Sample records for enhanced three-dimensional surface

  1. Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films

    PubMed Central

    2012-01-01

    We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement. PMID:23072433

  2. Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films.

    PubMed

    Fan, Zheyong; Zheng, Jiansen; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2012-10-16

    We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement.

  3. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  4. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, R.; Malladi, R.; Sochen, N.

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as amore » surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.« less

  5. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    NASA Astrophysics Data System (ADS)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  6. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T. III

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  7. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  8. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  9. Three Dimensional Immobilization of Beta-Galactosidase on a Silicon Surface (Preprint)

    DTIC Science & Technology

    2006-12-01

    initial activity after 10 days at 24°C. The ability to generate three- dimensional structures with enhanced loading capacity for biosensing molecules...dimensional structures for biosensors (Charles et al. 2004). Silicon samples that had been washed but not activated with APTS did not retain any enzyme...preparation. The use of silica particles to build a 3-dimensional structure not only provides an increased capacity for the immobilization of β

  10. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  11. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    PubMed

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  12. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    DOE PAGES

    Chen, Chen; Kang, Yijin; Huo, Ziyang; ...

    2014-02-27

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less

  13. Three-dimensional nanoporous MoS2 framework decorated with Au nanoparticles for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Sheng, Yingqiang; Jiang, Shouzhen; Yang, Cheng; Liu, Mei; Liu, Aihua; Zhang, Chao; Li, Zhen; Huo, Yanyan; Wang, Minghong; Man, Baoyuan

    2017-08-01

    The three-dimensional (3D) MoS2 decorated with Au nanoparticles (Au NPs) hybrids (3D MoS2-Au NPs) for surface-enhanced Raman scattering (SERS) sensing was demonstrated in this paper. SEM, Raman spectroscopy, TEM, SAED, EDX and XRD were performed to characterize 3D MoS2-Au NPs hybrids. Rhodamine 6G (R6G), fluorescein and gallic acid molecules were used as the probe for the SERS detection of the 3D MoS2-Au NPs hybrids. In addition, we modeled the enhancement of the electric field of MoS2-Au NPs hybrids using Finite-difference time-domain (FDTD) analysis, which can further give assistance to the mechanism understanding of the SERS activity.

  14. SABRINA: an interactive solid geometry modeling program for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.

    SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.

  15. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-11-01

    Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.

  16. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  17. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering.

    PubMed

    Zhu, Zhendong; Li, Qunqing; Bai, Benfeng; Fan, Shoushan

    2014-01-13

    To date, fabricating three-dimensional (3D) nanostructured substrate with small nanogap was a laborious challenge by conventional fabrication techniques. In this article, we address a simple, low-cost, large-area, and spatially controllable method to fabricate 3D nanostructures, involving hemisphere, hemiellipsoid, and pyramidal pits based on nanosphere lithography (NSL). These 3D nanostructures were used as surface-enhanced Raman scattering (SERS) substrates of single Rhodamine 6G (R6G) molecule. The average SERS enhancement factor achieved up to 1011. The inevitably negative influence of the adhesion-promoting intermediate layer of Cr or Ti was resolved by using such kind of 3D nanostructures. The nanostructured quartz substrate is a free platform as a SERS substrate and is nondestructive when altering with different metal films and is recyclable, which avoids the laborious and complicated fabricating procedures.

  18. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering

    PubMed Central

    2014-01-01

    To date, fabricating three-dimensional (3D) nanostructured substrate with small nanogap was a laborious challenge by conventional fabrication techniques. In this article, we address a simple, low-cost, large-area, and spatially controllable method to fabricate 3D nanostructures, involving hemisphere, hemiellipsoid, and pyramidal pits based on nanosphere lithography (NSL). These 3D nanostructures were used as surface-enhanced Raman scattering (SERS) substrates of single Rhodamine 6G (R6G) molecule. The average SERS enhancement factor achieved up to 1011. The inevitably negative influence of the adhesion-promoting intermediate layer of Cr or Ti was resolved by using such kind of 3D nanostructures. The nanostructured quartz substrate is a free platform as a SERS substrate and is nondestructive when altering with different metal films and is recyclable, which avoids the laborious and complicated fabricating procedures. PMID:24417892

  19. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    PubMed

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.

    PubMed

    Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young

    2018-05-09

    Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.

  1. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Crozier, Kenneth B

    2009-07-01

    We experimentally demonstrate the enhanced propulsion of gold nanoparticles by surface plasmon polaritons (SPPs). Three dimensional finite difference time domain (FDTD) simulations indicate considerably enhanced optical forces due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. This coupling is an important part of the enhanced propulsion phenomenon. Finally, the measured optical force is compared with that predicted by FDTD simulations and proven to be reasonable.

  2. Three-dimensional modeling of light rays on the surface of a slanted lenticular array for autostereoscopic displays.

    PubMed

    Jung, Sung-Min; Kang, In-Byeong

    2013-08-10

    In this paper, we developed an optical model describing the behavior of light at the surface of a slanted lenticular array for autostereoscopic displays in three dimensions and simulated the optical characteristics of autostereoscopic displays using the Monte Carlo method under actual design conditions. The behavior of light is analyzed by light rays for selected inclination and azimuthal angles; numerical aberrations and conditions of total internal reflection for the lenticular array were found. The intensity and the three-dimensional crosstalk distributions calculated from our model coincide very well with those from conventional design software, and our model shows highly enhanced calculation speed that is 67 times faster than that of the conventional software. From the results, we think that the optical model is very useful for predicting the optical characteristics of autostereoscopic displays with enhanced calculation speed.

  3. Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ronggui; Wen, Rongfu; Xu, Shanshan

    Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, wemore » experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.« less

  4. Anomalous Quasiparticle Reflection from the Surface of a ^{3}He-^{4}He Dilute Solution.

    PubMed

    Ikegami, Hiroki; Kim, Kitak; Sato, Daisuke; Kono, Kimitoshi; Choi, Hyoungsoon; Monarkha, Yuriy P

    2017-11-10

    A free surface of a dilute ^{3}He-^{4}He liquid mixture is a unique system where two Fermi liquids with distinct dimensions coexist: a three-dimensional (3D) ^{3}He Fermi liquid in the bulk and a two-dimensional (2D) ^{3}He Fermi liquid at the surface. To investigate a novel effect generated by the interaction between the two Fermi liquids, the mobility of a Wigner crystal of electrons formed on the free surface of the mixture is studied. An anomalous enhancement of the mobility, compared with the case where the 3D and 2D systems do not interact with each other, is observed. The enhancement is explained by the nontrivial reflection of 3D quasiparticles from the surface covered with the 2D ^{3}He system.

  5. Method for Enhancing a Three Dimensional Image from a Plurality of Frames of Flash LIDAR Data

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander (Inventor); Vanek, Michael D. (Inventor); Amzajerdian, Farzin (Inventor)

    2013-01-01

    A method for enhancing a three dimensional image from frames of flash LIDAR data includes generating a first distance R(sub i) from a first detector i to a first point on a surface S(sub i). After defining a map with a mesh theta having cells k, a first array S(k), a second array M(k), and a third array D(k) are initialized. The first array corresponds to the surface, the second array corresponds to the elevation map, and the third array D(k) receives an output for the DEM. The surface is projected onto the mesh theta, so that a second distance R(sub k) from a second point on the mesh theta to the detector can be found. From this, a height may be calculated, which permits the generation of a digital elevation map. Also, using sequential frames of flash LIDAR data, vehicle control is possible using an offset between successive frames.

  6. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.

    PubMed

    Hu, Yandong; Werner, Carsten; Li, Dongqing

    2004-12-15

    Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.

  7. Surface-enhanced Raman spectroscopy on coupled two-layer nanorings

    NASA Astrophysics Data System (ADS)

    Hou, Yumin; Xu, Jun; Wang, Pengwei; Yu, Dapeng

    2010-05-01

    A reproducible quasi-three-dimensional structure, composed of top and bottom concentric nanorings with same periodicity but different widths and no overlapping at the perpendicular direction, is built up by a separation-layer method, which results in huge enhancement of surface-enhanced Raman spectroscopy (SERS) due to the coupling of plasmons. Simulations show plasmonic focusing with "hot arcs" of electromagnetic enhancement meeting the need of quantitative SERS with extremely high sensitivities. In addition, the separation-layer method opens a simple and effective way to adjust the coupling of plasmons among nanostructures which is essential for the fabrication of SERS-based sensors.

  8. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye

    NASA Astrophysics Data System (ADS)

    Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin

    2018-05-01

    In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.

  9. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  10. Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing

    NASA Astrophysics Data System (ADS)

    Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean

    2014-11-01

    We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.

  11. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template.

    PubMed

    Song, Yan-Yan; Zhang, Dai; Gao, Wei; Xia, Xing-Hua

    2005-03-18

    A three-dimensionally ordered, macroporous, inverse-opal platinum film was synthesized electrochemically by the inverted colloidal-crystal template technique. The inverse-opal film that contains platinum nanoparticles showed improved electrocatalytic activity toward glucose oxidation with respect to the directly deposited platinum; this improvement is due to the interconnected porous structure and the greatly enhanced effective surface area. In addition, the inverse-opal Pt-film electrode responds more sensitively to glucose than to common interfering species of ascorbic acid, uric acid, and p-acetamidophenol due to their different electrochemical reaction mechanisms. Results showed that the ordered macroporous materials with enhanced selectivity and sensitivity are promising for fabrication of nonenzymatic glucose biosensors.

  12. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  13. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  14. Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis

    Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less

  15. The Pale Blue Dot: Utilizing Real World Globes in High School and Undergraduate Oceanography Classrooms

    NASA Astrophysics Data System (ADS)

    Rogers, D. B.

    2017-12-01

    Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings

  16. Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Brasseur, James G.

    2017-06-01

    We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.

  17. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Enhanced Surface-Enhanced Raman Scattering Immuno-Sensor for Cancer Biomarker Detection in Blood Plasma

    PubMed Central

    Li, Ming; Cushing, Scott K.; Zhang, Jianming; Suri, Savan; Evans, Rebecca; Petros, William P.; Gibson, Laura F.; Ma, Dongling; Liu, Yuxin; Wu, Nianqiang

    2013-01-01

    A three-dimensional (3D) hierarchical plasmonic nano-architecture has been designed for a sensitive surface-enhanced Raman scattering (SERS) immuno-sensor for protein biomarker detection. The capture antibody molecules are immobilized on a plasmonic gold triangle nano-array pattern. On the other hand, the detection antibody molecules are linked to the gold nano-star@Raman-reporter@silica sandwich nanoparticles. When protein biomarkers are present, the sandwich nanoparticles are captured over the gold triangle nano-array, forming a confined 3D plasmonic field, leading to the enhanced electromagnetic field in intensity and in 3D space. As a result, the Raman reporter molecules are exposed to a high density of “hot spots”, which amplifies the Raman signal remarkably, improving the sensitivity of the SERS immuno-sensor. This SERS immuno-sensor exhibits a wide linear range (0.1 pg/mL to 10 ng/mL), and a low limit of detection (7 fg/mL) toward human immunoglobulin G (IgG) protein in the buffer solution. This biosensor has been successfully used for detection of the vascular endothelial growth factor (VEGF) in the human blood plasma from clinical breast cancer patient samples. PMID:23659430

  18. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  19. Three-dimensional computer simulation of non-reacting jet-gas flow mixing in an MHD second stage combustor

    NASA Astrophysics Data System (ADS)

    Chang, S. L.; Lottes, S. A.; Berry, G. F.

    Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  20. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  1. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    PubMed

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  2. Rapid Biochemical Mixture Screening by Three-Dimensional Patterned Multifunctional Substrate with Ultra-Thin Layer Chromatography (UTLC) and Surface Enhanced Raman Scattering (SERS).

    PubMed

    Lee, Bi-Shen; Lin, Pi-Chen; Lin, Ding-Zheng; Yen, Ta-Jen

    2018-01-11

    We present a three-dimensional patterned (3DP) multifunctional substrate with the functions of ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS), which simultaneously enables mixture separation, target localization and label-free detection. This multifunctional substrate is comprised of a 3DP silicon nanowires array (3DP-SiNWA), decorated with silver nano-dendrites (AgNDs) atop. The 3DP-SiNWA is fabricated by a facile photolithographic process and low-cost metal assisted chemical etching (MaCE) process. Then, the AgNDs are decorated onto 3DP-SiNWA by a wet chemical reduction process, obtaining 3DP-AgNDs@SiNWA multifunctional substrates. With various patterns designed on the substrates, the signal intensity could be maximized by the excellent confinement and concentrated effects of patterns. By using this 3DP-AgNDs@SiNWA substrate to scrutinize the mixture of two visible dyes, the individual target could be recognized and further boosted the Raman signal of target 15.42 times comparing to the un-patterned AgNDs@SiNWA substrate. Therefore, such a three-dimensional patterned multifunctional substrate empowers rapid mixture screening, and can be readily employed in practical applications for biochemical assays, food safety and other fields.

  3. MR imaging of the inner ear: comparison of a three-dimensional fast spin-echo sequence with use of a dedicated quadrature-surface coil with a gadolinium-enhanced spoiled gradient-recalled sequence.

    PubMed

    Naganawa, S; Ito, T; Fukatsu, H; Ishigaki, T; Nakashima, T; Ichinose, N; Kassai, Y; Miyazaki, M

    1998-09-01

    To prospectively evaluate the sensitivity and specificity of magnetic resonance (MR) imaging in the inner ear with a long echo train, three-dimensional (3D), asymmetric Fourier-transform, fast spin-echo (SE) sequence with use of a dedicated quadrature-surface phased-array coil to detect vestibular schwannoma in the cerebellopontine angle and the internal auditory canal. In 205 patients (410 ears) with ear symptoms, 1.5-T MR imaging was performed with unenhanced 3D asymmetric fast SE and gadolinium-enhanced 3D gradient-recalled (SPGR) sequences with use of a quadrature surface phased-array coil. The 3D asymmetric fast SE images were reviewed by two radiologists, with the gadolinium-enhanced 3D SPGR images used as the standard of reference. Nineteen lesions were detected in the 410 ears (diameter range, 2-30 mm; mean, 10.5 mm +/- 6.4 [standard deviation]; five lesions were smaller than 5 mm). With 3D asymmetric fast SE, sensitivity, specificity, and accuracy, respectively, were 100%, 99.5%, and 99.5% for observer 1 and 100%, 99.7%, and 99.8% for observer 2. The unenhanced 3D asymmetric fast SE sequence with a quadrature-surface phased-array coli allows the reliable detection of vestibular schwannoma in the cerebellopontine angle and internal auditory canal.

  4. An experimental study of heat transfer in a large-scale turbine rotor passage

    NASA Astrophysics Data System (ADS)

    Blair, Michael F.

    1992-06-01

    An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three-dimensionality on the heat transfer in a rotating blade row (vs a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system.

  5. Ultrafast Dynamics of Energetic Materials

    DTIC Science & Technology

    2014-01-23

    redistributed in condensed-phase materials. In this subproject we developed a technique termed three-dimensional IR- Raman spectroscopy that allowed us to...Fang, 2011, “The distribution of local enhancement factors in surface enhanced Raman -active substrates and the vibrational dynamics in the liquid phase...3. (invited) “Vibrational energy and molecular thermometers in liquids: Ultrafast IR- Raman spectroscopy”, Brandt C. Pein and Dana D. Dlott, To

  6. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.

    PubMed

    Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae

    2018-01-10

    One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.

  7. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-07-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  8. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-03-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  9. Mechanism of wiggling enhancement due to HBr gas addition during amorphous carbon etching

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Ishimura, Hiroaki; Kobayashi, Hitoshi; Une, Satoshi

    2015-06-01

    The effect of gas chemistry during etching of an amorphous carbon layer (ACL) on wiggling has been investigated, focusing especially on the changes in residual stress. Although the HBr gas addition reduces critical dimension loss, it enhances the surface stress and therefore increases wiggling. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the increase in surface stress was caused by hydrogenation of the ACL surface with hydrogen radicals. Three-dimensional (3D) nonlinear finite element method analysis confirmed that the increase in surface stress is large enough to cause the wiggling. These results also suggest that etching with hydrogen compound gases using an ACL mask has high potential to cause the wiggling.

  10. Novel Highly Porous Metal Technology in Artificial Hip and Knee Replacement: Processing Methodologies and Clinical Applications

    NASA Astrophysics Data System (ADS)

    Muth, John; Poggie, Matthew; Kulesha, Gene; Michael Meneghini, R.

    2013-02-01

    Hip and knee replacement can dramatically improve a patient's quality of life through pain relief and restored function. Fixation of hip and knee replacement implants to bone is critical to the success of the procedure. A variety of roughened surfaces and three-dimensional porous surfaces have been used to enhance biological fixation on orthopedic implants. Recently, highly porous metals have emerged as versatile biomaterials that may enhance fixation to bone and are suitable to a number of applications in hip and knee replacement surgery. This article provides an overview of several processes used to create these implant surfaces.

  11. Three-dimensional surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  12. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    NASA Astrophysics Data System (ADS)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  13. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.

    PubMed

    Solares, Santiago D

    2016-01-01

    Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.

  14. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  15. The Evolution of Photography and Three-Dimensional Imaging in Plastic Surgery.

    PubMed

    Weissler, Jason M; Stern, Carrie S; Schreiber, Jillian E; Amirlak, Bardia; Tepper, Oren M

    2017-03-01

    Throughout history, the technological advancements of conventional clinical photography in plastic surgery have not only refined the methods available to the plastic surgeon, but have invigorated the profession through technology. The technology of the once traditional two-dimensional photograph has since been revolutionized and refashioned to incorporate novel applications, which have since become the standard in clinical photography. Contrary to traditional standardized two-dimensional photographs, three-dimensional photography provides the surgeon with an invaluable volumetric and morphologic analysis by demonstrating true surface dimensions both preoperatively and postoperatively. Clinical photography has served as one of the fundamental objective means by which plastic surgeons review outcomes; however, the newer three-dimensional technology has been primarily used to enhance the preoperative consultation with surgical simulations. The authors intend to familiarize readers with the notion that three-dimensional photography extends well beyond its marketing application during surgical consultation. For the cosmetic surgeon, as the application of three-dimensional photography continues to mature in facial plastic surgery, it will continue to bypass the dated conventional photographic methods plastic surgeons once relied on. This article reviews a paradigm shift and provides a historical review of the fascinating evolution of photography in plastic surgery by highlighting the clinical utility of three-dimensional photography as an adjunct to plastic and reconstructive surgery practices. As three-dimensional photographic technology continues to evolve, its application in facial plastic surgery will provide an opportunity for a new objective standard in plastic surgery.

  16. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    PubMed

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  17. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500 nm, depth of 50 nm, and a periodicity of 1 μm were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of themore » top p-GaN layer and the active region, respectively.« less

  18. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.

    PubMed

    Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka

    2017-07-01

    Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. 75 FR 23797 - Proposed Information Collection; Assessment of the Business Requirements and Benefits of Enhanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... supports some of the most pressing resource management, environmental and climate change science issues...-accurate three-dimensional measurements of the Earth's topography and surface features such buildings... USGS now collects LiDAR data to a limited extent and primarily for upgrading bare-earth elevation data...

  20. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage.

    PubMed

    Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing

    2015-10-01

    Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.

  1. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage

    PubMed Central

    Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing

    2015-01-01

    Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications. PMID:26601294

  2. A computer program for fitting smooth surfaces to an aircraft configuration and other three dimensional geometries

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1975-01-01

    A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.

  3. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.

    PubMed

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-30

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  4. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  5. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    PubMed Central

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-01-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143

  6. Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atsushi; Kato, Taiki; Takeyasu, Nobuyuki; Fujimori, Kazuhiro; Tsuruta, Kenji

    2017-10-01

    A technique of selective electroless plating onto PLA-ABS (Polylactic Acid-Acrylonitrile Butadiene Styrene) composite structures fabricated by three-dimensional (3D) printing is demonstrated to construct 3D microwave metamaterials. The reducing activity of the PLA surface is selectively enhanced by the chemical modification involving Sn2+ in a simple wet process, thereby forming a highly conductive Ag-plated membrane only onto the PLA surface. The fabricated metamaterial composed of Ag-plated PLA and non-plated ABS parts is characterized experimentally and numerically to demonstrate the important bi-anisotropic microwave responses arising from the 3D nature of metallodielectric structures. Our approach based on a simple wet chemical process allows for the creation of highly complex 3D metal-insulator structures, thus paving the way toward the sophisticated microwave applications of the 3D printing technology.

  7. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  8. Venus - 3D Perspective View of Maat Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Maat Mons is displayed in this three-dimensional perspective view of the surface of Venus. The viewpoint is located 560 kilometers (347 miles) north of Maat Mons at an elevation of 1.7 kilometers (1 mile) above the terrain. Lava flows extend for hundreds of kilometers across the fractured plains shown in the foreground, to the base of Maat Mons. The view is to the south with Maat Mons appearing at the center of the image on the horizon. Maat Mons, an 8-kilometer (5 mile) high volcano, is located at approximately 0.9 degrees north latitude, 194.5 degrees east longitude. Maat Mons is named for an Egyptian goddess of truth and justice. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. The vertical scale in this perspective has been exaggerated 22.5 times. Rays cast in a computer intersect the surface to create a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey, are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory.

  9. Venus - 3D Perspective View of Eistla Regio

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A portion of western Eistla Regio is displayed in this three-dimensional perspective view of the surface of Venus. The viewpoint is located 1,310 kilometers (812 miles) southwest of Gula Mons at an elevation of 0.78 kilometer (0.48 mile). The view is to the northeast with Gula Mons appearing on the horizon. Gula Mons, a 3 kilometer (1.86 mile) high volcano, is located at approximately 22 degrees north latitude, 359 degrees east longitude. The impact crater Cunitz, named for the astronomer and mathematician Maria Cunitz, is visible in the center of the image. The crater is 48.5 kilometers (30 miles) in diameter and is 215 kilometers (133 miles) from the viewer's position. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Rays cast in a computer intersect the surface to create a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey, are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory and is a single frame from a video released at the March 5, 1991, JPL news conference.

  10. 3D Nanofabrication Using AFM-Based Ultrasonic Vibration Assisted Nanomachining

    NASA Astrophysics Data System (ADS)

    Deng, Jia

    Nanolithography and nanofabrication processes have significant impact on the recent development of fundamental research areas such as physics, chemistry and biology, as well as the modern electronic devices that have reached nanoscale domain such as optoelectronic devices. Many advanced nanofabrication techniques have been developed and reported to satisfy different requirements in both research areas and applications such as electron-beam lithography. However, it is expensive to use and maintain the equipment. Atomic Force Microscope (AFM) based nanolithography processes provide an alternative approach to nanopatterning with significantly lower cost. Recently, three dimensional nanostructures have attracted a lot of attention, motivated by many applications in various fields including optics, plasmonics and nanoelectromechanical systems. AFM nanolithography processes are able to create not only two dimensional nanopatterns but also have the great potential to fabricate three dimensional nanostructures. The objectives of this research proposal are to investigate the capability of AFM-based three dimensional nanofabrication processes, to transfer the three dimensional nanostructures from resists to silicon surfaces and to use the three dimensional nanostructures on silicon in applications. Based on the understanding of literature, a novel AFM-based ultrasonic vibration assisted nanomachining system is utilized to develop three dimensional nanofabrication processes. In the system, high-frequency in plane circular xy-vibration was introduced to create a virtual tool, whose diameter is controlled by the amplitude of xy-vibration and is larger than that of a regular AFM tip. Therefore, the feature width of a single trench is tunable. Ultrasonic vibration of sample in z-direction was introduced to control the depth of single trenches, creating a high-rate 3D nanomachining process. Complicated 3D nanostructures on PMMA are fabricated under both the setpoint force and z-height control modes. Complex contours and both discrete and continuous height changes are able to be fabricated by the novel 3D nanofabrication processes. Results are imaged clearly after cleaning the debris covering on the 3D nanostructures after nanomachining process. The process is validated by fabricating various 3D nanostructures. The advantages and disadvantages are compared between these two control modes. Furthermore, the 3D nanostructures were further transferred from PMMA surfaces onto silicon surfaces using reactive ion etching (RIE) process. Recipes are developed based on the functionality of the etching gas in the transfer process. Tunable selectivity and controllable surface finishes are achieved by varying the flow rate of oxygen. The developed 3D nanofabrication process is used as a novel technique in two applications, master fabrication for soft lithography and SERS substrates fabrication. 3D nanostructures were reversely molded on PDMS and then duplicated on new PMMA substrates. 3D nanostructures are fabricated, which can be either directly used or transferred on silicon as SERS substrates after coating 80 nm gold layers. They greatly enhanced the intensity of Raman scattering with the enhancement factor of 3.11x103. These applications demonstrate the capability of the novel process of AFM-based 3D nanomachining.

  11. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  12. Surface-enhanced chiroptical spectroscopy with superchiral surface waves.

    PubMed

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2018-07-01

    We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased. © 2018 Wiley Periodicals, Inc.

  13. Model based LV-reconstruction in bi-plane x-ray angiography

    NASA Astrophysics Data System (ADS)

    Backfrieder, Werner; Carpella, Martin; Swoboda, Roland; Steinwender, Clemens; Gabriel, Christian; Leisch, Franz

    2005-04-01

    Interventional x-ray angiography is state of the art in diagnosis and therapy of severe diseases of the cardiovascular system. Diagnosis is based on contrast enhanced dynamic projection images of the left ventricle. A new model based algorithm for three dimensional reconstruction of the left ventricle from bi-planar angiograms was developed. Parametric super ellipses are deformed until their projection profiles optimally fit measured ventricular projections. Deformation is controlled by a simplex optimization procedure. A resulting optimized parameter set builds the initial guess for neighboring slices. A three dimensional surface model of the ventricle is built from stacked contours. The accuracy of the algorithm has been tested with mathematical phantom data and clinical data. Results show conformance with provided projection data and high convergence speed makes the algorithm useful for clinical application. Fully three dimensional reconstruction of the left ventricle has a high potential for improvements of clinical findings in interventional cardiology.

  14. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  15. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  16. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity.

    PubMed

    Li, Guoqiang; Li, Jiawen; Zhang, Chenchu; Hu, Yanlei; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao; Wu, Dong

    2015-01-14

    The capability to realize 2D-3D controllable metallic micro/nanostructures is of key importance for various fields such as plasmonics, electronics, bioscience, and chemistry due to unique properties such as electromagnetic field enhancement, catalysis, photoemission, and conductivity. However, most of the present techniques are limited to low-dimension (1D-2D), small area, or single function. Here we report the assembly of self-organized three-dimensional (3D) porous metal micro/nanocages arrays on nickel surface by ethanol-assisted femtosecond laser irradiation. The underlying formation mechanism was investigated by a series of femtosecond laser irradiation under exposure time from 5 to 30 ms. We also demonstrate the ability to control the size of micro/nanocage arrays from 0.8 to 2 μm by different laser pulse energy. This method features rapidness (∼10 min), simplicity (one-step process), and ease of large-area (4 cm(2) or more) fabrication. The 3D cagelike micro/nanostructures exhibit not only improved antireflection from 80% to 7% but also enhanced hydrophobicity from 98.5° to 142° without surface modification. This simple technique for 3D large-area controllable metal microstructures will find great potential applications in optoelectronics, physics, and chemistry.

  17. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  18. Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules.

