests provided reasonable confidence that the models and predictions were good. The first launch of the Space Shuttle brought surprises, though, when the ignition overpressure event caused a forward fuel tank support strut to buckle, among several unexpected effects. The launch pad and other ground equipment became an integral part of the system integration, especially where the acoustic and pressure environments of ignition and lift-off were concerned. Following the Challenger accident, operating limits were changed in response to new understandings of how the integrated system performed. Controlling loads while maximizing performance was a key tenet of the Performance Enhancement design process, which enabled construction of the International Space Station. During the return to flight after the Columbia accident, engineers grew to understand that loads during the roll maneuver were also important to the vehicle s structural margin and life. At this point the crawler transport from the Vehicle Assembly Building to the launch pad also became a part of the integrated loads analysis. Even in the last years of the Space Shuttle Program, new data still provided interesting insights into this complicated and fascinating spaceship. This paper will present some examples of the important findings by the team of specialists that supported the Integrated Loads and Dynamics Panel for the Space Shuttle Program.

  2. Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes.

    PubMed

    Galinsky, Vitaly L; Martinez, Antigona; Paulus, Martin P; Frank, Lawrence R

    2018-04-13

    In this letter, we present a new method for integration of sensor-based multifrequency bands of electroencephalography and magnetoencephalography data sets into a voxel-based structural-temporal magnetic resonance imaging analysis by utilizing the general joint estimation using entropy regularization (JESTER) framework. This allows enhancement of the spatial-temporal localization of brain function and the ability to relate it to morphological features and structural connectivity. This method has broad implications for both basic neuroscience research and clinical neuroscience focused on identifying disease-relevant biomarkers by enhancing the spatial-temporal resolution of the estimates derived from current neuroimaging modalities, thereby providing a better picture of the normal human brain in basic neuroimaging experiments and variations associated with disease states.

  3. Memory device using movement of protons

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Fleetwood, Daniel M.; Devine, Roderick A. B.; Archer, Leo B.; Brown, George A.; Wallace, Robert M.

    2000-01-01

    An enhancement of an electrically written memory element utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure during an anneal in an atmosphere containing hydrogen gas. Device operation is enhanced by concluding this anneal step with a sudden cooling. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronics elements on the same silicon substrate.

  4. Aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.

    1990-01-01

    The paper describes recent accomplishments and current research projects along four main thrusts in aeroservoelasticity at NASA Langley. One activity focuses on enhancing the modeling and analysis procedures to accurately predict aeroservoelastic interactions. Improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise low-order models for design and simulation tasks. Recent extensions in aerodynamic correction-factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to matched filter theory and random process theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. Two research projects leading towards improved design capability are also summarized: (1) an integrated structure/control design capability and (2) procedures for obtaining low-order robust digital control laws for aeroelastic applications.

  5. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm.

    PubMed

    Pernice, W H; Payne, F P; Gallagher, D F

    2007-09-03

    We present a novel numerical scheme for the simulation of the field enhancement by metal nano-particles in the time domain. The algorithm is based on a combination of the finite-difference time-domain method and the pseudo-spectral time-domain method for dispersive materials. The hybrid solver leads to an efficient subgridding algorithm that does not suffer from spurious field spikes as do FDTD schemes. Simulation of the field enhancement by gold particles shows the expected exponential field profile. The enhancement factors are computed for single particles and particle arrays. Due to the geometry conforming mesh the algorithm is stable for long integration times and thus suitable for the simulation of resonance phenomena in coupled nano-particle structures.

  6. In Situ Integration of Anisotropic SnO₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage.

    PubMed

    Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli

    2015-12-02

    Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.

  7. Crysalis: an integrated server for computational analysis and design of protein crystallization.

    PubMed

    Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I; Lin, Donghai; Song, Jiangning

    2016-02-24

    The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/.

  8. Crysalis: an integrated server for computational analysis and design of protein crystallization

    PubMed Central

    Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I.; Lin, Donghai; Song, Jiangning

    2016-01-01

    The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/. PMID:26906024

  9. Development of the Main Wing Structure of a High Altitude Long Endurance UAV

    NASA Astrophysics Data System (ADS)

    Park, Sang Wook; Shin, Jeong Woo; Kim, Tae-Uk

    2018-04-01

    To enhance the flight endurance of a HALE UAV, the main wing of the UAV should have a high aspect ratio and low structural weight. Since a main wing constructed with the thin walled and slender components needed for low structural weight can suffer catastrophic failure during flight, it is important to develop a light-weight airframe without sacrificing structural integrity. In this paper, the design of the main wing of the HALE UAV was conducted using spars which were composed of a carbon-epoxy cylindrical tube and bulkheads to achieve both the weight reduction and structural integrity. The spars were sized using numerical analysis considering non-linear deformation under bending moment. Static strength testing of the wing was conducted under the most critical load condition. Then, the experimental results obtained for the wing were compared to the analytical result from the non-linear finite-element analysis. It was found that the developed main wing reduced its structural weight without any failure under the ultimate load condition of the static strength testing.

  10. Airway extraction from 3D chest CT volumes based on iterative extension of VOI enhanced by cavity enhancement filter

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku

    2017-03-01

    Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.

  11. Material characterization of active fiber composites for integral twist-actuated rotor blade application

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2004-10-01

    The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.

  12. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings.

    PubMed

    Munday, Jeremy N; Atwater, Harry A

    2011-06-08

    We describe an ultrathin solar cell architecture that combines the benefits of both plasmonic photovoltaics and traditional antireflection coatings. Spatially resolved electron generation rates are used to determine the total integrated current improvement under AM1.5G solar illumination, which can reach a factor of 1.8. The frequency-dependent absorption is found to strongly correlate with the occupation of optical modes within the structure, and the improved absorption is mainly attributed to improved coupling to guided modes rather than localized resonant modes.

  13. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    PubMed

    Mbah, Henry; Negedu-Momoh, Olubunmi Ruth; Adedokun, Oluwasanmi; Ikani, Patrick Anibbe; Balogun, Oluseyi; Sanwo, Olusola; Ochei, Kingsley; Ekanem, Maurice; Torpey, Kwasi

    2014-01-01

    The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration. A quantitative before-and-after study conducted in 122 Family Health International (FHI360) supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration) for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and <25% NO integration). Weaknesses were noted and addressed. We analyzed 9 (7.4%) primary, 104 (85.2%) secondary and 9 (7.4%) tertiary level facilities. There were statistically significant differences in integration levels between baseline and 3 months follow-up period (p<0.01). Baseline median total integration score was 4 (IQR 3 to 5) compared to 7 (IQR 4 to 9) at 3 months follow-up (p = 0.000). Partial and fully integrated laboratory systems were 64 (52.5%) and 0 (0.0%) at baseline, compared to 100 (82.0%) and 3 (2.4%) respectively at 3 months follow-up (p = 0.000). This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  14. Field tests of a participatory ergonomics toolkit for Total Worker Health

    PubMed Central

    Kernan, Laura; Plaku-Alakbarova, Bora; Robertson, Michelle; Warren, Nicholas; Henning, Robert

    2018-01-01

    Growing interest in Total Worker Health® (TWH) programs to advance worker safety, health and well-being motivated development of a toolkit to guide their implementation. Iterative design of a program toolkit occurred in which participatory ergonomics (PE) served as the primary basis to plan integrated TWH interventions in four diverse organizations. The toolkit provided start-up guides for committee formation and training, and a structured PE process for generating integrated TWH interventions. Process data from program facilitators and participants throughout program implementation were used for iterative toolkit design. Program success depended on organizational commitment to regular design team meetings with a trained facilitator, the availability of subject matter experts on ergonomics and health to support the design process, and retraining whenever committee turnover occurred. A two committee structure (employee Design Team, management Steering Committee) provided advantages over a single, multilevel committee structure, and enhanced the planning, communication, and team-work skills of participants. PMID:28166897

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Maung, K.; Hahn, H. Thomas; Ju, Y.S.

    Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading upmore » to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures. (author)« less

  16. [Landscape classification: research progress and development trend].

    PubMed

    Liang, Fa-Chao; Liu, Li-Ming

    2011-06-01

    Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.

  17. Integration of a photonic crystal polarization beam splitter and waveguide bend.

    PubMed

    Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui

    2009-05-11

    In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.

  18. Microfabricated magnetic structures for future medicine: from sensors to cell actuators

    PubMed Central

    Vitol, Elina A; Novosad, Valentyn; Rozhkova, Elena A

    2013-01-01

    In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy. PMID:23148542

  19. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  20. Integral-geometry characterization of photobiomodulation effects on retinal vessel morphology

    PubMed Central

    Barbosa, Marconi; Natoli, Riccardo; Valter, Kriztina; Provis, Jan; Maddess, Ted

    2014-01-01

    The morphological characterization of quasi-planar structures represented by gray-scale images is challenging when object identification is sub-optimal due to registration artifacts. We propose two alternative procedures that enhances object identification in the integral-geometry morphological image analysis (MIA) framework. The first variant streamlines the framework by introducing an active contours segmentation process whose time step is recycled as a multi-scale parameter. In the second variant, we used the refined object identification produced in the first variant to perform the standard MIA with exact dilation radius as multi-scale parameter. Using this enhanced MIA we quantify the extent of vaso-obliteration in oxygen-induced retinopathic vascular growth, the preventative effect (by photobiomodulation) of exposure during tissue development to near-infrared light (NIR, 670 nm), and the lack of adverse effects due to exposure to NIR light. PMID:25071966

  1. Feasibility of fiberglass-reinforced bolted wood connections

    Treesearch

    D. F. Windorski; L. A. Soltis; R. J. Ross

    Bolted connections often fail by a shear plug or a splitting beneath the bolt caused by tension perpendicular-to-grain stresses as the bolt wedges its way through the wood. Preventing this type of failure would enhance the capacity and reliability of the bolted connection, thus increasing the overall integrity of a timber structure and enabling wood to compete...

  2. Enhancing Students' Aeronautical Decision-Making through Scaffolding Strategies for Higher Order Thinking

    ERIC Educational Resources Information Center

    Murray, Rita Marie

    2012-01-01

    Over the last few decades, classroom training in aviation education has continued mostly unchanged. It remains a highly structured presentation of information in a lecture format. The purpose of this study was to determine the effect of a method of teaching aeronautical decision making in aviation education based on integrated and scaffolded…

  3. Structural Engineering. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…

  4. An Imperative for Leadership Preparation Programs: Preparing Future Leaders to Meet the Needs of Students, Schools, and Communities

    ERIC Educational Resources Information Center

    Beyer, Bonnie

    2009-01-01

    This paper addresses the structure, philosophy, and curriculum of educational leadership preparation programs and the importance of preparing schools leaders to address the unique needs of students and communities. In particular, it will address how programs can be enhanced by integrating organizational research and philosophies from educational,…

  5. Evolving technologies drive the new roles of Biomedical Engineering.

    PubMed

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  6. Improved breakdown characteristics of monolithically integrated III-nitride HEMT-LED devices using carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Zhaojun; Huang, Tongde; Ma, Jun; May Lau, Kei

    2015-03-01

    We report selective growth of AlGaN/GaN high electron mobility transistors (HEMTs) on InGaN/GaN light emitting diodes (LEDs) for monolithic integration of III-nitride HEMT and LED devices (HEMT-LED). To improve the breakdown characteristics of the integrated HEMT-LED devices, carbon doping was introduced in the HEMT buffer by controlling the growth pressure and V/III ratio. The breakdown voltage of the fabricated HEMTs grown on LEDs was enhanced, without degradation of the HEMT DC performance. The improved breakdown characteristics can be attributed to better isolation of the HEMT from the underlying conductive p-GaN layer of the LED structure.

  7. Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal

    NASA Astrophysics Data System (ADS)

    Yeh, Hsi-Jen J.; Smith, John S.

    1994-03-01

    The successful integration of strained quantum well InGaAs vertical-cavity surface-emitting lasers (VCSELs) on both Si and Cu substrates was described using a GaAs substrate removal technique. The GaAs VCSEL structure was metallized and bonded to the Si substrate after growth. The GaAs substrate was then removed by selective chemical wet etching. Finally, the bonded GaAs film metallized on the top (emitting) side and separate lasers were defined. This is the first time a VCSEL had been integrated on a Si substrate with its substrate removed. The performance enhancement of GaAs VCSELs bonded on good thermal conductors are demonstrated.

  8. Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers.

    PubMed

    Mehta, Prina; Al-Kinani, Ali A; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan

    2017-10-30

    Despite exponential growth in research relating to sustained and controlled ocular drug delivery, anatomical and chemical barriers of the eye still pose formulation challenges. Nanotechnology integration into the pharmaceutical industry has aided efforts in potential ocular drug device development. Here, the integration and in vitro effect of four different permeation enhancers (PEs) on the release of anti-glaucoma drug timolol maleate (TM) from polymeric nanofiber formulations is explored. Electrohydrodynamic (EHD) engineering, more specifically electrospinning, was used to engineer nanofibers (NFs) which coated the exterior of contact lenses. Parameters used for engineering included flow rates ranging from 8 to 15μL/min and a novel EHD deposition system was used; capable of hosting four lenses, masked template and a ground electrode to direct charged atomised structures. SEM analysis of the electrospun structures confirmed the presence of smooth nano-fibers; whilst thermal analysis confirmed the stability of all formulations. In vitro release studies demonstrated a triphasic release; initial burst release with two subsequent sustained release phases with most of the drug being released after 24h (86.7%) Biological evaluation studies confirmed the tolerability of all formulations tested with release kinetics modelling results showing drug release was via quasi-Fickian or Fickian diffusion. There were evident differences (p<0.05) in TM release dependant on permeation enhancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  10. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    PubMed

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  11. Development of nanoparticle embedded sizing for enhanced structural health monitoring of carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Bowland, Christopher C.; Wang, Yangyang; Naskar, Amit K.

    2017-04-01

    Carbon fiber composites experience sudden, catastrophic failure when exposed to sufficient stress levels and provide no obvious visual indication of damage before they fail. With the commercial adoption of these high-performance composites in structural applications, a need for in-situ monitoring of their structural integrity is paramount. Therefore, ways in which to monitor these systems has gathered research interest. A common method for accomplishing this is measuring through-thickness resistance changes of the composite due to the fact that carbon fiber composites are electrically conductive. This provides information on whole-body stress levels imparted on the composite and can help identify the presence of damage. However, this technique relies on the carbon fiber and polymer matrix to reveal a resistance change. Here, an approach is developed that increases damage detection sensitivity. This is achieved by developing a facile synthesis method of integrating semiconducting nanomaterials, such as silicon carbide, into carbon fiber sizing. The piezoresistive effect exhibited by these nanomaterials provides more pronounced resistance changes in response to mechanical stress as compared to carbon fiber alone. This is investigated through fabricating a unidirectional composite and subsequently monitoring the electrical resistance during mechanical testing. By establishing this route for integrating nanomaterials into carbon fiber composites, various nanomaterials can see future composite integration to realize novel properties.

  12. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    PubMed

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  13. Enhanced canopy fuel mapping by integrating lidar data

    USGS Publications Warehouse

    Peterson, Birgit E.; Nelson, Kurtis J.

    2016-10-03

    BackgroundThe Wildfire Sciences Team at the U.S. Geological Survey’s Earth Resources Observation and Science Center produces vegetation type, vegetation structure, and fuel products for the United States, primarily through the Landscape Fire and Resource Management Planning Tools (LANDFIRE) program. LANDFIRE products are used across disciplines for a variety of applications. The LANDFIRE data retain their currency and relevancy through periodic updating or remapping. These updating and remapping efforts provide opportunities to improve the LANDFIRE product suite by incorporating data from other sources. Light detection and ranging (lidar) is uniquely suitable for gathering information on vegetation structure and spatial arrangement because it can collect data in three dimensions. The Wildfire Sciences Team has several completed and ongoing studies focused on integrating lidar into vegetation and fuels mapping.

  14. Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method.

    PubMed

    Wang, Jingtao; Liu, Jinxia; Han, Junjie; Guan, Jing

    2013-02-08

    A boundary integral method is developed to investigate the effects of inner droplets and asymmetry of internal structures on rheology of two-dimensional multiple emulsion particles with arbitrary numbers of layers and droplets within each layer. Under a modest extensional flow, the number increment of layers and inner droplets, and the collision among inner droplets subject the particle to stronger shears. In addition, the coalescence or release of inner droplets changes the internal structure of the multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and their change, modeling them as the core-shell particles to obtain the viscosity equation of a single particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of the outer and inner interface. The start time of the interface merging is controlled by adjusting the viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner droplets through hydrodynamics for targeted drug delivery.

  15. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  16. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  17. White matter integrity in highly traumatized adults with and without post-traumatic stress disorder.

    PubMed

    Fani, Negar; King, Tricia Z; Jovanovic, Tanja; Glover, Ebony M; Bradley, Bekh; Choi, Kisueng; Ely, Timothy; Gutman, David A; Ressler, Kerry J

    2012-11-01

    Prior structural imaging studies of post-traumatic stress disorder (PTSD) have observed smaller volumes of the hippocampus and cingulate cortex, yet little is known about the integrity of white matter connections between these structures in PTSD samples. The few published studies using diffusion tensor imaging (DTI) to measure white matter integrity in PTSD have described individuals with focal trauma rather than chronically stressed individuals, which limits generalization of findings to this population; in addition, these studies have lacked traumatized comparison groups without PTSD. The present DTI study examined microstructural integrity of white matter tracts in a sample of highly traumatized African-American women with (n=25) and without (n=26) PTSD using a tract-based spatial statistical approach, with threshold-free cluster enhancement. Our findings indicated that, relative to comparably traumatized controls, decreased integrity (measured by fractional anisotropy) of the posterior cingulum was observed in participants with PTSD (p<0.05). These findings indicate that reduced microarchitectural integrity of the cingulum, a white matter fiber that connects the entorhinal and cingulate cortices, appears to be associated with PTSD symptomatology. The role of this pathway in problems that characterize PTSD, such as inadequate extinction of learned fear, as well as attention and explicit memory functions, are discussed.

  18. Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure

    NASA Astrophysics Data System (ADS)

    Lu, Yanan; Yang, Guofeng; Wang, Fuxue; Lu, Naiyan

    2018-05-01

    There is an increasing interest in using monolayer molybdenum disulfide (MoS2) for optoelectronic devices because of its inherent direct band gap characteristics. However, the weak absorption of monolayer MoS2 restricts its applications, novel concepts need to be developed to address the weakness. In this work, monolayer MoS2 monolithically integrates with plane microcavity structure, which is formed by the top and bottom chirped distributed Bragg reflector (DBR), is demonstrated to improve the absorption of MoS2. The optical absorption is 17-fold enhanced, reaching values over 70% at work wavelength. Moreover, the monolayer MoS2-based photodetector device with microcavity presents a significantly increased photoresponse, demonstrating its promising prospects in MoS2-based optoelectronic devices.

  19. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    PubMed Central

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  20. EQUIP Healthcare: An overview of a multi-component intervention to enhance equity-oriented care in primary health care settings.

    PubMed

    Browne, Annette J; Varcoe, Colleen; Ford-Gilboe, Marilyn; Wathen, C Nadine

    2015-12-14

    The primary health care (PHC) sector is increasingly relevant as a site for population health interventions, particularly in relation to marginalized groups, where the greatest gains in health status can be achieved. The purpose of this paper is to provide an overview of an innovative multi-component, organizational-level intervention designed to enhance the capacity of PHC clinics to provide equity-oriented care, particularly for marginalized populations. The intervention, known as EQUIP, is being implemented in Canada in four diverse PHC clinics serving populations who are impacted by structural inequities. These PHC clinics serve as case studies for the implementation and evaluation of the EQUIP intervention. We discuss the evidence and theory that provide the basis for the intervention, describe the intervention components, and discuss the methods used to evaluate the implementation and impact of the intervention in diverse contexts. Research and theory related to equity-oriented care, and complexity theory, are central to the design of the EQUIP intervention. The intervention aims to enhance capacity for equity-oriented care at the staff level, and at the organizational level (i.e., policy and operations) and is novel in its dual focus on: (a) Staff education: using standardized educational models and integration strategies to enhance staff knowledge, attitudes and practices related to equity-oriented care in general, and cultural safety, and trauma- and violence-informed care in particular, and; (b) Organizational integration and tailoring: using a participatory approach, practice facilitation, and catalyst grants to foster shifts in organizational structures, practices and policies to enhance the capacity to deliver equity-oriented care, improve processes of care, and shift key client outcomes. Using a mixed methods, multiple case-study design, we are examining the impact of the intervention in enhancing staff knowledge, attitudes and practices; improving processes of care; shifting organizational policies and structures; and improving selected client outcomes. The multiple case study design provides an ideal opportunity to study the contextual factors shaping the implementation, uptake and impact of our tailored intervention within diverse PHC settings. The EQUIP intervention illustrates the complexities involved in enhancing the PHC sector's capacity to provide equity-oriented care in real world clinical contexts.