    PubMed

    Gopalakrishnan, Anisha; Chirumamilla, Manohar; De Angelis, Francesco; Toma, Andrea; Zaccaria, Remo Proietti; Krahne, Roman

    2014-08-26

    Top-down fabrication of electron-beam lithography (EBL)-defined metallic nanostructures is a successful route to obtain extremely high electromagnetic field enhancement via plasmonic effects in well-defined regions. To this aim, various geometries have been introduced such as disks, triangles, dimers, rings, self-similar lenses, and more. In particular, metallic dimers are highly efficient for surface-enhanced Raman spectroscopy (SERS), and their decoupling from the substrate in a three-dimensional design has proven to further improve their performance. However, the large fabrication time and cost has hindered EBL-defined structures from playing a role in practical applications. Here we present three-dimensional nanostar dimer devices that can be recycled via maskless metal etching and deposition processes, due to conservation of the nanostructure pattern in the 3D geometry of the underlying Si substrate. Furthermore, our 3D-nanostar-dimer-in-ring structures (3D-NSDiRs) incorporate several advantageous aspects for SERS by enhancing the performance of plasmonic dimers via an external ring cavity, by efficient decoupling from the substrate through an elevated 3D design, and by bimetallic AuAg layers that exploit the increased performance of Ag while maintaining the biocompatibility of Au. We demonstrate SERS detection on rhodamine and adenine at extremely low density up to the limit of few molecules and analyze the field enhancement of the 3D-NSDiRs with respect to the exciting wavelength and metal composition.

  19. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.

    PubMed

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2015-02-18

    A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.

  20. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition

    NASA Astrophysics Data System (ADS)

    Bian, Juncao; Shu, Shiwei; Li, Jianfu; Huang, Chao; Li, Yang Yang; Zhang, Rui-Qin

    2015-04-01

    Direct synthesis of three-dimensional Ag structures on solid substrates for the purposes of producing reproducible and recyclable surface-enhanced Raman scattering (SERS) applications remains challenging. In this work, flower-like Ag structures with concave surfaces (FACS) were successfully electrodeposited onto ITO glass using the double-potentiostatic method. The FACS, with an enhancement factor of the order of 108, exhibited a SERS signal intensity 3.3 times stronger than that measured from Ag nanostructures without concave surfaces. A cleaning procedure involving lengthy immersion of the sample in ethanol and KNO3 was proposed to recycle the substrate and confirmed by using rhodamine 6G, adenine, and 4-aminothiophenol as target molecules. The findings can help to advance the practical applications of Ag nanostructure-based SERS substrates.

  1. Quality Control of Laser-Beam-Melted Parts by a Correlation Between Their Mechanical Properties and a Three-Dimensional Surface Analysis

    NASA Astrophysics Data System (ADS)

    Grimm, T.; Wiora, G.; Witt, G.

    2017-03-01

    Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.

  2. Applying the Inverse Maximum Ratio- Λ to 3-Dimensional Surfaces

    NASA Astrophysics Data System (ADS)

    Chandran, Avinash; Brown, Derek; DiPietro, Loretta; Danoff, Jerome

    2016-06-01

    The question of contour uniformity on a three-dimensional surface arises in various fields of study. Although many questions related to surface uniformity exist, there is a lack of standard methodology to quantify uniformity of a three-dimensional surface. Therefore, a sound mathematical approach to this question could prove to be useful in various areas of study. The purpose of this paper is to expand the previously validated mathematical concept of the inverse maximum ratio over a three-dimensional surface and assess its robustness. We will describe the mathematical approach used to accomplish this and use several simulated examples to validate the metric.

  3. Power-scaling performance of a three-dimensional tritium betavoltaic diode

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan

    2009-12-01

    Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.

  4. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: Coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solares, Santiago D.

    Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less

  5. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: Coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions

    DOE PAGES

    Solares, Santiago D.

    2016-04-15

    Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less

  6. Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.

    1999-10-14

    Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-staticmore » solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.« less

  7. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  8. Revisiting Frazier's subdeltas: enhancing datasets with dimensionality, better to understand geologic systems

    USGS Publications Warehouse

    Flocks, James

    2006-01-01

    Scientific knowledge from the past century is commonly represented by two-dimensional figures and graphs, as presented in manuscripts and maps. Using today's computer technology, this information can be extracted and projected into three- and four-dimensional perspectives. Computer models can be applied to datasets to provide additional insight into complex spatial and temporal systems. This process can be demonstrated by applying digitizing and modeling techniques to valuable information within widely used publications. The seminal paper by D. Frazier, published in 1967, identified 16 separate delta lobes formed by the Mississippi River during the past 6,000 yrs. The paper includes stratigraphic descriptions through geologic cross-sections, and provides distribution and chronologies of the delta lobes. The data from Frazier's publication are extensively referenced in the literature. Additional information can be extracted from the data through computer modeling. Digitizing and geo-rectifying Frazier's geologic cross-sections produce a three-dimensional perspective of the delta lobes. Adding the chronological data included in the report provides the fourth-dimension of the delta cycles, which can be visualized through computer-generated animation. Supplemental information can be added to the model, such as post-abandonment subsidence of the delta-lobe surface. Analyzing the regional, net surface-elevation balance between delta progradations and land subsidence is computationally intensive. By visualizing this process during the past 4,500 yrs through multi-dimensional animation, the importance of sediment compaction in influencing both the shape and direction of subsequent delta progradations becomes apparent. Visualization enhances a classic dataset, and can be further refined using additional data, as well as provide a guide for identifying future areas of study.

  9. Evolution of Ge nanoislands on Si(110)-'16 × 2' surface under thermal annealing studied using STM

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Subhashis; Yoshimura, Masamichi; Ueda, Kazuyuki

    2009-11-01

    The initial nucleation of Ge nanoclusters on Si(110) at room temperature (RT), annealing-induced surface roughening and the evolution of three-dimensional Ge nanoislands have been investigated using scanning tunneling microscopy (STM). A few monolayers (ML) of Ge deposited at room temperature lead to the formation of Ge clusters which are homogeneously distributed across the surface. The stripe-like patterns, characteristic of the Si(110)-'16 × 2' surface reconstruction are also retained. Increasing annealing temperatures, however, lead to significant surface diffusion and thus, disruption of the underlying '16 × 2' reconstruction. The annealing-induced removal of the stripe structures (originated from '16 × 2' reconstruction) starts at approximately 300 °C, whereas the terrace structures of Si(110) are thermally stable up to 500 °C. At approximately 650 °C, shallow Ge islands of pyramidal shape with (15,17,1) side facets start to form. Annealing at even higher temperatures enhances Ge island formation. Our findings are explained in terms of partial dewetting of the metastable Ge wetting layer (WL) (formed at room temperature) as well as partial relaxation of lattice strain through three-dimensional (3D) island growth.

  10. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  11. Competition Between Extinction and Enhancement in Surface Enhanced Raman Spectroscopy.

    PubMed

    van Dijk, Thomas; Sivapalan, Sean T; Devetter, Brent M; Yang, Timothy K; Schulmerich, Matthew V; Murphy, Catherine J; Bhargava, Rohit; Carney, P Scott

    2013-04-04

    Conjugated metallic nanoparticles are a promising means to achieve ultrasensitive and multiplexed sensing in intact three-dimensional samples, especially for biological applications, via surface enhanced Raman scattering (SERS). We show that enhancement and extinction are linked and compete in a collection of metallic nanoparticles. Counterintuitively, the Raman signal vanishes when nanoparticles are excited at their plasmon resonance, while increasing nanoparticle concentrations at off-resonance excitation sometimes leads to decreased signal. We develop an effective medium theory that explains both phenomena. Optimal choices of excitation wavelength, individual particle enhancement factor and concentrations are indicated. The same processes which give rise to enhancement also lead to increased extinction of both the illumination and the Raman scattered light. Nanoparticles attenuate the incident field (blue) and at the same time provide local enhancement for SERS. Likewise the radiation of the Raman-scattered field (green) is enhanced by the near-by sphere but extinguished by the rest of the spheres in the suspension on propagation.

  12. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    NASA Astrophysics Data System (ADS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-01

    Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 106 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  13. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    NASA Astrophysics Data System (ADS)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  14. Sensitivity of forces to wall transpiration in flow past an aerofoil

    PubMed Central

    Mao, X.

    2015-01-01

    The adjoint-based sensitivity analyses well explored in hydrodynamic stability studies are extended to calculate the sensitivity of forces acting on an aerofoil with respect to wall transpiration. The magnitude of the sensitivity quantifies the controllability of the force, and the distribution of the sensitivity represents a most effective control when the control magnitude is small enough. Since the sensitivity to streamwise control is one order smaller than that to the surface-normal one, the work is concentrated on the normal control. In direct numerical simulations of flow around a NACA0024 aerofoil, the unsteady controls are far less effective than the steady control owing to the lock-in effect. At a momentum coefficient of 0.0008 and a maximum control velocity of 3.6% of the free-stream velocity, the steady surface-normal control reduces drag by 20% or enhances lift by up to 140% at Re=1000. A suction around the low-pressure region on the upper surface upstream of the separation point is found to reduce drag and enhance lift. At higher Reynolds numbers, the uncontrolled flow becomes three dimensional and the sensitivity diverges owing to the chaotic dynamics of the flow. Then the mechanism identified at lower Reynolds numbers is exploited to obtain the control, which is localized and can be generated by a limited number of actuators. The control to reduce drag or enhance lift is found to suppress unsteadiness, e.g. vortex shedding and three-dimensional developments. For example, at Re=2000 and α=10°, the control with a momentum coefficient of 0.0001 reduces drag by 20%, enhances lift by up to 200% and leads to a steady controlled flow. PMID:26807041

  15. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  16. Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing.

    PubMed

    Kizling, Michal; Dzwonek, Maciej; Olszewski, Bartłomiej; Bącal, Paweł; Tymecki, Łukasz; Więckowska, Agnieszka; Stolarczyk, Krzysztof; Bilewicz, Renata

    2017-09-15

    Three - dimensional (3D) electrodes are successfully used to overcome the limitations of the low space - time yield and low normalized space velocity obtained in electrochemical processes with two - dimensional electrodes. In this study, we developed a three - dimensional reticulated vitreous carbon - gold (RVC-Au) sponge as a scaffold for enzymatic fuel cells (EFC). The structure of gold and the real electrode surface area can be controlled by the parameters of metal electrodeposition. In particular, a 3D RVC-Au sponge provides a large accessible surface area for immobilization of enzyme and electron mediators, moreover, effective mass diffusion can also take place through the uniform macro - porous scaffold. To efficiently bind the enzyme to the electrode and enhance electron transfer parameters the gold surface was modified with ultrasmall gold nanoparticles stabilized with glutathione. These quantum sized nanoparticles exhibit specific electronic properties and also expand the working surface of the electrode. Significantly, at the steady state of power generation, the EFC device with RVC-Au electrodes provided high volumetric power density of 1.18±0.14mWcm -3 (41.3±3.8µWcm -2 ) calculated based on the volume of electrode material with OCV 0.741±0.021V. These new 3D RVC-Au electrodes showed great promise for improving the power generation of EFC devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Calculation of laminar heating rates on three-dimensional configurations using the axisymmetric analogue

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1980-01-01

    A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.

  18. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    NASA Astrophysics Data System (ADS)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  19. Landslide prediction using combined deterministic and probabilistic methods in hilly area of Mt. Medvednica in Zagreb City, Croatia

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki

    2013-04-01

    The hilly slopes of Mt. Medvednica are stretched in the northwestern part of Zagreb City, Croatia, and extend to approximately 180km2. In this area, landslides, e.g. Kostanjek landslide and Črešnjevec landslide, have brought damage to many houses, roads, farmlands, grassland and etc. Therefore, it is necessary to predict the potential landslides and to enhance landslide inventory for hazard mitigation and security management of local society in this area. We combined deterministic method and probabilistic method to assess potential landslides including their locations, size and sliding surfaces. Firstly, this study area is divided into several slope units that have similar topographic and geological characteristics using the hydrology analysis tool in ArcGIS. Then, a GIS-based modified three-dimensional Hovland's method for slope stability analysis system is developed to identify the sliding surface and corresponding three-dimensional safety factor for each slope unit. Each sliding surface is assumed to be the lower part of each ellipsoid. The direction of inclination of the ellipsoid is considered to be the same as the main dip direction of the slope unit. The center point of the ellipsoid is randomly set to the center point of a grid cell in the slope unit. The minimum three-dimensional safety factor and corresponding critical sliding surface are also obtained for each slope unit. Thirdly, since a single value of safety factor is insufficient to evaluate the slope stability of a slope unit, the ratio of the number of calculation cases in which the three-dimensional safety factor values less than 1.0 to the total number of trial calculation is defined as the failure probability of the slope unit. If the failure probability is more than 80%, the slope unit is distinguished as 'unstable' from other slope units and the landslide hazard can be mapped for the whole study area.

  20. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  1. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  2. Three-Dimensional Hierarchical MoS2 Nanosheets/Ultralong N-Doped Carbon Nanotubes as High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Liu, Lianlian; Zhang, Shen; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-04-25

    Here, we report a simple method to grow thin MoS 2 nanosheets (NSs) on the ultralong nitrogen-doped carbon nanotubes through anion-exchange reaction. The MoS 2 NSs are grown on ultralong nitrogen-doped carbon nanotube surfaces, leading to an interesting three-dimensional hierarchical structure. The fabricated hybrid nanotubes have a length of approximately 100 μm, where the MoS 2 nanosheets have a thickness of less than 7.5 nm. The hybrid nanotubes show excellent electromagnetic wave attenuation performance, with the effective absorption bandwidth of 5.4 GHz at the thicknesses of 2.5 mm, superior to the pure MoS 2 nanosheets and the MoS 2 nanosheets grown on the short N-doped carbon nanotube surfaces. The experimental results indicate that the direct growth of MoS 2 on the ultralong nitrogen-doped carbon nanotube surfaces is a key factor for the enhanced electromagnetic wave attenuation property. The results open the avenue for the development of ultralong transition metal dichalcogenides for electromagnetic wave absorbers.

  3. Single-layer graphdiyne-covered Pt(111) surface: improved catalysis confined under two-dimensional overlayer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    In recent years, two-dimensional confined catalysis, i.e., the enhanced catalytic reactions in confined space between metal surface and two-dimensional overlayer, makes a hit and opens up a new way to enhance the performance of catalysts. In this work, graphdiyne overlayer was proposed as a more excellent material than graphene or hexagonal boron nitride for two-dimensional confined catalysis on Pt(111) surface. Density functional theory calculations revealed the superiority of graphdiyne overlayer originates from the steric hindrance effect which increases the catalytic ability and lowers the reaction barriers. Moreover, with the big triangle holes as natural gas tunnels, graphdiyne possesses higher efficiency for the transit of gaseous reactants and products than graphene or hexagonal boron nitride. The results in this work would benefit future development of two-dimensional confined catalysis. [Figure not available: see fulltext.

  4. A high-resolution three-dimensional far-infrared thermal and true-color imaging system for medical applications.

    PubMed

    Cheng, Victor S; Bai, Jinfen; Chen, Yazhu

    2009-11-01

    As the needs for various kinds of body surface information are wide-ranging, we developed an imaging-sensor integrated system that can synchronously acquire high-resolution three-dimensional (3D) far-infrared (FIR) thermal and true-color images of the body surface. The proposed system integrates one FIR camera and one color camera with a 3D structured light binocular profilometer. To eliminate the emotion disturbance of the inspector caused by the intensive light projection directly into the eye from the LCD projector, we have developed a gray encoding strategy based on the optimum fringe projection layout. A self-heated checkerboard has been employed to perform the calibration of different types of cameras. Then, we have calibrated the structured light emitted by the LCD projector, which is based on the stereo-vision idea and the least-squares quadric surface-fitting algorithm. Afterwards, the precise 3D surface can fuse with undistorted thermal and color images. To enhance medical applications, the region-of-interest (ROI) in the temperature or color image representing the surface area of clinical interest can be located in the corresponding position in the other images through coordinate system transformation. System evaluation demonstrated a mapping error between FIR and visual images of three pixels or less. Experiments show that this work is significantly useful in certain disease diagnoses.

  5. Venus - 3D Perspective View of Maat Mons

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Maat Mons is displayed in this computer generated three-dimensional perspective of the surface of Venus. The viewpoint is located 634 kilometers (393 miles) north of Maat Mons at an elevation of 3 kilometers (2 miles) above the terrain. Lava flows extend for hundreds of kilometers across the fractured plains shown in the foreground, to the base of Maat Mons. The view is to the south with the volcano Maat Mons appearing at the center of the image on the horizon and rising to almost 5 kilometers (3 miles) above the surrounding terrain. Maat Mons is located at approximately 0.9 degrees north latitude, 194.5 degrees east longitude with a peak that ascends to 8 kilometers (5 miles) above the mean surface. Maat Mons is named for an Egyptian Goddess of truth and justice. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. The vertical scale in this perspective has been exaggerated 10 times. Rays cast in a computer intersect the surface to crate a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced by the Solar System Visualization project and the Magellan Science team at the JPL Multimission Image Processing Laboratory and is a single frame from a video released at the April 22, 1992 news conference.

  6. Transparency-enhancing technology allows three-dimensional assessment of gastrointestinal mucosa: A porcine model.

    PubMed

    Mizutani, Hiroya; Ono, Satoshi; Ushiku, Tetsuo; Kudo, Yotaro; Ikemura, Masako; Kageyama, Natsuko; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Someya, Takao; Fukayama, Masashi; Koike, Kazuhiko; Onodera, Hiroshi

    2018-02-01

    Although high-resolution three-dimensional imaging of endoscopically resected gastrointestinal specimens can help elucidating morphological features of gastrointestinal mucosa or tumor, there are no established methods to achieve this without breaking specimens apart. We evaluated the utility of transparency-enhancing technology for three-dimensional assessment of gastrointestinal mucosa in porcine models. Esophagus, stomach, and colon mucosa samples obtained from a sacrificed swine were formalin-fixed and paraffin-embedded, and subsequently deparaffinized for analysis. The samples were fluorescently stained, optically cleared using transparency-enhancing technology: ilLUmination of Cleared organs to IDentify target molecules method (LUCID), and visualized using laser scanning microscopy. After observation, all specimens were paraffin-embedded again and evaluated by conventional histopathological assessment to measure the impact of transparency-enhancing procedures. As a result, microscopic observation revealed horizontal section views of mucosa at deeper levels and enabled the three-dimensional image reconstruction of glandular and vascular structures. Besides, paraffin-embedded specimens after transparency-enhancing procedures were all assessed appropriately by conventional histopathological staining. These results suggest that transparency-enhancing technology may be feasible for clinical application and enable the three-dimensional structural analysis of endoscopic resected specimen non-destructively. Although there remain many limitations or problems to be solved, this promising technology might represent a novel histopathological method for evaluating gastrointestinal cancers. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  7. Method of fabricating free-form, high-aspect ratio components for high-current, high-speed microelectrics

    DOEpatents

    Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W

    2014-03-11

    Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.

  8. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  9. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE PAGES

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; ...

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  10. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  11. Effects of front-surface target structures on properties of relativistic laser-plasma electrons.

    PubMed

    Jiang, S; Krygier, A G; Schumacher, D W; Akli, K U; Freeman, R R

    2014-01-01

    We report the results of a study of the role of prescribed geometrical structures on the front of a target in determining the energy and spatial distribution of relativistic laser-plasma electrons. Our three-dimensional particle-in-cell simulation studies apply to short-pulse, high-intensity laser pulses, and indicate that a judicious choice of target front-surface geometry provides the realistic possibility of greatly enhancing the yield of high-energy electrons while simultaneously confining the emission to narrow (<5°) angular cones.

  12. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  13. Numerical study on the mechanisms of the SERS of gold-coated pyramidal tip substrates.

    PubMed

    Li, Rui; Wang, Qiao; Li, Hong; Liu, Kun; Pan, Shi; Zhan, Weishen; Chen, Maodu

    2016-06-29

    In this paper, the physical enhancement mechanisms of the surface-enhanced Raman scattering (SERS) of pyramidal tip substrates are studied theoretically. We structure the periodic square-based arrays of adjacent nanometer pyramidal gold-coated tips on silicon. In order to determine the contribution of plasmonic or diffraction effects on the SERS, three-dimensional (3D) numerical simulations are implemented by taking into account the substrate coated with a gold thin film or a perfect electrical conductor thin film. The tip distance, metal coating thickness and incident light polarization angle are also optimized to investigate whether the further SERS signal can be enhanced.

  14. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix.

    PubMed

    Liu, Honglin; Yang, Zhilin; Meng, Lingyan; Sun, Yudie; Wang, Jie; Yang, Liangbao; Liu, Jinhuai; Tian, Zhongqun

    2014-04-09

    The "fixed" or "flexible" design of plasmonic hotspots is a frontier area of research in the field of surface-enhanced Raman scattering (SERS). Most reported SERS hotspots have been shown to exist in zero-dimensional point-like, one-dimensional linear, or two-dimensional planar geometries. Here, we demonstrate a novel three-dimensional (3D) hotspot matrix that can hold hotspots between every two adjacent particles in 3D space, simply achieved by evaporating a droplet of citrate-Ag sols on a fluorosilylated silicon wafer. In situ synchrotron-radiation small-angle X-ray scattering (SR-SAXS), combined with dark-field microscopy and in situ micro-UV, was employed to explore the evolution of the 3D geometry and plasmonic properties of Ag nanoparticles in a single droplet. In such a droplet, there is a distinct 3D geometry with minimal polydispersity of particle size and maximal uniformity of interparticle distance, significantly different from the dry state. According to theoretical simulations, the liquid adhesive force promotes a closely packed assembly of particles, and the interparticle distance is not fixed but can be balanced in a small range by the interplay of the van der Waals attraction and electrostatic repulsion experienced by a particle. The "trapping well" for immobilizing particles in 3D space can result in a large number of hotspots in a 3D geometry. Both theoretical and experimental results demonstrate that the 3D hotspots are predictable and time-ordered in the absence of any sample manipulation. Use of the matrix not only produces giant Raman enhancement at least 2 orders of magnitude larger than that of dried substrates, but also provides the structural basis for trapping molecules. Even a single molecule of resonant dye can generate a large SERS signal. With a portable Raman spectrometer, the detection capability is also greatly improved for various analytes with different natures, including pesticides and drugs. This 3D hotspot matrix overcomes the long-standing limitations of SERS for the ultrasensitive characterization of various substrates and analytes and promises to transform SERS into a practical analytical technique.

  15. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds

    PubMed Central

    Shin, Kyungsup; Jayasuriya, Ambalangodage C.; Kohn, David H.

    2009-01-01

    A biomimetic approach involving the self-assembly of mineral within the pores of three-dimensional porous polymer scaffolds is a promising strategy to integrate advantages of inorganic and organic phases into a single material for hard tissue engineering. Such a material enhances the ability of progenitor cells to differentiate down an osteoblast lineage in vitro and in vivo, compared with polymer scaffolds. The mechanisms regulating mineral formation in this one-step process, however, are poorly understood, especially the effects of ionic activity products (IP) of the mineralizing solution and incubation time. The aims of this study were to define the structure and composition of mineral formed within the pores of biodegradable polymer scaffolds as a function of IP and time. Three-dimensional poly(lactide-co-glycolide) scaffolds were fabricated by solvent casting/particulate leaching and incubated for 4–16 days in six variants of simulated body fluid whose IPs were varied by adjusting ionic concentrations. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrated the formation of carbonated apatite with sub-micrometer sized crystals that grew into spherical globules extending out of the scaffold pore surfaces. As IP increased, more mineral grew on the scaffold pore surfaces, but the apatite became less crystalline and the Ca/P molar ratio decreased from 1.63 ± 0.005 to 1.51 ± 0.002. Since morphology, composition, and structure of mineral are factors that affect cell function, this study demonstrates that the IP of the mineralizing solution is an important modulator of material properties, potentially leading to enhanced control of cell function. PMID:17584901

  16. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  17. Simulation of two-dimensional gratings for SERS-active substrate

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Wu, Jianhong

    2016-11-01

    Raman spectroscopy provides intrinsic vibrational and rotational mode of molecules in materials, which is widely used in chemical, medical and environmental domains. As known, the magnitude of surface enhanced Raman scattering can be amplified several orders. Nowadays, common Raman scattering has been gradually replaced by surface enhanced Raman scattering in low concentration detection domain. Generally speaking, the signal of surface enhanced Raman scattering on periodic nanostructures is more reliable and reproducible than on irregular nanostructures. In this paper, two-dimensional gratings coated by noble metal are used as SERS-active substrate. The surface plasmon resonance can be obtained by tuning the period of two-dimensional grating when the excitation laser interacts on the grating. The local electric field distribution is simulated by finite-difference-time-domain (FDTD). The wavelength of 632.8nm and 785nm are usually assembled on commercial Raman spectrometer. The optimization procedure of two-dimensional grating period is simulated by FDTD for above two wavelengths. The relation between the grating period and surface plasmon resonance is obtained in theory. The parameters such as depth of photoresist and thickness of coated metal are systematic discussed. The simulation results will greatly guide our post manufacture, which can be served for the commercial Raman spectrometer in SERS detection.

  18. Wind-Tunnel Investigation of Control-Surface Characteristics XX : Plain and Balanced Flaps on an NACA 0009 Rectangular Semispan Tail Surface

    NASA Technical Reports Server (NTRS)

    Garner, Elizabeth I.

    1944-01-01

    Correlation is established between aerodynamic characteristics of control surfaces in two-dimensional and three-dimensional flow. Slope of lift curve was affected little by overhang and balance-nose shape, but increased by sealing flap-nose gap. Effectiveness of balancing tab was same for sealed plain flap and unsealed overhang flap. Changes in hinge-moment coefficient were diminished by sealing gap. Values measured by three-dimensional flow disagreed with two-dimensional flow values until aspect ratio corrections were made.

  19. Propagation of relativistic surface harmonics radiation in free space

    NASA Astrophysics Data System (ADS)

    an der Brügge, Daniel; Pukhov, Alexander

    2007-09-01

    Relativistic high-harmonics generation from overdense plasma surfaces is studied using three-dimensional particle-in-cell simulations. It is shown that the simple vacuum propagation in the real three-dimensional geometry strongly affects the harmonics spectrum on the optical axis. It may even lead to the formation of attosecond pulses without any special optical filters. To make good use of these effects it is necessary to shape either the laser pulse focal spot, or the surface material in such a way that the S-number of the interaction [see Gordienko and Pukhov, Phys. Plasmas 12, 043109 (2005)] is preserved over the largest possible area. The three-dimensional simulations are carefully compared with the one-dimensional ones. It is shown that the one-dimensional models work well even in cases where the laser is focused to a quite small spot on the harmonics generating surface (σ≈λ).

  20. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  1. Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.

    PubMed

    Gallot, Thomas; Catheline, Stefan; Roux, Philippe

    2011-04-01

    Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.

  2. Fabrication of three-dimensional hybrid nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices.

    PubMed

    Kim, Jeong Won; Jeon, Hwan-Jin; Lee, Chang-Lyoul; Ahn, Chi Won

    2017-03-02

    Well-aligned, high-resolution (10 nm), three-dimensional (3D) hybrid nanostructures consisting of patterned cylinders and Au islands were fabricated on ITO substrates using an ion bombardment process and a tilted deposition process. The fabricated 3D hybrid nanostructure-embedded ITO maintained its excellent electrical and optical properties after applying a surface-structuring process. The solution processable organic photovoltaic device (SP-OPV) employing a 3D hybrid nanostructure-embedded ITO as the anode displayed a 10% enhancement in the photovoltaic performance compared to the photovoltaic device prepared using a flat ITO electrode, due to the improved charge collection (extraction and transport) efficiency as well as light absorbance by the photo-active layer.

  3. Rotary culture enhances pre-osteoblast aggregation and mineralization.

    PubMed

    Facer, S R; Zaharias, R S; Andracki, M E; Lafoon, J; Hunter, S K; Schneider, G B

    2005-06-01

    Three-dimensional environments have been shown to enhance cell aggregation and osteoblast differentiation. Thus, we hypothesized that three-dimensional (3D) growth environments would enhance the mineralization rate of human embryonic palatal mesenchymal (HEPM) pre-osteoblasts. The objective of this study was to investigate the potential use of rotary cell culture systems (RCCS) as a means to enhance the osteogenic potential of pre-osteoblast cells. HEPM cells were cultured in a RCCS to create 3D enviroments. Tissue culture plastic (2D) cultures served as our control. 3D environments promoted three-dimensional aggregate formations. Increased calcium and phosphorus deposition was significantly enhanced three- to 18-fold (P < 0.001) in 3D cultures as compared with 2D environments. 3D cultures mineralized in 1 wk as compared with the 2D cultures, which took 4 wks, a decrease in time of nearly 75%. In conclusion, our studies demonstrated that 3D environments enhanced osteoblast cell aggregation and mineralization.

  4. A computer program for fitting smooth surfaces to three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.; Smith, R. E., Jr.

    1975-01-01

    A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.

  5. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  6. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cui, B.; Clime, L.; Li, K.; Veres, T.

    2008-04-01

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  7. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.

    PubMed

    Cui, B; Clime, L; Li, K; Veres, T

    2008-04-09

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  8. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator.

    PubMed

    Lian, Meng; Collier, C Patrick; Doktycz, Mitchel J; Retterer, Scott T

    2012-01-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.

  9. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator

    PubMed Central

    Lian, Meng; Collier, C. Patrick; Doktycz, Mitchel J.; Retterer, Scott T.

    2012-01-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level. PMID:24198865

  10. Solvothermal synthesis of Bi2O3/BiVO4 heterojunction with enhanced visible-light photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Ying, Wu; Jing, Wang; Yunfang, Huang; Yuelin, Wei; Zhixian, Sun; Xuanqing, Zheng; Chengkun, Zhang; Ningling, Zhou; Leqing, Fan; Jihuai, Wu

    2016-08-01

    Novel, three-dimensional, flower-like Bi2O3/BiVO4 heterojunction photocatalysts have been prepared by the combination of homogeneous precipitation and two-step solvothermal method followed by thermal solution of NaOH etching process. The as-obtained samples were fully characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Brunauer-Emmett-Teller surface area, and UV—vis diffuse-reflectance spectroscopy in detail. The crystallinity, microstructure, specific surface area, optical property and photocatalytic activity of samples greatly changed depending on solvothermal reaction time. The photocatalytic activities of samples were evaluated on the degradation of methyl orange (MO) under visible-light irradiation. The Bi2O3/BiVO4 exhibited much higher photocatalytic activities than pure BiVO4 and conventional TiO2 (P25). The result revealed that the three-dimensional heterojunction played a critical role in the separation of the electron and hole pairs and enhancement of the interfacial charge transfer efficiency, which was responsible for the enhanced photocatalytic activity. Project supported by the National Natural Science Foundation of China (Nos. 61306077, 21301060), the Fundamental Research Funds for the Central Universities (Nos. JB-ZR1109, JB-ZR1212), the National Science Foundation of Quanzhou City (No. 2014Z108), the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University (No. ZQN-PY207), Discipline Innovation Team Project of Huaqiao University (No. 201320), and the Instrumental Analysis Center Huaqiao University.

  11. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    ERIC Educational Resources Information Center

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  12. Direct Conversion of Equine Adipose-Derived Stem Cells into Induced Neuronal Cells Is Enhanced in Three-Dimensional Culture.

    PubMed

    Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M

    2015-12-01

    The ability to culture neurons from horses may allow further investigation into equine neurological disorders. In this study, we demonstrate the generation of induced neuronal cells from equine adipose-derived stem cells (EADSCs) using a combination of lentiviral vector expression of the neuronal transcription factors Brn2, Ascl1, Myt1l (BAM) and NeuroD1 and a defined chemical induction medium, with βIII-tubulin-positive induced neuronal cells displaying a distinct neuronal morphology of rounded and compact cell bodies, extensive neurite outgrowth, and branching of processes. Furthermore, we investigated the effects of dimensionality on neuronal transdifferentiation, comparing conventional two-dimensional (2D) monolayer culture against three-dimensional (3D) culture on a porous polystyrene scaffold. Neuronal transdifferentiation was enhanced in 3D culture, with evenly distributed cells located on the surface and throughout the scaffold. Transdifferentiation efficiency was increased in 3D culture, with an increase in mean percent conversion of more than 100% compared to 2D culture. Additionally, induced neuronal cells were shown to transit through a Nestin-positive precursor state, with MAP2 and Synapsin 2 expression significantly increased in 3D culture. These findings will help to increase our understanding of equine neuropathogenesis, with prospective roles in disease modeling, drug screening, and cellular replacement for treatment of equine neurological disorders.

  13. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  14. Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting.

    PubMed

    Chen, Po-Yen; Dang, Xiangnan; Klug, Matthew T; Qi, Jifa; Dorval Courchesne, Noémie-Manuelle; Burpo, Fred J; Fang, Nicholas; Hammond, Paula T; Belcher, Angela M

    2013-08-27

    By genetically encoding affinity for inorganic materials into the capsid proteins of the M13 bacteriophage, the virus can act as a template for the synthesis of nanomaterial composites for use in various device applications. Herein, the M13 bacteriophage is employed to build a multifunctional and three-dimensional scaffold capable of improving both electron collection and light harvesting in dye-sensitized solar cells (DSSCs). This has been accomplished by binding gold nanoparticles (AuNPs) to the virus proteins and encapsulating the AuNP-virus complexes in TiO2 to produce a plasmon-enhanced and nanowire (NW)-based photoanode. The NW morphology exhibits an improved electron diffusion length compared to traditional nanoparticle-based DSSCs, and the AuNPs increase the light absorption of the dye-molecules through the phenomenon of localized surface plasmon resonance. Consequently, we report a virus-templated and plasmon-enhanced DSSC with an efficiency of 8.46%, which is achieved through optimizing both the NW morphology and the concentration of AuNPs loaded into the solar cells. In addition, we propose a theoretical model that predicts the experimentally observed trends of plasmon enhancement.

  15. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy; ...

    2016-05-23

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  16. On the modeling of wave-enhanced turbulence nearshore

    NASA Astrophysics Data System (ADS)

    Moghimi, Saeed; Thomson, Jim; Özkan-Haller, Tuba; Umlauf, Lars; Zippel, Seth

    2016-07-01

    A high resolution k-ω two-equation turbulence closure model, including surface wave forcing was employed to fully resolve turbulence dissipation rate profiles close to the ocean surface. Model results were compared with observations from Surface Wave Instrument Floats with Tracking (SWIFTs) in the nearshore region at New River Inlet, North Carolina USA, in June 2012. A sensitivity analysis for different physical parameters and wave and turbulence formulations was performed. The flux of turbulent kinetic energy (TKE) prescribed by wave dissipation from a numerical wave model was compared with the conventional prescription using the wind friction velocity. A surface roughness length of 0.6 times the significant wave height was proposed, and the flux of TKE was applied at a distance below the mean sea surface that is half of this roughness length. The wave enhanced layer had a total depth that is almost three times the significant wave height. In this layer the non-dimensionalized Terray scaling with power of - 1.8 (instead of - 2) was applicable.

  17. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.

    PubMed

    Shaoki, Algabri; Xu, Jia-Yun; Sun, Haipeng; Chen, Xian-Shuai; Ouyang, Jianglin; Zhuang, Xiu-Mei; Deng, Fei-Long

    2016-10-27

    The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface. In addition, we evaluated the osseointegration capability of the SLM implants in vivo and compared it with those of MA and Nobel-speedy (Nobel-S) implants. SLM microtopographical surface analysis revealed porous and high roughness with varied geometry compared with a smooth surface in MA Ti samples but with similar favourable wettability. Osteoblast proliferation and alkaline phosphatase activity were significantly enhanced on the SLM surface. Histological analysis of the bone-implant contact ratio revealed no significant difference among SLM, MA, and Nobel-S implants. Micro-CT assessment indicated that there was no significant difference in bone volume fraction around the implant among SLM implants and other types of surface modification implants. The removal torque value measurement of SLM implants was significantly lower that of than Nobel-S implants P < 0.001 and higher than that of MA implants. The study demonstrates the capability of SLM implants to integrate with living bone. The SLM technique holds promise as a new dental implant manufacturing technique.

  18. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  19. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-01-01

    In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.

  20. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  1. Highly sensitive surface enhanced Raman scattering substrates based on Ag decorated Si nanocone arrays and their application in trace dimethyl phthalate detection

    NASA Astrophysics Data System (ADS)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu

    2015-01-01

    Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.

  2. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiang; Jin, Wencan; Yang, Hao

    Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less

  3. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission

    DOE PAGES

    Meng, Xiang; Jin, Wencan; Yang, Hao; ...

    2017-06-30

    Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less

  4. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries

    PubMed Central

    Nyström, Gustav; Marais, Andrew; Karabulut, Erdem; Wågberg, Lars; Cui, Yi; Hamedi, Mahiar M.

    2015-01-01

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25 F g−1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices. PMID:26021485

  5. Ocean Ambient Noise Studies for Improved Sonar Processing

    DTIC Science & Technology

    2013-09-30

    conceptual basis of using multipath arrivals to enhance target localization still holds promise. In this project, the emphasis is on analytically and...Nosal 2006] E. Nosal and L. Neilfrazer, "Track of a sperm whale from delays between direct and surface-reflected clicks," Applied Acoustics, vol. 67, no...V. O’Connell, and K. Folkert, “Three- dimensional localization of sperm whales using a single hydrophone”, J. Acous. Soc. Am. 120, 2355-2365 (2006

  6. Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.

    ERIC Educational Resources Information Center

    Hamel, Cheryl J.; Ryan-Jones, David L.

    1997-01-01

    Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…

  7. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1993-01-01

    The problem of recognizing and positioning of objects in three-dimensional space is important for robotics and navigation applications. In recent years, digital range data, also referred to as range images or depth maps, have been available for the analysis of three-dimensional objects owing to the development of several active range finding techniques. The distinct advantage of range images is the explicitness of the surface information available. Many industrial and navigational robotics tasks will be more easily accomplished if such explicit information can be efficiently interpreted. In this research, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely characterized by a set of these two-dimensional curves, thus allowing discrimination from the others. Before the recognition process can be implemented, the range data have to undergo a set of pre-processing operations, thereby making it more presentable to classification algorithms. One such pre-processing step is to study the effect of median filtering on raw range images. Utilizing a variety of surface curvature techniques, reliable sets of image data that approximate the shape of a quadric surface are determined. Since the initial orientation of the surfaces is unknown, a new technique is developed wherein all the rotation parameters are determined and subsequently eliminated. This approach enables us to position the quadric surfaces in a desired coordinate system. Experiments were conducted on raw range images of spheres, cylinders, and cones. Experiments were also performed on simulated data for surfaces such as hyperboloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated data yielded excellent results. Our approach is found to be more accurate and computationally inexpensive as compared to traditional approaches, such as the three-dimensional discriminant approach which involves evaluation of the rank of a matrix. Finally, we have proposed one other new approach, which involves the formulation of a mapping between the explicit and implicit forms of representing quadric surfaces. This approach, when fully realized, will yield a three-dimensional discriminant, which will recognize quadric surfaces based upon their component surfaces patches. This approach is faster than prior approaches and at the same time is invariant to pose and orientation of the surfaces in three-dimensional space.

  8. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Astrophysics Data System (ADS)

    Alvertos, Nicolas; Dcunha, Ivan

    1993-03-01

    The problem of recognizing and positioning of objects in three-dimensional space is important for robotics and navigation applications. In recent years, digital range data, also referred to as range images or depth maps, have been available for the analysis of three-dimensional objects owing to the development of several active range finding techniques. The distinct advantage of range images is the explicitness of the surface information available. Many industrial and navigational robotics tasks will be more easily accomplished if such explicit information can be efficiently interpreted. In this research, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely characterized by a set of these two-dimensional curves, thus allowing discrimination from the others. Before the recognition process can be implemented, the range data have to undergo a set of pre-processing operations, thereby making it more presentable to classification algorithms. One such pre-processing step is to study the effect of median filtering on raw range images. Utilizing a variety of surface curvature techniques, reliable sets of image data that approximate the shape of a quadric surface are determined. Since the initial orientation of the surfaces is unknown, a new technique is developed wherein all the rotation parameters are determined and subsequently eliminated. This approach enables us to position the quadric surfaces in a desired coordinate system. Experiments were conducted on raw range images of spheres, cylinders, and cones. Experiments were also performed on simulated data for surfaces such as hyperboloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated data yielded excellent results. Our approach is found to be more accurate and computationally inexpensive as compared to traditional approaches, such as the three-dimensional discriminant approach which involves evaluation of the rank of a matrix.

  9. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  10. Venus - Three-Dimensional Perspective View of Alpha Regio

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A portion of Alpha Regio is displayed in this three-dimensional perspective view of the surface of Venus. Alpha Regio, a topographic upland approximately 1300 kilometers across, is centered on 25 degrees south latitude, 4 degrees east longitude. In 1963, Alpha Regio was the first feature on Venus to be identified from Earth-based radar. The radar-bright area of Alpha Regio is characterized by multiple sets of intersecting trends of structural features such as ridges, troughs, and flat-floored fault valleys that, together, form a polygonal outline. Directly south of the complex ridged terrain is a large ovoid-shaped feature named Eve. The radar-bright spot located centrally within Eve marks the location of the prime meridian of Venus. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Ray tracing is used to generate a perspective view from this map. The vertical scale is exaggerated approximately 23 times. Simulated color and a digital elevation map developed by the U. S. Geological Survey are used to enhance small scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall, and Myche McAuley, and is a single frame from the movie released at the March 5, 1991, press conference.

  11. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  12. Three-dimensionally spiral structure of the water stream induced by a centrifugal stirrer in large aqua-cultural ponds

    NASA Astrophysics Data System (ADS)

    Itano, Tomoaki; Inagaki, Taishi; Nakamura, Choji; Sugihara-Seki, Masako; Hyodo, Jinsuke

    2017-11-01

    We have conducted measurements of the water stream produced by a mechanical stirrer (diameter 2.4[m], electric power 50[W]) located in shallow rectangular reservoirs (small 0.7[ha], large 3.7[ha]), which may be employed as a cost-efficient aerator for the aqua-cultural purpose, with the aid of both particle tracking velocimetry by passive tracers floating on the surface and direct measurement by electro-magnetic velocimeter under the surface. The present measurements indicate that the stirrer drives primarily the horizontally rotating water stream and secondarily the vertical convection between the surface and the bottom of the reservoir, which results in the three-dimensionally spiral-shaped water streams scaled vertically by just a meter but horizontally by more than ten meters. It is suggested that the spiral structure driven by the stirrer may activate the underwater vertical mixing and enhance dissolved oxygen at the bottom of aqua-cultural pond more effectively than the paddle-wheel aerators commonly used in aqua-cultural ponds. This research was financially supported in part by the Kansai University Fund for Supporting Young Scholars, 2016-2017.

  13. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-11-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.

  14. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    PubMed Central

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-01-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe. PMID:26538365

  15. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    PubMed

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  16. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  17. A Numeric Study of the Dependence of the Surface Temperature of Beta-Layered Regions on Absolute Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Asaki, Thomas J.; Hoffer, James K.

    2000-01-15

    Beta-layering of deuterium-tritium (D-T) ice in spherical shell geometries is numerically and analytically considered to investigate the relationship between temperature differences that arise because of inner-surface perturbations and the absolute shell thickness. The calculations use dimensions based on a proposed design of an inertial confinement fusion target for use at the National Ignition Facility. The temperature differences are calculated within D-T ice shells of varying total thicknesses, and the temperature differences calculated in three dimensions are compared both to the one-dimensional results and to the expected limits in three dimensions for long- and short-wavelength surface perturbations. The three-dimensional numeric resultsmore » agree well with both the long- and short-wavelength limits; the region of crossover from short- to long-wavelength behavior is mapped out. Temperature differences due to surface perturbations are proportional to D-T layer thickness in one-dimensional systems but not in three-dimensional spherical shells. In spherical shells, surface perturbations of long wavelength give rise to temperature perturbations that are approximately proportional to the total shell thickness, while for short-wavelength perturbations, the temperature differences are inversely related to total shell thickness. In contrast to the one-dimensional result, we find that in three dimensions there is not a general relationship between shell thickness and surface temperature differences.« less

  18. Improvements to the kernel function method of steady, subsonic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1974-01-01

    The application of a kernel function lifting surface method to three dimensional, thin wing theory is discussed. A technique for determining the influence functions is presented. The technique is shown to require fewer quadrature points, while still calculating the influence functions accurately enough to guarantee convergence with an increasing number of spanwise quadrature points. The method also treats control points on the wing leading and trailing edges. The report introduces and employs an aspect of the kernel function method which apparently has never been used before and which significantly enhances the efficiency of the kernel function approach.

  19. Spitting cobras: fluid jets in nature as models for technical applications

    NASA Astrophysics Data System (ADS)

    Balmert, Alexander; Hess, David; Brücker, Christoph; Bleckmann, Horst; Westhoff, Guido

    2011-04-01

    Spitting cobras defend themselves by ejecting rapid jets of venom through their fangs towards the face of an offender. To generate these jets, the venom delivery system of spitting cobras has some unique adaptations, such as prominent ridges on the surface of the venom channel. We examined the fluid acceleration mechanisms in three spitting cobra species of the genus Naja. To investigate the liquid-flow through the venom channel we built a three-dimensional 60:1 scale model. First we determined the three-dimensional structure of the channel by using microcomputer tomography. With help of the micro computer tomographical data we then created a negative form out of wax. Finally, silicon was casted around the wax form and the wax removed, resulting in a completely transparent model of the cobrás venom channel. The physical-chemical properties of the cobra venom were measured by micro rheometry and tensiometry. Thereafter, an artificial fluid with similar properties was generated. Particle image velocimetry (PIV) was performed to visualize the flow of the artificial liquid in the three-dimensional model. Our experiments show how the surface structure of the venom channel determines the liquid flow through the channel and ultimately the form of the liquid jet. Understanding the biological mechanisms of venom ejection helps to enhance industrial processes such as water jet cutting and cleaning as well as injection methods in technical and medical sectors, e.g. liquid microjet dissection in microsurgery.

  20. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  1. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  2. Three-dimensional simulations of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  3. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    NASA Astrophysics Data System (ADS)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  4. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  5. Mechanisms for Flow-Enhanced Cell Adhesion

    PubMed Central

    Zhu, Cheng; Yago, Tadayuki; Lou, Jizhong; Zarnitsyna, Veronika I.; McEver, Rodger P.

    2009-01-01

    Cell adhesion is mediated by specific receptor—ligand bonds. In several biological systems, increasing flow has been observed to enhance cell adhesion despite the increasing dislodging fluid shear forces. Flow-enhanced cell adhesion includes several aspects: flow augments the initial tethering of flowing cells to a stationary surface, slows the velocity and increases the regularity of rolling cells, and increases the number of rollingly adherent cells. Mechanisms for this intriguing phenomenon may include transport-dependent acceleration of bond formation and force-dependent deceleration of bond dissociation. The former includes three distinct transport modes: sliding of cell bottom on the surface, Brownian motion of the cell, and rotational diffusion of the interacting molecules. The latter involves a recently demonstrated counterintuitive behavior called catch bonds where force prolongs rather than shortens the lifetimes of receptor—ligand bonds. In this article, we summarize our recently published data that used dimensional analysis and mutational analysis to elucidate the above mechanisms for flow-enhanced leukocyte adhesion mediated by L-selectinligand interactions. PMID:18299992

  6. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3.

    PubMed

    Kim, Dohun; Syers, Paul; Butch, Nicholas P; Paglione, Johnpierre; Fuhrer, Michael S

    2014-01-01

    We measure gate-tuned thermoelectric power of mechanically exfoliated Bi2Se3 thin films in the topological insulator regime. The sign of the thermoelectric power changes across the charge neutrality point as the majority carrier type switches from electron to hole, consistent with the ambipolar electric field effect observed in conductivity and Hall effect measurements. Near the charge neutrality point and at low temperatures, the gate-dependent thermoelectric power follows the semiclassical Mott relation using the expected surface state density of states but is larger than expected at high electron doping, possibly reflecting a large density of states in the bulk gap. The thermoelectric power factor shows significant enhancement near the electron-hole puddle carrier density ∼0.5 × 10(12) cm(-2) per surface at all temperatures. Together with the expected reduction of lattice thermal conductivity in low-dimensional structures, the results demonstrate that nanostructuring and Fermi level tuning of three-dimensional topological insulators can be promising routes to realize efficient thermoelectric devices.

  7. Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Xue; Wang, Yue-Sheng; Zhang, Chuanzeng

    2018-04-01

    We investigate the photonic and phononic surface and edge modes in finite-size three-dimensional phoxonic crystals. By appropriately terminating the phoxonic crystals, the photons and phonons can be simultaneously guided at the two-dimensional surface and/or the one-dimensional edge of the terminated crystals. The Bloch surface and edge modes show that the electromagnetic and acoustic waves are highly localized near the surface and edge, respectively. The surface and edge geometries play important roles in tailoring the dispersion relations of the surface and edge modes, and dual band gaps for the surface or edge modes can be simultaneously achieved by changing the geometrical configurations. Furthermore, as the band gaps for the bulk modes are the essential prerequisites for the realization of dual surface and edge modes, the photonic and phononic bulk-mode band gap properties of three different types of phoxonic crystals with six-connected networks are revealed. It is found that the geometrical characteristic of the crystals with six-connected networks leads to dual large bulk-mode band gaps. Compared with the conventional bulk modes, the surface and edge modes provide a new approach for the photon and phonon manipulation and show great potential for phoxonic crystal devices and optomechanics.

  8. Hierarchical Protein Free Energy Landscapes from Variationally Enhanced Sampling.

    PubMed

    Shaffer, Patrick; Valsson, Omar; Parrinello, Michele

    2016-12-13

    In recent work, we demonstrated that it is possible to obtain approximate representations of high-dimensional free energy surfaces with variationally enhanced sampling ( Shaffer, P.; Valsson, O.; Parrinello, M. Proc. Natl. Acad. Sci. , 2016 , 113 , 17 ). The high-dimensional spaces considered in that work were the set of backbone dihedral angles of a small peptide, Chignolin, and the high-dimensional free energy surface was approximated as the sum of many two-dimensional terms plus an additional term which represents an initial estimate. In this paper, we build on that work and demonstrate that we can calculate high-dimensional free energy surfaces of very high accuracy by incorporating additional terms. The additional terms apply to a set of collective variables which are more coarse than the base set of collective variables. In this way, it is possible to build hierarchical free energy surfaces, which are composed of terms that act on different length scales. We test the accuracy of these free energy landscapes for the proteins Chignolin and Trp-cage by constructing simple coarse-grained models and comparing results from the coarse-grained model to results from atomistic simulations. The approach described in this paper is ideally suited for problems in which the free energy surface has important features on different length scales or in which there is some natural hierarchy.

  9. Synthesis of three-dimensional AgI@TiO2 nanoparticles with improved photocatalytic performance.

    PubMed

    An, Changhua; Jiang, Wen; Wang, Jizhuang; Wang, Shutao; Ma, Zhanhua; Li, Yanpeng

    2013-06-28

    Three-dimensional (3D) TiO2 with an acanthosphere-like morphology composed of nanothorns has been used as a suitable support to fabricate a visible-light-induced 3D AgI@TiO2 nanophotocatalyst. The structural characterization revealed that the size of the obtained AgI@TiO2 nanocomposite was close to that of pristine TiO2 particles, where AgI nanoparticles were evenly dispersed on the surfaces of "thorns" of TiO2. The as-achieved 3D AgI@TiO2 nanophotocatalyst exhibited enhanced photocatalytic performance towards photodegradation of organic pollutants, e.g., rhodamine B (RhB), in comparison with TiO2, P25, AgI and AgI@P25 with the same quantity. The enhanced photocatalytic performance is attributed to the strong visible light absorption and the defined interfaces between AgI nanoparticles and TiO2 nanothorns with efficient separation of photogenerated carriers. The excellent performance of the 3D AgI@TiO2 nanophotocatalyst suggests its promising applications in water treatment and environmental remediation.

  10. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.

    PubMed

    Xie, Keyu; Guo, Min; Lu, Wei; Huang, Haitao

    2014-11-14

    A novel TiO₂ three-dimensional (3D) anode with an aligned TiO₂ nanotube/nanoparticle heterostructure (TiO₂ NTs/NPs) is developed by simply immersing as-anodized TiO₂ NTs into water and further crystallizing the TiO₂ NTs by post-annealing. The heterostructure, with its core in a tubular morphology and with both the outer and inner surface consisting of nanoparticles, is confirmed by FESEM and TEM. A reversible areal capacity of 0.126 mAh · cm(-2) is retained after 50 cycles for the TiO₂ NTs/NPs heterostructure electrode, which is higher than that of the TiO₂ NTs electrode (0.102 mAh · cm(-2) after 50 cycles). At the current densities of 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mA · cm(-2), the areal capacities are 0.142, 0.127, 0.117, 0.110, 0.104 and 0.089 mAh · cm(-2), respectively, for the TiO₂ NTs/NPs heterostructure electrode compared to the areal capacities of 0.123, 0.112, 0.105, 0.101, 0.094 and 0.083 mAh · cm(-2), respectively, for the the TiO₂ NTs electrode. The enhanced electrochemical performance is attributed to the unique microstructure of the TiO₂ NTs/NPs heterostructure electrode with the TiO₂ NT core used as a straight pathway for electronic transport and with TiO₂ NP offering enhanced surface areas for facile Li+ insertion/extraction. The results described here inspire a facile approach to fabricate a 3D anode with an enhanced electrochemical performance for lithium-ion microbattery applications.