  1. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression

    PubMed Central

    Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.

    2018-01-01

    Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907

  2. Integration and the performance of healthcare networks:do integration strategies enhance efficiency, profitability, and image?

    PubMed Central

    Wan, Thomas T.H.; Ma, Allen; Y.J.Lin, Blossom

    2001-01-01

    Abstract Purpose This study examines the integration effects on efficiency and financial viability of the top 100 integrated healthcare networks (IHNs) in the United States. Theory A contingency- strategic theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. Methods The lists of the top 100 IHNs ranked in two years, 1998 and 1999, by the SMG Marketing Group were merged to create a database for the study. Multiple indicators were used to examine the relationship between IHNs' characteristics and their performance in efficiency and financial viability. A path analytical model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' images, represented by attaining ranking among the top 100 in two consecutive years, were analysed. Results and conclusion No positive associations were found between integration and network performance in efficiency or profits. Longitudinal data are needed to investigate the effect of integration on healthcare networks' financial performance. PMID:16896405

  3. Submicron bidirectional all-optical plasmonic switches

    PubMed Central

    Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang

    2013-01-01

    Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232

  4. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  5. Bayesian Knowledge Fusion in Prognostics and Health Management—A Case Study

    NASA Astrophysics Data System (ADS)

    Rabiei, Masoud; Modarres, Mohammad; Mohammad-Djafari, Ali

    2011-03-01

    In the past few years, a research effort has been in progress at University of Maryland to develop a Bayesian framework based on Physics of Failure (PoF) for risk assessment and fleet management of aging airframes. Despite significant achievements in modelling of crack growth behavior using fracture mechanics, it is still of great interest to find practical techniques for monitoring the crack growth instances using nondestructive inspection and to integrate such inspection results with the fracture mechanics models to improve the predictions. The ultimate goal of this effort is to develop an integrated probabilistic framework for utilizing all of the available information to come up with enhanced (less uncertain) predictions for structural health of the aircraft in future missions. Such information includes material level fatigue models and test data, health monitoring measurements and inspection field data. In this paper, a case study of using Bayesian fusion technique for integrating information from multiple sources in a structural health management problem is presented.

  6. Plasmonic Structure Integrated Single-Photon Detector Configurations to Improve Absorptance and Polarization Contrast

    PubMed Central

    Csete, Mária; Szekeres, Gábor; Szenes, András; Szalai, Anikó; Szabó, Gábor

    2015-01-01

    Configurations capable of maximizing both the absorption component of system detection efficiency and the achievable polarization contrast were determined for 1550 nm polarized light illumination of different plasmonic structure integrated superconducting nanowire single-photon detectors (SNSPDs) consisting of p = 264 nm and P = 792 nm periodic niobium nitride (NbN) patterns on silica substrate. Global effective NbN absorptance maxima appear in case of p/s-polarized light illumination in S/P-orientation (γ = 90°/0° azimuthal angle) and the highest polarization contrast is attained in S-orientation of all devices. Common nanophotonical origin of absorptance enhancement is collective resonance on nanocavity gratings with different profiles, which is promoted by coupling between localized modes in quarter-wavelength metal-insulator-metal nanocavities and laterally synchronized Brewster-Zenneck-type surface waves in integrated SNSPDs possessing a three-quarter-wavelength-scaled periodicity. The spectral sensitivity and dispersion characteristics reveal that device design specific optimal configurations exist. PMID:25654724

  7. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    PubMed

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Formative Assessment: Using Concept Cartoon, Pupils' Drawings, and Group Discussions to Tackle Children's Ideas about Biological Inheritance

    ERIC Educational Resources Information Center

    Chin, Christine; Teou, Lay-Yen

    2010-01-01

    This study was carried out in the context of formative assessment where assessment and learning were integrated to enhance both teaching and learning. The purpose of the study was to: (a) identify pupils' ideas about biological inheritance through the use of a concept cartoon, pupils' drawings and talk, and (b) devise scaffolding structures that…

  9. Influence of Problem-Based Learning Strategy on Enhancing Student's Industrial Oriented Competences Learned: An Action Research on Learning Weblog Analysis

    ERIC Educational Resources Information Center

    Chung, Pansy; Yeh, Ron Chuen; Chen, Yi-Cheng

    2016-01-01

    In order to respond to the ever-changing global economic environment, the technological and vocational education system in Taiwan needs to be dramatically reformed to the changing needs of the domestic industrial structure. Integrating practical talents with practical industrial experiences and competences can help avoid discrepancy and close the…

  10. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  11. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    PubMed

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  12. Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light-Matter Interaction toward Excellent Photodetectors.

    PubMed

    Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun

    2017-09-26

    Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

  13. Enhanced differential evolution to combine optical mouse sensor with image structural patches for robust endoscopic navigation.

    PubMed

    Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku

    2014-01-01

    Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.

  14. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity.

    PubMed

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-09-11

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

  15. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity

    PubMed Central

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-01-01

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities. PMID:25208580

  16. Antenna coupled photonic wire lasers

    DOE PAGES

    Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; ...

    2015-06-22

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more » mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less

  17. Nanoporous Microsphere Assembly of Iodine-Functionalised Silver Nanoparticles as a Novel Mini-Substrate for Enriching and Sensing

    NASA Astrophysics Data System (ADS)

    Wu, X.-L.; Wu, H.; Wang, Z.-M.; Aizawa, H.; Guo, J.; Chu, Y.-H.

    2017-04-01

    Herein, debris particulates of nanoporous silver (np-Ag) were synthesised by a dealloying method, and their integration behaviour and surface-enhanced Raman scattering (SERS) properties during iodine functionalisation were examined. It was found that the dealloyed np-Ag debris particulates gradually assembled to form rigid nanoporous microspheres comprising Ag nano-ligaments due to mechanical collisions during iodine treatment. High-resolution transmission electron microscopy and X-ray photoelectron microscopy clearly showed the iodide surface of np-Ag, which was dotted with iodine or iodide ‘nanoislands’. The exceptional, and unexpected, integration and surface structures result in a highly enhanced localised surface plasmon resonance. Furthermore, the robust nanoporous microspheres can be employed individually as as-produced miniaturised electrodes to electrically enrich target molecules at parts-per-trillion levels, so as to achieve charge selectivity and superior detectability compared with the ordinary SERS effect.

  18. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules.

    PubMed

    Lin, Hsiang-Ting; Chang, Chiao-Yun; Cheng, Pi-Ju; Li, Ming-Yang; Cheng, Chia-Chin; Chang, Shu-Wei; Li, Lance L J; Chu, Chih-Wei; Wei, Pei-Kuen; Shih, Min-Hsiung

    2018-05-09

    Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe 2 ) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe 2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.

  19. The integrated analysis capability (IAC Level 2.0)

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.; Vos, Robert G.

    1988-01-01

    The critical data management issues involved in the development of the integral analysis capability (IAC), Level 2, to support the design analysis and performance evaluation of large space structures, are examined. In particular, attention is given to the advantages and disadvantages of the formalized data base; merging of the matrix and relational data concepts; data types, query operators, and data handling; sequential versus direct-access files; local versus global data access; programming languages and host machines; and data flow techniques. The discussion also covers system architecture, recent system level enhancements, executive/user interface capabilities, and technology applications.

  20. Integration of a terahertz quantum cascade laser with a hollow waveguide

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  1. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  2. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    PubMed

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes.

    PubMed

    Öner, Ibrahim Halil; Querebillo, Christine Joy; David, Christin; Gernert, Ulrich; Walter, Carsten; Driess, Matthias; Leimkühler, Silke; Ly, Khoa Hoang; Weidinger, Inez M

    2018-06-11

    We present the fabrication of TiO 2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochrome b 5 were observed upon covalent immobilization of the protein matrix on the TiO 2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 °C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI

    DTIC Science & Technology

    2017-06-01

    report. 10 Supporting Data None. Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI Psychological Health...Award Number: W81XWH-13-1-0095 TITLE: Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI PRINCIPAL INVESTIGATOR...COVERED 08 MAR 2016 – 07 MAR 2017 4. TITLE AND SUBTITLE Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI 5a

  5. Design of controlled elastic and inelastic structures

    NASA Astrophysics Data System (ADS)

    Reinhorn, A. M.; Lavan, O.; Cimellaro, G. P.

    2009-12-01

    One of the founders of structural control theory and its application in civil engineering, Professor Emeritus Tsu T. Soong, envisioned the development of the integral design of structures protected by active control devices. Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control. In his recent papers published jointly with some of the authors of this paper, Professor Soong developed design procedures for the entire structure using a design — redesign procedure applied to elastic systems. Such a procedure was developed as an extension of other work by his disciples. This paper summarizes some recent techniques that use traditional active control algorithms to derive the most suitable (optimal, stable) control force, which could then be implemented with a combination of active, passive and semi-active devices through a simple match or more sophisticated optimal procedures. Alternative design can address the behavior of structures using Liapunov stability criteria. This paper shows a unified procedure which can be applied to both elastic and inelastic structures. Although the implementation does not always preserve the optimal criteria, it is shown that the solutions are effective and practical for design of supplemental damping, stiffness enhancement or softening, and strengthening or weakening.

  6. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    PubMed

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki, E-mail: yoshio@cc.saga-u.ac.jp

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nmmore » and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.« less

  8. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  9. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  10. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less

  11. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  12. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  13. Factors impacting participation of European elite deaf athletes in sport.

    PubMed

    Kurková, Petra; Válková, Hana; Scheetz, Nanci

    2011-03-01

    This study examine 53 European elite deaf athletes for their family's hearing status, use of hearing aids, communication preference, education in integrated or segregated settings, family members' encouragement for participation in sports, coach preference (hearing or deaf), and conditions for competitive events with deaf or hearing athletes. These data were gathered through semi-structured interviews administered in the athlete's native language. Deaf athletes reported that when given the opportunity to compete with hearing athletes, it enhanced their opportunity for competition. Participating in sports with hearing athletes played an important role in the integration of deaf athletes into mainstream society. If adaptations to communication can be made in these integrated settings, the ability of deaf athletes to participate in such settings will increase.

  14. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  15. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  16. The integration of occupational therapy into primary care: a multiple case study design

    PubMed Central

    2013-01-01

    Background For over two decades occupational therapists have been encouraged to enhance their roles within primary care and focus on health promotion and prevention activities. While there is a clear fit between occupational therapy and primary care, there have been few practice examples, despite a growing body of evidence to support the role. In 2010, the province of Ontario, Canada provided funding to include occupational therapists as members of Family Health Teams, an interprofessional model of primary care. The integration of occupational therapists into this model of primary care is one of the first large scale initiatives of its kind in North America. The objective of the study was to examine how occupational therapy services are being integrated into primary care teams and understand the structures supporting the integration. Methods A multiple case study design was used to provide an in-depth description of the integration of occupational therapy. Four Family Health Teams with occupational therapists as part of the team were identified. Data collection included in-depth interviews, document analyses, and questionnaires. Results Each Family Health Team had a unique organizational structure that contributed to the integration of occupational therapy. Communication, trust and understanding of occupational therapy were key elements in the integration of occupational therapy into Family Health Teams, and were supported by a number of strategies including co-location, electronic medical records and team meetings. An understanding of occupational therapy was critical for integration into the team and physicians were less likely to understand the occupational therapy role than other health providers. Conclusion With an increased emphasis on interprofessional primary care, new professions will be integrated into primary healthcare teams. The study found that explicit strategies and structures are required to facilitate the integration of a new professional group. An understanding of professional roles, trust and communication are foundations for interprofessional collaborative practice. PMID:23679667

  17. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  18. A hybrid design methodology for structuring an Integrated Environmental Management System (IEMS) for shipping business.

    PubMed

    Celik, Metin

    2009-03-01

    The International Safety Management (ISM) Code defines a broad framework for the safe management and operation of merchant ships, maintaining high standards of safety and environmental protection. On the other hand, ISO 14001:2004 provides a generic, worldwide environmental management standard that has been utilized by several industries. Both the ISM Code and ISO 14001:2004 have the practical goal of establishing a sustainable Integrated Environmental Management System (IEMS) for shipping businesses. This paper presents a hybrid design methodology that shows how requirements from both standards can be combined into a single execution scheme. Specifically, the Analytic Hierarchy Process (AHP) and Fuzzy Axiomatic Design (FAD) are used to structure an IEMS for ship management companies. This research provides decision aid to maritime executives in order to enhance the environmental performance in the shipping industry.

  19. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  20. Application of Ontology Technology in Health Statistic Data Analysis.

    PubMed

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  1. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  2. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  3. Field tests of a participatory ergonomics toolkit for Total Worker Health.

    PubMed

    Nobrega, Suzanne; Kernan, Laura; Plaku-Alakbarova, Bora; Robertson, Michelle; Warren, Nicholas; Henning, Robert

    2017-04-01

    Growing interest in Total Worker Health ® (TWH) programs to advance worker safety, health and well-being motivated development of a toolkit to guide their implementation. Iterative design of a program toolkit occurred in which participatory ergonomics (PE) served as the primary basis to plan integrated TWH interventions in four diverse organizations. The toolkit provided start-up guides for committee formation and training, and a structured PE process for generating integrated TWH interventions. Process data from program facilitators and participants throughout program implementation were used for iterative toolkit design. Program success depended on organizational commitment to regular design team meetings with a trained facilitator, the availability of subject matter experts on ergonomics and health to support the design process, and retraining whenever committee turnover occurred. A two committee structure (employee Design Team, management Steering Committee) provided advantages over a single, multilevel committee structure, and enhanced the planning, communication, and teamwork skills of participants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.

    PubMed

    Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong

    2014-06-01

    This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice. Copyright © 2012 Wiley Periodicals, Inc.

  5. Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax

    PubMed Central

    Robert Slevc, L.; Rosenberg, Jason C.; Patel, Aniruddh D.

    2009-01-01

    Linguistic processing–especially syntactic processing–is often considered a hallmark of human cognition, thus the domain-specificity or domain-generality of syntactic processing has attracted considerable debate. These experiments address this issue by simultaneously manipulating syntactic processing demands in language and music. Participants performed self-paced reading of garden-path sentences in which structurally unexpected words cause temporary syntactic processing difficulty. A musical chord accompanied each sentence segment, with the resulting sequence forming a coherent chord progression. When structurally unexpected words were paired with harmonically unexpected chords, participants showed substantially enhanced garden-path effects. No such interaction was observed when the critical words violated semantic expectancy, nor when the critical chords violated timbral expectancy. These results support a prediction of the shared syntactic integration resource hypothesis (SSIRH, Patel, 2003), which suggests that music and language draw on a common pool of limited processing resources for integrating incoming elements into syntactic structures. PMID:19293110

  6. NURBS-Based Geometry for Integrated Structural Analysis

    NASA Technical Reports Server (NTRS)

    Oliver, James H.

    1997-01-01

    This grant was initiated in April 1993 and completed in September 1996. The primary goal of the project was to exploit the emerging defacto CAD standard of Non- Uniform Rational B-spline (NURBS) based curve and surface geometry to integrate and streamline the process of turbomachinery structural analysis. We focused our efforts on critical geometric modeling challenges typically posed by the requirements of structural analysts. We developed a suite of software tools that facilitate pre- and post-processing of NURBS-based turbomachinery blade models for finite element structural analyses. We also developed tools to facilitate the modeling of blades in their manufactured (or cold) state based on nominal operating shape and conditions. All of the software developed in the course of this research is written in the C++ language using the Iris Inventor 3D graphical interface tool-kit from Silicon Graphics. In addition to enhanced modularity, improved maintainability, and efficient prototype development, this design facilitates the re-use of code developed for other NASA projects and provides a uniform and professional 'look and feel' for all applications developed by the Iowa State Team.

  7. Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene

    NASA Astrophysics Data System (ADS)

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-07-01

    All-dielectric metasurfaces offer remarkable properties including high efficiency and flexible control of the optical response. However, extreme, narrow bandwidth is a limitation that lowers applicability of these structures in photonic sensing applications. In this work, we numerically design and propose a switchable quarter-wave plate by hybridizing an all-dielectric metasurface with graphene. By using a single layer of graphene between a highly refractive index silicon and a silica substrate, the transmissive resonance is enhanced and broadened. Additionally, integrating graphene with silicon effectively modulates the Q-factor and the trapped magnetic modes in the silicon. A stable birefringence output is obtained and manipulated through the structure dimensions and the Fermi energy of graphene. A 95% polarization conversion ratio is achieved through converting linearly polarized light into circularly polarized light, and a 96% ellipticity ratio is obtained at the resonance wavelength. The structure is compact and has an ultrathin design thickness of 0 . 1 λ, in the telecommunication region. The above properties are essential for integration into photonic sensing devices and the structure has potential for compatibility with the CMOS devices.

  8. Resonant cavity enhanced photonic devices

    NASA Astrophysics Data System (ADS)

    Ünlü, M. Selim; Strite, Samuel

    1995-07-01

    We review the family of optoelectronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonant microcavity. Such resonant cavity enhanced (RCE) devices benefit from the wavelength selectivity and the large increase of the resonant optical field introduced by the cavity. The increased optical field allows RCE photodetector structures to be thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. Off-resonance wavelengths are rejected by the cavity making RCE photodetectors promising for low crosstalk wavelength division multiplexing (WDM) applications. RCE optical modulators require fewer quantum wells so are capable of reduced voltage operation. The spontaneous emission spectrum of RCE light emitting diodes (LED) is drastically altered, improving the spectral purity and directivity. RCE devices are also highly suitable for integrated detectors and emitters with applications as in optical logic and in communication networks. This review attempts an encyclopedic overview of RCE photonic devices and systems. Considerable attention is devoted to the theoretical formulation and calculation of important RCE device parameters. Materials criteria are outlined and the suitability of common heteroepitaxial systems for RCE devices is examined. Arguments for the improved bandwidth in RCE detectors are presented intuitively, and results from advanced numerical simulations confirming the simple model are provided. An overview of experimental results on discrete RCE photodiodes, phototransistors, modulators, and LEDs is given. Work aimed at integrated RCE devices, optical logic and WDM systems is also covered. We conclude by speculating what remains to be accomplished to implement a practical RCE WDM system.

  9. Centres for Leadership: a strategy for academic integration.

    PubMed

    King, Gillian; Parker, Kathryn; Peacocke, Sean; Curran, C J; McPherson, Amy C; Chau, Tom; Widgett, Elaine; Fehlings, Darcy; Milo-Manson, Golda

    2017-05-15

    Purpose The purpose of this paper is to describe how an Academic Health Science Centre, providing pediatric rehabilitation services, research, and education, developed a Centres for Leadership (CfL) initiative to integrate its academic functions and embrace the goal of being a learning organization. Design/methodology/approach Historical documents, tracked output information, and staff members' insights were used to describe the ten-year evolution of the initiative, its benefits, and transformational learnings for the organization. Findings The evolutions concerned development of a series of CfLs, and changes over time in leadership and management structure, as well as in operations and targeted activities. Benefits included enhanced clinician engagement in research, practice-based research, and impacts on clinical practice. Transformational learnings concerned the importance of supporting stakeholder engagement, fostering a spirit of inquiry, and fostering leaderful practice. These learnings contributed to three related emergent outcomes reflecting "way stations" on the journey to enhanced evidence-informed decision making and clinical excellence: enhancements in authentic partnerships, greater innovation capacity, and greater understanding and actualization of leadership values. Practical implications Practical information is provided for other organizations interested in understanding how this initiative evolved, its tangible value, and its wider benefits for organizational collaboration, innovation, and leadership values. Challenges encountered and main messages for other organizations are also considered. Originality/value A strategy map is used to present the structures, processes, and outcomes arising from the initiative, with the goal of informing the operations of other organizations desiring to be learning organizations.