  11. Responses of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich Dunes, Prince Edward Island, Canada

    NASA Astrophysics Data System (ADS)

    Walker, Ian J.; Hesp, Patrick A.; Davidson-Arnott, Robin G. D.; Bauer, Bernard O.; Namikas, Steven L.; Ollerhead, Jeff

    2009-04-01

    This study reports the responses of three-dimensional near-surface airflow over a vegetated foredune to variations in the conditions of incident flow during an 8-h experiment. Two parallel measurement transects were established on morphologically different dune profiles: i) a taller, concave-convex West foredune transect with 0.5-m high, densely vegetated (45%), seaward incipient foredune, and ii) a shorter, concave-straight East foredune transect with lower, sparsely vegetated (14%) seaward incipient foredune. Five stations on each transect from the incipient dune to the crest were equipped with ultrasonic anemometers at 0.6 and 1.65 m height and logged at 1 Hz. Incident conditions were recorded from a 4-m tower over a flat beach. Winds increased from 6 m s - 1 to > 20 m s - 1 and were generally obliquely onshore (ENE, 73°). Three sub-events and the population of 10-minute averages of key properties of flow ( U, W, S, CV U) from all sample locations on the East transect ( n = 235) are examined to identify location- and profile-specific responses over 52° of the incident direction of flow (from 11 to 63° onshore). Topographic steering and forcing cause major deviations in the properties and vectors of near-surface flow from the regional wind. Topographic forcing on the concave-straight dune profile increases wind speed and steadiness toward the crest, with speed-up values to 65% in the backshore. Wind speed and steadiness of flow are least responsive to changes in incident angle in the backshore because of stagnation of flow and are most responsive at the lower stoss under pronounced streamline compression. On the steeper concave-convex profile, speed and steadiness decrease toward the crest because of stagnation of flow at the toe and flow expansion at the slope inflection point on the lower stoss. Net downward vertical velocity occurs over both profiles, increases toward the crest, and reflects enhanced turbulent momentum conveyance toward the surface. All of these flow responses are enhanced with faster speeds of incident flow and/or more onshore winds. Significant onshore steering of near-surface vectors of flow (to 37°) occurs and is greatest closer to the surface and during highly oblique winds (~ 15° onshore). Therefore, even subtle effects of streamline compression and amplification of flow under alongshore conditions effectively steer flow and sand transport toward the dune. As topographic forcing and steering cause significant, three-dimensional deviations in near-surface properties of flow, most regional-scale and/or two-dimensional models of dune process-response dynamics are insufficient for characterizing coastal and desert dune sediment budgets and morphodynamics. In particular, deflection of sand transport vectors with greater fetch distances than those derived from regional winds may occur. Coincident flow, transport and morphological response data are required to better quantitatively model these processes.

  12. Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity.

    PubMed

    Lei, Wen; Xiao, Weiping; Li, Jingde; Li, Gaoran; Wu, Zexing; Xuan, Cuijuan; Luo, Dan; Deng, Ya-Ping; Wang, Deli; Chen, Zhongwei

    2017-08-30

    Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption-swelling strategy using BC as the carbonaceous material. When used as anode materials for sodium-ion batteries, the NDCFs deliver a high reversible capacity of 86.2 mAh g -1 even after 2000 cycles at a high current density of 10.0 A g -1 . It is proposed that the excellent Na + storage performance is mainly due to the defective surface of the NDCFs created by the high content of N dopant. Density functional theory (DFT) calculations show that the defect sites created by N doping can strongly "host" Na + and therefore contribute to the enhanced storage capacity.

  13. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  14. Matrigel immobilization on the shish-kebab structured poly(ɛ-caprolactone) nanofibers for skin tissue engineering

    NASA Astrophysics Data System (ADS)

    Jing, Xin; Mi, Hao-Yang; Peng, Xiang-Fang; Turng, Lih-Sheng

    2016-03-01

    Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ɛ-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface features of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.

  15. A laser interferometer for measuring skin friction in three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A new, nonintrusive method is described for measuring skin friction in three-dimensional flows with unknown direction. The method uses a laser interferometer to measure the changing slope of a thin oil film applied to a surface experiencing shear stress. The details of the method are described, and skin friction measurements taken in a swirling three-dimensional boundary-layer flow are presented. Comparisons between analytical results and experimental values from the laser interferometer method and from a bidirectional surface-fence gauge are made.

  16. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  17. Enhanced optical absorbance and fabrication of periodic arrays on nickel surface using nanosecond laser

    NASA Astrophysics Data System (ADS)

    Fu, Jinxiang; Liang, Hao; Zhang, Jingyuan; Wang, Yibo; Liu, Yannan; Zhang, Zhiyan; Lin, Xuechun

    2017-04-01

    A hundred-nanosecond pulsed laser was employed to structure the nickel surface. The effects of laser spatial filling interval and laser scanning speed on the optical absorbance capacity and morphologies on the nickel surface were experimentally investigated. The black nickel surface covered with dense micro/nanostructured broccoli-like clusters with strong light trapping capacity ranging from the UV to the near IR was produced at a high laser scanning speed up to v=100 mm/s. The absorbance of the black nickel is as high as 98% in the UV range of 200-400 nm, more than 97% in the visible spectrum, ranging from 400 to 800 nm, and over 90% in the IR between 800 and 2000 nm. In addition, when the nickel surface was irradiated in two-dimensional crossing scans by laser with different processing parameters, self-organized and shape-controllable structures of three-dimensional (3D) periodic arrays can be fabricated. Compared with ultrafast laser systems previously used for such processing, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. This nickel surface structured technique may be applicable in optoelectronics, batteries industry, solar/wave absorbers, and wettability materials.

  18. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  19. Visualization and quantification of three-dimensional distribution of yeast in bread dough.

    PubMed

    Maeda, Tatsuro; DO, Gab-Soo; Sugiyama, Junichi; Araki, Tetsuya; Tsuta, Mizuki; Shiraga, Seizaburo; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    A three-dimensional (3-D) bio-imaging technique was developed for visualizing and quantifying the 3-D distribution of yeast in frozen bread dough samples in accordance with the progress of the mixing process of the samples, applying cell-surface engineering to the surfaces of the yeast cells. The fluorescent yeast was recognized as bright spots at the wavelength of 520 nm. Frozen dough samples were sliced at intervals of 1 microm by an micro-slicer image processing system (MSIPS) equipped with a fluorescence microscope for acquiring cross-sectional images of the samples. A set of successive two-dimensional images was reconstructed to analyze the 3-D distribution of the yeast. The average shortest distance between centroids of enhanced green fluorescent protein (EGFP) yeasts was 10.7 microm at the pick-up stage, 9.7 microm at the clean-up stage, 9.0 microm at the final stage, and 10.2 microm at the over-mixing stage. The results indicated that the distribution of the yeast cells was the most uniform in the dough of white bread at the final stage, while the heterogeneous distribution at the over-mixing stage was possibly due to the destruction of the gluten network structure within the samples.

  20. Photogrammetry: An available surface characterization tool for solar concentrators. Part 1: Measurements of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shortis, M.R.; Johnston, G.H.G.

    1996-08-01

    Close range photogrammetry is a sensing technique that allows the three-dimensional coordinates of selected points on a surface of almost any dimension and orientation to be assessed. Surface characterizations of paraboloidal reflecting surfaces at the ANU using photogrammetry have indicated that three-dimensional coordinate precisions approach 1:20,000 are readily achievable using this technique. This allows surface quality assessments to be made of large solar collecting devices with a precision that is difficult to achieve with other methods.

  1. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software.

    PubMed

    Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E

    2016-10-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. GPU surface extraction using the closest point embedding

    NASA Astrophysics Data System (ADS)

    Kim, Mark; Hansen, Charles

    2015-01-01

    Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes

  3. Turbulence generation by waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaftori, D.; Nan, X.S.; Banerjee, S.

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased.more » Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.« less

  4. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.

    PubMed

    Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni

    2015-01-07

    In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.

  5. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures.

    PubMed

    Aguiló-Aguayo, Noemí; Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-12-11

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.

  6. Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors.

    PubMed

    Nasiri, Noushin; Bo, Renheng; Fu, Lan; Tricoli, Antonio

    2017-02-02

    Visible-blind ultraviolet photodetectors are a promising emerging technology for the development of wide bandgap optoelectronic devices with greatly reduced power consumption and size requirements. A standing challenge is to improve the slow response time of these nanostructured devices. Here, we present a three-dimensional nanoscale heterojunction architecture for fast-responsive visible-blind UV photodetectors. The device layout consists of p-type NiO clusters densely packed on the surface of an ultraporous network of electron-depleted n-type ZnO nanoparticles. This 3D structure can detect very low UV light densities while operating with a near-zero power consumption of ca. 4 × 10 -11 watts and a low bias of 0.2 mV. Most notably, heterojunction formation decreases the device rise and decay times by 26 and 20 times, respectively. These drastic enhancements in photoresponse dynamics are attributed to the stronger surface band bending and improved electron-hole separation of the nanoscale NiO/ZnO interface. These findings demonstrate a superior structural design and a simple, low-cost CMOS-compatible process for the engineering of high-performance wearable photodetectors.

  7. Three-Dimensional Geometric Modeling of Membrane-bound Organelles in Ventricular Myocytes: Bridging the Gap between Microscopic Imaging and Mathematical Simulation

    PubMed Central

    Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko

    2009-01-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449

  8. Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: bridging the gap between microscopic imaging and mathematical simulation.

    PubMed

    Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko

    2008-12-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.

  9. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  10. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  11. A three-dimensional kinematic model for the dissolution of crystals

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1989-06-01

    The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.

  12. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today. PMID:27362493

  13. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

    PubMed

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.

  14. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  15. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.

    PubMed

    Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-08-01

    Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.

  16. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  17. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments.

    PubMed

    Ferreira, Fabiano Guerra; Barbosa, Igor Bastos; Scelza, Pantaleo; Montagnana, Marcello Bulhões; Russano, Daniel; Neff, John; Scelza, Miriam Zaccaro

    2017-09-28

    The aim of this study was to undertake a qualitative and quantitative assessment of nanoscale alterations and wear on the surfaces of nickel-titanium (NiTi) endodontic instruments, before and after use, through a high-resolution, noncontact, three-dimensional optical profiler, and to verify the accuracy of the evaluation method. Cutting blade surfaces of two different brands of NiTi endodontic instruments, Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were examined and compared before and after two uses in simulated root canals made in clear resin blocks. The analyses were performed on three-dimensional images which were obtained from surface areas measuring 211 × 211 µm, located 3 mm from their tips. The quantitative evaluation of the samples was conducted before and after the first and second usage, by the recordings of three amplitude parameters. The data were subjected to statistical analysis at a 5% level of significance. The results revealed statistically significant increases in the surface wear of both instruments groups after the second use. The presence of irregularities was found on the surface topography of all the instruments, before and after use. Regardless of the evaluation stage, most of the defects were observed in the WaveOne instruments. The three-dimensional technique was suitable and effective for the accurate investigation of the same surfaces of the instruments in different periods of time.

  18. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sikavitsas, Vassilios I.; Bancroft, Gregory N.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague-Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L-lactic-co-glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. Copyright 2002 Wiley Periodicals, Inc.

  19. A three dimensional Dirichlet-to-Neumann map for surface waves over topography

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Andrade, David

    2016-11-01

    We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.

  20. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    PubMed

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  1. Chiral surface waves for enhanced circular dichroism

    NASA Astrophysics Data System (ADS)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  2. Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao

    2017-08-01

    Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.

  3. Morphological features of the macerated cranial bones registered by the 3D vision system for potential use in forensic anthropology.

    PubMed

    Skrzat, Janusz; Sioma, Andrzej; Kozerska, Magdalena

    2013-01-01

    In this paper we present potential usage of the 3D vision system for registering features of the macerated cranial bones. Applied 3D vision system collects height profiles of the object surface and from that data builds a three-dimensional image of the surface. This method appeared to be accurate enough to capture anatomical details of the macerated bones. With the aid of the 3D vision system we generated images of the surface of the human calvaria which was used for testing the system. Performed reconstruction visualized the imprints of the dural vascular system, cranial sutures, and the three-layer structure of the cranial bones observed in the cross-section. We figure out that the 3D vision system may deliver data which can enhance estimation of sex from the osteological material.

  4. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.

  5. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    PubMed

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-07

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.

  6. Bulk and surface states carried supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions

    NASA Astrophysics Data System (ADS)

    Li, Cai-Zhen; Li, Chuan; Wang, Li-Xian; Wang, Shuo; Liao, Zhi-Min; Brinkman, Alexander; Yu, Da-Peng

    2018-03-01

    A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usually hides the electronic transport from the surface state in Dirac semimetal. Here, we demonstrate the supercurrent carried by bulk and surface states in Nb -Cd3As2 nanowire-Nb short and long junctions, respectively. For the ˜1 -μ m -long junction, the Fabry-Pérot interferences-induced oscillations of the critical supercurrent are observed, suggesting the ballistic transport of the surface states carried supercurrent, where the bulk states are decoherent and the topologically protected surface states still stay coherent. Moreover, a superconducting dome is observed in the long junction, which is attributed to the enhanced dephasing from the interaction between surface and bulk states as tuning gate voltage to increase the carrier density. The superconductivity of topological semimetal nanowire is promising for braiding of Majorana fermions toward topological quantum computing.

  7. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  8. Percolated microstructures for multi-modal transport enhancement in porous active materials

    DOEpatents

    McKay, Ian Salmon; Yang, Sungwoo; Wang, Evelyn N.; Kim, Hyunho

    2018-03-13

    A method of forming a composite material for use in multi-modal transport includes providing three-dimensional graphene having hollow channels, enabling a polymer to wick into the hollow channels of the three-dimensional graphene, curing the polymer to form a cured three-dimensional graphene, adding an active material to the cured three-dimensional graphene to form a composite material, and removing the polymer from within the hollow channels. A composite material formed according to the method is also provided.

  9. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

    DOE PAGES

    Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...

    2017-07-10

    Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less

  10. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  11. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  12. Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions

    NASA Astrophysics Data System (ADS)

    Haitjema, Henk M.

    1985-10-01

    A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.

  13. Computer aided photographic engineering

    NASA Technical Reports Server (NTRS)

    Hixson, Jeffrey A.; Rieckhoff, Tom

    1988-01-01

    High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.

  14. GIXSGUI : a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhang

    GIXSGUIis a MATLAB toolbox that offers both a graphical user interface and script-based access to visualize and process grazing-incidence X-ray scattering data from nanostructures on surfaces and in thin films. It provides routine surface scattering data reduction methods such as geometric correction, one-dimensional intensity linecut, two-dimensional intensity reshapingetc. Three-dimensional indexing is also implemented to determine the space group and lattice parameters of buried organized nanoscopic structures in supported thin films.

  15. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  16. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  17. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  18. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    ERIC Educational Resources Information Center

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  19. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1984-01-01

    The objective of this investigation is to develop a state-of-the-art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies. A three-dimensional multivariate O/I analysis scheme has been developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  20. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    The development of a state of the art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies was investigated. A three dimensional multivariate O/I analysis scheme was developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  1. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan

    2018-02-01

    A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.

  2. Split-ball resonator as a three-dimensional analogue of planar split-rings

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Hsing Fu, Yuan; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Ying Pan, Zhen; Kivshar, Yuri; Pickard, Daniel S.; Luk'Yanchuk, Boris

    2014-01-01

    Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts. We realize this concept experimentally by employing the laser-induced transfer method to produce near-perfect metallic spheres and helium ion beam milling to make cuts with the clean straight sidewalls and nanometre resolution. The magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. This method can be applied to the structuring of arbitrary three-dimensional features on the surface of nanoscale resonators. It provides new ways for engineering hybrid resonant modes and ultra-high near-field enhancement.

  3. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  4. Automatic Aircraft Collision Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Skoog, Mark (Inventor); Hook, Loyd (Inventor); McWherter, Shaun (Inventor); Willhite, Jaimie (Inventor)

    2014-01-01

    The invention is a system and method of compressing a DTM to be used in an Auto-GCAS system using a semi-regular geometric compression algorithm. In general, the invention operates by first selecting the boundaries of the three dimensional map to be compressed and dividing the three dimensional map data into regular areas. Next, a type of free-edged, flat geometric surface is selected which will be used to approximate terrain data of the three dimensional map data. The flat geometric surface is used to approximate terrain data for each regular area. The approximations are checked to determine if they fall within selected tolerances. If the approximation for a specific regular area is within specified tolerance, the data is saved for that specific regular area. If the approximation for a specific area falls outside the specified tolerances, the regular area is divided and a flat geometric surface approximation is made for each of the divided areas. This process is recursively repeated until all of the regular areas are approximated by flat geometric surfaces. Finally, the compressed three dimensional map data is provided to the automatic ground collision system for an aircraft.

  5. [Three-dimensional computer aided design for individualized post-and-core restoration].

    PubMed

    Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun

    2009-10-01

    To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.

  6. White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings

    NASA Technical Reports Server (NTRS)

    Lucero, John M.

    2003-01-01

    A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

  7. Micro-CT Characterization on the Meso-Structure of Three-Dimensional Full Five-Directional Braided Composite

    NASA Astrophysics Data System (ADS)

    Ya, Jixuan; Liu, Zhenguo; Wang, Yuanhang

    2017-06-01

    The meso-structure is important in predicting mechanical properties of the three-dimensional (3D) braided composite. In this paper, the internal structure and porosity of three-dimensional full five-directional (3DF5D) braided composite is characterized at mesoscopic scale (the scale of the yarns) using micro-computed tomography (micro-CT) non-destructively. Glass fiber yarns as tracer are added into the sample made of carbon fiber to enhance the contrast in the sectional images. The model of tracer yarns is established with 3D reconstruction method to analyze the cross-section and path of yarns. The porosities are reconstructed and characterized in the end. The results demonstrate that the cross sections of braiding yarns and axial yarns change with the regions and the heights in one pitch of 3DF5D braided composites. The path of braiding yarns are various in the different regions while the axial yarns are always straight. Helical indentations appear on the surfaces of the axial yarns because of the squeeze from braiding yarns. Moreover, the porosities in different shapes and sizes are almost located in the matrix and between the yarns.

  8. Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.

    PubMed

    Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong

    2015-07-01

    The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.

  9. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  10. Three-Dimensional Topographic Surface Changes in Response to Compartmental Volumization of the Medial Cheek: Defining a Malar Augmentation Zone.

    PubMed

    Stern, Carrie S; Schreiber, Jillian E; Surek, Chris C; Garfein, Evan S; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M

    2016-05-01

    Given the widespread use of facial fillers and recent identification of distinct facial fat compartments, a better understanding of three-dimensional surface changes in response to volume augmentation is needed. Advances in three-dimensional imaging technology now afford an opportunity to elucidate these morphologic changes for the first time. A cadaver study was undertaken in which volumization of the deep medial cheek compartment was performed at intervals up to 4 cc (n = 4). Three-dimensional photographs were taken after each injection to analyze the topographic surface changes, which the authors define as the "augmentation zone." Perimeter, diameter, and projection were studied. The arcus marginalis of the inferior orbit consistently represented a fixed boundary of the augmentation zone, and additional cadavers underwent similar volumization following surgical release of this portion of the arcus marginalis (n = 4). Repeated three-dimensional computer analysis was performed comparing the augmentation zone with and without arcus marginalis release. Volumization of the deep medial cheek led to unique topographic changes of the malar region defined by distinct boundaries. Interestingly, the cephalic border of the augmentation zone was consistently noted to be at the level of the arcus marginalis in all specimens. When surgical release of the arcus marginalis was performed, the cephalic border of the augmentation zone was no longer restricted. Using advances in three-dimensional photography and computer analysis, the authors demonstrate characteristic surface anatomy changes in response to volume augmentation of facial compartments. This novel concept of the augmentation zone can be applied to volumization of other distinct facial regions. Therapeutic, V.

  11. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy.

    PubMed

    Sun, Fang; Bai, Tao; Zhang, Lei; Ella-Menye, Jean-Rene; Liu, Sijun; Nowinski, Ann K; Jiang, Shaoyi; Yu, Qiuming

    2014-03-04

    A new strategy is proposed to sensitively and rapidly detect analytes with weak Raman signals in complex media using surface-enhanced Raman spectroscopy (SERS) via detecting the SERS signal changes of the immobilized probe molecules on SERS-active substrates upon binding of the analytes. In this work, 4-mercaptophenylboronic acid (4-MPBA) was selected as the probe molecule which was immobilized on the gold surface of a quasi-three-dimensional plasmonic nanostructure array (Q3D-PNA) SERS substrate to detect fructose. The molecule of 4-MPBA possesses three key functions: molecule recognition and reversible binding of the analyte via the boronic acid group, amplification of SERS signals by the phenyl group and thus shielding of the background noise of complex media, and immobilization on the surface of SERS-active substrates via the thiol group. Most importantly, the symmetry breaking of the 4-MPBA molecule upon fructose binding leads to the change of area ratio between totally symmetric 8a ring mode and nontotally symmetric 8b ring mode, which enables the detection. The detection curves were obtained in phosphate-buffered saline (PBS) and in undiluted artificial urine at clinically relevant concentrations, and the limit of detection of 0.05 mM was achieved.

  12. Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

    NASA Astrophysics Data System (ADS)

    Roth, Julien

    2010-06-01

    We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R3 and Morel for S3 and H3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space.

  13. Verification and transfer of thermal pollution model. Volume 4: User's manual for three-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Nwadike, E. V.; Sinha, S. E.

    1982-01-01

    The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.

  14. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  15. Mobile three-dimensional visualisation technologies for clinician-led fall prevention assessments.

    PubMed

    Hamm, Julian; Money, Arthur G; Atwal, Anita; Ghinea, Gheorghita

    2017-08-01

    The assistive equipment provision process is routinely carried out with patients to mitigate fall risk factors via the fitment of assistive equipment within the home. However, currently, over 50% of assistive equipment is abandoned by the patients due to poor fit between the patient and the assistive equipment. This paper explores clinician perceptions of an early stage three-dimensional measurement aid prototype, which provides enhanced assistive equipment provision process guidance to clinicians. Ten occupational therapists trialled the three-dimensional measurement aid prototype application; think-aloud and semi-structured interview data was collected. Usability was measured with the System Usability Scale. Participants scored three-dimensional measurement aid prototype as 'excellent' and agreed strongly with items relating to the usability and learnability of the application. The qualitative analysis identified opportunities for improving existing practice, including, improved interpretation/recording measurements; enhanced collaborative practice within the assistive equipment provision process. Future research is needed to determine the clinical utility of this application compared with two-dimensional counterpart paper-based guidance leaflets.

  16. Inverse Optimization of Plasmonic and Antireflective Grating in Thin Film PV Cells

    NASA Astrophysics Data System (ADS)

    Hajimirza, Shima; Howell, John

    2012-06-01

    This work addresses inverse optimization of three dimensional front and back surface texture grating specifications, for the purpose of shaping the absorptivity spectrum of silicon thin film cells in targeted ways. Periodic plasmonic gratings with dimensions comparable or less than the incident light wavelength are known to enhance light absorption. We consider surface patterning of amorphous silicon (a-Si) thin films using front and/or back metallic nanostrips and ITO coatings, and show that wideband enhancement in unpolarized absorptivity spectrum can be achieved when back reflectors are used. The overall short circuit current enhancement using such structures is significant and can be as high as 97%. For TM-polarized wave it can be even higher as reported in previous work. In this work however, we focus on the optimization for the more realistic unpolarized radiation which is of significantly higher complexity. In addition, optimization is done with respect to two objective functions independently: spectral absorptivity and gain-bandwidth product of the absorptivity spectrum.

  17. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  18. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  19. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  20. Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid

    NASA Astrophysics Data System (ADS)

    Scolan, Y.-M.; Korobkin, A. A.

    2003-02-01

    Hydrodynamic impact phenomena are three dimensional in nature and naval architects need more advanced tools than a simple strip theory to calculate impact loads at the preliminary design stage. Three-dimensional analytical solutions have been obtained with the help of the so-called inverse Wagner problem as discussed by Scolan and Korobkin in 2001. The approach by Wagner provides a consistent way to evaluate the flow caused by a blunt body entering liquid through its free surface. However, this approach does not account for the spray jets and gives no idea regarding the energy evacuated from the main flow by the jets. Clear insight into the jet formation is required. Wagner provided certain elements of the answer for two-dimensional configurations. On the basis of those results, the energy distribution pattern is analysed for three-dimensional configurations in the present paper.

  1. An adaptive front tracking technique for three-dimensional transient flows

    NASA Astrophysics Data System (ADS)

    Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.

    2000-01-01

    An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright

  2. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    PubMed

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  4. Optical frequency selective surface design using a GPU accelerated finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Ashbach, Jason A.

    Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide. In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed. Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.

  5. Defect inspection of actuator lenses using swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  6. Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing

    PubMed Central

    Zhao, Fusheng; Zeng, Jianbo; Shih, Wei-Chuan

    2017-01-01

    Plasmonic metal nanostructures have shown great potential in sensing applications. Among various materials and structures, monolithic nanoporous gold disks (NPGD) have several unique features such as three-dimensional (3D) porous network, large surface area, tunable plasmonic resonance, high-density hot-spots, and excellent architectural integrity and environmental stability. They exhibit a great potential in surface-enhanced spectroscopy, photothermal conversion, and plasmonic sensing. In this work, interactions between smaller colloidal gold nanoparticles (AuNP) and individual NPGDs are studied. Specifically, colloidal gold nanoparticles with different sizes are loaded onto NPGD substrates to form NPG hybrid nanocomposites with tunable plasmonic resonance peaks in the near-infrared spectral range. Newly formed plasmonic hot-spots due to the coupling between individual nanoparticles and NPG disk have been identified in the nanocomposites, which have been experimentally studied using extinction and surface-enhanced Raman scattering. Numerical modeling and simulations have been employed to further unravel various coupling scenarios between AuNP and NPGDs. PMID:28657586

  7. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  8. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  9. Semidirect computation of three-dimensional viscous flows over suction holes in laminar flow control surfaces

    NASA Technical Reports Server (NTRS)

    Roache, P. J.

    1979-01-01

    A summary is given of the attempts made to apply semidirect methods to the calculation of three-dimensional viscous flows over suction holes in laminar flow control surfaces. The attempts were all unsuccessful, due to either (1) lack of resolution capability, (2) lack of computer efficiency, or (3) instability.

  10. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer

    NASA Astrophysics Data System (ADS)

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-01

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  11. Significantly enhanced UV luminescence by plasmonic metal on ZnO nanorods patterned by screen-printing.

    PubMed

    Zhao, Jun; Cui, Shuyuan; Zhang, Xingang; Li, Wenqing

    2018-08-31

    A smart synthetic method is conceived to construct large batches of ZnO nanostructures to meet market demand for light-emitting diodes. Utilizing the localized surface plasmon resonance of metal nanoparticles (NPs) facilitates the recombination of electron-hole pairs and the release of photons. Compared to raw ZnO nanorods (NRs), ZnO NRs@HfO 2 @Al NPs show a ∼120× enhancement in ultraviolet (UV) photoluminescence (PL), while ZnO NRs@HfO 2 @Ag NPs show a six-fold enhancement. Because the surface plasmon energy of Al is nearer the ZnO band gap, the PL enhancement of ZnO NRs covered with Al is stronger than that of those covered with Ag. Based on this analysis, three-dimensional graphical ZnO NR arrays were manufactured by screen-printing, a mass production technique. After covering the arrays with layers of HfO 2 and Al NPs, the UV PL intensities of the corresponding substrates were increased by approximately 16×. This indicates the potential to mass-produce highly efficient optoelectronic devices.

  12. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer.

    PubMed

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-11

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO 2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO 2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO 2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  13. Elliptic surface grid generation in three-dimensional space

    NASA Technical Reports Server (NTRS)

    Kania, Lee

    1992-01-01

    A methodology for surface grid generation in three dimensional space is described. The method solves a Poisson equation for each coordinate on arbitrary surfaces using successive line over-relaxation. The complete surface curvature terms were discretized and retained within the nonhomogeneous term in order to preserve surface definition; there is no need for conventional surface splines. Control functions were formulated to permit control of grid orthogonality and spacing. A method for interpolation of control functions into the domain was devised which permits their specification not only at the surface boundaries but within the interior as well. An interactive surface generation code which makes use of this methodology is currently under development.

  14. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  15. High-resolution computer-generated reflection holograms with three-dimensional effects written directly on a silicon surface by a femtosecond laser.

    PubMed

    Wædegaard, Kristian J; Balling, Peter

    2011-02-14

    An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.

  16. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-06-01

    It is widely recognized that constructing multiple interface structures to enhance interface polarization is very good for the attenuation of electromagnetic (EM) wave. Here, a novel "203" type of heterostructured nanohybrid consisting of two-dimensional (2D) MoS2 nanosheets, zero-dimensional (0D) Fe3O4 nanoparticles and three-dimensional (3D) carbon layers was elaborately designed and successfully synthesized by a two-step method: Fe3O4 nanoparticles were deposited onto the surface of few-layer MoS2 nanosheets by a hydrothermal method, followed by the carbonation process by a chemical vapor deposition method. Compared to that of "20" type MoS2-Fe3O4, the as-prepared heterostructured "203" type MoS2-Fe3O4-C ternary nanohybrid exhibited remarkably enhanced EM and microwave absorption properties. And the minimum reflection loss (RL) value of the obtained MoS2-Fe3O4-C ternary nanohybrid could reach -53.03 dB at 14.4 GHz with a matching thickness of 7.86 mm. Moreover, the excellent EM wave absorption property of the as-prepared ternary nanohybrid was proved to be attributed to the quarter-wavelength matching model. Therefore, a simple and effective route was proposed to produce MoS2-based mixed-dimensional van der Waals heterostructure, which provided a new platform for the designing and production of high performance microwave absorption materials.

  17. System maintenance manual for master modeling of aerodynamic surfaces by three-dimensional explicit representation

    NASA Technical Reports Server (NTRS)

    Gibson, A. F.

    1983-01-01

    A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.

  18. The effects of Reynolds number, rotor incidence angle, and surface roughness on the heat transfer distribution in a large-scale turbine rotor passage

    NASA Technical Reports Server (NTRS)

    Blair, Michael F.; Anderson, Olof L.

    1989-01-01

    A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similiar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full-span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The primary objective of the program was to provide a benchmark-quality data base for the assessment of rotor passage heat transfer computational procedures. The experimental portion of the study was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer data were obtained using thermocouple and liquid-crystal techniques to measure temperature distributions on the thin, electrically-heated skin of the rotor passage model. Test data were obtained for various combinations of Reynolds number, rotor incidence angle and model surface roughness. The data are reported in the form of contour maps of Stanton number. These heat distribution maps revealed numerous local effects produced by the three-dimensional flows within the rotor passage. Of particular importance were regions of local enhancement produced on the airfoil suction surface by the main-passage and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis to the calculation of the three-dimensional viscous flow through ducts simulating the a gas turbine passage. These cases include a 90 deg turning duct, a gas turbine cascade simulating a stator passage, and a gas turbine rotor passage including Coriolis forces. The calculated results were evaluated using experimental data of the three-dimensional velocity fields, wall static pressures, and wall heat transfer on the suction surface of the turbine airfoil and on the end wall. Particular attention was paid to an accurate modeling of the passage vortex and to the development of the wall boundary layers including crossflow.

  19. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  20. Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Song, Guofen; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Su, Huilan; Guo, Cuiping; Zhang, Di

    2018-01-01

    Photocatalytic water splitting via utilizing various semiconductors is recognized as a promising way for hydrogen production. Plasmonic metals with sub-micrometer textures can improve the photocatalytic performance of semiconductors via a localized surface plasmon resonance (LSPR) process. Moreover, arrays of multilayer metallic structures can help generate strong LSPR. However, artificial synthesis has difficulties in constructing novel multilayer metallic arrays down to nanoscales. Here, we use three dimensional (3D) scales from Morpho didius forewings (M) to prepare 3D Au-wings with intact hierarchical bio-structures. For comparison, we use Troides helena forewings (T) which are known for their antireflection quasi-honeycomb structures resulting in strong light absorbing ability. Results show that multilayer rib structures of Au-M can significantly amplify the LSPR of 3D Au and thus can efficiently help the photocatalytic process (9-fold increase). This amplification effect is obviously more superior to the straightforward enhancement of the absorption of incident light (Au-T, 5-fold increase). Thus, our study provides the possibility to prepare highly efficient plasmonic photocatalysts (possessing 3D multilayer rib structures) via an easy method. This work will also be revealing for plasmonic applications in other fields.

  1. Some aspects of unsteady separation

    NASA Technical Reports Server (NTRS)

    Smith, C. R.; Walker, J. D. A.

    1992-01-01

    Unsteady separation can be forced in a variety of ways and in this presentation two fundamental means will be considered: (1) the introduction of convected vorticular disturbances into the flow; and (2) the influence of a specific type of three-dimensional geometry. In both situations a response of the viscous flow near the wall is provoked wherein the fluid near the surface abruptly focuses into a narrow region that erupts from the surface into the mainstream. In two-dimensional flows, the eruption takes the form of a narrow, explosively-growing spike, while in three-dimensional situations, examples are presented which indicate that the eruption is along a narrow zone in the shape of a crescent-shaped plume. The nature of the three-dimensional flow near a circular cylinder, which is mounted normal to a flat plate, is also examined in this study. Here the three-dimensional geometry induces complex three-dimensional separations periodically. The dynamics of the generation process is studied experimentally in a water channel using hydrogen bubble wires and a laser sheet, and the main features of the laminar regime through to transition are documented.

  2. A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3D microchannels with patterned charged surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chang; Yang, Ruey-Jen

    2006-08-01

    This paper presents a numerical simulation investigation into electroosmotic flow mixing in three-dimensional microchannels with patterned non-uniform surface zeta potentials. Three types of micromixers are investigated, namely a straight diagonal strip mixer (i.e. the non-uniform surface zeta potential is applied along straight, diagonal strips on the lower wall of the mixing channel), a staggered asymmetric herringbone strip mixer and a straight diagonal/symmetric herringbone strip mixer. A particle tracing algorithm is used to visualize and evaluate the mixing performance of the various mixers. The particle trajectories and Poincaré maps of the various mixers are calculated from the three-dimensional flow fields. The surface charge patterns on the lower walls of the microchannels induce electroosmotic chaotic advection in the low Reynolds number flow regime, and hence enhance the passive mixing effect in the microfluidic devices. A quantitative measure of the mixing performance based on Shannon entropy is employed to quantify the mixing of two miscible fluids. The results show that the mixing efficiency increases as the magnitude of the heterogeneous zeta potential ratio (|ζR|) is increased, but decreases as the aspect ratio (H/W) is increased. The mixing efficiency of the straight diagonal strip mixer with a length ratio of l/W = 0.5 is slightly higher than that obtained from the same mixer with l/W = 1.0. Finally, the staggered asymmetric herringbone strip mixer with θ = 45°, ζR = -1, l/W = 0.5 and H/W = 0.2 provides the optimal mixing performance of all the mixers presented in this study.

  3. Wavefield simulations of earthquakes in Alaska for tomographic inversion

    NASA Astrophysics Data System (ADS)

    Silwal, V.; Tape, C.; Casarotti, E.

    2017-12-01

    We assemble a catalog of moment tensors and a three-dimensional seismic velocity model for mainland Alaska, in preparation for an iterative tomographic inversion using spectral-element and adjoint methods. The catalog contains approximately 200 earthquakes with Mw ≥ 4.0 that generate good long-period (≥6 s) signals for stations at distances up to approximately 500 km. To maximize the fraction of usable stations per earthquake, we divide our model into three subregions for simulations: south-central Alaska, central Alaska, and eastern Alaska. The primary geometrical interfaces in the model are the Moho surface, the basement surface of major sedimentary basins, and the topographic surface. The crustal and upper mantle tomographic model is from Eberhart-Phillips et al. (2006), but modified by removing the uppermost slow layer, then embedding sedimentary basin models for Cook Inlet basin, Susitna basin, and Nenana basin. We compute 3D synthetic seismograms using the spectral-element method. We demonstrate the accuracy of the initial three-dimensional reference model in each subregion by comparing 3D synthetics with observed data for several earthquakes originating in the crust and underlying subducting slab. Full waveform similarity between data and synthetics over the period range 6 s to 30 s provides a basis for an iterative inversion. The target resolution of the crustal structure is 4 km vertically and 20 km laterally. We use surface wave and body wave measurements from local earthquakes to obtain moment tensors that will be used within our tomographic inversion. Local slab events down to 180 km depth, in additional to pervasive crustal seismicity, should enhance resolution.

  4. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less

  5. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Liu, Yazi; Xu, Jian; Wang, Liqiong; Zhang, Huayang; Xu, Ping; Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin

    2017-01-01

    Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2 evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future. PMID:28336897

  6. Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates.

    PubMed

    Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin

    2010-06-01

    We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.

  7. Surface-enhanced Raman spectra of hemoglobin for esophageal cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Diao, Zhenqi; Fan, Chunzhen; Guo, Huiqiang; Xiong, Yang; Tang, Weiyue

    2014-03-01

    Surface-enhanced Raman scattering (SERS) spectra of hemoglobin from 30 esophageal cancer patients and 30 healthy persons have been detected and analyzed. The results indicate that, there are more iron ions in low spin state and less in high for the hemoglobin of esophageal cancer patients than normal persons, which is consistent with the fact that it is easier to hemolyze for the blood of cancer patients. By using principal component analysis (PCA) and discriminate analysis, we can get a three-dimensional scatter plot of PC scores from the SERS spectra of healthy persons and cancer patients, from which the two groups can be discriminated. The total accuracy of this method is 90%, while the diagnostic specificity is 93.3% and sensitivity is 86.7%. Thus SERS spectra of hemoglobin analysis combined with PCA may be a new technique for the early diagnose of esophageal cancer.

  8. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

    PubMed

    Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu

    2011-07-18

    Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

  9. Matrigel immobilization on the shish-kebab structured poly(ε-caprolactone) nanofibers for skin tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Xin, E-mail: jingxinscut@gmail.com; Mi, Hao-Yang; Wisconsin Institutes for Discovery, University of Wisconsin-Madison, 53715

    Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ε-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface featuresmore » of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.« less

  10. Hydrogen peroxide sensor based on carbon nanowalls grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tomatsu, Masakazu; Hiramatsu, Mineo; Foord, John S.; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Takeda, Keigo; Hori, Masaru

    2017-06-01

    Fabrication of an electrochemical sensor for hydrogen peroxide (H2O2) detection was demonstrated. H2O2 is a major messenger molecule in various redox-dependent cellular signaling transductions. Therefore, sensitive detection of H2O2 is greatly important in health inspection and environmental protection. Carbon nanowalls (CNWs) are composed of few-layer graphenes standing almost vertically on a substrate forming a three-dimensional structure. In this work, CNWs were used as a platform for H2O2 sensing, which is based on the large surface area of conducting carbon and surface decoration with platinum (Pt) nanoparticles (NPs). CNWs were grown on carbon fiber paper (CFP) by inductively coupled plasma-enhanced chemical vapor deposition to increase the surface area. Then, the CNW surface was decorated with Pt-NPs by the reduction of H2PtCl6. Cyclic voltammetry results indicate that the Pt-decorated CNW/CFP electrode possesses excellent electrocatalytic activity for the reduction of H2O2. Amperometric responses indicate the high-sensitivity detection capability of the Pt-decorated CNW/CFP electrode for H2O2.

  11. Computational theory of line drawing interpretation

    NASA Technical Reports Server (NTRS)

    Witkin, A. P.

    1981-01-01

    The recovery of the three dimensional structure of visible surfaces depicted in an image by emphasizing the role of geometric cues present in line drawings, was studied. Three key components are line classification, line interpretation, and surface interpolation. A model for three dimensional line interpretation and surface orientation was refined and a theory for the recovery of surface shape from surface marking geometry was developed. A new approach to the classification of edges was developed and implemented signatures were deduced for each of several edge types, expressed in terms of correlational properties of the image intensities in the vicinity of the edge. A computer program was developed that evaluates image edges as compared with these prototype signatures.

  12. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2016-12-01

    The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.

  13. Nature-Inspired Na2Ti3O7 Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries.

    PubMed

    Anwer, Shoaib; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng

    2017-04-05

    Low cycling stability and poor rate performance are two of the distinctive drawbacks of most electrode materials for sodium-ion batteries (SIBs). Here, inspired by natural flower structures, we take advantage of the three-dimensional (3D) hierarchical flower-like stable microstructures formed by two-dimensional (2D) nanosheets to solve these problems. By precise control of the hydrothermal synthesis conditions, a novel three-dimensional (3D) flower-like architecture consisting of 2D Na 2 Ti 3 O 7 nanosheets (Na-TNSs) has been successfully synthesized. The arbitrarily arranged but closely interlinked thin nanosheets in carnation-shaped 3D Na 2 Ti 3 O 7 microflowers (Na-TMFs) originate a good network of electrically conductive paths in an electrode. Thus, Na-TMFs can get electrons from all directions and be fully utilized for sodium-ion insertion and extraction reactions, which can improve sodium storage properties with enhanced rate capability and super cycling performance. Furthermore, the large specific surface area provides a high capacity, which can be ascribed to the pseudo-capacitance effect. The wettability of the electrolyte was also improved by the porous and crumpled structure. The remarkably improved cycling performance and rate capability of Na-TMFs make a captivating case for its development as an advanced anode material for SIBs.

  14. Application of a Two Camera Video Imaging System to Three-Dimensional Vortex Tracking in the 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Bennett, Mark S.

    1993-01-01

    A description is presented of two enhancements for a two-camera, video imaging system that increase the accuracy and efficiency of the system when applied to the determination of three-dimensional locations of points along a continuous line. These enhancements increase the utility of the system when extracting quantitative data from surface and off-body flow visualizations. The first enhancement utilizes epipolar geometry to resolve the stereo "correspondence" problem. This is the problem of determining, unambiguously, corresponding points in the stereo images of objects that do not have visible reference points. The second enhancement, is a method to automatically identify and trace the core of a vortex in a digital image. This is accomplished by means of an adaptive template matching algorithm. The system was used to determine the trajectory of a vortex generated by the Leading-Edge eXtension (LEX) of a full-scale F/A-18 aircraft tested in the NASA Ames 80- by 120-Foot Wind Tunnel. The system accuracy for resolving the vortex trajectories is estimated to be +/-2 inches over distance of 60 feet. Stereo images of some of the vortex trajectories are presented. The system was also used to determine the point where the LEX vortex "bursts". The vortex burst point locations are compared with those measured in small-scale tests and in flight and found to be in good agreement.

  15. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  16. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  17. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles.

    PubMed

    Xue, Hairong; Wang, Tao; Gong, Hao; Guo, Hu; Fan, Xiaoli; Gao, Bin; Feng, Yaya; Meng, Xianguang; Huang, Xianli; He, Jianping

    2018-03-02

    As a typical photocatalyst for CO 2 reduction, practical applications of TiO 2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO 2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO 2 shows high photocatalytic performance for CO 2 reduction under visible light. The ordered mesoporous TiO 2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO 2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO 2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures

    PubMed Central

    Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-01-01

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts. PMID:29232892

  19. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  20. Generation of Stable Co-Cultures of Vascular Cells in a Honeycomb Alginate Scaffold

    PubMed Central

    Yamamoto, Masaya; James, Daylon; Li, Hui; Butler, Jason; Rafii, Shahin

    2010-01-01

    Scaffold-guided vascular tissue engineering has been investigated as a means to generate functional and transplantable vascular tissue grafts that increase the efficacy of cell-based therapeutic strategies in regenerative medicine. In this study, we employed confocal microscopy and three-dimensional reconstruction to assess the engraftment and growth potential of vascular cells within an alginate scaffold with aligned pores. We fabricated honeycomb alginate scaffolds with aligned pores, whose surface was immobilized with fibronectin and subsequently coated with matrigel. Endothelial cells were seeded into aligned pore scaffolds in the presence and absence of human smooth muscle cells. We showed that endothelial cells seeded into alginate scaffolds attach on the surface of aligned pores in vitro, giving rise to stable co-cultures of vascular cells. Moreover, the three-dimensional alginate depots containing the cells were exposed to laminar flow in order to recapitulate physiological shear stress found in the vasculature in vivo. After the flow exposure, the scaffold remained intact and some cells remained adherent to the scaffold and aligned in the flow direction. These studies demonstrate that alginate scaffolds provide a suitable matrix for establishing durable angiogenic modules that may ultimately enhance organ revascularization. PMID:19705957

  1. Apparent motion determined by surface layout not by disparity or three-dimensional distance.

    PubMed

    He, Z J; Nakayama, K

    1994-01-13

    The most meaningful events ecologically, including the motion of objects, occur in relation to or on surfaces. We run along the ground, cars travel on roads, balls roll across lawns, and so on. Even though there are other motions, such as flying of birds, it is likely that motion along surfaces is more frequent and more significant biologically. To examine whether events occurring in relation to surfaces have a preferred status in terms of visual representation, we asked whether the phenomenon of apparent motion would show a preference for motion attached to surfaces. We used a competitive three-dimensional motion paradigm and found that there is a preference to see motion between tokens placed within the same disparity as opposed to different planes. Supporting our surface-layout hypothesis, the effect of disparity was eliminated either by slanting the tokens so that they were all seen within the same surface plane or by inserting a single slanted background surface upon which the tokens could rest. Additionally, a highly curved stereoscopic surface led to the perception of a more circuitous motion path defined by that surface, instead of the shortest path in three-dimensional space.

  2. Three-dimensional water impact at normal incidence to a blunt structure

    PubMed Central

    Cooker, M. J.; Korobkin, A. A.

    2016-01-01

    The three-dimensional water impact onto a blunt structure with a spreading rectangular contact region is studied. The structure is mounted on a flat rigid plane with the impermeable curved surface of the structure perpendicular to the plane. Before impact, the water region is a rectangular domain of finite thickness bounded from below by the rigid plane and above by the flat free surface. The front free surface of the water region is vertical, representing the front of an advancing steep wave. The water region is initially advancing towards the structure at a constant uniform speed. We are concerned with the slamming loads acting on the surface of the structure during the initial stage of water impact. Air, gravity and surface tension are neglected. The problem is analysed by using some ideas of pressure-impulse theory, but including the time-dependence of the wetted area of the structure. The flow caused by the impact is three-dimensional and incompressible. The distribution of the pressure-impulse (the time-integral of pressure) over the surface of the structure is analysed and compared with the distributions provided by strip theories. The total impulse exerted on the structure during the impact stage is evaluated and compared with numerical and experimental predictions. An example calculation is presented of water impact onto a vertical rigid cylinder. Three-dimensional effects on the slamming loads are the main concern in this study. PMID:27616912

  3. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  4. Computations of Combustion-Powered Actuation for Dynamic Stall Suppression

    NASA Technical Reports Server (NTRS)

    Jee, Solkeun; Bowles, Patrick O.; Matalanis, Claude G.; Min, Byung-Young; Wake, Brian E.; Crittenden, Tom; Glezer, Ari

    2016-01-01

    A computational framework for the simulation of dynamic stall suppression with combustion-powered actuation (COMPACT) is validated against wind tunnel experimental results on a VR-12 airfoil. COMPACT slots are located at 10% chord from the leading edge of the airfoil and directed tangentially along the suction-side surface. Helicopter rotor-relevant flow conditions are used in the study. A computationally efficient two-dimensional approach, based on unsteady Reynolds-averaged Navier-Stokes (RANS), is compared in detail against the baseline and the modified airfoil with COMPACT, using aerodynamic forces, pressure profiles, and flow-field data. The two-dimensional RANS approach predicts baseline static and dynamic stall very well. Most of the differences between the computational and experimental results are within two standard deviations of the experimental data. The current framework demonstrates an ability to predict COMPACT efficacy across the experimental dataset. Enhanced aerodynamic lift on the downstroke of the pitching cycle due to COMPACT is well predicted, and the cycleaveraged lift enhancement computed is within 3% of the test data. Differences with experimental data are discussed with a focus on three-dimensional features not included in the simulations and the limited computational model for COMPACT.

  5. Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames

    NASA Astrophysics Data System (ADS)

    Tamadonfar, Parsa

    Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.

  6. Connecting Geometry and Chemistry: A Three-Step Approach to Three-Dimensional Thinking

    ERIC Educational Resources Information Center

    Donaghy, Kelley J.; Saxton, Kathleen J.

    2012-01-01

    A three-step active-learning approach is described to enhance the spatial abilities of general chemistry students with respect to three-dimensional molecular drawing and visualization. These activities are used in a medium-sized lecture hall with approximately 150 students in the first semester of the general chemistry course. The first activity…

  7. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  8. Two component-three dimensional catalysis

    DOEpatents

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2002-01-01

    This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

  9. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  10. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  11. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  12. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.

    PubMed

    Sheppard, Amy L; Evans, C John; Singh, Krish D; Wolffsohn, James S; Dunne, Mark C M; Davies, Leon N

    2011-06-01

    To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model. Nineteen volunteers, aged 19 to 30 years, were recruited. T(2)-weighted MRIs, optimized to show fluid-filled chambers of the eye, were acquired using an eight-channel radio frequency head coil. Twenty-four oblique-axial slices of 0.8 mm thickness, with no interslice gaps, were acquired to visualize the crystalline lens. Three Maltese cross-type accommodative stimuli (at 0.17, 4.0, and 8.0 D) were presented randomly to the subjects in the MRI to examine lenticular changes with accommodation. MRIs were analyzed to generate a three-dimensional surface model. During accommodation, mean crystalline lens thickness increased (F = 33.39, P < 0.001), whereas lens equatorial diameter (F = 24.00, P < 0.001) and surface radii both decreased (anterior surface, F = 21.78, P < 0.001; posterior surface, F = 13.81, P < 0.001). Over the same stimulus range, mean crystalline lens surface area decreased (F = 7.04, P < 0.005) with a corresponding increase in lens volume (F = 6.06, P = 0.005). These biometric changes represent a 1.82% decrease and 2.30% increase in crystalline lens surface area and volume, respectively. CONCLUSIONS; The results indicate that the capsular bag undergoes elastic deformation during accommodation, causing reduced surface area, and the observed volumetric changes oppose the theory that the lens is incompressible.

  13. Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate

    NASA Technical Reports Server (NTRS)

    Lacis, A. A.; Wang, W. C.; Hansen, J. E.

    1979-01-01

    A radiative transfer method appropriate for use in simple climate models and three dimensional global climate models was developed. It is fully interactive with climate changes, such as in the temperature-pressure profile, cloud distribution, and atmospheric composition, and it is accurate throughout the troposphere and stratosphere. The vertical inhomogeneity of the atmosphere is accounted for by assuming a correlation of gaseous k-distributions of different pressures and temperatures. Line-by-line calculations are made to demonstrate that The method is remarkably accurate. The method is then used in a one-dimensional radiative-convective climate model to study the effect of cirrus clouds on surface temperature. It is shown that an increase in cirrus cloud cover can cause a significant warming of the troposphere and the Earth's surface, by the mechanism of an enhanced green-house effect. The dependence of this phenomenon on cloud optical thickness, altitude, and latitude is investigated.

  14. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becknell, Nigel; Son, Yoonkook; Kim, Dohyung

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar tomore » 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.« less

  15. Polymer diffusion in the interphase between surface and solution.

    PubMed

    Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin

    2018-05-22

    Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.

  16. New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation

    NASA Astrophysics Data System (ADS)

    Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude

    1992-04-01

    New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.

  17. Stereo imaging with spaceborne radars

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Kobrick, M.

    1983-01-01

    Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.

  18. Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Balakumar, P.

    1993-01-01

    In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.

  19. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    NASA Astrophysics Data System (ADS)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  20. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  1. A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.

    1993-01-01

    Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).

  2. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    PubMed

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  3. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

    NASA Astrophysics Data System (ADS)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-01

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  4. 3D surface pressure measurement with single light-field camera and pressure-sensitive paint

    NASA Astrophysics Data System (ADS)

    Shi, Shengxian; Xu, Shengming; Zhao, Zhou; Niu, Xiaofu; Quinn, Mark Kenneth

    2018-05-01

    A novel technique that simultaneously measures three-dimensional model geometry, as well as surface pressure distribution, with single camera is demonstrated in this study. The technique takes the advantage of light-field photography which can capture three-dimensional information with single light-field camera, and combines it with the intensity-based pressure-sensitive paint method. The proposed single camera light-field three-dimensional pressure measurement technique (LF-3DPSP) utilises a similar hardware setup to the traditional two-dimensional pressure measurement technique, with exception that the wind-on, wind-off and model geometry images are captured via an in-house-constructed light-field camera. The proposed LF-3DPSP technique was validated with a Mach 5 flared cone model test. Results show that the technique is capable of measuring three-dimensional geometry with high accuracy for relatively large curvature models, and the pressure results compare well with the Schlieren tests, analytical calculations, and numerical simulations.

  5. More About The Farley Three-Dimensional Braider

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1993-01-01

    Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).

  6. Intrinsic two-dimensional states on the pristine surface of tellurium

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  7. Direct observation of interfacial Au atoms on TiO₂ in three dimensions.

    PubMed

    Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min

    2015-04-08

    Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.

  8. Analysis of the Three-Dimensional Vector FAÇADE Model Created from Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Kamnev, I. S.; Seredovich, V. A.

    2017-12-01

    The results of the accuracy assessment analysis for creation of a three-dimensional vector model of building façade are described. In the framework of the analysis, analytical comparison of three-dimensional vector façade models created by photogrammetric and terrestrial laser scanning data has been done. The three-dimensional model built from TLS point clouds was taken as the reference one. In the course of the experiment, the three-dimensional model to be analyzed was superimposed on the reference one, the coordinates were measured and deviations between the same model points were determined. The accuracy estimation of the three-dimensional model obtained by using non-metric digital camera images was carried out. Identified façade surface areas with the maximum deviations were revealed.

  9. Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer-Metal Oxide Hybrid Solar Cells.

    PubMed

    Park, Jong Hwan; Jung, Youngsuk; Yang, Yooseong; Shin, Hyun Suk; Kwon, Soonchul

    2016-10-05

    For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic-inorganic hybrid solar cell.

  10. Computer modelling of grain microstructure in three dimensions

    NASA Astrophysics Data System (ADS)

    Narayan, K. Lakshmi

    We present a program that generates the two-dimensional micrographs of a three dimensional grain microstructure. The code utilizes a novel scanning, pixel mapping technique to secure statistical distributions of surface areas, grain sizes, aspect ratios, perimeters, number of nearest neighbors and volumes of the randomly nucleated particles. The program can be used for comparing the existing theories of grain growth, and interpretation of two-dimensional microstructure of three-dimensional samples. Special features have been included to minimize the computation time and resource requirements.

  11. Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong

    2012-06-01

    KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.

  12. Approximate cluster analysis method and three-dimensional diagram of optical characteristics of lunar surface

    NASA Astrophysics Data System (ADS)

    Yevsyukov, N. N.

    1985-09-01

    An approximate isolation algorithm for the isolation of multidimensional clusters is developed and applied in the construction of a three-dimensional diagram of the optical characteristics of the lunar surface. The method is somewhat analogous to that of Koontz and Fukunaga (1972) and involves isolating two-dimensional clusters, adding a new characteristic, and linearizing, a cycle which is repeated a limited number of times. The lunar-surface parameters analyzed are the 620-nm albedo, the 620/380-nm color index, and the 950/620-nm index. The results are presented graphically; the reliability of the cluster-isolation process is discussed; and some correspondences between known lunar morphology and the cluster maps are indicated.

  13. The art of seeing and painting.

    PubMed

    Grossberg, Stephen

    2008-01-01

    The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understood paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.

  14. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  15. Nano-patterned superconducting surface for high quantum efficiency cathode

    DOEpatents

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  16. Three-dimensional lattice Boltzmann simulations of microdroplets including contact angle hysteresis on topologically structured surfaces

    DOE PAGES

    Ba, Yan; Kang, Qinjun; Liu, Haihu; ...