  10. High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; McKillip, Robert M., Jr.

    2011-01-01

    One of key NASA goals is to develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. One of the technical priorities of this activity has been to account for and reduce noise via propulsion/airframe interactions, identifying advanced concepts to be integrated with the airframe to mitigate these noise-producing mechanisms. An adaptive geometry chevron using embedded smart structures technology offers the possibility of maximizing engine performance while retaining and possibly enhancing the favorable noise characteristics of current designs. New high-temperature shape memory alloy (HTSMA) materials technology enables the devices to operate in both low-temperature (fan) and high-temperature (core) exhaust flows. Chevron-equipped engines have demonstrated reduced noise in testing and operational use. It is desirable to have the noise benefits of chevrons in takeoff/landing conditions, but have them deployed into a minimum drag position for cruise flight. The central feature of the innovation was building on rapidly maturing HTSMA technology to implement a next-generation aircraft noise mitigation system centered on adaptive chevron flow control surfaces. In general, SMA-actuated devices have the potential to enhance the demonstrated noise reduction effectiveness of chevron systems while eliminating the associated performance penalty. The use of structurally integrated smart devices will minimize the mechanical and subsystem complexity of this implementation. The central innovations of the effort entail the modification of prior chevron designs to include a small cut that relaxes structural stiffness without compromising the desired flow characteristics over the surface; the reorientation of SMA actuation devices to apply forces to deflect the chevron tip, exploiting this relaxed stiffness; and the use of high-temperature SMA (HTSMA) materials to enable operation in the demanding core chevron environment. The overall conclusion of these design studies was that the cut chevron concept is a critical enabling step in bringing the variable geometry core chevron within reach. The presence of the cut may be aerodynamically undesirable in some respects, but it is present only when the chevron is not immersed in the core jet exhaust. When deployed, the gap closes as the chevron tip enters the high-speed, high-temperature core stream. Aeroacoustic testing and flow visualization support the contention that this cut is inconsequential to chevron performance.

  11. Effects of the Integration of Sunn Hemp and Soil Solarization on Plant-Parasitic and Free-Living Nematodes

    PubMed Central

    Marahatta, Sharadchandra P.; Wang, Koon-Hui; Sipes, Brent S.; Hooks, Cerruti R. R.

    2012-01-01

    Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH. PMID:23482700

  12. Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes

    DTIC Science & Technology

    2001-10-25

    Electrodes were developed. These electrodes consisted of a micromachined polyimide -based thin-film structure with integrated electrode contacts and...electrodes, mechanical properties were enhanced by changing the method of joining silicone and polyimide from using one part silicone adhesive to...gold, platinum, platinum black, polyimide , silicone, polymer bonding I. INTRODUCTION Cuff-type electrodes are probably the most commonly used neural

  13. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  14. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  15. 2007 Stability, Security, Transition and Reconstruction Operations Conference

    DTIC Science & Technology

    2007-11-28

    narcotics Foster sustainable economy U.S.PRT tasks Jalalabad June 2007 Who can respond to which challeges ? 2. Battlespace or Humanitarian Space...Education Integrated Interagency Stabilization and Reconstruction Training Plug and Play System Lessons Learned from the Field USAID NGOs World Bank ...World Bank , IMF? Expanding the Focus… At the US and NATO Strategic/Operational Level Enhanced/new structures and procedures to improve: Interaction

  16. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets

    PubMed Central

    Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro

    2014-01-01

    Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062

  17. Strength, functionality and beauty of university buildings in earthquake-prone countries

    PubMed Central

    WADA, Akira

    2018-01-01

    Strength, functionality and beauty are the three qualities identifying well-designed architecture. For buildings in earthquake-prone countries such as Japan, emphasis on seismic safety frequently leads to the sacrifice of functionality and beauty. Therefore, it is important to develop new structural technologies that can ensure the seismic performance of a building without hampering the pursuit of functionality and beauty. The moment-resisting frame structures widely used for buildings in Japan are likely to experience weak-story collapse. Pin-supported walls, which can effectively enhance the structural story-by-story integrity of a building, were introduced to prevent such an unfavorable failure pattern in the seismic retrofit of an eleven-story building on a university campus in Tokyo, while also greatly aesthetically enhancing the façade of the building. The slight damage observed and monitoring records of the retrofitted building during the 2011 Tohoku earthquake in Japan demonstrate that the pin-supported walls worked as intended, protecting the building and guaranteeing the safety of its occupants during the earthquake. PMID:29434079

  18. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.

    PubMed

    Ho, Dean; Chang, Stacy; Montemagno, Carlo D

    2006-06-01

    Fabrication of next-generation biologically active materials will involve the integration of proteins with synthetic membrane materials toward a wide spectrum of applications in nanoscale medicine, including high-throughput drug testing, energy conversion for powering medical devices, and bio-cloaking films for mimicry of cellular membrane surfaces toward the enhancement of implant biocompatibility. We have used ABA triblock copolymer membranes (PMOXA-PDMS-PMOXA) of varied thicknesses as platform materials for Langmuir film-based functionalization with the OmpF pore protein from Escherichia coli by fabricating monolayers of copolymer amphiphile-protein complexes on the air/water interface. Here we demonstrate that the ability for protein insertion at the air/water interface during device fabrication is dependent upon the initial surface coverage with the copolymer as well as copolymer thickness. Methacrylate-terminated block copolymer structures that were 4 nm (4METH) and 8 nm (8METH) in length were used as the protein reconstitution matrix, whereas a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid (~4 nm thickness) was used as a comparison to demonstrate the effects of copolymer length on protein integration capabilities. Wilhemy surface pressure measurements (mN/m) revealed a greater protein insertion in the 4METH and POPC structures compared with the 8METH structure, indicating that shorter copolymer chains possess enhanced biomimicry of natural lipid-based membranes. In addition, comparisons between the isothermal characteristics of the 4METH, 8METH, and POPC membranes reveal that phase transitions of the 4METH resemble a blend of the 8METH and POPC materials, indicating that the 4METH chain may possess hybrid properties of both copolymers and lipids. Furthermore, we have shown that following the deposition of the amphiphilic materials on the air/water interface, the OmpF can be deposited directly on top of the amphiphiles (surface addition), thus effectively further enhancing protein insertion because of the buoying effects of the membranes. These characteristics of Langmuir-Blodgett-based fabrication of copolymer-biomolecule hybrids represent a synthesis strategy for next-generation biomedical materials.

  19. Towards tailored teaching: using participatory action research to enhance the learning experience of Longitudinal Integrated Clerkship students in a South African rural district hospital.

    PubMed

    von Pressentin, Klaus B; Waggie, Firdouza; Conradie, Hoffie

    2016-03-08

    The introduction of Stellenbosch University's Longitudinal Integrated Clerkship (LIC) model as part of the undergraduate medical curriculum offers a unique and exciting training model to develop generalist doctors for the changing South African health landscape. At one of these LIC sites, the need for an improvement of the local learning experience became evident. This paper explores how to identify and implement a tailored teaching and learning intervention to improve workplace-based learning for LIC students. A participatory action research approach was used in a co-operative inquiry group (ten participants), consisting of the students, clinician educators and researchers, who met over a period of 5 months. Through a cyclical process of action and reflection this group identified a teaching intervention. The results demonstrate the gaps and challenges identified when implementing a LIC model of medical education. A structured learning programme for the final 6 weeks of the students' placement at the district hospital was designed by the co-operative inquiry group as an agreed intervention. The post-intervention group reflection highlighted a need to create a structured programme in the spirit of local collaboration and learning across disciplines. The results also enhance our understanding of both students and clinician educators' perceptions of this new model of workplace-based training. This paper provides practical strategies to enhance teaching and learning in a new educational context. These strategies illuminate three paradigm shifts: (1) from the traditional medical education approach towards a transformative learning approach advocated for the 21(st) century health professional; (2) from the teaching hospital context to the district hospital context; and (3) from block-based teaching towards a longitudinal integrated learning model. A programme based on balancing structured and tailored learning activities is recommended in order to address the local learning needs of students in the LIC model. We recommend that action learning sets should be developed at these LIC sites, where the relevant aspects of work-place based learning are negotiated.

  20. Direct deposit laminate nanocomposites with enhanced propellent properties.

    PubMed

    Li, Xiangyu; Guerieri, Philip; Zhou, Wenbo; Huang, Chuan; Zachariah, Michael R

    2015-05-06

    One of the challenges in the use of energetic nanoparticles within a polymer matrix for propellant applications is obtaining high particle loading (high energy density) while maintaining mechanical integrity and reactivity. In this study, we explore a new strategy that utilizes laminate structures. Here, a laminate of alternating layers of aluminum nanoparticle (Al-NPs)/copper oxide nanoparticle (CuO-NPs) thermites in a polyvinylidene fluoride (PVDF) reactive binder, with a spacer layer of PVDF was fabricated by a electrospray layer-by-layer deposition method. The deposited layers containing up to 60 wt % Al-NPs/CuO-NPs thermite are found to be uniform and mechanically flexible. Both the reactive and mechanical properties of laminate significantly outperformed the single-layer structure with the same material composition. These results suggest that deploying a multilayer laminate structure enables the incorporation of high loadings of energetic materials and, in some cases, enhances the reactive properties over the corresponding homogeneous structure. These results imply that an additive manufacturing approach may yield significant advantages in developing a tailored architecture for advanced propulsion systems.

  1. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.

    PubMed

    Ligaba, Ayalew; Dreyer, Ingo; Margaryan, Armine; Schneider, David J; Kochian, Leon; Piñeros, Miguel

    2013-12-01

    Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim

    Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways,more » respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher-order chromatin structure or nuclear motor activity.« less

  3. The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment.

    PubMed

    Chu, Wenhai; Yao, Dechang; Gao, Naiyun; Bond, Tom; Templeton, Michael R

    2015-12-01

    Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM-PAC) treatment process before conventional water treatment processes (coagulation-sedimentation-filtration, abbreviated as CPs). Compared with the CPs, PM-PAC significantly enhanced the removal of DOC, DON, NH3(+)-N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM-PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60-90% for six C-DBPs and 64-93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM-PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Assessing and Enhancing Environmental Sustainability: A Conceptual Review.

    PubMed

    Little, John C; Hester, Erich T; Carey, Cayelan C

    2016-07-05

    While sustainability is an essential concept to ensure the future of humanity and the integrity of the resources and ecosystems on which we depend, identifying a comprehensive yet realistic way to assess and enhance sustainability may be one of the most difficult challenges of our time. We review the primary environmental sustainability assessment approaches, categorizing them as either being design-based or those that employ computational frameworks and/or indicators. We also briefly review approaches used for assessing economic and social sustainability because sustainability necessitates integrating environmental, economic, and social elements. We identify the collective limitations of the existing assessment approaches, showing that there is not a consistent definition of sustainability, that the approaches are generally not comprehensive and are subject to unintended consequences, that there is little to no connection between bottom-up and top-down approaches, and that the field of sustainability is largely fragmented, with a range of academic disciplines and professional organizations pursuing similar goals, but without much formal coordination. We conclude by emphasizing the need for a comprehensive definition of sustainability (that integrates environmental, economic, and social aspects) with a unified system-of-systems approach that is causal, modular, tiered, and scalable, as well as new educational and organizational structures to improve systems-level interdisciplinary integration.

  5. Gis-Hbim Integration for the Management of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Vacca, G.; Quaquero, E.; Pili, D.; Brandolini, M.

    2018-05-01

    As is well known, Italy's very consistent buildings stock has become the major field for real estate investments and for the related projects and actions. It is a heritage that is often barely known and extremely complex, whose management has until now been addressed in a rather casual and uninformed manner, with unsatisfactory and sometimes disastrous outcomes. The situation is worse in the case of buildings of particular historical, artistic and architectural value so frequent within the heritage of our country. This paper shows the findings of an ongoing research which is aimed at structuring the cognitive process and assessing enhancement and re-functionalisation scenarios of our historical and architectural heritage through the use and integration of information systems such as BIM and the GIS. The work led to the development of a workflow able to integrate the contribution of the HBIM and GIS methodologies in the structuring and management of a wide range of digital data and information useful for its management. The research, focused on "La Gran Torre di Oristano, is aimed at creating the best conditions for an integrated and multidisciplinary strategy of requalification and refunctionalisation of historical and architectural heritage.

  6. Combining nanofluidics and plasmonics for single molecule detection

    NASA Astrophysics Data System (ADS)

    West, Melanie M.

    Single molecule detection is limited by the small scattering cross-section of molecules which leads to weak optical signals that can be obscured by background noise. The combination of plasmonics and nanofluidics in an integrated nano-device has the potential to provide the signal enhancement necessary for the detection of single molecules. The purpose of this investigation was to optimize the fabrication of an optofluidic device that integrates a nanochannel with a plasmonic bowtie antenna. The fluidic structure of the device was fabricated using UV-nanoimprint lithography, and the gold plasmonic antennas were fabricated using a shadow evaporation and lift-off process. The effect of electron beam lithography doses on the resolution of antenna-nanochannel configurations was studied to minimize antenna gap size while maintaining the integrity of the imprinted features. The smallest antenna gap size that was achieved was 46 nm. The antennas were characterized using dark field spectroscopy to find the resonance shift, which indicated the appropriate range for optical signal enhancement. The dark field scattering results showed antennas with a broad and well-defined resonance shift that ranged from 650--800 nm. The Raman scattering results showed the highest enhancement factor (EF = 2) for antennas with an "inverted configuration," which involved having the triangles of the antenna facing back-to-back rather than the more conventional tip-to-tip bowtie arrangement.

  7. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng

    2017-04-01

    Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.

  8. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  9. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  10. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  11. Evidence for enhanced multi-component behaviour in Tourette syndrome - an EEG study.

    PubMed

    Brandt, Valerie C; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2017-08-10

    Evidence suggests that Tourette syndrome is characterized by an increase in dopamine transmission and structural as well as functional changes in fronto-striatal circuits that might lead to enhanced multi-component behaviour integration. Behavioural and neurophysiological data regarding multi-component behaviour was collected from 15 patients with Tourette syndrome (mean age = 30.40 ± 11.10) and 15 healthy controls (27.07 ± 5.44), using the stop-change task. In this task, participants are asked to sometimes withhold responses to a Go stimulus (stop cue) and change hands to respond to an alternative Go stimulus (change cue). Different onset asynchronies between stop and change cues were implemented (0 and 300 ms) in order to vary task difficulty. Tourette patients responded more accurately than healthy controls when there was no delay between stop and change stimulus, while there was no difference in the 300 ms delay condition. This performance advantage was reflected in a smaller P3 event related potential. Enhanced multi-component behaviour in Tourette syndrome is likely based on an enhanced ability to integrate information from multiple sources and translate it into an appropriate response sequence. This may be a consequence of chronic tic control in these patients, or a known fronto-striatal networks hyperconnectivity in Tourette syndrome.

  12. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    DOE PAGES

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; ...

    2016-12-28

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less

  13. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less

  14. Broadband and omnidirectional light harvesting enhancement in photovoltaic devices with aperiodic TiO2 nanotube photonic crystal

    NASA Astrophysics Data System (ADS)

    Guo, Min; Su, Haijun; Zhang, Jun; Liu, Lin; Fu, Nianqing; Yong, Zehui; Huang, Haitao; Xie, Keyu

    2017-03-01

    Design of more effective broadband light-trapping elements to improve the light harvesting efficiency under both normal and tilted light for solar cells and other photonic devices is highly desirable. Herein we present a theoretical analysis on the optical properties of a novel TiO2 nanotube aperiodic photonic crystal (NT APC) following an aperiodic sequences and its photocurrent enhancement effect for dye-sensitized solar cells (DSSCs) under various incidence angles. It is found that, compared to regular PC, the designed TiO2 NT APC owns broader reflection region and a desired omnidirectional reflection (ODR) bandgaps, leading to considerable and stable photocurrent enhancement under both normal and oblique light. The effects of the structural parameters of the TiO2 NT APC, including the average lattice constant and the common sequence difference, on the optical properties, ODR bandgaps and absorption magnification of the integrated DSSCs are investigated in detail. Moreover, the angular dependence of photocurrent enhancement and angular compensation effect of such TiO2 NT APCs are also provided to offer a guidance on the optimum structural parameters design under different engineering application conditions.

  15. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching. Electronic supplementary information (ESI) available: Melting curves without baseline subtraction, AFM images of DNA origami after 24 h incubation, calculated melting temperatures of all staple strands. See DOI: 10.1039/c6nr00835f

  16. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  17. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  18. Enhancers Are Major Targets for Murine Leukemia Virus Vector Integration

    PubMed Central

    De Ravin, Suk See; Su, Ling; Theobald, Narda; Choi, Uimook; Macpherson, Janet L.; Poidinger, Michael; Symonds, Geoff; Pond, Susan M.; Ferris, Andrea L.; Hughes, Stephen H.

    2014-01-01

    ABSTRACT Retroviral vectors have been used in successful gene therapies. However, in some patients, insertional mutagenesis led to leukemia or myelodysplasia. Both the strong promoter/enhancer elements in the long terminal repeats (LTRs) of murine leukemia virus (MLV)-based vectors and the vector-specific integration site preferences played an important role in these adverse clinical events. MLV integration is known to prefer regions in or near transcription start sites (TSS). Recently, BET family proteins were shown to be the major cellular proteins responsible for targeting MLV integration. Although MLV integration sites are significantly enriched at TSS, only a small fraction of the MLV integration sites (<15%) occur in this region. To resolve this apparent discrepancy, we created a high-resolution genome-wide integration map of more than one million integration sites from CD34+ hematopoietic stem cells transduced with a clinically relevant MLV-based vector. The integration sites form ∼60,000 tight clusters. These clusters comprise ∼1.9% of the genome. The vast majority (87%) of the integration sites are located within histone H3K4me1 islands, a hallmark of enhancers. The majority of these clusters also have H3K27ac histone modifications, which mark active enhancers. The enhancers of some oncogenes, including LMO2, are highly preferred targets for integration without in vivo selection. IMPORTANCE We show that active enhancer regions are the major targets for MLV integration; this means that MLV preferentially integrates in regions that are favorable for viral gene expression in a variety of cell types. The results provide insights for MLV integration target site selection and also explain the high risk of insertional mutagenesis that is associated with gene therapy trials using MLV vectors. PMID:24501411

  19. Learning STEM Through Integrative Visual Representations

    NASA Astrophysics Data System (ADS)

    Virk, Satyugjit Singh

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial support for the assertion that chunking mediated the greater gains in learning for the neural subcomponent concepts over the control.

  20. Integrating national community-based health worker programmes into health systems: a systematic review identifying lessons learned from low-and middle-income countries.

    PubMed

    Zulu, Joseph Mumba; Kinsman, John; Michelo, Charles; Hurtig, Anna-Karin

    2014-09-22

    Despite the development of national community-based health worker (CBHW) programmes in several low- and middle-income countries, their integration into health systems has not been optimal. Studies have been conducted to investigate the factors influencing the integration processes, but systematic reviews to provide a more comprehensive understanding are lacking. We conducted a systematic review of published research to understand factors that may influence the integration of national CBHW programmes into health systems in low- and middle-income countries. To be included in the study, CBHW programmes should have been developed by the government and have standardised training, supervision and incentive structures. A conceptual framework on the integration of health innovations into health systems guided the review. We identified 3410 records, of which 36 were finally selected, and on which an analysis was conducted concerning the themes and pathways associated with different factors that may influence the integration process. Four programmes from Brazil, Ethiopia, India and Pakistan met the inclusion criteria. Different aspects of each of these programmes were integrated in different ways into their respective health systems. Factors that facilitated the integration process included the magnitude of countries' human resources for health problems and the associated discourses about how to address these problems; the perceived relative advantage of national CBHWs with regard to delivering health services over training and retaining highly skilled health workers; and the participation of some politicians and community members in programme processes, with the result that they viewed the programmes as legitimate, credible and relevant. Finally, integration of programmes within the existing health systems enhanced programme compatibility with the health systems' governance, financing and training functions. Factors that inhibited the integration process included a rapid scale-up process; resistance from other health workers; discrimination of CBHWs based on social, gender and economic status; ineffective incentive structures; inadequate infrastructure and supplies; and hierarchical and parallel communication structures. CBHW programmes should design their scale-up strategy differently based on current contextual factors. Further, adoption of a stepwise approach to the scale-up and integration process may positively shape the integration process of CBHW programmes into health systems.

  1. A Concept for the Use and Integration of Super-Conducting Magnets in Structural Systems in General and Maglev Guideway Mega-Structures in Particular

    NASA Technical Reports Server (NTRS)

    Ussery, Wilfred T.; MacCalla, Eric; MacCalla, Johnetta; Elnimeiri, Mahjoub; Goldsmith, Myron; Polk, Sharon Madison; Jenkins, Mozella; Bragg, Robert H.

    1996-01-01

    Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed (100-200 mph), Super Speed (200-400 mph), and Hypersonic evacuated tube (400-10,000 mph) Maglev systems.

  2. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  3. Calculating corner singularities by boundary integral equations.

    PubMed

    Shi, Hualiang; Lu, Ya Yan; Du, Qiang

    2017-06-01

    Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.

  4. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting.