    2016-04-14

    In this study, the dynamical behavior of a droplet on topologically structured surface is investigated by using a three-dimensional color-gradient lattice Boltzmann model. A wetting boundary condition is proposed to model fluid-surface interactions, which is advantageous to improve the accuracy of the simulation and suppress spurious velocities at the contact line. The model is validated by the droplet partial wetting test and reproduction of the Cassie and Wenzel states. A series of simulations are conducted to investigate the behavior of a droplet when subjected to a shear flow. It is found that in Cassie state, the droplet undergoes a transitionmore » from stationary, to slipping and finally to detachment states as the capillary number increases, while in Wenzel state, the last state changes to the breakup state. The critical capillary number, above which the droplet slipping occurs, is small for the Cassie droplet, but is significantly enhanced for the Wenzel droplet due to the increased contact angle hysteresis. In Cassie state, the receding contact angle nearly equals the prediction by the Cassie relation, and the advancing contact angle is close to 180°, leading to a small contact angle hysteresis. In Wenzel state, however, the contact angle hysteresis is extremely large (around 100°). Finally, high droplet mobility can be easily achieved for Cassie droplets, whereas in Wenzel state, extremely low droplet mobility is identified.« less

  17. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  18. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Han, Cheng-jie; Wang, Xiao-min

    2017-06-01

    Layered molybdenum disulfide (MoS2) owns graphene-like two-dimensional structure, and when used as the electrode material for energy storage devices, the intercalation of electrolyte ions is permitted. Herein, a simple dipping and drying method is employed to stack few-layered MoS2 nanosheets on a three-dimensional graphene network (3DGN). The structure measurement results indicate that the assembled hierarchical MoS2 nanosheets own expanded interlayer spacing (∼0.75 nm) and are stacked on the surface of 3DGN uncontinuously. The composite can achieve 110.57% capacitance retention after 4000 cycles of galvanostatic charge/discharge tests and 76.73% capacitance retention with increasing the current density from 1 A g-1 to 100 A g-1. Moreover, the asymmetric coin cell supercapacitor using MoS2@3DGN and active carbon as electrode materials is assembled. This device could achieve a working voltage window of 1.6 V along with the power and energy densities of 400.0-8001.6 W kg-1 and 36.43-1.12 Wh kg-1 respectively. The enhanced electrochemical performance can be attributed to: (1) the expanded interlayer spacing of hierarchical MoS2 nanosheets which can facilitate the fast intercalation/deintercalation of electrolyte cations, (2) the uncontinuous deposition of hierarchical MoS2 nanosheets which facilitates more contact between electrolyte and the section of MoS2 nanosheets to provide more gates for the intercalation/deintercalation.

  19. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  20. Dimensional crossover and thermoelectric properties in CeTe2-xSbx single crystals

    NASA Astrophysics Data System (ADS)

    Rhyee, Jong-Soo; Lee, Kyung Eun; Nyeong Kim, Jae; Shim, Ji Hoon; Min, Byeong Hun; Kwon, Yong Seung

    2013-03-01

    Several years before, we proposed that the charge density wave is a new pathway for high thermoelectric performance in In4Se3-x bulk crystalline materials. (Nature v.459, p. 965, 2009) Recently, from the increase of the chemical potential by halogen doped In4Se3-xH0.03 (H =Halogen elements) crystals, we achieved high ZT (maximum ZT 1.53) over a wide temperature range. (Adv. Mater. v.23, p.2191, 2011) Here we demonstrate the low dimensionality increases power factor in CeTe2-xSbx single crystals. The band structures of CeTe2 show the 2-dimensional (2D) Fermi surface nesting behavior as well as a 3-dimensional (3D) electron Fermi surface hindering the perfect charge density wave (CDW) gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. This research was supported by Basic Science Research Program (2011-0021335), Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and TJ Park Junior Faculty Fellowship funded by the POSCO TJ Park Foundation.

  1. Functionalized carbon micro/nanostructures for biomolecular detection

    NASA Astrophysics Data System (ADS)

    Penmatsa, Varun

    Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.

  2. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  3. Three-dimensional instability of standing waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.

  4. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.

    PubMed

    He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen

    2018-01-03

    This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.

  5. Study on the Coupling Mechanism of the Orthogonal Dipoles with Surface Plasmon in Green LED by Cathodoluminescence.

    PubMed

    Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo

    2018-04-16

    We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.

  6. Pretreatment of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells.

    PubMed

    Carpizo, Katherine H; Saran, Madeleine J; Huang, Weibiao; Ishida, Kenji; Roostaeian, Jason; Bischoff, David; Huang, Catherine K; Rudkin, George H; Yamaguchi, Dean T; Miller, Timothy A

    2008-02-01

    Surface topography is important in the creation of a scaffold for tissue engineering. Chemical etching of poly(l-lactide-co-glycolide) with sodium hydroxide has been shown to enhance adhesion and function of numerous cell types. The authors investigated the effects of sodium hydroxide pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds on the adhesion, differentiation, and proliferation of MC3T3-E1 murine preosteoblasts. MC3T3-E1 cells were seeded onto three-dimensional poly(l-lactide-co-glycolide) scaffolds with and without 1 M sodium hydroxide pretreatment. Cells were then cultured in osteogenic medium and harvested at varying time points for RNA extraction. Quantitative real-time reverse-transcriptase polymerase chain reaction was performed to measure mRNA expression of several osteogenic marker genes. In addition, cell numbers were determined at varying time points during the culture period. All experiments were performed in triplicate. Pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide resulted in statistically significant up-regulation of mRNA expression of alkaline phosphatase, bone sialoprotein, osteocalcin, and vascular endothelial growth factor during the first 10 days of culture. Histologic analysis demonstrated a striking increase in mineralized cell matrix deposition in the sodium hydroxide-treated group. Cell number was statistically higher in the sodium hydroxide-treated group immediately after cell seeding, suggesting improved adhesion. During the first 24 hours of culture, cells grew faster in the control group than in the sodium hydroxide-treated group. Chemical etching of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide strongly influences the behavior of MC3T3-E1 preosteoblasts in vitro by enhancing adhesion and differentiation and slowing proliferation. Sodium hydroxide treatment may represent a simple and inexpensive way of improving scaffolds for use in bone tissue engineering.

  7. Estimating 3-dimensional colony surface area of field corals

    EPA Science Inventory

    Colony surface area is a critical descriptor for biological and physical attributes of reef-building (scleractinian, stony) corals. The three-dimensional (3D) size and structure of corals are directly related to many ecosystem values and functions. Most methods to estimate colony...

  8. Real-time x-ray studies of crystal growth modes during metal-organic vapor phase epitaxy of GaN on c- and m-plane single crystals

    DOE PAGES

    Perret, Edith; Highland, M. J.; Stephenson, G. B.; ...

    2014-08-04

    Non-polar orientations of III-nitride semiconductors have attracted significant interest due to their potential application in optoelectronic devices with enhanced efficiency. Using in-situ surface x-ray scattering during metal-organic vapor phase epitaxy (MOVPE) of GaN on non-polar (m-plane) and polar (c-plane) orientations of single crystal substrates, we have observed the homoepitaxial growth modes as a function of temperature and growth rate. On the m-plane surface we observe all three growth modes (step-flow, layer-by-layer, and three-dimensional) as conditions are varied. In contrast, the +c-plane surface exhibits a direct cross over between step-flow and 3-D growth, with no layer-by-layer regime. The apparent activation energymore » of 2.8 ± 0.2 eV observed for the growth rate at the layer-by-layer to step-flow boundary on the m-plane surface is consistent with those observed for MOVPE growth of other III-V compounds, indicating a large critical nucleus size for islands.« less

  9. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering.

    PubMed

    Tan, Yang; Ma, Linan; Gao, Zhibin; Chen, Ming; Chen, Feng

    2017-04-12

    Raman enhancement on a flat nonmetallic surface has attracted increasing attention, ever since the discovery of graphene enhanced Raman scattering. Recently, diverse two-dimensional layered materials have been applied as a flat surface for the Raman enhancement, attributed to different mechanisms. Looking beyond these isolated materials, atomic layers can be reassembled to design a heterostructure stacked layer by layer with an arbitrary chosen sequence, which allows the flow of charge carriers between neighboring layers and offers novel functionalities. Here, we demonstrate the heterostructure as a novel Raman enhancement platform. The WSe 2 (W) monolayer and graphene (G) were stacked together to form a heterostructure with an area of 10 mm × 10 mm. Heterostructures with different stacked structuress are used as platforms for the enhanced Raman scattering, including G/W, W/G, G/W/G/W, and W/G/G/W. On the surface of the heterostructure, the intensity of the Raman scattering is much stronger compared with isolated layers, using the copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman enhancement effect on heterostructures depends on stacked methods. Phonon modes of CuPc have the strongest enhancement on G/W. W/G and W/G/G/W have a stronger enhancement than that on the isolated WSe 2 monolayer, while lower than the graphene monolayer. The G/W/G/W/substrate demonstrated a comparable Raman enhancement effect than the G/W/substrate. These differences are due to the different interlayer couplings in heterostructures related to electron transition probability rates, which are further proved by first-principle calculations and probe-pump measurements.

  10. Proton acceleration by a pair of successive ultraintense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ferri, J.; Senje, L.; Dalui, M.; Svensson, K.; Aurand, B.; Hansson, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Gremillet, L.; Siminos, E.; DuBois, T. C.; Yi, L.; Martins, J. L.; Fülöp, T.

    2018-04-01

    We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ˜0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.

  11. Effects of B1 inhomogeneity correction for three-dimensional variable flip angle T1 measurements in hip dGEMRIC at 3 T and 1.5 T.

    PubMed

    Siversson, Carl; Chan, Jenny; Tiderius, Carl-Johan; Mamisch, Tallal Charles; Jellus, Vladimir; Svensson, Jonas; Kim, Young-Jo

    2012-06-01

    Delayed gadolinium-enhanced MRI of cartilage is a technique for studying the development of osteoarthritis using quantitative T(1) measurements. Three-dimensional variable flip angle is a promising method for performing such measurements rapidly, by using two successive spoiled gradient echo sequences with different excitation pulse flip angles. However, the three-dimensional variable flip angle method is very sensitive to inhomogeneities in the transmitted B(1) field in vivo. In this study, a method for correcting for such inhomogeneities, using an additional B(1) mapping spin-echo sequence, was evaluated. Phantom studies concluded that three-dimensional variable flip angle with B(1) correction calculates accurate T(1) values also in areas with high B(1) deviation. Retrospective analysis of in vivo hip delayed gadolinium-enhanced MRI of cartilage data from 40 subjects showed the difference between three-dimensional variable flip angle with and without B(1) correction to be generally two to three times higher at 3 T than at 1.5 T. In conclusion, the B(1) variations should always be taken into account, both at 1.5 T and at 3 T. Copyright © 2011 Wiley-Liss, Inc.

  12. Venus - Three-Dimensional Perspective View of Alpha Region

    NASA Image and Video Library

    1996-12-02

    A portion of Alpha Regio is displayed in this three-dimensional perspective view of the surface of Venus from NASA Magellan spacecraft. In 1963, Alpha Regio was the first feature on Venus to be identified from Earth-based radar.

  13. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications.

    PubMed

    Nardecchia, Stefania; Carriazo, Daniel; Ferrer, M Luisa; Gutiérrez, María C; del Monte, Francisco

    2013-01-21

    Carbon nanotubes and graphene are some of the most intensively explored carbon allotropes in materials science. This interest mainly resides in their unique properties with electrical conductivities as high as 10(4) S cm(-1), thermal conductivities as high as 5000 W m(-1) K and superior mechanical properties with elastic moduli on the order of 1 TPa for both of them. The possibility to translate the individual properties of these monodimensional (e.g. carbon nanotubes) and bidimensional (e.g. graphene) building units into two-dimensional free-standing thick and thin films has paved the way for using these allotropes in a number of applications (including photocatalysis, electrochemistry, electronics and optoelectronics, among others) as well as for the preparation of biological and chemical sensors. More recently and while recognizing the tremendous interest of these two-dimensional structures, researchers are noticing that the performance of certain devices can experience a significant enhancement by the use of three-dimensional architectures and/or aerogels because of the increase of active material per projected area. This is obviously the case as long as the nanometre-sized building units remain accessible so that the concept of hierarchical three-dimensional organization is critical to guarantee the mass transport and, as consequence, performance enhancement. Thus, this review aims to describe the different synthetic processes used for preparation of these three-dimensional architectures and/or aerogels containing either any or both allotropes, and the different fields of application in which the particular structure of these materials provided a significant enhancement in the efficacy as compared to their two-dimensional analogues or even opened the path to novel applications. The unprecedented compilation of information from both CNT- and graphene-based three-dimensional architectures and/or aerogels in a single revision is also of interest because it allows a straightforward comparison between the particular features provided by each allotrope.

  14. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    PubMed

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other analytical techniques for characterization of complex biofilm matrices are discussed in a critical review. Graphical Abstract Applicability of Raman microspectroscopy for biofilm analysis.

  15. A Computational/Experimental Platform for Investigating Three-Dimensional Puzzle Solving of Comminuted Articular Fractures

    PubMed Central

    Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Frank, Matthew C.; Marsh, J. Lawrence; Brown, Thomas D.

    2011-01-01

    Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case. PMID:20924863

  16. Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Runru; Wen, Dongdong; Zhang, Xueyu; Wang, Dejun; Yang, Qiang; Yuan, Beilei; Lü, Wei

    2018-06-01

    In this work, three-Dimensional nitrogen-doped graphene/MnO2 (NG/MnO2) was prepared by plasma treatment, which provides a high specific surface area due to porous structure and exhibits enhanced supercapacitor performance. The advantage of NG/MnO2 electrode was obvious compared with reduced graphene oxide/MnO2 (RGO/MnO2) which was prepared by traditional hydrothermal method, such as improved electrochemical property and better cycling stability. The specific capacitance of NG/MnO2 at the scan rate of 5 mV s‑1 (393 F g‑1) is higher than that of RGO/MnO2 (260 F g‑1). In addition, NG/MnO2 showed higher durability with 90.2% capacitance retention than that of RGO/MnO2 (82%) after 5000 cycles. Such cheap and high-performance supercapacitor electrodes are available by our feasible plasma treatment, which give promise in large-scale commercial energy storage devices.

  17. Three-Dimensional CdS/Au Butterfly Wing Scales with Hierarchical Rib Structures for Plasmon-Enhanced Photocatalytic Hydrogen Production.

    PubMed

    Fang, Jing; Gu, Jiajun; Liu, Qinglei; Zhang, Wang; Su, Huilan; Zhang, Di

    2018-06-13

    Localized surface plasmon resonance (LSPR) of plasmonic metals (e.g., Au) can help semiconductors improve their photocatalytic hydrogen (H 2 ) production performance. However, an artificial synthesis of hierarchical plasmonic structures down to nanoscales is usually difficult. Here, we adopt the butterfly wing scales from Morpho didius to fabricate three-dimensional (3D) CdS/Au butterfly wing scales for plasmonic photocatalysis. The as-prepared materials well-inherit the pristine hierarchical biostructures. The 3D CdS/Au butterfly wing scales exhibit a high H 2 production rate (221.8 μmol·h -1 within 420-780 nm), showing a 241-fold increase over the CdS butterfly wing scales. This is attributed to the effective potentiation effect of LSPR introduced by multilayer metallic rib structures and a good interface bonding state between Au and CdS nanoparticles. Thus, our study provides a relatively simple method to learn from nature and inspiration for preparing highly efficient plasmonic photocatalysts.

  18. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation

    PubMed Central

    Fedosov, D. A.; Caswell, B.; Suresh, S.; Karniadakis, G. E.

    2011-01-01

    The pathogenicity of Plasmodium falciparum (Pf) malaria results from the stiffening of red blood cells (RBCs) and its ability to adhere to endothelial cells (cytoadherence). The dynamics of Pf-parasitized RBCs is studied by three-dimensional mesoscopic simulations of flow in cylindrical capillaries in order to predict the flow resistance enhancement at different parasitemia levels. In addition, the adhesive dynamics of Pf-RBCs is explored for various parameters revealing several types of cell dynamics such as firm adhesion, very slow slipping along the wall, and intermittent flipping. The parasite inside the RBC is modeled explicitly in order to capture phenomena such as “hindered tumbling” motion of the RBC and the sudden transition from firm RBC cytoadherence to flipping on the endothelial surface. These predictions are in quantitative agreement with recent experimental observations, and thus the three-dimensional modeling method presented here provides new capabilities for guiding and interpreting future in vitro and in vivo studies of malaria. PMID:21173269

  19. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  20. First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111)

    PubMed Central

    Zhang, Zhaojun; Liu, Tianhui; Fu, Bina; Yang, Xueming; Zhang, Dong H.

    2016-01-01

    Despite significant progress made in the past decades, it remains extremely challenging to investigate the dissociative chemisorption dynamics of molecular species on surfaces at a full-dimensional quantum mechanical level, in particular for polyatomic-surface reactions. Here we report, to the best of our knowledge, the first full-dimensional quantum dynamics study for the dissociative chemisorption of H2O on rigid Cu(111) with all the nine molecular degrees of freedom fully coupled, based on an accurate full-dimensional potential energy surface. The full-dimensional quantum mechanical reactivity provides the dynamics features with the highest accuracy, revealing that the excitations in vibrational modes of H2O are more efficacious than increasing the translational energy in promoting the reaction. The enhancement of the excitation in asymmetric stretch is the largest, but that of symmetric stretch becomes comparable at very low energies. The full-dimensional characterization also allows the investigation of the validity of previous reduced-dimensional and approximate dynamical models. PMID:27283908

  1. Bi-directional, buried-wire skin-friction gage

    NASA Technical Reports Server (NTRS)

    Higuchi, H.; Peake, D. J.

    1978-01-01

    A compact, nonobtrusive, bi-directional, skin-friction gage was developed to measure the mean shear stress beneath a three-dimensional boundary layer. The gage works by measuring the heat flux from two orthogonal wires embedded in the surface. Such a gage was constructed and its characteristics were determined for different angles of yaw in a calibration experiment in subsonic flow with a Preston tube used as a standard. Sample gages were then used in a fully three-dimensional turbulent boundary layer on a circular cone at high relative incidence, where there were regimes of favorable and adverse pressure gradients and three-dimensional separation. Both the direction and magnitude of skin friction were then obtained on the cone surface.

  2. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  3. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  4. Multiple scattering in the high-frequency limit with second-order shadowing function from 2D anisotropic rough dielectric surfaces: I. Theoretical study

    NASA Astrophysics Data System (ADS)

    Bourlier, C.; Berginc, G.

    2004-07-01

    In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.

  5. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  6. Evaluation of Different Disinfactants on Dimensional Accuracy and Surface Quality of Type IV Gypsum Casts Retrieved from Elastomeric Impression Materials.

    PubMed

    Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak

    2014-06-01

    The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. All the three disinfectants produced complete disinfection, and didn't cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81.

  7. The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.

    2014-04-01

    The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.

  8. Three-Dimensional Co-Culture Process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)

    1997-01-01

    By the process of the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and had some of the characteristics of in vivo tissue. The process provides enhanced 3-dimensional tissue which creates a multicellular organoid differentiation model.

  9. Visualization of Sources in the Universe

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Cebral, J. R.

    1993-12-01

    We have begun to develop a series of visualization tools of importance to the display of astronomical data and have applied these to the visualization of cosmological sources in the recently formed Institute for Computational Sciences and Informatics at GMU. One can use a three-dimensional perspective plot of the density surface for three dimensional data and in this case the iso-level contours are three- dimensional surfaces. Sophisticated rendering algorithms combined with multiple source lighting allow us to look carefully at such density contours and to see fine structure on the surface of the density contours. Stereoscopic and transparent rendering can give an even more sophisticated approach with multi-layered surfaces providing information at different levels. We have applied these methods to looking at density surfaces of 3-D data such as 100 clusters of galaxies and 2500 galaxies in the CfA redshift survey. Our plots presented are based on three variables, right ascension, declination and redshift. We have also obtained density structures in 2-D for the distribution of gamma-ray bursts (where distances are unknown) and the distribution of a variety of sources such as clusters of galaxies. Our techniques allow for correlations to be done visually.

  10. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.

    PubMed

    Guo, L-X; Li, J; Zeng, H

    2009-11-01

    We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.

  11. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    PubMed

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  12. The effect of substrate on electric field enhancement of Tip-enhanced Raman spectroscopy (TERS)

    NASA Astrophysics Data System (ADS)

    Bahreini, Maryam

    2018-01-01

    The characterization of materials down to a few-molecule level is a key challenge in nanotechnology. Raman spectroscopy is a powerful method that provides chemical information via nondestructive vibrational fingerprinting. Unfortunately, this method suffers from signal weakness which prevents the study of small quantities. Tip-enhanced Raman spectroscopy (TERS) which combines the chemical sensitivity of Raman spectroscopy (RS) with high spatial resolution of scanning probe microscopy (SPM), provides chemical images of surfaces at the nanometer scale. In this method, irradiation of an SPM tip by a focused laser beam results in enhancement of local electric field via two reasons of localized surface plasmon resonance and lightning rod effect. This enhancement leads to the enhancement in Raman intensity from the sample surface in the vicinity of tip. In all TERS measurements, samples should be located on a substrate. In this paper, the dependence of the electric field enhancement to the substrate has been investigated. In simulations, three-dimensional finite-difference time-domain (3D-FDTD) method is used for numerical solution of Maxwell's equations. Our results show that the electric field enhancement is weak for the tip alone case. Introducing a substrate provides further electric field enhancement via near field electromagnetic dipole-dipole coupling between the tip and substrate. Since the side-illumination geometry is used for laser irradiation, the vertical component of the incident field plays a dominant role in the electric field enhancement. Therefore, the coupling effect between the tip and the substrate is the key contribution to the enhancement. For the case of silicon tip and the gold substrate, the electric field enhancement is improved considerably. There is an optimal tip size for TERS because of the competing effects of the radiation damping and the surface scattering of the tip. The results show the substrate as an effective tool for the improvement of the TERS detection sensitivity.

  13. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.

    PubMed

    de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo

    2018-02-01

    To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.

  14. Clinical use of three-dimensional video measurements of eye movements

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Black, F. O.; Wade, S.; Paloski, W. H. (Principal Investigator)

    1998-01-01

    Noninvasive measurements of three-dimensional eye position can be accurately achieved with video methods. A case study showing the potential clinical benefit of these enhanced measurements is presented along with some thoughts about technological advances, essential for clinical application, that are likely to occur in the next several years.

  15. Alphatome--Enhancing Spatial Reasoning: A Simulation in Two and Three Dimensions

    ERIC Educational Resources Information Center

    LeClair, Elizabeth E.

    2003-01-01

    Using refrigerator magnets, foam blocks, ink pads, and modeling clay, students manipulate the letters of the alphabet at multiple angles, reconstructing three-dimensional forms from two-dimensional data. This exercise increases students' spatial reasoning ability, an important component in many scientific disciplines. (Contains 5 figures.)

  16. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  17. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  18. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    NASA Astrophysics Data System (ADS)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  19. A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia

    2018-04-01

    We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.

  20. Three-dimensional low Reynolds number flows with a free surface

    NASA Technical Reports Server (NTRS)

    Degani, D.; Gutfinger, C.

    1977-01-01

    The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).

  1. Amplitude interpretation and visualization of three-dimensional reflection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enachescu, M.E.

    1994-07-01

    Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements notmore » obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.« less

  2. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    NASA Astrophysics Data System (ADS)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  3. Evidence and mechanism of Hurricane Fran-Induced ocean cooling in the Charleston Trough

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Pietrafesa, L. J.; Bohm, E.; Zhang, C.; Li, X.

    Evidence of enhanced sea surface cooling during and following the passage of Hurricane Fran in September 1996 over an oceanic depression located on the ocean margin offshore of Charleston, South Carolina (referred to as the Charleston Trough), [Pietrafesa, 1983] is documented. Approximately 4C° of sea surface temperature (SST) reduction within the Charleston Trough following the passage of Hurricane Fran was estimated based on SST imagery from Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 polar orbiting satellite. Simulations using a three-dimensional coastal ocean model indicate that the largest SST reduction occurred within the Charleston Trough. This SST reduction can be explained by oceanic mixing due to storm-induced internal inertia-gravity waves.

  4. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  5. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE PAGES

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    2017-10-20

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  6. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    PubMed

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  7. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  8. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  9. The method of approximate cluster analysis and the three-dimensional diagram of optical characteristics of the lunar surface

    NASA Astrophysics Data System (ADS)

    Evsyukov, N. N.

    1984-12-01

    An approximate isolation algorithm for the isolation of multidimensional clusters is developed and applied in the construction of a three-dimensional diagram of the optical characteristics of the lunar surface. The method is somewhat analogous to that of Koontz and Fukunaga (1972) and involves isolating two-dimensional clusters, adding a new characteristic, and linearizing, a cycle which is repeated a limited number of times. The lunar-surface parameters analyzed are the 620-nm albedo, the 620/380-nm color index, and the 950/620-nm index. The results are presented graphically; the reliability of the cluster-isolation process is discussed; and some correspondences between known lunar morphology and the cluster maps are indicated.

  10. Retention in porous layer pillar array planar separation platforms

    DOE PAGES

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; ...

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  11. Retention in porous layer pillar array planar separation platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  12. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2013-11-01

    The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the title molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.

  13. Three-dimensional supersonic flow around double compression ramp with finite span

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.

    2017-01-01

    Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.

  14. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  15. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  16. Computation of three-dimensional shock wave and boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1985-01-01

    Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.

  17. Reflection high energy electron diffraction observation of surface mass transport at the two- to three-dimensional growth transition of InAs on GaAs(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, F.; Arciprete, F.; Fanfoni, M.

    2005-12-19

    We have followed by reflection high-energy electron diffraction the nucleation of InAs quantum dots on GaAs(001), grown by molecular-beam epitaxy with growth interruptions. Surface mass transport gives rise, at the critical InAs thickness, to a huge nucleation of three-dimensional islands within 0.2 monolayers (ML). Such surface mass diffusion has been evidenced by observing the transition of the reflection high-energy electron diffraction pattern from two- to three-dimensional during the growth interruption after the deposition of 1.59 ML of InAs. It is suggested that the process is driven by the As{sub 2} adsorption-desorption process and by the lowering of the In bindingmore » energy due to compressive strain. The last condition is met first in the region surrounding dots at step edges where nucleation predominantly occurs.« less

  18. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  19. Critical examination of quantum oscillations in SmB6

    NASA Astrophysics Data System (ADS)

    Riseborough, Peter S.; Fisk, Z.

    2017-11-01

    We critically review the results of magnetic torque measurements on SmB6 that show quantum oscillations. Similar studies have been given two different interpretations. One interpretation is based on the existence of metallic surface states, while the second interpretation is in terms of a three-dimensional Fermi surface involving neutral fermionic excitations. We suggest that the low-field oscillations that are seen by both groups for B fields as small as 6 T might be due to metallic surface states. The high-field three-dimensional oscillations are only seen by one group for fields B >18 T. The phenomenon of magnetic breakthrough occurs at high fields and involves the formation of Landau orbits that produces a directional-dependent suppression of Bragg scattering. We argue that the measurements performed under higher-field conditions are fully consistent with expectations based on a three-dimensional semiconducting state with magnetic breakthrough.