    PubMed

    Zhang, Peng; Wang, Tuo; Gong, Jinlong

    2015-09-23

    H2 generation by solar water splitting is one of the most promising solutions to meet the increasing energy demands of the fast developing society. However, the efficiency of solar-water-splitting systems is still too low for practical applications, which requires further enhancement via different strategies such as doping, construction of heterojunctions, morphology control, and optimization of the crystal structure. Recently, integration of plasmonic metals to semiconductor photocatalysts has been proved to be an effective way to improve their photocatalytic activities. Thus, in-depth understanding of the enhancement mechanisms is of great importance for better utilization of the plasmonic effect. This review describes the relevant mechanisms from three aspects, including: i) light absorption and scattering; ii) hot-electron injection and iii) plasmon-induced resonance energy transfer (PIRET). Perspectives are also proposed to trigger further innovative thinking on plasmonic-enhanced solar water splitting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Laccase-based biocathodes: Comparison of chitosan and Nafion.

    PubMed

    El Ichi-Ribault, S; Zebda, A; Laaroussi, A; Reverdy-Bruas, N; Chaussy, D; Belgacem, M N; Suherman, A L; Cinquin, P; Martin, D K

    2016-09-21

    Chitosan and Nafion(®) are both reported as interesting polymers to be integrated into the structure of 3D electrodes for biofuel cells. Their advantage is mainly related to their chemical properties, which have a positive impact on the stability of electrodes such as the laccase-based biocathode. For optimal function in implantable applications the biocathode requires coating with a biocompatible semi-permeable membrane that is designed to prevent the loss of enzyme activity and to protect the structure of the biocathode. Since such membranes are integrated into the electrodes ultimately implanted, they must be fully characterized to demonstrate that there is no interference with the performance of the electrode. In the present study, we demonstrate that chitosan provides superior stability compared with Nafion(®) and should be considered as an optimum solution to enhance the biocompatibility and the stability of 3D bioelectrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    PubMed

    Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan

    2016-08-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.

  7. Generation of maximally entangled states and coherent control in quantum dot microlenses

    NASA Astrophysics Data System (ADS)

    Bounouar, Samir; de la Haye, Christoph; Strauß, Max; Schnauber, Peter; Thoma, Alexander; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the applied single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.

  8. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective

    PubMed Central

    2010-01-01

    Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children. PMID:20478054

  9. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective.

    PubMed

    Maclean, Lynne M; Clinton, Kathryn; Edwards, Nancy; Garrard, Michael; Ashley, Lisa; Hansen-Ketchum, Patti; Walsh, Audrey

    2010-05-17

    Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children.

  10. A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins.

    PubMed

    Spyrakis, Francesca; Benedetti, Paolo; Decherchi, Sergio; Rocchia, Walter; Cavalli, Andrea; Alcaro, Stefano; Ortuso, Francesco; Baroni, Massimo; Cruciani, Gabriele

    2015-10-26

    The importance of taking into account protein flexibility in drug design and virtual ligand screening (VS) has been widely debated in the literature, and molecular dynamics (MD) has been recognized as one of the most powerful tools for investigating intrinsic protein dynamics. Nevertheless, deciphering the amount of information hidden in MD simulations and recognizing a significant minimal set of states to be used in virtual screening experiments can be quite complicated. Here we present an integrated MD-FLAP (molecular dynamics-fingerprints for ligand and proteins) approach, comprising a pipeline of molecular dynamics, clustering and linear discriminant analysis, for enhancing accuracy and efficacy in VS campaigns. We first extracted a limited number of representative structures from tens of nanoseconds of MD trajectories by means of the k-medoids clustering algorithm as implemented in the BiKi Life Science Suite ( http://www.bikitech.com [accessed July 21, 2015]). Then, instead of applying arbitrary selection criteria, that is, RMSD, pharmacophore properties, or enrichment performances, we allowed the linear discriminant analysis algorithm implemented in FLAP ( http://www.moldiscovery.com [accessed July 21, 2015]) to automatically choose the best performing conformational states among medoids and X-ray structures. Retrospective virtual screenings confirmed that ensemble receptor protocols outperform single rigid receptor approaches, proved that computationally generated conformations comprise the same quantity/quality of information included in X-ray structures, and pointed to the MD-FLAP approach as a valuable tool for improving VS performances.

  11. In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems

    PubMed Central

    2015-01-01

    In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2 × 106 and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications. PMID:25402207

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; WALRAVEN,JEREMY A.

    Two major problems associated with Si-based MEMS (MicroElectroMechanical Systems) devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors present a CVD (Chemical Vapor Deposition) process that selectively coats MEMS devices with tungsten and significantly enhances device durability. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable. This selective deposition process results in a very conformal coating and can potentially address both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through the siliconmore » reduction of WF{sub 6}. The self-limiting nature of the process ensures consistent process control. The tungsten is deposited after the removal of the sacrificial oxides to minimize stress and process integration problems. The tungsten coating adheres well and is hard and conducting, which enhances performance for numerous devices. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release adhered parts that are contacted over small areas such as dimples. The wear resistance of tungsten coated parts has been shown to be significantly improved by microengine test structures.« less

  13. The influences of LuxX in Escherichia coli biofilm formation and improving teacher quality through the Bio-Bus Program

    NASA Astrophysics Data System (ADS)

    Robbins, Chandan Morris

    The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative digital image analysis demonstrated the effectiveness of the agarose stabilization technique for generating reproducible measurements of three dimensional biofilm structure. The described method will also benefit researchers who transport their flow cell-cultivated biofilms to a core facility for imaging. AI-2-dependent and independent effects of LuxS on biofilm-related phenotypes were revealed, suggesting that LuxS is a versatile enzyme, possessing multiple functions in E. coli ecology that could assist E. coli in adapting to diverse conditions. Overall, the work presented in this dissertation supported the concept that QS, biofilm formation, and cell adhesion are largely related. Additionally, through this project, teachers enhanced content knowledge and confidence levels, mastered innovative teaching strategies and integrated inquiry-based, inter-disciplinary, hands-on activities in the classroom. As a result, student learning was enhanced, and Georgia's students are better equipped to become tomorrow's leaders. INDEX WORDS: Biofilm, Escherichia coli, Quorum sensing, LuxS, Autoinducer-2, Microbial ecology

  14. Optimizing isotope substitution in graphene for thermal conductivity minimization by genetic algorithm driven molecular simulations

    NASA Astrophysics Data System (ADS)

    Davies, Michael; Ganapathysubramanian, Baskar; Balasubramanian, Ganesh

    2017-03-01

    We present results from a computational framework integrating genetic algorithm and molecular dynamics simulations to systematically design isotope engineered graphene structures for reduced thermal conductivity. In addition to the effect of mass disorder, our results reveal the importance of atomic distribution on thermal conductivity for the same isotopic concentration. Distinct groups of isotope-substituted graphene sheets are identified based on the atomic composition and distribution. Our results show that in structures with equiatomic compositions, the enhanced scattering by lattice vibrations results in lower thermal conductivities due to the absence of isotopic clusters.

  15. Metadynamic metainference: Enhanced sampling of the metainference ensemble using metadynamics

    PubMed Central

    Bonomi, Massimiliano; Camilloni, Carlo; Vendruscolo, Michele

    2016-01-01

    Accurate and precise structural ensembles of proteins and macromolecular complexes can be obtained with metainference, a recently proposed Bayesian inference method that integrates experimental information with prior knowledge and deals with all sources of errors in the data as well as with sample heterogeneity. The study of complex macromolecular systems, however, requires an extensive conformational sampling, which represents a separate challenge. To address such challenge and to exhaustively and efficiently generate structural ensembles we combine metainference with metadynamics and illustrate its application to the calculation of the free energy landscape of the alanine dipeptide. PMID:27561930

  16. Silicon-integrated thin-film structure for electro-optic applications

    DOEpatents

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  17. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  18. Database systems for knowledge-based discovery.

    PubMed

    Jagarlapudi, Sarma A R P; Kishan, K V Radha

    2009-01-01

    Several database systems have been developed to provide valuable information from the bench chemist to biologist, medical practitioner to pharmaceutical scientist in a structured format. The advent of information technology and computational power enhanced the ability to access large volumes of data in the form of a database where one could do compilation, searching, archiving, analysis, and finally knowledge derivation. Although, data are of variable types the tools used for database creation, searching and retrieval are similar. GVK BIO has been developing databases from publicly available scientific literature in specific areas like medicinal chemistry, clinical research, and mechanism-based toxicity so that the structured databases containing vast data could be used in several areas of research. These databases were classified as reference centric or compound centric depending on the way the database systems were designed. Integration of these databases with knowledge derivation tools would enhance the value of these systems toward better drug design and discovery.

  19. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  20. Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558

  1. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE PAGES

    Banf, Michael; Rhee, Seung Y.

    2017-02-01

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  2. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banf, Michael; Rhee, Seung Y.

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  3. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.

    PubMed

    Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril

    2015-02-01

    Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito-frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. The Role of the Visual Arts in Enhancing the Learning Process

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.

    2011-01-01

    With all the wealth of scientific activities, there remains a certain stigma associated with careers in science, as a result of the inevitable concentration on narrow specializations that are inaccessible to general understanding. Enhancement of the process of scientific learning remains a challenge, particularly in the school setting. While direct explanation seems the best approach to expedite learning any specific subject, it is well known that the ability to deeply absorb facts and concepts is greatly enhanced by placing them in a broader context of relevance to the issues of everyday life and to the larger goals of improvement of the quality of life and advancement to a more evolved society as a whole. If the sciences can be associated with areas of artistic endeavor, they may be viewed as more accessible and favorable topics of study. There is consequently an urgent need for research in the relationship between learning and experience in the arts because both art education and scientific literacy remain at an inadequate level even in economically advanced countries. The focus of this review is the concept that inspiration is an integral aspect of the artistic experience, both for the artist and for the viewer of the artwork. As an integrative response, inspiration involves not only higher cortical circuitry but its integration with the deep brain structures such as limbic system and medial frontal structures, which are understood to mediate the experience of emotions, motivational rewards, and the appreciation of the esthetic values of the impinging stimuli. In this sense, inspiration can turn almost any occupation in life into an avocation, a source of satisfaction in achieving life goals. Conversely, when inspiration is lacking, the motivation to learn, adapt, and prosper is impeded. Thus, inspiration may be viewed as a potent aspect of human experience in linking art and science. PMID:22347854

  5. Enhancing in vivo tumor boundary delineation with structured illumination fluorescence molecular imaging and spatial gradient mapping

    NASA Astrophysics Data System (ADS)

    Sun, Jessica; Miller, Jessica P.; Hathi, Deep; Zhou, Haiying; Achilefu, Samuel; Shokeen, Monica; Akers, Walter J.

    2016-08-01

    Fluorescence imaging, in combination with tumor-avid near-infrared (NIR) fluorescent molecular probes, provides high specificity and sensitivity for cancer detection in preclinical animal models, and more recently, assistance during oncologic surgery. However, conventional camera-based fluorescence imaging techniques are heavily surface-weighted such that surface reflection from skin or other nontumor tissue and nonspecific fluorescence signals dominate, obscuring true cancer-specific signals and blurring tumor boundaries. To address this challenge, we applied structured illumination fluorescence molecular imaging (SIFMI) in live animals for automated subtraction of nonspecific surface signals to better delineate accumulation of an NIR fluorescent probe targeting α4β1 integrin in mice bearing subcutaneous plasma cell xenografts. SIFMI demonstrated a fivefold improvement in tumor-to-background contrast when compared with other full-field fluorescence imaging methods and required significantly reduced scanning time compared with diffuse optical spectroscopy imaging. Furthermore, the spatial gradient mapping enhanced highlighting of tumor boundaries. Through the relatively simple hardware and software modifications described, SIFMI can be integrated with clinical fluorescence imaging systems, enhancing intraoperative tumor boundary delineation from the uninvolved tissue.

  6. Terrestrial and Aerial Laser Scanning Data Integration Using Wavelet Analysis for the Purpose of 3D Building Modeling

    PubMed Central

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1–5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed. PMID:25004157

  7. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  8. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    PubMed

    Kedzierski, Michal; Fryskowska, Anna

    2014-07-07

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  9. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity

    PubMed Central

    Yin, Jianbo; Wang, Huan; Peng, Han; Tan, Zhenjun; Liao, Lei; Lin, Li; Sun, Xiao; Koh, Ai Leen; Chen, Yulin; Peng, Hailin; Liu, Zhongfan

    2016-01-01

    Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light–matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength. PMID:26948537

  10. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    PubMed

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  11. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.

    PubMed

    Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro

    2016-10-01

    Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

    PubMed Central

    Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.

    2016-01-01

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified. PMID:26017575

  13. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres.

    PubMed

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2015-05-28

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  14. System enhancements of Mesoscale Analysis and Space Sensor (MASS) computer system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The interactive information processing for the mesoscale analysis and space sensor (MASS) program is reported. The development and implementation of new spaceborne remote sensing technology to observe and measure atmospheric processes is described. The space measurements and conventional observational data are processed together to gain an improved understanding of the mesoscale structure and dynamical evolution of the atmosphere relative to cloud development and precipitation processes. A Research Computer System consisting of three primary computers was developed (HP-1000F, Perkin-Elmer 3250, and Harris/6) which provides a wide range of capabilities for processing and displaying interactively large volumes of remote sensing data. The development of a MASS data base management and analysis system on the HP-1000F computer and extending these capabilities by integration with the Perkin-Elmer and Harris/6 computers using the MSFC's Apple III microcomputer workstations is described. The objectives are: to design hardware enhancements for computer integration and to provide data conversion and transfer between machines.

  15. Lean Production as an Innovative Approach to Construction

    NASA Astrophysics Data System (ADS)

    Spišáková, Marcela; Kozlovská, Mária

    2013-06-01

    Lean production presents a new approach to the construction management which has enabled enterprises to attain very high levels of efficiency, competitiveness and flexibility in production systems. Nowadays, a number of industrial processes are managed in accordance with these advanced management principles [1]. The principles of lean production are applied within the integrated design and delivery solutions (IDDS) and prefabricated construction. IDDS uses collaborative work processes and enhanced skills, with integrated data, information, and knowledge management to minimize structural and process inefficiencies and to enhance the value delivered during design, build, and operation, and across projects. Prefabrication presents a one of opportunities for construction methods, which allows the compliance with principles of sustainable design, provides the potential benefits such as faster construction, fewer housing defects, reduction in energy use and waste and elimination of environmental and safety risks. This paper presents the lean production within the IDDS and its potential in the modern prefabrication. There is created a field providing of benefits of lean production in construction industry.

  16. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes

    NASA Astrophysics Data System (ADS)

    Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; Walczak, Karl A.; Favaro, Marco; Beeman, Jeffrey W.; Hess, Lucas H.; Wang, Cheng; Zhu, Chenhui; Gul, Sheraz; Yano, Junko; Kisielowski, Christian; Schwartzberg, Adam; Sharp, Ian D.

    2017-03-01

    Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. Here, we demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co3O4/Co(OH)2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. These films comprise compact and continuous nanocrystalline Co3O4 spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH)2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p+n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.

  17. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  18. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  19. ICT Integration in Nigeria and the Quest for Indigenous Contents: Prospects of the i-CLAP Model Design Initiative

    NASA Astrophysics Data System (ADS)

    Azi, J. I.; Nkom, A. A.; Schweppe, M.

    2012-10-01

    Advances in Information and Communication Technology (ICT) is transforming the 21st century learning environment, from its traditional face-to-face, structured curriculum, fixed location and teacher-centered nature, into a more flexible and self-directed process. For instance, variously designed and developed instructional multimedia contents and interfaces in forms of (i) productivity, (ii) educational or (iii) gaming software, enable active learning access as mobile or classroom technologies, interactive tutorials, online discussions, internet conferencing and online databases. However, while this article considers these recent developments such as Intellimedia, NEPAD e-School, OLPC and Intel Classmate projects and so on as trendy and groundbreaking. It observes with discontent that the design of their contents and interfaces seem to be targeted at cross-cultural audiences, with very little or no consideration for minorities like Africa. The authors opine therefore that if the challenge of ICT integration towards bridging the digital divides in Africa must be taken very serious, the task transcends merely supplying networked computer hardware to local schools. Digital contents are required that reflect the beauty and riches of Africaís culture and heritage like music, fashion, architecture, arts and crafts. Against which backdrop, the Interactive Child Learning Aid Project (i-CLAP) model was initiated as a potential indigenous resource, for enhancing pre-primary education in Nigeria adapting the ADDIE model structure. The researchers observe that while 'customizationí of ICT applications targeted at local audience is commendable, integrating relevant indigenous contents has the potential to enhance efficacy and consequently raise the motivational level of local learners.

  20. Intraoperative visualisation of functional structures facilitates safe frameless stereotactic biopsy in the motor eloquent regions of the brain.

    PubMed

    Zhang, Jia-Shu; Qu, Ling; Wang, Qun; Jin, Wei; Hou, Yuan-Zheng; Sun, Guo-Chen; Li, Fang-Ye; Yu, Xin-Guang; Xu, Ban-Nan; Chen, Xiao-Lei

    2017-12-20

    For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.

  1. Unraveling care integration: Assessing its dimensions and antecedents in the Italian Health System.

    PubMed

    Calciolari, Stefano; Ilinca, Stefania

    2016-01-01

    In recent decades, consensus has grown on the need to organize health systems around the concept of care integration to better confront the challenges associated with demographic trends and financial sustainability. However, care integration remains an imprecise umbrella term in both the academic and policy arenas. In addition, little substantive knowledge exists on the success factors for integration initiatives. We propose a composite measure of care integration and a conceptual framework suggesting its relationships with three types of antecedents: contextual, cultural, and organizational factors. Our framework was tested using data from the Italian National Health System (NHS). We administered an ad-hoc questionnaire to all Italian local health units (LHUs), with a 60.4% response rate, and used structural equation modeling to assess the relationships between the relevant latent constructs. The results validated our measure of care integration and supported the hypothesized relationships. In particular, integration was found to be fostered by results-oriented institutional settings, a professional culture conducive to inclusiveness and shared goals, and organizational arrangements promoting clear expectations among providers. Thus, integration improves care and mediates the effects of specific operating means on care enhancement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Controls-structures interaction guest investigator program: Overview and phase 1 experimental results and future plans

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen; Tanner, Sharon E.

    1993-01-01

    The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.

  3. Pathways to Seeing Music: Enhanced Structural Connectivity in Colored-Music Synesthesia

    PubMed Central

    Zamm, Anna; Schlaug, Gottfried; Eagleman, David M.; Loui, Psyche

    2013-01-01

    Synesthesia, a condition in which a stimulus in one sensory modality consistently and automatically triggers concurrent percepts in another modality, provides a window into the neural correlates of cross-modal associations. While research on grapheme-color synesthesia has provided evidence for both hyperconnectivity/hyperbinding and disinhibited feedback as possible underlying mechanisms, less research has explored the neuroanatomical basis of other forms of synesthesia. In the current study we investigated the white matter correlates of colored-music synesthesia. As these synesthetes report seeing colors upon hearing musical sounds, we hypothesized they might show different patterns of connectivity between visual and auditory association areas. We used diffusion tensor imaging to trace the white matter tracts in temporal and occipital lobe regions in 10 synesthetes and 10 matched non-synesthete controls. Results showed that synesthetes possessed different hemispheric patterns of fractional anisotropy, an index of white matter integrity, in the inferior fronto-occipital fasciculus (IFOF), a major white matter pathway that connects visual and auditory association areas to frontal regions. Specifically, white matter integrity within the right IFOF was significantly greater in synesthetes than controls. Furthermore, white matter integrity in synesthetes was correlated with scores on audiovisual tests of the Synesthesia Battery, especially in white matter underlying the right fusiform gyrus. Our findings provide the first evidence of a white matter substrate of colored-music synesthesia, and suggest that enhanced white matter connectivity is involved in enhanced cross-modal associations. PMID:23454047

  4. Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study.

    PubMed

    Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M

    2015-08-01

    Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.

  5. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruitu; Wang, Mu; Chen, Baojie; Liu, Ke; Pun, Edwin Yue-Bun; Lin, Hai

    2011-04-01

    Bent waveguide structures (S-, U-, and F-bend) based on buried Er3+/Yb3+ codoped phosphate glass waveguide channel fabricated by field-assisted annealing have been designed to achieve high-gain C-band integrated amplification. Using a simulated-bend method, the optimal radius for the curved structure is derived to be 0.90 cm with loss coefficient of 0.02 dB/cm, as the substrate size is schemed to be 4×3 cm2. In the wavelength range of 1520 to 1575 nm, obvious gain enhancement for the bent structure waveguides is anticipated, and for the F-bend waveguide, the internal gain at 1534-nm wavelength is derived to be 41.61 dB, which is much higher than the value of 26.22 and 13.81 dB in the U- and S-bend waveguides, respectively, and over three times higher than that of the straight one. The simulation results indicate that the bent structure design is beneficial in obtaining high signal gain in buried Er3+/Yb3+ codoped phosphate glass waveguides, which lays the foundation for further design and fabrication of integrated devices.

  6. Industrial approach to piezoelectric damping of large fighter aircraft components

    NASA Astrophysics Data System (ADS)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power and integration are then enhanced to specification standards. An adapted qualification program plan is used to improve analytical read across, specifications, manufacturing decisions, handling requirements. The next research goals are outlined.

  7. Audio-tactile integration and the influence of musical training.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  8. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    PubMed

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  9. Complementary aspects of diffusion imaging and fMRI; I: structure and function.

    PubMed

    Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J

    2006-05-01

    Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.

  10. Nanocomposites for Enhanced Structural Integrity

    DTIC Science & Technology

    2007-09-11

    Yong and H.T. Hahn, "Kevlar/Vinyl Ester Composites with SiC Nanoparticles ," SAMPE 2004 Proc. ( CD ROM), May 2004. C-6. M. Lui and H.T. Hahn...34 Nanoparticle -Based Mitigation of fiber Print-Through in Composite Mirrors," Proc. American Society for Composites, 20’h Technical Conference ( CD ROM), Sept. 2005...the graphene layers. Microwave radiation aids in drying and results in further separation of the sheets. Thermogravimetric analysis indicates that the

  11. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  12. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities.

    PubMed

    Narayanasamy, Shaman; Muller, Emilie E L; Sheik, Abdul R; Wilmes, Paul

    2015-05-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single 'omes'. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure-function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint

    PubMed Central

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-01-01

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465

  14. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    PubMed

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  15. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  16. Making psycholinguistics musical: self-paced reading time evidence for shared processing of linguistic and musical syntax.

    PubMed

    Slevc, L Robert; Rosenberg, Jason C; Patel, Aniruddh D

    2009-04-01

    Linguistic processing, especially syntactic processing, is often considered a hallmark of human cognition; thus, the domain specificity or domain generality of syntactic processing has attracted considerable debate. The present experiments address this issue by simultaneously manipulating syntactic processing demands in language and music. Participants performed self-paced reading of garden path sentences, in which structurally unexpected words cause temporary syntactic processing difficulty. A musical chord accompanied each sentence segment, with the resulting sequence forming a coherent chord progression. When structurally unexpected words were paired with harmonically unexpected chords, participants showed substantially enhanced garden path effects. No such interaction was observed when the critical words violated semantic expectancy or when the critical chords violated timbral expectancy. These results support a prediction of the shared syntactic integration resource hypothesis (Patel, 2003), which suggests that music and language draw on a common pool of limited processing resources for integrating incoming elements into syntactic structures. Notations of the stimuli from this study may be downloaded from pbr.psychonomic-journals.org/content/supplemental.

  17. Characterization of ultrafast laser-ablation plasma plumes at various Ar ambient pressures

    DOE PAGES

    Diwakar, P. K.; Harilal, S. S.; Phillips, M. C.; ...

    2015-07-30

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plumemore » species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. As a result, possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.« less

  18. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  19. Atrial fibrillation driver mechanisms: Insight from the isolated human heart.

    PubMed

    Csepe, Thomas A; Hansen, Brian J; Fedorov, Vadim V

    2017-01-01

    Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping. We suggest that ex vivo human heart studies, by using an integrated 3D functional and structural mapping approach, will help to reveal defining features of AF drivers as well as validate and improve clinical approaches to detect and target these AF drivers in patients with cardiac diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. IRaPPA: Information retrieval based integration of biophysical models for protein assembly selection

    PubMed Central

    Moal, Iain H.; Barradas-Bautista, Didier; Jiménez-García, Brian; Torchala, Mieczyslaw; van der Velde, Arjan; Vreven, Thom; Weng, Zhiping; Bates, Paul A.; Fernández-Recio, Juan

    2018-01-01

    Motivation In order to function, proteins frequently bind to one another and form 3D assemblies. Knowledge of the atomic details of these structures helps our understanding of how proteins work together, how mutations can lead to disease, and facilitates the designing of drugs which prevent or mimic the interaction. Results Atomic modeling of protein-protein interactions requires the selection of near-native structures from a set of docked poses based on their calculable properties. By considering this as an information retrieval problem, we have adapted methods developed for Internet search ranking and electoral voting into IRaPPA, a pipeline integrating biophysical properties. The approach enhances the identification of near-native structures when applied to four docking methods, resulting in a near-native appearing in the top 10 solutions for up to 50% of complexes benchmarked, and up to 70% in the top 100. Availability IRaPPA has been implemented in the SwarmDock server (http://bmm.crick.ac.uk/~SwarmDock/), pyDock server (http://life.bsc.es/pid/pydockrescoring/) and ZDOCK server (http://zdock.umassmed.edu/), with code available on request. PMID:28200016

  1. DSSR-enhanced visualization of nucleic acid structures in Jmol

    PubMed Central

    Hanson, Robert M.

    2017-01-01

    Abstract Sophisticated and interactive visualizations are essential for making sense of the intricate 3D structures of macromolecules. For proteins, secondary structural components are routinely featured in molecular graphics visualizations. However, the field of RNA structural bioinformatics is still lagging behind; for example, current molecular graphics tools lack built-in support even for base pairs, double helices, or hairpin loops. DSSR (Dissecting the Spatial Structure of RNA) is an integrated and automated command-line tool for the analysis and annotation of RNA tertiary structures. It calculates a comprehensive and unique set of features for characterizing RNA, as well as DNA structures. Jmol is a widely used, open-source Java viewer for 3D structures, with a powerful scripting language. JSmol, its reincarnation based on native JavaScript, has a predominant position in the post Java-applet era for web-based visualization of molecular structures. The DSSR-Jmol integration presented here makes salient features of DSSR readily accessible, either via the Java-based Jmol application itself, or its HTML5-based equivalent, JSmol. The DSSR web service accepts 3D coordinate files (in mmCIF or PDB format) initiated from a Jmol or JSmol session and returns DSSR-derived structural features in JSON format. This seamless combination of DSSR and Jmol/JSmol brings the molecular graphics of 3D RNA structures to a similar level as that for proteins, and enables a much deeper analysis of structural characteristics. It fills a gap in RNA structural bioinformatics, and is freely accessible (via the Jmol application or the JSmol-based website http://jmol.x3dna.org). PMID:28472503

  2. Quality assurance planning for lunar Mars exploration

    NASA Technical Reports Server (NTRS)

    Myers, Kay

    1991-01-01

    A review is presented of the tools and techniques required to meet the challenge of total quality in the goal of traveling to Mars and returning to the moon. One program used by NASA to ensure the integrity of baselined requirements documents is configuration management (CM). CM is defined as an integrated management process that documents and identifies the functional and physical characteristics of a facility's systems, structures, computer software, and components. It also ensures that changes to these characteristics are properly assessed, developed, approved, implemented, verified, recorded, and incorporated into the facility's documentation. Three principal areas are discussed that will realize significant efficiencies and enhanced effectiveness, change assessment, change avoidance, and requirements management.

  3. Health Care System Transformation and Integration: A Call to Action for Public Health.

    PubMed

    Wiley, Lindsay F; Matthews, Gene W

    2017-03-01

    Restructured health care reimbursement systems and new requirements for nonprofit hospitals are transforming the U.S. health system, creating opportunities for enhanced integration of public health and health care goals. This article explores the role of public health practitioners and lawyers in this moment of transformation. We argue that the population perspective and structural strategies that characterize public health can add value to the health care system but could get lost in translation as changes to tax requirements and payment systems are rapidly implemented. We urge public health leaders to take a more active role in hospital assessments of community health needs and evaluation of the patient outcomes for which providers are accountable.

  4. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    PubMed Central

    Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  5. Wound healing.

    PubMed

    Harvey, Carol

    2005-01-01

    Wound healing in orthopaedic care is affected by the causes of the wound, as well as concomitant therapies used to repair musculoskeletal structures. Promoting the health of the host and creating an environment to foster natural healing processes is essential for helping to restore skin integrity. Normal wound healing physiologic processes, factors affecting wound healing, wound classification systems, unique characteristics of orthopaedic wounds, wound contamination and drainage characteristics, and potential complications are important to understand in anticipation of patient needs. Accurate wound assessment and knowledge of nursing implications with specific wound care measures (cleansing, debridement, and dressings) is important for quality care. New technologies are enhancing traditional wound care measures with goals of effective comfortable wound care to promote restoration of skin integrity.

  6. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  7. Impact of high-κ dielectric and metal nanoparticles in simultaneous enhancement of programming speed and retention time of nano-flash memory

    NASA Astrophysics Data System (ADS)

    Pavel, Akeed A.; Khan, Mehjabeen A.; Kirawanich, Phumin; Islam, N. E.

    2008-10-01

    A methodology to simulate memory structures with metal nanocrystal islands embedded as floating gate in a high-κ dielectric material for simultaneous enhancement of programming speed and retention time is presented. The computational concept is based on a model for charge transport in nano-scaled structures presented earlier, where quantum mechanical tunneling is defined through the wave impedance that is analogous to the transmission line theory. The effects of substrate-tunnel dielectric conduction band offset and metal work function on the tunneling current that determines the programming speed and retention time is demonstrated. Simulation results confirm that a high-κ dielectric material can increase programming current due to its lower conduction band offset with the substrate and also can be effectively integrated with suitable embedded metal nanocrystals having high work function for efficient data retention. A nano-memory cell designed with silver (Ag) nanocrystals embedded in Al 2O 3 has been compared with similar structure consisting of Si nanocrystals in SiO 2 to validate the concept.

  8. The aperture synthesis imaging capability of the EISCAT_3D radars

    NASA Astrophysics Data System (ADS)

    La Hoz, Cesar; Belyey, Vasyl

    2010-05-01

    The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.

  9. Parameterized study of the ionospheric modification associated with sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Crain, D. J.; Sojka, J. J.; Schunk, R. W.; Zhu, L.

    1993-01-01

    The local ionospheric modification that is due to a generalized steady state solar aligned (SA) arc structure is addressed. For a representative set of SA arc parameters which includes both convection and precipitation, emphasis is placed on the modification by SA polar cap arcs upon the F region electron density and the height integrated conductivity. At low fluxes and low characteristic energies, SA polar cap arcs have the most pronounced relative effect at F region altitudes in darkness for winter solar minimum conditions. The absolute enhancement in summer solar minimum and winter solar maximum is equivalent to that of winter solar minimum, but the higher ambient densities make the relative enhancement less. The TEC enhancement associated with an SA arc may be used to indicate the degree of plasma cross flow across the arc.

  10. Integrating ambient noise with GIS for a new perspective on volcano imaging and monitoring: The case study of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Guardo, R.; De Siena, L.

    2017-11-01

    The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.

  11. Structure Refinement of Protein Low Resolution Models Using the GNEIMO Constrained Dynamics Method

    PubMed Central

    Park, In-Hee; Gangupomu, Vamshi; Wagner, Jeffrey; Jain, Abhinandan; Vaidehi, Nagara-jan

    2012-01-01

    The challenge in protein structure prediction using homology modeling is the lack of reliable methods to refine the low resolution homology models. Unconstrained all-atom molecular dynamics (MD) does not serve well for structure refinement due to its limited conformational search. We have developed and tested the constrained MD method, based on the Generalized Newton-Euler Inverse Mass Operator (GNEIMO) algorithm for protein structure refinement. In this method, the high-frequency degrees of freedom are replaced with hard holonomic constraints and a protein is modeled as a collection of rigid body clusters connected by flexible torsional hinges. This allows larger integration time steps and enhances the conformational search space. In this work, we have demonstrated the use of a constraint free GNEIMO method for protein structure refinement that starts from low-resolution decoy sets derived from homology methods. In the eight proteins with three decoys for each, we observed an improvement of ~2 Å in the RMSD to the known experimental structures of these proteins. The GNEIMO method also showed enrichment in the population density of native-like conformations. In addition, we demonstrated structural refinement using a “Freeze and Thaw” clustering scheme with the GNEIMO framework as a viable tool for enhancing localized conformational search. We have derived a robust protocol based on the GNEIMO replica exchange method for protein structure refinement that can be readily extended to other proteins and possibly applicable for high throughput protein structure refinement. PMID:22260550

  12. High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo 2O 4/CNT nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jie; Wu, Jianzhong; Wu, Zexing

    In this paper, 3D-transition binary metal oxides have been considered as promising anode materials for lithium-ion batteries with improved reversible capacity, structural stability and electronic conductivity compared with single metal oxides. Here, carbon nanotube supported NiCo 2O 4 nanoparticles (NiCo 2O 4/CNT) with 3D hierarchical hollow structure are fabricated via a simple one-pot method. The NiCo 2O 4 nanoparticles with interconnected pores are consists of small nanocrystals. When used as anode material for the lithium-ion battery, NiCo 2O 4/CNT exhibits enhanced electrochemical performance than that of Co 3O 4/CNT and NiO/CNT. Moreover, ultra-high discharge/charge stability was obtained for 4000 cyclesmore » at a current density of 5 A g –1. The superior battery performance of NiCo 2O 4 nanoparticles is probably attributed to the special structural features and physical characteristics, including integrity, hollow structure with interconnected pores, which providing sufficient accommodation for the volume change during charge/discharge process. Besides, the consisting of ultra-small crystals enhanced the utility of active material, and intimate interaction with CNTs improved the electron-transfer rate.« less

  13. High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo 2O 4/CNT nanocomposite

    DOE PAGES

    Wang, Jie; Wu, Jianzhong; Wu, Zexing; ...

    2017-05-17

    In this paper, 3D-transition binary metal oxides have been considered as promising anode materials for lithium-ion batteries with improved reversible capacity, structural stability and electronic conductivity compared with single metal oxides. Here, carbon nanotube supported NiCo 2O 4 nanoparticles (NiCo 2O 4/CNT) with 3D hierarchical hollow structure are fabricated via a simple one-pot method. The NiCo 2O 4 nanoparticles with interconnected pores are consists of small nanocrystals. When used as anode material for the lithium-ion battery, NiCo 2O 4/CNT exhibits enhanced electrochemical performance than that of Co 3O 4/CNT and NiO/CNT. Moreover, ultra-high discharge/charge stability was obtained for 4000 cyclesmore » at a current density of 5 A g –1. The superior battery performance of NiCo 2O 4 nanoparticles is probably attributed to the special structural features and physical characteristics, including integrity, hollow structure with interconnected pores, which providing sufficient accommodation for the volume change during charge/discharge process. Besides, the consisting of ultra-small crystals enhanced the utility of active material, and intimate interaction with CNTs improved the electron-transfer rate.« less

  14. MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance

    PubMed Central

    Lai, Xin; Gupta, Shailendra K; Schmitz, Ulf; Marquardt, Stephan; Knoll, Susanne; Spitschak, Alf; Wolkenhauer, Olaf; Pützer, Brigitte M; Vera, Julio

    2018-01-01

    High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance. PMID:29464002

  15. Integrating aeromagnetic and Landsat™ 8 data into subsurface structural mapping of Precambrian basement complex

    NASA Astrophysics Data System (ADS)

    Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.

    2017-01-01

    The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.

  16. Can We Better Integrate the Role of Anti-Doping in Sports and Society? A Psychological Approach to Contemporary Value-Based Prevention.

    PubMed

    Petróczi, Andrea; Norman, Paul; Brueckner, Sebastian

    2017-01-01

    In sport, a wide array of substances with established or putative performance-enhancing properties is used. Most substances are fully acceptable, whilst a defined set, revised annually, is prohibited; thus, using any of these prohibited substances is declared as cheating. In the increasingly tolerant culture of pharmacological and technical human enhancements, the traditional normative approach to anti-doping, which involves telling athletes what they cannot do to improve their athletic ability and performance, diverges from the otherwise positive values attached to human improvement and enhancement in society. Today, doping is the epitome of conflicting normative expectations about the goal (performance enhancement) and the means by which the goal is achieved (use of drugs). Owing to this moral-functional duality, addressing motivations for doping avoidance at the community level is necessary, but not sufficient, for effective doping prevention. Relevant and meaningful anti-doping must also recognise and respect the values of those affected, and consolidate them with the values underpinning structural, community level anti-doping. Effective anti-doping efforts are pragmatic, positive, preventive, and proactive. They acknowledge the progressive nature of how a "performance mindset" forms in parallel with the career transition to elite level, encompasses all levels and abilities, and directly addresses the reasons behind doping use with tangible solutions. For genuine integration into sport and society, anti-doping should consistently engage athletes and other stakeholders in developing positive preventive strategies to ensure that anti-doping education not only focuses on the intrinsic values associated with the spirit of sport but also recognises the values attached to performance enhancement, addresses the pressures athletes are under, and meets their needs for practical solutions to avoid doping. Organisations involved in anti- doping should avoid the image of "controlling" but, instead, work in partnerships with all stakeholders to involve and ensure integration of the targeted individuals in global community-based preventive interventions. © 2017 S. Karger AG, Basel.

  17. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance.

    PubMed

    Wu, Yixuan; Albrecht, Todd R; Baillat, David; Wagner, Eric J; Tong, Liang

    2017-04-25

    The metazoan Integrator complex (INT) has important functions in the 3'-end processing of noncoding RNAs, including the uridine-rich small nuclear RNA (UsnRNA) and enhancer RNA (eRNA), and in the transcription of coding genes by RNA polymerase II. The INT contains at least 14 subunits, but its molecular mechanism of action is poorly understood, because currently there is little structural information about its subunits. The endonuclease activity of INT is mediated by its subunit 11 (IntS11), which belongs to the metallo-β-lactamase superfamily and is a paralog of CPSF-73, the endonuclease for pre-mRNA 3'-end processing. IntS11 forms a stable complex with Integrator complex subunit 9 (IntS9) through their C-terminal domains (CTDs). Here, we report the crystal structure of the IntS9-IntS11 CTD complex at 2.1-Å resolution and detailed, structure-based biochemical and functional studies. The complex is composed of a continuous nine-stranded β-sheet with four strands from IntS9 and five from IntS11. Highly conserved residues are located in the extensive interface between the two CTDs. Yeast two-hybrid assays and coimmunoprecipitation experiments confirm the structural observations on the complex. Functional studies demonstrate that the IntS9-IntS11 interaction is crucial for the role of INT in snRNA 3'-end processing.

  18. A Conformational Investigation of Propeptide Binding to the Integral Membrane Protein γ-Glutamyl Carboxylase Using Nanodisc Hydrogen Exchange Mass Spectrometry

    PubMed Central

    2015-01-01

    Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc–HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491–507 and 395–401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc–HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding. PMID:24512177

  19. Glass and glass-ceramic photonic systems

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  20. Shared mental models of integrated care: aligning multiple stakeholder perspectives.

    PubMed

    Evans, Jenna M; Baker, G Ross

    2012-01-01

    Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.

  1. Strengthening the management of ESA - the Inter-Directorate Reform of Corporate and Risk Management

    NASA Astrophysics Data System (ADS)

    Feustel-Büechl, Jörg; Arend, Harald; Derio, Eric; Infante, Giovanni; Kreiner, Gerhard; Phaler, Jesse; Tabbert, Michael

    2007-02-01

    ESA has undertaken the Inter-Directorate Reform of Corporate and Risk Management to strengthen the Agency's internal operations. The reform was completed at the end of 2006, encompassing five dedicated projects on Risk Management, Agency-Wide Controlling System, Project Plan and Integrated Project Review, General Budget Structure and Charging Policy, and Corporate Information Systems. It has contributed to improved management of the Agency's internal operations by engaging all internal stakeholders in a common objective, introducing improvements to planning and management methods, elaborating consolidated information structures and tools, contributing to enhanced transparency and accountability, and by providing qualified new policies, processes and tools.

  2. Understanding of the management information system based on MVC pattern

    NASA Astrophysics Data System (ADS)

    Chen, Sida

    2018-04-01

    With the development of the society, people have come to realize the significance of information, not only linguistically but also in the written form. To build an effective and efficient working flow, a new subject called Management Information System (MIS) came up. MIS is an integrated discipline, which utilizes comprehensive and systematical methods to manage information, and it enhances the work efficiency through building structured information platform. This paper demonstrates the Management Information System from shallow too deep with the understanding of MVC pattern, including its basic structure and application with ASP.NET. Also some discussions about its features are made in the last section.

  3. Aligning USGS senior leadership structure with the USGS science strategy

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) is realigning its management and budget structure to further enhance the work of its science programs and their interdisciplinary focus areas related to the USGS Science Strategy as outlined in 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017' (U.S. Geological Survey, 2007). In 2007, the USGS developed this science strategy outlining major natural-science issues facing the Nation and focusing on areas where natural science can make a substantial contribution to the well being of the Nation and the world. These areas include global climate change, water resources, natural hazards, energy and minerals, ecosystems, and data integration.