  20. Interactive Mechanisms of Sliding-Surface Bearings.

    DTIC Science & Technology

    1983-08-01

    lower, upper) bearing surface V Three-dimensional gradient operator ix Two-dimensional surface gradient operator ( ),. Pertaining to the bearing surface...thermal gradients . The tilt-pad feature required the pad inclination to be determined by the condition of moment equilibrium about the pivot point. This...into the computation of pressure and shear in a fluid film. Incipience Point of Film Rupture On page 93 of Appendix A, pressure gradient and pressure of

  1. Investigation of the relative orientation of the system of optical sensors to monitor the technosphere objects

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrey; Konyakhin, Igor

    2017-06-01

    In connection with the development of robotics have become increasingly popular variety of three-dimensional reconstruction of the system mapping and image-set received from the optical sensors. The main objective of technical and robot vision is the detection, tracking and classification of objects of the space in which these systems and robots operate [15,16,18]. Two-dimensional images sometimes don't contain sufficient information to address those or other problems: the construction of the map of the surrounding area for a route; object identification, tracking their relative position and movement; selection of objects and their attributes to complement the knowledge base. Three-dimensional reconstruction of the surrounding space allows you to obtain information on the relative positions of objects, their shape, surface texture. Systems, providing training on the basis of three-dimensional reconstruction of the results of the comparison can produce two-dimensional images of three-dimensional model that allows for the recognition of volume objects on flat images. The problem of the relative orientation of industrial robots with the ability to build threedimensional scenes of controlled surfaces is becoming actual nowadays.

  2. Enhanced mixing and spatial instability in concentrated bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Goldstein, Raymond E.; Feldchtein, Felix I.; Aranson, Igor S.

    2009-09-01

    High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latter state, qualitatively different from bioconvection in dilute bacterial suspensions, is characterized by enhanced diffusivities of oxygen and bacteria. These results emphasize the impact of self-organized bacterial locomotion on the onset of three-dimensional dynamics, and suggest key ingredients necessary to extend standard models of bioconvection to incorporate effects of large-scale collective motion.

  3. Probing the surface of γ-Al2O3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy.

    PubMed

    Li, Wenzheng; Wang, Qiang; Xu, Jun; Aussenac, Fabien; Qi, Guodong; Zhao, Xingling; Gao, Pan; Wang, Chao; Deng, Feng

    2018-06-14

    γ-Al2O3 is an important catalyst and catalyst support of industrial interest. Its acid/base characteristics are correlated to the surface structure, which has always been an issue of concern. In this work, the complex (sub-)surface oxygen species on surface-selectively labelled γ-Al2O3 were probed by 17O dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS). Direct 17O MAS and indirect 1H-17O cross-polarization (CP)/MAS DNP experiments enable observation of the (sub-)surface bare oxygen species and hydroxyl groups. In particular, a two-dimensional (2D) 17O 3QMAS DNP spectrum was for the first time achieved for γ-Al2O3, in which two O(Al)4 and one O(Al)3 bare oxygen species were identified. The 17O isotropic chemical shifts (δcs) vary from 56.7 to 81.0 ppm and the quadrupolar coupling constants (CQ) range from 0.6 to 2.5 MHz for the three oxygen species. The coordinatively unsaturated O(Al)3 species is characterized by a higher field chemical shift (56.7 ppm) and the largest CQ value (2.5 MHz) among these oxygen sites. 2D 1H → 17O HETCOR DNP experiments allow us to discriminate three bridging (Aln)-μ2-OH and two terminal (Aln)-μ1-OH hydroxyl groups. The structural features of the bare oxygen species and hydroxyl groups are similar for the γ-Al2O3 samples isotopically labelled by 17O2 gas or H217O. The results presented here show that the combination of surface-selective labelling and DNP-SENS is an effective approach for characterizing oxides with complex surface species.

  4. Multi-camera volumetric PIV for the study of jumping fish

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  5. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development.

    PubMed

    Walton, Katherine D; Kolterud, Asa

    2014-09-04

    Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine(1). Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought(1). The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth(2). Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.

  6. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro

    2017-10-01

    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  7. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. 

  8. Enhancing the sensitivity of needle-implantable electrochemical glucose sensors via surface rebuilding.

    PubMed

    Vaddiraju, Santhisagar; Legassey, Allen; Qiang, Liangliang; Wang, Yan; Burgess, Diane J; Papadimitrakopoulos, Fotios

    2013-03-01

    Needle-implantable sensors have shown to provide reliable continuous glucose monitoring for diabetes management. In order to reduce tissue injury during sensor implantation, there is a constant need for device size reduction, which imposes challenges in terms of sensitivity and reliability, as part of decreasing signal-to-noise and increasing layer complexity. Herein, we report sensitivity enhancement via electrochemical surface rebuilding of the working electrode (WE), which creates a three-dimensional nanoporous configuration with increased surface area. The gold WE was electrochemically rebuilt to render its surface nanoporous followed by decoration with platinum nanoparticles. The efficacy of such process was studied using sensor sensitivity against hydrogen peroxide (H2O2). For glucose detection, the WE was further coated with five layers, namely, (1) polyphenol, (2) glucose oxidase, (3) polyurethane, (4) catalase, and (5) dexamethasone-releasing poly(vinyl alcohol)/poly(lactic-co-glycolic acid) composite. The amperometric response of the glucose sensor was noted in vitro and in vivo. Scanning electron microscopy revealed that electrochemical rebuilding of the WE produced a nanoporous morphology that resulted in a 20-fold enhancement in H2O2 sensitivity, while retaining >98% selectivity. This afforded a 4-5-fold increase in overall glucose response of the glucose sensor when compared with a control sensor with no surface rebuilding and fittable only within an 18 G needle. The sensor was able to reproducibly track in vivo glycemic events, despite the large background currents typically encountered during animal testing. Enhanced sensor performance in terms of sensitivity and large signal-to-noise ratio has been attained via electrochemical rebuilding of the WE. This approach also bypasses the need for conventional and nanostructured mediators currently employed to enhance sensor performance. © 2013 Diabetes Technology Society.

  9. Duct flow nonuniformities: Effect of struts in SSME HGM II(+)

    NASA Technical Reports Server (NTRS)

    Burke, Roger

    1988-01-01

    A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.

  10. Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.

    2004-08-01

    Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the j×B acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how various dynamical assumptions influence the way enhanced energy inputs are channeled by the fluid dynamics. Variations in the parameters of the phenomenological model are made in order to determine how sensitively they influence the dynamics and the degree to which the calculated x-ray outputs can be made to replicate the kinds of large variations in the experimental x-ray power data that were observed in three nominally identical aluminum wire shots on Saturn.

  11. Characteristics of Helical Flow through Neck Cutoffs

    NASA Astrophysics Data System (ADS)

    Richards, D.; Konsoer, K. M.; Turnipseed, C.; Willson, C. S.

    2017-12-01

    Meander cutoffs and oxbows lakes are a ubiquitous feature of riverine landscapes yet there is a paucity of detailed investigations concentrated on the three-dimensional flow structure through evolving neck cutoffs. The purpose of this research is to investigate and characterize helical flow through neck cutoffs with two different planform configurations: elongate meander loops and serpentine loops. Three-dimensional velocity measurements was collected with an acoustic Doppler current profiler for five cutoffs on the White River, Arkansas. Pronounced helical flow was found through all elongate loop cutoff sites, formed from the balance between centrifugal force resulting from the curving of flow through the cutoff channel and pressure gradient force resulting from water surface super-elevation between primary flow and flow at the entrance and exit of the abandoned loop. The sense of motion of the helical flow caused near-surface fluid to travel outward toward the abandoned loop while near-bed fluid was redirected toward the downstream channel. Another characteristic of the helical flow structure for elongate loop cutoffs was the reversal of helical flow over a relatively short distance, causing patterns of secondary circulation that differed from typical patterns observed through curved channels with point bars. Lastly, helical flow was revealed within zones of strong flow recirculation, enhanced by an exchange of streamwise momentum between shear layers.

  12. MRI-based three-dimensional thermal physiological characterization of thyroid gland of human body.

    PubMed

    Jin, Chao; He, Zhi Zhu; Yang, Yang; Liu, Jing

    2014-01-01

    This article is dedicated to present a MRI (magnetic resonance imaging) based three-dimensional finite element modeling on the thermal manifestations relating to the pathophysiology of thyroid gland. An efficient approach for identifying the metabolic dysfunctions of thyroid has also been demonstrated through tracking the localized non-uniform thermal distribution or enhanced dynamic imaging. The temperature features over the skin surface and thyroid domain have been characterized using the numerical simulation and experimental measurement which will help better interpret the thermal physiological mechanisms of the thyroid under steady-state or water-cooling condition. Further, parametric simulations on the hypermetabolism symptoms of hyperthyroidism and thermal effects within thyroid domain caused by varying breathing airflow in the trachea and blood-flow in artery and vein were performed. It was disclosed that among all the parameters, the airflow volume has the largest effect on the total heat flux of thyroid surface. However, thermal contributions caused by varying the breathing frequency and blood-flow velocity are negligibly small. The present study suggests a generalized way for simulating the close to reality physiological behavior or process of human thyroid, which is of significance for disease diagnosis and treatment planning. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 sun Illumination.

    PubMed

    Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun

    2018-05-09

    Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.

  14. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    NASA Technical Reports Server (NTRS)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  15. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  16. Making ultrafine and highly-dispersive multimetallic nanoparticles in three-dimensional graphene with supercritical fluid as excellent electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yazhou; Yen, Clive H.; Hu, Yun Hang

    2016-01-01

    Three-dimensional (3D) graphene showed an advanced support for designing porous electrode materials due to its high specific surface area, large pore volume, and excellent electronic property. However, the electrochemical properties of reported porous electrode materials still need to be improved further. The current challenge is how to deposit desirable nanoparticles (NPs) with controllable structure, loading and composition in 3D graphene while maintaining the high dispersion. Herein, we demonstrate a modified supercritical fluid (SCF) technique to address this issue by controlling the SCF system. Using this superior method, a series of Pt-based/3D graphene materials with the ultrafine-sized, highly dispersive and controllablemore » composition multimetallic NPs were successfully synthesized. Specifically, the resultant Pt40Fe60/3D graphene showed a significant enhancement in electrocatalytic performance for the oxygen reduction reaction (ORR), including a factor of 14.2 enhancement in mass activity (1.70 A mgPt 1), a factor of 11.9 enhancement in specific activity (1.55 mA cm 2), and higher durability compared with that of Pt/C catalyst. After careful comparison, the Pt40Fe60/3D graphene catalyst shows the higher ORR activity than most of the reported similar 3D graphene-based catalysts. The successful synthesis of such attractive materials by this method also paves the way to develop 3D graphene in widespread applications.« less

  17. Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol

    NASA Astrophysics Data System (ADS)

    Song, Shaoqing; Meng, Aiyun; Jiang, Shujuan; Cheng, Bei

    2018-06-01

    The effective transport of photo-induced carriers over semiconductor photocatalyst is critical for enhancing the photocatalytic performance under light excitation. Although oxidized graphene (GO) and/or reduced graphene oxide (rGO) has been used as cocatalyst to promote the transfer and utilization of electrons, however, random diffusion and transfer of photo-induced charges are inevitable from all sides over these actual graphene owing to the limitation of the preparation process and theory. Herein, we utilized three-dimensional hollow carbon graphene (HCG) to promote the efficient electron transfer of Ag3PO4 in the photocatalytic process. Owing to the confinement-induced electron field of HCG, the constructed HCG-Ag3PO4 photocatalytic system demonstrated the enhanced visible-light adsorption, improved transfer of photo-induced charges, and suitable redox potentials as revealed by transient photo-current spectroscopic, surface photovoltage spectroscopy, and electron paramagnetic resonance (EPR). EPR spectra of oxygen species and gas chromatography-mass spectra exhibited high efficiency activity over HCG-Ag3PO4 with Z-scheme photocatalytic mechanism for phenol decomposition by reaction between hexanoic acid and radOH and radO2-. It is noteworthy that photocatalytic performance over optimal HCG-Ag3PO4 is 6, 3.43, 1.92 times of pristine Ag3PO4, GO-Ag3PO4, and rGO-Ag3PO4, respectively. The results may supply a novel perspective to enhance transfer of photo-induced charges for the promotion of photocatalytic technology.

  18. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain.

    PubMed

    Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian

    2017-12-13

    Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.

  19. Effect of geometry variations on lee-surface vortex-induced heating for flat-bottom three-dimensional bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.

    1973-01-01

    Studies have shown that vortices can produce relatively severe heating on the leeward surfaces of conceptual hypersonic vehicles and that surface geometry can strongly influence this vortex-induced heating. Results which show the effects of systematic geometry variations on the vortex-induced lee-surface heating on simple flat-bottom three-dimensional bodies at angles of attack of 20 deg and 40 deg are presented. The tests were conducted at a free-stream Mach number of 6 and at a Reynolds number of 1.71 x 10 to the 7th power per meter.

  20. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  1. Surface shape affects the three-dimensional exploratory movements of nocturnal arboreal snakes.

    PubMed

    Jayne, Bruce C; Olberding, Jeffrey P; Athreya, Dilip; Riley, Michael A

    2012-12-01

    Movement and searching behaviors at diverse spatial scales are important for understanding how animals interact with their environment. Although the shapes of branches and the voids in arboreal habitats seem likely to affect searching behaviors, their influence is poorly understood. To gain insights into how both environmental structure and the attributes of an animal may affect movement and searching, we compared the three-dimensional exploratory movements of snakes in the dark on two simulated arboreal surfaces (disc and horizontal cylinder). Most of the exploratory movements of snakes in the dark were a small fraction of the distances they could reach while bridging gaps in the light. The snakes extended farther away from the edge of the supporting surface at the ends of the cylinder than from the sides of the cylinder or from any direction from the surface of the disc. The exploratory movements were not random, and the surface shape and three-dimensional directions had significant interactive effects on how the movements were structured in time. Thus, the physical capacity for reaching did not limit the area that was explored, but the shape of the supporting surface and the orientation relative to gravity did create biased searching patterns.

  2. Nanometric holograms based on a topological insulator material.

    PubMed

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  3. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  4. Social Presence and Motivation in a Three-Dimensional Virtual World: An Explanatory Study

    ERIC Educational Resources Information Center

    Yilmaz, Rabia M.; Topu, F. Burcu; Goktas, Yuksel; Coban, Murat

    2013-01-01

    Three-dimensional (3-D) virtual worlds differ from other learning environments in their similarity to real life, providing opportunities for more effective communication and interaction. With these features, 3-D virtual worlds possess considerable potential to enhance learning opportunities. For effective learning, the users' motivation levels and…

  5. Illusions of Space: Charting Three Dimensions

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2014-01-01

    We introduce various methods which are used to depict three-dimensional objects on two-dimensional surfaces. Many of these are artistic and not conducive to exact interpretation. Instead, the scientific and engineering practices and mathematics of orthographic projection are introduced, and illustrated in an accompanying interactive Excel…

  6. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates.

    PubMed

    Freye, Chris E; Crane, Nichole A; Kirchner, Teresa B; Sepaniak, Michael J

    2013-04-16

    A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent. Additionally, limits of detection were established for test analytes malachite green isothiocyanate, 4-aminothiophenol, and Rhodamine 6G (Rh6G) ranging from 10(-7) to 10(-6) M. Band broadening due to blotting was minimal (∼10%) as examined by comparing the spatial extent of TLC-spotted Rh6G via fluorescence and then the SERS-based spot size on the nanocomposite after the blotting process. Finally, a separation of the test analytes was carried out on a TLC plate followed by blotting and the acquisition of distance × wavenumber × intensity three-dimensional TLC-SERS plots.

  7. On the quasi-conical flowfield structure of the swept shock wave-turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Knight, Doyle D.; Badekas, Dias

    1991-01-01

    The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.

  8. Three-dimensional mapping of the lateral ventricles in autism

    PubMed Central

    Vidal, Christine N.; Nicolsonln, Rob; Boire, Jean-Yves; Barra, Vincent; DeVito, Timothy J.; Hayashi, Kiralee M.; Geaga, Jennifer A.; Drost, Dick J.; Williamson, Peter C.; Rajakumar, Nagalingam; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    In this study, a computational mapping technique was used to examine the three-dimensional profile of the lateral ventricles in autism. T1-weighted three-dimensional magnetic resonance images of the brain were acquired from 20 males with autism (age: 10.1 ± 3.5 years) and 22 male control subjects (age: 10.7 ± 2.5 years). The lateral ventricles were delineated manually and ventricular volumes were compared between the two groups. Ventricular traces were also converted into statistical three-dimensional maps, based on anatomical surface meshes. These maps were used to visualize regional morphological differences in the thickness of the lateral ventricles between patients and controls. Although ventricular volumes measured using traditional methods did not differ significantly between groups, statistical surface maps revealed subtle, highly localized reductions in ventricular size in patients with autism in the left frontal and occipital horns. These localized reductions in the lateral ventricles may result from exaggerated brain growth early in life. PMID:18502618

  9. Three-dimensional simulation of human teeth and its application in dental education and research.

    PubMed

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible.

  10. Three-dimensional simulation of human teeth and its application in dental education and research

    PubMed Central

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible. PMID:28491836

  11. Three-dimensional shape measurement system applied to superficial inspection of non-metallic pipes for the hydrocarbons transport

    NASA Astrophysics Data System (ADS)

    Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.

  12. Regional Detection of Decoupled Explosions, Yield Estimation from Surface Waves, Two-Dimensional Source Effects, Three-Dimensional Earthquake Modeling and Automated Magnitude Measures

    DTIC Science & Technology

    1980-07-01

    41 3.2 EXPERIMENTAL DETERMINATION OF THE DEPENDENCE OF RAYLEIGH WAVE AMPLITUDE ON PROPERTIES OF THE SOURCE MATERIAL ...Surface Wave Observations ...... ................ 48 3.3.3 Surface Wave Dependence on Source Material Properties ..... ................ .. 51 SYSTEMS...with various aspects of the problem of estimating yield from single station recordings of surface waves. The material in these four summaries has been

  13. Coupling and power transfer efficiency enhancement of modular and array of planar coils using in-plane ring-shaped inner ferrites for inductive heating applications

    NASA Astrophysics Data System (ADS)

    Kilic, V. T.; Unal, E.; Demir, H. V.

    2017-07-01

    We propose and demonstrate a highly effective method of enhancing coupling and power transfer efficiency in inductive heating systems composed of planar coils. The proposed method is based on locating ring-shaped ferrites in the inner side of the coils in the same plane. Measurement results of simple inductive heating systems constructed with either a single or a pair of conventional circular coils show that, with the in-plane inner ferrites, the total dissipated power of the system is increased by over 65%. Also, with three-dimensional full electromagnetic solutions, it is found that power transfer efficiency of the system is increased up to 92% with the inner ferrite placement. The proposed method is promising to be used for efficiency enhancement in inductive heating applications, especially in all-surface induction hobs.

  14. Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.

    2006-01-01

    Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.

  15. Two-dimensional and three-dimensional evaluation of the deformation relief

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.

    2017-12-01

    This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.

  16. Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Xie, Shang-Ping

    2003-12-01

    Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.

  17. Four-channel surface coil array for sequential CW-EPR image acquisition

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  18. Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.

    PubMed

    Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin

    2018-05-09

    Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.

  19. Three-dimensional spatial grouping affects estimates of the illuminant

    NASA Astrophysics Data System (ADS)

    Perkins, Kenneth R.; Schirillo, James A.

    2003-12-01

    The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be ~33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to ~8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.

  20. Three-Dimensional Waveguide Arrays for Coupling Between Fiber-Optic Connectors and Surface-Mounted Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Seiki; Kinoshita, Masao

    2005-09-01

    This paper describes the fabrication of novel surface-mountable waveguide connectors and presents test results for them. To ensure more highly integrated and low-cost fabrication, we propose new three-dimensional (3-D) waveguide arrays that feature two-dimensionally integrated optical inputs/outputs and optical path redirection. A wafer-level stack and lamination process was used to fabricate the waveguide arrays. Vertical-cavity surface-emitting lasers (VCSELs) and photodiodes were directly mounted on the arrays and combined with mechanical transferable ferrule using active alignment. With the help of a flip-chip bonder, the waveguide connectors were mounted on a printed circuit board by solder bumps. Using mechanical transferable connectors, which can easily plug into the waveguide connectors, we obtained multi-gigabits-per-second transmission performance.

  1. Three-variable solution in the (2+1)-dimensional null-surface formulation

    NASA Astrophysics Data System (ADS)

    Harriott, Tina A.; Williams, J. G.

    2018-04-01

    The null-surface formulation of general relativity (NSF) describes gravity by using families of null surfaces instead of a spacetime metric. Despite the fact that the NSF is (to within a conformal factor) equivalent to general relativity, the equations of the NSF are exceptionally difficult to solve, even in 2+1 dimensions. The present paper gives the first exact (2+1)-dimensional solution that depends nontrivially upon all three of the NSF's intrinsic spacetime variables. The metric derived from this solution is shown to represent a spacetime whose source is a massless scalar field that satisfies the general relativistic wave equation and the Einstein equations with minimal coupling. The spacetime is identified as one of a family of (2+1)-dimensional general relativistic spacetimes discovered by Cavaglià.

  2. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn

    The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the titlemore » molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.« less

  3. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  4. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  5. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE PAGES

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...

    2017-10-26

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  6. Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.

    PubMed

    Chang, C; Verboncoeur, J; Guo, M N; Zhu, M; Song, W; Li, S; Chen, C H; Bai, X C; Xie, J L

    2014-12-01

    The time- and space-dependent optical emissions of nanosecond high-power microwave discharges near a dielectric-air interface have been observed by nanosecond-response four-framing intensified-charged-coupled device cameras. The experimental observations indicate that plasma developed more intensely at the dielectric-air interface than at the free-space region with a higher electric-field amplitude. A thin layer of intense light emission above the dielectric was observed after the microwave pulse. The mechanisms of the breakdown phenomena are analyzed by a three-dimensional electromagnetic-field modeling and a two-dimensional electromagnetic particle-in-cell simulation, revealing the formation of a space-charge microwave sheath near the dielectric surface, accelerated by the normal components of the microwave field, significantly enhancing the local-field amplitude and hence ionization near the dielectric surface. The nonlinear positive feedback of ionization, higher electron mobility, and ultraviolet-driven photoemission due to the elevated electron temperature are crucial for achieving the ultrafast discharge. Following the high-power microwave pulse, the sheath sustains a glow discharge until the sheath collapses.

  7. Theory of Liquid Film Growth and Wetting Instabilities on Graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Nichols, Nathan S.; Del Maestro, Adrian; Kotov, Valeri N.

    2018-06-01

    We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases of hydrogen, helium, and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, submerged or suspended. We find that the presence of graphene has a significant effect in all configurations. When placed on a substrate, the polarizability of graphene can increase the strength of the total van der Waals force by a factor of 2 near the surface, enhancing the propensity towards wetting. In a suspended geometry unique to two-dimensional materials, where graphene is able to wet on only one side, liquid film growth becomes arrested at a critical thickness, which may trigger surface instabilities and pattern formation analogous to spinodal dewetting. The existence of a mesoscopic critical film with a tunable thickness provides a platform for the study of a continuous wetting transition, as well as the engineering of custom liquid coatings. These phenomena are robust to some mechanical deformations and are also universally present in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides.

  8. A finite area scheme for shallow granular flows on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  9. Lump Solitons in Surface Tension Dominated Flows

    NASA Astrophysics Data System (ADS)

    Milewski, Paul; Berger, Kurt

    1999-11-01

    The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.

  10. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  11. Three-dimensional numerical simulations of local scouring around bridge piers

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...

  12. Mountain-Wave Induced Rotors in the Lee of Three-Dimensional Ridges

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Durran, D. R.

    2003-12-01

    Mountain waves forced by elongated ridges are often accompanied by low-level vortices that have horizontal circulation axes parallel to the ridgeline. These horizontal vortices, known as rotors, can be severe aeronautical hazards and have been cited as contributing to numerous aircraft accidents. In spite of their obvious importance, mountain-induced rotors still remain poorly understood, particularly with respect to three-dimensional aspects of the flow. In this study, the dynamics of rotors forced by three-dimensional topography are investigated through a series of high-resolution idealized simulations with the non-hydrostatic COAMPS model. The focus of this investigation is on the internal structure of rotors and in particular on the dynamics of small-scale intense circulations within rotors that we refer to as "sub-rotors". These are the first known simulations of sub-rotors in three dimensions, likely because explicit simulations have only just recently become computationally feasible with the new generation of massively parallel computers. The calculations were performed on an SGI Origin 3000 at the DoD Major Shared Resource Facility High Performance Computing Facility at the U.S. Army Engineer Research and Development Center (ERDC) in Vicksburg, Mississippi as part of the DoD Challenge program. Simulations are conducted using an upstream reference state representative of the conditions under which rotors form in the real atmosphere; in particular a vertical profile approximating the conditions upstream of the Colorado Front Range on 1200 UTC 3 March 1991. This is a few hours prior to a B737 crash at the Colorado Springs, CO airport that was initially linked to rotors and near the time when rotor clouds were observed in vicinity. The topography is specified as a 1000-m high elongated ridge with a half-width of 15 km on the upstream portion and 5 km on the downstream side. In several experiments, a 500-m circular peak with a half-width of 7.5 km is used to investigate the sensitivity of the rotor dynamics to topographic variations in the cross-flow direction. As many as six nested grids are used with a minimum horizontal resolution of 22 m and 90 vertical levels in order to resolve the internal rotor structure and sub-rotors. The simulation results indicate a thin sheet of high-vorticity fluid develops adjacent to the ground along the lee slope and then ascends abruptly as it is advected into the updraft at the leading edge of the first trapped lee wave. This vortex sheet is primarily forced by mechanical shear associated with frictional processes at the surface. Instability of the horizontal vortex sheet occurs along the leading edge of the "parent" rotor and as a result coherent sub-rotor circulations subsequently develop. These sub-rotors intensify and are advected downstream or back toward the mountain into the parent rotor at low-levels leading to an enhancement of the near-surface horizontal vorticity. Horizontal vorticity within the sub-rotors are enhanced several fold. The horizontal vorticity generation appears to be enhanced near the edges of the wake emanating from the circular peak due to vortex stretching of the parent rotor and also further maximized due to stretching associated with three-dimensional turbulent eddies. The results suggest that preferred regions of intense rotors may exist near topographic features that enhance vortex stretching.

  13. The intercalation chemistry of layered iron chalcogenide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the rolemore » of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.« less

  14. Interactive 3-D graphics workstations in stereotaxy: clinical requirements, algorithms, and solutions

    NASA Astrophysics Data System (ADS)

    Ehricke, Hans-Heino; Daiber, Gerhard; Sonntag, Ralf; Strasser, Wolfgang; Lochner, Mathias; Rudi, Lothar S.; Lorenz, Walter J.

    1992-09-01

    In stereotactic treatment planning the spatial relationships between a variety of objects has to be taken into account in order to avoid destruction of vital brain structures and rupture of vasculature. The visualization of these highly complex relations may be supported by 3-D computer graphics methods. In this context the three-dimensional display of the intracranial vascular tree and additional objects, such as neuroanatomy, pathology, stereotactic devices, or isodose surfaces, is of high clinical value. We report an advanced rendering method for a depth-enhanced maximum intensity projection from magnetic resonance angiography (MRA) and a walk-through approach to the analysis of MRA volume data. Furthermore, various methods for a multiple-object 3-D rendering in stereotaxy are discussed. The development of advanced applications in medical imaging can hardly be successful if image acquisition problems are disregarded. We put particular emphasis on the use of conventional MRI and MRA for stereotactic guidance. The problem of MR distortion is discussed and a novel three- dimensional approach to the quantification and correction of the distortion patterns is presented. Our results suggest that the sole use of MR for stereotactic guidance is highly practical. The true three-dimensionality of the acquired datasets opens up new perspectives to stereotactic treatment planning. For the first time it is possible now to integrate all the necessary information into 3-D scenes, thus enabling an interactive 3-D planning.

  15. A time-dependent, three-dimensional model of the Delaware Bay and River system. Part 2: Three-dimensional flow fields and residual circulation

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Mellor, George L.

    1990-09-01

    The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.

  16. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoqing; Xue, Chao; Yang, Bolun; Yang, Guidong

    2017-02-01

    Novel three-dimensionally ordered macroporous (3DOM) Fe3+-doped TiO2 photocatalysts were prepared using a colloidal crystal template method with low-cost raw material including ferric trichloride, isopropanol, tetrabutyl titanate and polymethyl methacrylate. The as-prepared 3DOM Fe3+-doped TiO2 photocatalysts were characterized by various analytical techniques. TEM and SEM results showed that the obtained photocatalysts possess well-ordered macroporous structure in three dimensional orientations. As proved by XPS and EDX analysis that Fe3+ ions have been introduced TiO2 lattice and the doped Fe3+ ions can act as the electron acceptor/donor centers to significantly enhance the electron transfer from the bulk to surface of TiO2, resulting in more electrons could take part in the oxygen reduction process thereby decreasing the recombination rate of photogenerated charges. Meanwhile, the 3DOM architecture with the feature of interfacial chemical reaction active sites and optical absorption active sites is remarkably favorable for the reactant transfer and light trapping in the photoreaction process. As a result, the 3DOM Fe3+-doped TiO2 photocatalysts show the considerably higher photocatalytic activity for decomposition of the Rhodamine B (RhB) and the generation of hydrogen under visible light irradiation due to the synergistic effects of open, interconnected macroporous network and metal ion doping.

  17. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence

    USGS Publications Warehouse

    Michael, A.J.

    1988-01-01

    A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author

  18. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2014-04-01

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  19. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitationmore » and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.« less

  20. [The three-dimensional simulation of arytenoid cartilage movement].

    PubMed

    Zhang, Jun; Wang, Xuefeng

    2011-08-01

    Exploring the characteristics of arytenoid cartilage movement. Using Pro/ENGINEER (Pro/E) software, the cricoid cartilage, arytenoid cartilage and vocal cords were simulated to the three-dimensional reconstruction, by analyzing the trajectory of arytenoid cartilage in the joint surface from the cricoid cartilage and arytenoid cartilage composition. The 3D animation simulation showed the normal movement patterns of the vocal cords and the characteristics of vocal cords movement in occasion of arytenoid cartilage dislocation vividly. The three-dimensional model has clinical significance for arytenoid cartilage movement disorders.

  1. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  2. UV plasmonic enhancement through three dimensional nano-cavity antenna array in aluminum

    NASA Astrophysics Data System (ADS)

    Mao, Jieying; Stevenson, Peter; Montanaric, Danielle; Wang, Yunshan; Shumaker-Parry, Jennifer S.; Harris, Joel M.; Blair, Steve

    2017-08-01

    Metallic nanostructure can enhance fluorescence through excited surface plasmons which increase the local field as well as improve its quantum efficiency. When coupling to cavity resonance with proper gap dimension, gap hot spots can be generated to interact with fluorescence at their excitation/emission region in UV. A 3D nano-cavity antenna array in Aluminum has been conducted to generate local hot spot resonant at fluorescence emission resonance. Giant field enhancement has been achieved through coupling fundamental resonance modes of nanocavity into surface plasmons polaritons (SPPs). In this work, two distinct plasmonic structure of 3D resonant cavity nanoantenna has been studied and its plasmonic response has been scaled down to the UV regime through finite-difference-time-domain (FDTD) method. Two different strategies for antenna fabrication will be conducted to obtain D-coupled Dots-on-Pillar Antenna array (D2PA) through Focus Ion Beam (FIB) and Cap- Hole Pair Antenna array (CHPA) through nanosphere template lithography (NTL). With proper optimization of the structures, D2PA and CHPA square array with 280nm pitch have achieved distinct enhancement at fluorophore emission wavelength 350nm and excitation wavelength 280nm simultaneously. Maximum field enhancement can reach 20 and 65 fold in the gap of D2PA and CHPA when light incident from substrate, which is expected to greatly enhance fluorescent quantum efficiency that will be confirmed in fluorescence lifetime measurement.

  3. Carbon nanotube dispersed conductive network for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.

    2014-08-01

    Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.

  4. The Boomerang Lift: A Three-Step Compartment-Based Approach to the Youthful Cheek.

    PubMed

    Schreiber, Jillian E; Terner, Jordan; Stern, Carrie S; Beut, Javier; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M

    2018-04-01

    Autologous fat grafting is an important tool for plastic surgeons treating the aging face. Malar augmentation with fat is often targeted to restore the youthful facial contour and provides support to the lower eyelid. The existence of distinct facial fat compartments suggests that a stepwise approach may be appropriate in this regard. The authors describe a three-step approach to malar augmentation using targeted deep malar fat compartmental augmentation, termed the "boomerang lift." Clinical patients undergoing autologous fat grafting for malar augmentation were injected in three distinct deep malar fat compartments: the lateral sub-orbicularis oculi fat, the medial sub-orbicularis oculi fat, and the deep medial cheek (n = 9). Intraoperative three-dimensional images were taken at baseline and following compartmental injections (Canfield VECTRA H1). Images were overlaid between the augmented and baseline captures, and the three-dimensional surface changes were analyzed, which represented the resulting "augmentation zone." Three-dimensional analysis demonstrated a unique pattern for the augmentation zone consistent across patients. The augmentation zone resembled a boomerang, with the short tail supporting the medial lower lid and the long tail extending laterally along the zygomatic arch. The upper border was restricted by the level of the nasojugal interface, and the lower border was defined medially by the nasolabial fold and laterally by the level of the zygomaticocutaneous ligament. Lateral and medial sub-orbicularis oculi fat injections defined the boundaries of the boomerang shape, and injection to the deep medial cheek provided maximum projection. This is the first description of deep malar augmentation zones in clinical patients. Three-dimensional surface imaging was ideal for analyzing the surface change in response to targeted facial fat grafting. The authors' technique resulted in a reproducible surface shape, which they term the boomerang lift.

  5. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  6. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  7. [Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].

    PubMed

    Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun

    2009-05-01

    By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).

  8. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  9. Computer program for assessing the theoretical performance of a three dimensional inlet

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.; Kung, F.

    1972-01-01

    A computer program for determining the theoretical performance of a three dimensional inlet is presented. An analysis for determining the capture area, ram force, spillage force, and surface pressure force is presented, along with the necessary computer program. A sample calculation is also included.

  10. [Recent progress of research and applications of fractal and its theories in medicine].

    PubMed

    Cai, Congbo; Wang, Ping

    2014-10-01

    Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.

  11. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  12. Endplate effect on aerodynamic characteristics of threedimensional wings in close free surface proximity

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo

    2012-12-01

    We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  13. Two-dimensional electronic transport and surface electron accumulation in MoS2.

    PubMed

    Siao, M D; Shen, W C; Chen, R S; Chang, Z W; Shih, M C; Chiu, Y P; Cheng, C-M

    2018-04-12

    Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS 2 ) is a major n-doping source. The surface electron concentration of MoS 2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS 2 nanoflakes was observed. The transfer length method suggested the current transport in MoS 2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.

  14. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  15. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    PubMed

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  16. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  17. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-10-01

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials.We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials. Electronic supplementary information (ESI) available: Additional SEM images, electric field enhancement profiles, Raman scattering spectra, and structure-dependent peak ratios. See DOI: 10.1039/c5nr04500b

  18. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns.

    PubMed

    Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A

    2017-01-01

    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

  19. Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability.

    PubMed

    Tao, Sarah L; Desai, Tejal A

    2005-12-05

    Advances in microelectomechanical systems (MEMS) have allowed the microfabrication of polymeric substrates and the development of a novel class of controlled delivery devices. These vehicles have specifically tailored three-dimensional physical and chemical features which, together, provide the capacity to target cells, promote unidirectional controlled release, and enhance permeation across the intestinal epithelial barrier. Examining the biological response at the microdevice biointerface may provide insight into the benefits of customized surface chemistry and structure in terms of complex drug delivery vehicle design. Therefore, the aim of this work was to determine the interfacial effects of selective surface chemistry and architecture of tomato lectin (TL)-modified poly(methyl methacrylate) (PMMA) drug delivery microdevices on the Caco-2 cell line, a model of the gastrointestinal tract.

  20. [Stress analysis of the mandible by 3D FEA in normal human being under three loading conditions].

    PubMed

    Sun, Jian; Zhang, Fu-qiang; Wang, Dong-wei; Yu, Jia; Wang, Cheng-tao

    2004-02-01

    The condition and character of stress distribution in the mandibular in normal human being during centric, protrusive, laterotrusive occlusion were analysed. The three-dimensional finite element model of the mandibular was developed by helica CT scanning and CAD/CAM software, and three-dimensional finite element stress analysis was done by ANSYS software. Three-dimensional finite element model of the mandibular was generated. Under these three occlusal conditions, the stress of various regions in the mandible were distributed unequally, and the stress feature was different;while the stress of corresponding region in bilateral mandibular was in symmetric distribution. The stress value of condyle neck, the posterior surface of coronoid process and mandibular angle were high. The material properties of mandible were closely correlated to the value of stress. Stress distribution were similar according to the three different loading patterns, but had different effects on TMJ joint. The concentrated areas of stress were in the condyle neck, the posterior surface of coronoid process and mandibular angle.

  1. Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements

    NASA Technical Reports Server (NTRS)

    Martin, William G.; Cairns, Brian; Bal, Guillaume

    2014-01-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.

  2. Three dimensional tracking of exploratory behavior of barnacle cyprids using stereoscopy.

    PubMed

    Maleschlijski, S; Sendra, G H; Di Fino, A; Leal-Taixé, L; Thome, I; Terfort, A; Aldred, N; Grunze, M; Clare, A S; Rosenhahn, B; Rosenhahn, A

    2012-12-01

    Surface exploration is a key step in the colonization of surfaces by sessile marine biofoulers. As many biofouling organisms can delay settlement until a suitable surface is encountered, colonization can comprise surface exploration and intermittent swimming. As such, the process is best followed in three dimensions. Here we present a low-cost transportable stereoscopic system consisting of two consumer camcorders. We apply this novel apparatus to behavioral analysis of barnacle larvae (≈800 μm length) during surface exploration and extract and analyze the three-dimensional patterns of movement. The resolution of the system and the accuracy of position determination are characterized. As a first practical result, three-dimensional swimming trajectories of the cypris larva of the barnacle Semibalanus balanoides are recorded in the vicinity of a glass surface and close to PEG2000-OH and C(11)NMe(3)(+)Cl(-) terminated self-assembled monolayers. Although less frequently used in biofouling experiments due to its short reproductive season, the selected model species [Marechal and Hellio (2011), Int Biodeterior Biodegrad, 65(1):92-101] has been used following a number of recent investigations on the settlement behavior on chemically different surfaces [Aldred et al. (2011), ACS Appl Mater Interfaces, 3(6):2085-2091]. Experiments were scheduled to match the availability of cyprids off the north east coast of England so that natural material could be used. In order to demonstrate the biological applicability of the system, analysis of parameters such as swimming direction, swimming velocity and swimming angle are performed.

  3. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Tsvetkov, Martin; Spassov, Tony

    2018-07-01

    Novel visible light-driven heterostructured NiO/g-C3N4 photocatalyst has been designed and successfully prepared via ammonia-evaporation-induced method. The synthetic strategy consists of grafting the surface of g-C3N4 with Ni(NH3)62+ complex followed by its hydrolysis at lower pH to form nano-wrinkled thin film of α-Ni(OH)2. The final NiO/g-C3N4 hybrid was obtained after calcination of the Ni(OH)2/g-C3N4 precursor at 350 °C. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, FTIR, N2 adsorption/desorption, UV-vis diffuse reflectance and photoluminescence spectroscopy were used to characterize the resulting material. Our results revealed the formation of meso-/macroporous three-dimensional hierarchical honeycomb-like structure with high BET surface area (141 m2 g-1). The photocatalytic performance of the composite under visible light (λ > 400 nm) irradiation was evaluated through degradation of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and photocatalytic properties of the pristine g-C3N4 and nanostructured NiO were also examined. Results indicated that NiO/g-C3N4 is much more active than pristine g-C3N4 and NiO in the photodegradation of MG. The enhanced photocatalytic performance of the composite was mainly attributed to the combination of high adsorption capacity which facilitates the direct redox reactions of dye and the efficient inhibition of photo-generated electron-hole pair recombination. Superoxide radicals (•O2-) and photo-generated holes (h+) were found to be the main active species in the process.

  4. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  5. Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Bloshkin, A. A.; Armbrister, V. A.; Dvurechenskii, A. V.

    2017-10-01

    Quantum dot based infrared (IR) photodetectors (QDIPs) have the potential to provide meaningful advances to the next generation of imaging systems due to their sensitivity to normal incidence radiation, large optical gain, low dark currents, and high operating temperature. SiGe-based QDIPs are of particular interest as they are compatible with silicon integration technology but suffer from the low absorption coefficient and hence small photoresponse in the mid-wavelength IR region. Here, we report on the plasmonic enhanced Ge/Si QDIPs with tailorable wavelength optical response and polarization selectivity. Ge/Si heterostructures with self-assembled Ge quantum dots are monolithically integrated with periodic two-dimensional arrays of subwavelength holes (2DHAs) perforated in gold films to convert the incident electromagnetic IR radiation into the surface plasmon polariton (SPP) waves. The resonant responsivity of the plasmonic detector at a wavelength of 5.4 μm shows an enhancement of up to thirty times over a narrow spectral bandwidth (FWHM = 0.3 μm), demonstrating the potentiality of this approach for the realization of high-performance Ge/Si QDIPs that require high spectral resolution. The possibility of the polarization-sensitive detection in Ge/Si QDIPs enhanced with a stretched-lattice 2DHA is reported. The excitation of SPP modes and the near-field components are investigated with the three-dimensional finite-element frequency-domain method. The role that plasmonic electric field plays in QDIP enhancement is discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. M.; Kim, K. Y.

    Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels,more » the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)« less

  7. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  8. Evaluation of the fish passage effectiveness of the Bonneville I prototype surface collector using three-dimensional ultrasonic fish tracking - Final Report

    USGS Publications Warehouse

    Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.

    2001-01-01

    This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.

  9. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  10. Method and apparatus for atomic imaging

    DOEpatents

    Saldin, Dilano K.; de Andres Rodriquez, Pedro L.

    1993-01-01

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  11. Photo-Attachment of Biomolecules for Miniaturization on Wicking Si-Nanowire Platform

    PubMed Central

    Cheng, He; Zheng, Han; Wu, Jia Xin; Xu, Wei; Zhou, Lihan; Leong, Kam Chew; Fitzgerald, Eugene; Rajagopalan, Raj; Too, Heng Phon; Choi, Wee Kiong

    2015-01-01

    We demonstrated the surface functionalization of a highly three-dimensional, superhydrophilic wicking substrate using light to immobilize functional biomolecules for sensor or microarray applications. We showed here that the three-dimensional substrate was compatible with photo-attachment and the performance of functionalization was greatly improved due to both increased surface capacity and reduced substrate reflectivity. In addition, photo-attachment circumvents the problems induced by wicking effect that was typically encountered on superhydrophilic three-dimensional substrates, thus reducing the difficulty of producing miniaturized sites on such substrate. We have investigated various aspects of photo-attachment process on the nanowire substrate, including the role of different buffers, the effect of wavelength as well as how changing probe structure may affect the functionalization process. We demonstrated that substrate fabrication and functionalization can be achieved with processes compatible with microelectronics processes, hence reducing the cost of array fabrication. Such functionalization method coupled with the high capacity surface makes the substrate an ideal candidate for sensor or microarray for sensitive detection of target analytes. PMID:25689680

  12. Quantum anomalies in nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  13. Implementation of one and three dimensional models for heat transfer coeffcient identification over the plate cooled by the circular water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz

    2017-10-01

    A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.

  14. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  15. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    NASA Astrophysics Data System (ADS)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  16. Nanometric holograms based on a topological insulator material

    PubMed Central

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-01-01

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security. PMID:28516906

  17. Development and Applications of Porous Tantalum Trabecular Metal Enhanced Titanium Dental Implants

    PubMed Central

    Bencharit, Sompop; Byrd, Warren C.; Altarawneh, Sandra; Hosseini, Bashir; Leong, Austin; Reside, Glenn; Morelli, Thiago; Offenbacher, Steven

    2013-01-01

    Statement of Problem Porous tantalum trabecular metal has recently been incorporated in titanium dental implants as a new form of implant surface enhancement. However, there is little information on the applications of this material in implant dentistry. Methods We, therefore review the current literature on the basic science and clinical uses of this material. Results Porous tantalum metal is used to improve the contact between osseous structure and dental implants; and therefore presumably facilitate osseointegration. Success of porous tantalum metal in orthopedic implants led to the incorporation of porous tantalum metal in the design of root-from endosseous titanium implants. The porous tantalum three-dimensional enhancement of titanium dental implant surface allows for combining bone ongrowth together with bone ingrowth, or osseoincorporation. While little is known about the biological aspect of the porous tantalum in the oral cavity, there seems to be several possible advantages of this implant design. This article reviews the biological aspects of porous tantalum enhanced titanium dental implants, in particular the effects of anatomical consideration and oral environment to implant designs. Conclusions We propose here possible clinical situations and applications for this type of dental implant. Advantages and disadvantages of the implants as well as needed future clinical studies are discussed. PMID:23527899

  18. Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film.

    PubMed

    Zhang, Wenchao; Yin, Baoqing; Shen, Ruiqi; Ye, Jiahai; Thomas, Jason A; Chao, Yimin

    2013-01-23

    A three-dimensionally ordered macroporous Fe(2)O(3)/Al nanothermite membrane has been prepared with a polystyrene spheres template. The nanothermite, with an enhanced interfacial contact between fuel and oxidizer, outputs 2.83 kJ g(-1) of energy. This is significantly more than has been reported before. This approach, fully compatible with MEMS technology, provides an efficient way to produce micrometer thick three-dimensionally ordered nanostructured thermite films with overall spatial uniformity. These exciting achievements will greatly facilitate potential for the future development of applications of nanothermites.

  19. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  20. Three-dimensional carbon architectures for electrochemical capacitors.

    PubMed

    Song, Yu; Liu, Tianyu; Qian, Fang; Zhu, Cheng; Yao, Bin; Duoss, Eric; Spadaccini, Christopher; Worsley, Marcus; Li, Yat

    2018-01-01

    Three-dimensional (3D) carbon-based materials are emerging as promising electrode candidates for energy storage devices. In comparison to the 1D and 2D structures, 3D morphology offers new opportunities in rational design and synthesis of novel architectures tailor-made for promoting electrochemical performance. The capability of building hierarchical porous structures with 3D configuration can significantly advance the performance of energy storage devices by simultaneously enhancing the ion-accessible surface area and ion diffusion. This feature article presents an overview of recent progress in design, synthesis and implementation of 3D carbon-based materials as electrodes for electrochemical capacitors. Synthesis methodologies of four types of 3D carbon-based electrodes: 3D exfoliated carbon structures, 3D graphene scaffolds, 3D hierarchical porous carbon foams, as well as 3D architectures with periodic pores derived from direct ink writing, are thoroughly discussed and highlighted with selected experimental works. Finally, key opportunities and challenges in which different 3D carbons can significantly impact the energy storage and conversion communities will be provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Kong, Lirong; Shen, Xiaoping; Chen, Quanrun; Ji, Zhenyuan; Wang, Jiheng; Xu, Keqiang; Zhu, Guoxing

    2018-01-01

    Three-dimensional (3D) graphene aerogel and its composite with interconnected pores have aroused continuous interests in energy storage field owning to its large surface area and hierarchical pore structure. Herein, we reported the preparation of 3D nitrogen-doped graphene/polyaniline (N-GE/PANI) composite foam for supercapacitive material with greatly improved electrochemical performance. The 3D porous structure can allow the penetration and diffusion of electrolyte, the incorporation of nitrogen doping can enhance the wettability of the active material and the number of active sites with electrolyte, and both the N-GE and PANI can ensure the high electrical conductivity of total electrode. Moreover, the synergistic effect between N-GE and PANI materials also play an important role on the electrochemical performance of electrode. Therefore, the as-prepared composite foam could deliver a high specific capacitance of 528 F g-1 at 0.1 A g-1 and a high cyclic stability with 95.9% capacitance retention after 5000 charge-discharge cycles. This study provides a new idea on improving the energy storage capacity of supercapacitors by using 3D graphene-based psedocapacitive electrode materials.

  2. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties

    NASA Astrophysics Data System (ADS)

    Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei

    2014-03-01

    Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d

  3. Titan impacts and escape

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, Kevin J.

    2011-01-01

    We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn's moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion. We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s -1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan's surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results. Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/ Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/ Mi ˜ 1-2 were found in the simulations.

  4. Three-dimensional stress intensity factor analysis of a surface crack in a high-speed bearing

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Hsu, Yingchun

    1990-01-01

    The boundary element method is applied to calculate the stress intensity factors of a surface crack in the rotating inner raceway of a high-speed roller bearing. The three-dimensional model consists of an axially stressed surface cracked plate subjected to a moving Hertzian contact loading. A multidomain formulation and singular crack-tip elements were employed to calculate the stress intensity factors accurately and efficiently for a wide range of configuration parameters. The results can provide the basis for crack growth calculations and fatigue life predictions of high-performance rolling element bearings that are used in aircraft engines.

  5. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  6. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  7. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance.

    PubMed

    Xu, You; Xu, Rui; Cui, Jianhua; Liu, Yang; Zhang, Bin

    2012-04-21

    Three-dimensional Pd polyhedron networks (Pd PNs) have been fabricated for the first time through a one-step, Cu(2+)-assisted, solution-chemical approach. These as-prepared 3D Pd PNs exhibit high stability and remarkably improved electrocatalytic activity toward formic acid oxidation over commercially available Pd black. This journal is © The Royal Society of Chemistry 2012

  8. A Meta-Analysis of the Educational Effectiveness of Three-Dimensional Visualization Technologies in Teaching Anatomy

    ERIC Educational Resources Information Center

    Yammine, Kaissar; Violato, Claudio

    2015-01-01

    Many medical graduates are deficient in anatomy knowledge and perhaps below the standards for safe medical practice. Three-dimensional visualization technology (3DVT) has been advanced as a promising tool to enhance anatomy knowledge. The purpose of this review is to conduct a meta-analysis of the effectiveness of 3DVT in teaching and learning…

  9. Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption.

    PubMed

    Bagoole, Oscar; Rahman, Md Mahfuzur; Shah, Sohail; Hong, Haiping; Chen, Hang; Al Ghaferi, Amal; Younes, Hammad

    2018-06-02

    Modified Hummer's method has been used in this study to synthesize graphene oxide (GO) solution that was utilized for the fabrication of three-dimensional (3D) graphene sponges and their subsequent functionalization through a low-cost and facile vapor-based surface enhancement approach. The functionalized 3D-graphene sponge is an excellent absorbent, which can remove more than 3300 wt.% of crude oil (calculated with respect to the original sorbent mass). The functionalization of the obtained graphene sponges with trichloro (1H,1H,2H,2H-perfluorooctyl)silane enhanced their wettability properties due to the super-hydrophobic nature of the resulting materials characterized by the contact angles in water greater than 150°. Furthermore, their elastic compression modulus (estimated by conducting a series of compression tests) was about 22.3 kPa. The equilibrium modeling of the oil removal process, which was performed by plotting Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, confirmed the properties of the fabricated 3D graphene sponges as exceptional absorbents for crude and diesel oil, which could be attributed to the oleophilic nature of graphene. Moreover, the obtained 3D graphene sponges could be regenerated via heat treatment, which was conducted to release the adsorbed species. After five adsorption-desorption cycles, the sorption capacity of the produced 3D graphene sponges towards crude oil reached 95% of the initial value.

  10. Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction

    PubMed Central

    Dong, Haifeng; Liu, Conghui; Ye, Haitao; Hu, Linping; Fugetsu, Bunshi; Dai, Wenhao; Cao, Yu; Qi, Xueqiang; Lu, Huiting; Zhang, Xueji

    2015-01-01

    An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS2/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency. PMID:26639026

  11. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04259c

  12. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    PubMed

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be extended to other alloy-type anode materials such as silicon, germanium, etc.

  13. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.

    PubMed

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-05

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  14. The IRGen infrared data base modeler

    NASA Technical Reports Server (NTRS)

    Bernstein, Uri

    1993-01-01

    IRGen is a modeling system which creates three-dimensional IR data bases for real-time simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the temperature and radiance of every data base surface with a user-specified thermal environment. The predicted gray shade of each surface is then computed from the user specified sensor characteristics. IRGen is based on first-principles models of heat transport and heat flux sources, and it accurately simulates the variations of IR imagery with time of day and with changing environmental conditions. The starting point for creating an IRGen data base is a visual faceted data base, in which every facet has been labeled with a material code. This code is an index into a material data base which contains surface and bulk thermal properties for the material. IRGen uses the material properties to compute the surface temperature at the specified time of day. IRGen also supports image generator features such as texturing and smooth shading, which greatly enhance image realism.

  15. Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma

    DOE PAGES

    Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...

    2015-10-08

    The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less

  16. Ray tracing method for the evaluation of grazing incidence x-ray telescopes described by spatially sampled surfaces.

    PubMed

    Yu, Jun; Shen, Zhengxiang; Sheng, Pengfeng; Wang, Xiaoqiang; Hailey, Charles J; Wang, Zhanshan

    2018-03-01

    The nested grazing incidence telescope can achieve a large collecting area in x-ray astronomy, with a large number of closely packed, thin conical mirrors. Exploiting the surface metrological data, the ray tracing method used to reconstruct the shell surface topography and evaluate the imaging performance is a powerful tool to assist iterative improvement in the fabrication process. However, current two-dimensional (2D) ray tracing codes, especially when utilized with densely sampled surface shape data, may not provide sufficient accuracy of reconstruction and are computationally cumbersome. In particular, 2D ray tracing currently employed considers coplanar rays and thus simulates only these rays along the meridional plane. This captures axial figure errors but leaves other important errors, such as roundness errors, unaccounted for. We introduce a semianalytic, three-dimensional (3D) ray tracing approach for x-ray optics that overcomes these shortcomings. And the present method is both computationally fast and accurate. We first introduce the principles and the computational details of this 3D ray tracing method. Then the computer simulations of this approach compared to 2D ray tracing are demonstrated, using an ideal conic Wolter-I telescope for benchmarking. Finally, the present 3D ray tracing is used to evaluate the performance of a prototype x-ray telescope fabricated for the enhanced x-ray timing and polarization mission.

  17. Color Constancy in Two-Dimensional and Three-Dimensional Scenes: Effects of Viewing Methods and Surface Texture.

    PubMed

    Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L

    2017-01-01

    There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.

  18. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    PubMed

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  19. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    PubMed

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  20. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

Top