  4. ZnO-based multiple channel and multiple gate FinMOSFETs

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Huang, Hung-Lin; Tseng, Chun-Yen; Lee, Hsin-Ying

    2016-02-01

    In recent years, zinc oxide (ZnO)-based metal-oxide-semiconductor field-effect transistors (MOSFETs) have attracted much attention, because ZnO-based semiconductors possess several advantages, including large exciton binding energy, nontoxicity, biocompatibility, low material cost, and wide direct bandgap. Moreover, the ZnO-based MOSFET is one of most potential devices, due to the applications in microwave power amplifiers, logic circuits, large scale integrated circuits, and logic swing. In this study, to enhance the performances of the ZnO-based MOSFETs, the ZnObased multiple channel and multiple gate structured FinMOSFETs were fabricated using the simple laser interference photolithography method and the self-aligned photolithography method. The multiple channel structure possessed the additional sidewall depletion width control ability to improve the channel controllability, because the multiple channel sidewall portions were surrounded by the gate electrode. Furthermore, the multiple gate structure had a shorter distance between source and gate and a shorter gate length between two gates to enhance the gate operating performances. Besides, the shorter distance between source and gate could enhance the electron velocity in the channel fin structure of the multiple gate structure. In this work, ninety one channels and four gates were used in the FinMOSFETs. Consequently, the drain-source saturation current (IDSS) and maximum transconductance (gm) of the ZnO-based multiple channel and multiple gate structured FinFETs operated at a drain-source voltage (VDS) of 10 V and a gate-source voltage (VGS) of 0 V were respectively improved from 11.5 mA/mm to 13.7 mA/mm and from 4.1 mS/mm to 6.9 mS/mm in comparison with that of the conventional ZnO-based single channel and single gate MOSFETs.

  5. Mechanical stimulation enhances integration in an in vitro model of cartilage repair.

    PubMed

    Theodoropoulos, John S; DeCroos, Amritha J N; Petrera, Massimo; Park, Sam; Kandel, Rita A

    2016-06-01

    (1) To characterize the effects of mechanical stimulation on the integration of a tissue-engineered construct in terms of histology, biochemistry and biomechanical properties; (2) to identify whether cells of the implant or host tissue were critical to implant integration; and (3) to study cells believed to be involved in lateral integration of tissue-engineered cartilage to host cartilage. We hypothesized that mechanical stimulation would enhance the integration of the repair implant with host cartilage in an in vitro integration model. Articular cartilage was harvested from 6- to 9-month-old bovine metacarpal-phalangeal joints. Constructs composed of tissue-engineered cartilage implanted into host cartilage were placed in spinner bioreactors and maintained on a magnetic stir plate at either 0 (static control) or 90 (experimental) rotations per minute (RPM). The constructs from both the static and spinner bioreactors were harvested after either 2 or 4 weeks of culture and evaluated histologically, biochemically, biomechanically and for gene expression. The extent and strength of integration between tissue-engineered cartilage and native cartilage improved significantly with both time and mechanical stimulation. Integration did not occur if the implant was not viable. The presence of stimulation led to a significant increase in collagen content in the integration zone between host and implant at 2 weeks. The gene profile of cells in the integration zone differs from host cartilage demonstrating an increase in the expression of membrane type 1 matrix metalloproteinase (MT1-MMP), aggrecan and type II collagen. This study shows that the integration of in vitro tissue-engineered implants with host tissue improves with mechanical stimulation. The findings of this study suggests that consideration should be given to implementing early loading (mechanical stimulation) into future in vivo studies investigating the long-term viability and integration of tissue-engineered cartilage for the treatment of cartilage injuries. This could simply be done through the use of continuous passive motion (CPM) in the post-operative period or through a more complex and structured rehabilitation program with a gradual increase in forces across the joint over time.

  6. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  7. Full-Scale Test and Analysis Results of a PRSEUS Fuselage Panel to Assess Damage Containment Features

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.

  8. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy.

    PubMed

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J

    2014-08-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.

  9. Iterative Tensor Voting for Perceptual Grouping of Ill-Defined Curvilinear Structures: Application to Adherens Junctions

    PubMed Central

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2012-01-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is applied to delineation of adherens junctions imaged through fluorescence microscopy. This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates. PMID:21421432

  10. Laser surface structuring of AZ31 Mg alloy for controlled wettability.

    PubMed

    Gökhan Demir, Ali; Furlan, Valentina; Lecis, Nora; Previtali, Barbara

    2014-06-01

    Structured surfaces exhibit functional properties that can enhance the performance of a bioimplant in terms of biocompatibility, adhesion, or corrosion behavior. In order to tailor the surface property, chemical and physical methods can be used in a sequence of many steps. On the other hand, laser surface processing can provide a single step solution to achieve the designated surface function with the use of simpler equipment and high repeatability. This work provides the details on the surface structuring of AZ31, a biocompatible and biodegradable Mg alloy, by a single-step laser surface structuring based on remelting. The surfaces are characterized in terms of topography, chemistry, and physical integrity, as well as the effective change in the surface wetting behavior is demonstrated. The results imply a great potential in local or complete surface structuring of medical implants for functionalization by the flexible positioning of the laser beam.

  11. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    PubMed

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  12. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  13. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors

    PubMed Central

    Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha

    2016-01-01

    Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496

  14. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  15. The NATO thesaurus project

    NASA Technical Reports Server (NTRS)

    Krueger, Jonathan

    1990-01-01

    This document describes functionality to be developed to support the NATO technical thesaurus. Described are the specificity of the thesaurus structure and function; the distinction between the thesaurus information and its representation in a given online, machine readable, or printed form; the enhancement of the thesaurus with the assignment of COSATI codes (fields and groups) to posting terms, the integration of DTIC DRIT and NASA thesauri related terminology, translation of posting terms into French; and the provision of a basis for system design.

  16. NESSUS/NASTRAN Interface

    NASA Technical Reports Server (NTRS)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.

  17. National Combustion Code, a Multidisciplinary Combustor Design System, Will Be Transferred to the Commercial Sector

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.

  18. Integral physicochemical properties of reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.

    2016-08-01

    The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.

  19. Controlling particle properties in {{YBa}}_{2}{{Cu}}_{3}{{\\rm{O}}}_{7-\\delta } nanocomposites by combining PLD with an inert gas condensation system

    NASA Astrophysics Data System (ADS)

    Sparing, M.; Reich, E.; Hänisch, J.; Gottschall, T.; Hühne, R.; Fähler, S.; Rellinghaus, B.; Schultz, L.; Holzapfel, B.

    2017-10-01

    The critical current density {J}{{c}} in {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films, which limits their application in external magnetic fields, can be enhanced by the introduction of artificial pinning centers such as non-superconducting nanoparticles inducing additional defects and local strain in the superconducting matrix. To understand the correlation between superconductivity, defect structures and particles, a controlled integration of particles with adjustable properties is essential. A powerful technique for the growth of isolated nanoparticles in the range of 10 nm is dc-magnetron sputtering in an inert gas flow. The inert gas condensation (IGC) of particles allows for an independent control of both the particle diameter distribution and the areal density. We report on the integration of such gas-phase-condensed {{HfO}}2 nanoparticles into pulsed laser deposited (PLD) {{YBa}}2{{Cu}}3{{{O}}}7-δ thin film multilayers with a combined PLD-IGC system. The particles and the structure of the multilayers are analyzed by transmission electron microscopy on cross-sectional FIB lamellae. As a result of the IGC particle implementation, randomly as well as biaxially oriented {{BaHfO}}3 precipitates are formed in the {{YBa}}2{{Cu}}3{{{O}}}7-δ thin films. With as few as three interlayers of nanoparticles, the pinning force density is enhanced in the low-field region.

  20. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.

    PubMed

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-21

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.

  1. Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

    PubMed Central

    Zhang, Wenjie; Li, Zihui; Liu, Yan; Ye, Dongxia; Li, Jinhua; Xu, Lianyi; Wei, Bin; Zhang, Xiuli; Liu, Xuanyong; Jiang, Xinquan

    2012-01-01

    Background: The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods. Methods: In this study, using an H2O2 process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs) were evaluated without the addition of osteoinductive chemical factors. Results: These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation, and differentiation. Conclusion: The enhanced adhesion, proliferation, and osteogenic differentiation abilities of rat BMMSCs on the nano-sawtooth structures suggest the potential to induce improvements in bone-titanium integration in vivo. Our study reveals the key role played by the nano-sawtooth structures on a titanium surface for the fate of rat BMMSCs and provides insights into the study of stem cell-nanostructure relationships and the related design of improved biomedical implant surfaces. PMID:22927760

  2. Elevated 2,3-diphosphoglycerate concentrations and alteration of structural integrity in the erythrocytes of Indian cases of visceral leishmaniasis.

    PubMed

    Biswas, T; Ghosh, D K; Mukherjee, N; Ghosal, J

    1995-08-01

    The visceral leishmaniasis (VL) known as kala-azar in India is characterized by severe anaemia. The anaemia seems to be the result, at least in part, of the relatively short life-time of the erythrocytes, which have weakened cell membranes, possibly because of elevated concentrations of 2,3-diphosphoglycerate (2,3-DPG). There is a negative correlation (r = 0.91; P < 0.01) between erythrocytic 2,3-DPG concentrations and the blood concentration of haemoglobin, and the erythrocytes from infected patients display higher osmotic fragility than those from uninfected controls. Spectrofluorometry, using 1,6-diphenyl 1,3,5-hexatriene as a probe, indicated that fluorescence depolarization and microviscosity are also higher in the erythrocytic membranes from VL cases than in those from the controls. The cholesterol/phospholipid ratio is also relatively high in the membranes from the VL cases and there is degradation of the skeletal components and the major integral protein (band 3). The enhanced concentration of 2,3-DPG may be related to the altered structural integrity of the erythrocytes and this may lead to anisocytosis and the reduction in the erythrocytic half life.

  3. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    PubMed Central

    Csete, Mária; Sipos, Áron; Szalai, Anikó; Najafi, Faraz; Szabó, Gábor; Berggren, Karl K.

    2013-01-01

    Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression. PMID:23934331

  4. Protein and cell micropatterning and its integration with micro/nanoparticles assembly.

    PubMed

    Yap, F L; Zhang, Y

    2007-01-15

    Micropatterning of proteins and cells has become very popular over the past decade due to its importance in the development of biosensors, microarrays, tissue engineering and cellular studies. This article reviews the techniques developed for protein and cell micropatterning and its biomedical applications. The prospect of integrating micro and nanoparticles with protein and cell micropatterning is discussed. The micro/nanoparticles are assembled into patterns and form the substrate for proteins and cell attachment. The assembled particles create a micro or nanotopography, depending on the size of the particles employed. The nonplanar structure can increase the surface area for biomolecules attachment and therefore enhance the sensitivity for detection in biosensors. Furthermore, a nanostructured substrate can influence the conformation and functionality of protein attached to it, while cellular response in terms of morphology, adhesion, proliferation, differentiation, etc. can be affected by a surface expressing micro or nanoscale structures. Proteins and cells tend to lose their normal functions upon attachment to substrate. By recognizing the types of topography that are favourable for preserving proteins and cell behaviour, and integrating it with micropattering will lead to the development of functional protein and cell patterns.

  5. Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids

    PubMed Central

    Shearier, Emily; Xing, Qi; Qian, Zichen

    2016-01-01

    Multicellular human mesenchymal stem cell (hMSC) spheroids have been demonstrated to be valuable in a variety of applications, including cartilage regeneration, wound healing, and neoangiogenesis. Physiological relevant low oxygen culture can significantly improve in vitro hMSC expansion by preventing cell differentiation. We hypothesize that hypoxia-cultured hMSC spheroids can better maintain the regenerative properties of hMSCs. In this study, hMSC spheroids were fabricated using hanging drop method and cultured under 2% O2 and 20% O2 for up to 96 h. Spheroid diameter and viability were examined, as well as extracellular matrix (ECM) components and growth factor levels between the two oxygen tensions at different time points. Stemness was measured among the spheroid culture conditions and compared to two-dimensional cell cultures. Spheroid viability and structural integrity were studied using different needle gauges to ensure no damage would occur when implemented in vivo. Spheroid attachment and integration within a tissue substitute were also demonstrated. The results showed that a three-dimensional hMSC spheroid cultured at low oxygen conditions can enhance the production of ECM proteins and growth factors, while maintaining the spheroids' stemness and ability to be injected, attached, and potentially be integrated within a tissue. PMID:26830500

  6. The role of the CeO 2 /BiVO 4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes

    DOE PAGES

    Shinde, A.; Li, G.; Zhou, L.; ...

    2016-09-09

    Solar fuel generators entail a high degree of materials integration, and efficient photoelectrocatalysis of the constituent reactions hinges upon the establishment of highly functional interfaces. Our recent application of high throughput experimentation to interface discovery for solar fuels photoanodes has revealed several surprising and promising mixed-metal oxide coatings for BiVO 4. Furthermore, when using sputter deposition of composition and thickness gradients on a uniform BiVO 4 film, we systematically explore photoanodic performance as a function of the composition and loading of Fe–Ce oxide coatings. This combinatorial materials integration study not only enhances the performance of this new class of materialsmore » but also identifies CeO 2 as a critical ingredient that merits detailed study. A heteroepitaxial CeO 2(001)/BiVO4(010) interface is identified in which Bi and V remain fully coordinated to O such that no surface states are formed. Ab initio calculations of the integrated materials and inspection of the electronic structure reveals mechanisms by which CeO 2 facilitates charge transport while mitigating deleterious recombination. Our results support the observations that addition of Ce to BiVO 4 coatings greatly enhances photoelectrocatalytic activity, providing an important strategy for developing a scalable solar fuels technology.« less

  7. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  8. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    PubMed Central

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  9. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry.

    PubMed

    Souda, Puneet; Ryan, Christopher M; Cramer, William A; Whitelegge, Julian

    2011-12-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein's native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electron-capture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Integrated healthcare networks' performance: a growth curve modeling approach.

    PubMed

    Wan, Thomas T H; Wang, Bill B L

    2003-05-01

    This study examines the effects of integration on the performance ratings of the top 100 integrated healthcare networks (IHNs) in the United States. A strategic-contingency theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. To create a database for the panel study, the top 100 IHNs selected by the SMG Marketing Group in 1998 were followed up in 1999 and 2000. The data were merged with the Dorenfest data on information system integration. A growth curve model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' performance in 1998 and their subsequent rankings in the consecutive years were analyzed. IHNs' initial performance scores were positively influenced by network size, number of affiliated physicians and profit margin, and were negatively associated with average length of stay and technical efficiency. The continuing high performance, judged by maintaining higher performance scores, tended to be enhanced by the use of more managerial or executive decision-support systems. Future studies should include time-varying operational indicators to serve as predictors of network performance.

  11. An All-Freeze-Casting Strategy to Design Typographical Supercapacitors with Integrated Architectures.

    PubMed

    Wang, Qingrong; Wang, Xinyu; Wan, Fang; Chen, Kena; Niu, Zhiqiang; Chen, Jun

    2018-06-01

    The emergence of flexible and wearable electronics has raised the demand for flexible supercapacitors with accurate sizes and aesthetic shapes. Here, a strategy is developed to prepare flexible all-in-one integrated supercapacitors by combining all-freeze-casting with typography technique. The continuous seamless connection of all-in-one supercapacitor devices enhances the load and/or electron transfer capacity and avoids displacing and detaching between their neighboring components at bending status. Therefore, such a unique structure of all-in-one integrated devices is beneficial for retaining stable electrochemical performance at different bending levels. More importantly, the sizes and aesthetic shapes of integrated supercapacitors could be controlled by the designed molds, like type matrices of typography. The molds could be assembled together and typeset randomly, achieving the controllable construction and series and/or parallel connection of several supercapacitor devices. The preparation of flexible integrated supercapacitors will pave the way for assembling programmable all-in-one energy storage devices into highly flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel metamaterial based antennas for flexible wireless systems

    NASA Astrophysics Data System (ADS)

    Khaleel, Haider Raad

    Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.

  13. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    NASA Astrophysics Data System (ADS)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our approach is demonstrated with real data acquired during extensive flight tests to several airports in Northern Germany.

  14. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.

  15. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  16. Diagnostics in the Extendable Integrated Support Environment (EISE)

    NASA Technical Reports Server (NTRS)

    Brink, James R.; Storey, Paul

    1988-01-01

    Extendable Integrated Support Environment (EISE) is a real-time computer network consisting of commercially available hardware and software components to support systems level integration, modifications, and enhancement to weapons systems. The EISE approach offers substantial potential savings by eliminating unique support environments in favor of sharing common modules for the support of operational weapon systems. An expert system is being developed that will help support diagnosing faults in this network. This is a multi-level, multi-expert diagnostic system that uses experiential knowledge relating symptoms to faults and also reasons from structural and functional models of the underlying physical model when experiential reasoning is inadequate. The individual expert systems are orchestrated by a supervisory reasoning controller, a meta-level reasoner which plans the sequence of reasoning steps to solve the given specific problem. The overall system, termed the Diagnostic Executive, accesses systems level performance checks and error reports, and issues remote test procedures to formulate and confirm fault hypotheses.

  17. Performance Enhancements Under Dual-task Conditions

    NASA Technical Reports Server (NTRS)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1984-01-01

    Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.

  18. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.

    PubMed

    Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H

    2011-06-06

    We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

  19. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    PubMed Central

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  20. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  1. Crystal Structures of the ATPase Domains of Four Human Hsp70 Isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78

    PubMed Central

    Wisniewska, Magdalena; Karlberg, Tobias; Lehtiö, Lari; Johansson, Ida; Kotenyova, Tetyana; Moche, Martin; Schüler, Herwig

    2010-01-01

    The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1. PMID:20072699

  2. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure-activity relationships, molecular dynamics and dermal delivery.

    PubMed

    Teixeira, Raquel S; Cova, Tânia F G G; Silva, Sérgio M C; Oliveira, Rita; do Vale, M Luísa C; Marques, Eduardo F; Pais, Alberto A C C; Veiga, Francisco J B

    2015-06-01

    This work aims at studying the efficacy of a series of novel biocompatible, serine-based surfactants as chemical permeation enhancers for two different local anesthetics, tetracaine and ropivacaine, combining an experimental and computational approach. The surfactants consist of gemini molecules structurally related, but with variations in headgroup charge (nonionic vs. cationic) and in the hydrocarbon chain lengths (main and spacer chains). In vitro permeation and molecular dynamics studies combined with cytotoxicity profiles were performed to investigate the permeation of both drugs, probe skin integrity, and rationalize the interactions at molecular level. Results show that these enhancers do not have significant deleterious effects on the skin structure and do not cause relevant changes on cell viability. Permeation across the skin is clearly improved using some of the selected serine-based gemini surfactants, namely the cationic ones with long alkyl chains and shorter spacer. This is noteworthy in the case of ropivacaine hydrochloride, which is not easily administered through the stratum corneum. Molecular dynamics results provide a mechanistic view of the surfactant action on lipid membranes that essentially corroborate the experimental observations. Overall, this study suggests the viability of these serine-based surfactants as suitable and promising delivery agents in pharmaceutical formulations. Copyright © 2015. Published by Elsevier B.V.

  3. Integrating an incident management system within a continuity of operations programme: case study of the Bank of Canada.

    PubMed

    Loop, Carole

    2013-01-01

    Carrying out critical business functions without interruption requires a resilient and robust business continuity framework. By embedding an industry-standard incident management system within its business continuity structure, the Bank of Canada strengthened its response plan by enabling timely response to incidents while maintaining a strong focus on business continuity. A total programme approach, integrating the two disciplines, provided for enhanced recovery capabilities. While the value of an effective and efficient response organisation is clear, as demonstrated by emergency events around the world, incident response structures based on normal operating hierarchy can experience unique challenges. The internationally-recognised Incident Command System (ICS) model addresses these issues and reflects the five primary incident management functions, each contributing to the overall strength and effectiveness of the response organisation. The paper focuses on the Bank of Canada's successful implementation of the ICS model as its incident management and continuity of operations programmes evolved to reflect current best practices.

  4. Results of EVA/mobile transporter space station truss assembly tests

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Heard, Walter L., Jr.; Bush, Harold G.; Lake, M. S.; Jensen, J. K.; Wallsom, R. E.; Phelps, J. E.

    1988-01-01

    Underwater neutral buoyance tests were conducted to evaluate the use of a Mobile Transporter concept in conjunction with EVA astronauts to construct the Space Station Freedom truss structure. A three-bay orthogonal tetrahedral truss configuration with a 15 foot square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices (mobile foot restraints). The average unit assembly time (which included integrated installation of utility trays) was 27.6 s/strut, or 6 min/bay. The results of these tests indicate that EVA assembly of space station size structures can be significantly enhanced when using a Mobile Transporter equipped with astronaut positioning devices. Rapid assembly time can be expected and are dependent primarily on the rate of translation permissible for on-orbit operations. The concept used to demonstate integrated installation of utility trays requires minimal EVA handling and consequentially, as the results show, has little impact on overall assembly time.

  5. Perceptions of Yoga Therapy Embedded in Two Inpatient Rehabilitation Hospitals: Agency Perspectives

    PubMed Central

    Van Puymbroeck, Marieke; Miller, Kristine K.; Dickes, Lori A.; Schmid, Arlene A.

    2015-01-01

    Inpatient medical rehabilitation has maintained a typical medical-model focus and structure for many years. However, as integrative therapies, such as yoga therapy, emerge as treatments which can enhance the physical and mental health of its participants, it is important to determine if they can be easily implemented into the traditional rehabilitation structure and milieu. Therefore, the purpose of this study was to examine the perceptions of key agency personnel on the feasibility and utility of yoga therapy implemented in inpatient rehabilitation. This study reports the results of focus groups and an individual interview with key stakeholders (administrators and rehabilitation therapists) from two rehabilitation hospitals following the implementation of yoga therapy. Results focused on several key themes: feasibility from the therapist and administrator perspectives, challenges to implementation, and utility and benefit. Overall, the implementation and integration of yoga therapy were positive; however, some programmatic and policy and organizational considerations remain. Implications for practice and future research are provided. PMID:26491457

  6. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, C. W. (Editor)

    1985-01-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  7. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  8. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  9. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-18

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  10. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Jones, C. W.

    1985-12-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  11. Semiconductor activated terahertz metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hou-Tong

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  12. Semiconductor activated terahertz metamaterials

    DOE PAGES

    Chen, Hou-Tong

    2014-08-01

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  13. Integrated sensing and actuation of dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-04-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.

  14. Sustainability and integration of radioecology-position paper.

    PubMed

    Muikku, M; Beresford, N A; Garnier-Laplace, J; Real, A; Sirkka, L; Thorne, M; Vandenhove, H; Willrodt, C

    2018-03-01

    This position paper gives an overview of how the COMET project (COordination and iMplementation of a pan-European instrumenT for radioecology, a combined Collaborative Project and Coordination and Support Action under the EC/Euratom 7th Framework Programme) contributed to the integration and sustainability of radioecology in Europe via its support to and interaction with the European Radioecology ALLIANCE. COMET built upon the foundations laid by the FP7 project STAR (Strategic Network for Integrating Radioecology) Network of Excellence in radioecology. In close association with the ALLIANCE, and based on the Strategic Research Agenda (SRA), COMET developed innovative mechanisms for joint programming and implementation of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET were targeted at radioecological research needs identified in the SRA. Furthermore, COMET maintained and developed strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. In the short term the work to promote radioecology will continue under the H2020 project EJP-CONCERT (European Joint Programme for the Integration of Radiation Protection Research). The EJP-CONCERT project (2015-2020) aims to develop a sustainable structure for promoting and administering joint programming and open research calls in the field of radiation protection research for Europe. In the longer term, radioecological research will be facilitated by the ALLIANCE. External funding is, however, required in order to be able to answer emerging research needs.

  15. DSSR-enhanced visualization of nucleic acid structures in Jmol.

    PubMed

    Hanson, Robert M; Lu, Xiang-Jun

    2017-07-03

    Sophisticated and interactive visualizations are essential for making sense of the intricate 3D structures of macromolecules. For proteins, secondary structural components are routinely featured in molecular graphics visualizations. However, the field of RNA structural bioinformatics is still lagging behind; for example, current molecular graphics tools lack built-in support even for base pairs, double helices, or hairpin loops. DSSR (Dissecting the Spatial Structure of RNA) is an integrated and automated command-line tool for the analysis and annotation of RNA tertiary structures. It calculates a comprehensive and unique set of features for characterizing RNA, as well as DNA structures. Jmol is a widely used, open-source Java viewer for 3D structures, with a powerful scripting language. JSmol, its reincarnation based on native JavaScript, has a predominant position in the post Java-applet era for web-based visualization of molecular structures. The DSSR-Jmol integration presented here makes salient features of DSSR readily accessible, either via the Java-based Jmol application itself, or its HTML5-based equivalent, JSmol. The DSSR web service accepts 3D coordinate files (in mmCIF or PDB format) initiated from a Jmol or JSmol session and returns DSSR-derived structural features in JSON format. This seamless combination of DSSR and Jmol/JSmol brings the molecular graphics of 3D RNA structures to a similar level as that for proteins, and enables a much deeper analysis of structural characteristics. It fills a gap in RNA structural bioinformatics, and is freely accessible (via the Jmol application or the JSmol-based website http://jmol.x3dna.org). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies

  17. Integration of electro-anatomical and imaging data of the left ventricle: An evaluation framework.

    PubMed

    Soto-Iglesias, David; Butakoff, Constantine; Andreu, David; Fernández-Armenta, Juan; Berruezo, Antonio; Camara, Oscar

    2016-08-01

    Integration of electrical and structural information for scar characterization in the left ventricle (LV) is a crucial step to better guide radio-frequency ablation therapies, which are usually performed in complex ventricular tachycardia (VT) cases. This integration requires finding a common representation where to map the electrical information from the electro-anatomical map (EAM) surfaces and tissue viability information from delay-enhancement magnetic resonance images (DE-MRI). However, the development of a consistent integration method is still an open problem due to the lack of a proper evaluation framework to assess its accuracy. In this paper we present both: (i) an evaluation framework to assess the accuracy of EAM and imaging integration strategies with simulated EAM data and a set of global and local measures; and (ii) a new integration methodology based on a planar disk representation where the LV surface meshes are quasi-conformally mapped (QCM) by flattening, allowing for simultaneous visualization and joint analysis of the multi-modal data. The developed evaluation framework was applied to estimate the accuracy of the QCM-based integration strategy on a benchmark dataset of 128 synthetically generated ground-truth cases presenting different scar configurations and EAM characteristics. The obtained results demonstrate a significant reduction in global overlap errors (50-100%) with respect to state-of-the-art integration techniques, also better preserving the local topology of small structures such as conduction channels in scars. Data from seventeen VT patients were also used to study the feasibility of the QCM technique in a clinical setting, consistently outperforming the alternative integration techniques in the presence of sparse and noisy clinical data. The proposed evaluation framework has allowed a rigorous comparison of different EAM and imaging data integration strategies, providing useful information to better guide clinical practice in complex cardiac interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection

    PubMed Central

    2015-01-01

    Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. A detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges are presented. Application of the plasma-processed paper sensors in DNA detection is also demonstrated. PMID:25423585

  19. Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection

    DOE PAGES

    Gandhiraman, Ram P.; Nordlund, Dennis; Jayan, Vivek; ...

    2014-11-25

    Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. We presentmore » a detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges. Lastly, application of the plasma-processed paper sensors in DNA detection is also demonstrated.« less

  20. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells.

    PubMed

    Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong

    2017-09-01

    Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.

  1. SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis

    PubMed Central

    Cepeda-Pérez, Elisa; López-Luke, Tzarara; Salas, Pedro; Plascencia-Villa, Germán; Ponce, Arturo; Vivero-Escoto, Juan; José-Yacamán, Miguel; de la Rosa, Elder

    2016-01-01

    In the present work, we report a dry-based application technique of Au/SiO2 clouds in powder for rapid ex vivo adenocarcinoma diagnosis through surface-enhanced Raman scattering (SERS); using low laser power and an integration time of one second. Several characteristic Raman peaks frequently used for the diagnosis of breast adenocarcinoma in the range of the amide III are successfully enhanced by breading the tissue with Au/SiO2 powder. The SERS activity of these Au/SiO2 powders is attributed to their rapid rehydration upon contact with the wet tissues, which promotes the formation of gold nanoparticle aggregates. The propensity of the Au/SiO2 cloud structures to adsorb biomolecules in the vicinity of the gold nanoparticle clusters promotes the necessary conditions for SERS detection. In addition, electron microscopy, together with elemental analysis, have been used to confirm the structure of the new Au/SiO2 cloud material and to investigate its distribution in breast tissues. PMID:27375955

  2. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells

    PubMed Central

    Wang, Min; Ma, Pengsha; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun

    2017-01-01

    Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll‐to‐roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si‐based triple‐junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance. PMID:28932667

  3. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    PubMed

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  4. Enhancing Treatment Integrity Maintenance through Fading with Indiscriminable Contingencies

    ERIC Educational Resources Information Center

    Gross, Thomas J.; Duhon, Gary J.; Doerksen-Klopp, Bethany

    2014-01-01

    School psychologists are often asked to develop treatment to remediate students' academic skills or social behavior problems. When teachers implement treatment recommendations with high levels of treatment integrity, students benefit. Treatment integrity has been enhanced by use of direct training, performance feedback, and negative…

  5. An enhanced forest classification scheme for modeling vegetation-climate interactions based on national forest inventory data

    NASA Astrophysics Data System (ADS)

    Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.

    2018-01-01

    Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

  6. Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits

    NASA Astrophysics Data System (ADS)

    Yang, Deren; Chen, Jiahe; Ma, Xiangyang; Que, Duanlin

    2009-01-01

    Impurities in Czochralski silicon (Cz-Si) used for ultra large-scaled-integrated (ULSI) circuits have been believed to deteriorate the performance of devices. In this paper, a review of the recent processes from our investigation on internal gettering in Cz-Si wafers which were doped with nitrogen, germanium and/or high content of carbon is presented. It has been suggested that those impurities enhance oxygen precipitation, and create both denser bulk microdefects and enough denuded zone with the desirable width, which is benefit of the internal gettering of metal contamination. Based on the experimental facts, a potential mechanism of impurity doping on the internal gettering structure is interpreted and, a new concept of 'impurity engineering' for Cz-Si used for ULSI is proposed.

  7. Integrating opto-thermo-mechanical design tools: open engineering's project presentation

    NASA Astrophysics Data System (ADS)

    De Vincenzo, P.; Klapka, Igor

    2017-11-01

    An integrated numerical simulation package dedicated to the analysis of the coupled interactions of optical devices is presented. To reduce human interventions during data transfers, it is based on in-memory communications between the structural analysis software OOFELIE and the optical design application ZEMAX. It allows the automated enhancement of the existing optical design with information related to the deformations of optical surfaces due to thermomechanical solicitations. From the knowledge of these deformations, a grid of points or a decomposition based on Zernike polynomials can be generated for each surface. These data are then applied to the optical design. Finally, indicators can be retrieved from ZEMAX in order to compare the optical performances with those of the system in its nominal configuration.

  8. Ceramic component reliability with the restructured NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.

    1992-01-01

    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).

  9. Hybrid Wing Body Planform Design with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; Olson, Erik D.

    2011-01-01

    The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.

  10. An integrative model linking feedback environment and organizational citizenship behavior.

    PubMed

    Peng, Jei-Chen; Chiu, Su-Fen

    2010-01-01

    Past empirical evidence has suggested that a positive supervisor feedback environment may enhance employees' organizational citizenship behavior (OCB). In this study, we aim to extend previous research by proposing and testing an integrative model that examines the mediating processes underlying the relationship between supervisor feedback environment and employee OCB. Data were collected from 259 subordinate-supervisor dyads across a variety of organizations in Taiwan. We used structural equation modeling to test our hypotheses. The results demonstrated that supervisor feedback environment influenced employees' OCB indirectly through (1) both positive affective-cognition and positive attitude (i.e., person-organization fit and organizational commitment), and (2) both negative affective-cognition and negative attitude (i.e., role stressors and job burnout). Theoretical and practical implications are discussed.

  11. Improved measurement performance of the Physikalisch-Technische Bundesanstalt nanometer comparator by integration of a new Zerodur sample carriage

    NASA Astrophysics Data System (ADS)

    Flügge, Jens; Köning, Rainer; Schötka, Eugen; Weichert, Christoph; Köchert, Paul; Bosse, Harald; Kunzmann, Horst

    2014-12-01

    The paper describes recent improvements of Physikalisch-Technische Bundesanstalt's (PTB) reference measuring instrument for length graduations, the so-called nanometer comparator, intended to achieve a measurement uncertainty in the domain of 1 nm for a length up to 300 mm. The improvements are based on the design and realization of a new sample carriage, integrated into the existing structure and the optimization of coupling this new device to the vacuum interferometer, by which the length measuring range of approximately 540 mm with sub-nm resolution is given. First, measuring results of the enhanced nanometer comparator are presented and discussed, which show the improvements of the measuring capabilities and verify the step toward the sub-nm accuracy level.

  12. Current forgings and their properties for steam generator of nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio

    1997-12-31

    Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less

  13. From network structure to network reorganization: implications for adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  14. Geometric identification and damage detection of structural elements by terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min

    2016-04-01

    In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.

  15. A cognitive perspective on health systems integration: results of a Canadian Delphi study.

    PubMed

    Evans, Jenna M; Baker, G Ross; Berta, Whitney; Barnsley, Jan

    2014-05-19

    Ongoing challenges to healthcare integration point toward the need to move beyond structural and process issues. While we know what needs to be done to achieve integrated care, there is little that informs us as to how. We need to understand how diverse organizations and professionals develop shared knowledge and beliefs - that is, we need to generate knowledge about normative integration. We present a cognitive perspective on integration, based on shared mental model theory, that may enhance our understanding and ability to measure and influence normative integration. The aim of this paper is to validate and improve the Mental Models of Integrated Care (MMIC) Framework, which outlines important knowledge and beliefs whose convergence or divergence across stakeholder groups may influence inter-professional and inter-organizational relations. We used a two-stage web-based modified Delphi process to test the MMIC Framework against expert opinion using a random sample of participants from Canada's National Symposium on Integrated Care. Respondents were asked to rate the framework's clarity, comprehensiveness, usefulness, and importance using seven-point ordinal scales. Spaces for open comments were provided. Descriptive statistics were used to describe the structured responses, while open comments were coded and categorized using thematic analysis. The Kruskall-Wallis test was used to examine cross-group agreement by level of integration experience, current workplace, and current role. In the first round, 90 individuals responded (52% response rate), representing a wide range of professional roles and organization types from across the continuum of care. In the second round, 68 individuals responded (75.6% response rate). The quantitative and qualitative feedback from experts was used to revise the framework. The re-named "Integration Mindsets Framework" consists of a Strategy Mental Model and a Relationships Mental Model, comprising a total of nineteen content areas. The Integration Mindsets Framework draws the attention of researchers and practitioners to how various stakeholders think about and conceptualize integration. A cognitive approach to understanding and measuring normative integration complements dominant cultural approaches and allows for more fine-grained analyses. The framework can be used by managers and leaders to facilitate the interpretation, planning, implementation, management and evaluation of integration initiatives.

  16. Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Peng; Song, Yi-Zhong; Zhu, Rui-Fu; Li, Mu-Sen; Lei, Ting-Quan

    2003-02-01

    Heat treatment was expected to enhance the long-term reliability of hydroxyapatite (HA) coatings on metal substrates. In this study, factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment were carefully analyzed. The phases were characterized by using X-ray diffraction (XRD), the OH - ion contents were determined by Fourier transform infrared (FTIR) spectroscopy. Of the involved factors, heating temperature is of more importance. The appropriate heat treatments is (600- 700 ° C)×2 h for coatings made from fine particles (10-20 μm) and 600 ° C×2 h for coatings made from coarse particles (50-80 μm). The excessive high temperatures and long holding times were unfavorable for the structural integrity of HA.

  17. Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Grass, Stefan; Treuel, Lennart

    2014-02-01

    In biological fluids, an adsorption layer of proteins, a "protein corona" forms around nanoparticles (NPs) largely determining their biological identity. In many interactions with NPs proteins can undergo structural changes. Here, we study the adsorption of insulin onto gold NPs (mean hydrodynamic particle diameter 80 ± 18 nm), focusing on the structural consequences of the adsorption process for the protein. We use surface enhanced Raman scattering (SERS) spectroscopy to study changes in the protein's secondary structure as well as the impact on integrity and conformations of disulfide bonds immediately on the NP surface. A detailed comparison to SERS spectra of cysteine and cystine provides first mechanistic insights into the causes for these conformational changes. Potential biological and toxicological implications of these findings are also discussed.

  18. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes

    DOE PAGES

    Yang, Jinhui; Cooper, Jason K.; Toma, Francesca M.; ...

    2016-11-07

    Artificial photosystems are advanced by the development of conformal catalytic materials that promote desired chemical transformations, while also maintaining stability and minimizing parasitic light absorption for integration on surfaces of semiconductor light absorbers. We demonstrate that multifunctional, nanoscale catalysts that enable high-performance photoelectrochemical energy conversion can be engineered by plasma-enhanced atomic layer deposition. The collective properties of tailored Co 3 O 4 /Co(OH) 2 thin films simultaneously provide high activity for water splitting, permit efficient interfacial charge transport from semiconductor substrates, and enhance durability of chemically sensitive interfaces. Furthermore, these films comprise compact and continuous nanocrystalline Co 3 O 4more » spinel that is impervious to phase transformation and impermeable to ions, thereby providing effective protection of the underlying substrate. Moreover, a secondary phase of structurally disordered and chemically labile Co(OH) 2 is introduced to ensure a high concentration of catalytically active sites. Application of this coating to photovoltaic p + n-Si junctions yields best reported performance characteristics for crystalline Si photoanodes.« less

  19. Recent advances and product enhancements in reflective cholesteric displays

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.

    2005-04-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.

  20. Evolution of the pygmy dipole resonance in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.

    2011-04-01

    Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

  1. Lunar subsurface architecture enhanced by artificial biosphere concepts

    NASA Technical Reports Server (NTRS)

    Klassi, Jason D.; Rocha, Carlos J.; Carr, Charles A.

    1992-01-01

    The integration of artificial biosphere technology with subselene architecture can create a life-enhancing, productive habitat that is safe from solar radiation and extreme temperature fluctuations while maximizing resources brought from Earth and derived from lunar regolith. In the short term, the resulting biotectural (biosphere and architectural) designs will not only make the structures more habitable, productive, and manageable, but will ultimately provide the self-sufficiency factors necessary for the mature lunar settlement. From a long-term perspective, this biotecture approach to astronautics and extraterrestrial development (1) helps reduce mass lift requirements, (2) contributes to habitat self-sufficiency, and (3) actualizes at least one philosophy of solar system exploration, which is to exploit nonterrestrial resources in an effort to conserve our natural resources on this planet.

  2. Academic Research Integration System

    ERIC Educational Resources Information Center

    Surugiu, Iula; Velicano, Manole

    2008-01-01

    This paper comprises results concluding the research activity done so far regarding enhanced web services and system integration. The objective of the paper is to define the software architecture for a coherent framework and methodology for enhancing existing web services into an integrated system. This document presents the research work that has…

  3. Assessment of Damage Containment Features of a Full-Scale PRSEUS Fuselage Panel Through Test and Teardown

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.

  4. Integrating community health workers into a patient-centered medical home to support disease self-management among Vietnamese Americans: lessons learned.

    PubMed

    Wennerstrom, Ashley; Bui, Tap; Harden-Barrios, Jewel; Price-Haywood, Eboni G

    2015-01-01

    There is evidence that patient-centered medical homes (PCMHs) and community health workers (CHWs) improve chronic disease management. There are few models for integrating CHWs into PCMHs in order to enhance disease self-management support among diverse populations. In this article, we describe how a community-based nonprofit agency, a PCMH, and academic partners collaborated to develop and implement the Patient Resource and Education Program (PREP). We employed CHWs as PCMH care team members to provide health education and support to Vietnamese American patients with uncontrolled diabetes and/or hypertension. We began by conducting focus groups to assess patient knowledge, desire for support, and availability of community resources. Based on findings, we developed PREP with CHW guidance on cultural tailoring of educational materials and methods. CHWs received training in core competencies related to self-management support principles and conducted the 4-month intervention for PCMH patients. Throughout the program, we conducted process evaluation through structured team meetings and patient satisfaction surveys. We describe successes and challenges associated with PREP delivery including patient recruitment, structuring/documenting visits, and establishing effective care team integration, work flow, and communication. Strategies for mitigating these issues are presented, and we make recommendations for other PCMHs seeking to integrate CHWs into care teams. © 2014 Society for Public Health Education.

  5. Multifunctionality of chiton biomineralized armor with an integrated visual system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Connors, Matthew; Kolle, Mathias

    2015-11-20

    Nature provides a multitude of examples of multifunctional structural materials. There are often trade-offs in these materials because few of them are equally well suited for multiple tasks. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lens. Here, we used optical experiments to demonstrate directly, for the first time, that these microscopic, mineralized lenses are able to form images. Furthermore, our experiments revealed that the optical performance of these polycrystalline lenses is enhanced by the reduction of spherical aberration through the shape ofmore » the lens and that birefringence scattering is minimized by the use of relatively large, co-aligned grains (~10 μm as compared to ~1 μm in the non-eye regions). Additionally, we used multi-scale mechanical testing techniques to show that A. granulata’s lenses are an integral component of its biomineralized armor, but that both the intrinsic and overall mechanical properties of the lenses are compromised as compared to the primary solid regions of the armor plates. Our results demonstrate that as the size, complexity, and functionality of the integrated sensory elements increases, the local mechanical performance of the armor decreases. But, A. granulata has evolved several strategies to compensate for its local mechanical vulnerabilities to form a multifunctional system with co-optimized overall optical and structural functions.« less

  6. A System Approach to Advanced Practice Clinician Standardization and High Reliability.

    PubMed

    Okuno-Jones, Susan; Siehoff, Alice; Law, Jennifer; Juarez, Patricia

    Advanced practice clinicians (APCs) are an integral part of the health care team. Opportunities exist within Advocate Health Care to standardize and optimize APC practice across the system. To enhance the role and talents of APCs, an approach to role definition and optimization of practice and a structured approach to orientation and evaluation are shared. Although in the early stages of development, definition and standardization of accountabilities in a framework to support system changes are transforming the practice of APCs.

  7. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures.

    PubMed

    Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Liu, Ying; Ding, Yong; Wang, Zhong Lin

    2015-03-04

    An optical-fiber-nanowire hybridized UV-visible photodetector (PD) is reported. The PD is designed to allow direct integration in optical communication systems without requiring the use of couplers via fiber-welding technology. The PD works in two modes: axial and off-axial illumination mode. By using the piezo-phototronic effect, the performance of the PD is enhanced/optimized by up to 718% in sensitivity and 2067% in photoresponsivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling Trust in ELICIT-WEL to Capture the Impact of Organization Structure on the Agility of Complex Networks

    DTIC Science & Technology

    2012-06-01

    Topic 8: Networks and Networking Name of Author(s) Kevin Chan, US Army Research Laboratory Mary Ruddy, Azigo Point of Contact Kevin Chan RDRL-CIN...framework. The enhanced integrated emulation platform is then used to conduct a series of agent-based ELICIT experiments whose design is informed by...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research

  9. ReNE: A Cytoscape Plugin for Regulatory Network Enhancement

    PubMed Central

    Politano, Gianfranco; Benso, Alfredo; Savino, Alessandro; Di Carlo, Stefano

    2014-01-01

    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, americanmodeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by ReNE is exportable in multiple formats for further analysis via third party applications. ReNE can be freely installed from the Cytoscape App Store (http://apps.cytoscape.org/apps/rene) and the full source code is freely available for download through a SVN repository accessible at http://www.sysbio.polito.it/tools_svn/BioInformatics/Rene/releases/. ReNE enhances a network by only integrating data from public repositories, without any inference or prediction. The reliability of the introduced interactions only depends on the reliability of the source data, which is out of control of ReNe developers. PMID:25541727

  10. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  11. Technology in the teaching of neuroscience: enhanced student learning.

    PubMed

    Griffin, John D

    2003-12-01

    The primary motivation for integrating any form of education technology into a particular course or curriculum should always be to enhance student learning. However, it can be difficult to determine which technologies will be the most appropriate and effective teaching tools. Through the alignment of technology-enhanced learning experiences with a clear set of learning objectives, teaching becomes more efficient and effective and learning is truly enhanced. In this article, I describe how I have made extensive use of technology in two neuroscience courses that differ in structure and content. Course websites function as resource centers and provide a forum for student interaction. PowerPoint presentations enhance formal lectures and provide an organized outline of presented material. Some lectures are also supplemented with interactive CD-ROMs, used in the presentation of difficult physiological concepts. In addition, a computer-based physiological recording system is used in laboratory sessions, improving the hands-on experience of group learning while reinforcing the concepts of the research method. Although technology can provide powerful teaching tools, the enhancement of the learning environment is still dependent on the instructor. It is the skill and enthusiasm of the instructor that determines whether technology will be used effectively.

  12. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.

    2017-12-01

    Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

  13. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.

    PubMed

    In, Sungjun; Park, Namkyoo

    2016-02-23

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.

  14. Electromagnetic crystal based terahertz thermal radiators and components

    NASA Astrophysics Data System (ADS)

    Wu, Ziran

    This dissertation presents the investigation of thermal radiation from three-dimensional electromagnetic crystals (EMXT), as well as the development of a THz rapid prototyping fabrication technique and its application in THz EMXT components and micro-system fabrication and integration. First, it is proposed that thermal radiation from a 3-D EMXT would be greatly enhanced at the band gap edge frequency due to the redistribution of photon density of states (DOS) within the crystal. A THz thermal radiator could thus be built upon a THz EMXT by utilizing the exceptional emission peak(s) around its band gap frequency. The thermal radiation enhancement effects of various THz EMXT including both silicon and tungsten woodpile structures (WPS) and cubic photonic cavity (CPC) array are explored. The DOS of all three structures are calculated, and their thermal radiation intensities are predicted using Planck's Equation. These calculations show that the DOS of the silicon and tungsten WPS can be enhanced by a factor of 11.8 around 364 GHz and 2.6 around 406 GHz respectively, in comparison to the normal blackbody radiation at same frequencies. An enhancement factor of more than 100 is obtained in calculation from the CPC array. A silicon WPS with a band gap around 200 GHz has been designed and fabricated. Thermal emissivity of the silicon WPS sample is measured with a control blackbody as reference. And enhancements of the emission from the WPS over the control blackbody are observed at several frequencies quite consistent with the theoretical predictions. Second, the practical challenge of THz EMXT component and system fabrication is met by a THz rapid prototyping technique developed by us. Using this technique, the fabrications of several EMXTs with 3D electromagnetic band gaps in the 100-400 GHz range are demonstrated. Characterization of the samples via THz Time-domain Spectroscopy (THz-TDS) shows very good agreement with simulation, confirming the build accuracy of this prototyping approach. Third, an all-dielectric THz waveguide is designed, fabricated and characterized. The design is based on hollow-core EMXT waveguide, and the fabrication is implemented with the THz prototyping method. Characterization results of the waveguide power loss factor show good consistency with the simulation, and waveguide propagation loss as low as 0.03 dB/mm at 105 GHz is demonstrated. Several design parameters are also varied and their impacts on the waveguide performance investigated theoretically. Finally, a THz EMXT antenna based on expanding the defect radius of the EMXT waveguide to a horn shape is proposed and studied. The boresight directivity and main beam angular width of the optimized EMXT horn antenna is comparable with a copper horn antenna of the same dimensions at low frequencies, and much better than the copper horn at high frequencies. The EMXT antenna has been successfully fabricated via the same THz prototyping, and we believe this is the first time an EMXT antenna of this architecture is fabricated. Far-field measurement of the EMXT antenna radiation pattern is undergoing. Also, in order to integrate planar THz solid-state devices (especially source and detector) and THz samples under test with the potential THz micro-system fabricate-able by the prototyping approach, an EMXT waveguide-to-microstrip line transition structure is designed. The structure uses tapered solid dielectric waveguides on both ends to transit THz energy from the EMXT waveguide defect onto the microstrip line. Simulation of the transition structure in a back-to-back configuration yields about -15 dB insertion loss mainly due to the dielectric material loss. The coupling and radiation loss of the transition structure is estimated to be -2.115 dB. The fabrication and characterization of the transition system is currently underway. With all the above THz components realized in the future, integrated THz micro-systems manufactured by the same prototyping technique will be achieved, with low cost, high quality, self-sufficiency, and great customizability.

  15. Nanotechnology

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin

    2016-01-01

    Present an overview of the Nanotechnology Project at NASA's Game Changing Technology Industry Day. Mature and demonstrate flight readiness of CNT reinforced composites for future NASA mission applications?Sounding rocket test in a multiexperiment payload?Integrate into cold gas thruster system as propellant storage?The technology would provide the means for reduced COPV mass and improved damage tolerance and flight qualify CNT reinforced composites. PROBLEM/NEED BEING ADDRESSED:?Reduce weight and enhance the performance and damage tolerance of aerospace structuresGAME-CHANGING SOLUTION:?Improve mechanical properties of CNTs to eventually replace CFRP –lighter and stronger?First flight-testing of a CNT reinforced composite structural component as part of an operational flight systemUNIQUENESS:?CNT manufacturing methods developed?Flight qualify CNT reinforced composites

  16. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.

    PubMed

    Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert

    2013-07-01

    A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.

  17. Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2018-03-01

    Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.

  18. High-quality quantum-dot-based full-color display technology by pulsed spray method

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Ju; Chen, Hsin-Chu; Tsai, Kai-An; Lin, Chien-Chung; Tsai, Hsin-Han; Chien, Shih-Hsuan; Cheng, Bo-Siao; Hsu, Yung-Jung; Shih, Min-Hsiung; Kuo, Hao-Chung

    2013-03-01

    We fabricated the colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector (DBR) structure using a pulsed spray coating method. Moreover, pixelated RGB arrays, 2-in. wafer-scale white light emission, and an integrated small footprint white light device were demonstrated. The experimental results showed that the intensity of red, blue, and green (RGB) emissions exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increased the use in the UV optical pumping of RGB QDs. In this experiment, a pulsed spray coating method was crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film was used as the interface layer between each RGB color to avoid crosscontamination and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remained constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures was observed in the integrated device. The resulting color gamut of the proposed QDLEDs covered an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display technology.

  19. Applications of a damage tolerance analysis methodology in aircraft design and production

    NASA Technical Reports Server (NTRS)

    Woodward, M. R.; Owens, S. D.; Law, G. E.; Mignery, L. A.

    1992-01-01

    Objectives of customer mandated aircraft structural integrity initiatives in design are to guide material selection, to incorporate fracture resistant concepts in the design, to utilize damage tolerance based allowables and planned inspection procedures necessary to enhance the safety and reliability of manned flight vehicles. However, validated fracture analysis tools for composite structures are needed to accomplish these objectives in a timely and economical manner. This paper briefly describes the development, validation, and application of a damage tolerance methodology for composite airframe structures. A closed-form analysis code, entitled SUBLAM was developed to predict the critical biaxial strain state necessary to cause sublaminate buckling-induced delamination extension in an impact damaged composite laminate. An embedded elliptical delamination separating a thin sublaminate from a thick parent laminate is modelled. Predicted failure strains were correlated against a variety of experimental data that included results from compression after impact coupon and element tests. An integrated analysis package was developed to predict damage tolerance based margin-of-safety (MS) using NASTRAN generated loads and element information. Damage tolerance aspects of new concepts are quickly and cost-effectively determined without the need for excessive testing.

  20. Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications.

    PubMed

    Exarchos, Dimitrios A; Dalla, Panagiota T; Tragazikis, Ilias K; Dassios, Konstantinos G; Zafeiropoulos, Nikolaos E; Karabela, Maria M; De Crescenzo, Carmen; Karatza, Despina; Musmarra, Dino; Chianese, Simeone; Matikas, Theodore E

    2018-05-18

    This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.

  1. Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures.

    PubMed

    Loss, Leandro A; Bebis, George; Parvin, Bahram

    2011-08-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is validated on delineating adherens junctions that are imaged through fluorescence microscopy. However, the method is also applicable for screening other organisms based on characteristics of their cell wall structures. Adherens junctions maintain tissue structural integrity and cell-cell interactions. Visually, they exhibit fibrous patterns that may be diffused, heterogeneous in fluorescence intensity, or punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates.

  2. Development and Characterization of High Performance Shape Memory Alloy Coatings for Structural Aerospace Applications

    PubMed Central

    Exarchos, Dimitrios A.; Dalla, Panagiota T.; Tragazikis, Ilias K.; Zafeiropoulos, Nikolaos E.; Karabela, Maria M.; De Crescenzo, Carmen; Karatza, Despina; Matikas, Theodore E.

    2018-01-01

    This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect. PMID:29783626

  3. Measuring and Predicting the Internal Structure of Semiconductor Nanocrystals through Raman Spectroscopy.

    PubMed

    Mukherjee, Prabuddha; Lim, Sung Jun; Wrobel, Tomasz P; Bhargava, Rohit; Smith, Andrew M

    2016-08-31

    Nanocrystals composed of mixed chemical domains have diverse properties that are driving their integration in next-generation electronics, light sources, and biosensors. However, the precise spatial distribution of elements within these particles is difficult to measure and control, yet profoundly impacts their quality and performance. Here we synthesized a unique series of 42 different quantum dot nanocrystals, composed of two chemical domains (CdS:CdSe), arranged in 7 alloy and (core)shell structural classes. Chemometric analyses of far-field Raman spectra accurately classified their internal structures from their vibrational signatures. These classifications provide direct insight into the elemental arrangement of the alloy as well as an independent prediction of fluorescence quantum yield. This nondestructive, rapid approach can be broadly applied to greatly enhance our capacity to measure, predict and monitor multicomponent nanomaterials for precise tuning of their structures and properties.

  4. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  5. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  6. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng

    2018-04-01

    In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.

  7. Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase-Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Luo, Yan; Li, Jiao; Huang, Jianguo

    2016-11-29

    A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.

  8. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  9. Enhancing Peer Interaction during Guided Play in Finnish Integrated Special Groups

    ERIC Educational Resources Information Center

    Syrjämäki, Marja; Pihlaja, Päivi; Sajaniemi, Nina

    2018-01-01

    This article focused on the pedagogy that enhances peer interaction in integrated special groups. In Finland, most children identified as having special educational needs (SEN) attend day-care in mainstream kindergarten groups; the rest are in integrated or segregated early childhood special education (ECSE) groups in public day-care centres…

  10. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of the credit attributable to the expenditure. (2) Certain deductions by an integrated oil company... to which integrated oil company intangible drilling and development costs are qualified enhanced oil... company deduction reduced. The facts are the same as in Example 1, except that G is an integrated oil...

  11. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of the credit attributable to the expenditure. (2) Certain deductions by an integrated oil company... to which integrated oil company intangible drilling and development costs are qualified enhanced oil... company deduction reduced. The facts are the same as in Example 1, except that G is an integrated oil...

  12. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of the credit attributable to the expenditure. (2) Certain deductions by an integrated oil company... to which integrated oil company intangible drilling and development costs are qualified enhanced oil... company deduction reduced. The facts are the same as in Example 1, except that G is an integrated oil...

  13. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of the credit attributable to the expenditure. (2) Certain deductions by an integrated oil company... to which integrated oil company intangible drilling and development costs are qualified enhanced oil... company deduction reduced. The facts are the same as in Example 1, except that G is an integrated oil...

  14. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  15. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    PubMed Central

    Yamada, Masahiro; Ueno, Takeshi; Tsukimura, Naoki; Ikeda, Takayuki; Nakagawa, Kaori; Hori, Norio; Suzuki, Takeo; Ogawa, Takahiro

    2012-01-01

    The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the immediate microenvironment surrounding the implant. PMID:22359461

  16. Designing computer learning environments for engineering and computer science: The scaffolded knowledge integration framework

    NASA Astrophysics Data System (ADS)

    Linn, Marcia C.

    1995-06-01

    Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.

  17. Manifesting enhanced cancellations in supergravity: integrands versus integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bern, Zvi; Enciso, Michael; Parra-Martinez, Julio

    2017-05-25

    We have found examples of `enhanced ultraviolet cancellations' with no known standard-symmetry explanation in a variety of supergravity theories. Furthermore, by examining one- and two-loop examples in four- and five-dimensional half-maximal supergravity, we argue that enhanced cancellations in general cannot be exhibited prior to integration. In light of this, we explore reorganizations of integrands into parts that are manifestly finite and parts that have poor power counting but integrate to zero due to integral identities. At two loops we find that in the large loop-momentum limit the required integral identities follow from Lorentz and SL(2) relabeling symmetry. We carry outmore » a nontrivial check at four loops showing that the identities generated in this way are a complete set. We propose that at L loops the combination of Lorentz and SL(L) symmetry is sufficient for displaying enhanced cancellations when they happen, whenever the theory is known to be ultraviolet finite up to (L - 1) loops.« less

  18. The existential dimension in general practice: identifying understandings and experiences of general practitioners in Denmark

    PubMed Central

    Assing Hvidt, Elisabeth; Søndergaard, Jens; Ammentorp, Jette; Bjerrum, Lars; Gilså Hansen, Dorte; Olesen, Frede; Pedersen, Susanne S.; Timm, Helle; Timmermann, Connie; Hvidt, Niels Christian

    2016-01-01

    Objective The objective of this study is to identify points of agreement and disagreements among general practitioners (GPs) in Denmark concerning how the existential dimension is understood, and when and how it is integrated in the GP–patient encounter. Design A qualitative methodology with semi-structured focus group interviews was employed. Setting General practice setting in Denmark. Subjects Thirty-one GPs from two Danish regions between 38 and 68 years of age participated in seven focus group interviews. Results Although understood to involve broad life conditions such as present and future being and identity, connectedness to a society and to other people, the existential dimension was primarily reported integrated in connection with life-threatening diseases and death. Furthermore, integration of the existential dimension was characterized as unsystematic and intuitive. Communication about religious or spiritual questions was mostly avoided by GPs due to shyness and perceived lack of expertise. GPs also reported infrequent referrals of patients to chaplains. Conclusion GPs integrate issues related to the existential dimension in implicit and non-standardized ways and are hindered by cultural barriers. As a way to enhance a practice culture in which GPs pay more explicit attention to the patients’ multidimensional concerns, opportunities for professional development could be offered (courses or seminars) that focus on mutual sharing of existential reflections, ideas and communication competencies. Key pointsAlthough integration of the existential dimension is recommended for patient care in general practice, little is known about GPs’ understanding and integration of this dimension in the GP–patient encounter.The existential dimension is understood to involve broad and universal life conditions having no explicit reference to spiritual or religious aspects.The integration of the existential dimension is delimited to patient cases where life-threatening diseases, life crises and unexplainable patient symptoms occur. Integration of the existential dimension happens in unsystematic and intuitive ways.Cultural barriers such as shyness and lack of existential self-awareness seem to hinder GPs in communicating about issues related to the existential dimension. Educational initiatives might be needed in order to lessen barriers and enhance a more natural integration of communication about existential issues. PMID:27804316

  19. Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation.

    PubMed

    Memel, Molly; Ryan, Lee

    2017-06-01

    The ability to remember associations between previously unrelated pieces of information is often impaired in older adults (Naveh-Benjamin, 2000). Unitization, the process of creating a perceptually or semantically integrated representation that includes both items in an associative pair, attenuates age-related associative deficits (Bastin et al., 2013; Ahmad et al., 2015; Zheng et al., 2015). Compared to non-unitized pairs, unitized pairs may rely less on hippocampally-mediated binding associated with recollection, and more on familiarity-based processes mediated by perirhinal cortex (PRC) and parahippocampal cortex (PHC). While unitization of verbal materials improves associative memory in older adults, less is known about the impact of visual integration. The present study determined whether visual integration improves associative memory in older adults by minimizing the need for hippocampal (HC) recruitment and shifting encoding to non-hippocampal medial temporal structures, such as the PRC and PHC. Young and older adults were presented with a series of objects paired with naturalistic scenes while undergoing fMRI scanning, and were later given an associative memory test. Visual integration was varied by presenting the object either next to the scene (Separated condition) or visually integrated within the scene (Combined condition). Visual integration improved associative memory among young and older adults to a similar degree by increasing the hit rate for intact pairs, but without increasing false alarms for recombined pairs, suggesting enhanced recollection rather than increased reliance on familiarity. Also contrary to expectations, visual integration resulted in increased hippocampal activation in both age groups, along with increases in PRC and PHC activation. Activation in all three MTL regions predicted discrimination performance during the Separated condition in young adults, while only a marginal relationship between PRC activation and performance was observed during the Combined condition. Older adults showed less overall activation in MTL regions compared to young adults, and associative memory performance was most strongly predicted by prefrontal, rather than MTL, activation. We suggest that visual integration benefits both young and older adults similarly, and provides a special case of unitization that may be mediated by recollective, rather than familiarity-based encoding processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation

    PubMed Central

    Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca2+) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca2+ to eDNA thereby mediating bacterial aggregation and biofilm formation. PMID:24651318

Top